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SUMMARY
To fight tuberculosis, better vaccination strategies are needed. Live attenuatedMycobacterium tuberculosis-
derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in
humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Gué-
rin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intra-
dermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T
helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic pro-
file than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced
by MTBVAC and BCG, bind toM. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary
vaccination, but notM. tuberculosis infection, local T cells expressed high levels of mucosal homing and tis-
sue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance
its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.
INTRODUCTION

Despite advances in treatment and care, tuberculosis continues

to cause approximately 1.6 million deaths and an additional 10

million cases of active disease annually.1 Control of this ongoing

epidemic is complicated by a lack of accurate diagnostics,

lengthy treatment regimens, and an increase in drug-resistant

tuberculosis (TB) incidence. An effective vaccination strategy

preventing TB infection or disease is therefore of critical impor-

tance for controlling the continuing TB epidemic. Unfortunately,

the only prophylactic vaccine currently available, Bacillus Calm-

ette-Guérin (BCG), despite preventing dissemination of the dis-

ease, is notoriously variable in protecting adults and adolescents

from pulmonary TB. Pulmonary disease is the major cause

of morbidity and mortality and the driver of TB spread.2

Geographical location, prior non-tuberculous mycobacterium

(NTM) exposure, and over-attenuation of BCG have been

implied in the variable BCG efficacy.2–4 Regardless of the under-

lying mechanisms of this variation in efficacy, it is evident that a

more reliable vaccine strategy is urgently needed.

Currently, multiple novel TB vaccines are being developed

to replace BCG at birth or to serve as a (heterologous) booster
Cell Repo
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on top of prior BCG vaccination.5,6 One of these new candi-

date vaccines is MTBVAC, a live attenuated whole-cell vac-

cine designed as a potential replacement for neonatal BCG

vaccination. MTBVAC was generated by genetic modification

of a clinical Mycobacterium tuberculosis (Mtb) isolate of the

lineage 4 Euro-American genotype and harbors deletions in

two virulence genes, phoP and fadD26.7,8 These deletions

interfere with transcription, synthesis, and/or secretion of mul-

tiple virulence factors, including early secretory antigenic

target 6 (ESAT6) and phthiocerol dimycocerosates (PDIMs).9

Because MTBVAC is Mtb derived, it contains genomic regions

of difference (RDs) that are absent from M. bovis, and in

particular also RD1, that is lacking from M. bovis-derived

BCG.9 MTBVAC, therefore, has a broader antigenic repertoire

that is linked to its enhanced protective capacity.10 Although

RD1 encodes notorious virulence factors, such as ESAT6,

secretion is tightly regulated and interrupted by the targeted

phoP deletion in MTBVAC.9 Accordingly, in early-stage clinical

evaluation in adults and infants, intradermal MTBVAC

immunization has been found to have an acceptable safety

profile comparable with BCG, corroborating its attenuated

phenotype.11,12
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Figure 1. Study design schematic

Shown is a schematic overview of vaccination

strategies and post-vaccination sampling (of pe-

ripheral blood and BAL). Of note, BALs were har-

vested bilaterally only for the mucosally vaccinated

groups 3 and 8 weeks after vaccination.
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In preclinical studiesMTBVAC presentedwith an ability to pro-

tect from experimental TB infection and disease better than

BCG.7,13 It has been shown to confer improved protective effi-

cacy against Mtb in newborn mice at a single dose at birth.13 In

guinea pigs, revaccination with MTBVAC after BCG priming re-

sulted in a further reduction ofMtb burden in the lung compared

withBCGalone,14 andnon-humanprimate data on the efficacy of

(re)vaccination with intradermal MTBVAC have been established

recently.15 Although initially designed as a vaccine for newborns,

MTBVAC is also considered for revaccination of BCG-primed

adolescents and adults.12 Phase2 dose-finding, safety, and

immunogenicity studies in neonates (NCT03536117) andQuanti-

FERON-negative and -positive adults (NCT02933281) are in

progress, and a subsequent phase 3 efficacy study in neonates

is scheduled to start in 2021.

The indicated route of administration for BCG and MTBVAC is

the skin, which induces limited immune responses at the pulmo-

nary mucosa, the primary site of infection with Mtb. A growing

body of data generated in preclinical models of TB shows that

altering the route of BCG administration to the pulmonary mu-

cosa significantly improves its protective efficacy.16–19 In previ-

ous work, we showed that pulmonary but not intradermal BCG

vaccination could protect highly susceptible rhesus macaques

(Macaca mulatta) from repeated low-dose Mtb infection and

TB-associated pathology.20 Macaques are considered to be a

predictive model for TB vaccine development because of their

close phylogenetic relationship to man and highly similar TB dis-

ease development.21,22 In this model, the protection conferred

by mucosal BCG statistically correlated with induction of poly-

functional interleukin-17A (IL-17A)+ CD4+ T cells at the pulmo-

nary mucosa and IL-10 production by bronchoalveolar lavage

(BAL) cells, whereas elevated levels of antigen-specific immuno-

globulins were found in association with mucosal BCG immuni-

zation as well.

Although the mucosa of the airways can be considered an

environment of robust innate host defense to warrant homeo-

static balance, potentially resulting in rapid clearance and poor

immunogenicity of live attenuated vaccines, our data from

mucosal delivery in non-human primates (NHPs) have shown

local persistence of BCG and protection-associated immunity

in the airways in the absence of overt respiratory adversity.20

Interestingly, on this note, prior exposure of BCG to alveolar lin-

ing fluid from naive animals in vitro has been described to

enhance its protective efficacy when administered peripherally

to mice.23 Also, in other NHP studies exploring pulmonary deliv-

ery of BCG, no adversity has been reported.24,25 However, for

pulmonary mucosal delivery of MTBVAC, the tolerability and

immunogenicity remain to be established.

In light of this, here we set out to assess the tolerability and

immunogenicity of pulmonary mucosal delivery of MTBVAC in

rhesus macaques. Using a two-by-two factorial design strategy,
2 Cell Reports Medicine 2, 100187, January 19, 2021
we compared MTBVACwith BCG by standard intradermal injec-

tion and endobronchial instillation of a standard human dose.

Corroborating our earlier observations regarding alternative

BCG delivery, we show that pulmonary MTBVAC administration

was well tolerated and induced local IL-17A-producing T cells,

IL-10 production, and Mtb-specific immunoglobulin A (IgA).

Compared with BCG, vaccination with MTBVAC resulted in

more rapid induction of immune responses and broader anti-

genic specificity. Beyond what we have reported previously for

mucosal BCG, we identified increased expression of mucosal

homing markers of purified protein derivative (PPD)-specific

T cells in lung wash samples of mucosally vaccinated but not

Mtb-infected animals. Furthermore, we show that vaccine-

induced mucosal antibodies are functional in binding to live

Mtb and facilitating pathogen uptake by phagocytes. In our

attempt to identify an immune correlate of pulmonary whole-

cell TB vaccination that is assessable by peripheral sampling,

we exploited in vivo recall stimulation by tuberculin skin testing

(TST) but could not identify meaningful responses in skin or

skin-draining axillary lymph nodes. This study corroborates

and extends beyond previous findings and provides a rationale

for future exploration of mucosal administration of MTBVAC

with the perspective of improving our prophylaxis against TB

infection and disease.

RESULTS

Local immune signatures after mucosal MTBVAC
vaccination
To interrogate whether theMtb-derivedMTBVAC vaccine candi-

date, like M. bovis BCG, is tolerated well and induces unique

immune features upon pulmonary mucosal administration, we

designed a dedicated safety/immunogenicity study (without

infectious challenge) in rhesus macaques, represented sche-

matically in Figure 1. We vaccinated with MTBVAC using a single

(human) dose similar to BCG (5 3 105 colony-forming units

[CFUs]/dose) through the standard intradermal route (M.id) or

endobronchial instillation (M.muc) for direct comparison with

intradermal or mucosal BCG vaccination (B.id and B.muc,

respectively; Figure 1).

On a daily basis, animals were monitored for changes in con-

dition and well-being (including but not limited to alertness,

appetite, and respiration), but no deviation from normal behavior

was observed that would indicate vaccine adversity. Moreover,

there were no signals of serological increase in C-reactive pro-

tein (CRP) levels during the study that would indicate an adverse

systemic inflammatory response related to treatment (Figure S1).

Although we aimed to address vaccine persistence by culturing

from lung wash samples, our effort failed because of technical

error; therefore we could not confirm persistence of MTBVAC

in the airway like we have shown previously for BCG.20 In
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summary, and within limits of observation, live attenuated Mtb-

derived MTBVAC, also by pulmonary mucosal delivery, was

well tolerated by rhesus macaques.

Flow cytometry profiling of T cells in BAL revealed robust induc-

tion of PPD-specific CD4+ T cells in both mucosally vaccinated

groups, with MTBVAC eliciting higher responses than BCG for

almost all cytokines, especially early after vaccination (Figures

2A–2D). Although intradermal BCG and MTBVAC showed an in-

crease in interferon g (IFNg)-, tumor necrosis factor alpha (TNF-

a)-, and IL-2-producingTcells in theairways in theweeks following

vaccination (Figures 2A–2C), IL-17A production was uniquely

observed in the mucosally vaccinated groups (Figure 2D). These

IL-17A+ T cells also produced IFNg, TNF-a, and IL-2, confirming

induction of a local, quadruple-positive, CD4+ T cell population

(Figure 2E), found previously to be associated in this species

with protection from TB infection and disease.20 Little PPD-spe-

cific cytokine production was observed in BAL CD8+ T cells (Fig-

ures S2A–S2E). Local lymphocyte proliferation was observed pre-

dominantly after mucosal vaccination (Figure S2F).

Although, by endobronchial instillation, the vaccine was tar-

geted to the lower right lobe, we investigated whether vaccine-

induced immune responses would disseminate or be restrained

to the targeted lobe only. 3 and 8 weeks after vaccination, we

bilaterally collected BAL for immune profiling and found that

PPD-specific, cytokine-producing T cells were present in lower

right and lower left lung lobes, albeit at a somewhat lower fre-

quency in the non-targeted lobe (Figure 2F). In either lobe,

MTBVAC induced earlier and higher responses compared with

BCG, including polyfunctional CD4+ Th17 cells.

We also profiled immune responses in lung-draining lymph no-

des, the canonical site of T cell priming for respiratory antigenic

challenge. PPD-specific IFNg, TNF-a, and IL-2 production by

CD4+ T cells was observed most prominently after mucosal

vaccination but was also detectable after intradermal vaccina-

tion (Figure S2G). Interestingly, antigen-specific IL17A+ CD4+

T cells were not apparent in these lymph nodes (Figure S2G)

because the precursor frequency of these cells was too low to

be detected or because Th17 priming occurs elsewhere; for

instance, in tertiary lymphoid structures in the lung.26

Because we previously also identified IL10 production by un-

fractionated BAL cells as a correlate of protection, we investi-

gated, by flow cytometry analysis, whether IL-10 production

could be T cell derived. Although we confirmed high levels of

PPD-specific IL10 production in stimulated BAL cell superna-

tants after mucosal vaccination with MTBVAC as well as BCG

(Figure 2G), by flow cytometry, only very low frequencies of IL-
Figure 2. Pulmonary mucosal vaccination with MTBVAC induces immu

Shown is an overview of BAL cell immune responses after mucosal or intraderm

(A–D) Flow cytometry analysis over time of (A) IFNg, (B) TNF-a, (C) IL-2, and (D)

(E) Stacked bar graphs depicting CD4+ T cell cytokine polyfunctionality over tim

(F) PPD-specific cytokine production of CD4+ T cells in the lower right and lowe

vaccine responses.

(G) Secretion of IL-10 by unfractionated BAL cells stimulated with PPD at week 8

(H) Flow cytometry analysis of IL-10 production by CD4+ T cells over time after v

All graphs show 6 animals per group. In (A)–(D) and (H), + indicates PPD-stimulate

as controls. Horizontal lines within bars indicate group medians. Significance of g

multiple comparisons. Holms-adjusted p % 0.05 is depicted. Color coding per in

4 Cell Reports Medicine 2, 100187, January 19, 2021
10+ CD4+ T cells were detected in the BAL of mucosally vacci-

nated animals (Figure 2H). Although the frequencies are low and

conclusions therefore little robust , on average, only 2% of IL-

17+CD4+ BAL T cells obtained from mucosally vaccinated ani-

mals were found to be IL-10+ (data not shown). Thus, it seems

that the high levels of IL-10 may not be T cell derived but pro-

duced by local innate immune cells in response to innate recep-

tor ligation bymycobacterial compounds in the PPDpreparation.

Pulmonary vaccination with MTBVAC induces typically faster

and higher polyfunctional CD4+ T cell responses and IL-10

secretion signals associated previously with protection by pul-

monary BCG vaccination.

Peripheral immunity after pulmonary vaccination
In parallel to the pulmonary immune responses, we profiled pe-

ripheral T cell immunity in search of potential correlates of pro-

tection with a perspective for translation to clinical settings.

However, as before, when assessing adaptive PPD-specific

CD4+ and CD8+ T cell cytokine responses by flow cytometry,

no discriminating qualitative signals could be identified that

distinguished mucosally from intradermally vaccinated animals.

CD4+ T cell cytokine production was observed from week 3

post-vaccination onward and was most prominent in intrader-

mally vaccinated animals and the M.muc group (Figure 3A; Fig-

ures S3A–S3D). A slight increase in PPD-specific CD8+ T cell

cytokine production was only apparent in the intradermally

vaccinated groups 6 weeks post-vaccination (Figure 3B; Figures

S4A–S4D). No differences in CD4+ and CD8+ T cell polyfunc-

tionality could be detected.

We used an IFNg enzyme-linked immune absorbent spot (ELI-

SPOT) assay to assess the breadth of immune responses

induced by MTBVAC in comparison with BCG. In line with the

flow cytometry data, after stimulation with PPD, which contains

antigens shared by BCG and MTBVAC, intradermal MTBVAC

was indistinguishable from intradermal BCG by IFNg secretion

(Figure 3C). After stimulation with ESAT6 and CFP10, antigens

produced by MTBVAC but absent from BCG, we observed

IFNg production only by peripheral blood mononuclear cells

(PBMCs) of MTBVAC-vaccinated animals regardless of vaccina-

tion route (Figure 3D). Of note, mucosal MTBVAC appeared to be

equally potent in inducing PPD-specific IFNg signals (Figure 3C).

Although we previously observed comparable peripheral im-

mune responses after mucosal and intradermal BCG vaccina-

tion, here mucosal BCG vaccination appeared to be less potent

in inducing peripheral cytokine production and proliferation (Fig-

ures 3A–3C and 3E, respectively).
ne signatures associated with protection

al vaccination with BCG or MTBVAC.

IL-17A CD4+ T cell responses after vaccination.

e after PPD recall stimulation (by group median values).

r left lung lobes at week 3 and week 8, indicating primary and disseminated

, plotted as culture medium control-corrected values.

accination.

d samples, and � indicates unstimulated, culture medium-incubated samples

roup differences was determined by two-sided Mann-Whitney test adjusted for

dividual is consistent throughout the paper.
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As an alternative approach, we investigated the capacity of

vaccine-induced T cells by an in vivo recall stimulation in TST.

To this end, 8 weeks after vaccination, we intradermally injected

saline (Sal) or old tuberculin (Tub) on opposite arms of each an-

imal and took biopsies of the injection sites 3 days later. The skin

biopsies were subsequently processed and characterized by

flow cytometry to measure the delayed type hypersensitivity

(DTH) response. By visual inspection of the local skin reaction,

redness and swelling appeared after intradermal but not

mucosal vaccination (data not shown). Accordingly, a tubercu-

lin-specific influx of antigen-specific CD3+ T cells was exclu-

sively observed in intradermally vaccinated animals (Figure 3F).

These T cells showed higher frequencies of cytokine-producing

subsets after intradermal vaccination (Figure 3G). When assess-

ing antigen-specific T cells from axillary lymph nodes that drain

the TST-DTH skin site, IFNg-, TNF-a-, and IL-2-producing

CD4+ T cells were detectable in intradermally but not mucosally

vaccinated animals (Figure S5). So, although mucosal vaccina-

tion does result in a peripheral blood response (by flow cytome-

try and IFNg ELISPOT), it does not enable these cells to migrate

to the site of a skin challenge and, therefore, rules out their anal-

ysis for a potential biomarker assay.

The superior induction of local immune responses by mucosal

MTBVAC over mucosal BCG was also reflected in the periphery,

and these responses appeared to cover a broader range of anti-

gens, including ESAT6/CFP10. However, within the limits of our

analyses, no peripheral adaptive responses discriminating be-

tween mucosal versus intradermal immunization could be

identified.

Mucosal homing marker expression after vaccination
In our search for peripheral correlates of protection, we also

considered the possibility that pulmonary rather than intradermal

vaccination would imprint peripheral T cells with a higher expres-

sion of pulmonary mucosal homing markers. To this end, we as-

sessed the expression of CD103, CXCR3, and CCR5, all known

to be involved in homing to the pulmonary mucosa,27 on periph-

eral CD4+ T cells by means of flow cytometry.

Prior to vaccination, approximately 25% of circulating CD4+

T cells expressed one or more of these homing markers. After

vaccination, either peripherally or mucosally, this percentage

did not change, nor was the pattern of homing marker co-

expression notably altered in the mucosally vaccinated groups

(Figure 4A; Figure S6). Because only a small fraction of all periph-

eral CD4+ T cells is vaccine specific (Figure 3A), we also as-

sessed homing marker expression of cytokine-producing
Figure 3. Peripheral immune responses after vaccination

Shown is a characterization of the height and breadth of peripheral immune resp

(A and B) Stacked bar graphs depicting (A) CD4+ and (B) CD8+ T cell cytokine p

(C and D) PBMC IFNg production in response to stimulation with (C) PPD or (D)

(E) PPD-specific proliferation of PBMCs, plotted as a stimulation index (the ratio

(F) T cell numbers in skin biopsies taken (3 days) after intradermal injection of sa

(G) PPD-specific cytokine production by T cells from Tub skin biopsies (right pan

The dotted line in (C) indicates the maximum limit of detection. In (G), + indicat

incubated samples as controls. All graphs show 6 animals per group, except for (G

lines indicate group medians. Significance of group differences was determined

adjusted p % 0.05 is depicted. Color coding per individual is consistent through
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CD4+ T cells (IFNg and/or IL-17A). However, because of the

low number of cytokine-positive events in the periphery, it was

not possible tomeasure robust and reliable percentages of hom-

ing marker expression over time. Using a cutoff of a minimum of

100 cytokine-positive events, we only found robust frequencies

8 weeks post-vaccination. The frequency of homing markers ex-

pressed by PPD-specific T cells was comparable with that in the

total CD4+ T cell population, although cytokine+ CD4+ T cells

from all vaccinated groups consisted of more CCR5 single-pos-

itive cells (Figure 4B). When comparing homing marker expres-

sion between groups, again, no marked differences between

the mucosally and intradermally vaccinated groups were

apparent.

Although the aforementioned homing markers did not reveal a

peripheral correlate either, wewent on to analyze their expression

on cytokine-producing T cells in the airways after mucosal vacci-

nation as well as after experimental pulmonary Mtb infection. For

the latter, samples were obtained from another, independent

infection study to characterize protective versus pathogenic BAL

responses. Again, we analyzed the expression of CD103,

CXCR3, andCCR5ofPPD-specific IFNgand/or IL-17A-producing

T cells. After Mtb infection, a high local CD4+ T cell cytokine

response is induced, similar to mucosal MTBVAC and higher

than mucosal BCG administration (Figure 4C). However, the

expression of homingmarkerswas significantly lower inPPD-spe-

cific T cells from Mtb-infected animals compared with animals

vaccinated mucosally with BCG or MTBVAC (Figures 4D and

4E). Although, after Mtb infection, approximately 20% of cyto-

kine-producing cells expressed a combination of CD103,

CXCR3, andCCR5, 80%of vaccination-induced T cells were pos-

itive for one or more of these markers (Figure 4D). In addition to

profiling chemokine receptor expression, we also measured

CD69 and PD-1 co-expression on cytokine-positive CD4+

T cells as an indicator of a functional tissue-resident phenotype.28

Previously, we have found that CD69 expression of BAL CD4+

Tcellswas higher aftermucosal over intradermal BCGvaccination

and, separately, that IFNg+TNF-a+IL-2+IL-17A+ T cells ex-

pressed higher levels of PD-1.20 When assessing co-expression

of these two markers on IFNg- and/or IL-17A-producing CD4+

T cells induced by mucosal vaccination, a substantial portion

(15%–50%) of these cells was found to co-express bothmarkers.

Contrarily, after Mtb infection, CD69 and PD1 co-expression on

PPD-specific T cells was significantly lower (typically less than

10%) (Figure 4F).

Pulmonary vaccination, associated previously with enhanced

protection, results in the presence of antigen-specific T cells
onses after vaccination.

olyfunctionality over time (by group median values) after PPD stimulation.

ESAT6-CFP10 fusion protein, measured by ELISPOT over time.

of antigen- over medium control-stimulated values) over time.

line (Sal) or old tuberculin (Tub) 8 weeks after vaccination.

el).

es PPD-stimulated samples, and � indicates unstimulated, culture medium-

), where there are 5 animals for the B.muc, M.id, andM.muc groups. Horizontal

by two-sided Mann-Whitney test adjusted for multiple comparisons. Holms-

out.
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Figure 4. Expression of mucosal homing markers after intradermal and pulmonary vaccination

(A) Expression of CCR5, CD103, and CXCR3 on ex vivo CD4+ T cells from peripheral blood over time, depicted as group median values.

(B) CCR5, CD103, and CXCR3 expression by PPD-specific (IFNg+ and/or IL-17A+) CD4+ T cells from PBMCs at week 8 after vaccination.

(C–E) Comparison of PPD-specific T cells from BALs from pulmonary BCG-vaccinated, MTBVAC-vaccinated, and Mtb-infected animals.

(C) Frequencies of IFNg+ and/or IL-17A+ CD4+ T cells after stimulation with PPD.

(D and E) Expression of CCR5, CD103, and CXCR3 by cytokine+ CD4+ T cells, (D) depicted as group median values (stacked bar graph) or (E) as individual

frequencies for separate markers.

(F) Percentage of CD69 and PD1 double-positive cells of cytokine+ CD4+ T cells.

For all graphs, n = 6 animals per group, with the exception of (B) where n = 5 for the BCG.muc group. Horizontal lines indicate group medians. Significance of

group differences was determined by two-sided Mann-Whitney test adjusted for multiple comparisons. Holms-adjusted p% 0.05 is depicted. Color coding per

individual is consistent throughout.
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with a distinct tissue residency and mucosal homing phenotype.

The observation thatMtb infection does not elicit this phenotype

suggests that these cells could be involved in protection.

Mucosal antibody levels and functionality
In our previously reported vaccination and RLD Mtb infection

study, mucosal BCG vaccination resulted in pulmonary PPD-

specific Ig responses.20 This observation, in combination with

the recent interest in the role of Igs in protection from TB,29,30
prompted us to investigate the humoral immune response in

this study in more detail.

As observed previously for BCG, mucosal vaccination with

MTBVAC also resulted in a marked increase in Mtb-specific

IgA, IgG, and IgM levels in BAL fluid, as detected by ELISA,

and in a modest increase in some of the intradermally

MTBVAC-vaccinated animals (Figure 5A). Like the cellular im-

mune responses, humoral immunity was found to disseminate

from the vaccine-targeted lobe (Figure 5B).
Cell Reports Medicine 2, 100187, January 19, 2021 7
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To functionally address these humoral immune responses, we

assessed the capacity of vaccination-induced Igs to bind to live

Mtb bacilli. After incubation of dsRed-expressing Mtb with BAL

fluid, binding of antibodies was measured with biotinylated

detection antibodies and phycoerithrin (PE)-conjugated strepta-

vidin on a flow cytometer. After pulmonary but not intradermal

vaccination, a distinct increase in PE fluorescence intensity, indi-

cating increased levels of Mtb-binding Igs, was observed (Fig-

ure 5C). Especially Mtb-binding signals for IgG and IgM were

elevated significantly in BAL fluid after mucosal vaccination.

BAL humoral immune responses, as assessed by ELISA, corre-

lated well with the amount of Mtb-bound antibody (Figure 5D).

Last, we investigated whether the antibodies induced by

mucosal vaccination would facilitate uptake of Mtb by phago-

cytes. GFP-expressing Mtb was incubated with BAL fluid and

added to phorbol 12-myristate 13-acetate (PMA)-activated

THP-1 cells. After 4 h, the amount of Mtb-GFP-positive cells

was assessed by flow cytometry. When comparing the amount

of Mtb+ cells, an increase in uptake of Mtb could be observed

when the bacteria were incubated with BAL fluid frommucosally

but not intradermally vaccinated animals (Figure 6A). To assess

the contribution of the different Ig isotypes to this uptake, we

correlated the increase in uptake with the increase of Mtb-bind-

ing Igs induced by vaccination. Of the three isotypes assessed,

the amount of vaccination-induced IgG and IgM correlated most

strongly with the increase in uptake observed after vaccination

(Spearman’s rho = 0.6354 with p = 0.0008 and rho = 0.654

with p = 0.0005, respectively; Figure 6B), suggesting that these

two isotypes might contribute most to the enhanced uptake of

Mtb by phagocytes.

DISCUSSION

In this study, pulmonary vaccination with Mtb-derived MTBVAC

was found to induce pulmonary, PPD-specific, polyfunctional

Th17Acells and IL-10production, an immunesignature foundpre-

viously in association withmucosal BCG-induced protection from

TB infection and disease.20 ComparedwithMtb-infected animals,

PPD-specific T cells in the BAL of animals vaccinatedwith BCGor

MTBVAC through the pulmonary mucosa expressed significantly

higher levels of mucosal homing markers. Pulmonary administra-

tion of either vaccine also induced Igs in the pulmonary space, of

which the IgG and IgM isotypes in particular (more than IgA) were

able to bind live Mtb and enhance Mtb uptake by THP-1 cells.

Although equally well tolerated as BCG, MTBVAC induced adap-

tive responses more rapidly, to a higher magnitude, and, as ex-

pected, with broader antigen specificity, whereas such response
Figure 5. Vaccine-induced humoral immune responses at the pulmona

(A) Magnitude of Mtb whole-cell lysate (WCL)-specific immunoglobulin (Ig) type

(B) Mtb WCL-specific Ig levels in the lower right (vaccinated) and lower left (unva

Antibody levels in (A) and (B) are plotted as arbitrary units, as determined by sta

(C) Binding of BAL Igs to liveMtb, depicted as the fold change in geometric mean

week 0 and week 8 post-vaccination.

(D) Correlation betweenMtbWCL-specific Ig levels (in arbitrary units) and Ig bindin

For all graphs, n = 6 animals per group. Horizontal lines indicate group median

differences was determined by two-sided Mann-Whitney test adjusted for multip

calculated with Spearman’s rank order test.
toMtb-specific ESAT6 and CFP10 has been demonstrated to be

key for the improved efficacy of MTBVAC over BCG in mice.10

Although both mucosal vaccination strategies induced a periph-

eral immune response in blood, we could not demonstrate an

in vivo recall response to an antigenic skin challenge, nor could

we identify any differential adaptive immune response that could

serve as a possible lead for a peripheral correlate of protection.

Interestingly, the frequency of innate responders showing trained

immunity was increased upon pulmonary vaccination, but these

data are beyond the scope of the present manuscript and will be

published elsewhere.31

Like BCG, we showed that pulmonary delivery of a live attenu-

ated Mtb strain also results in the presence of polyfunctional, IL-

17A-producing T cells. IL-17A has been associated previously

with protection from TB in multiple animal models,32–34 although

the exact mechanisms involved require further elucidation. The

effector mechanisms of IL-17A are diverse and can contribute

to protection in a number of ways. For example, expression of

antimicrobial b-defensin-2 by airway epithelial cells is upregulated

after experimental IL-17 treatment,35 and IL-17A is also known to

be involved in neutrophil recruitment to the lungs, which, in turn,

has been implied in early protection from TB.36–38 Additionally, it

has been demonstrated that IL-17A is involved in early control

ofMtb and formation of protective lymphoid follicles.32,39 Howev-

er, despite evidence of the protective effect of IL-17A in preclinical

models, its precise role in human TB remains to be resolved and is

likely dependent on factors such as time, location, andmagnitude

of IL-17A production as well as conditions of comorbidity and co-

infection, including HIV.40–43

ComparedwithMtb-infected animals, PPD-specific BAL T cells

frommucosally vaccinated animals were more frequently double-

positive for CD69 and PD-1. Although linked to T cell exhaustion in

chronic viral infections, PD-1 expression in TB seems to be asso-

ciated with infection control, as attested by recent reports of TB

reactivation after anti-PD-1 treatment.44,45 In mice, it has been

shown that post-Mtb-specific PD-1+ CD4+ T cells reside in the

lung parenchyma, and adoptive transfer of these, but not of

PD1-negative cells, confers superior control of Mtb infection.28 A

similar PD-1high lung tissue-resident T cell population has been

identified in Mtb-infected NHPs.46 As observed here, the protec-

tive PD-1high T cells characterized in the work of Moguche

etal.28alsoexpressedhigh levelsofCD69asamarkerof activation

and tissue residency in the lungs and lymph nodes.47–49 Of note,

a recent NHP Mtb study reported superior protection and

increased frequenciesofCD69+T cells in the lung parenchymaaf-

ter intravenous BCG vaccination compared with aerosol BCG

administration.24. Interestingly, in the latter study, endobronchial
ry mucosa

A, G, and M responses in BAL over time.

ccinated) lung lobe at week 8.

ndardization against a reference sample.

fluorescence intensity (GMFI) of Ig-specific detection antibody signals between

g to liveMtb (as fold change compared with control) 8 weeks after vaccination.

s. Color coding per individual is consistent throughout. Significance of group

le comparisons. Holms-adjusted p% 0.05 is depicted. Correlations in (D) were
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Figure 6. Vaccine-mediated uptake of Mtb by phagocytes

(A) Uptake ofMtb by PMA-activated THP1 cells after incubation with BAL fluid obtained before and 8 weeks after vaccination, depicted as the fold change in the

percentage of Mtb+ THP1 cells.

(B) Correlation between vaccination-induced Igs capable of binding to live Mtb, from left to right for IgA, IgG, and IgM, and the change in Mtb uptake.

For all graphs, n = 6 animals per group. Horizontal lines indicate group medians. Color coding per individual is consistent throughout. Significance of group

differences was determined by two-sided Mann-Whitney test adjusted for multiple comparisons. Holms-adjusted p% 0.05 is depicted. Correlations in (B) were

calculated with Spearman’s rank order test.
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BCGvaccinationalso induced increased frequenciesof thesecells

in the lungs, although these animalswere not challengedwithMtb.

In addition to CD69 and PD1, PPD-specific T cells induced by

mucosal vaccination also more frequently expressed CD103,

CXCR3, and CCR5, which are associated with mucosal homing

and tissue residency. Mucosal vaccination with Bacillus subtilis

spores expressing Mtb antigens boosted protection conferred

by BCG and associated with induction of CD103+CD69+ tis-

sue-resident T cells in mice.50 CXCR3 has been identified as

crucial for T cell entry into the lung parenchyma.51 In Mtb-in-

fected NHPs, CD4+ T cells expressing CXCR3 and CCR5 were

identified in granulomatous tissue, but these cells did not coloc-

alize with Mtb-infected macrophages in the granuloma center

and, therefore, seem unable to exert their effector function.46,52

Nevertheless, vaccine-induced presence of high frequencies of

these cells during the early stages of infection and granuloma

formation might contribute to control of Mtb by (alveolar)

macrophages.

Mucosal MTBVAC and BCG vaccination resulted in the pres-

ence of Mtb-specific Igs at the site of infection. Especially IgG

and IgM in BAL were able to bind live Mtb and enhanced

phagocytosis, whereas IgA showed the least amount of binding

and only a weak correlation between Ig binding to Mtb and

phagocyte uptake. Although enhanced Ig was not a formal sta-

tistical correlate of protection in our previous study, evidence of

the protective potential of Mtb-specific antibodies has been re-

ported recently in various papers. Boosting BCG-primed mice

with heat-killed MTBVAC via the respiratory mucosa enhanced

protection, which was dependent on expression of the poly-

meric Ig receptor and, thus, suggestive of the protective role

of Ig.53 Of note, in that same paper, NHPs boosted with heat-

killed MTBVAC via the respiratory route showed local induction

of antibodies that, as observed here, were functional in binding

and phagocytosis of Mtb. Moreover, Mtb-specific IgA clones

isolated from individuals with TB have been shown to be able

to restrict Mtb replication in a lung epithelial cell line.54 Also,

elevated IgG titers to BCG have been found in association

with protection against Mtb infection,55 and serum IgG from
10 Cell Reports Medicine 2, 100187, January 19, 2021
BCG-vaccinated individuals was able to inhibit intracellular

growth of mycobacteria.56 Interestingly, highly exposed individ-

uals that remained IGRA-negative, so-called resisters, ex-

hibited enhanced antibody responses to Mtb.57 Mtb-specific

antibodies could contribute to protection in various ways,

including enhancement of Mtb phagocytosis as observed

here, activation of the inflammasome, and/or facilitation of anti-

body-dependent cell-mediated cytotoxicity (ADCC).29,58

The protective efficacy ofMTBVAC has been linked to immune

reactivity toMtb-specific ESAT-6 and CFP-10 antigens,10 whose

induction was also observed in our study. However, the current

standard in diagnosing latent TB infection is detection of discrim-

inatory IFNg responses by stimulation of peripheral blood with

Mtb-specific antigens, including ESAT-6. Indeed, MTBVAC-

vaccinated neonates showed dose-dependent conversion in

an IFNg release assay (IGRA) 180 days post-vaccination, which

would interfere with diagnosis of TB.12 Further exploration of the

dynamics of IGRA conversion after MTBVAC vaccination is

required to assess the usefulness of the IGRA as a TB diagnostic

afterMTBVAC administration. Ideally, for successful deployment

of MTBVAC as a vaccine, regardless of the route of administra-

tion, new diagnostic tools not dependent on T cell epitopes

shared by Mtb and MTBVAC need to be developed.

In this study (as well as in our previous work20), pulmonary

vaccination was established through endobronchial vaccine

instillation. Although here we show that targeting a particular

lung lobe by endobronchial instillation results in contralateral

dissemination of the ensuing vaccine-induced immune response

(cellular and humoral), it remains to be formally established

whether this would also result in protection against contralateral

challenge. From a translational perspective, however, we must

conclude that endobronchial instillation is incompatible with clin-

ical vaccination. For other, more translatable mucosal delivery

strategies, such as aerosol, intranasal, or oral administration,

the issue of contralateral protection appears to be less relevant.

Such alternative delivery strategies, however, must be

explored in more detail to assess whether BCG or MTBVAC

would induce improved protection. Although in mice and guinea
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pigs aerosol/intranasal BCG vaccination showed increased effi-

cacy compared with parenteral administration,59,60 data on the

protective efficacy of aerosol vaccination of NHPs is contradic-

tory and so far inconclusive. Early work with macaques has

shown increased protection by aerosol-delivered BCG

compared with intradermal BCG, on par with intravenous BCG

vaccination.17 Contrarily, in a recent macaque study, aerosol

BCG vaccination did not confer superior protection.24 This

discrepancy in protective efficacy could be caused by a variety

of factors, including dose, efficiency, and viability of the vaccine

delivered. Studies directly comparing mucosal vaccination

routes are required to identify which conditions are essential

for inducing protection. In humans, aerosol vaccination with

BCG has been explored in the 1960s and found to induce

dose-dependent TST conversion.61 New studies of BCG admin-

istration by aerosol have been initiated recently (NCT03912207).

A study exploring endobronchial BCG instillation with the aim of

developing a controlled human infection model also reported no

serious adverse events.62 From historic data, it can be inferred

that, in humans, oral BCG administration is at least as effective

as intradermal injection. Oral administration was the initial route

of vaccination when BCGwas deployed as a pediatric vaccine in

the 1920s, and in Brazil, BCG was routinely administered orally

until the 1970s.63 Recent studies investigating oral BCG vaccina-

tion report no safety concerns, and, as observed here, oral

administration induced Mtb-specific mucosal IgA and CXCR3-

expressing T cells in BAL.64,65

Our data argue for further investigation of pulmonary mucosal

administration of MTBVAC and its protective capacity in partic-

ular because it potentially comprises amore efficacious vaccina-

tion strategy than intradermal BCG to combat TB.

Limitations of study
The present paper builds on our previous work that has shown

that pulmonary mucosal delivery of M. bovis BCG confers

improved protection from TB infection and disease in a repeated

limiting dose M. tuberculosis challenge model in rhesus ma-

caques. Despite the fact that MTBVAC provides broader anti-

genic specificity and, upon mucosal delivery, has been found

to be as potent as BCG in inducing a local immune signature

also associated with enhanced protection, this study, by design,

does not directly address the protective efficacy of (pulmonary

mucosal) MTBVAC. To this end, a follow-up study will be

required that shall include infectious challenge after vaccination.

Moreover, none of the present efforts identify a readily trans-

latable lead for a peripheral immune correlate as a surrogate

for the local immune signature conferred by pulmonary mucosal

delivery with BCG or MTBVAC. Neither characterization of the

peripheral immune response in blood nor the DTH response after

TST positively discriminate the more efficacious mucosal route

from standard intradermal vaccine administration. The lack of

such a correlate from a readily accessible site or tissue hinders

development of a biomarker assay that would critically enhance

clinical evaluation of new TB vaccine candidates or vaccination

strategies.

Although prior immune correlates in the alveolar space are

corroborated and extended by identification of increased local

homing and tissue residency markers on antigen-specific
T cells and phagocytosis-enhancing antibodies, this study sheds

no light on mechanisms that underly development of tissue-resi-

dent T cell subsets or the protective mechanisms of IL-17, IL-10,

or antigen-specific antibodies. Although associated circumstan-

tially, their exact roles in mucosal immune surveillance, regula-

tion, and prevention of infection-associated lung pathology

and/or mycobactericidal activity remain to be investigated

further.

In the context of translation, pulmonary vaccination by bron-

choscope, as deployed in this study, is suitable for proof of

concept but not amenable for (larger-scale) clinical vaccination

campaigns. Alternative administration of TB vaccines via respi-

ratory or other mucosal surfaces requires more explorative

research, in particular also for (aerosolized delivery of) live atten-

uated whole-cell vaccines.
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Antibodies

anti-CD3 – AF700 (clone SP34-2) BD Biosciences Cat#: 557917; RRID: AB_396938

anti-CD4 – PerCP.Cy5.5 (clone L200) BD Biosciences Cat#: 552838; RRID: AB_394488

anti-CD8a – APC-H7 (clone SK1) BD Biosciences Cat#: 641400; RRID: AB_164536

anti-CD14 – BV421 (clone M5E2) BD Biosciences Cat#: 565283; RRID: AB_2739154

anti-CD20 – BV421 (clone 2H7) Biolegend Cat#: 302334; RRID: AB_10965543

anti-CD28 – ECD (clone CD28.2) IOTest Cat#: 6607111; RRID: AB_1575955

anti-CD45 – BV786 (clone D058-1283) BD Biosciences Cat#: 563861; RRID: AB_2738454

anti-CD45RA – PE-CF594 (clone 5H9) BD Biosciences Cat#: 565419; RRID: AB_2739229

anti-CD69 – APC (clone FN-50) Biolegend Cat#: 310910; RRID: AB_314845

anti-CD69 – BV785 (clone FN-50) Biolegend Cat#: 310932; RRID: AB_2563696

anti-CD95 – BV605 (clone DX2) Biolegend Cat#: 305628; RRID: AB_2563825

anti-CD103 – FITC (clone Ber-ACT8) Biolegend Cat#: 350204; RRID: AB_10639865

anti-CCR5 – APC-H7 (clone 3A9) BD Biosciences Cat#: 560748; RRID: AB_1937308

anti-CCR7 – BV650 (clone G043H7) Biolegend Cat#: 353234; RRID: AB_2563867

anti-CXCR3 – PE-Cy7 (clone G025H7) Biolegend Cat#: 353720; RRID: AB_11219383

anti-PD1 – BV510 (clone EH12.2H7) Biolegend Cat#: 329932; RRID: AB_2562256

anti-IFN-g – BV711 (clone 4S.B3) BD Biosciences Cat#: 502540; RRID: AB_2563506

anti-IL-2 – AF488 (clone MQ1-17H12) Biolegend Cat#: 500314; RRID: AB_493368

anti-IL10 – PE (clone JES3-9D7) Biolegend Cat#: 501404; RRID: AB_315170

anti-IL-17A – PE-Cy7 (ebio64DEC17) Biolegend Cat#: 25-7179-42; RRID: AB_11063994

anti-IL-17A – BV605 (clone BL168) Biolegend Cat#: 512326; RRID: AB_2563887

anti-TNF-a – BV650 (clone Mab11) BD Biosciences Cat#: 502938; RRID: AB_2562741

VIVID – BV421 Thermofisher Cat#: L34955

GolgiPlug BD Biosciences Cat#: 555029; RRID: AB_2869014

Cytofix/Cytoperm BD Biosciences Cat#: 554714; RRID: AB_2869014

Goat Anti-Human IgM(m chain) Antibody, Alkaline

Phosphatase (AP) Conugate, Affinity purified

Invitrogen Cat#: A18838; RRID: AB_2535615

Goat Anti-Human IgA(a chain) Antibody, Alkaline Phosphatase

(AP) Conugate, Affinity purified

Invitrogen Cat#: A18784; RRID: AB_2535561

Anti-MONKEY IgG (gamma chain)(GOAT) Antibody

Peroxidase Conjugated

Rockland Inc Cat#: 617-103-012; RRID: AB_218715

IgA biotinylated detection Ab (MT57) Mabtech 3860-4; RRID: AB_10736549

IgG biotinylated detection Ab (MT78) Mabtech 3850-6; RRID: AB_10666158

IgM biotinylated detection Ab (MT22) Mabtech 3880-6; RRID: NA

Bacterial and virus strains

M. tuberculosis strain Erdman K01 BEI Resources Cat#: NR-50781

BCG, strain Sofia (5 3 105 CFU/dose) InterVax Ltd Cat#: N/A

MTBVAC (5 3 105 CFU/dose) Biofabri Cat#: N/A

Chemicals, peptides, and recombinant proteins

LymphoprepTM Axis-Shield Cat#: AXI-1114547

Perchloric acid Sigma-Aldrich Cat#: 244252-1L

Formaldehyde (16%) Thermo Scientific Cat#: 28906

p-Nitrophenyl Phosphate (p-NPP) Alkaline Phosphatase

Substrate

Merck Millipore Cat#: ES009-500mL

(Continued on next page)
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Streptavidine-FITC Biolegend Cat#: 405202

TMB, ELISA substrate MT Diagnostics Cat#: SB04/B

TMB, ELISPOT substrate Mabtech Cat#: 3651-10

Critical commercial assays

NHP specific IFN-gamma ELISPOT antibody pairs U-CyTech Cat#: 610-10

BOVIGAMTM Tuberculin PPD stimulating antigen, Bovine;

Purified Protein Derivative (M. bovis)

Life Technol. NV Cat#: 760060

BOVIGAMTM Tuberculin PPD stimulating antigen, Avian;

Purified Protein Derivative (M. avium)

Life Technol. NV Cat#: 760065

Milliplex NHP Cytokine Magnetic Bead Panel Merck Millipore Cat#: PRCYTOMAG �40K

Experimental models: organisms/strains

purpose-bred Macaca mulatta (rhesus macaques); adult

(> 4 years of age) males and females; Indian-genotype

BPRC N/A

Software and algorithms

Eli.Analyze (ELISPOT; v6.1) A.EL.VIS GmbH N/A

FACSDiva Software v 8.0.1 (BD LSRII) BD Biosciences SCR_001456

Flowjo software v 10 Treestar SCR_000410

LEGENDplexTM Data Analysis Software (V8.0) Biolegend/Vigene Tech N/A

GraphPad Prism v 8.4.2 GraphPad Software https://www.graphpad.com:443/

Other

Old Tuberculin Synbiotics, Inc N/A

Mycobacterium Tuberculosis - tuberculine PPD for in vitro

use; Purified Protein Derivative (M.tuberculosis)

AJ Vaccines Cat#: 2391

M. tuberculosis strain HN878 Whole Cell Lysate BEI Resources Cat#: NR-14824
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Frank

Verreck (verreck@bprc.nl).

Materials availability
This study did not generate new unique reagents. However, any remaining biomaterials from this study can be made available and

shipped at receiver’s cost upon specific request to the Lead Contact, for which we require completion of a Simple Letter Agreement

for Transfer of Materials.

Data and code availability
All data there is, are presented in this paper (including supplementals) and can bemade available in different formats upon reasonable

request. This study did not generate any unique code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics & Animal Handling
All housing and animal care procedures were performed at the Biomedical Primate Research Centre (BPRC) in Rijswijk, the

Netherlands, and in compliance with European directive 2010/63/EU as well as the ‘‘Standard for Humane Care and Use of Labo-

ratory Animals by Foreign Institutions’’ provided by the Department of Health and Human Services of the US National Institutes of

Health (NIH, identification number A5539-01). BPRC is accredited by the American Association for Accreditation of Laboratory An-

imal Care (AAALAC). An ethical framework approval from the independent, central animal experiments authority in the Netherlands (in

Dutch: Centrale Commissie Dierproeven, CCD) was in place, and before start the study plan was approved by BPRC’s institutional

animal welfare body (in Dutch: Instantie voor Dierwelzijn, IvD). The BCG and MTBVAC immunogenicity study was registered under

CCD.009.D (while the Mtb-infection samples used for immunological cross-comparison, were taken from a study registered under

CCD.009.C; see also further below).
e2 Cell Reports Medicine 2, 100187, January 19, 2021

mailto:verreck@bprc.nl
https://www.graphpad.com:443/


Article
ll

OPEN ACCESS
Twelve female and twelvemale Indian-type rhesusmacaques (Macacamulatta) were selected fromBPRC’s breeding colonies and

stratified by gender, age, body weight and social indicators for pairwise housing into 4 groups of 6 animals. Treatment was randomly

assigned to each group.

Selected animals were negative for prior exposure to mycobacteria, as assessed by tuberculin skin testing with Old Tuberculin

(Synbiotics Corporation, San Diego, CA) and an IFNg ELISPOT using Purified Protein Derivative (PPD) from Mycobacterium bovis,

Mycobacterium avium (both Life Technologies NV) or Mycobacterium tuberculosis (AJ Vaccines, Copenhagen, Denmark) for

in vitro recall stimulation of PBMC.

Animals were housed pairwise at biosafety level 3 throughout the experiment and provided with enrichment in the form of food and

non-food items on a daily basis. Animal welfare was monitored daily. Animal weight was recorded prior to each blood collection event.

All animal handling and bio-sampling was performed under ketamine sedation (10 mg/kg, by intra-muscular injection). For endo-

bronchial instillation ketamine sedation (5mg/kg) was supplemented with intramuscular medetomidine (0.04mg/kg) and an analgesic

applied to the larynx.

Eight weeks after vaccine administration animals reached study endpoint by protocol andwere euthanized by intravenous injection

of pentobarbital (200 mg/kg) under ketamine sedation. All animal care and veterinary personnel were blinded to experimental

treatment.

Vaccines, Vaccine Preparation & Administration
Animals were vaccinated either with Bacillus Calmette Guérin strain Sofia (InterVax Ltd., Ontario) or with MTBVAC (Biofabri, Spain),

and either via the skin or the pulmonary mucosa. The intradermally vaccinated groups received a standard, adult human dose of 1.5-

6.0 x105 CFU BCG or 3.0-17.0 x105 CFU MTBVAC in 0.1 mL reconstituted vaccine in the skin (abbreviated as BCG.id or MVAC.id).

The mucosally vaccinated groups were administered the same dose, but in 10 mL of sterile saline solution by endobronchial

instillation into the lower right lung lobe (abbreviated as BCG.muc/B.muc or MTBVAC.muc/M.muc). The vaccines, regardless of

administration route, were prepared from a single, pooled mix of freshly reconstituted vials, immediately prior to administration.

Vaccination was executed for all animals in a single session in random order within 2-3 hours from vaccine preparation.

Mtb Infection
For the comparison of homing marker expression by cytokine positive pulmonary mucosal T cells, BALs from Mtb infected animals

were obtained 11 weeks after endobronchial instillation of 3 to 15 CFU of Mtb Erdman (NR-50781, BEIResources). Infection was

confirmed for all animals by the induction of Mtb-specific IFNg production by PBMCs and by post-mortem pathology assessment

(data not shown).

Biosample Collection & Processing
Cells from the pulmonary mucosa were recovered at specific time points by broncho-alveolar lavage (BAL), targeting either the lower

right or lower left lung lobe. Three volumes of 20 mL of prewarmed 0.9% saline solution were consecutively instilled and recovered.

BAL fluid was harvested by centrifugation of BAL samples for 10 minutes at 400 g after 100 mm filtration. Supernatant was subse-

quently decanted and stored at �80�C pending further analysis. The BAL cell pellet was taken up in RPMI supplemented with

10% fetal bovine serum (FBS), glutamax and penicillin/streptomycin (from hereon referred to as R10) and used in downstream as-

says. BAL fluid was filter-sterilized by centrifugation through 0.2 mm PVDF membrane plates (Fisher Scientific) before analysis.

Peripheral blood mononuclear cells (PBMC) were isolated from heparinised blood collected by venepuncture. Isolation of PBMCs

was performed by density gradient centrifugation with Lymphoprep lymphocyte separation medium (Axis-Shield, UK), and PBMCs

were subsequently resuspended in R10 for downstream immunological assays.

METHOD DETAILS

Flow cytometry
T cell cytokine production and homing marker expression was assessed by flow cytometry. Freshly isolated PBMC were incubated

overnight withMtb PPD (5 ug/mL) in the presence of GolgiPlug transport inhibitor (BD Biosciences). PMA/ionomycin stimulated sam-

ples were taken along as technical/positive controls. The next day, cells were washed and incubated with the panels listed in the Key

Resources Table. To facilitate intracellular cytokine staining, cells were permeabilized with Cytofix/Cytoperm (BD Biosciences) before

addition of cytokine antibodies. After overnight fixation with 2% paraformaldehyde,66 samples were acquired on a 3-laser, 14-color

LSR-II flow cytometer (BD Biosciences). Analyses were performed in FlowJo version 10 (Treestar). T cells were selected as Sin-

glets/Lymphocytes/Viable/CD14-CD20-/CD45+/CD3+ events, after which further CD4 and CD8 gating was applied. Any anomalies

indicative of unstable signal acquisition were excluded using the ‘‘Time’’ parameter. Cytokine positivity was determined by placement

of cytokine gates on the medium control samples and subsequently applying the gates to the corresponding PPD stimulated samples.

Luminex
Cytokine production by BAL cells stimulated for 72 hours with PPD (5 ug/mL, final concentration), was assessed by customisedMilli-

plex Luminex kits (Merck Millipore, USA). Assays were performed according to manufacturer’s protocol. In short: supernatants of
Cell Reports Medicine 2, 100187, January 19, 2021 e3
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stimulated BAL cells were incubated with beads coated with cytokine-specific antibodies. Bound cytokines were visualized using

biotin-coupled detector antibodies and PE-labeled streptavidin. Beads were acquired on a Bioplex 200 system and cytokine levels

were calculated with Bioplex Manager software version 6.1 (both Biorad, CA, USA).

IFNg ELISPOT
Non-human primate specific IFNg ELISPOT (U-CyTech, the Netherlands) was performed on PBMC according tomanufacturer’s pro-

tocol on. Briefly, 200,000 PBMC were incubated in triplicate for 24 hours with Mtb-derived PPD (AJ Vaccines, Denmark) or recom-

binant ESAT6-CFP10 fusion protein (provided by Kees Franken from the Ottenhoff lab, Leiden University Medical Centre). The next

day cells were washed and transferred to anti-IFNg coated membrane plates (Millipore). After 24 hours, cells were discarded and

membrane-bound IFNgwas visualized using a biotinylated anti-IFNg detector antibody, streptavidin-horseradish peroxidase conju-

gate and tetramethylbenzidine substrate. Spots were quantified using an automated reader (AELVIS, Hannover).

Immunoglobulin ELISA
Antibody levels in BAL were determined by Enzyme Linked ImmunoSorbent Assay (ELISA). In brief, 96-well plates were coated with

either 5 mg/mLMtb strain HN828Whole Cell lysate (BEI Resources, VA, USA) in PBS. After overnight blocking with 1%BSA, samples

were added to the wells. Bound antibodies were subsequently detected either with horse radish peroxidase-conjugated anti-IgG

(Rockland, PA, USA), alkaline phosphatase-conjugated anti-IgA (Fisher Scientific) or alkaline phosphatase-conjugated IgM (Sigma),

and the subsequent addition of para-nitrophenylphosphate substrate for ELISA color development. All samples were normalized to

arbitrary units (AU) against a serial dilution of a positive reference sample included in all assays.

Mtb binding and phagocytosis assay
To assessMtb binding of immunoglobulins, 0.05 mL aliquots of BAL fluid obtained prior to and 8 weeks after vaccination, were incu-

bated at 37�C for 1 hour with 107 CFU ofMtb H37Rv-dsRed. (Korbee et al., 2018) Subsequently, samples were equally divided over

three vials and biotinylated detection antibodies specific for IgA, IgG or IgM (all fromMabtech) were added (final dilution 1:500). After

30 minutes of incubation at room temperature, streptavidin-FITC (final dilution 1:400) was added, and samples were incubated for a

further 60 minutes toward detection of bound antibody. Samples were fixed overnight with 2% PFA before analysis.

For the phagocytosis assay, 5x105 THP1 cells were seeded in a 24-wells plate and activated by overnight incubation with 10ng/mL

PMA at 37�C. The next day, 107 CFU ofMtbH37Rv-GFP was incubated with BAL fluid as described above, and subsequently added

to the activated THP-1 cells. After 4 hours cells were dissociated with trypsin-EDTA and resuspended in 2% PFA for overnight fix-

ation. The binding assay samples were subsequently acquired on a 4 laser, FACSAriaIII system; samples from the phagocytosis

assay were acquired on a 3 laser, Beckman Coulter Gallios system. For both assays, Mtb H37Rv-dsRed or -GFP incubated in

PBS only was taken along as a negative control.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed with Graphpad Prism version 8 and R version 3.5.1.67 Significance of differences between groups

was calculated by two-sided Mann-Whitney testing of which Holm’s adjusted p values are reported. Correlation statistics were

generated by Spearman’s rank analysis.
e4 Cell Reports Medicine 2, 100187, January 19, 2021
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