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Abstract: This paper analyses the probability distribution of worldwide forest areas. We find moderate
support for a Pareto-type distribution (power law) using FAO data from 1990 to 2015. Power laws
are common features of many complex systems in nature. A power law is a plausible model for
the world probability distribution of forest areas in all examined years, although the log-normal
distribution is a plausible alternative model that cannot be rejected. The random growth of forest
areas could generate a power law or log-normal distribution. We study the change in forest coverage
using parametric and non-parametric methods. We identified a slight convergence of forest areas over
the time reviewed; however, random forest area growth cannot be rejected for most of the distribution
of forest areas. Therefore, our results give support to theoretical models of stochastic forest growth.

Keywords: forests; FAO data; probability distribution; power law; Pareto distribution; log-normal
distribution; exponential distribution; rate of change; stochastic forest growth

1. Introduction

A current emerging environmental concern is the loss of forest area in many developed
countries. Economic and population growth requires increasing amounts of resources (such
as land and timber). If these resources are not renewed, or regeneration is not adequate,
one might expect a gradual depletion of resources over time.

After several decades of worldwide deforestation, recent data reports good news.
In recent years, the current rates of deforestation have diminished in many countries. The
Global Forest Resources Assessment (FRA) 2020, elaborated on by the Food and Agriculture
Organization (FAO) of the United Nations [1], highlights that “the rate of net forest loss
decreased substantially over the period 1990–2020 due to a reduction in deforestation in
some countries, plus increases in forest area in others through afforestation and the natural
expansion of forests.”

This changing trend from a decrease to an expansion in forests was defined as a forest
transition by Mather [2] and can be expressed in terms of the environmental Kuznets
curve [3]. Empirical evidence supporting the forest transition is increasing (as reported
in [4–7]). Nevertheless, most of these studies are case studies, and the fate of a country’s
forest area depends on country- and area-specific idiosyncratic factors [8]. These factors
include transport costs and trade issues, changes in land use, migrations from rural to
urban areas, agricultural sector productivity (which reduces the pressure on arable land),
energy diversification (which reduces energy dependence on wood fuel), climate change,
and changes to the mindset of individuals who are becoming increasingly concerned about
the preservation of nature.

Rather than focusing on a particular case of study, our approach here is global. We
aimed to analyse the probability distribution of worldwide forest areas and to search
for consistent statistical patterns in forest-area-frequencies. This paper contributes to
the literature in several ways. First, using FAO yearly data from 1990 to 2015, we will
describe the variation in the frequency distribution of worldwide forest areas over time.
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Our benchmark model is a power law. Mandelbrot introduced the idea that one of the
main characteristics of “nature” was that it possessed so-called “scaling laws” (or “power
laws”) [9], which is a property related to the fractal structure of nature, with the word
“nature” designating both physical geography and human geography [10]. Therefore,
power laws are common features of many complex systems and are applied in studies
on varied environmental-related phenomena, such as the intensity of earthquakes [11,12],
losses caused by floods [13], precipitation [14], forest fires [15] and the size distribution of
national carbon dioxide emissions [16]. They have also been applied in human geography
to analyse city and country size distributions [17,18].

Using the method of Clauset et al. [19], we find that the power law is a plausible fit in
all years, but there is a plausible alternative model—namely, the log-normal distribution.
If the probability distribution of forest areas follows a power law, the relationship between
magnitude and frequency could be satisfactorily fitted by a straight decreasing line with
a negative slope. This striking empirical regularity could have important empirical, the-
oretical, and policy implications. However, to our knowledge, this issue has remained
unexplored from either a theoretical or an empirical point of view.

Secondly, exploiting our data’s yearly temporal dimension, we study the behaviour
of the rates of forest area changes. In this case, we test whether there is any relationship
between a country’s initial forest area and its rate of change: do large forest areas show
higher rates of change, or on the contrary, are their deforestation rates higher? In particular,
we empirically test random (or stochastic) forest area growth (i.e., the change in forest
coverage is independent of the initial forest area), which could generate both Pareto and
log-normal distributions. Although we find evidence of a slight convergence in forest areas
over the period considered, our results support random growth in forest areas from 1990
to 2015 for most of the distribution of forest areas, indicating that no systematic pattern of
change can be identified at a country level.

The paper is organised as follows: Section 2 introduces the materials and methods
used. Section 3 shows the results, containing the statistical analysis of the probability
distribution of worldwide forest areas and the analysis of its evolution over time. Lastly,
Section 4 discusses the main results and concludes.

2. Materials and Methods
2.1. Data

Forests data come from the FAO statistics (FAOSTAT) concerning forest land by
country. Although forests do not conform to geopolitical boundaries (for example, the
Amazon rain forest spans nine countries), it is common to assess forest area changes by
country. As forests are managed by countries, any changes in forest areas can reflect
country-level forest policies.

FAO defines forest land as “land spanning more than 0.5 hectares with trees higher
than 5 metres and a canopy cover of more than 10 per cent, or trees able to reach these
thresholds in situ.” Chen et al. highlight the limitations presented by FAO’s concept of
forest land [20]. The main one is that the term “forest” in the FRA reports represents
a type of land use rather than physical trees compared to the satellite-based land cover
datasets. Thus, an area can be classified as a forest if it is registered as “forest” land use,
even if there is no tree. Data are collected from FAO member countries through the annual
FAO questionnaire on land use, irrigation, and agricultural practices. The questionnaire
design process involved users, national correspondents, and experts from various technical
backgrounds. Starting from the Global Forest Resource Assessment [21–25] data on forest
area for the years 1990, 2000, 2005, 2010 and 2015, FAO provides annual data via linear
interpolation to obtain a complete time series from 1990 to 2015, which is the period
considered in this study. Thus, we can estimate the year-by-year statistical distribution.

Table 1 shows the sample sizes for each year and the descriptive statistics. The number
of observations represents the number of countries included in the sample, which slightly
increased over time. Forest land is reported in 1000 hectares. Values of the average forest
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area and its standard deviation are quite persistent, but a slight decrease in both statistics
can be observed over time. This decrease is observed in the first half of the 1990s, and
in the last several decades, the mean forest area has stabilised above 18 million hectares.
The maximum value corresponds to the Russian Federation (former USSR in 1990 and
1991) in all years, while the minimum forest area is always recorded at the Faroe Islands.
Our sample includes all countries with no size restriction but, although the number of
countries in the sample is high (ranges from 196 in 1990 to 223 in 2015), we acknowledge
that the FAO data includes only a partial list of countries because it does not provide
information on all countries worldwide because some countries are non-represented in the
FAO Regular Programme. Moreover, these data could be biased towards some areas on the
planet (and some forest types) as noted in FAO reports using these data to assess global
forests. Therefore, our results are restricted to a subset of the planet. Nevertheless, in 2015
most data were reported from countries themselves (a total of 155 reports)–countries that
contain 98.8% of the world’s forests according to the FAO data.

Table 1. Forest land: descriptive statistics by year.

Year Observations
(Countries) Mean Forest Land Standard

Deviation Minimum Maximum

1990 196 21,062.6 81,025.61 0.083 849,424.4
1991 199 20,708.56 80,373.09 0.083 849,563.7
1992 217 18,957.31 75,040.84 0.083 809,013.6
1993 219 18,751 74,635.55 0.083 809,045.5
1994 219 18,717.82 74,556.07 0.083 809,077.3
1995 219 18,684.64 74,477.48 0.083 809,109.2
1996 219 18,651.46 74,399.77 0.083 809,141.1
1997 219 18,618.28 74,322.94 0.083 809,172.9
1998 219 18,585.09 74,247 0.083 809,204.8
1999 219 18,551.91 74,171.95 0.083 809,236.6
2000 220 18,434.55 73,938.98 0.083 809,268.5
2001 220 18,413.77 73,869.62 0.083 809,172.8
2002 220 18,392.99 73,801.48 0.083 809,077.1
2003 220 18,372.21 73,734.57 0.083 808,981.4
2004 220 18,351.43 73,668.89 0.083 808,885.7
2005 220 18,330.65 73,604.43 0.083 808,790
2006 221 18,232.26 73,473.26 0.083 810,059.1
2007 221 18,216.81 73,499.95 0.083 811,328.3
2008 221 18,201.36 73,527.28 0.083 812,597.4
2009 221 18,185.91 73,555.25 0.083 813,866.5
2010 221 18,170.47 73,583.87 0.083 815,135.6
2011 221 18,155.5 73,567.33 0.083 815,094.6
2012 223 18,098.42 73,222.85 0.083 815,053.6
2013 223 18,082.80 73,207.06 0.083 815,012.6
2014 223 18,067.19 73,191.62 0.083 814,971.5
2015 223 18,051.57 73,176.52 0.083 814,930.5

Note: Unit: 1000 ha. Source: FAO Forest Resource Assessments, FAOSTAT.

The quality of data also improved over time. Keenan et al. found that estimates of about
60% of global forest area in 2015 were reported to be based on data of the highest quality
(e.g., using remote sensing data), while this figure was 57% in 1990 [26]. This improvement
in data quality is especially significant in certain areas, such as the tropical countries [27],
although several methodological issues persist. Natural variation in forest growth and estima-
tion errors in forest inventories can cause uncertainty in forest growth and developmental
predictions [28]. Even pixel-based comparisons of land cover maps built using remote sensing
data can reveal spatial disagreement and uncertainty [29]. This problem usually arises in the
measurement of natural resources, and several technical methods have been developed to
address this issue; for some real-life case studies of uncertainty on sustainability see [30–35].
Focusing on forest land datasets, Chen et al. compare five global land cover datasets and
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Global Forest Resources Assessments to reveal uncertainties in the global forest changes in the
early 21st century, finding that these datasets displayed substantial divergences in total area,
spatial distribution, latitudinal profile, and annual area change [20]. Nevertheless, Chen et al.
conclude that an inconsistent definition of forest areas is not the major factor driving the
inconsistencies in the overall global forest area change, and acknowledge that the FRA reports
are the most comprehensive forest assessment datasets, which are widely used for forest
conditions popularizations, policy guidance, and land cover data accuracy validations [20].

2.2. Power Laws and Curve Fitting

Let S denote the forest area (measured in hectares) by country. If forest area is
distributed according to a power law, also known as a Pareto distribution, the density

function is p(S) =
a− 1

S

(
S
S

)−a
∀S ≥ S, and the complementary cumulative density

function P(S) is P(S) =
(

S
S

)−a+1
∀S ≥ S, in which a > 0 is the Pareto exponent

(or the scaling parameter), and S is the number of forest hectares in the country at the
truncation point, which is the lower bound to the power law behaviour.

Taking natural logarithms, we obtain a linear specification:

ln R = ln A− a ln S + u, (1)

where u represents a standard random error (E(u) = 0 and Var(u) = σ2) and ln A is
a constant. The greater the coefficient â, the more homogeneous forest areas are across
countries. Similarly, a small parameter (less than 1) indicates a heavy-tailed distribution.

From Equation (1), it seems easy to estimate the Pareto exponent because it is just the
slope of a line fitted by Ordinary Least Squares (OLS). However, this regression analysis
used commonly in the literature can present some problems [36]. The main one is that the
Maximum Likelihood (ML) estimator is more efficient if the underlying stochastic process
is really a Pareto distribution [37,38]. Furthermore, both [37] and [19] highlight that the
OLS estimates of the Pareto exponent are subject to systematic and potentially large errors.
Finally, this procedure is strongly biased in small sample sizes [39].

Therefore, to overcome these limitations we use we use an innovative method pro-
posed by Clauset et al. to estimate power laws, based on the (ML) estimator of the Pareto
exponent [19]:

â = 1 + n

(
n

∑
i=1

ln
Si
S

)
, ∀Si ≥ S,

where n is the number of data points. Sample size is an important issue for the ML
estimation. The ML estimator’s properties are consistency, normality, and efficiency, but
only when the sample size approaches infinity. In the field of power laws estimation, [38]
showed that the variance of the estimates obtained with the ML estimator is notably
lower than that of the estimates using a linear fit on the first five bins in the frequency
distribution. In fact, the ML estimator has been shown mathematically to be the minimum
variance unbiased estimator [40]. Therefore, the ML estimator has a lower variance than
any other unbiased estimator for all possible values of the scaling parameter. This makes
the ML estimator the most accurate and robust method for estimating the power law
scaling parameter [41]. Therefore, even if the sample size is low, ML is less biased than
other estimators.

Clauset et al. [19] propose an iterative method to estimate the adequate truncation
point (S). The exponent a is estimated for each Si ≥ S using the ML estimator (bootstrapped
standard errors are calculated with 1000 replications). Then, the Kolmogorov–Smirnov (KS)
statistic is computed for the data and the fitted model. The S lower bound that is finally
chosen corresponds to the value of Si for which the KS statistic is the smallest.



Sustainability 2021, 13, 1361 5 of 19

Clauset et al. [19] proposed several goodness-of-fit tests (alternative statistical tests to
check whether a variable is Pareto distributed are available; for instance, see [42]). In the
same way as Brzezinski, we used a semi-parametric bootstrap approach [43]. This pro-
cedure is based on the iterative calculation of the KS statistic for 500 bootstrap dataset
replications. This method samples from observed data and checks how often the result-
ing synthetic distributions fit the actual data as poorly as the ML-estimated power law.
Thus, the null hypothesis is the power law behaviour of the original sample for Si ≥ S.
Nevertheless, this test has an unusual interpretation because we can always fit a power
law regardless of the true distribution from which our data were drawn. Clauset et al. [19]
recommend the conservative choice that the power law is ruled out if the p-value is below
0.1: “that is, it is ruled out if there is a probability of 1 in 10 or less that we would merely
by chance get data that agree as poorly with the model as the data we have”. Therefore,
this procedure only allows us to conclude whether the power law is a plausible fit to the
data. Finally, we compare the linear power law fit with the fit provided by other non-linear
standard statistical distributions, the log-normal and exponential distributions. The density
functions for these distributions are

p(S) =
1(

1− er f c
(

ln S−µ
σ

))
S
√

2πσ2
e−

(ln S−µ)2

2σ2 for the log−normal and p(S) = e−λSλeλS

for the exponential. We use Vuong’s model selection test to make bilateral comparisons
between the power law and the other distributions. Although there are specific tests
designed to compare the fit provided by a power law and a log-normal distribution [44],
Vuong’s test allows for the comparison between any two distributions. The test is based
on the normalised log-likelihood ratio; the null hypothesis is that the two distributions
are equally far from the true distribution, while the alternative is that one of the test
distributions is closer to the true distribution. High p-values indicate that one model cannot
be favoured over the other, while low values indicate that one of the two distributions
provides a better fit to the true distribution. If the null hypothesis is rejected, the sign of
the normalised log-likelihood ratio indicates which one of the two compared distributions
is closer to the empirical data.

2.3. Parametric and Non-Parametric Empirical Models of Change in Forest Coverage

Again, let Sit be the forest area (measured in hectares) of the country i at time t and
let Changeit be its logarithmic change in forest coverage; then Changeit = ln Sit − ln Sit−1.
One possible issue related to the change in forest coverage is that it might change simply
because the country’s area changed over time. To check whether this scenario could be
the case, we use country area data from FAO to compute the change rate of country’s area.
Most of the rates are zero since countries’ boundaries usually do not change over time.
Only in 187 cases (3.4% of the total), we obtained a non-zero rate of change in land area.
We then calculate the correlation between the rate of change in forest coverage and the rate
of change in the country area in the same year, when the latter is non-zero: Spearman’s rho
= 0.0038. Furthermore, we also run a test in which the null hypothesis is that both rates are
independent, and the p-value of the test is 0.9614. Therefore, we can conclude that changes
in forest coverage are not significantly driven by changes in country area.

Next, we define git as the normalized rate of change (by subtracting the contemporary
mean and dividing by the standard deviation in the relevant year). Rates of change are
normalised because we are considering a panel of rates of change from different years.
The hypothesis we aim to test is the random (or stochastic) growth of forest areas, that is,
whether the rate of change of the forest areas is independent of its initial area. First, we
consider the following parametric model of change in forest coverage:

git = µ + β1 ln Sit−1 + β2(ln Sit−1)
2 + φj + δt + uit, (2)
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where φj are country fixed effects, δt are time fixed effects, and uit is the residual term,
which we assume to be identically and independently distributed for all countries, with
E(uit) = 0 and Var(uit) = σ2∀i, t. The specification includes a square term of the initial
forest area (a quadratic function) to capture non-linearity in the relationship between
change in forest area and initial size. Note that Equation (2) could be easily extended to
include any other variables that can have an important influence on the growth of forests,
from human actions to climate change [45,46]. Nevertheless, as our main interest is to tests
the random (or stochastic) growth of forest areas and not to analyse the different drivers of
change in forest coverage, the model in Equation (2) does not include additional regressors
and the β j are the key coefficients, capturing the effect of the initial forest area on the rate
of change.

However, although the β j coefficients help to detect non-linearities, a parametric
regression is not necessarily the best way to address such non-linear relationships. Some
authors [47] have highlighted the advantages of the non-parametric approach over the
standard parametric one. Mainly, non-parametric methods do not impose any structure on
underlying relationships that may be non-linear and may change over time (no need to
restrict the relationship to being stationary).

Therefore, we also perform a non-parametric analysis using kernel regressions [48].
This consists of taking the following specification:

gi = m(si) + εi,

where gi is again the normalized rate of change (by subtracting the contemporary mean
and dividing by the standard deviation in the relevant year) and si is the logarithm of the
ith country’s forest area (si = ln Si). Instead of making assumptions about the functional
relationship m, m̂(s) is estimated as a local mean around point s and is smoothed using
a kernel, which is a symmetrical, weighted, and continuous function in s. The kernel used
is an Epanechnikov, and the bandwidth is set using Silverman’s rule of thumb. Thus,
this non-parametric estimate allows the rate of change to vary with the initial forest area
over the entire distribution. We run the kernel regression for each period and for a pool
from 1990 to 2015, using the Nadaraya–Watson method to estimate m̂(s). As a robustness
check, we re-estimated the kernel regression using the LOcally WEighted Scatter plot
Smoothing (LOWESS) algorithm instead of the Nadaraya–Watson method and identified
similar results (these results are available from the author upon request). As the rates
of change are normalised, if the change was independent of the initial forest area, the
non-parametric estimate would be a straight line on the zero value and values different
from zero would involve deviations from the mean: significant higher-than-zero values
would indicate divergence (with larger forest areas showing rates of change higher than
those of the smaller ones), while negative estimates would point to convergence with the
largest forest areas showing rates of change lower than those of the smaller units.

3. Results
3.1. The Probability Distribution of Worldwide Forest Areas

We use the yearly FAO dataset to estimate the probability distribution of worldwide
forest areas by year from 1990 to 2015 by fitting a power law for each period of our yearly
sample of countries. Data interpolation could generate some doubts about the robustness
of the annual data set. Furthermore, one possible concern with our analysis might be
that the change in the list of countries might bring about bias to our results. Thus, as a
robustness check, in Appendix A, we re-estimate the main results using only the FRA
periodical data, considering a fixed list of countries.

Figure 1 shows the results for four selected years: 1990, 2000, 2010, and 2015 (the
results for all of the years are available from the author upon request). The data, plotted as
a complementary cumulative distribution function (CCDF), are fitted by a power law, and
its exponent is estimated using the ML estimator. For illustrative purposes, the log-normal
distribution is also fitted to the data by ML (the blue dotted line). The optimal lower
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bound for both distributions is estimated using the method provided by Clauset et al.’s [19]
method. The black line indicates the power law behaviour of the upper tail distribution.

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 20 
 

s . The kernel used is an Epanechnikov, and the bandwidth is set using Silverman’s rule 
of thumb. Thus, this non-parametric estimate allows the rate of change to vary with the 
initial forest area over the entire distribution. We run the kernel regression for each period 
and for a pool from 1990 to 2015, using the Nadaraya–Watson method to estimate ( )m̂ s . 
As a robustness check, we re-estimated the kernel regression using the LOcally WEighted 
Scatter plot Smoothing (LOWESS) algorithm instead of the Nadaraya–Watson method 
and identified similar results (these results are available from the author upon request). 
As the rates of change are normalised, if the change was independent of the initial forest 
area, the non-parametric estimate would be a straight line on the zero value and values 
different from zero would involve deviations from the mean: significant higher-than-zero 
values would indicate divergence (with larger forest areas showing rates of change higher 
than those of the smaller ones), while negative estimates would point to convergence with 
the largest forest areas showing rates of change lower than those of the smaller units. 

3. Results 

3.1. The Probability Distribution of Worldwide Forest Areas 
We use the yearly FAO dataset to estimate the probability distribution of worldwide 

forest areas by year from 1990 to 2015 by fitting a power law for each period of our yearly 
sample of countries. Data interpolation could generate some doubts about the robustness 
of the annual data set. Furthermore, one possible concern with our analysis might be that 
the change in the list of countries might bring about bias to our results. Thus, as a robust-
ness check, in Appendix A, we re-estimate the main results using only the FRA periodical 
data, considering a fixed list of countries. 

Figure 1 shows the results for four selected years: 1990, 2000, 2010, and 2015 (the 
results for all of the years are available from the author upon request). The data, plotted 
as a complementary cumulative distribution function (CCDF), are fitted by a power law, 
and its exponent is estimated using the ML estimator. For illustrative purposes, the log-
normal distribution is also fitted to the data by ML (the blue dotted line). The optimal 
lower bound for both distributions is estimated using the method provided by Clauset et 
al.’s [19] method. The black line indicates the power law behaviour of the upper tail dis-
tribution. 

  

Sustainability 2021, 13, x FOR PEER REVIEW 8 of 20 
 

  

Figure 1. The probability distribution of forest areas. Notes: FAOSTAT data, FAO Forest Resource Assessments. The data 

are plotted as a complementary cumulative distribution function (CCDF), ( )Pr S S≥ . 

The estimated Pareto exponent is quite persistent over time with a value around 1.8 
across all years (see Table 2). Not only is the scaling parameter persistent, the threshold 
estimate is also consistent over time with values around 8000 in most years. Thus, the 
power law tail starts from forest areas ≥ 8,000,000 hectares, including an average number 
of 61 countries by year. Note that this optimal threshold identifies the point of the forest 
area distribution at which the data’s power law behaviour starts. We fit the different dis-
tributions to the upper tail, which means that our analysis focuses only on the countries 
with the largest forest areas, and although the threshold and the size of the upper tail may 
vary between years (not dramatically, as shown in Table 2), there are few variations in the 
sample of countries included in the upper tail. Therefore, although some countries enter 
the sample of FAO data over time (see Table 1), this variation in the set of countries should 
not cause a significant change in our results for the upper tail distribution because usually 
they are small countries. Nevertheless, Appendix A demonstrates that our results are ro-
bust regardless of new country entries in the sample. 

Table 2. Power law fit. 

Data Lower 
Bound 

Pareto Exponent Power Law 
Test 

Power Law vs. 
Log-Normal 

Power Law vs. 
Exponential 
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The estimated Pareto exponent is quite persistent over time with a value around 1.8
across all years (see Table 2). Not only is the scaling parameter persistent, the threshold
estimate is also consistent over time with values around 8000 in most years. Thus, the
power law tail starts from forest areas ≥ 8,000,000 hectares, including an average number
of 61 countries by year. Note that this optimal threshold identifies the point of the forest
area distribution at which the data’s power law behaviour starts. We fit the different
distributions to the upper tail, which means that our analysis focuses only on the countries
with the largest forest areas, and although the threshold and the size of the upper tail may
vary between years (not dramatically, as shown in Table 2), there are few variations in
the sample of countries included in the upper tail. Therefore, although some countries
enter the sample of FAO data over time (see Table 1), this variation in the set of countries
should not cause a significant change in our results for the upper tail distribution because
usually they are small countries. Nevertheless, Appendix A demonstrates that our results
are robust regardless of new country entries in the sample.
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Table 2. Power law fit.

Data Lower Bound Pareto Exponent Power Law Test Power Law vs.
Log-Normal

Power Law vs.
Exponential

S ^
a Standard Error p-Value p-Value p-Value

1990 8201 1.839 0.107 0.544 0.654 0.003
1991 7962 1.834 0.105 0.582 0.627 0.003
1992 7746 1.843 0.105 0.614 0.666 0.002
1993 7613 1.833 0.103 0.708 0.618 0.002
1994 7694 1.829 0.104 0.692 0.590 0.002
1995 7899 1.835 0.105 0.684 0.611 0.002
1996 7822 1.829 0.104 0.752 0.581 0.003
1997 7745 1.824 0.104 0.776 0.551 0.003
1998 7668 1.818 0.103 0.820 0.522 0.003
1999 8224 1.827 0.107 0.798 0.546 0.004
2000 8032 1.839 0.107 0.764 0.610 0.002
2001 7958 1.834 0.106 0.800 0.582 0.003
2002 7884 1.828 0.105 0.796 0.555 0.003
2003 8174 1.841 0.108 0.798 0.607 0.002
2004 8171 1.842 0.108 0.800 0.611 0.002
2005 8168 1.843 0.108 0.818 0.615 0.002
2006 8456 1.855 0.110 0.782 0.667 0.002
2007 8475 1.857 0.111 0.752 0.679 0.002
2008 8495 1.860 0.111 0.716 0.693 0.002
2009 8144 1.845 0.108 0.766 0.624 0.002
2010 8138 1.846 0.108 0.824 0.629 0.002
2011 8136 1.847 0.108 0.802 0.637 0.002
2012 9136 1.879 0.115 0.794 0.739 0.002
2013 8594 1.850 0.111 0.836 0.603 0.002
2014 8614 1.852 0.111 0.878 0.615 0.002
2015 8634 1.855 0.111 0.908 0.628 0.002

Notes: The lower bound and the Pareto exponent are estimated using Clauset et al.’s [19] methodology. The power law test is a goodness-
of-fit test. H0 is that there is power law behaviour for Si ≥ S. The power law versus log-normal test is Vuong’s model selection test, based
on the normalized log-likelihood ratio: H0 is that both distributions are equally far from the true distribution while HA is that one of the
test distributions is closer to the true distribution.

The power law appears to provide a good description of the distribution behaviour.
In contrast, the fit of the log-normal distribution does not seem to be visually appealing,
especially for the higher observations. Nevertheless, visual methods can lead to inaccurate
conclusions, especially at the upper tail because of large fluctuations in the empirical
distribution [49], so next we conduct statistical tests on the goodness of fit. Table 2 shows
the results of the tests. The p-values of the test are always higher than 0.1, confirming that
the power law is a plausible approximation to the data’s real behaviour, as we cannot reject
the power law in any case.

Results in Table 2 show that the log-normal distribution is a plausible alternative
to the power law that we cannot reject (to run the test we used the same lower bound,
the estimated value corresponding to the power law). In contrast, while the exponential
distribution is clearly rejected with low p-values of the test and a positive and large
value (not shown for size restrictions, but available from the author upon request) of the
normalized log-likelihood ratio for all years. Therefore, using the terminology described by
Clauset et al.’s [19], we obtain moderate support for the power law behaviour of the cross-
country probability distribution of forest-area-frequencies: the power law is a plausible fit,
but there is also a plausible alternative.

3.2. An Analysis of Change in Forest Coverage

The above results suggest what can be considered as a snapshot of the probability
distribution of worldwide forest areas from 1990 to 2015. For each year, we estimated the
Pareto exponent and conducted a goodness-of-fit test to indicate the plausibility of a power
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law model. Furthermore, our estimates revealed that the exponent of the power law for
the upper-tail distribution remained stable throughout the considered period. However,
this finding does imply that the distribution of worldwide forest areas remains static.
To illustrate this point, Figure 2 shows the empirical density functions for the first and
last periods in our sample (1990 and 2015), which was estimated using adaptive kernels.
Contrary to the previous analysis where we focused on the upper-tail distribution behaviour,
all observations are considered; the average estimated threshold was 8145 (see Table 2),
which in logarithmic terms corresponds to a value roughly equal to 9. Although the shape
of the empirical distribution is quite similar in both periods, we can observe a loss of density
in both the upper and lower tails and, as a result, an increase in density in the central values.
Therefore, in 2015 we find that the empirical distribution of forest area coverage was slightly
more even than in earlier years.

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 20 
 

the central values. Therefore, in 2015 we find that the empirical distribution of forest area 
coverage was slightly more even than in earlier years. 

 
Figure 2. Empirical density functions of forest area coverages. 

Economic literature on the distribution of financial assets [50], firm size [51], and city 
size [52] usually concludes that a Pareto-type distribution is generated by a random 
growth process (in the firm and city size literature, this hypothesis is called Gibrat’s law). 
Furthermore, other plausible, alternative models that cannot be rejected in the previous 
empirical analysis, such as the log-normal distribution, can also generate random rates of 
change in forest areas. The hypothesis that is usually tested states that the rate of change 
of the variable is independent of its initial size (i.e., the underlying growth model is a 
multiplicative process). 

In ecology and bioeconomics the common approach is also to treat changes in the 
resource population as a random variable [53]. The bioeconomics literature typically as-
sumes that the standard deviation is proportional to the resource population and com-
bines this with a mean growth component following a Brownian motion that can be geo-
metric [54] or logistic [55]. Therefore, our analysis of the rates of change can be considered 
as a test of the models of stochastic forest growth. 

We carry out a dynamic analysis of the change in forest areas using the parametric 
and non-parametric methods, as the FAO dataset enables us to calculate the yearly rates 
of change in forest areas by country. Table 3 shows the results of the OLS estimation of 
the parametric model of Equation (2). The first column corresponds to a simple bivariate 
regression, which indicates a negative and significant impact of the initial forest area on 
the change in forest coverage. In column 2, we add country and year fixed effects to con-
trol for temporal shocks and unobserved characteristics that can vary at a country level. 
The estimated coefficient for the initial forest area is not significant, although it remains 
negative. Finally, in column 3 we use the full specification, including both the log-level of 
initial forest area and its square term, and the country and time fixed effects. The estimated 
coefficients are significantly different from zero, with 1̂ 0β <  and 2

ˆ 0β > , which implies 
a U-shaped relationship between change in forest coverage and initial forest area, pointing 
to a robust non-linear relationship between both variables. 

  

0.
00

0.
05

0.
10

0.
15

D
en

si
ty

-5 0 5 10 15
Forest land (ln scale)

1990 2015

Figure 2. Empirical density functions of forest area coverages.

Economic literature on the distribution of financial assets [50], firm size [51], and city
size [52] usually concludes that a Pareto-type distribution is generated by a random growth
process (in the firm and city size literature, this hypothesis is called Gibrat’s law). Furthermore,
other plausible, alternative models that cannot be rejected in the previous empirical analysis,
such as the log-normal distribution, can also generate random rates of change in forest
areas. The hypothesis that is usually tested states that the rate of change of the variable is
independent of its initial size (i.e., the underlying growth model is a multiplicative process).

In ecology and bioeconomics the common approach is also to treat changes in the re-
source population as a random variable [53]. The bioeconomics literature typically assumes
that the standard deviation is proportional to the resource population and combines this
with a mean growth component following a Brownian motion that can be geometric [54] or
logistic [55]. Therefore, our analysis of the rates of change can be considered as a test of the
models of stochastic forest growth.

We carry out a dynamic analysis of the change in forest areas using the parametric
and non-parametric methods, as the FAO dataset enables us to calculate the yearly rates
of change in forest areas by country. Table 3 shows the results of the OLS estimation of
the parametric model of Equation (2). The first column corresponds to a simple bivariate
regression, which indicates a negative and significant impact of the initial forest area on
the change in forest coverage. In column 2, we add country and year fixed effects to
control for temporal shocks and unobserved characteristics that can vary at a country level.
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The estimated coefficient for the initial forest area is not significant, although it remains
negative. Finally, in column 3 we use the full specification, including both the log-level of
initial forest area and its square term, and the country and time fixed effects. The estimated
coefficients are significantly different from zero, with β̂1 < 0 and β̂2 > 0, which implies
a U-shaped relationship between change in forest coverage and initial forest area, pointing
to a robust non-linear relationship between both variables.

Table 3. Parametric estimates (1990–2015).

(1) (2) (3)

ln(Sit-1) −0.037 ** −0.645 −3.084 ***
(0.016) (0.766) (1.089)

ln(Sit-1)2 0.205 ***
(0.069)

Country fixed effects No Yes Yes
Year fixed effects No Yes Yes

Observations 5453 5453 5453
R2 0.015 0.740 0.749

Notes: Coefficient (robust standard errors clustered by country). Dependent variable: Normalized rate of change
in forest coverage. Significant at the ** 5%, *** 1% level. All models include a constant.

Figure 3 shows the non-parametric estimates for a selection of years (the results for
all the years are available from the author upon request). The graphs also include the 95%
confidence bands. We only focus on the relationship between mean rate of change and initial
size although, strictly speaking, random growth implies that the rate has a distribution
function with both mean and variance independent of the initial size. The decreasing pattern
is clear in all cases and demonstrates that the greater the initial forest area, the lower the
rate of change of forest area. This is especially noticeable during 1990 to 1991, in which
estimated rates of change are significantly negative for large forest areas. However, we can
observe a recovery in the rates at the upper tail end of the distribution for all years. This
corresponds with the data from countries with the largest forest areas, displaying high rates
of change. Overall, this pattern points to convergence (mean reversion) across countries,
especially for the smallest units, consistent with the change in the empirical distribution
shown in Figure 2. Nevertheless, the zero value falls within the confidence bands for the
entire distribution of forest areas (especially since the years from 2000 to 2001). Thus, we
cannot reject the premise that in recent years the rate of change of forest areas has differed
from zero (random forest area growth hypothesis).
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Figure 3. Non-parametric estimates of the rate of change in forest areas by year.

We also build a pool with all the annual rates of change between two consecutive years;
there are 5453 forest area–rate of change pairs in the period from 1990 to 2015. Graph (a)
in Figure 4 shows the kernel regression of the rate of change for the pool. The estimated
mean rate decreases with the initial forest area, indicating a convergent pattern throughout
the period while rejecting random growth. Previous year-by-year results showed that
since 2000, rates of change were not significantly different from zero, so the pool results
may be driven by the years prior to 2000. Nevertheless, another explanation could be that
the density of observations around each point of the forest area distribution is uneven
(especially at the lower tail of the distribution, with fewer observations), explaining why
the estimate is jagged instead of smooth.

To check this last issue, Graph (b) in Figure 4 shows the stochastic kernel estimation
of the distribution of normalised rates of change, conditional on the distribution of initial
forest areas at the same date. To make the interpretation easier, a contour plot is shown. The
graph reveals that although there are some deviations in the rates (especially at the upper
tail of the distribution), most of the bivariate density is concentrated around the zero value
(which is consistent with the previous finding, noting the tiny scale in the y-axis in Graph (a)
in Figure 4). This means that a small number of observations drives the apparent decreasing
pattern observed in Figure 4a and that the true pattern for the entire pool is random forest area
growth, indicating that both distributions (forest areas and rates of change) are independent
for most of the observations throughout the period from 1990 to 2015.
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Figure 4. Change in forest coverage from 1990 to 2015; includes 5453 observations.

4. Discussion and conclusion

Power laws appear extensively in physics, biology, earth and planetary sciences,
economics and finance, computer science, demography, and the social sciences [56]. In this
paper, we analyse whether the distribution of forest area coverages can also be well-
described by a power law. Using cross-country FAO data of forest areas by year from
1990 to 2015, our study on the probability distribution of forest-area-frequencies reveals
new insights:

1. Using the methodology described by Clauset et al., we found moderate support for
a power law in the upper tail distribution of worldwide forest areas [19]. A power law
cannot be rejected in any period. It is a finding consistent with the size distribution
of other phenomena related to forests, such as rainfall precipitations [14] and forest
fires [15]. However, the log-normal distribution appears to be a plausible alternative
model that we cannot reject in any case.

2. The scaling parameter’s estimated value is around 1.8 during all periods and is quite
consistent over time. This finding indicates stability in the probability distribution
of worldwide forest areas over time, a result confirmed by the estimated empirical
density functions.

3. The study of the rates of change in forest areas reveals that the distribution of forest
areas and their rates of change are independent for most of the observations through-
out the whole period from 1990 to 2015. Therefore, random (or stochastic) forest area
growth cannot be rejected for most of the distribution of forest areas, which could
explain the resulting Pareto (power law) or log-normal probability distribution.

4. In Appendix A, we run some robustness checks and re-estimate the main results
using a subset of the primary sample that includes a fixed list of countries in all years
and excludes the annual interpolated values estimated by the FAO. Results are quite
similar to those obtained using the full sample from FAO, indicating that our results
are not biased by changes in the sample size or issues related to interpolations.

The power law behaviour of forest areas data has important implications. First, the
power law, and fat tails in general, have relevant policy implications [16]. Knowledge about
the probability distribution of worldwide forest areas can play a crucial role in designing
efficient environmental policies. Since a power law characterises the upper tail of the
distribution, the total forest area in the world is mainly determined by the largest units;
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nowadays, five countries (the Russian Federation, Brazil, Canada, the United States, and
China) account for 54% of the total forest area in the world, according to the FAO data.
Therefore, it makes more sense to focus on these countries that contain the largest forest
areas instead of dealing with smaller countries from a policy point of view. Such efforts
could facilitate international negotiations and make agreements easier to reach.

Second, a power law suggests complex systems of forest areas. This type of complex
systems of forest areas involves a hierarchy that is statistically self-similar and hence
fractal [9,57,58]. Therefore, systems of forest areas are a kind of hierarchy with a cascade
structure that is similar to other hierarchies observed in nature, such as the hierarchy of
rivers and the energy distributions of earthquakes [59].

Third, our findings regarding the random rates of change of forest areas give sup-
port to models of stochastic forest growth [53]. Previous research on forest management
under uncertainty focuses on the influence of stochasticity from different sources [60];
among them, we can highlight climate change [61]. Although stochastic forest growth
can be modelled in several ways (as a Brownian motion process [54] or using Markov
models [62], stochasticity in forest growth influences critical issues such as planting and
harvest decisions [63].

Finally, our results strongly depend on the dataset used (explicitly, on the “forest”
definition by FAO) and on the statistical functions considered. Further research varying
any of these two features can generate new findings and remains an open question. We can
propose several future lines of research: first, the use of different datasets could provide
strong validation of the empirical patterns observed. As we acknowledged in Section 2,
FAO data have some problems. Chen et al. recommend the use of the Hansen [64]
dataset for forest cover and forest cover change estimations [20], although there are more
datasets available. A meta-analysis using data from different sources could provide robust
information about forest areas’ statistical worldwide distribution. Second, as the log-normal
distribution provides an alternative fit that we cannot reject in any case, a mixed distribution
combining a log-normal body and power law tails could be considered [65–67]. This kind
of convoluted distributions could provide a more accurate fit to the probability distribution
of forest areas. To date, they have only been applied to study city size distributions [65–68]
and the size distribution of national CO2 emissions [16].
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Appendix A

In this Appendix, we conduct a robustness check: we re-estimate the main results
of the paper using only Global FRA periodic data for the years 1990, 2000, 2005, 2010,
and 2015 [21–25]. Therefore, we exclude linear interpolated values by FAO between FRA
years, as natural variability and randomness of the data would disappear (data smoothing)
through interpolation. Furthermore, we also use a balanced panel: the countries’ list is
the same in all periods. The subset of 189 countries considered is fixed, and thus, our
results cannot be driven by changes in the sample size or issues related to interpolation.
Nevertheless, this sample size is a smaller subset since it contains selected countries
compared to the full sample size used in the previous sections. This change results in
a lower value coverage of the worldwide forest land.

http://www.fao.org/faostat/en/#home
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Thus, we fit the statistical distributions again to this fixed sample of countries.
Table A1 reports the new results, which are consistent with our previous findings. Fur-
thermore, the estimated exponent is relatively stable over time with a value of around 1.8
over all years. The threshold estimates are similar to those reported in Table 2, with values
a slightly above 8000. The average tail size is 56 countries. The p-values of the power law
test are still higher than 0.1, except for the year 2005. Therefore, the power law is a plausible
approximation to the data’s real behaviour in most periods, although we reject the power
law in 2005. Regarding the comparison with the different non-linear distributions, again
the log-normal distribution appears to be a plausible alternative to the power law that we
cannot reject. In contrast, the Pareto distribution outperforms the exponential distribution.

Table A1. Power law fit (FRA data and a fixed sample of countries).

Data Lower Bound Pareto Exponent Power Law Test Power Law vs.
Log-Normal

Power Law vs.
Exponential

S ^
a Standard Error p-Value p-Value p-Value

1990 8136 1.874 0.114 0.330 0.576 0.010
2000 8032 1.847 0.112 0.500 0.419 0.015
2005 8673 1.879 0.118 0.068 0.519 0.010
2010 9028 1.899 0.122 0.482 0.593 0.008
2015 8040 1.850 0.114 0.612 0.417 0.011

Notes: The lower bound and the Pareto exponent are estimated using Clauset et al.’s [19] methodology. The power law test is a goodness-
of-fit test. H0 is that there is power law behaviour for Si ≥ S. The power law versus log-normal test is Vuong’s model selection test, based
on the normalized log-likelihood ratio: H0 is that both distributions are equally far from the true distribution while HA is that one of the
test distributions is closer to the true distribution.

Next, we re-estimate the empirical density functions using adaptive kernels for our
fixed sample of 189 countries. Results shown in Figure A1 display an almost identical
pattern to Figure 2, confirming that these results are robust even with new countries’
inclusion. From 1990 to 2015, we observe a slight decrease of density in the tails and an
increase in density in the central values.
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Figure A1. Empirical density functions of forest area coverages (fixed sample of countries).

We also re-examine the relationship between changes in forest coverage and initial
forest area. In this scenario, the rates of change are not annual since they measure the
change in forest land between the FRA years: 1990–2000, 2000–2005, 2005–2010, and 2010–
2015. The results of the estimation of the parametric Equation (2), shown in Table A2, are
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quite similar to those reported in Table 3: we obtain a negative and significant impact of
the initial level of forest area on the rate of change. The main difference is that now, the
estimate of the initial forest land’s square term is not significant, thus casting some doubts
about the non-linear effect of the initial forest area on change.

Table A2. Parametric estimates (1990–2015, FRA data, and a fixed sample of countries).

(1) (2) (3)

ln(Sit-1) −0.037 ** −1.492 ** −2.849 ***
(0.016) (0.711) (1.073)

ln(Sit-1)2 0.120
(0.080)

Country fixed effects No Yes Yes
Year fixed effects No Yes Yes

Observations 756 756 756
R2 0.017 0.776 0.780

Notes: Coefficient (robust standard errors clustered by country). Dependent variable: Normalized rate of change
in forest coverage. Significant at the ** 5%, *** 1% level. All models include a constant.

The non-parametric estimates of the rate of change in forest areas still show a decreas-
ing pattern in all periods (see Figure A2). Similar to the results shown in Figure 3, using
the full sample of countries, in periods 2000–2005, 2005–2010, and 2010–2015, the value
zero falls within the confidence intervals for the entire distribution of forest areas, thus
supporting the random forest area growth hypothesis.
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Figure A2. Non-parametric estimates of the rate of change in forest areas by year (FRA data and a fixed sample of countries).
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Finally, Figure A3 shows the non-parametric results for a pool with all rates of change
between two consecutive periods; now, there are 756 forest area–rate of change pairs.
Graph (a) in Figure A3 shows the kernel regression of the rate of change for the pool. The
estimated mean rate decreases with the initial forest land, but the estimated values are
smoother than those presented in Figure 4a. Graph (b) in Figure A3 displays the stochastic
kernel estimation of the distribution of normalised rates of change, conditional on the
distribution of initial forest areas at the same date, showing a very similar plot to that shown
in Figure 4b. Again, most of the bivariate density is concentrated around the zero value.

Overall, results in this Appendix using a balanced sample of countries and excluding
interpolated values of forest areas are quite similar to those obtained in previous sections
considering the full sample of countries by year provided by FAO. Therefore, we confirm
that our results do not appear to have been driven by changes in the sample size or
interpolation issues.
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