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The normal form of a depolarizing Mueller matrix
constitutes an important tool for the phenomenological
interpretation of experimental polarimetric data. Due to
its structure as a serial combination of three Mueller
matrices, namely a canonical depolarizing Mueller matrix
sandwiched between two pure (nondepolarizing) Mueller
matrices, it overcomes the necessity of making a priori
choices on the order of the polarimetric components, as
this occurs in other serial decompositions. Because
Mueller polarimetry addresses more and more
applications in a wide range of areas in science,
engineering, medicine, etc, the normal form
decomposition has an enormous potential for the analysis
of experimentally determined Mueller matrices.
However, its systematic use has been limited to some
extent because of the lack of numerical procedure for the
calculation of each polarimetric component, in particular
in the case of type-II Mueller matrices. In this work, an
efficient algorithm applicable to the decomposition of
both type-II and type-I Mueller matrices is presented.

1. INTRODUCTION

Nowadays Mueller polarimetry is a well-known technique
involving both experimental and theoretical tools that allow for the
determination and the analysis of a number of physical and optical
properties of a great variety of material samples. The intricate
mathematical structure of Mueller matrices makes it necessary for
appropriate theoretical approaches (essentially serial and parallel
decomposition theorems [1]) to be implemented in the form of
numerical algorithms in order to process efficiently the
experimental data.

A particularly interesting theoretical approach for the analysis of
Mueller matrices is the so-called normal form [2-4], according to
which any depolarizing Mueller matrix can be expressed as a
product of three Muller matrices, namely a canonical depolarizing
Mueller matrix [5] sandwiched between two nondepolarizing

Mueller matrices. The normal form is intimately related to the
symmetric decomposition of depolarizing Mueller matrices [4], as
discussed in the end of section 3.

The main purpose of the present paper is to present an efficient
algorithm for the numerical calculation of the Mueller matrix
components of the normal form for both type-I and type-II
experimental Mueller matrices. Before proceeding, we introduce a
brief summary of the terminology, notations and concepts that will
be used along the paper.

Following the common practice, we use the term
nondepolarizing (also pure or Mueller-Jones) for Mueller matrices
associated with media that preserve the degree of polarization for
any incoming fully polarized light, while the term depolarizing (or
nonpure) is used to refer to Mueller matrices that do not. To specify
that a given Mueller matrix is pure, we denote it as M, (with the
subscript )).

Any Mueller matrix can be conveniently cast into the partitioned
form [6]
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where the superscript T indicates transposition, m,, is the mean
intensity coefficient (MIC) and D and P are the respective
diattenuation and polarizance vectors of M. The absolute values of
these vectors are the diattenuation D = |D| and the polarizance
P=[P| [7].

Any Mueller matrix M can be put in a one-to-one
correspondence with its associated covariance matrix H defined as
(8]

H(M)= i m; (o, ®0,)’ ()

=
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where ¢; are the Pauli spin matrices (taken in the order
commonly used in polarization optics),
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Leaving aside passivity constraints [9], a real 4x4 matrix is a
Mueller matrix if and only if the Hermitian matrix H is positive-
semidefinite (i.e, the four eigenvalues of H are nonnegative). If the
Mueller matrix M is pure, then all but one eigenvalues of H vanish.
The elements of M can be expressed through those of H as follows

m; = ’[r[(cri ®cj)H] . (4)

Let us also recall that any unitary similarity transformation of H,
VHV' with Vi=v™? (V is an arbitrary unitary matrix),
constitutes an alternative positive semidefinite Hermitian matrix
that also contains all the polarimetric information of the medium,
and therefore, can be likewise used to describe the latter. Among
these possible covariance matrices, it is sometimes useful to
consider the so-called coherency matrix C [8], linked to H through
the similarity transformation

C(M)=L[H(M)]|L",
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A physically significant parameter is the rank r of the covariance
(or coherency) matrix, rank (C) = rank (H) = r, which determines
the minimum number of pure parallel components of M [10,11].
The explicit expressions for H(M), M(H), C(M) and M (C)
can be found in Refs. [1,12].

Given a Mueller matrix M, its normal form decomposition
follows from the algebraic properties of its associated N-matrix ,
defined as N = GM'G M , where the matrix G is the Minkowski
metrics, G = diag 1,_1,_1,_1) [2-4,13-15]. The matrix N is said to
be diagonalizable if there exists an invertible matrix A such that
AT'NA is diagonal. Type-I Mueller matrices are those whose
associated N-matrix is diagonalizable, while a Mueller matrix is of
type-Il if and only if its associated N-matrix is not diagonalizable
[4,5].

Leaving aside the fact that the diagonalizability test is dealt with
in a large number of linear algebra treatises, it is worth recalling
that Gopala Rao et al [15], introduced a simple criterion to
distinguish between type-I and type-1I Mueller matrices, based on
the inspection of the properties of the N-matrices N = GM'GM
and N'=GMGM' . In particular,if N#0, N’ #0,and both N
and N’ have respective totally polarized eigenstates, then M is of
type 11, while M is of type I in all remaining cases.

Given a Mueller matrix M, its normal form decomposition is
formulated as

M:M.JzMAMJl (6)

where M;, and M;, are pure Mueller matrices while the
depolarizer matrix M, takes one of the two following canonical
forms M,y and M,y depending on whether M is of type I or

typell[5],
M,, =diag(d,.d,,d,,&d,),

7
0<d,<d, <d, <d,, £=(detM)/|det M| @
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where (do,dl,dz,d3) and (ao,ao,az,az) are the square roots
of the (nonnegative) eigenvalues ( 0,, 2y, 2, P, ) of the N-matrix
N associated with M for type-I and type-Il Mueller matrices
respectively.

The normal form decomposition of a type-II Mueller matrix can

be transformed to the following form [1,5,13], which will be useful
un further sections

M=M;M,,M,,
ab-a 0 0
0 b 00 (8)
MA“E 0 0 a, 0 ,(a>b)
0 0 0 aq

where the new components can be calculated from the former ones
by means of

M= (MJ2 Mg, My, )(MBL MB]a M, My, )(MBIa M;, ) , (9-a)

where
M, = MBlb MBla M, Mp,,
My =M;, My, My, (9.b)
M, = ME)laMJl?
with
1 - O 1 N
MDa = MDa+s MDa = MDa—
1+C;\a Ka
1 o 1
MDb = MDb+7 MDb :_MDb—
Kb be
lc; 00 I —c, 0
o c, 1 00 o -c;, 1 0 0 (9.c)
Mo =10 0s. 0 Mo-=| 0" 0 s, 0/
0 0 S 0 0 0 s,
S =sinkj, C4 =COSKj, (i=a,b)
3a-b b-a
COSK, =——, COSK,=——.
a+b +b
Note that, since a >b >0 the above matrices are always
nonsingular.

Once the required theoretical background has been presented,
the next sections are devoted to the development of the algorithm
for the numerical calculation of the Mueller matrices of the
components of the normal form. In the case of type-1I Mueller
matrices, the algorithm provides the serial matrix components in
the form (8) (M, Ma, Mz ) which can be easily transformed
into M ,q, M3, and M, by means of the expressions
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M, =M, MM, M_Dla
M;, =M, ME)lb ME)la
M, =M,M,

(10)

2. BI-DIAGONALIZATION OF THE MUELLER MATRIX

The procedure starts with the transformation of the Mueller
matrix M into a bi-diagonal Mueller matrix M of the form

by by, 0 O
0 b, b, 0
0 0by,b,|
0 0 0 b,

M, - (1)

which is obtained from M by its pre- and post-multiplication by two
kinds of orthochronous proper Lorentz matrices or OPLMs (ie,
nonsingular bure Mueller matrices [1,15]), denoted as U: and V;
respectively, thatis Mg = U;U,U;MV,V,.Schematically,

X X X X X X X X xx 00
x xx x[U]0xxx|V]0x x X
XXX X[2|/0xxx|—>0xxx
X X X X 0x xx 0 x x
(12)
xx 00 xx 00 xx 00
U, 0 x xx[V,]0xx 0|U;/0xx0
=2>00xx[>/00xx|—>|00xx
00 x x 00 x x 000x
where x denotes the nonzero elements (different, in general).
A. Calculation of the matrix U,
Define the vector
v,=m, —/m;Gm,e, (13)

where m, is the first column of M and e, = (1,(),0,0)T . Next, we
define the hyperbolic Householder matrix
vivy

H =G-2— .
v, Gv,

(14)

Note that, provided m; Gm, >0 (Le, the medium is not a
depolarizing polarizer, thatis P <1 [7,17]), then

VIGy, =2(m00«/mIGm1 —mlTGml);t 0,

so that the denominator in Eq. (14) is nonzero.

In the case where m; Gm, =0 (ie, P=1)wetake H, =1,
(I, being the 4x4 identity matrix). The four eigenvalues of the
coherency matrix associated with the matrix GH,G are

(15)

mOO
T
4/m, Gm,

with my, / Jm; Gm, >0 and therefore, the matrix GH,G is a
pure Mueller matrix. Let us now take U; = GH,G , which has the
property that matrix U;M has zero elements in its first column,

“«

except for the “00” element.

0,0,0, (16)
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B. Structure of the matrices V4, V5, U,, U

The matrices V,,V,,U,,U; are built from certain
Householder matrices that are defined below. Consider the
following pair of vectors

T T
X, = (X, X, %), €, =(1,0,0), (17)
and define the vector
U, =X, +y/X) X, €, (18)
which generates the 3x3 Householder matrix
T
u,u
Q,=1,-2 i =, (19)
u,u,
that satisfies the following property
Q.x, =—/x)x,e,. (20)

If u, =0,thenwetake Q, =15 (I; isthe 3x3 identity matrix).
Next, define the matrix

1 0 j
H, = , (21)
2 ( O Q )
sothat GH, is a pure Mueller matrix with det GH, =1.
Analogously, consider the vectors
T T
x3=(X0,X1) , e3:(1,0) , (22)
and define the vector
U, =X, +4/X] X €5, (23)
which generates the 2x2 Householder matrix
u,u,
Q,=I,-2—=—, (24)
u,u,
that satisfies the following property
Q.x; =—ngx3e3. (25)

If u, =0,thenwetake Q; =1, (I, isthe 2x2 identity matrix).
Next, define the matrix

_[ L 0
(o)

so that GH; is a pure Mueller matrix with det GH; =1.

(26)

C. Bi-diagonalization procedure

Once the matrices U,,U,,Us,V,,V, have been defined and
their properties have been analyzed, we are in a position to
formulate the bi-diagonalization procedure:

1. Take the first column m; ofMandbuild U, =GH,G;
Calculate M' = U, M ;

Take the vector X, = (m()l,mgz,m33)T andbuild V, =G H,;;
Calculate M"=M'V;;

Take the vector X, = (m{’l,m’z’l,mg'l )T andbuild U, =GH,;
Calculate M" = U,M";

oUW
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7. Take the vector X; = (m{ﬁ,m{g )T andbuild V, =GHj;;

8. Calculate M"Y =M"V,; ;

9. Take the vector X; = (mz'X ,mY¥) andbuild U, =GH;;

10.Calculate the bi-diagonal Mueller matrix Mz =U;M v
=U;U,UMV,V,

3. ITERATIVE PROCEDURE FOR OBTAINING THE PURE
COMPONENTS AND THE CANONICAL DEPOLARIZERS
OF THE NORMAL FORM

The next stage of the algorithm consists in applying consecutive
OPLM transformations to the bi-diagonal matrix obtained in the
previous section. The process is iterated either until the off-
diagonal elements of M are zero (within the numerical tolerance
specified), or until the conditions for M to be transformed into
M, are satisfied. In other words, if the process reaches a matrix
of the form of M, , then M is of type-II; otherwise, if the process
continues to a diagonal matrix, then M is a type-I Mueller matrix.

The OPLM matrices used at this stage are the Givens matrices
G; described in the Appendix. Givens matrices with odd subscripts
act as left-factors, while those with even subscripts act as right-

factors. In this way, we get the transformed matrix
M; = G:G,G,M; G,G;Gs.
Schematically,
xx 00 x 000 xx 00
0xx0|G|lyxx0|G,J0xx20
00xx|>00xx|—>|00xx
000x 000 x 000cx
xx 00 xx 00
G,0x00|G,|]0xXO0 27)
>0y xx|—=>00x x
000x 000 x
xx00 xx 00
G,|0xX0|G,|0xXO0
>[00x0|—>|00xxX
00yx 000 x

where x,v and X are nonzero elements (different, in general) of M.
Three alternative situations can occur.

(a) If the off-diagonal elements of Mg are zero, or smaller than a
predetermined value (tolerance), then M is a type-I Mueller matrix
and

M'B = M(Ad) =G¢G,G,U,;U,UMV,V, G,G;Gs,
M;, = (G6G4G2U3U2U1 )_l s (28)
MJB = (V1V2G1G3G5 )7l .

(b) If b{, ®b3; 0 and Ib61| ~ |b{1|—b{)0 (which means that
M is a type-Il Mueller matrix), then Eq. (28) also applies for the
three components of the normal form, but now the obtained
central depolarizer is of type-I, Mg = My, .

(c) If none of conditions from the previous cases are met, then
the process is iterated until it reaches either case (a) or case (b).

Once the iterations end and the components M, (namely
M(Ad) or My, ), Mju and My are calculated, the Mueller
matrix components of the normal form for type-1 Mueller matrices
are obtained from

Applied Optics February 2020
DOI: 10.1364/A0.384871

My = DZM(Ad)Dh
M;, =M;D;', (29)
M, = Dfl Ma,

where D, and D, are appropriate diagonal Mueller matrices
1L,1,-1,-1), §1,—1,1,—1) and (1,—1,—1,1) such that the signs of

e diagonal elements are set as in the convention taken for the
definition of M 4 in Eq. (7).

In the case of type-Il Mueller matrices, the matrices of the
components are obtained in accordance with Eq. (10).

It should be noted that the two pure matrix components M ;,
and M;, can be further decomposed down to products of
elliptical diattenuators and retarders by applying the polar
decomposition [18]. One thus obtains the symmetric
decomposition of M [4]. Conversely, if the nondepolarizing matrix
factors from the symmetric decomposition of M are multiplied to
yield M, and M ;,, one gets the normal form of M.

4. APPLICATION EXAMPLES

To illustrate the above algorithm, we apply it to some
experimental and numerical type-I and type-1l Mueller matrices.

The eigenvalues of C(M) as well as the values for D
(diattenuation), P (polarizance), and det M are likewise reported
since they appear as invariant quantities [19] providing
information on the nature of the measured Mueller matrix.

A. Example 1

The first example considered is the Mueller matrix representing
the polarimetric response of a dielectric anechoic coating
(“dielectric C”) characterized in backscattering geometry [4,20] (the
matrix has been pre-multiplied by the reference-frame-change
matrix diag(l,l, -1, —1) in order to use a unique reference frame
for both input and output beams [4])

1.0000 —0.0045 0.0172 0.0085

M = -0.0075 0.1146 0.0018 0.0035
1 =0.0011 —0.0031 0.1079 —0.0036 |

—-0.0037 —0.0008 0.0069 —0.0309

(30.a)

This Mueller matrix corresponds to a sample exhibiting very small
values of diattenuation and polarizance. Its calculated normal form
matrix components are

1.0000 —0.0037 0.0176 0.0084
~ —0.0031 0.9990 0.0175 0.0349
0.0171 —0.0156 0.9983 -0.0552 |’
0.0095 —0.0358 0.0548 0.9977

1.0000 0.0000 0.0000 0.0000
0.0000 0.1147 -0.0007  0.0000
44 710.0000 —0.0008 0.1084  0.0000 |
0.0000 0.0000 0.0000 -0.0305

(30.b)

1.0000 —-0.0071 -0.0033 -0.0034
~ —0.0071 0.9999 0.0064 0.0145
~ | -0.0030 —0.0052 0.9967 —0.0800 |
—0.0036 —0.0149 0.0799 0.9967

Notice that the diagonal type-I depolarizer M, is partially
degenerate, i.e. its two linear depolarization coefficients are equal.
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In this case both the algorithm described in Ref. [4] for type-I
matrices as well as the general algorithm presented in this work
produce normal form matrix factors M;, and M;, that may
contain spurious (apparent) circular birefringence, as discussed in
Ref. [0]. The removal of the apparent circular birefringence by
applying the procedure described in Ref. [0] reduces the two pure
components M;, and M;, to essentially horizontal linear
retarders. .

The corre(sponding valjes of D, P, detM,, as well as the

eigenvalues | 4,,4,, 4,4, V

of C(Ml) are
D=0.0197, P =0.0084, det 1\7[1 =-0.0004,
. . . . (31)
A, =0.2987, 4,=0.2613, A, =0.2537, 4, =0.1863

showing that, due to the small values of D and P, the device as a
whole approximately behaves as a parallel mixture of retarders.
Consequently, both pure components M ;; and M ;, exhibit very
low diattenuation and polarizance values, ie. are very close to
retarder Mueller matrices with weak linear retardances. [Recall
that the Mueller matrix of a parallel composition (an incoherent
mixture) of retarders features D = P = 0, exhibits a type-I (diagonal)
depolarizer M 44 and its both pure components M ;; and M ;,
represent elliptical retarders.]

B. Example 2

As a second example we consider the following Mueller matrix
corresponding to a polyacrylamide gel measured in transmission
with visible light [22]
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results coincide exactly with those obtained in [1] by applying the
procedure described in Ref. [4].

C. Example 3
Consider the following Mueller matrix

1.0000

- -0.0214
~| —0.0055
0.0014

-0.0312  0.0029
0.7678 —0.0370
0.0230 0.1043
0.0390 0.7972

whose calculated matrix components are

1.0000

- ~0.0245

.............. M, = o3
0.0197

-0.0364 -0.0023
0.0618 0.7334
0.9971 —0.0673
0.0324 0.6748

—-0.0066
0.0204
—0.7735
0.1920

—-0.0304
0.6757

. (32.a)

—-0.0169 |

—-0.7360

1.0009 0.0000 0.0000 0.0000
0.0000 0.8464 0.0000 0.0000

~10.0000 0.0000 0.7698 0.0001 |

(32.b)

1.0000 —-0.7280 0.4274 0.3641
~ -0.1826  0.0045 -0.1432 —0.2703
""""""" Mi=l 02182 0.1606 —0.3152 0.0019| 342
0.8471 -0.7312 0.3117 0.3482
Its calculated normal matrix components are
1.0000 0.2308 —-0.2172 -0.0641
N = 0.3233  0.7139 -0.6716 —0.1983
""""""" I1710.0000 —0.2696 —0.0188 —0.9069 |’
0.0000 0.6053 0.7009 —0.1945
2.6853 —1.3427 -0.0021 0.0000
1.3427 0.0000 —0.0034 0.0000
""""""" Mas =10.0000 0.0000 1.0797 -0.0002 |* (340)
0.0000 0.0000 0.0000 1.0798
1.0000 -0.9319 -0.1479 -0.2192
N = -0.1764 0.1597 0.2552 —0.0466
""""""" 327103298 0.3904 —0.0398 —0.1283 |’
0,8935 -0.8673 —0.1298 -0.3019
with the invariance parameters
D =0.9193, P=0.8936, detM3 =0.0064,
(35)

4, =0.9500, 4,=0.0320, A, =0.0180, A, = 0.0000.

The inspection of the values shows that M is close a singular
matrix, while it is of type-Il with rank C (M ) =3 (recall that the
rank of the covariance matrix of a type-1I Mueller matrix cannot
exceed three [5]). It is remarkable that in this case, as well as in all
type-Il matrices we have processed, the algorithm converges
without entering the iteration procedure (i, a single iteration is
sufficient).

D. Example 4
Consider the Mueller matrix

0.0000 0.0000 0.0000 0.7561

1.0000 0.0239
-~ | 0.0071 0.0397
—0.0280 —0.5268

0.0058 —-0.0184
0.9986 —0.0196
0.0375 0.8491 |

1.0000

- 0.8297
"1 0.1049
0.0564

—0.9444 0.0678
—0.7741 0.0678
—-0.1049 0.0817
—0.0564 0.0528

—-0.0054
—0.0054

—-0.0528 |

0.0817

(36.a)

0.0105

0.8488

-0.0233  0.5273

The corresponding values of the invariants considered are

whose calculated normal components are

1.0000 —0.8766 0.0000 0.0000

D =0.0320, P =0.0221, detM, =0.4900,
. . . . (33)
A, =0.8424, 1,=0.0806, 1, =0.0424, A, =0.0346,

showing that both pure components, M ;; and M ;, correspond
closely to retarders, and therefore, M, is a type-I Mueller matrix
(approximately) representable as a parallel mixture of retarders
(D~P=0). Itis remarkable that the reported decomposition

- | —0.8766
.............. My=| 00000

0.0000

0.5856
0.2928
~10.0000

0.0000

1.0000 0.0000
0.0000 0.4813
0.0000 0.0000

—-0.2928 0.0000
0.0000 0.0000
0.0000 0.2927
0.0000 0.0000

0.0000
0.0000 |’
0.4813

0.0001
0.0000
0.0000 |’
0.2927

(36.b)
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1.0000 0.5385 0.4814 —0.0388
~ | 0.6901 0.8484 0.4814 -0.0388

0.1909 —0.1909 0.5799 —0.3748 |’

0.1026 —0.1026 0.3748 0.5799

with invariants

D =0.9468, P =0.8382, detM, = 0.0000,
) X ) ) (37)
A =0.8931, 4,=0.1069, A, =0.0000, A, =0.0000.

The inspection of the decomposition results shows that M, is
close to a singular matrix, while it is clearly of type-Il with
rank C(M 4): 2. Notice that the pure component Mj,
represents a horizontal diattenuator. Because of rank C(M 4 ) =2,
M, can be represented as the parallel combination of two pure
components: a polarizer-analyzer and a waveplate [23]. Finally,
observe that matrices M;; (i =1,2,3, 4) of the above examples as
well as the serial matrix components of their normal forms can be
further normalized to comply with the passivity criterion as
described in Ref. [24].

5. CONCLUSIONS

An original algorithm allowing for the numerical calculation of
the matrix components of the normal form of an experimentally
determined Mueller matrix has been presented. The procedure
efficiently provides the normal components of type-Il Mueller
matrices, besides those of type I, thus covering the complete range
of possible types of measured Mueller matrices, including singular
ones.

The algorithm has been illustrated on a number of experimental
and numerical Mueller matrices, of both type I and type IL It is
believed to be of use to experimentalists willing to interpret
physically their measurements in phenomenological terms.

It should be noted before concluding that, prior to the application
of the algorithm, it is advisable to check the covariance condition
(i.e, the nonnegativity of the eigenvalues of the coherency matrix
associated with the Mueller matrix under analysis) and, whenever
appropriate, to apply a filtering procedure [25-29].

Appendix A

The explicit forms of the Givens matrices used in the algorithm
are reported below.

coshd —sinhéd 0 0

—sinh @ coshd 00
10f
01

Gi=l 0
0 0 (A1)
coshd = = - ,sinhﬁzﬁ.
boo - b01 boo - b01
cosh@ —sinh& 0 0
G. = —sinh @ coshd 0 0
2= 0 0 10)
0 0 01 (A2)
coshez%, sinh@zﬁ.
\ boo - b10 boo - blO
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0
0 cosH —smH 0
0 s1nc9 cos& 0

1 (A3)
cosd = b, smH—bl—z.
bl + bfz b’ +b’
1 0 0 0
G = O cosd sinf 0
4710 —siné cos@ 0 |
0 0 0 1
cosf = by ,sinf = sz1 =
bll +b21 bll +b21
10 0 0
|01 0 0
Gs= 0 0 cosf —sinf |
0 0 sin@ cos@
b .
cosf = —2—, sinf = —2—.
i, +bJ, by, +b;,
10 0 0
101 0 0
G = 00 cosé@ sin@ |
0 0 —siné cosé@
b b
cosf=—=2—— sinf=—"2—.
Vb2, +b5 b2, +D5,
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