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ABSTRACT
Weextend the classical associative PI-theory to Associative Pairs, and
in doing so, we introduce related notions already present for alge-
bras (and Jordan systems) as the ones of PI-element and PI-ideal,
extended centroid and central closure.
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1. Introduction

Associative Pairs are the natural generalization of associative algebras in the context of Jor-
dan pairs, which in turn, are related to Jordan and associative triple systems. As associative
algebras do in the theory of Jordan algebras, they play a central role in the theory of Jor-
dan Pairs. As a consequence, most of the questions on associative algebras that arise from
Jordan theory, are also of great interest in the case of Associative Pairs (this is what could
be named ‘generalized Herstein Theory’ after the line of research inaugurated by Herstein
on the Jordan (and Lie) structures of associative algebras). In particular, that is the case
with the theory of polynomial identities (PI-theory), which plays a central role in modern
Jordan theory, after the sweeping work of Zelmanov on the subject.

In the present paper, we address that area for the case of Associative Pairs. Our objective
is to extend most of the classical associative PI-theory. Namely, we deal with the classical
theorems of that theory that are related to the structure theory, so to the notions of simplic-
ity, primitivity or primeness, and their versions under the presence of an involution (again,
a central ingredient for the associative systems appearing in Jordan -and Lie-theory) due
to Kaplansky, Posner, Rowen, Amitsur and Martindale, among many other authors.

There are several features which are peculiar to Pairs in contrast to algebras. Apart from
the structure theoretic particularities (often advantages, as in the study of the socle and
the use of idempotents), from the viewpoint of PI-theory a feature which is always present
is the possibility of moving to the theory of algebras by means of the so called standard
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2 F. MONTANER AND I. PANIELLO

imbeddings. Although this is often very useful (and, even necessary), we have preferred
whenever possible, to adapt the algebra notions to Pairs (this is due to the fact that for the
applications to Jordan theory we do not dispose of a construction as the standard imbed-
ding, so using that for associative pairs arising in the Jordan context involves a detourwhich
may obfuscate the arguments involved). On the other hand, some ideas which are natural
in the Pair context, may shed light on developments of the associative theory. In the case
of the theory of polynomial identities, this is quite notably the situation in the study of
generalized polynomial identities as presented in [1].

Our study of polynomial identities onAssociative Pairs has a peculiarity that deserves to
be stressed. We do not really work with polynomial identities as such, although this could
be done by resorting to the enveloping algebras. Instead, we adopt a more pair-theoretical
approach as it is the use of homotope polynomial identities, and of PI-elements, in the line
of what was done [2–4] for Jordan systems.

An additional remark, one to which we will not really devote much attention in this
paper, is the fact that the standard imbedding is an associative superalgebra (ofMorita type,
with the terminology of [5]) so dealing with local algebras with a PI is in fact a particular
case of dealing with graded generalized polynomial identities on those superalgebras. We
will not delve in that connection, although it can be remarked that the use of local algebras
with a PI is implicitly at the root of Chuang’s approach to generalized polynomial identities
[6], as adopted by Beidar, Martindale III, and Mikhalev [7].

This means, among other things, that we need to introduce the notion of extended cen-
troid of an associative pair, and the corresponding scalar extension, its central closure. This
raises many open problems that we do not address in the present paper, but whose solution
would be doubtless quite interesting.

This paper is organized as follows. After this introductory section, in the first section we
settle the basic notation, and recall some fundamental results on associative pairs mainly
dealing with the relationship between associative pairs and their associative standard
imbeddings. In the second section, we extend the construction of the extended centroid
for semiprime associative algebras to semiprime associative pairs, following the approach
of [8–10]. Accordingly, elements of the extended centroid of a semiprime associative pair
are defined as equivalence classes of partially defined pair homomorphims (that is pair
homomorphims defined over essential ideals, and not on the whole pair) commuting with
all left, right and middle multiplication operators defined by pair elements. As proved in
that section, and in a way similar to the case of associative algebras, the extended centroid
of a semiprime associative pair is a commutative, unital, von Neumann regular ring, which
in fact, is isomorphic to the extended centroid of the standard imbedding of the associative
pair, so to the extended centroid of an associative algebra.

In the third section we consider the central closure of semiprime associative pairs, that
is the natural scalar extension associated to the extended centroid, which is a tight scalar
extension of the associative pair, andwhose standard imbedding turns out to be isomorphic
to the central closure of the standard imbedding of the original associative pair.

In section four we examine semiprime associative pairs endowed with polarized invo-
lutions. Such involutions have straightforward extensions to both the extended centroid
and the central closure, so allowing the study of the *-extended centroid of a semiprime
associative pair, that is the set of symmetric elements of the extended centroid under the
extended involution, and of a new scalar extension, the *-central closure, that is the scalar
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extension linked to the *-extended centroid. Again these two constructions behave well
with standard imbeddings, and it is not difficult to prove results analogous to those con-
tained in the previous sections relating the *-extended centroid and the *-central closure
of a semiprime associative pair with involution to those of their standard imbeddings.

Finally, in the fifth section, we deal withwhat is the central objective of the paper, namely
the study of prime and primitive associative pairs having nonzero local algebras which sat-
isfy polynomial identities. We introduce the notion of strongly primitive associative pair
following [1,11], to be an associative pair with nonzero socle which is a dense subpair of
the pair of homomorphims between two right vector spaces over a division PI-ring, and
show that the strong primitivity of an associative pair is equivalent to that of its standard
imbedding. Then analogous results to Amitsur, Kaplansky, Martindale and Posner Theo-
rems are given for associative pairs, based on the existence of either local PI-algebras or on
the fact that the associative pair satisfies some homotope polynomial identity.

2. Preliminaries

We will work with associative systems (algebras and pairs) over a unital commutative ring
of scalars � that will be fixed throughout. We refer to [12,13] for notation, terminology
and basic results. In this section, we recall some of those basic notation and results.

2.1. Multiplication operators

We denote operations Aσ × A−σ × Aσ → Aσ of associative pairs A = (A+,A−) over �

by juxtaposition: (xσ , y−σ , zσ ) �→ xσ y−σ zσ . We will also make use of the operator nota-
tion: xyz = L(x, y)z = R(y, z)x = M(x, z)y, where L,R andM are the left, right andmiddle
multiplication operators respectively.

2.2. The standard imbedding of an associative pair

For any unital associative algebra E with an idempotent e, its associated Peirce decom-
position E = E11 ⊕ E12 ⊕ E21 ⊕ E22 gives rise to the associative pair A = (E12, E21) with
operations inherited from the multiplication in E .

Reciprocally, associative pairs are abstract off-diagonal Peirce spaces of associative alge-
bras [12, p.92, 101]: given an associative pair A = (A+,A−) we can construct a unital
associative algebra E(A) (or simply E , if A is understood, with a Peirce decomposition
E = E11 ⊕ E12 ⊕ E21 ⊕ E22, where A = (E12, E21). The �-module Eii for i = 1, 2 is the
subalgebra of End�(Aσ ) × End�(A−σ )op, where σ = + if i = 1, and σ = − if i = 2,
generated by the idempotent ei = (IdAσ , IdA−σ ) (hence e1 + e2 = 1), and all elements
xσ y−σ = (L(xσ , y−σ ),R(y−σ , xσ )).

It is clear then that A+ = E12 is an E11 − E22 bimodule, and A− = E21 is an E22 − E11
bimodule with the obvious actions (so that, in fact, (E11, E22,A+,A−) is a Morita context,
so E = E0 ⊕ E1 with even part E0 = E11 ⊕ E22 and odd part E1 = E12 ⊕ E21 is a Morita
superalgebra according to the definition introduced in [5, 1.4 (III)]).

The pair (E , e) (or simply, the associative algebra E if the idempotent e is understood)
is termed the standard imbedding of the associative pair A = (A+,A−). The associative
envelope of an associative pairA = (A+,A−) is the subalgebraA of its standard imbedding
E generated by the odd part of the superalgebra E .
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The associative envelope A of A is an essential ideal of the standard imbedding E and
A = (A12,A21), whereAij = eiAej, i, j = 1, 2. (Indeed the Peirce projectionsπij : E → Eij
can be restricted toA → Aij = Eij ∩ A, i, j = 1, 2.)

Remark 2.1: Notation and terminology for what we have referred to as the standard
imbedding and the associative envelope of associative pairs have been rather interchange-
ably used in the literature. A careful review of the different references mentioned in the
present paper should allow the reader to tackle this ambiguous usage. This will be, for
instance, the case for the two references [14,15], where despite the used notation, the
authors deal with the standard imbedding of associative pairs. See [14, p.2998] and [15,
3.3] for more details. In [16] standard imbedding and associative envelope appear as intro-
duced in 2.2. Different notations are used for instance in [17] or [18]. We remark here that
sinceA is an essential ideal of E , all results proved in the paper will hold for both E andA.

2.3. Involutions

An involution in an associative pair A = (A+,A−) (sometimes named a polarized involu-
tion) is a pair of linear mappings ∗ : Aσ → Aσ such that (x∗)∗ = x and (xyz)∗ = z∗y∗x∗
for all x, z ∈ Aσ , y ∈ A−σ , σ = ±. Every (polarized) involution of an associative pair
A = (A+,A−) extends uniquely to an involution on its standard imbedding E which
coincides with * on E12 = A+ and E21 = A−, and satisfies e∗1 = e2 [15, 3.2].

2.4. (Semi)prime associative pairs

A left ideal of an associative pairA = (A+,A−) is a�-moduleL ofAσ such thatAσA−σL ⊆
L, σ = ±. Right ideals are defined similarly. A two-sided ideal is simultaneously a left and
a right ideal. A pair I = (I+, I−) of two-sided ideals of A is an ideal if Aσ I−σAσ ⊆ Iσ ,
σ = ±. An associative pairA = (A+,A−) is semiprime if and only if IσA−σ Iσ = 0, σ = ±,
implies I = 0 and prime if IσA−σ Jσ = 0, σ = ±, implies I = 0 or J = 0, for any ide-
als I, J of A. If A is semiprime, then for any ideal I = (I+, I−) of A it follows easily that
I+ = 0 if and only if I− = 0 (see for instance [14, p.2992]). Primeness implies nonde-
generancy (aσA−σaσ = 0 implies aσ = 0, σ = ±) and semiprimeness is equivalent to
nondegenerancy.

2.5. Vanishing conditions

Let A be an associative pair with standard imbedding E . We denote by xij elements of Eij
for i, j ∈ {1, 2}. Then

x11E12 = E21x11 = 0 ⇒ x11 = 0,

x22E21 = E12x22 = 0 ⇒ x22 = 0.

If A is semiprime, the above conditions reduce to:

x11E12 = 0 ⇒ x11 = 0,

x22E21 = 0 ⇒ x22 = 0,



LINEAR ANDMULTILINEAR ALGEBRA 5

or, equivalently,

E21x11 = 0 ⇒ x11 = 0,

E12x22 = 0 ⇒ x22 = 0.

2.6. (Semi)prime standard imbeddings

(Semi)primeness of any associative pair is equivalent to that of its standard imbed-
ding [14, Proposition 4.2]. This result stems from the correspondence between ideals
of the associative pair A = (A+,A−) and ideals of its standard imbedding E (see [14,
Proposition 4.1]).

2.7. Annihilators

Let A = (A+,A−) be an associative pair. For any subset X ⊆ Aσ , σ = ±, the left and right
annihilators of X in A are the sets

lannA(X) = {b ∈ A−σ | bXA−σ = Aσ bX = 0},
rannA(X) = {b ∈ A−σ | XbAσ = A−σXb = 0},

and if A is semiprime, then

lannA(X) = {b ∈ A−σ | Aσ bX = 0},
rannA(X) = {b ∈ A−σ | A−σXb = 0}.

which are left and right ideals of A respectively. The annihilator of X is annA(X) =
lannA(X) ∩ rannA(X). If I = (I+, I−) is an ideal of a semiprime associative pair A, then
the annihilator annA(I) = (annA(I+), annA(I−)) of I is

annA(Iσ ) = {x ∈ A−σ | xIσ x = 0}.

Moreover annA(I) is itself an ideal of A, and Iσ ∩ annA(I−σ ) = 0, σ = ± [14,
Proposition 2.2].

2.8. Essential ideals

An ideal I of an associative pair A is essential if I ∩ J 
= 0 for any nonzero ideal J of A. It
follows from [14, Proposition 2.2] that essential ideals of semiprime associative pairs are
exactly those ideals of A whose annihilator vanishes.

2.9. The socle of a semiprime associative pair

The socle of a semiprime associative pair A consists of the pair of subsets Soc(A) =
(Soc(A+), Soc(A−)), where Soc(Aσ ), σ = ±, is the sum of all minimal right ideals of A.
Soc(A) is an ideal of A, and if Soc(A) 
= 0, then it is a direct sum of simple ideals. If A is
prime, Soc(A) is a simple ideal contained in every nonzero ideal of A [19, Theorem 1].
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Elements of the socle of semiprime associative algebras and pairs are von Neumann regu-
lar [12, Theorem 1]. We refer to [15,17,20] for descriptions of prime associative pairs with
nonzero socle. Prime associative pairs with involution having nonzero socle together with
their involutions were described in [15, Theorem 3.14].

2.10. The socle of the standard imbbeding

There is a good relation between the socle of a semiprime associative pair A and that of its
standard imbedding E : Soc(A+) = Soc(E) ∩ A+ = e1Soc(E)e2, and similarly Soc(A−) =
Soc(E) ∩ A− = e2Soc(E)e1 [15, Proposition 3.4(4)]. The standard imbedding of Soc(A)

can be identified with the ideal Soc(E) of the standard imbedding E of A.

2.11. Primitive associative pairs

A pair of �-modulesM = (M+,M−) is a right A-module, for an associative pair A, ifM is
endowed with a pair of �-bilinear maps

Mσ × A−σ → M−σ

(m, x) �→ mx

satisfying ((mx)y)z = m(xyz) for allm ∈ Mσ , x, z ∈ A−σ , y ∈ Aσ , σ = ±. LeftA-modules
are defined similarly. A rightA-moduleM = (M+,M−) is irreducible ifM−σAσ 
= 0, σ =
±, and it contains no proper submodules (different from 0 and M itself) and faithful if
M−σ x = 0 implies x = 0 for any x ∈ Aσ , σ = ±. An associative pairA = (A+,A−) is right
primitive if it has a faithful irreducible right A-module. In [17, Theorem 1], it is proved
that a Density Theorem holds for primitive associative pairs, and that an associative pair is
primitive if and only if so is its standard imbedding.

2.12. Primitive associative pairs with nonzero socle

Primitive associative pairs are prime, and associative pairs with nonzero socle are primitive
if and only if they are prime [17, 2.8]. A Structure Theorem for primitive associative pairs
with nonzero socle was given in [17, Theorem 2]. See also [15, Theorem 3.9].

2.13. Local algebras

The local algebra of an associative pair A at an element a ∈ A−σ is the quotient alge-
bra Aσ

a = (Aσ )(a)/Ker a of the a-homotope algebra (Aσ )(a) of A (the associative algebra
over the �-module Aσ with product x · y = xay for all x, y ∈ Aσ ) over the ideal Ker a =
{x ∈ Aσ | axa = 0} of (Aσ )(a) [2,13]. Local algebras of associative pairs interact well with
standard imbeddings: Aa ∼= Ea for all a ∈ A−σ [15, Proposition 3.4(3)].

As for regularity conditions and their interaction to local algebras, we recall from [14,
Proposition 5.2] the following facts: Local algebras of semiprime associative pairs are
semiprime associative algebras, an associative pair A is prime if and only if all its local
algebras at nonzero elements are prime, and if A is simple, then so are all its local algebras
at nonzero elements [14, Proposition 5.2].
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2.14. Associative PI pairs

Associative pairs satisfying polynomial identities were studied in [18]. We denote by
FAP(X) the free associative pair over� on indeterminatesX = (X+,X−), which is the sub-
pair of the pair (FA(X+ ∪ X−), FA(X+ ∪ X−)) obtained by doubling the free associative
algebra FA(X+ ∪ X−), generated by (X+,X−). The universal property of FAP(X)makes it
possible to evaluate any pair polynomial fσ (x+

1 , . . . x
+
n , x

−
1 , . . . , x

−
n )on an associative pairA,

by assigning fixed values xσ
i = aσ

i ∈ Aσ . An associative polynomial fσ ∈ FAP(X)σ is a poly-
nomial identity of an associative pairA, if fσ ismonic (i.e. some of its leadingmonomials has
coefficient 1) and all evaluations of fσ onA vanish. Similarly we can consider *-polynomials
pσ (x+

1 , . . . , x
+
n , (x

+
1 )∗, . . . , (x+

n )∗, x−
1 , . . . , x

−
n , (x

−
1 )∗, . . . , (x−

n )∗) and *-polynomial identi-
ties.We will say that an associative pair is PI (or that it is an associative PI-pair) if it satisfies
a polynomial identity, and similarly one defines *-PI associative pairs.

For a primitive pair, satisfying a (*-)polynomial identity ensures the existence of nonzero
socle.

Proposition 2.1 ([18, Proposition 3.4, Theorem 3.6]): Let A be a primitive associative
pair.

(i) If A is PI, then A has nonzero socle.
(ii) If A has an involution *, and is *-PI, then A has nonzero socle.

Moreover in either case, A is simple and has finite capacity.

Remark 2.2: The capacity of PI (or *-PI) primitive pairs is bounded by a constant
depending only on the degree of the polynomial identity (see [18, Theorem 3.6]).

The following analogue of Amitsur’s theorem for associative pairs with involution was
also proved in [18].

Theorem 2.2 ([18, Theorem 3.9]): Let A be an associative pair with involution *. If A has
a *-polynomial identity of degree m, there exists a positive integer k such that every local
algebra of A satisfies the polynomial identity Sk2m. Moreover, if A is semiprime, every local
algebra satisfies the standard identity S2m.

2.15. PI elements

The notion of PI-element for associative pairs was introduced in [2]: An element a ∈ A−σ

of an associative pairA is a PI-element if the local algebraAσ
a satisfies a polynomial identity.

Then, the pair PI(A) = (PI(A+),PI(A−)), where PI(Aσ ) denotes the set of all PI-elements
of Aσ , is an ideal of the associative pair A [2, Proposition 1.6].

Proposition 2.3: Let A be a semiprime associative pair. Then PI(A) = PI(E) ∩ A.

Proof: This follows from the relation equality 2.13 between the local algebras of the stan-
dard imbedding E of A at elements of the pair A, and the local algebras of the associative
pair A. �
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2.16. The centroid of an associative pair

The centroid �(A) of an associative pair A = (A+,A−) is the set of all pairs T =
(T+,T−) ∈ End�(A+) × End�(A−) satisfying:

Tσ (xσ y−σ zσ ) = Tσ (xσ )y−σ zσ = xσT−σ (y−σ )zσ = xσ y−σTσ (zσ )

for all xσ , zσ ∈ Aσ , y−σ ∈ A−σ , σ = ±. The centroid of a semiprime associative pair is a
commutative ring. If A is prime, then �(A) is a domain acting faithfully on A, and it is a
field if A is simple.

2.17. Extended centroid and central closure

The extended centroid and the central closure of associative rings were introduced by
Martindale for prime rings [10], and generalized to semiprime rings by Amitsur [8]. The
nonassociative case was considered in [21] and [9], and associative rings with involution
were dealt with in [22] and [23]. In [3] the notions of extended centroid and the analogue
to the central closure, called there extended central closure (since in that context there was
already a notion of central closure) were introduced for Jordan systems (algebras, pairs and
triple systems) on arbitrary rings of scalars.

2.18. The extended centroid of an associative algebra

We briefly recall now the definition of the extended centroid of an associative algebra.
Let I be an ideal of an associative algebra R. If f : I → R is a homomorphism of

R-bimodules, and I is an essential ideal of R, then f will be called a permissible map. We will
write it as the pair (f , I), since we will make use of the restrictions of f to smaller essential
ideals, so it is convenient to have the domain explicitly displayed.

The extended centroid of a semiprime ring R is the direct limit C(R) = lim→ HomR(I,R)

over the filter of essential ideals of Rwith the operations naturally inherited fromR. Explic-
itly, as a set, C(R) consists of the equivalence classes of permissible maps (f , I) under the
equivalence relation (f , I) ∼ (g, J) if f|L = g|L for some essential ideal L ⊆ I ∩ J.

The operations in C(R) are defined by (f , I) + (g, J) = (f + g, I ∩ J), and (f , I) ·
(g, J) = (fg, g−1(I)). As a result, C(R) becomes a commutative vonNeumann regular unital
ring [9, Theorem 2.5] which is called the extended centroid of the associative algebra R. The
corresponding scalar extensionC(R)R, called the central closure ofR, remains semiprime, is
generated as a C(R)-module by R, and is centrally closed [9, Theorem 2.15]. We also recall
here that the extended centroid of a semiprime ring R is the center of its maximal right
(and left) ring of quotients (also that of its symmetric ring of quotients) [7, Remark 2.3.1].
We also refer the reader to [24, Section 3] for further information on the construction of
the central closure of a semiprime ring.

3. The extended centroid of semiprime associative pairs

In this section we first extend the construction of the extended centroid for semiprime
algebras [8–10] to semiprime associative pairs, and then relate the extended centroid of a
semiprime associative pair to that of its standard imbedding.
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3.1. A-homomorphisms

LetA = (A+,A−) be an associative pair and let I = (I+, I−) be an ideal ofA. Then f : I →
A is anA-homomorphism if f = (f+, f−) consists of a pair of�- linearmaps f σ : Iσ → Aσ ,
σ = ±, satisfying:

f σ (xσ y−σ zσ ) = xσ f−σ (y−σ )zσ ,

f σ (yσ x−σ zσ ) = f σ (yσ )x−σ zσ ,

f σ (xσ z−σ yσ ) = xσ z−σ f σ (yσ ),

for all xσ , zσ ∈ Aσ , yσ ∈ Iσ , σ = ±.

3.2. Permissiblemaps

Note that a pair of �- linear maps f = (f+, f−) is an A-homomorphism if and only if it
commutes with all left, right and middle multiplication operators defined by elements of
A. We denote by HomA(I,A), where HomA(I,A) = (HomA(I+,A+),HomA(I−,A−)), the
set of all A-homomorphisms from I to A. A pair (f , I)where f ∈ HomA(I,A)will be called
a permissible map if I is an essential ideal of the associative pair A.

Theorem 3.1: Let (f , I) and (g, J) be permissible maps of a semiprime associative pair A.
Then:

(f , I) ∼ (g, J) if f|K = g|K for some essential ideal K ⊆ I ∩ J,

defines an equivalence relation in the set of all A-permissible maps of A. Then the quotient
set C(A), with the operations:

(f , I) + (g, J) = (f + g, I ∩ J),

(f , I) · (g, J) = (fg, g−1(I)),

is a commutative, von Neumann regular unital ring.

Proof: This is straightforward, arguing as for the corresponding results on algebras [9],
mentioned before. �

3.3. The extended centroid of a semiprime associative pair

We will refer to C(A) as the extended centroid of the semiprime associative pair A. Clearly
C(A) contains a copy of the centroid �(A) of A.

3.4. Notation

Our aim next is to relate the extended centroid of a semiprime associative pair to that of
its standard imbedding. Since we will be simultaneously dealing with ideals of associative
pairs and of their standard imbeddings, we will denote by I, J,K, . . . the associative pair
ideals and byI ,J ,K, . . . the algebra ideals.Wewill also denote by idE (X) the ideal of E(A)
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generated by a pair subset X = (X+,X−) ⊆ A or, equivalently, by the subset X+ ⊕ X− ⊆
E(A).

Remark 3.1: It is obvious that if I is an essential ideal of an associative algebra R, the
extended centroid C(I) can be identified with the extended centroid C(R) by considering
the homomorphism induced by the restriction of permissible maps (f , L) �→ (f|I∩L, L ∩ I).
Therefore it is immaterial whether we work with the standard imbedding or the associative
envelope of associative pairs.

Lemma 3.2: Let E be the standard imbedding of an associative pair A = (A+,A−).

(i) If I is a nonzero ideal of E , then I = (I ∩ A+,I ∩ A−) = (I12,I21) is a nonzero ideal
of A.

(ii) If I = (I+, I−) is a nonzero ideal of A, then, the ideal of E generated by I is

I = idE (I) = (
I+A− + A+I−

) ⊕ I+ ⊕ I− ⊕ (
I−A+ + A−I+

)

which is nonzero. Moreover if A is semiprime and I is essential in A, then so is I in E .

Proof: (i) is [14, Proposition 4.1(i)], and (ii) is straightforward from (i) and 2.2. �

Lemma3.3: LetE be the standard imbedding of a semiprime associative pair A = (A+,A−).
If I is an essential ideal of E , then I = (I ∩ A+,I ∩ A−) = (I12,I21) is essential in A.

Proof: This easily follows from the previous Lemma. �

Lemma 3.4: Let A = (A+,A−) be a semiprime associative pair. Then for any E-
homomorphism (f ,I) of its standard imbedding E , we have fπij = πijf , for all i, j = 1, 2
(i.e. E-homomorphisms are compatible with the Peirce decomposition of E).

Proof: Write I = I11 ⊕ I12 ⊕ I21 ⊕ I22, where Iij = eiIej = I ∩ Eij, and take x =
x11 + x12 + x21 + x22 ∈ I . Then, since xij ∈ Iij ⊆ I , we have

fπij(x) = f (xij) = f (eixijej) = f (eixej) = eif (x)ej = πijf (x).

Hence fπij(x) = πijf (x) for all i, j ∈ {1, 2}, x ∈ I . �

Lemma 3.5: Let A be a semiprime associative pair, and let λ = (f ,I) and μ = (g,J ) be
elements of the extended centroid C(E) of the standard imbedding E of A. If f|I∩J∩A =
g|I∩J∩A, then λ = μ in C(E).

Proof: We note first that replacing I and J by I ∩ J , we can assume I = J [9,
Corollary 2.3]. Write then λ = (f ,I) and μ = (g,I) where I = I11 ⊕ I12 ⊕ I21 ⊕ I22
is an essential ideal of E and assume f (yij) = g(yij) for all yij ∈ Iij where {i, j} = {1, 2}.
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Still with {i, j} = {1, 2}, take now yii ∈ Iii and aij ∈ Eij = A+ or A−. Then, since yiiaij ∈
IiiEij ⊆ Iij = I ∩ A, we have

(
f (yii) − g(yii)

)
aij = f (yii)aij − g(yii)aij = f (yiiaij) − g(yiiaij) = 0.

Hence (f (yii) − g(yii))A+ = 0, where by Lemma 3.4, f (yii), g(yii) ∈ Eii. Therefore by the
semiprimeness ofA (see 2.5), this implies f (yii) = g(yii) for all yii ∈ Iii. Thuswehave f|Iii =
g|Iii . Hence λ = μ. �

Corollary 3.6: Let A be a semiprime associative pair and let λ = (f ,I) be an element of the
extended centroid C(E) of the standard imbedding E of A. If f|I∩A = 0 then λ = 0.

Proof: This result is a particular case of Lemma 3.5. �

Theorem 3.7: Let A be a semiprime associative pair with standard imbedding E . Then
C(A) ∼= C(E).

Proof: Take first an element λ = (f ,I) ∈ C(E), where I is an essential ideal of E and
f : I → E is a permissible map. Write I = (I+, I−) = (I12,I21) = I ∩ A, which is an
essential ideal of the associative pair by Lemma 3.3, and consider g = (g+, g−) where
g+ = f|I12 and g− = f|I21 . By Lemma 3.4, g = (g+, g−) consists of pair of linear maps with
gσ : Iσ → Aσ , σ = ±.

From the previous lemmas it follows that the mapping � : C(E) → C(A) given by
�(λ) = (g, I) is a well-defined ring homomorphism, which is injective by Corollary 3.6.

Conversely, take now μ = (g, I) ∈ C(A). By Lemma 3.2, idE (I) = (I+A− + A+I−) ⊕
I+ ⊕ I− ⊕ (I−A+ + A−I+) is an essential ideal of E which satisfies I ∩ A = I. We now
define a linear map g̃ : idE (I) → E as follows:

(i) g̃(u) = ∑n
i=1 g

+(y+
i )a−

i + ∑m
j=1 b

+
j g

−(x−
j ) for any u = ∑n

i=1 y
+
i a

−
i + ∑m

j=1 b
+
j x

−
j ∈

idE (I)11 = I+A− + A+I−, yσ
i , x

σ
j ∈ Iσ , aσ

i , b
σ
j ∈ Aσ , σ = ±,

(ii) g̃(v) = gσ (yσ ) for any v = yσ ∈ Iσ , σ = ±,
(iii) g̃(w) = ∑p

k=1 g
−(z−k )c+k + ∑q

l=1 d
−
l g

+(t+l ) for any w = ∑p
k=1 z

−
k c

+
k + ∑q

l=1 d
−
l

t+l ∈ idE (I)22 = I−A+ + A−I+, zσ
k , t

σ
l ∈ Iσ , cσk , d

σ
l ∈ Aσ , σ = ±,

and extend it to idE (I) by linearity.
A quite standard argument shows that the mapping g̃ is well defined: Indeed,

if, for instance 0 = ∑n
i=1 y

+
i a

−
i + ∑m

j=1 b
+
j x

−
j ∈ idE (I)11 = I+A− + A+I−, and we set

z = ∑n
i=1 g

+(y+
i )a−

i + ∑m
j=1 b

+
j g

−(x−
j ), since (g, I) is permissible, so g is an A-

homomorphism, we have z idE (I)z = 0. By Lemma 3.3, idE (I) is essential, hence z = 0
by 2.8 and 2.7. The same argument applies to the remaining cases.

Next, if (h, J) ∈ (g, I), we can suppose I = J, and h = g so that idE (I) = idE (J), and the
mapping � : C(A) → C(E) given by �(μ) = (g̃, idE (I)) is easily seen to be well-defined,
and it is straightforward that it is an injective ring homomorphism.

Finally, the Theorem follows by noticing that � and � are mutually inverses. �

Even though the direct proof (in a pair environment) of the following result is also
feasible, we obtain it here as consequence of Theorem 3.7.
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Corollary 3.8: The extended centroid C(A) of a prime associative pair A is a field.

Proof: It follows from [21, Theorem 2.1] since, as noted in 2.6, an associative pair A is
prime if and only if its standard imbedding is a prime associative algebra. �

4. Closure of semiprime associative pairs

The extended centroid of a semiprime associative pair gives rise to a scalar extension that
will be called the central closure. This section sketches the construction of the central
closure for semiprime associative pairs. For more explicit details the reader is referred
to [9,24]. As expected, central closures and standard imbeddings will be commuting
constructions for semiprime associative pairs.

4.1. The central closure of a semiprime associative pair

As for associative (and Jordan) algebras, we define the central closure C(A)A of a semiprime
associative pair A to be the quotient pair of the free scalar extension

C(A) ⊗� A = (C(A) ⊗� A+, C(A) ⊗� A−)

by the pair ideal R = (R+,R−), being Rσ the linear span of all elements of the form
μ ⊗ yσ − 1 ⊗ gσ (yσ ), where μ ∈ C(A), with μ = (g, I) ∈ C(A), g = (g+, g−) and yσ ∈
Iσ , σ = ±. Then C(A)A = (C(A)A+, C(A)A−) and elements of C(A)Aσ will be written
as aσ = ∑n

i=1 λixσ
i , with λi = (gi, Ii), being gi = (g+

i , g
−
i ) a pair of A-homomorphisms,

Ii = (I+i , I
−
i ) an essential ideal of A and xσ

i ∈ Aσ , i = 1, . . . , n, σ = ±.

Theorem 4.1: The central closure C(A)A of a semiprime associative pair A is a tight scalar
extension of A, and therefore it is a semiprime associative pair. Moreover, if A is prime, so is
C(A)A.

Proof: This follows as the corresponding algebra result of [9], with the obvious changes
for associative pairs. �

4.2. The central closure of the standard imbedding

If A is an associative pair with standard imbedding E , then the pair of orthogonal idem-
potents e1 and e2, with e1 + e2 = 1, and such that A ∼= (E12, E21), also induces a Peirce
decomposition on the central closure C(E)E of the associative algebra E . We next prove
that the associative pair given by the off-diagonal Peirce components of C(E)E corresponds
to the central closure C(A)A of the associative pair A.

Theorem 4.2: Let A be a semiprime associative pair with standard imbedding E . Then the
standard imbedding of the central closure C(A)A of A is isomorphic to the central closure
C(E)E of the standard imbedding E of A.

Proof: It suffices to consider the induced Peirce decomposition of C(E)E given by the pair
of orthogonal idempotents e1 and e2 of E , taking into account 2.2 and Theorem 3.7. �
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Corollary 4.3: The central closure C(A)A of a semiprime associative pair A is closed over
C(A).

Proof: It follows from Theorem 4.2, Theorem 3.7 and [9, Theorem 2.15(c)]. �

Remark 4.1: We note here that C(A)A = (e1C(E)Ee2, e2C(E)Ee1). We mention here as
aside remark that this representation of the central closure C(A)A of a semiprime associa-
tive pairA as the off-diagonal Peirce spaces of the central closure of its standard imbedding
E follows the approach given in [16, Definition 2.11] of the maximal left quotient pair of
associative pairs without total zero divisors (and, in particular, for semiprime associative
pairs). The same approach through the enveloping algebra (instead of the direct construc-
tion of the central closure followed here) can be indeed applied to other constructions of
pairs of quotients of a semiprime associative pair A, as for instance, the maximal pair of
symmetric quotientsQσ (A) or theMartindale symmetric ring of quotientsQs(A) ofA [25].

5. Associative pairs with involution

In the present section we review the versions of the results on extended centroids and
central closures for semiprime pairs with a (polarized) involution *. Recall (see 2.3) that
such an involution extends uniquely to an involution also denoted by * on the standard
imbedding E of A, with e∗1 = e2.

5.1. The ∗-extended centroid of a semiprime ring

Involutions of a semiprime ring R extend easily to its extended centroid. Indeed, given
λ = (f , I) ∈ C(R), where f is anR-homomorphism and I an essential *-ideal ofR, it suffices
to define λ∗ = (f ∗, I) where f ∗(y) = (f (y∗))∗ for all y ∈ I [9, p.1125]. We recall here that
for any semiprime ring with involution, the filter of essential ideals is equivalent to the
filter of essential *-ideals. Then for a semiprime ring R the *-extended centroid C∗(R) of R,
defined as the set of all symmetric elements of C(R), is a unital commutative ring. Similarly,
involutions of R also extend to the central closure C(R)R of R [22,23].

5.2. ∗-permissiblemaps

Although the subring of fixed elements of the extended centroid of a semiprime ring with
involution was already considered in [9], the notion of *-extended centroid was intro-
duced in [22] for *-prime rings, and extended to semiprime rings with involution in [23,
p.952], based on the set of equivalence classes of *-permissible maps defined on essential *-
ideals (these are permissible maps f : I → R defined on an essential *-ideal: I∗ = I, which
commute with the involution: f (y∗) = f (y)∗).

5.3. The ∗-central closure of a semiprime ring

The *-extended centroid C∗(R) of a semiprime ring with involution gives rise to a scalar
extension C∗(R)R, called the *-central closure of R. Again, C∗(R)R is endowed with an invo-
lution * defined by (

∑n
i=1 λiri)∗ = ∑n

i=1 λir∗i , for all λi ∈ C∗(R) and ri ∈ R, i = 1, . . . , n.
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If R is *-prime, C∗(R) is a field and C∗(R)R is a *-prime algebra over C∗(R) generated by R
over C∗(R). Moreover C∗(C∗(R)R) = C∗(R), i.e. C∗(R)R is *-closed [22, Theorem 4]. (This
can also be obtained through the symmetric ring of quotients Qs(R) of R [7, 2.3].)

Proposition 5.1: Let A be a semiprime associative pair with involution * and let (f , I) be a
permissible map of A. Then (f ∗, I∗) given by (f σ )∗(yσ ) = (f σ ((yσ )∗))∗, for all yσ ∈ Iσ , σ =
±, is permissible and this defines an involution on the extended centroid C(A) of A.

Proof: Take two permissible maps (f , I) and (g, J) of A, defined on essential ideals I and
J of A and assume that (f , I) ∼ (g, J). Then it is straightforward that (f ∗, I∗) ∼ (g∗, J∗).
Moreover (f ∗)∗ = f . Hence, C(A) being a commutative ring, this defines an involution on
C(A). �

Theorem 5.2: Let A = (A+,A−) be a semiprime associative pair with an involution *. The
set C∗(A) of all symmetric elements of the extended centroid C(A) of A with respect to the
involution defined in Proposition 5.1 forms a commutative unital ring. Moreover C∗(A) is a
field if A is *-prime.

Proof: C∗(A) is a commutative unital ring as a result of Theorem 3.1 and Proposition 5.1.
Note also that, since for any λ = (f , I) ∈ C∗(A), both Kerf = (Kerf+,Kerf−) and Imf =
(Imf+, Imf−) are *-ideals of A, if A is *-prime and λ 
= 0, then Kerf vanishes. Then μ =
(g, f (I)) given by gσ (f σ (yσ )) = yσ , σ = ±, is an inverse of λ = (f , I) in C∗(A) (see [22,
p.860]). �

5.4. The ∗-extended centroid of a semiprime associative pair

We will refer to C∗(A) as the *-extended centroid of the semiprime associative pair with
involution A.

Remark 5.1: Given an essential *-ideal I = (I+, I−) of a semiprime associative pair A
with involution *, as for algebras, we say that a pair of A-homomorphisms f = (f+, f−) ∈
HomA(I,A) is *-permissible if (f σ )∗(yσ ) = f σ (yσ ), for all yσ ∈ Iσ , σ = ±. The *-extended
centroid C∗(A) of A can be therefore characterized as the set of all *-permissible maps in
the extended centroid C(A) of A.

Theorem 5.3: Let A be a semiprime associative pair with an involution * and standard
imbedding E . Then C∗(A) ∼= C∗(E).

Proof: We first note that a direct check yields that the maps � : C(E) → C(A) and � :
C(E) → C(A) given in Theorem 3.7 are ring *-homomorphisms, hence their restrictions
define reciprocal isomorphisms between the *-extended centroids C∗(A) and C∗(E) of A
and E . �

Remark 5.2: LetA be an associative pair and let I be a *-ideal of its standard imbedding E .
Then I = I ∩ A = (I12,I21) is a *-ideal of A, since clearly (Iij)∗ = (eiIej)∗ = e∗j I∗e∗i =
eiIej = Iij, for i 
= j. We also note here that (I11)∗ = I22.
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Lemma 5.4: If I = (I+, I−) is an *-ideal of an associative pair A with involution *, and I is
the ideal of E generated by I as in Lemma 3.2(ii), thenI is a *-ideal of the standard imbedding
E of A.Moreover, if A is semiprime and I an essential *-ideal of A, thenI is an essential *-ideal
of E .

Proof: The first assertion is straightforward, and if A is semiprime and I is essential, the
essentiality of I follows as in the proof of Lemma 3.2. �

Proposition 5.5: Let A be a semiprime associative pair with involution *. Then
(
∑n

i=1 λiaσ
i )∗ = ∑n

i=1 λ∗
i (a

σ
i )∗, where λi ∈ C(A) and aσ

i ∈ Aσ , σ = ±, i = 1, . . . , n,
defines an involution on the central closure C(A)A of A, extending the one of A.

Proof: Clearly the involution * of A, already extended to C(A) in Proposition 5.1, also
extends to an involution on C(A) ⊗ A given by (λ ⊗ aσ )∗ = λ∗ ⊗ (aσ )∗, σ = ±. Let
now μ = (g, I) ∈ C(A) and yσ ∈ Iσ , σ = ±. Then we have (μ ⊗ yσ − 1 ⊗ gσ (yσ ))∗ =
μ∗ ⊗ (yσ )∗ − 1 ⊗ (gσ (yσ ))∗. Thus sinceμ∗ = (g∗, I∗)with g∗((yσ )∗) = (gσ ((yσ )∗)∗)∗ =
(gσ (yσ ))∗, this implies that the ideal R = (R+,R−) defined in 4.1 is a *-ideal of A. Hence
C(A)A inherits the involution, also denoted by *, given by (

∑n
i=1 λiaσ

i )∗ = ∑n
i=1 λ∗

i (a
σ
i )∗,

where λi ∈ C(A) and aσ
i ∈ Aσ , σ = ±, i = 1, . . . , n. �

5.5. The ∗-central closure of a semiprime associative pair

As we did in the previous section, it is possible to define the scalar extension C∗(A)A of
A, that will called the *-central closure of A. Then C∗(A)A is endowed with an involution
(
∑n

i=1 λiaσ
i )∗ = ∑n

i=1 λi(aσ
i )∗, where λi ∈ C∗(A) and aσ

i ∈ Aσ , σ = ±, i = 1, . . . , n.

Theorem 5.6: Let A be a semiprime associative pair with an involution * and standard
imbedding E . Then the standard imbedding of *-central closure C∗(A)A of the associative
pair A is isomorphic to C∗(E)E .

Proof: It follows from Theorem 4.2 considering Theorem 5.3. �

6. Associative pairs with local PI-algebras

In this section we extend to associative pairs some of the main results on associative rings
with (generalized) polynomial identities, such as the ones due to Amitsur, Kaplansky,
Martindale and Posner Theorems. We refer the reader to [7,11,1,26] for quite complete
expositions of the classical results of the associative theory of (generalized) polynomial
identities.

6.1. Strongly primitive associative pairs

Borrowing the analogous notion from associative rings [1, p.48] (or [11, p.281]), we will
say that an associative pair A is strongly primitive if Soc(A) 
= 0, and A is a dense subpair
ofH = (Hom�(M−,M+),Hom�(M+,M−)) for a suitable pair of right vector spacesM+
andM− over a division PI-ring �.
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Remark 6.1: Strongly primitive associative algebras are described in [11, 7.5, 7.6]. Here we
limit ourselves to recall that an associative algebra R is strongly primitive if and only if R is
primitive and has nonzero PI-ideal. As noted in [2, 1.3] in any strongly primitive associative
algebra the socle and the PI-ideal coincide. (A similar characterization for Jordan systems
was proved in [2, Theorem 4.6]. In [2] a Jordan system is called rationally primitive (and
not strongly primitive) if it is primitive and has a nonzero PI-element. Motivation for that
slightly different terminology is given in [2, 4.1].)

Theorem 6.1: Let A be an associative pair. Then A is strongly primitive if and only if its
standard imbedding E is strongly primitive.

Proof: Let A be an associative pair, and assume that A is strongly primitive. Then
Soc(A) is nonzero, and therefore by 2.10 and Lemma 3.2, the socle Soc(E) of its stan-
dard imbedding E is also nonzero. By primitivity of A, there are two right vector
spaces M+ and M− over a division PI-ring �, such that A is a dense subpair of H =
(Hom�(M−,M+),Hom�(M+,M−)). Then it follows from [17, 2.3] that E is a primi-
tive associative algebra with faithful irreducible right E-moduleM = M− ⊕ M+ (over the
same division PI-ring � = EndE (M+ ⊕ M−)). Hence E is strongly primitive.

Conversely, let A be an associative pair having a strongly primitive standard imbed-
ding E . Now we have Soc(E) 
= 0, hence again by 2.10 and Lemma 3.2, A has nonzero
socle. Suppose now that E is dense in End(M�)(= End�(M)) for a right vector space M
over a division PI-ring�. As noted in [17, p.2598]),M = M− ⊕ M+, withM+ = Me2 and
M− = Me1, and then (M+,M−) is a faithful irreducible A-module over the same division
PI-ring �. Therefore A is a strongly primitive associative pair. �

We will apply now this result to obtain an analogue for associative pairs of Amitsur’s
theorem on primitive algebras with a GPI (see [11, 7.2.9, 7.4.6]). Here, as mentioned in
the introduction, our GPIs will be nonzero local PI-algebras, so that our version of the
GPI condition for a semiprime associative pair A will be the condition PI(A) 
= 0. This
approach follows the one of [1], which in turn relies on the method of ‘viewing’ a general-
ized identity as a polynomial identity of a left (or right) ideal, amethodwhich, according to
Rowen [11, p.38], was initiated by Jain. This was also the approach followed in [3], where
PI left ideals (which do not make sense in the Jordan theoretical context of that paper) are
substituted by PI-elements.

Remark 6.2: The socle of a primitive ring R can be characterized as the set of all elements
of finite rank [11, Theorem 7.1.13]. Indeed recall that the socle Soc(R) of a semiprime ring
R is defined (when is nonzero) to be the sumof allminimal left (equivalently right) ideals of
R [11, Definition 1, Proposition 7.1.6], that is the sum of all left (or right) ideals generated
by rank one elements [11, Lemma 7.1.11].

6.2. Rank of elements of primitive associative pairs

The main ideas given in [11, p.254–257] can also be applied to primitive associative pairs
leading to similar results to those mentioned in Remark 6.2 above. Let A = (A+,A−) be
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a primitive associative pair and suppose that up to isomorphism A is a dense subpair of a
pair

H = (
Hom�(M−,M+),Hom�(M+,M−)

)
,

for a faithful irreducible A-module (M+,M−).
Then M = M− ⊕ M+ is a faithful irreducible module over the standard imbedding E

of A [17, 2.3], and M (resp. (M+,M−)) is a left vector space (resp. a pair of left vector
spaces) over the division algebra� = End(ME ). For any associative pair element aσ ∈ Aσ ,
we define the rank of aσ in A (also the (M+,M−)-rank of aσ ) to be:

rank(aσ ) = [M−σaσ : �] = [Maσ : �], σ = ±.

Hence the rank of aσ is the same independently of whether the element is considered an
associative pair element or an element of the standard imbedding.

We can add the following remark that links the approach through the standard imbed-
ding and the local algebra approach mentioned above, and whose proof is an easy exercise
in associative theory: with the notations above, if aσ ∈ PI(Aσ ), the local algebra A−σ

aσ

is isomorphic to the matrix algebra Mt(�) for t = rank(aσ ) (see below the proof of
Theorem 6.3).

Theorem 6.2: Let A be a primitive associative pair. Then, for σ = ± :

(i) If aσ ∈ Aσ has rank(aσ ) = 1, then aσA−σAσ is a minimal left ideal of A.
(ii) If aσ ∈ Aσ has rank(aσ ) = t ≥ 1, then there exist rank one elements aσ

1 , . . . , a
σ
t ∈ Aσ

such that aσ = ∑t
i=1 a

σ
i .

(iii) Soc(Aσ ) is the set of elements of finite rank.

Proof: As mentioned in 6.2 above it suffices to review [11, Lemma 7.1.11, Lemma 7.1.12,
Theorem 7.1.13] introducing the obvious changes to obtain the corresponding results for
associative pairs. �

Now we can state the announced analogue of Amitsur’s theorem for Associative pairs.

Theorem 6.3: Let A be an associative pair. Then the following are equivalent:

(i) A is strongly primitive.
(ii) A is prime and Soc(A) = PI(A) 
= 0.
(iii) A is prime and the local algebra at some nonzero element is a simple unital PI-algebra.

Proof: (i) ⇒ (ii) Let A be a strongly primitive associative pair. Then A is prime (see 2.12)
and by Theorem 6.1 its standard imbedding E is a strongly primitive algebra. Thus,
by [11, Proposition 7.5.17], Soc(E) = PI(E) is a nonzero ideal of E and the equality
Soc(A) = PI(A) follows from 2.10 and Proposition 2.3. Moreover Soc(A) = PI(A) 
= 0 by
Lemma 3.2.

(ii) ⇒ (iii) Suppose now that A is a prime associative pair with nonzero socle
equal to its PI-ideal, and take a nonzero element 0 
= a ∈ A−σ = Soc(A−σ ) = PI(A−σ ).
By Theorem 6.2(iii) we can assume a has finite rank rank(a) = t. Suppose also
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that a = a− ∈ A−. Then A is primitive by [17, 2.8], hence a dense subpair of H =
(Hom�(M−,M+),Hom�(M+,M−)) for a suitable pair of right vector spacesM+ andM−
over a division ring �. Write M = M− ⊕ M+ and take the local algebra A+

a . Then M̃ =
M/lannM(a) where lannM(a) = {m ∈ M = M− ⊕ M+ | ma = 0} = M− ⊕ lannM+(a) is
a faithful irreducible right A+

a -module, and [M̃ : �] = rank(a) = t. Thus, the local alge-
braA+

a is a primitive associative PI-algebra satisfying the polynomial standard identity S2t .
Hence, by Kaplansky’s Theorem [11, Theorem 1.5.16], A+

a is a simple unital (since the ele-
ment a belongs to Soc(A), hence it is von Neumann regular and the local algebra A+

a is
unital) PI-algebra.

(iii) ⇒ (i)Consider now a prime associative pair having a simple unital local PI-algebra
Aσ
a for some 0 
= a ∈ A−σ . Then, since as noted in 2.13, the local algebra Ea of the standard

imbedding E of A at the same element satisfies Ea ∼= Aσ
a , we have that Ea is a simple unital

associative PI-algebra. Moreover E is prime (see 2.6), hence the standard imbedding E of
A is strongly primitive by [11, Proposition 7.5.17(ii)]. Now the strong primitivity of the
associative pair A follows from Theorem 6.1. �

We next address our Pair analogue of Kaplansky Theorem on PI algebras. Here, as in
[3], the polynomial identities that we will consider will be homotope polynomial identities,
so that we can make use of our results on PI-elements. We begin recalling some facts on
homotope polynomial identities.

6.3. Associative HPI pairs

Homotope polynomials are the images of associative polynomials f (x1, . . . , xn) of the
free associative algebra FA[X ∪ {z}] on a countable set of generators X and z 
∈ X under
homomorphims FA[X] → FA[X ∪ {z}](z), extending the identity on X. Homotope poly-
nomials are usually denoted by f (z; x1, . . . , xn) = f (x1, . . . , xn)(z). An associative pair A
satisfies a homotope PI (HPI for short), equivalently, A is an associative HPI-pair if there
exists f (x1, . . . , xn) ∈ FA[X] such that f (y−σ ; xσ

1 , . . . , x
σ
n ) vanishes under all substitutions

of elements y−σ ∈ A−σ , xσ
i ∈ Aσ , σ = ±. Note that any HPI is in particular a generalized

polynomial identity (GPI). Indeed if an associative pair is homotope-PI, then all its local
algebras satisfy the same PI.
Theorem 6.4: Let A be a primitive associative pair.

(i) If the local algebra at any element of A is PI, then A is simple, equal to its socle.
(ii) If A is HPI, then A is simple, equal to its socle.

Proof: Clearly (ii) is a straightforward consequence of (i) since all local algebras of an
associative HPI pair satisfy the same polynomial identity. To prove (i) consider A to
be a primitive associative pair such that all its local algebras are PI-algebras. Then, by
Theorem 6.3, we have A = PI(A) = Soc(A), hence A is simple by [19, Theorem 1], since it
is prime by 2.12, so 2.9 applies. �

6.4. Simple associative pairs with finite capacity

Simple associative pairs coinciding with their socle are of the formF(P1,P2) for two pairs
of dual vector spaces Pi = (Xi,Yi), i = 1, 2, over the same associative division algebra
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� [19, Theorem 2]. Recall, see [19, Remark p.483], that such an associative pair has
finite capacity if and only if at least one of the vector spaces is finite-dimensional over
�. The classification of simple associative pairs having finite capacity is given in [12,
Theorem 11.16].

The existence of a homotope-PI on a primitive associative pair provides a bound for
the dimension of (at least) one of the pairs of dual vector spaces, ensuring then the finite
capacity of the associative pair.

Corollary 6.5: Let A be a primitive associative pair. If A satisfies a homotope-PI of degree d,
then A has finite capacity at most [d/2].

Proof: Assume that A is a primitive associative pair satisfying a homotope-PI of degree d.
Then, by Theorem 6.4, A is simple and equal to its socle. Indeed, by [17, Theorem 2],
A = Soc(A) = (F�(M−,M+),F�(M+,M−)), where (M+,M−) is a faithful irreducible
right A-module, and � = EndE (M+ ⊕ M−) is a division algebra where E is the standard
imbedding of A.

Take now an element a ∈ A−σ = Soc(A−σ ). By Theorem 6.2(iii) we can assume that a
has finite rank rank(a) = r. Then the local algebra Aσ

a is simple (2.13), and according to
[18] (see also [27]) we can assume that Aσ

a is contained into a matrix algebraMr(F), where
F denotes a maximal subfield of the division ring �. As a result, by [11, 1.4.1] Aσ

a satisfies
the standard identity S2r, hence 2r ≤ d. Thus A has finite capacity at most [d/2]. �

Next, the closeness between the central closures of semiprime associative pairs and
that of their standard imbeddings makes it possible to obtain the following associative
pair version of Martindale Theorem for prime associative algebras satisfying a generalized
polynomial identity.

Theorem6.6: Let A be a prime associative pair. If PI(A) 
= 0, then the central closure C(A)A
of A is a primitive associative pair with nonzero socle equal to PI(C(A)A). Moreover PI(A) =
A ∩ Soc(C(A)A).

Proof: Let A be a prime associative pair having nonzero PI-elements. Then, by 2.6, its
standard imbedding E is a prime associative algebrawith nonzero PI-ideal PI(E) by Propo-
sition 2.3. Hence the central closure C(E)E of E is a strongly primitive associative algebra
with nonzero socle by [11, Theorem 7.6.15]. Moreover, since by [11, Proposition 7.5.17],
Soc(C(E)E) = PI(C(E)E), it holds that PI(E) = E ∩ Soc(C(E)E).

On the other hand, by Theorem 4.2, we have that C(E)E is isomorphic to the standard
imbedding of the central closure C(A)A of the associative pair A. Thus, by Theorem 6.1,
C(A)A is a strongly primitive associative pair with Soc(C(A)A) = PI(C(A)A) 
= 0 as a
result of Theorem 6.3.

Finally we claim that PI(A) = A ∩ PI(C(A)A) = A ∩ Soc(C(A)A). Note that it suffices
to prove PI(A) ⊆ A ∩ PI(C(A)A). Take a = a−σ ∈ PI(A−σ ). Then, by Proposition 2.3,
a ∈ A−σ ∩ PI(E) = A−σ ∩ Soc(C(E)E), which implies that a is von Neumann regular in
C(E)E . Then, as a result of 2.13, Theorem 4.2 and Remark 4.1, we obtain the following con-
tainments of local algebras Aσ

a ⊆ C(A)Aσ
a

∼= C(E)Ea ⊆ Qs(E)a, where Qs(E) denotes the
Martindale symmetric ring of quotients of the standard imbedding E ofA. Moreover, from
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the (von Neumann) regularity of a in C(E)E , hence inQs(E), we haveQs(E)a ∼= Qs(Ea) by
[28, Theorem 3]. Therefore Aσ

a ⊆ C(A)Aσ
a

∼= C(E)Ea ⊆ Qs(E)a ∼= Qs(Ea). Thus, as Aσ
a is

prime by 2.13,Qs(Ea) is a PI-algebra by [7, Corollary 6.1.7], and that implies that C(A)Aσ
a

is a PI-algebra, and therefore we finally obtain a ∈ A ∩ PI(C(A)A). �

Theorem 6.7: Let A be a prime associative pair.

(i) If the local algebra A−σ
a at each element a ∈ A−σ of A is PI, then the central closure

C(A)A of A is simple equal to its socle.
(ii) If A is HPI, then C(A)A is simple, equal to its socle.

Proof: Under any of the above assumptions, the central closure C(A)A of A is a strongly
primitive associative pair by Theorem 6.6. Besides,A = PI(A) is contained in Soc(C(A)A).
ThusC(A)A = Soc(C(A)A) and the simplicity ofC(A)A follows from [19, Theorem1]. �

As a consequence of the previous results, we obtain the following Associative Pair
version of Posner’s Theorem:

Corollary 6.8: Let A be a prime associative pair. If A satisfies a homotope-PI of degree d,
then its central closure C(A)A has finite capacity at most [d/2].

Proof: It follows from Theorem 6.7 as a result of Corollary 6.5. �
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