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ABSTRACT

Fire has always been an intrinsic feature in various ecosystems around the world. In environments heavily
populated by humans, their actions have altered these natural fire regimes for others that are fundamentally
anthropogenic in nature. In the context of Mediterranean Europe, the number of forest fires and their
observed burnt area fell into a general decline during the late twentieth century, which led to a reduced
incidence of fire in most Mediterranean ecosystems historically affected by recurrent fires. Therefore, the
change in past fire regimes is evident, mainly due to human intervention instigating a very demanding policy
of total exclusion of fire.

However, the recent evolution of fire regimes presents a high spatial and temporal variability. On the other
hand, future scenarios predict a growing impact of the human factor (more land abandonment, poor
management of forests and adhering exclusively to suppression methods), which will result in increased fire
activity due to a greater amount of available fuel. In addition, climatic conditions are expected to cause
increasingly larger burned areas (higher temperatures, more frequent heat waves and droughts), which will
undoubtedly have a negative effect on both ecosystems and future societies.

All these factors make an adequate zoning of fire regimes necessary from a spatial-temporal perspective,
which allows the relationship between the altered fire regime and associated socio-economic and
environmental factors to be determined, as well as detecting temporal trends in regions with decreasing
activity, or on the contrary, an increase in the incidence of fires. Therefore, finding these areas will lead to
improved management and prevention of forest fires.

This doctoral dissertation focuses on enriching knowledge for identifying and interpreting homogeneous
regions of fire regimes. A wide range of methods of statistical analysis and spatial modeling are employed.
The dissertation is structured according to the following objectives: Objective 1 focuses on analyzing the
spatial-temporal distribution of the main features defining the fire regime during the recent period.
Objective 2 aims to further describe the influence of meteorological danger on the evolution of fire activity.
Objective 3 evaluates the change in the relative contribution of anthropogenic factors on forest fires.
Objective 4 focuses on explaining the evolution and causes of changes or transitions in fire regimes during
the recent (1974-2015) and future (2016-2036) periods. Finally, Objective 5 centers on the transfer of the
zoning of fire regime typologies into an integral mapping of pyroregions

The results indicate that fire regimes in mainland Spain have undergone several changes, mainly a
considerable decrease in fire activity in most of the territory, although it still remains high in the north
(especially in winter). The diverse machine-learning methods employed, especially Random Forest, have
demonstrated their potential in terms of revealing the fire drivers behind fire regime evolution. Moreover,
forecasting by the ARIMA model has confirmed the ongoing tendency towards a lower incidence of fire.
Allindications are that preventive measures should take greater prominence in areas with an abrupt decrease
in wildfires, as they are significantly more prone to large ones in the short and medium term.






RESUMEN

El fuego ha coexistido de forma intrinseca en diversos ecosistemas a nivel global. En el caso de los
ambientes mas humanizados la accién del hombre ha alterado esos regimenes de incendio naturales por
uno fundamentalmente de caracter antropico. En el contexto de la Europa Mediterranea, el nimero de
incendios forestales y su area quemada observados han experimentado un descenso general durante el final
del siglo XX. Esto ha supuesto un declive de la incidencia del fuego en la mayorfa de los ecosistemas
mediterraneos histéricamente afectados por incendios recurrentes. Por tanto, es evidente la alteracion de
los regimenes de incendio pasados, debido principalmente a la intervencion humana con una politica de
exclusion total del fuego muy exigente.

No obstante, la evolucion reciente de los regimenes de incendio presenta una alta variabilidad espacial y
temporal. Por otro lado, las perspectivas de futuro vaticinan un impacto creciente del factor humano
(abandono del campo, gestiéon de los bosques y mantenimiento de la supresiéon excluyente), lo que
consecuentemente derivara una mayor actividad de incendios debido a una mayor cantidad de combustible
disponible. Asimismo, se prevén unas condiciones climaticas cada vez mas propensas a generar incendios
de gran superficie (mayores valores de temperatura, mayor frecuencia de olas de calor y sequias), lo que sin
duda afectara negativamente tanto a los ecosistemas como las sociedades futuras.

Todos estos factores hacen necesaria una adecuada zonificacién de los regimenes de incendio desde una
perspectiva espacio-temporal, la cual permita conocer la relacion existente entre el régimen de incendios
alterado y los factores socio-econémicos y ambientales asociados. Asi como detectar tendencias en el
tiempo en regiones que experimenten un descenso de la actividad, o, por el contrario, incremento de la
incidencia de incendios. Por tanto, conociendo estas zonas se podra mejorar la gestion y prevencion contra
incendios forestales.

Esta tesis doctoral se enfoca en enriquecer el conocimiento sobre la identificacion e interpretacion de
regiones homogéneas de regimenes de incendio. Para ello se recurre a un amplio abanico de métodos de
analisis estadisticos y de modelado espacial. La tesis se estructura de acuerdo a los siguientes objetivos: el
objetivo 1 se centra en analizar la distribucién espacio-temporal de las principales métricas que definen el
régimen de incendio durante el periodo reciente. El objetivo 2 pretende profundizar en la influencia del
riesgo meteorolégico en la evolucion de la actividad de los incendios. El objetivo 3 evalta el cambio de la
contribucién relativa de los factores antropogénicos en los incendios forestales. El objetivo 4 se enfoca en
explicar la evolucion y causas de los cambios o transiciones de los regimenes de incendios durante el periodo
reciente (1974-2015) y futuro (2016-20306). Finalmente, el objetivo 5 pone la atencion en la traslacion de la
zonificacion de tipologfas de regimenes de incendios hacia una cartografia integral de piroregiones.

Los resultados indican que los regimenes de incendio en la Espafia peninsular han experimentado diversos
cambios, principalmente una disminucién considerable de la actividad de incendios en la mayor parte del
territorio, aunque todavia persiste una alta actividad en el extremo norte (especialmente en invierno). Los
diversos métodos de aprendizaje automatico empleados, especialmente Random Forest, han demostrado su
potencial en términos de revelar los factores que impulsan la evolucion del régimen de incendios. Ademas,
la proyeccion ARIMA ha confirmado la tendencia actual hacia una menor incidencia de incendios. Todo
apunta a que las medidas preventivas deben tomar mas protagonismo en areas con un abrupto descenso de
la ocurrencia, ya que son significativamente mas propensas a grandes incendios a corto y medio plazo.
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CHAPTER 1: INTRODUCTION

This chapter presents the state of the art of the fire phenomenon
and the relevance of the fire regime term, summarizing the range
of methods applied in the fire regime modelling and introduce
the conceptually differences between the fire regime and
pytroregion terms.






Chapter 1: Introduction

1.1. The wildfire phenomenon

Fire plays an important role in the processes governing the Earth System (Bodi et al.,, 2012), and are a
natural mechanism in plant succession, which has been shaping the distribution and dynamics of many
vegetation species during millennia. Forest fires were originally a natural hazard, but can become a major
disturbance when its frequency and/or intensity is altered (De Santis and Chuvieco, 2009), causing major
environmental and socioeconomic impacts. These alterations can be classified into two main groups
depending on the time elapsed after the fire event: short-term and long-term.

In general, the immediate or short-term consequences of forest fires usually have a negative impact on the
environment. Among the most significant ecological repercussions are : soil erosion (Pérez-Cabello et al.,
2006; Shakesby, 2011), physical-chemical alterations in the surface horizons of the soil (Badfa et al., 2014,
Gonzalez-Pérez et al., 2004), disappearance of species and degradation (Pérez Cabello et al., 2010), loss of
biodiversity (Duran-Medrano et al., 2017), and carbon emissions (Raupach et al, 2007). In the
Mediterranean region, the heavy autumn rains commonly occurring after summer wildfires cause the onset
of water erosion- channeled or laminar — which usually transfer organic matter and nutrients to the soil but
reduce its structural stability (Bodi et al., 2012). In their last stage, they help to form rills, wash fines and

increase stoniness.

However, in the mid-to-long-term (months or years post-fire) a high percentage of burned areas and
vegetation usually make a recovery. The degree of this process will depend on many factors:
climate/weather conditions before and after the fire event (Davis et al., 2019; Dimitrakopoulos et al., 2011),
the strategies of the main species - seeders vs resprouters (Dfaz-Delgado et al., 2003), the interval of fire
recurrence (Juli G. Pausas and Vallejo, 1999), the various alterations on the soil (Certini, 2005), as well as
restoration treatments and human intervention (logging, forestry management, etc.), which have
contributed to mitigating or worsening post-fire conditions (Shakesby, 2011). In this respect, in many
developed counttries, the abandonment of agricultural activities in rural areas (Vélez, 2004; Whitlock, 2004)
has increased the amount and continuity of fuel load, which will promote more virulent and extensive fires
(megalfires) in the coming years. On the other hand, in developing countries, the situation is quite different,
even with great spatial variability, there is an overall intensification of tropical plantations and the persistence
of the traditional use of fire for land clearing and shifting cultivation (Le Page et al., 2010).

Globally, a decrease both in burned area and fire-related emissions is reported reaching a historical
minimum in 2013 (Arora and Melton, 2018; Van Der Werf et al., 2017). One of the major causes of this
tendency is related to the so-called fire exclusion policy often implemented in developed countries
(Minnich, 1983). However, there is a high level of variability between large-scale regions. For instance, both
Southeast Asia and North America show an increasing trend in burned area (Doerr and Santin, 2016). With
the former, this trend is due to an intensification of crop burning, and there is a clear influence of climate
change in the latter (Earl and Simmonds, 2018), where the number of fires has decreased, which means
fewer fires but affecting a larger area. In Mediterranean Europe, the risk from forest fires is expected to
increase, which will require much stronger advanced management (IPCC, 2014). Although many studies
show different trends depending on the regions, the statistics show a general decline in fire frequency and
burned area (Turco et al., 20106), although in certain regions within Portugal, Greece and Spain some authors
found significant increases in fire activity during the period 1985-2009 (Marcos Rodrigues et al., 2013).
Recently, there has been a slight upturn in fire activity, especially in regions with infrequent fires and little
danger (such as Scandinavia), in 2018 when numerous fires exceeded extinguishing capacity (Martin Ruiz
de Gordejuela and Puglisi, 2018).



Chapter 1: Introduction

In the particular case of mainland Spain, forest fires are the greatest alteration to ecosystems, as it is one of
the countries in the Mediterranean region with highest frequency of fire events and annual cumulative
burned forests (Darques, 2016). According to the Spanish Ministry of Agriculture and Environment
(MAGRAMA), over the period 2008-2017, an annual average of 12,573 fires were reported, affecting a
mean area of 101,411 ha. The European Fire Database (EFFIS) shows that Portugal is in first place, with
an average of 18,204 fires per year for the same period, although with a slightly smaller average affected
area (91.160 ha). Since the 1960s, an increase in the number of disturbances has been detected, probably
due to improved detection and data collection systems. In fact, this trend has currently been strongest
during the winter fire season, partially induced by human activities (Moreno et al., 2014) and also related to
the lengthening of the fire season (Jolly et al., 2015). In addition, the yearly frequency has increased in the
majority of regions, except on the Mediterranean coast (Turco et al., 2016) where recent socioeconomic
changes have promoted more hazardous landscapes coupled with warmer climate conditions. The trend is
similar for burned areas, with a significant decrease since the mid-1990s (Marcos Rodrigues et al., 2013;
San-Miguel-Ayanz et al., 2013; Urbieta et al., 2019). This can be explained by improved methods of
extinguishing fires. On the other hand, an overall decrease in the frequency of large fires has also been
reported (A. Cardil and Molina, 2013), along with the fact that these particular events cause the greatest
environmental and social damage, as well as having become difficult to predict and control in the worst
fire-weather conditions of recent years (Regos et al., 2014).

All this points towards the existence of changes in fire regimes, which will lead to probable implicit
differences between different regions and different transitions (from activity regression, stability, to activity
progression). Given the diversity of fire features and driving factors involved in these changes, the study of
the characteristics and temporal evolution of fire regimes in mainland Spain should address the fact that
not only must it focus on these two metrics (fire frequency and burnt surface), but also try to capture the
wide diversity of parameters concerning forest fires. In addition, it is important for the analysis to include
the contribution from the main driving factors, both natural and anthropogenic. In this way, there will be
a greater depth of knowledge on future and foreseeable trends of fire regimes.

It is evident, therefore, that the study of fire regimes is a promising and crucial research line to better
understand the occurrence of wildfires. However, assessing fire regime is complex, due to the continuous
spatial-temporal changes they have experienced. It is important to remember that natural fire regimes
defined pre-industrial landscapes, until altered by human intervention (Syphard et al., 2007), often exceeding
thresholds of fire resilience in ecosystems (Stevens-Rumann et al., 2018). On the other hand, some authors
have observed a transition towards a more significant role of climate factors in recent fire regimes (Pechony
and Shindell, 2010), resulting in a greater probability of ignition and propagation (Thompson et al., 2011).
In Spain, the main changes are related first with anthropogenic pressure over wildlands, and later with
climate-weather conditions (Pausas and Fernandez-Mufioz, 2012). In fact, fire regimes have been strongly
related to climatic conditions after the 1970s, pointing out that forest fires are caused mostly by fuel and
droughts. In addition, the structure of fuel and the landscape is shaping the current fire regime-climate
relationship (Pausas and Paula, 2012). However, most of these studies usually focus solely on the number
of fires and burned area, which highlights the lack of an analysis of the evolution of the fire regime based
on additional features such as cause, seasonality and the role of large fires.

1.2. The concept of fire regime: definitions and components

The birth of the concept of “fire regime” dates from the 1820s, with a group of French-speaking botanists
and agronomists in Affican colonies (Krebs et al., 2010). In the United States, the concept was not adopted
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until the early 1960s, when the idea of fire as a natural disturbance shaping ecosystems was incorporated.
The current definitions of this term are based on a selection of variables that are questionable because it
implies a certain degree of subjectivity. For this reason, there is still no consensus on the definition of the
concept of “fire regime”, which varies largely according to the research objectives (Krebs et al., 2010), the
scale of analysis and available data. Chuvieco (2009) termed fire regime as “the average fire conditions
within a particular area persistent over a long period of time”. Some authors advocate the inclusion of
spatial-temporal patterns of fire activity, as well as the type of fuel burned, as an ecological proxy (Gill,
1973). Hence, it seems clear that the notion of fire regime is somehow ‘variable’ and susceptible to including
different features and dimensions. In fact, it is widely believed that fire regime features have been and
continue to change dramatically in time and space(Morgan et al., 2001a). However, there are several
common features usually accepted (Pyne, 2001). Among the wide variety of fire regime features found the
literature, fire frequency, fire size distribution, intensity, seasonality and mean annual burned area are the
most frequently used in fire regime assessments (Archibald et al., 2013). Recent papers in mainland Spain
dealing with fire regimes, such as those by Moreno and Chuvieco (2016, 2013), have contributed
significantly to shaping the first geographical delimitations of the fire regime, although they still assumed
fire features to be stationary over time.

In this PhD dissertation, fire regime is defined as “the average behavior of a set of key fire features (fire
frequency, burned area, large fires, winter frequency and natural fires), persistent over space and time”.
However, the proposed approach goes one-step further, including not only fire regime characteristics but
also their trends, and the factors influencing their potential variability in space and time. It is important to
note, that the degree of participation of fire regime components and driving factors is variable and will
depend on the scale of the study, the time period examined and the minimum spatial unit of reference. For
instance, in the case of the size of the study region, the role of climatic factors will have a smaller or larger
range of variability, depending on the differences between the altitude gradients. On the other hand, the
period studied will allow a more robust analysis of trends in both fire metrics and driving factors, provided
it is over a longer time range. Finally, the size of the spatial unit influences the level of detail with which the
variable in question is spatialized, analyzed and represented.

1.3. Methodological approaches in fire regime modelling

The study of the fire regime was conducted using a wide variety of factors and approaches. In the first
place, it is important to differentiate the two major governing forces: climate and human activities. The first
refers to variables such the lack of precipitation events (droughts), as well as the prevailing thermal regime
during the fire season that controls the probability of ignition, fire size and seasonality, thus shaping the
patterns of large-scale fire regimes (Boulanger et al., 2013). The second aspect, human causality has a double
face, since it can impact the occurrence positively or negatively, depending on the level of influence
(Syphard et al., 2007). In this respect, the active suppression of forest fires may reduce their activity, while
at the same time, humans cause ignitions in the vicinity of infrastructures (primary and secondary road
networks) or in the wildland-urban interface.

The capacity of current methodologies for space-time modeling of forest fire frequency and burned area is
evident. Among others, the methods employed vary from the use of bivariate and multiple regression, as
in the examples of DaCamara et al. (2014) and Syphard et al. (2007), through the analysis of specific spatial
patterns (Fuentes-Santos et al., 2013; Liu et al., 2012), probabilistic models (Silvestrini et al., 2011), machine
learning such as Random Forest (Boulanger et al., 2013), multivariate adaptive regressions splines — MARS
(Boulanger et al., 2014) and maximum entropy (Duane et al., 2015). Another branch of research has used
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specific-devoted simulation models, as change points (Mouillot et al., 2002) or power law (Malamud, 1998;
Malamud et al., 2005; Perera and Cui, 2010). In Spain, several articles suggest that alterations in fire regimes
have been driven by climate, land use changes and suppression policies (Moreno et al., 2014) as well as
different propagation patterns in Catalonia (Duane et al., 2015).

The majority of studies have used regression models in combination with simulated data from general
climate models (GCM) (Boulanger et al. 2013; DaCamara et al. 2014; Kilpeldinen et al. 2010; Krawchuk et
al. 2009; Pechony and Shindell 2010; Terrier et al. 2014; Westerling et al. 2011) based on IPPCC projections
of future emission scenarios or Regional Climate Models (RCM). Most of these studies envisage an
increasing burned area in regions such as Portugal (DaCamara et al., 2014), California (Westerling et al.,
2011) and the Iberian Peninsula (Sousa et al., 2015). However, several authors point out different trends
depending on the regions of the world (Krawchuk et al., 2009; Pechony and Shindell, 2010), including
showing opposite tendencies with increasing frequency and a slight decline of burned area in the Northeast
of Spain (Turco et al,, 2014).

In the fire-climate framework, many authors have analyzed the relationship between climate change and
shifts in certain characteristics of fire regimes (fire frequency, surface area, seasonality, average fire range,
maximum fire size, etc.) in many regions. For example, in the boreal forests of North America (Kasischke
and Turetsky, 2006) they resort to historical records, the analysis of individual years by categories of eco-
zones and the start time of individual events. In Canada, the Fire Growth Model has been used to model
the risk of lightning and human-induced ignitions (Nitschke and Innes, 2013). On the other hand, most of
the studies have assumed future projections with similar environmental and anthropic conditions to the
current ones (Boulanger et al., 2014, 2012), thus showing certain limitations in trend detection since they
assume a “‘static”” of non-climate conditions for the future. Therefore, the growing importance of estimating
the present and future impact of climate change on fire regime has become a key issue in risk assessment
and adaptation strategies, emerging as the cornerstone in national and international climate programs
(Turco et al,, 2014), such as the European project FUME (2010-2013).

However, it is well-known that the democratic and massive use of future climate change scenarios implies
a high degree of uncertainty. In other words, the most complicated issue is the validation of projected data,
especially those by GGM or RCM models, as there is still no time series with which to correlate. This is
why some authors leaned towards the “safest” alternatives, such as the auto-regression and moving average
models (ARIMA). ARIMA models are known for their good performance in fields such as markets and the
economy (Loi and Ng, 2018; Matyjaszek et al., 2019), as well as in the environmental framework: vegetation
(REF) or climate change. In the context of forest fire, Preisler and Westerling (2007) employed ARIMA
using temperature forecasting to assess fire danger in western USA, whereas, Boubeta et al. (2016) applied
a simplified version of ARIMA (ARMA) without the integrated component in order to predict burnt area
in Galicia. The main virtue of ARIMA models lies in the fact that they predict future trends and seasonality,
with the historical time series of data as their only reference. As a result, the principle of parsimony is
guaranteed in the model, since the minimum number of variables is used, being more easily reproducible

and without creating an over adjustment.

When discussing the use of spatial modeling methods and the prediction of forest fire characteristics in
specific areas, a wide repertoire of methodological approaches and explanatory variables can be brought to
bear. The scale of analysis (global, regional or local), the proposed objectives and the nature of the data
used will condition the analysis framework. Among the most widely applied models to date, GLM and

GAM (Generalized Linear Models and General Additive Models, respectively) stand out as flexible
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generalizations of linear regression, able to deal with non-normal distributions of the variable under study
(fire activity) or the explanatory variables (climate, weather, topography, population, wildland urban-
agricultural interfaces, road network, etc.). This modeling framework is adequate, since forest fire data
usually depict non-linear response functions. In addition, Geographically Weighted Regression (GWR) is a
more advanced alternative that has also been applied in the context of wildfires (Koutsias et al., 2010; Sa et
al,, 2011), whose main advantage is that it allows the calculation of local regression parameters, useful for
analyzing the spatial behavior of each explanatory variable and determining their level of significance. The
few works conducted in mainland Spain point to a certain degree of spatial variability (Martinez-Fernandez
et al., 2013), confirming that human driving factors vary over both space and time(Rodrigues et al., 2016)
and are losing explanatory power in favor of climatic conditions (Rodrigues et al., 2018).

Another important aspect when estimating the probability of the occurrence of wildfires is to analyze the
characteristic of fuels and how they interact with climatic variables (precipitation, temperature, wind, relative
humidity, etc.). The role of forest fuels not only largely determines the likelihood of ignition, but also the
speed of propagation, and ultimately the severity. In this respect, numerous fire weather danger indices
have been used to relate meteorological data to fire (Fire Weather Index: FWI, Standardized Precipitation-
Evapotranspiration Index: SPEI, Palmer Drought Index: PDSI, among others). Some studies carried out
in Portugal (Fernandes et al., 2014) stressed the positive relationship between fire and weather together
with fuel hazard and the final burned area. In eastern-Spain, (Cardil et al., 2019) pointed out the importance
of a multi-temporal perspective when studying the link between drought and burned area for different
vegetation communities. In any case, that there is a strong influence from the flammability of the fuel and
its spatial continuity on fire frequency and burned area has been demonstrated by fuel model classifications
(Prometheus, NFFL, NFDRS, McArthur, FBP - see Arroyo, Pascual, and Manzanera (2008) for more
details.

1.4. Fire regime vs pyroregion

Because of the potential usefulness and interest in predicting how the behavior of fire regimes evolves, this
PhD Thesis aims to optimize the identification and characterization of fire regimes in mainland Spain,
beginning with the identification of the most relevant features of fire, and continuing by evaluating the
direction and extent of regional trends both in space and time. Until now, most works focused on broad-
scale fire regime modeling based on large ecological and administrative units. In Canada, the next step was
to outline homogeneous fire regime (HFR) zones without this traditional approach, since it does not capture
the spatial heterogeneity of fire regimes and could lead to spatially inaccurate estimations of future fire
activity (Boulanger et al., 2014). In Spain, only a few papers have defined fire regime units but by attributing
a static image in their delimitation (Moreno and Chuvieco, 2013), i.e., not incorporating the non-stationary
behavior of fire features. To overcome this limitation, our goal is to provide a projection of the possible
future evolution of these homogeneous fire regime zones, since until now the few projects carried out in
the Iberian Peninsula have focused on only forecasting selected components, such as the affected surface
(Sousa et al., 2015).

Generally, the spatial delimitation of fire regimes is based exclusively on the consideration of the main,
defining features of fire. However, this zoning has to be incorporated into a more comprehensive spatial
context that also integrates the driving factors (both climatic and human) most directly related to forest
fires. In this respect, the first study that put forward this new concept was Fréjaville & Curt (2015), which
added the concept of “pyroclimates” to the wildfire literature. They developed a new framework for

analyzing regional changes in fire regimes from specific spatial-temporal patterns of forest fires and climate,
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defining it as a geographical entity displaying homogenous attributes with respect to fire regime, climate
conditions (bioclimatic variables and fire danger indices) and the temporal trends of both. Therefore, we
adopted part of the innovation of this concept in our term “pyroregions”, but in our case, we added human
factors into the definition and not only the climate conditions. As result, we define pyroregion as “a
geographical area sharing homogeneous fire regime features, climate-human conditions and the evolution

of both™.

To sum up, the main difference between “fire regime” and “pyroregion” lies fundamentally in the nature
of their underlying factors. In the case of fire regime, it broadly refers to the average conditions in terms of
fire features over time and space. The pyroregion transcends fire regime being a geographical entity that
characterizes by uniform or homogeneous fire activity, but is also influenced by self-defining climatic and
human conditions.



CHAPTER 2: OBJECTIVES
AND RESEARCH DESIGN

This chapter summarizes the objectives and structure of the
thesis, connecting the former with their corresponding
publications and appendices that compose the whole research.






Chapter 2: Objectives and research design

The working hypothesis of this PhD Thesis is that mainland Spain presents different fire regimes
defined by specific fire frequency, burned area, seasonality and cause, which are non-stationary over space
and time, thus allowing modeling and envisaging their evolution. To understand the complexity of
the phenomenon, we had to investigate the driving forces of fire regimes, which ultimately would lead to
the definition of dynamic pyroregions, thus improving fire management, prevention and preparedness
within a context of climate and socio-economic change.

Therefore, the main objective of this research was to translate the variety of homogenous zones of fire
regimes into pyroregions, providing insights into their possible evolution through the identification
and characterization of their main components (frequency, size, seasonality, cause, etc.) and driving
factors (climate, weather, human pressure, etc.).

2.1. Research questions

In order to address the main objective stated before, five specific research questions (RQ)s) or objectives
were formulated and addressed by studying several research papers. Table 1 shows the correlation between
each specific objective and its corresponding publications.

RQ 1: What is the spatial-temporal distribution of the main fire regime features and what is
its relationships with climate-human factors?

1 Objective: Explore the spatial-temporal distribution of fire regime features and their relation with
climate-human factors.

RQ 2: What role does fire-weather danger play in the temporal evolution of fire regime
features?

2" Objective: Estimate the contribution of fire-weather danger on the observed evolution of fire
activity.

RQ 3: What have been the spatial-temporal changes in the influence of human factors on
wildfires?

3" Objective: Analysis spatial-temporal changes in the role of anthropogenic drivers on wildfires.

RQ 4: What changes have been experienced by fire regimes and which factors are behind
these dynamics?
4™ Objective: Characterize the dynamics of recent-future fire regimes and know the drivers of their

changes.
RQ 5: How are pyroregions distributed in space on the basis of the observed evolution of fire

regime typologies and drivers?
5" Objective: Translate the fire regime typologies scheme into pyroregions.
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Table 1. Summary of the specific objectives and their corresponding publication or contribution.

Objective

Publication

1st Objective: Explore
the spatial-temporal
distribution of fire regime
features and their relation
with climate-human

factors.

CHAPTER 5

-Jiménez-Ruano A, Rodrignes M, de la Riva | (2017) Understanding wildfires in mainland
Spain. A comprebensive analysis of fire regime features in a climate-human context. Applied
Geography 89:100-111. bttps:/ [ doi.org/ 10.1016/}.apge0g.2017.10.007

-Jiménez-Ruano A, Rodrignes M, de la Riva | (2017) Exploring spatial—temporal dynamics
of fire regime features in mainland Spain. Natural Hazards and Earth System Sciences 17:1697-
1711. bttps:/ [/ doi.org/ 105194/ nbess-17-1697-2017

APENDIX A
-Supplementary material from “Understanding wildfires in mainland Spain. A comprebensive
analysis of fire regime features in a climate-human context”.

APPENDIX E

- Jiménez-Ruano A, Rodrigues M, de la Riva Ferndndez ]. (2017). An analysis of wildfire
[frequency and burned area relationships with human pressure and climate gradients in the context
of fire regime. Gegphysical Research Abstracts (Poster contribution). 1/ol. 19 EGU2017-15084,
Vienna, Austria.

- Jiménez-Ruano A, Rodrignes M, de la Riva Ferndndez, ]. (2017). Assessing the influence of
small fires on trends in fire regime features at mainland Spain. Geophysical Research Abstracts
(Poster contribution). V'ol. 19, EGU2017-15755, Vienna, Austria.

2nd Objective: Estimate
the contribution of fire-
weather danger on the
temporal evolution of fire
activity.

CHAPTER 6
-Jiménez-Ruano A, Rodrigues M, Jolly W.M, de la Riva | (In Press) The role of short-term

weather conditions in temporal dynamics of fire regime features in mainland Spain. Journal of
Environmental Management 17:1697-1711. bttps:/ [ doi.org/ 10.1016/ ;. jenvman.2018.09.107

APPENDIX B
-Supplementary material from: ““T'he role of short-term weather conditions in temporal

dynamics of fire regime features in mainland Spain”

APPENDIX E

- Jiménez-Ruano A, Rodrigues M, Jolly W M, de la Riva Ferndndez, J. (2018). Assessing the
influence of fire weather danger indexes on fire frequency and burned area in mainland Spain.

Geophysical Research Abstracts (Oral presentation). 1ol 20, EGU2018-13196, 1Vienna,

Auwstria.

- Jiménez-Ruano A, Rodrignes M, Jolly W M, de la Riva Ferndandez, . (2018). The role of
drought and magnitude in the temporal evolution of fire occurrence and burned area size in mainland
Spain. Geophysical Research Abstracts (Poster contribution). V'ol. 20, EGU2018-13520,

Vienna, Austria.

3td Objective: Analysis
of spatial-temporal
changes in the role of
anthropogenic drivers on
wildfires.

CHAPTER 7

-Rodrignes M, Jiménez-Ruano A, de la Riva ]. (2016) Analysis of recent spatial—temporal
evolution of human driving factors of wildfires in Spain. Natural Hazards 84(3):2049-2070.
bttps:/ / doi.org/10.1007/s11069-016-25334

-Rodrignes M, Jiménez-Ruano A, Peia-Angulo D, de la Riva J. (2018) A comprebensive
Spatial-temporal analysis of driving factors of human-cansed wildfires in Spain using Geagraphically
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https://doi.org/10.1007/s11069-016-2533-4
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Weighted 1.ogistic  Regression.  Journal of Environmental Management 225: 177-192.
bttps:/ [ doi.org/10.1016/] JENTVMAN.2018.07.098

4t Objective:
Characterize the dynamics
of recent-future fire
regimes and know the
drivers of their changes.

CHAPTER 8

-Rodrigues M, Jiménez-Ruano A, de la Riva ]. (In press). Fire regime dynamics in maintand
in Spain. Part 1: drivers of change. Science of the Total Environment.

-Jiménez-Ruano A, de la Riva |, Rodrignes M. (In press). Fire regime dynamics in mainland
Spain. Part 2: a near-future prospective of fire activity. Science of the Total Environment.

APPENDIX C
-Supplementary material from: “Fire regime dynamics in mainland in Spain. Part 1: drivers
of change. Science of the Total Environment”.

5t Objective: Translate
the fire regime typologies
scheme into pyroregions.

CHAPTER 9

-Jiménez-Ruano A, Rodrigues M, de la Riva |. (to be submitted) Mapping recent pyroregions
on the basis of spatial-tenmporal patterns of fire regimes and environmental-human datasets in
mainland Spain

APPENDIX D
-Jiménez-Ruano A, Rodrigues M, de la Riva J. (2018) Identifying pyroregions by means of

Self Organizing Maps and bierarchical clustering algorithms in mainland Spain. in: 1 iegas, D.X.
(Ed.), Adpances in Forest Fire Research (V1 International Conference on Forest Fire Research).
Imprensa da Universidade de Coimbra, Coimbra, pp. 495—505.

https:/ [ doi.org/ https:/ | doi.org/ 10.14195/ 978-989-26-16-506_54

2.2. Research structure

The contents of the Thesis are organized as follows: Chapter 3 presents a description of the study area.
Chapter 4 summarizes the data sources and methods employed in the research, complementing the
information already published. Chapters 5 to 8 bring together the original version of accepted and published
articles. Lastly, the last two chapters (Chapter 9 and 10) portray the final outline of pyroregions and
summarize the main conclusions, respectively. Figure 1 summarizes the main databases and methodologies
employed in the investigation according to the first four specific objectives.

In addition, a complementary section provides further information, organized into five appendixes (A, B,
C, D and E). The first three correspond to the supplementary material in three publications of the main
body of this thesis, appendix A belongs to the paper entitled “Understanding wildfires in maintand Spain. A
comprebensive analysis of fire regime features in a climate-human contex?’, appendix B is part of the article “The role of
short-term weather conditions in temporal dynamics of fire regime features in mainland Spain” and appendix C
corresponds to the manuscript under review “Fire regime dynamics in mainland Spain. Part 1: drivers of change”.
Appendix D refers to Chapter 3 of the book “Adpances in Forest Fire Research” edited by Domingos Xavier
Viegas, as a result of the contribution in the “L/III International Conference on Forest Fire Research”, held in the
city of Coimbra (Portugal) from 9 to 16 November 2018. The latter appendix includes several abstracts
from different conference contributions held in EGU 2017 and EGU 2018.
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Figure 1 Conceptual workflow of the thesis according to the first four specific objectives.
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3 CHAPTER 3: STUDY AREA

This chapter presents a description of the study area where the
thesis has had its spatial framework.






Chapter 3: Study area

The study area encompasses the whole of mainland Spain (excluding the Balearic and Canary archipelagos
and the autonomous cities of Ceuta and Melilla) and covers a total surface area of 498,000 km* Spain is
very biophysically diverse, presenting a wide variety of climatic, topographical and vegetation communities.
This diversity also appears when discussing socioeconomic conditions in terms of settlement systems and
population structure, production sector, changes in land use and land cover, or structure of the territory.

From a biogeographical point of view, mainland Spain is dominated by two different bioregions. The
Eurosiberian, located in the northwestern area, and the Mediterranean, covering the remaining territory.
The Eurosiberian is characterized by an Oceanic climate (according to the Spanish Climate Atlas - AEMET
2011- and based on the Koppen-Geiger’s climate classification - Cfb) distinguished by milder temperatures
throughout the year and high precipitation evenly distributed across the year (average values over 1,000
mm) peaking during winter. This area is mostly covered by various types of vegetation from deciduous oak
(Quercus robur, Fraxinus excelsior or Fagus sylvatica) and ash to evergreen oak woodlands. However, this region
is also heavily dominated by forest plantations such as Pinus radiata and Eucalyptus globulus. In turn, the
Mediterranean region is characterized by hot-summers in almost 40% of the territory (Csa) and cold semi-
arid (BS#) climateswith high annual thermal amplitude and precipitation irregularly distributed over the year
(peaking in autumn and spring, with a clear minimum during summer). Therefore, there are notably drier
and warmer conditions than the Eurosiberian region, especially across the southeastern region and the Ebro
Valley. These conditions, coupled to human activity, favors complex mosaics of agricultural systems and
plant communities. Sclerophyllous and evergreen vegetation, such as Quercus ilex, Quercus suber and
thermophilous scrublands (maquis and garrigue formations), dominate the region, and forest areas mainly
consist of pines (Pinus halepensis, Pinus sylvestris, Pinus nigra, Pinus pinea or Pinus pinaster). Furthermore,
bioclimatic (altitudinal) belts exist within each region in mountain areas such as the Pyrenees along the
French border or the Sierra Nevada on the southern Mediterranean coast. These sub-regions host a large
variety of tree species that are common in central Europe.

Human activity also changes its footprint across the region. According to Corine Land Cover 2006 (CLC
2016), in the northwest area, approximately 68% of the region is covered by forests, shrubs or grassland.
This land cover has been traditionally shaped by seasonal grazing (agricultural burning to maintain pastures
and grasslands) at the end of the winter. In the hinterland region, there has been a gradual abandonment of
agricultural activity (crops and pastures) meaning that around 54% of its territory is covered by wildland.
Meanwhile, the Mediterranean region, the most populated area, has the lowest proportion of woodland
(roughly 22%) because of an extended wildland-urban interface caused by the expansion of urban and
tourism developments during the last few decades (Moreno et al., 2014)

The Spanish population is currently around 47,007,367 inhabitants according to 2019 INE provisional data
and therefore, the fifth most populated country in the EU, behind Germany, France, the United Kingdom
and Italy, according to Eurostat 2018 (European Union Statistics). The distribution of the population is
characterized by the sharp contrast between the hinterland and coastlines, with the highest density located
mainly along the Mediterranean corridor, and also in some coastal areas in the north. The remaining inland
regions have a lower demographic density, except the Madrid area.

Spain has a diversity of agricultural landscapes closely related by climatic conditions. In the northwest, the
main type of cropland is a mosaic of cereals interspersed with patches of forest (mainly Eucalyptus
plantations). In the hinterlands, most of the territory is occupied by the so-called Mediterranean trilogy (i.c.
extensive cereal, olives and vineyards) with few wildlands. In the western hinterland, the debesa is the

predominant agroforest landscape. Finally, in the Mediterranean corridor, apart from the Mediterranean
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trilogy, intensive fruit farms are commonly found, which also dominate the banks of the main rivers (Ebro,
Guadalquivir, Guadiana, Tajo and Duero). According to Delgado-Serrano and Hurtado-Martos (2018),
who analyzed the CLC changes between 1987-2011, the major expansion in land use was in olive groves
and irrigated land. On the contrary, the largest reduction was found in complex crop mosaics, in addition
to mixed zones (natural vegetation-crops).Due to the variety of landscapes, climate and socioeconomic
conditions, three different regions - Northwest (NW), Hinterland (HL) and Mediterranean (MED) — were
outlined (Figure 2), following the criteria established by the Spanish Environmental Ministry in their annual
fire reports MAGRAMA, 2012, 2007, 2002).
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Figure 2. Spatial distribution of the three regions (Northwest, Hinterland and Mediterranean), NUTS3 and
NUTS2 administrative units in mainland Spain.

Administratively, the NW region includes the autonomous communities of Galicia, Asturias, Cantabria and
the Basque Country, as well as the provinces of Leén and Zamora. This region is located within the
Eurosiberian region, excluding the Pyrenees. The HL region includes all of the autonomous communities
without a coastline, except for the provinces of Ledn and Zamora (included in the NW region). This region
is located in the transition boundary between the Mediterranean and Eurosiberian regions, thus sharing
characteristics in terms of climate influence and plant species. Finally, the MED region, situated completely
within the Mediterranean biogeographical area, includes all the autonomous communities along the

Mediterranean coast, as well as the western provinces of Andalusia.

These regions exhibit homogeneous areas in terms of wildfire activity and seasonal averages by merging
entire provinces or autonomous communities and have been previously used in other recent works like
Moreno et al. (2014) as they are expected to have self-defining fire regimes. The spatial coverage of these
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regions is similar to other zoning proposals from authors such as Sousa et al. (2015) or Trigo et al. (2016)
that are also based on NUTS3 aggregations, although they include Portugal as well. In terms of fire
occurrence, the number of winter fires is noticeably high (35.7%), especially in the Northwest region. In
turn, burned area caused by lightning represents a low fraction of the total amount (around 6.5%) and it is
usually concentrated in mountain areas (mainly in the provinces of Le6én-Zamora and the Iberian Range).
Generally, the spatial distribution of fires is characterized by the heavy concentration of fire activity in the
northwest, but also in the Mediterranean corridor, and inner mountain ranges. In terms of inter-annual
distribution, mainland Spain features two distinct peaks of fire activity. The first during the summer months,
which affects the whole territory, but with a significant incidence in the hinterlands and the Mediterranean
region. The second occurs during late winter- early spring and is located mainly in the northwest. On the
other hand, the evolution of the main fire features throughout the study period can be summarized as an
increase in generalized activity up to a peak in the mid-1990s, since when there has been a gradual decrease

in both frequency and burned area (Figure 3).
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CHAPTER 4: MATERIALS AND
METHODS

This chapter describes in detail all data and methods employed
to conduct this thesis. The research has been addressed at three
different spatial scales: regional, provincial (NUTS-3) and local
(grid or cell). In addition, the fire features have been adapted
depending on the objective proposed and/or the availably of the
explanatory variables.






Chapter 4: Materials and methods

4.1. Datasets and sources
4.1.1. The Spanish fire database

The General Statistics of Wildfires (Estadistica General de Incendios Forestales: EGIF) database stands
out for its precision and completeness, being one of the oldest wildfire databases in Europe, beginning in
1968 (Moreno et al., 2011; Vélez, 2001). Its inception coincided with the adoption in the same year of Law
81/1968 on Forest Fites, the first legal mandate expressly designed to address a setious problem. by means

of prevention and control actions (Lépez Santalla et al., 2017). The Bureau of Defense Against Forest Fires
(Area de Defensa Contra Incendios Forestales: ADCIF) is the institution responsible for standardizing,
maintaining, drafting and publishing these statistics, based on the information submitted by autonomous
communities for every fire occurring in the country. All the baseline information collected is organized in
different sections in the Spanish Forest Fire Reports (Parte de Incendio Forestal: PIF), which currently
collects more than 150 data fields for each fire. It should be noted that this structure, sections and type of
information gathered has varied over the years, undergoing a total of eight modifications from its first
publication.

Systematic collection of statistical data on forest fires began in 1956. Until then they were collected manually
and on an irregular basis by the provincial services. In 1967, the Calculation Office of the Institute of
Forestry Research and Experiences acquired a computer, which enabled a new model of PIF to be created
that came into operation in the second semester of that year. Therefore, the first Annual Forest Fire Report
was published in 1968, but included data on fires that had occurred since 1961. With regard to the quality
of the data, it should be noted that, in the early years, it only included fires that affected forest masses or
large non-forest areas, although subsequently, the rest of the fires were taken into account, even those of
less than 1 ha.

The spatialization of information has changed over the years from its beginning, when the minimum spatial
unit of reference was the province (NUTS3), with a 10 x 10 km reference grid adopted after 1974. Until
1979, only those fires occurring in public and reforestation forests were recorded. Later, in the period 1980-
1988, all fire events were collected, regardless of ownership. Since 1982, the municipality was added as a
field in each fire location. Later, in 1989-1992, the PIF was reformed to incorporate important fields such
as time, use of air, means or motivations related to intentionality. Since 1990, the General Statistic has been
submitted to the European Commission for integration into the Community database EFFIS (European
Forest Fire Information System).

On the other hand, the traditional demarcation by region employed in the annual fire reports was the same
for the period 1968-1977 with a total 7 regions (excluding the Balearic and Canary Islands): Galicia, North,
Northeast, Ebro, Levante, the Hinterland and Andalusia. Since 1978, the number of regions increased to
10 (excluding the Canary Islands): Galicia, North or Cantabric (Asturias and Cantabria), Ebro (Aragoén),
Northeast (Catalonia-Baleares), Duero (Castilla-Ledn), Center (Castilla—Ila Mancha), Levante (Valencia-
Murcia), Extremadura, West Andalusia and East Andalusia. Moreover, from 1982 a more extensive section
referring to weather conditions throughout the particular year was added, provided by the National Institute
of Meteorology. From 1983, the previous regions were replaced by the Autonomous Communities. The
sections of the current PIF contain the following common information:

a) Location data: Includes the ID of the fire (IDPIF) as 10 digits. The codes of the autonomous
community, province, municipality containing the fire ignition point (created in 1983), tile and grid
(created in 1974) and UTM coordinates.
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b) Time data: Day, month, year, hour and minutes when the fire was detected, but also first arrival
of engines by land (created in 1988), first arrival of fire-fighting aircraft (created in 1989), first
airborne brigade arrival (created in 2005), and time when the fire was controlled and extinguished.

c) Detection: Who first detected the fire (permanent guard, forestry officer, aircraft, etc.) and place
of origin (road, path, house, train rail, crops, etc.).

d) Ignition causes: Differences between known and supposed cause (since 1998), lightning,
negligence and accidental causes, arson (created in 1989), unknown cause, rekindled fire (since
1998), identification or otherwise of the person causing it, and type of day (festival, Saturday, festival
eve and working day).

e) Danger conditions when the fire starts: Meteorological data (days from last rain, maximum
temperature, relative humidity, wind) fuel model (since 1989) and probability of ignition.

f) Type of fire: Surface, crown or subsoil (since 1989).

g) Fire suppression media: Type of land transport (vehicles, helicopters), number of different
personnel (technical staff, forestry agents, professional firefighters, civil staff, army, etc.) and
extinguishing methods (aircrafts, helicopters, retardants, etc.).

h) Fire suppression techniques: Direct or indirect attacks, firewall opening, etc.

i) Losses: People killed and injured, civil protection incidents, type of surface affected, environmental
impacts.

4.1.2. Fire data and fire features

Fire features were retrieved from the General Wildfires Statistics (EGIF) database. Generally, fire records
for 1974-2015 were selected and spatialized according to the 10 x 10 km UTM reference grid which is used
by firefighting crews for approximate locations of fire ignition points. Fire count data, total burned area
size, ignition triggering date and fire cause were retrieved for each event. In all cases, only information on
fires larger than 1 ha was retained because small fires (i.e. fires with less than 1 ha affected) were not fully
compiled until 1988. This is a well-known issue affecting other regions in the Mediterranean, such as
Portugal (Pereira et al., 2011). Additionally, it is important to remember that in the autonomous community
of Navarre, fire data were only available from 1988. Hence, all the analyses conducted in Navarre were
based on a slightly different study period (from 1988 to 2010, 2013 or 2015).

The start year was set as 1974, since it was the first year to use the 10 x 10 km grid. Prior to that time, fire
data were only recorded at province level, so grid information was not available. The end year fluctuates
depending on the temporal frame of other databases required for different analyses. For the first objective,
the end year (2010) was chosen because of the availability of climate data from the MOTEDAS and
MOPREDAS datasets (described below). For the second objective, the final year was set at 2013, because
the sole input was the EGIF database, and at the time of the research, fire data was only available until then.

As stated in section 1.2, regions were outlined following MAGRAMA specifications. In turn, two fire
seasons were defined according to Moreno et al. (2014). Thus, annual data were divided into a spring-
summer season (S), from April to September; and an autumn-winter season (W) from October to March.
From all available fire data information, several fire regime features were constructed separately for the
season, region, NUTS3 and grid level. The final number of fire features changes according to each specific
objective (see Table 2).

24



Chapter 4: Materials and methods

Table 2. Summary of fire regime features constructed, their description and corresponding time petiod for each

specific objective.

Objective Fire Feature Description Tir.ne
Period
Fire frequency Total number of fires, regardless
®) of size or ignition source
Burned area (B) Total ﬁr§ affec.ted. ?rea, regardless
of size or ignition source
Number of fires above 500 ha
Number of large burned. reoardl Fioniti
urned, regardless o on
fires (N500) 18 i
source
) Burned ; Overall affected area from fires
1st, Explore the spatial-temporal urned area trom above 500 ha, regardless of 1974-
distribution of fitre regime features and large fires (B500) ignition source 2010
;helr relation with climate-human Number of Number of fires triggered by 12907;;_
actors natural fires (NL) lightning
Burned area from Opverall burned area from fires
natural fires (BL) triggered by lightning
f
Number o Number of fires triggered by an
human fires h )
anthropogenic source
Opverall burned area from fires
Burned area from i ab h ;
rigger n anthr n
human fires (BH) ggered by an anthropogenic
source
Fire frequency Total number of fires, regardless
2nd, Estimate the contribution of fire- @) of size or ignition source
weather danger on the temporal 1979-
evolution of fire activity. 2013
Burned area (B) Total ﬁr.e affec‘ted‘ z‘1rea, regardless
of size or ignition source
Fire counts Number of fires by grid
. . 1988-
3r. Analysis of spatial-temporal Fire presence or | Recoded into a binary presence or 2010
Changes in the fOle Of anthropogenic absence absence Of ﬁre recorded 1988_
drivers on wildfires.
Combination of two periods, two 2013
25 subsets of
seasons, two causes and three fire
occurrence .
sizes.
Fire frequency Total number of fires, regardless
() of size or ignition source
4, Characterize the dynamics of Total fire affected area, regardless 1974-
. Burned atea (BA) ) L
recent-future fire regimes and know the of size or ignition source 2015

drivers of their changes.

Burned area from
natural fires

(BAL)

Opverall burned area from fires
triggered by lightning
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Burned area from Opverall affected area from fires

large fires above 100 ha, regardless of
(BA100) ignition source
Number of fires occurred in
Winter fire autumn-winter season, (W)
frequency (FW) regardless of size or ignition
source

In total, the calculation of fire occurrence (a total of 229,068 fires in the period 1974-2015, excluding small
fires —i.e. less than 1 ha) was constructed by the method developed by De la Riva et al. (2004). This method
consists in spatializing fire data as an input for fire modeling by using a kernel approach to interpolate
historic fire observations. In terms of monthly mean and total values of the main fire features, a double
annual peak can be found (the highest is usually found in August, with a second one in March, see Table
3). However, the second peak disappears for the area burned by large fires (>100 ha) and those caused by
lightning, the latter showing a displacement of the summer peak to July.

Table 3. Summary of monthly mean, standard deviation (sd) and total number of fires and burned area for each
tire feature in the period 1974-2015 (small fires less than 1 ha are excluded).

Fire feature Month Mean Sd Total
January 0.05 188.33 7,199
February 0.13 479.82 18,691
March 0.24 754.77 33,329
April 0.12 428.94 17,311
May 0.06 135.09 7,921
. June 0.07 163.06 9,892
Fire frequency
July 0.17 387.86 24226
August 0.34 675.74 47,657
September 0.29 808.65 40,296
October 0.09 398.99 13,160
November 0.03 103.22 3,979
December 0.04 167.94 5,407
January 2,477.85 3,278.01 104,069.51
February 6,133.04 8,977.37 257,587.55
March 11,321.46 11,995.31 475,501.25
April 6,277.16 7,694.76 263,640.90
May 2,985.79 4,329.85 125,403.29
June 5,778.87 9,068.18 242,712.68
Burned area
July 28,265.16 37,616.06 1,187,136.62
August 44,804.75 34,226.26 1,881,799.50
September 25,413.33 35,333.18 1,067,360.03
October 7,011.48 12,163.58 294,482.01
November 1,865.65 3,731.95 78,357.49
December 3,024.84 5,501.75 127,043.30
January 1,004.03 1,775.17 42,169.42
Large burned area (> 100 has) February 2,349.64 4,567.64 98,684.74
March 3,859.71 4,371.90 162,107.73
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April 2,623.81 428210 110,199.93
May 1,520.87 3,105.52 63,876.42
June 4,033.21 8,588.28 169,394.96
July 23,179.12 35,556.11 973,523.08
August 34,094.29 27,675.81 1,431,960.15
September 16,189 25,104.63 679,938.17
October 4,087.58 7,829.04 171,678.17
November 1,071.2 3,344.38 44.990.17
December 1,795.32 3,886.1 75,403.49
January 0.39 1.51 16.50
February 5.01 22.38 210.30
March 38.91 226.98 1,634.38
April 20.30 53.86 852.43
May 49.33 93.17 2,071.79
June 593.73 1,194.33 24.936.83
Natural burned area
July 5,772.42 16,780.78 242,441.65
August 2,469.47 4,578.96 103,717.77
September 523.36 1,081.92 21,980.98
October 16.06 46.77 674.57
November 5.89 30.26 247.40
December 0.22 0.76 9.30

On the other hand, several explanatory variables can be taken into account when addressing a fire regime
characterization. These are usually divided into two groups: natural and human. In the first case, factors
related to environmental conditions were selected to represent the general climate gradients and fire-
weather. The second group refers to anthropogenic conditions related with the fire ignition and were
chosen on the basis of other previous research (Rodrigues et al 2014).

4.1.3. Climate and weather

Climate data were extracted from MOTEDAS (Monthly Temperature Dataset of Spain) and MOPREDAS
(Monthly Precipitation Dataset of Spain) datasets. These databases provide monthly climate information at
a spatial resolution of 10 x 10 km. They were constructed from real measurements from the Spanish
Meteorological Network of weather stations in the period 1951-2010 (Gonzalez-Hidalgo et al., 2015, 2011).
MOTEDAS and MOPREDAS stand out as one of the most accurate databases in the context of climate
data for mainland Spain.

Their development was based on the reconstruction of a meteorological data time series from each weather
station in the region. This process includes a quality control, consisting of two steps: suspect data
identification and inhomogeneity detection. Firstly, a set of reference series was calculated for each original
station by means of a monthly correlation matrix between the candidate series and all the others, and
selecting the neighboring series with the highest positive monthly correlation coefficient (mean greater than
0.60 and 0.50, for MOPREDAS and MOTEDAS, respectively) within a critical threshold distance of 25
km (for MOTEDAS) and 50 km (for MOPREDAS). The minimum overlapping period required for the
correlation computation was set at 7 years from MOTEDAS and 10 years for MOPREDAS.
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To assess the suspect data, authors use both ratio and inter-quartile methods, as well as direct and inverse
ratios to avoid the zero effect. On the other hand, for homogeneity analyses they applied a combination of
tests: Single Normal Homogeneity Test -SNHT, Bivariate, t-Student and Pettit test. Finally, in order to fill
the gaps in the data, the method consists in producing a combination of neighboring series with no
overlapping periods.

The final database of MOTEDAS consists of 3,066, and MOPREDAS of 2,670 selected homogenous
series without suspect data from the different stations of AEMET (Agencia Estatal de Meteorologia). After
interpolating the stations’ data onto the 10 x 10 km grid cells, using an improved version comprising a
combination of two weights: one radial weight with a Gaussian shape, and an angular weight. The radial
weight prevents undesired exchange of information between different climatic regions, and between either
side of the largest mountain chains. The angular weight avoids undesired overweighting of the areas with

the highest station density. The mean number of stations involved in the estimation of each grid is
approximately 4 for MOTEDAS and 6 for MOPREDAS.

For the first objective of this dissertation, monthly data on annual average maximum temperature (T -
Figure 4) and total precipitation in mm (P - Figure 5) in the period 1974-2010 were extracted and adapted
to the fire grid using a nearest neighbor procedure. Both maximum temperature and precipitation were later
reclassified into 10 homogeneous (equal interval) categories used to construct climate codes for the later
fire features relationship plots.
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Figure 4. Spatial distribution of average maximum temperature (in °C) from
MOTEDAS.
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Figure 5. Spatial distribution of total precipitation (in mm) from MOPREDAS.

The ERA-Interim Reanalysis datasets produced by the European Centre for Medium-Range Weather
(ECMWTF) dataset (Dee et al., 2011) was used to construct three different fire danger indexes (Fire Weather
Index: FWI, US Burning Index: BI and Australian McArthur Forest Fire Danger Index: FFDI) necessary
to achieve the 2* objective. The main reason for this choice was due to the fact that this source has a higher
spatial and temporal resolution (around 78 km). More specifically, 3-hourly 2 m air temperature, dew point
temperature, surface total precipitation, and 10 m wind components were extracted to derive the following
climate variables: maximum and minimum temperature, maximum and minimum relative humidity,
maximum wind, total daily precipitation amount and total daily precipitation duration (see Jolly 2015 for
more details).

The WorldClim database is an interpolate climate surface for global land areas at a spatial resolution of 1
km (Hijmans et al., 2005). Monthly precipitation and mean, minimum, and maximum temperature were
included as climate elements, and all input data came from different sources, restricted to all records for the
1950-2000 period. WorldClim was particularly chosen to create the Australian McArthur FFDI, providing
the annual mean precipitation data, which when combined with the ECMWTF maximum daily precipitation
and temperature, produced the Drought Index (see Figure 2 in Chapter 6 and Jolly et al. (2015) for further
details on the calculation process). It is therefore part of the achievement of the third objective of this
dissertation.

4.1.4. Anthropogenic drivers

The first of the human drivers refers to land use data, and was retrieved from Corine Land Cover 1990
(CLC), since it is centered on the study period. CLC information was used to outline the Wildland-
Agricultural Interface (WAI) and the Wildland-Urban Interface (WUI), two variables strongly related to
anthropogenic ignitions (V. Leone et al., 2009; Martinez et al., 2004; Rodrigues et al., 2014). WAI represents
the length of the boundary between agricultural and wildland areas, and WUI, the length between populated
and wildland areas. Both were calculated at fire grid level (Rodrigues et al., 2016).
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On the other hand, in order to represent the human pressure over the wildlands, we have chosen the
Demographic Potential (DP), which is an aggregate index for the ultimate future potential of the population,
was retrieved from (J. L. Calvo and Pueyo, 2008) and based on the following formula:

n

POTi=Z<%>+Pi (1)

j=1 Y

where POT; is the population potential accumulated in cell 7, P; are the inhabitants counted in each of the
temaining accounting cells of the system and P; are those of cell 7 itself, while & is the kilometre distance
between each pair of cells 7 and /.

In the cartographic values of POT,, those corresponding to its own resident population (P) plus those
inferred by the res? of the system as a consequence of its positioning in the whole are accumulated, obtained
by the sum of the population values of P divided by the distances () to which each accounting cell () is
divided with respect to (7), and the latter elevated to an exponent, which in this case is 2, coinciding with
the gravitational formula proposed by Newton.

The demographic potential in 1991 was used at a spatial resolution of 5 x 5 km, later rescaled to the fire
grid as the average value inside each cell (Figure 6). WAI, WUI (Figure 7 and Figure 8, respectively) and
DP were normalized to a 0-1 interval and then aggregated to develop a Human Pressure Index (HPI, Figure
9), representing the overall pressure of human activities likely to result in fire ignition.
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Figure 6. Spatial distribution of the Demographic Potential (DP) in 1991.
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Figure 7. Spatial distribution of the wildland agricultural interface (WAI) length in
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Figure 8. Spatial distribution of the wildland urban interface (WUI) length in meters.
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Figure 9. Spatial distribution of the Human Pressure Index (HPI).

Two variables regarding topography were obtained: elevation (Figure 10) and slope (Figure 11). The first,
corresponds to the height above sea level in meters and the second, the inclination of the relief in
percentages. Both variables were obtained initially from the digital elevation model GTOPO30 at 1 km of
spatial resolution, resampled to a 10x10 km grid using the average value of the pixels (both forest and non-
forest).
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Figure 10. Spatial distribution of mean elevation per grid (in meters).
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Figure 11. Spatial distribution of the mean slope per grid (in percentage).

4.2. Modelling techniques

In this thesis a wide range of techniques were employed, ranging from those more related to the description
and exploration of fire features, to the most advanced, such as trend detection, the classification of fire
regimes and regression incorporating driving factors. Therefore, the methodological complexity of the
thesis must be emphasized, with almost 20 different methods comprising the body of the research.

4.2.1. Descriptive and explorative

With the first objective of identifying the contribution of fire regime features from each region and season,
a Principal Component Analysis (PCA) was carried out. PCA is a classic statistical technique that has been
widely used in many research fields, and wildfire modeling is no exception. However, most of the examples
of PCA applied to fire science are concerned with synthesizing or reducing the amount of information for
regression purposes (Francos et al., 2016; Fréjaville and Curt, 2015; Marcoux et al., 2015; Xu et al., 2000).
It is even less common to apply PCA to a fire regime features analysis, even though some examples can be
found in Drobyshev, Niklasson, and Linderholm (2012) and Quazi and Ticktin (2016). A PCA estimates
the common factors explaining the variance of the input parameters. Initially, variables must be
standardized so that each one has mean zero and unit variance, regardless of its scale. This ensures that all
variables have the same weight in the analysis (Mardia et al., 1979).

More specifically, a multi-group PCA (MGPCA) procedure, evolved from the classic PCA (Krzanowski,
1984), was implemented. MGPCA can be considered a development of a common principal components
analysis (CPCA) of multi-group dataset components analysis proposed by Flury (1984). CPCA is defined
as a generalization of PCA to a multi-group setting. This consists in examining the variance-covariance
matrices linked to the groups and secking common orthogonal vectors of loading associated with the
components in the groups. However, determination of the common vectors of loadings, which is based on
maximum likelihood estimation, leads to a complex algorithm which is time consuming and whose
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convergence is not guaranteed. MGPCA is simpler and more straightforward than CPCA (Eslami et al,,
20132a). MGPCA can deal with the variance-covariance between different groups (in our case regions and
seasons). Hence, it is more suitable for group comparison (Eslami et al. 2013a, 2013b) than ordinary PCA.
MGPCA was applied by dividing fire data into 6 different groups, one per region (NW, HL. and MED) and
season (spring-summer and autumn-winter).

The Kaiser Criterion (Kaiser, 1960) was applied to MGPCA outputs, thus retaining only those principal
components (PCs) with eigenvalues greater than 1. Following this, a Varimax Rotation (VR) procedure was
applied to determine the correlation between input variables (fire regime features) and PCs. VR consists of
a PCA coordinates transformation which maximizes the sum of the variance to obtain higher or near-zero
coefficients, thus with fewer intermediate values. Consequently, PCA results become easier to interpret
(Horst, 1965; Kaiser, 1958). For each PC, the most representative fire regime features were selected,
identified and as those with a coefficient furthest from 0. These features were the main contributors to the
behavior of fire activity in time (season) and space (region) and thus were key parameters in the definition
of fire regimes.

On the other hand, for the first objective, a classic PCA was carried out on Sen’s slope values in order to
synthetize the changes detected. Furthermore, the temporal behavior was retrieved from PCs on an
additional map (see Figure 5, Chapter 5, page 67). Eigenvalues from PCs 1 and 2 were classified into four
categories according to their sign (positive or negative trends) and significance level (above (significant) or
below (non-significant)) a 90% confidence interval. PCs 3 and 4 were only shown when significant. In this
way, homogenous areas according to the observed temporal evolution were outlined.

Correlation

Cross-correlation (CC) is a standard method that estimates the degree of similarity between two discrete
time sequences (x and y) as a function of the displacement (lagged or the delay in synchrony of two temporal
events) of one relative to the other (Venables and Ripley, 2002). The CC determined the extent to which
weather controls the temporal evolution of the main fire regime features, more specifically, the intra-annual
(seasonal) fluctuations of fire activity. To answer this question, CC was conducted at a regional level using
the seasonal component from STL. The formula (4 and 5) followed for the definitions of the lags was
established by Venables and Ripley (2002) who extended it to several time seties observed over the same
interval:

Y () = cov(X;(t+ T),X;(T)) (2)

min(n—tn)

1 _ _
Gy (0 =~ Z [Xi(s + 1) = X{][(X;(s) = X;)

s=max(1,—t)

(3)

where X and Xjare the two different time series, t is a particular observation, T is the whole time seties, s
is the scale estimator, c is the correlation or covariance of these observed pairs. In this case, autocorrelation

is not symmettic in #for 7 # /.
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This seeks the association between time series of fire activity (y) in relation to past lags in each fire danger
index (x). A set of 4 lags (0, 1, 2 and 3 months) was established as the maximum time window of weather

influence.

To identify spatial patterns in fire-weather associations, we applied a correlation analysis at 10x10 km pixel
level by means of the Pearson’s R correlation coefficient (Best and Roberts, 1975; Hollander and Douglas,
1973). Pearson’s R is a parametric statistical test that indicates the extent to which two variables are lineatly
related. The test requires at least one of the variables to be normally distributed and, in this case, the three
fire danger indexes (FWI, BI and FFDI) fulfil this requirement. Pearson’s R ranges between +1 and -1,
where +1 is perfect positive linear correlation, 0 is no linear correlation, and -1 is negative linear correlation.
Pearson’s R was calculated and mapped at grid level for each fire-activity subset reporting the R correlation
coefficient and its statistical significance (p < 0.05). This process was repeated using each weather index.

Multidimensional scatterplots

The visual examination of the relationships between climate/human variables and fire features was
considered highly significant. Therefore, multi-dimensional scatterplots (MDS) were used. The construction
process is as follows: (i) each grid cell in the study area was coded according to its respective combination
of reclassified (from 1 to 10, see Table Al in Appendix A) temperature and precipitation (henceforth
referred to as climate code); (i) cells were then grouped on the basis of their respective climate code; (iif)
fire regime features and Human Pressure Index (HPI) were aggregated as the sum and average value
respectively; (iv) multidimensional scatterplots were constructed. Two-dimensional climate space was
created on the basis of climate codes for each region and season. On each plane, two additional variables
were then plotted. Fire frequency is always represented by proportional circles. Next, another fire regime
feature was plotted on the fire frequency circles using different color schemes. This led to multidimensional
scatterplots, each one representing four variables (dimensions) in a single plot. Furthermore, in order to
explore the relationship between the human pressure index, fire occurrence and climate, additional MDS
were constructed representing HPI instead of fire features. HPI was, therefore, only compared to climate

and fire frequency, as it mainly linked to fire occurrence.

This kind of analysis proved its potential for identifying relations amongst vegetation, climate and fire in
Whitman et al. (2015). However, in this case, a climate space was not included, but two climate gradients
(temperature and precipitation) were used instead. The goal was to determine the extent to which fire

regimes are controlled by either environmental, human or both factors.

4.2.2. Time series analysis

Change point detection

Change detection or change point recognition aims to identify times when the probability distribution of a
time series changes. In order to detect change points in fire features time series four different tests were

applied.

- The Pettitt test is a non-parametric method commonly applied to detect a single change-point in
hydrological or climate series with continuous data (Pettitt, 1979). It tests the Hy (no change) against the
alternative Hy (a change point exists). One of the advantages of this technique is its robustness to deal
with outliers. In the context of wildfire science, the Pettitt test has previously been applied to detect fire
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regime shifts as a consequence of policy and socioeconomic development in (Pezzatti et al., 2013) and
(Moreno et al., 2014).

The Pettitt test is calculated using the following equation:

t T
ULT = Z Z sgn(Xi — X)) (4)
=14 j=t+1

where sgn(X) =1 for X >0, 0 for X = 0 and -1 for X <0, and T is the length of the time series in years.
The probability of a significant change existing is calculated as follows:

—6 - UZ
p(t)zl—exp(ﬁ) )

where | U, T|reaches the maximum value where the most significant change point is found (Pettitt,
1979). This methodology can identify the most probable change point for each fire feature by region
and season, in the period examined. A specific function has been developed in R environment to
calculate the change point using the Pettitt approach.

As an alternative method to the Pettitt test, three additional algorithms were applied; more specifically, the
¢pt.meanvar function to identify changes in mean and variance, by calculating the optimal positioning of a
change point for the input data (Chen and Gupta, 2000):
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AMOC (at most one change) method is the simplest expression of the change detection algorithms

trom the changepoint R package v2.2.2. It can detect a single change point (Hinkley, 1970), much the same
as the Pettitt test.

PELT (pruned exact linear time) is one of the most widely used methods for change point detection. It
can detect multiple change points in large data sets (Killick et al., 2012), unlike the Pettitt test or AMOC.
It includes an enhanced optimal partitioning, leading to a substantially more accurate segmentation. This
ensures minimum change point detection in a time series, regardless of the applied penalty value. Thus,
PELT is known as a more precise algorithm, usually outperforming other methods such as binary
segmentation. The CROPS (change points for a range of penalties) penalizing type was selected. The
lower the pen.value is, the higher the numbers of change points detected. For this reason, we chose
many different minimum pen.values, in order to find at least one, or no more than two, break-points.
One of the advantages of this last option avoids continuous false change points commonly found at the
beginning/end of the time seties (for example, many cases with the AMOC algorithm).

BinSeg (binary segmentation) is an effective method for multiple change point detection (Scott and
Knott, 1974). It searches for the first significant change point in a sequence, then breaks the original
sequence into two sub-sequences: before and after the first significant change point. The procedure tests
the two sub-sequences separately for a change point, with the process repeated until no further sub-
sequences have change points (Chen and Wang, 2009). In this case, a possible change point limited in 1
(Q= 1) was previously defined to obtain only the most significant. To this end, the default penalty
parameter MBIC (modified Bayes information criterion penalty) was chosen, which has proved effective
in reducing overestimation in the number of change points and often detects the correct model (Bogdan



Chapter 4: Materials and methods

et al., 2008). Therefore, there is no need to select a penalty value; hence in all the cases, this value is
automatically established as 14.8.

Mann-Kendall and Sen’s slope tests

Once the change detection procedures were implemented to determine if and when a certain fire feature
has undergone a significant change across the study period, new questions arose: does it imply an increase
or decrease in the values of that feature? Moreover, how strong is that change? Is the change stationary or
does it vary over space? To answer all these questions, a combination of Mann-Kendall (MK) and Sen’s
Slope (SS) tests were used.

MK is a non-parametric statistical test appropriate for identifying trends in time series of data (Kendall,
1975; Mann, 1945). It is suitable for detecting linear or non-linear trends (Hisdal et al., 2001; Wu et al.,
2008). In this test, the null (Ho) and alternative hypotheses (Hi) are equal to the non-existence and existence
of a trend in the time series of the observational data, respectively. Previous studies by San-Miguel-Ayanz
etal. (2012) and Rodrigues et al. (2013) support the use of MK in the context of wildfire science. MK main
outputs are the t value and its associated significance level (p value). t can be used to determine the sign of
the trend, i.e. upward (t > 0) or downward (t < 0). Trends are considered significant when p-value < 0.05.
To facilitate the interpretation of MK outcomes, an aggregated parameter was calculated combining the t
and p value, the so-called “signed p-value”. It combines information on both sign and significance,
calculated as the multiplication of the significance level either by 1 when © > 0 or by —1 when 1 < 0.

The magnitude of the change was subsequently assessed by means of the SS (Sen, 1968), a non-parametric
alternative for estimating the median slope joining all possible pairs of observations, which enables a
comparison of the magnitude of the detected trends. Both MK and SS were calculated for all fire features
by region and NUTS3 level and for both seasons.

Seasonal-Trend Decomposition

In order to address the relationship between time series of fire activity (overall fire frequency and burned
area) and weather, indices were decomposed using Seasonal-Trend Decomposition (STL; Cleveland et al.,
1990). STL is a very versatile and robust method to divide time series by detecting both gradual changes
(trend) and cycles (season). More important, decomposing enables further analysis such as cross-correlation
(CC) whose performance is affected by underlying temporal structures; hence it is strongly recommended
that time series are de-trended beforehand.

STL consists in a sequence of Locally Weighted Regression Smoother (LOESS) procedures that split a time
series into three components: trend, season and remainder (see Figure 12). For a detailed description of the
algorithm see Cleveland et al. (1990). To facilitate understanding, season, trend and remainder will mean
the following:

e Season: the component obtained that exclusively represents the positive and negative peaks of the
detected seasonal cycles within the year.

e Trend: the component extracted from the time period that only takes into account the inter-annual

evolution throughout the same, disregarding seasonal cycles.
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¢ Remainder: the component that is left over from the two previous ones, and which therefore can
be understood as anomalies or extreme events (both exceptionally high and low values) that are
outside the average values of the trend and seasonal time series.

Original time series z I
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Figure 12. Example of fire frequency time series decomposition in the Mediterranean region of mainland Spain.

Autocorrelation Function (ACF)

This is one of the simplest methods to check that a time series fulfills the characteristic of being stationary.
Specifically, the idea is to observe whether every signal differs by a high degree of 0 for each time lag. With
this purpose in mind, the ACF signal graph is visualized. In particular, a stationary signal produces few
significant delays exceeding the ACF confidence interval. In comparison, another time series with a trend
would show that, in most of its time lags, the confidence interval of the ACF is exceeded.

Autoregressive Integrated and Moving Average (ARIMA)

To forecast the evolution of fire features, a set of auto-regressive, integrated and moving average (ARIMA)
models were employed. They can be viewed as a “filter”” that tries to separate the signal from the noise, and
the signal is then extrapolated into the future to obtain forecasts. Their main advantage is that they adjust
exclusively to the historical series of the input variable, which greatly reduces the complexity of the analysis,
since it is not necessary to incorporate other explanatory variables. However, the main condition of ARIMA
models is that time series are stationary, i.e. constant in mean and variance. As this condition is very difficult
to find, all fire feature time series were previously transformed through the square root and then a de-
transformation was applied to return to their original units. The future target period was set at 2016-2030,
so that it would be the same length as the rest of periods. This exploration presupposed a continuous
scenario in which it is assumed that the evolution of the factors associated with fire activity develop as
observed in the whole historic period (1974-2015).

Monthly time series of fire features for the current period (1995-2015) were entered into the ARIMA. The

reason was to include the seasonal component (intra-annual peaks and drops) because they would offer
more information to the model so that the future projection would be as consistent and realistic as possible.
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ARIMA offers several output data, the most important of which was the mean of the forecast, as well as
the upper and lower limits of two confidence intervals (80% and 95%).

An automatic ARIMA was applied to obtain future fire regime features, returning the best model according
to the minimum Akaike information criterion (AIC) value, so its algorithm automatically calculates the p, 7
and g parameters. As reported by Hyndman and Khandakar (2008), the seasonal ARIMA formula is
established as follows:

®(B™B(B)(1—B™P(1 - B)y, = c+60(B™I(B)e, (6)

where ®(z) and O(z) are polynomials of orders P and Q respectively, each containing no roots inside the
unit circle. If ¢#0, there is an implied polynomial of order d + D in the forecast function. The main task in
automatic ARIMA forecasting is selecting an appropriate model order, that is the values p, q, P, Q, D, d.
When d and D are known, the rest of orders are chosen following an information criterion such as the AIC:

AIC= —2log(L) +2(p+q+P+Q +k) (7)

where k=1 if ¢ # 0 and 0 otherwise, and L is the maximized likelihood of the model fitted to the

differenced data (1 — B™)P(1 — B)%y,. The likelihood of the full model for y; is not actually defined
and so the value of the AIC for different levels of differencing are not comparable. In order to overcome
this difficulty, for our case of seasonal data, we selected the seasonally differenced data D =1.

4.2.3. Classification and regression

Clustering

The fire regime delimitation was done by Ward’s clustering method from the NbCiust R package. This
package provides a total of 30 indices for choosing the most adequate number of clusters and proposing
the best clustering scheme from the different results obtained by varying all combinations of clusters
(minimum and maximum desired), distance measurements and clustering methods. After several trial-and-
error changing function parameters and according to the results obtained, the minimum and maximum
number of clusters was established at 5 and 7, respectively. The distance selected was Canberra (Cd), and
the method for the clustering outlined was Ward.D2. Cd was proposed by Lance and Williams (1967) and
examines the sum of series of a fraction of differences between the coordinates of a pair of observations
(Teknomo, 2015). In general, the Cd terms with zero numerator and denominator are omitted from the
sum and treated as if the values were missing (Charrad et al., 2014). The formula of Cd is as follows:

a ...
lxj — yjl

cd (x, = T
(%.) & |l + 1yl (8)

where x7 is the first observation with coordinates of the features and y/ is the second observation with its
corresponding coordinates of the same features. Each term of fraction difference has value between 0 and
1, although in itself it is not really between zero and one. If one of coordinates is zero, the term becomes 1
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regardless of the other value, thus the distance will not be affected. Consequently, Cd is very sensitive to a
small change when both coordinates area near to zero. Therefore, Cd has the advantage of not being
affected by the presence of zeros, which are abundant in some cells of the study area, more especially in
fire features such as natural burned area and large burned area (above 100 has).

At each step the pair of clusters is chosen which leads to a minimum increase in the total within-cluster
variance after merging. The Ward. D2 option implements Ward’s clustering criterion in which the
dissimilarities are squared before clustering updating.

K-Nearest Neighbor

In order to transfer current fire regime clusters for the remaining time periods (past and future), a KNN
classification was performed. KINN is a nonparametric technique used in statistical estimation and pattern
recognition (Ripley, 1996) widely used since the 1970’s. The current period was taken as a benchmark,
because it has more robust and reliable data. KNN trains for each grid in the test dataset (past and future
fire features), finds the nearest K by a distance measure (Canberra distance), and the cluster class is decided
by a majority vote of its neighbors. The K parameter means the maximum number of nearest neighbors
considered in the algorithm (Venables and Ripley, 2002), being set in 5.

Generalized Additive Models (GAM)

In order to fulfil the first research objective for unravelling potential cause-and-effect relationships between
fire features and climatic/human variables, several GAM regressions wetre calibrated for each
Multidimensional Scatterplot (MDS) subset. Generalized Additive Models (GAM) are Generalized Linear
Models (GLM) in which the usual linear relationships between the response and predictor variables are
replaced by non-linear ‘smooths’ (Hastie and Tibshirani, 1986; Jones and Almond, 1992). The same as
GLM, GAM can use probability distributions other than Gaussian, so we applied Negative Binomial to
model the number of fires (N) and log linear distribution in burned area variables (B500, BL). NB is
particularly suitable to deal with zero-inflated response variables, as is the case of N (Boadi et al., 2015). On
the other hand, we applied a log linear family in burned area fire features (Hernandez et al., 2015). Model
selection, is based on the reduction of Generalized cross validation (GCV, Craven and Wahba, 1978; Golub
etal., 1979). GVC determines the optimal amount of smoothing and estimates the mean squared prediction
error over all datasets where a single observation is omitted from the model fitting, and then predicted
Deviance is explained (analogous to variance in a linear regression) and partial effects in the predictors were
also calculated. All analyses for GAM modeling were conducted using the R package mgev, version 1.8-9.

Random Forest

In order to assess the role of the drivers in fire regime change, we selected Random Forest (RF; Breiman,
2001) as the modeling algorithm, given its proven predictive accuracy (Bar Massada et al., 2011; Leuenberger
et al., 2018a; Rodrigues and de la Riva, 2014a). RF is a tree-based ensemble algorithm that trains multiple
decision trees by randomly bootstrapping the training sample, keeping 67% of the observations to train the
decision tree and the remaining 33% (Out-of-bag, OOB) to evaluate the relative influence of the predictors
and the model itself. The final stage assembles all trees into a final prediction as the average of all individual
tree predictions (Bagging, Breiman, 2001).
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For each fire regime transition type, we trained and validated 100 RF models, using a random sample of
70% for training and the remaining 30% for testing the performance of the model. At the training stage,
we conducted a 10-fold calibration procedure to identify the optimal parameters (wzry and ntrees) of the
model. At the same time, we also evaluated the influence of each driver by calculating the percentage
increase in the Mean Square Error (normalized between 1 and 0), and its explanatory sense by means of
partial dependence plots (J.H. Friedman, 2001). To estimate the predictive performance of each model
carried out, we calculated the Area Under the Receiver Operating Characteristic Curve (AUC; Bradley,
1997). Additionally, the explanatory sense of the covariates (either positively or negatively related) was
explored by visual inspection of partial dependence plots.

Geographically Weighted Regression Models (GWLR)

GWR is a statistical technique for exploratory spatial data analysis developed within the framework of Local
Spatial Models or Statistics. Local models could be described as the spatial disaggregation of global statistics
whose main characteristic is that it is calibrated from a set of spatially limited samples and, hence, yielding
local regression parameter estimates (Fotheringham et al., 2002). Therefore, GWR techniques extend the
traditional use of global regression models, enabling local regression parameters to be calculated.
Mathematically, a conventional GWR is described by the following equation:

yi= Zﬁk(ui_vi)xk,i'F gi (9)
k

where ;, xx;, and & are dependent variables, £, is the independent variable, and the Gaussian error at
location #(, v) is the x—y coordinate of the 7, location; and coefficients B (#, ) ate varying conditionals on

the location.

Such modeling is likely to attain higher performance than traditional regression models, and reading the
coefficients can lead to a new interpretation of the phenomena under study. However, GWR models are
not just a simple local regression model like, i.e., moving window regressions. In a moving window example,
a region is drawn around a regression point and all the data points within this region (neighborhood) or
window are then used to calibrate a model. This process is repeated over all the regression points, resulting
in a set of local regression statistics. However, in this example, each point within the neighborhood is treated
equally for regression purposes, no matter its distance to the target regression point. GWR overcomes this
limitation by applying a distance weight pattern; hence, data points closer to the regression point are
weighted more heavily in the local regression than data points farther away. In addition to the regression
coefficients, a GWR model calculates several useful statistical parameters to analyze the spatial behavior of
each explanatory variable, such as the value of the Student’s t test, which is used to determine the level of
significance. On the other hand, GLLM approaches such as Geographically Weighted Logistic Regression
(GWLR) and Geographically Weighted Poisson Regression (GWPR) have been incorporated to GWR to
extend its functionality (Fotheringham et al., 2002; Nakaya and Fotheringham, 2009). The GWR approach
has been already been explored in several papers such as Koutsias, Martinez-Fernandez, & Allgéwer (2010),
Martinez-Fernandez et al. (2013) and Rodrigues et al. (2014). These two methodologies—GWLR and
GWPR—are used in this study to complement the results from GLM. Several parameters have been
included when calibrating GWR models. Kernel shape and type, bandwidth selection and optimization
parameters, or the local or global nature of the predictors (see Nakaya and Fotheringham, (2009) for further
details of both method and software). In this project, GWR model fitting was carried out using Fixed
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Gaussian Kernel bandwidth, optimized according to the value of AlCc, considering all the predictors as
local covariates.
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CHAPTER 5: SPATIAL-
TEMPORAL DISTRIBUTION OF
FIRE REGIME FEATURES

This chapter describes the results, discussion and main
conclusions obtained from the analyses related to the
identification of the major fire regime features and their temporal
dynamics. We evaluate the relationships of fire features with
climate gradients and human pressure, as well as the assessment
of the contribution of small fires into the fire regime
characterization. Multi-Group Principal Component analysis,
GAM models, change point detection methods, Mann-Kendall
and Sen’ slope have been applied to fire features at regional and
provincial level. The main goals are: describe and characterize
the fire regime, identify its shifts and trends, determinate the
extent to which fire regime is linked to climate-human factors
and discover potential relations in the evolutions of fire features.
Therefore, we seek to improve the understanding of the spatial-
seasonal patterns of the key fire regime features.
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Understanding fire regime is a crucial step towards better knowledge of the wildfire phenomenon. However, the
concept itself, in spite of its widespread use, still lacks a clear, widely accepted definition and there is no general
agreement on which features define it best. In this paper we provide an in-depth characterization and description
of fire regimes in three regions — Northwest, Hinterland and Mediterranean — comprising the whole of mainland
Spain, to identify their key features. Data on number of fires, burned area, fire season and cause are retrieved
from historical fire records for the period 1974-2010. Specifically, fire frequency, burned area, number of
natural/human-caused fires, burned area from natural/human-caused fires, number of large fires (=500 ha),
and burned area from large fires were examined for each region and fire season. We used a multi-group Principal
Components Analysis approach to determine the importance of each fire regime feature. Next, climate and
socioeconomic variables were explored using Multidimensional Scatterplots and Generalized Additive Models to
find the extent to which fire regimes are controlled by either environmental, human, or both factors. Results
revealed differences among regions and seasons in terms of the characteristics of their respective fire regimes.
However, several common features have been identified as key components of fire regimes, regardless of region
or fire season: fire frequency, number of large fires, and burned area from natural fires. In addition, results
confirm that fire regime in the Northwest area mainly depends on human activity, especially during winter, in
contrast to the Mediterranean region.

1. Introduction

regime should be characterized, hence the term itself still lacks a clear
and well-known definition (Krebs et al., 2010), although there is a list

Wildfires are one of the major environmental disturbances world-
wide, playing an important role in determining the structure and
functioning of many ecosystems (Archibald, Lehmann, Goémez-
Dans, & Bradstock, 2013; E. Chuvieco, 2009b; Ganteaume et al., 2013;
Pausas & Fernandez-Munoz, 2012). Understanding the complex inter-
actions of factors involved in wildfire activity still remains an unbeaten
challenge, which usually involves dealing with complex interactions
among numerous variables (Krawchuk, Moritz, Parisien, Van
Dorn, & Hayhoe, 2009). In this regard, the analysis of fire regime is a
crucial step towards a better comprehension of wildfires. This is espe-
cially relevant in the case of Spain, one of the most fire-affected areas
within the European Mediterranean region in terms of annual cumu-
lative burned forests (Darques, 2016).

Fire regime is usually defined as the average conditions of fire that
are persistent and consistent within a particular area and over a given
period (Chuvieco, 2009a, 2009b; Krebs, Pezzatti, Mazzoleni,
Talbot, & Conedera, 2010). However, there is no agreement on how fire
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of potential variables describing fire regime commonly accepted (Pyne,
Andrews, & Laven, 1996). Among the great variety of fire regime
characteristics that are generally described, we found those such as
frequency, seasonality, size, type, severity or intensity (Whitman et al.,
2015). It is widely thought that fire regime components have been —
and still are — highly variable across time and space (M. V. Moreno,
Conedera, Chuvieco, & Pezzatti, 2014). Several studies have demon-
strated that global fire regime has moved from being essentially con-
trolled by climate factors to become more dependent on human activity
(Chuvieco, 2009a, 2009b; Pechony & Shindell, 2010), thus evolving
from natural to human fire regime. On a regional scale, and particularly
in the case of Spain, climate still influences fire regimes. However,
human impact has steadily gained importance over time (M. V. Moreno
et al., 2014). In this respect, human influence on wildfire usually has a
double-edge (Syphard et al., 2007). Fire suppression helps reduce the
impact of fire activity (Chuvieco, 2009a, 2009b), but simultaneously,
human pressure on wildlands is nowadays a major source of ignition
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(Wang & Anderson, 2010).

There are many factors involved when a fire regime characterization
is approached (Murphy, Williamson, & Bowman, 2011). Despite con-
siderable research being applied to distinguishing attributes belonging
to different fire regimes or fire regions, it remains unclear which fea-
tures should be included, and further research is still needed (Archibald
et al., 2013). In this regard, an approach based on inter-regional and/or
inter-seasonal comparison, such as the one we propose, might be par-
ticularly suitable. Due to the huge variability of fire activity, the best
features to characterize fire regimes should be those that best differ-
entiate regions and/or seasons. A first step toward capturing the main
contrasts between fire metrics is to divide the whole period of study
into two seasons. Even though fire seasonality has been little studied
until now, it has proven useful in analysing the influence of human
activities on fire regime (Le Page, Oom, Silva, Jonsson, & Pereira,
2010). Several authors have used different seasonal metrics as the
median day of the fire season (Whitman et al., 2015), or the length of
the fire season (Chuvieco, Giglio, & Justice, 2008) or to distinguish
between two seasons inside a year (vegetative and non-vegetative) (M.
V. Moreno et al., 2014).

In this paper we characterize and describe in detail fire regimes in
three regions — Northwest (NW), Hinterland (HL) and Mediterranean
(MED) - comprising the whole of mainland Spain, to identify their key
features. We explore several fire regime features under the premise that
there are different fire regimes across the Spanish territory, paying
special attention to seasonality, cause and the impact of large fires
(> 500 ha; San-Miguel-Ayanz, Moreno, & Camia, 2013). The assess-
ment is developed from historical fire records for the period 1974-2010
from the General Statistics Forest Fires database (EGIF). Our first goal is
to improve understanding of the spatial-seasonal patterns of fire regime
features and analyse their influence on the fire regime itself. A second
objective is to determine the extent to which fire regimes are linked to
human and/or climate factors. To achieve these goals, we examined fire
regimes from a quantitative and qualitative approach. The quantitative
approach is based in a multi-group Principal Components Analysis
which allows the most representative fire regime features to be iden-
tified and selected. In the latter, we combined the selected fire metrics
with climate and human variables, and plotted their relationships using
multidimensional scatterplots (MDS), then looked for patterns and re-
lationships among these. MDS's outputs are complemented with Gen-
eralized Additive Models in order to better describe the potential re-
lationships.

2. Materials
2.1. Study area

The study area encompasses the whole of mainland Spain (ex-
cluding Balearic and Canary archipelagos and also the autonomous
cities of Ceuta and Melilla) and covers a total surface area of
498,000 km?. From a biogeographic point of view, mainland Spain is
dominated by two different bioregions, FEurosiberian and
Mediterranean. On the one hand, the Eurosiberian region covers the
northern side of the country, including Galicia, the Cantabrian cornice
and the Pyrenees and is characterized by an Oceanic climate, domi-
nated by deciduous forest; while the Mediterranean region extends all
over the remaining territory. This region is characterized by a
Mediterranean climate, and is thus significantly drier and warmer than
the Eurosiberian region. These conditions favour complex mosaics of
plant communities of evergreen, deciduous and/or mixed forests,
scrublands or natural grasslands.

Temperatures (Fig. A2, Appendix 1) vary from annual milder values
in the NW provinces of the Eurosiberian region, dominated by an
Oceanic climate; to warmer temperatures in the MED region, char-
acterized by high annual thermal amplitude in the inner region and
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Fig. 1. Spatial distribution of the three regions and provincial division in mainland Spain.

milder conditions towards the coast. The rainiest areas (Fig. A2,
Appendix 1) are the Cantabrian cornice, and the highest mountain
ranges as Pyrenees (Eurosiberian region) and the western Central
System (inner Mediterranean region), with average values over
1000 mm per year and maximum during winter. On the other hand, the
driest areas are located in the southeast and the Ebro Valley (inner
Mediterranean region) and the province of Almeria (Mediterranean
coast). Precipitation in the Mediterranean region is irregularly dis-
tributed both in time and space, with autumn-spring maximums.
Human activity also changes its footprint across the territory. According
to Corine Land Cover 2006, in the NW area approximately 68% of the
region is covered by forests, shrubs or grassland. This land cover has
been traditionally shaped by seasonal grazing at the end of the winter.
In the HL region, there has been a progressive abandonment of agri-
cultural activity (crops and pastures) which translates to around 54% of
its territory being covered by wildland. Meanwhile, the Mediterranean
region, the most populated area, is characterized by an extended
wildland-urban interface, due to widespread urban development during
the last few decades (M. V. Moreno et al., 2014).

Due to this variety of landscapes, climate and socioeconomic con-
ditions, three different regions - NW, HL and MED — were used (Fig. 1),
following the criteria from the Spanish Department of Defense Against
Forest Fires (ADCIF). These regions outline homogeneous areas in terms
of fire activity and seasonal averages, so that they are expected to have
self-defining fire regimes (M. V. Moreno et al., 2014). The NW region
includes the Autonomous Communities of Galicia, Asturias, Cantabria
and the Basque Country, also the provinces of Leén and Zamora. This
region is located within the Eurosiberian region, excluding the Pyrenees
areas. Woodlands cover around 41% of this region which is char-
acterized by long history of agricultural burning to maintain pastures
and grasslands (M. V. Moreno et al., 2014), The HL region includes all
of the Autonomous Communities without coastline, except for the
provinces of Leén and Zamora (included in the NW region). This region,
located in the Mediterranean biogeographical region, has the greatest
woodland surface proportion of the whole country (approximately
61%) mostly due to abandonment of agricultural activities and lands
(M. V. Moreno et al., 2014). Finally, the MED region (also in the
Mediterranean biogeographical region) includes all the Autonomous
Communities along the Mediterranean coast. It has the lower woodland
proportion (roughly 22%) because of the high degree of urbanisation
and tourism development.
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2.2, Fire data

Fire data were retrieved from the General Wildfires Statistics (EGIF)
database, one of the oldest ‘complete’ fire databases in Europe (M. V.
Moreno, Malamud, & Chuvieco, 2011; Vélez, 2001). Specifically, fire
records for 1974-2010 were selected and spatialized according to the
10 x 10 km UTM reference grid (referred to as fire grid) used by
firefighting crews for approximate location of fire ignition points. Se-
lected baseline information refers to sections 0, 1, 2, 4, 5 and 9 of the
Spanish Forests Fire Reports (PIF) compiled in the EGIF database. Next,
fire count data, total burned area size, ignition triggering date and fire
cause were retrieved for each fire event, and later separated by season
and region. Note that only information about fires =1 ha was used
because small fires (=1 ha) were not fully compiled until 1988. The
temporal time span was established according to several factors. The
starting year was set as 1974, since it was the first year to use the
10 x 10 km grid. Prior to that time, fire data were only recorded at
province level, so grid information was not available. The ending year
was selected on the basis of the availability of climate data from the
MOTEDAS and MOPREDAS datasets (described below).

As stated before, regions were outlined following ADCIF specifica-
tions. In turn, two fire seasons were defined according to Moreno et al.
(2014). Thus annual data were split into a spring-summer season (S),
from April to September; and an autumn-winter season (W) from Oc-
tober to March. From all available fire data information, several fire
regime features were then constructed for each region, fire season and
grid cell: (i) fire frequency (F), calculated as the total number of fires;
(ii) burned area size (B), as the total fire affected area; (iii) number of
large fires (N500), as the total number of fires above 500 ha burned;
(iv) burned area from large fires (B500), as the total affected area from
fires above 500 ha; (v) number of natural fires, as the total number of
fires with natural cause (NL); and (vi) burned area from natural fires, as
the total burned area from fires with a natural cause (BL). Table 1
shows a statistical summary of the proposed features as well as some
additional information regarding fire events with an anthropogenic
source (NH/BH).

2.3. Climate data

Climate data were extracted from MOTEDAS (Monthly Temperature
Dataset of Spain) and MOPREDAS (Monthly Precipitation Dataset of
Spain) datasets. These datasets provide monthly climate information at
a spatial resolution of 10 x 10 km, constructed from actual measure-
ments from the Spanish Meteorological Network in the period
1951-2010 (Jose Carlos Gonzdlez-Hidalgo, Brunetti, & de Luis, 2011;
José Carlos Gonzélez-Hidalgo, Pefia-Angulo, Brunetti, & Cortesi, 2015).
MOTEDAS and MOPREDAS stand out as one of the most accurate

Table 1
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databases in the context of climate data for mainland Spain. Their de-
velopment was based on the reconstruction of meteorological data time
series from each weather station in the region. In this paper, monthly
data on annual average maximum temperature (T) and total pre-
cipitation (P) in the period 1974-2010 were extracted and adapted to
the fire grid using a nearest neighbour procedure. Both maximum
temperature and precipitation were later reclassified into 10 homo-
geneous (equal interval) categories (see Table Al from Appendix 2),
used to construct climate codes for the multidimensional scatterplots.

2.4. Land use, population and Human Pressure Index

Land use data were retrieved from Corine Land Cover 1990 (CLC),
since it is centred on the temporal span. CLC information was used to
outline the Wildland-Agricultural Interface (WAI) and the Wildland-
Urban Interface (WUI), two variables strongly related to anthropogenic
ignitions (Leone, Lovreglio, Martin, Martinez, & Vilar, 2009; Martinez,
Chuvieco, & Martin, 2004; Rodrigues, de la Riva, & Fotheringham,
2014). The first represents the length of the boundary between agri-
cultural and wildland areas, and the second, the length between po-
pulated and wildland areas. Both WAI and WUI were calculated at fire
grid level (Marcos Rodrigues, Jiménez, & de la Riva, 2016). On the
other hand, the Demographic Potential, which is an aggregate index for
the ultimate future potential of the population, was retrieved from
(Calvo & Pueyo, 2008) for 1991 at a spatial resolution of 5 x 5 km,
later rescaled to the fire grid as the average value inside each cell. WAI,
WUI and DP were normalized to a 0-1 interval and then aggregated to
develop a Human Pressure Index (HPI, Fig. 2), representing the overall
pressure of human activities likely to result in fire ignition.

3. Methods

As mentioned before, our methodology was based on quantitative
and qualitative approaches. In the first case, we used multi-group
Principal Component Analysis (MGPCA) to identity key fire regime
features and then investigated their relation to climate and human ac-
tivity, allowing us to describe and analyse fire regimes. This metho-
dological approach is based on the one described in Whitman et al.
(2015). However, instead of putting the focus on applying PCA to ag-
gregate climate information and then exploring their relationships with
fire data, we used MGPCA combined with a Varimax Rotation (VR)
procedure to identify key fire regime features and then explore their
association with raw climate and socioeconomic information. Finally,
relationships among fire regime features, climate and human pressure
were visually explored from multidimensional scatterplots representing
the qualitative approach. Additionally, MDS were complemented by a
regression analysis using Generalized Additive Models (GAM) to

Statistical summary of fire regime features 1974-2010. S: spring-summer, W: autumn-winter. In brackets: first value corresponds to inter-region percentage; and second value to intra-
region percentage. N: Number of fires, N500: Number of large fires (> 500 ha), NL: Number of fires by lightning, NH: Number of fires caused by humans, B: Total burned area, B500:
Bumned area of large fires (> 500 ha), BL: Burned area of fires by lightning, BH: Burned area of fires caused by humans. Burned area data expressed in km?,

Region Season N N500 NL NH B B500 BL BH
NwW S 98,039 513 1385 66,862 21,557 4778 472 14,212
(40.8) (61.7) (30.2) (81.9) (26.8) (96.4) (40.8) (59.1) (34.6) (71.5) (20) (82.2) (12) (98.5) (34.7) (68.5)
w 60,614 113 52 4633 8586 1.035 7 6531
(25.3) (38.2) (6.6) (18) (1) (3.6) (28.3) (40.9) (13.8) (28.5) (4.3) (17.8) (0.2) (1.5) (15.9) (31.5)
HL S 33,073 470 2492 19,289 12,958 6572 1747 7477
(13.8) (73.2) (27.6) (96.7) (48.2) (99.1) (11.8) (68) (20.8) (89.6) (27.6) (97.8) (44.4) (99.9) (18.2) (87)
w 12,114 16 23 9073 1498 148 2 1112
(5.05) (26.8) (0.9) (3.3) (0.4) (0.9) (5.5) (32) (2.4) (10.9) (0.6) (2.2) (0) (0.1) (2.7) (12.95)
MED S 28,289 513 1183 17,273 15,466 10,152 1686 10,158
(11.8) (78.7) (30.2) (87.2) (22.9) (97.4) (10.5) (77.4) (24.8) (87.5) (42.6) (89.7) (42.9) (98.9) (24.8) (87.1)
w 7635 75 32 5032 221 1165 18 1508
(3.2) (21.2) (4.4) (12.8) (0.6) (2.6) (3.1) (22.6) (3.5) (12.5) (4.9) (10.3) (0.5) (1.06) (3.7) (12.9)
Total 239.764 1700 5.167 163.859 62.275 23.85 3.932 40.998
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Fig. 2. Human Pressure Index (left) and generalized land cover from CLC 2006 (right).

provide deeper insights into the potential relationships among variables
and features, as well as determine their statistical significance. All
analyses, plots and maps were developed using the R statistical software
(R Core Team, 2016).

3.1. Multi-group Principal Component Analysis and Varimax rotation

With the objective of identifying the most representative fire regime
features from each region and season a PCA was carried out. PCA is a
classic statistical technique that has been widely used in many research
fields, and wildfire modelling is no exception. However, most of the
examples of PCA applied to fire science are concerned with synthesising
or reducing the amount of information for regression purposes
(Francos, Pereira, Alcaniz, Mataix-Solera, & Ubeda, 2016;
Fréjaville & Curt, 2015; Marcoux et al., 2015; Xu et al., 2006). It is even
less common to apply PCA to fire regime feature analysis, even though
some examples can be found in Drobyshev, Niklasson, and Linderholm
(2012) and Quazi and Ticktin (2016). PCA estimates the common fac-
tors which explain the variance of the input parameters. Initially vari-
ables must be standardized so that each one has mean zero and unit
variance, regardless of its scale. This ensures that all variables have the
same weight in the analysis (Mardia, Kent, & Bibby, 1979).

Specifically, we used a multi-group PCA (MGPCA) procedure, which
is an evolution of classic PCA (Krzanowski, 1984). MGPCA can be
considered an evolution of common principal components analysis
(CPCA) of multi-group datasets components analysis proposed by
(Flury, 1984). CPCA is defined as a generalization of PCA to the case of
multi-group setting. This consists in considering the variance-covar-
iance matrices associated to the groups and seeking common ortho-
gonal vectors of loadings associated with the components in the groups.
However, the determination of the common vectors of loadings which is
based on maximum likelihood estimation leads to a complex algorithm
which is time consuming and whose convergence is not granted.
MGPCA is simpler and more straightforward than CPCA (Eslami,
Qannari, Kohler, & Bougeard, 2013b). MGPCA allows dealing with the
variance-covariance between different groups (in our case regions and
seasons). Hence, it is more suitable for group comparison (Eslami,
Qannari, Kohler, & Bougeard, 2013a, 2013b) than ordinary PCA. We
applied MGPCA splitting fire data into 6 different groups, one per re-
gion (NW, HL and MED) and season (summer and winter).

The Kaiser Criterion (Kaiser, 1960) was applied to MGPCA outputs,
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thus retaining only those PCs with eigenvalues greater than 1. Fol-
lowing this, a VR procedure was applied to determine the correlation
between input variables (fire regime features) and PCs. VR consists of a
PCA coordinates transformation which maximizes the sum of the var-
iance, obtaining higher or near to zero coefficients, thus with fewer
intermediate values. Consequently, the interpretation of PCA results
becomes easier (Horst, 1965; Kaiser, 1958). For each PC we selected the
fire regime features with a coefficient furthest from 0, identifying them
as the most representative. We considered that these features con-
tributed the most to the behaviour of fire activity across time (season)
and space (region) and thus were key parameters in the definition of
fire regimes.

3.2. Multidimensional scatterplots

Once the key fire regime features were selected, we examined the
relationships between climate variables and fire features using multi-
dimensional scatterplots (MDS). The construction process is as follows:
(i) each grid cell in the study area was coded according to its respective
combination of reclassified (from 1 to 10, see Table Al in Appendix 2)
temperature and precipitation (henceforth referred to as climate code);
(ii) cells were then grouped on the basis of their respective climate
code; (iii) fire regime features and HPI were aggregated as the sum and
average value respectively; (iv) multidimensional scatterplots were
then constructed. We created a two-dimensional climate space on the
basis of climate codes for each region and season. On each plane, two
additional variables were then plotted. N is always represented using
proportional circles. Next, a fire regime feature was plotted on the N
circles using different colour schemes. This led to multidimensional
scatterplots, each one representing four variables (dimensions) in a
single plot. Furthermore, in order to explore the relationship between
human pressure, fire occurrence and climate, additional MDS were
constructed representing HPI instead of fire feature. HPI was, therefore,
only compared to climate and fire frequency as it mostly related to fire
occurrence.

This kind of analysis has proved its potential in identifying relations
amongst vegetation, climate and fire in Whitman et al. (2015). How-
ever, in our case we did not include a climate space. Instead, two cli-
mate gradients (temperature and precipitation) were used. Our goal
was to determine the extent to which fire regimes are controlled by
either environmental, human or both factors.
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3.3. Generalized Additive Models

Generalized Additive Models (GAM) are Generalized Linear Models
(GLM) in which the usual linear relationships between the response and
predictor variables are replaced by non-linear ‘'smooths'
(Hastie & Tibshirani, 1986; Jones & Almond, 1992). With the purpose of
unravelling potential cause-and-effect relationships between fire fea-
tures and climatic/human variables, we calibrated several GAM re-
gressions for each MDS ‘scenario’.

Same as GLM, GAM allows using probability distributions other
than Gaussian. In this sense, we employed Negative Binomial to model
number of fires (N) and log linear distribution in burned area variables
(B500, BL). NB is found particularly suitable to deal with zero-inflated
response variables as is the case of N (Boadi, Harvey, & Gyeke-dako,
2015). On the other hand, we have applied log linear family in burned
area fire features (Hernandez, Keribin, Drobinski, & Turquety, 2015).
Model selection, is based on the reduction of Generalized cross vali-
dation (GCV, Craven & Wahba, 1978; Golub, Heath, & Wahba, 1979).
GVC determines the optimal amount of smoothing and estimates the
mean squared prediction error over all datasets where a single ob-
servation is omitted from the model fitting and then predicted Deviance
explained (analogous to variance in a linear regression) and partial
effects in the predictors were also calculated. All analyses were con-
ducted using the R package mgcv, version 1.8-9.

4. Results
4.1. Fire regime key features

MGPCA enables the comparison of fire regions as well as de-
termining the most relevant fire regime features. Regardless of the re-
gion or season of analysis, 3 PCs were always selected according to the
Kaiser Criterion. Therefore, PCA results are only presented and ana-
lysed for the 3 first PCs (PC1, PC2 and PC3). Hence, VR was only cal-
culated for those PCs.

According to MGPCA eigenvectors (Table 2), most of the total var-
iance (61%) in fire activity in the NW region during summer is asso-
ciated with large fires, both in terms of number and the affected area
(N500, B500 = 0.50). N appears on a secondary plane located in PC2
and associated with human fires (0.69). This behaviour is reversed
during winter, when N and NH are promoted to PC1 and N500-B500
moved to PC2. In the HL region large fires seem to be playing an im-
portant role in both summer and winter, being in both cases located in
PC1, although winter shows a strong link between B500 and BH.

Table 2
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Finally, in the MED region, PC1 in summer correlates more with NH
and N (0.51 and 0.5 respectively). During winter, B500 displaces N and
NH towards PC2 being associated to BH (0.46). Whatever the region or
season, the impact of natural fires is always in PC3. In this regard, there
is usually a higher correlation between burned area rather than fire
counts.

Features selected on the basis of the MGPCA-VR procedure are
mostly the same across regions and seasons -N, B500 and BL- although
there are differences in terms of the PC which each feature is associated
with. As stated before, we consider these features to contribute the most
to the behaviour of fire activity across time (season) and space (region)
and thus to be key parameters in the definition of fire regimes.

4.2. Climate-human-fire relationships

Figs. 3-5 display MDS for N500, BL and N, respectively, whereas
Table 3 and appendix S3 summarize the main outputs from GAM. Ac-
cording to Figs. 3-5 we can identify two different climatic patterns and
a transition in fire activity from NW region to HL and MED. Most of the
fires ignite during summer, regardless of the region. Nonetheless, the
proportion of winter wildfires is larger in NW than in any other region,
with nearly 40% occurring during winter (Table 1). Summer number
fires (Figs. 3-5) in NW appear to be associated with mid-range tem-
peratures (T3-7) and mid-to-low precipitation (P6-2). NW winter fires
are mainly related to relatively high temperatures (T7-8) and moderate
rainfall (P5). GAM reports significant relationships for both climate
variables, adding human pressure as significant predictor in all seasons.
Partial plots revealed a positive association during summer of N with
temperature and human pressure (i.e. the higher the temperature or
human pressure the higher the number of fire events). In winter tem-
perature shifts towards negative relationship whereas human pressure
remains positive. Through HL to MED, N becomes closer to higher T
and lower P in both seasons as climate conditions change from Oceanic
to inner Mediterranean, finally reaching the Mediterranean climate
domain on the coast. However, HL summer fires take place mainly in
areas with very high temperatures (T9-10), whereas in MED, the tem-
perature interval widens to 6-10. On the contrary, MED fires occur in
areas with lower precipitation than fires in HL. This difference is also
evidenced in GAM models which report non-significant relationship
with T and significant in P in the Mediterranean region, and the op-
posite in HL (see Figs. A4 and A5). In turn, winter fires in HL are less
selective, occurring under different conditions while MED shows fewer
seasonal differences, and fires ignite under roughly the same condi-
tions, i.e. high T (6-10) and low P (1-4) during winter or summer.

Correlation values according to Varimax Rotation, variance explained (% var) and specific variance of groups (Var) extracted from MGPCA. Selected features (correlation > 0.5)

highlighted in light grey.

NWS HL S MED S NWWwW HL W MED W

PC1 PC2 PC3|PC1 PC2 PC3 |PC1 PC2 PC3(PC1 PC2 PC3|PC1 PC2 PC3 |PC1 PC2 PC3
% var 61.2 151 13.1|551 17.6 114 (484 204 11.2 (498 178 17.6| 464 189 17.6 [46.7 185 158
Var 489 120 1.05|441 141 091 |3.87 1.63 090 (3.98 1.42 141|371 152 141 373 148 1.26
N -0.66 -0.65 0.50 -0.14 0.61 -0.15 -0.70 -0.61
B 0.47 0.46 0.14 {044 0.18 040 0.28 048 -0.14 0.11 {046 -0.18
N500 [0.50 0.11 0.50 0.78 0.60 0.42 0.44
B500 |0.50 053  0.15 0.16 0.66 0.64 052 0.19 0.63 022
NL -0.16 | 0.70 -0.21 £ 0.67 0.88 -0.10 1 0.67 | -0.10 -0.10 | 0.69 0.58
BL 0.14 '0.75 | 0.10 0.16 | 0.72 0.38 0.69 0.13 | 0.67 0.18 [ 0.88
NH -0.69 -0.65 0.51 -0.15 0.61 | -0.15 -0.69 -0.59
BH 0.46 -0.11 048 -0.12 -0.20 042 0.13 0.40 0.27 0.50 -0.16 -0.16|0.45 -0.11
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Fig. 3. Multidimensional scatterplots for burned area from large fires. Note values are given on the logarithmic scale.
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Table 3
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Deviance explained (DE) and p-values of the GAM outputs for each fire feature with reclassified data of temperature (T), precipitation (P) and human pressure (H) in the three regions and
both seasons (S: spring-summer, W: autumn-winter). Negative binomial distribution was applied for number of fires (N) and log linear family for burned area ones (BL and B500). Bold

values are significant (< 0.05).

DE NW § DE HL S DE MED S
T P H T P H T P H
N 0.41 0.000 0.000 0.000 0.14 0.000 0.000 0.000 0.2 0.074 0.000 0.000
BL 0.18 0.644 0.000 - 0.10 0.035 0.104 - 0.2 0.492 0.039 -
B500 0.17 0.012 0.000 - 0.12 0.000 0.000 - 0.13 0.245 0.000 -
DE NWw DE HL W DE MED W
T P H T P H T P H
N 0.42 0.000 0.000 0.000 0.32 0.000 0.000 0.000 0.21 0.000 0.000 0.000
BL 0.2 0.062 0.000 - 0.2 0.000 0.000 - 0.31 0.000 0.000 -
B500 0.15 0.013 0.093 - 0.3 0.2 0.000 - 0.25 0.034 0.000 -

As with N, B500 shows different behaviour across regions and
seasons with NW as the most fire-prone region (Fig. 3). The pattern is,
to some extent, similar to that of N, as areas with a large occurrence of
fire are more likely to retain most burned area, regardless of burned
size. During summer, NW appears to be associated with relatively low P
(3-4) and moderate intervals of T (P3-7), although relationships are
found to be significant. However, during winter, most of the burned
area from large fires is located in areas with high T (8) and moderate P
(5), with P losing significance in GAM models. Note that B500 in winter
is more strongly linked to high T than N (see Fig. A3). In HL and MED,
B500 behaves mainly in the same way as N, with the exception of
summer wildfires in MED, where most of the area from large fires
converges between P3-4 and T6-7, being more linked to P (significant
p < 0.05) than T (non-significant).

Fig. 4 summarises the results from BL analysis. Again, the climatic
pattern shows differences between NW and HL-MED. On the other
hand, by putting BL and B500 together, we can establish some inter-
esting associations. To a certain extent, there is a link between B500
and BL. In NW summer, the area from natural fires has its maximum
values in several spots in P3-6 (significant p < 0.05) and T3-7 (non-
significant). This pattern matches a part of B500 quite closely, sug-
gesting that large summer fires under these conditions are mostly
caused by natural ignitions. This association strengthens in HL and MED
regions - again only during summer. GAM detects several significant
relationships among T and P although no clear explanatory sense is
observed in partial plots (Figs. A3-A5) other than P in NW winter.

Attending to the percent of deviance explained we found large
differences among regions and seasons, in terms of the overall ex-
plained variance, and thus reliability. DE ranges from 0.42 to 0.41 in
number of fires in NW regardless of the season to 0.13 in B500 in MED
summer. Overall, winter DE values are higher than summer, especially
in HL and MED. Lowest proportion of variance explained is usually
obtained for natural fires.

Finally, an exploration of the relationship between N and HPI pro-
vides some remarkable insights. The link between N and human activity
is noticeable, For instance, MGPCA (Table 2) reveals an association
between N and NH in any given region or season; likewise GAM outputs
report significant and positive relationships among N and HPI (Table 3
and Figs. A3-A5). According to the results in Fig. 5 and Fig A3, HPI
mainly relates similarly to N in the NW region both during summer and
winter. However, the relationship is slightly stronger in winter, al-
though this association is less evident in HL and MED, especially during
winter (decreasing contribution, see Figs. A4 and A5), this fact is also
supported by a lower deviance explained. In NW, summer fires ignited
at low T (3-4) and moderate P (4-6) present high HPI average values.
During winter, almost every combination of P and T, taken from over
100 fires, have HPI average values around or higher than 0.2. Both in

HL and MED summer, high HPI values are mostly located in T5-7 and
P2-6.

5. Discussion

This paper characterizes and describes in detail fire regimes in
mainland Spain, to identify their key features under the premise that
different fire regimes exist across Spanish territory. We proposed a
combination of statistical (MGPCA, VR and GAM) and visual techniques
(MDS) as an approach to understanding climate-human-fire relation-
ships, enabling the easy identification of contrasts in fire regime among
the different regions analysed. This is particularly noticeable in the
Northwest region, where fire behaviour is dissimilar to the rest of the
study area in terms of both fire behaviour and ignition cause. In other
words, fires are more frequent in Northwest, less related to climate
conditions and more dependent on human pressure, whereas
Hinterland-Mediterranean are more influenced by climate with greater
seasonal differences.

Multi-group PCA combined with VR has led to identifying large fires
(B500 and N500), overall fire frequency (N) and burned area of light-
ning fires (BL) as the features strongly relating to fire activity, and thus
considered as key fire regime features. In addition, MGPCA also enables
the importance of each fire feature to be explored. For instance, de-
pending on the PC that a given feature is related to, we can determine
its importance. In this regard, we have identified two different seasonal
behaviours. Summer fire activity is more closely related to fire fre-
quency (N located in PC1) and the impact of large fires appears on a
secondary plane (B500 and N500 correlate more to PC2), whereas
winter shows the opposite. In fact, in the case of the Northwest region
the seasonal reversion of its components suggests that summer fire
activity is mostly related to the impact of large fires, whereas winter fire
behaviour is better explained by fire frequency from anthropogenic
wildfires. In turn, the impact of natural fires, despite being system-
atically selected among the available features, always appears in PC3
both in terms of fire counts (NL) and affected area (BL). Varimax ro-
tation results show that burned area coefficients are generally higher.
Thus, natural fires appear to be better characterized in terms of affected
area rather than number of fire events. Finally, MGPCA allows us to
investigate the relationships among fire features. In this respect, the
most relevant finding is that fire frequency (N) is always associated
with anthropogenic fires (NH). On the one hand, this supports the hy-
pothesis that Spanish fire regime is human-dominated (Rodrigues et al.,
2014; San-Miguel-Ayanz et al., 2012).

The visual inspection of the MDS and the statistical interpretation of
GAM models are particularly useful in terms of pyrogeography, i.e. the
spatial distribution of fire regime features and their relationship with
climate and socioeconomic factors (Fréjaville & Curt, 2015). These
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Table 4
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Summarize of the main fire features characterizing and median values of climatic variables (reclassified, see Table Al of Appendix 2 for original values) and human pressure (H) for
cach region and season. More representative fire features are highlighted with a tic symbol (v) according to MGPCA results. Colors represent the sign of estimate effects (Red: Increase,
Orange: Stable or very variable, Green: Decrease) of the relationship between fire feature and climatic/human variables (see Figs. A3-AS for details). Asterisks represent significant

relationships between fire features and climate/human variables.

NWS HL S MED S NwWw HL W MED W
T|P| H T|P| H T|P T|P| H T|P| H T P H
5(4]02 6 (2101 712]0.1 6 |5]02 512101 8 1 0.1
N J * J * J * J* J* S
BL J * J 1 * * J * J [+ = J ®
B500 [/ | * [ * J * J * J L * v * S| *

procedures were applied to the selected key fire features. The analysis
reveals that the NW fire regime, which is mostly dependent on human
activities, is in contrast to Hinterland and Mediterranean. It is well
known that in Northwest, fire is traditionally involved in several ac-
tivities such as pasture burning and grazing (M. V. Moreno et al., 2014)
close to forest areas. Conflicts between landowners or individuals and
the forest administrations leading to arson are another particular
characteristic of this area, where deliberate fires have increased since
the early 90s (Leone et al., 2009). In any case, it is clear that human
activity is responsible for, or at least has helped in shaping fire regime
in the Northwest region. Moreover, winter fires are most frequent here
than in any other region, not only in terms of number of fires, but
proportion of overall fires. This fact makes the region particularly dif-
ficult in terms of wildfire modelling, since most of the variables used
are usually concerned with summer fire activity (M. Rodrigues et al.,
2014). On the other hand, wildfires are especially numerous during
early spring coinciding with south winds (M. V. Moreno et al., 2014). In
this case, there is an evident association between the hotter and drier
conditions in this season, linked to this particular weather and, once
again, to human factors - intentional fires peak (M. V. Moreno et al.,
2014) - (Fig. A6 in Appendix 3 and Fig. 5).

Hinterland and Mediterranean regions share more similarities than
differences. These regions show a stronger dependency on climate
factors than Northwest. In fact, human pressure is generally associated
with climate conditions unlikely to ignite fires, thus complementing the
influence of climate. During summer, HL shows significant and positive
relationships among N, B500 and temperature and negative with pre-
cipitation while MED displays significant relationships with precipita-
tion alone. As expected, fire features adapt to the climate gradient. For
instance, in these regions, natural fires play a more decisive role since
they are more linked to burned area from large fires, so they have a
greater impact in terms of affected area. Or what is the same, a high
proportion of large fires in HL and MED regions have a natural source,
Natural fires usually hinder suppression tasks, since accessibility to the
burning area may be significantly difficult. Thus natural fire has a
higher chance of propagating than human-caused fires since climate
and fuel conditions are usually favourable (Chuvieco, 2009a, 2009b).
Therefore, we can safely assume that natural fires explain, or at least
have some involvement with, a part of the burned area from large fires.
HL, which can be considered as a transition area between pure Euro-
siberian conditions to Mediterranean ones, is still influenced by human
activities, although human factors are somewhat complementary to
climate conditions. Multi-group PCA supports this to some extent. PC1
meets large fire activity with burned area from human-caused fires,
suggesting that winter wildfires may have a human origin. The reasons
explaining this fact may be found in agricultural practices or in negli-
gence and accidents from recreational use of forest areas (Leone et al.,
2003). With regard to the MED region, the situation is slightly different
compared to HL. Fire frequency and total affected are more influenced
by climate, specifically by precipitation or better the lack of it. The
more important role of precipitation and the lesser human influence is
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manifested in the huge area of large fires, greater than any other region
(Table 1), favoured by dry fuels, something that several authors have
previously pointed out (Pausas& Fernandez-Munoz, 2012; Pausas,
2004; Vazquez, Climent, Casais, & Quintana, 2015).

In summary (Table 4), we can state that fire regime is strongly in-
fluenced by human activities in each region and season. Wildfire fre-
quency is always significantly related to temperature, precipitation and
human pressure, except in the case on MED during summer which is
only tied to P and HPI. Large fires exhibit a strong relationship with
precipitation during summer, being also linked to high temperature in
HL. Natural fires are somewhat tied to large fires although better ex-
plained by precipitation. Finally, from a seasonal standpoint, winter is
perhaps the most complex season of the year, due to climate conditions
losing part of their influence and human activities taking over, espe-
cially evident in the case of the NW and HL regions.

Nevertheless, our research has several limitations that must be
pointed out. Firstly, our analysis is focused on a single study period
(1974-2010), and even though it includes the seasonal scale, does not
include temporal evolution of fire features, and fire activity has most
likely changed over the temporal span (see Moreno et al., 2014). On the
other hand, the scope is focused on several features extracted and
constructed on the basis of the available fire information. However,
other fire metrics beyond fire reports (e.g. fire severity or intensity) may
be included in further analysis.

6. Conclusions and further research

In this paper, we have described and characterized the major
characteristics of the fire regimes in Spanish mainland through quan-
titative and visual analyses of relationships between fire components,
climate and human pressure, using fire data from 1974 to 2010. We
were able to determine the most important fire regime features and
analyse fire regime on that basis. Our results suggest that not all the
regions examined have the same fire regime, although they share some
characteristics, as in the case of HL and MED during summer.

The combination of multi-group PCA techniques with visual ana-
lysis of multidimensional scatterplots and GAM regression has proved
to be a powerful toolset that enables characterization and investigation
of fire regimes. On the one hand, MGPCA has revealed that the main
features of Spanish fire regimes are total frequency of fires, burned area
from fires over 500 ha big and burned area of natural fires. In addition,
the analysis of these fire regime features in the context of climate and
human factors enabled the main drivers behind fire regime character-
istics over regions and seasons to be established. In this sense, the NW
region represents a paradigmatic example of the impact from human
factors, especially during winter, whereas Hinterland and
Mediterranean regions are mostly dependent on climate conditions.

Overall, the NW region is characterized by fire frequency and large
fire activity during summer, whereas during winter, anthropogenic fires
play a more important role. HL reproduces the same behaviour, human
fires during winter and large fires during summer. Finally, MED is
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characterized by burned area metrics, whereas fire frequency is located
in first place during summer but remains in second place, during
winter, In any case, fire activity shows contrasting characteristics
among regions and seasons. Therefore, fire modelling should take this
seasonality into account in order to produce more reliable results.

The identification of key features opens new research lines that shall
be further investigated. For instance, the spatial and temporal varia-
bility of fire regimes must be explored in depth. This means that, rather
than consider homogeneous regions (e.g. NW, HL and MED), we must
outline them on the basis of fire features. On the other hand, deeper
insights into the temporal evolution of fire regimes have to be provided,
since fire activity has most likely changed over the years, the same as
climate and human factors on which they are dependent.

Acknowledgements

This work has been financed by the Spanish Ministry of Education:
FPU grant 13/06618 and the SERGISAT project (CGL2014-57013-C2-2-
R). We would like to thank Professor J.C. Gonzdlez-Hidalgo and his
research group for providing climate data. In addition, we are very
grateful to the reviewers for their valuable comments, which have
improved the final manuscript.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.apgeog.2017.10.007.

References

Archibald, S., Lehmann, C. E. R., Gémez-Dans, J. L., & Bradstock, R. A. (2013). Defining
pyromes and global syndromes of fire regimes. Proceedings of the National Academy of
Sciences, 110(16), 6442-6447. http://dx.doi.org/10.1073/pnas.1211466110.

Boadi, C., Harvey, S. K., & Gyeke-dako, A. (2015). Modelling of fire count data: Fire
disaster risk in Ghana. SpringerPlus, 4(794), http://dx.doi.org/10.1186/540064-015-
1585-3.

Calvo, J. L., & Pueyo, A. (2008). Atlas Nacional de Espana: Demografia. Geogrdfica, 104,
393-396.

Chuvieco, E. (2009a). In E. Chuvieco (Ed.). Earth observation of wildland fires in medi-
terranean ecosystems. Berlin, Heidelberg: Springer Verlag Geosciences.

Chuvieco, E. (2009b). Global impacts of fire. In E. Chuvieco (Ed.). Earth observation of
wildland fires in mediterranean ecosystems (pp. 1-10). New York: Springer Berlin
Heidelberg. http://dx.doi.org/10.1007/978-3-642-01754-4.

Chuvieco, E., Giglio, L., & Justice, C. (2008). Global characterization of fire activity:
Toward defining fire regimes from earth observation data. Global Change Biology,
14(7), 1488-1502. http://dx.doi.org/10.1111/j.1365-2486.2008.01585.x.

Craven, P., & Wahba, G. (1978). Smoothing noisy data with spline functions. Numerische
Mathematik, 31(4), 377-403. http://dx.doi.org/10.1007 /BF0O1404567.

Darques, R. (2016). Wildfires at a Pan-Mediterranean scale: Human-environment dy-
namics through MODIS data. Human Ecology, 2009. http://dx.doi.org/10.1007/
510745-015-9802-9.

Drobyshev, L., Niklasson, M., & Linderholm, H. W. (2012). Forest fire activity in Sweden:
Climatic controls and geographical patterns in 20th century. Agricultural and Forest
Meteorology, 154-155. http://dx.doi.org/10.1016/j.agrformet.2011.11.002 (April
2016).

Eslami, A., Qannari, E. M., Kohler, A., & Bougeard, S. (2013a). Analyses factorielles de
données structurées en groupes d'individus. Journal de La Société Frangaise de
Statistique, 154(3), 44-57. Retrieved from http://journal-sfds.fr/index.php/J-SFdS/
article/view,/208/193.

Eslami, A., Qannari, E. M., Kohler, A., & Bougeard, S. (2013b). General overview of
methods of analysis of multi-group datasets. Revue Des Nouvelles Technologies de
l'Information, 25, 108-123.

Flury, B. N. (1984). Common principal components in K groups. Journal of the American
Statistical Association, 79(388), 892-898. Retrieved from http://www jstor.org/
stable/2288721.

Francos, M., Pereira, P., Alcafiz, M., Mataix-Solera, J., & Ubeda, X. (2016). Impact of an
intense rainfall event on soil properties following a wildfire in a Mediterranean en-
vironment (North-East Spain). Science of the Total Environment, 572(1), 1353-1362.
http://dx.doi.org/10.1016/j.scitotenv.2016.01.145.

Fréjaville, T., & Curt, T. (2015). Spatiotemporal patterns of changes in fire regime and
climate: Defining the pyroclimates of south-eastern France (Mediterranean Basin).
Climatic Change, 129(1-2), 239-251. http://dx.doi.org/10.1007/510584-015-1332-3,

Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., &
Lampin, C. (2013). A review of the main driving factors of forest fire ignition over
Europe. Environmental Management, 51(3), 651-662. http://dx.doi.org/10.1007/
500267-012-9961-z.

Applied Geography 89 (2017) 100-111

Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2), 215-223. Retrieved from
http://www.stat.wisc.edu/ — wahba/ftp1/oldie/golub.heath.wahba.pdf.

Gonzéilez-Hidalgo, J. C., Brunetti, M., & de Luis, M. (2011). A new tool for monthly
precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends
December 1945-November 2005). International Journal of Climatology, 31(5),
715-731. http://dx.doi.org/10.1002/joc.2115.

Gonzalez-Hidalgo, J. C., Pefia-Angulo, D., Brunetti, M., & Cortesi, N. (2015). MOTEDAS: A
new monthly temperature database for mainland Spain and the trend in temperature
(1951-2010). International Journal of Climatology, 35(15), 4444-4463. http://dx.doi.
org/10.1002/joc.4298.

Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical Science, 1(3),
297-318. Retrieved from https://projecteuclid.org/download/pdf_1/euclid.ss/
1177013604.

Hernandez, C., Keribin, C., Drobinski, P., & Turquety, S. (2015). Statistical modelling of
wildfire size and intensity: A step toward meteorological forecasting of summer ex-
treme fire risk. Annals of Geophysics, 33, 1495-1506. http://dx.doi.org/10.5194/
angeo-33-1495-2015.

Horst, P. (1965). Factor analysis of data matrices (1st ed.). New York: Holt, Rinehart and
Winstonhttp://dx.doi.org/10.2307/1421153.

Jones, K., & Almond, S. (1992). Moving out of the linear rut: The possibilities of gen-
eralized additive models. Transactions of the Institute of British Geographers, 17(4),
434-447. http://dx.doi.org/10.2307,/622709.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.
Psychometrika, 23(3), 187-200. http://dx.doi.org/10.1007/BF02289233.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis.
Educational and Psychological Measurement, 20, 141-151.

Krawchuk, M. A., Moritz, M, A., Parisien, M. A,, Van Dorn, J., & Hayhoe, K. (2009).
Global pyrogeography: The current and future distribution of wildfire. PLoS ONE,
4(4), http://dx.doi.org/10.1371/journal. pone.0005102.

Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M., & Conedera, M. (2010). Fire regime:
History and definition of a key concept in disturbance ecology. Theory in Biosciences,
129, 53-69. http://dx.doi.org/10.1007 /s12064-010-0082-z.

Krzanowski, W. J. (1984). Principal component analysis in the presence of group struc-
ture. Journal of the Royal Statistical Society Series C (Applied Statistics), 33(2), 164-168.

Le Page, Y., Oom, D., Silva, J. M. N., Jinsson, P., & Pereira, J. M. C. (2010). Seasonality of
vegetation fires as modified by human action: Observing the deviation from eco-
climatic fire regimes. Global Ecology and Biogeography, 19(4), 575-588, http://dx.doi.
org/10.1111/j.1466-8238,2010.00525.x,

Leone, V., Koutsias, N., Martinez, J., Vega-Garcia, C., Allgéwer, B., & Lovreglio, R. (2003).
The human factor in fire danger assessment. In E. Chuvieco (Ed.). Wildland fire danger
estimation and mapping. The role of remote sensing data. Singapore: World Scientific
Publishing.

Leone, V., Lovreglio, R., Martin, M. P., Martinez, J., & Vilar, L. (2009). Human factors of
fire occurrence in the mediterranean. In E. Chuvieco (Ed.). Earth observation of
wildland fires in mediterranean ecosystems (pp. 149-170). New York: Springer Berlin
Heidelberg. http://dx.doi.org/10.1007,/978-3-642-01754-4_11.,

Marcoux, H. M., Daniels, L. D., Gergel, S. E., Da Silva, E., Gedalof, Z., & Hessburg, P. F.
(2015). Differentiating mixed- and high-severity fire regimes in mixed-conifer forests
of the Canadian Cordillera. Forest Ecology and Management, 341, 45-58. http://dx.doi.
org/10.1016/j.foreco.2014.12.027.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. London: Academic
Press.

Martinez, J., Chuvieco, E., & Martin, M. P. (2004). Estimating human risk factors in
wildland fires in Spain using logistic regression. IT international symposium on fire
economics, planning and policy: A global vision Cordoba.

Moreno, M. V., Conedera, M., Chuvieco, E., & Pezzatti, G. B. (2014). Fire regime changes
and major driving forces in Spain from 1968 to 2010. Environmental Science and
Policy, 37, 11-22. http://dx.doi.org/10.1016/j.envsci.2013.08.005.

Moreno, M. V., Malamud, B. D., & Chuvieco, E. (2011). Wildfire frequency-area statistics
in Spain. Procedia Environmental Sciences, 7, 182-187. http://dx.doi.org/10.1016/].
proenv.2011.07.032.

Murphy, B. P., Williamson, G. J., & Bowman, D. M. J. S. (2011). Fire regimes: Moving
from a fuzzy concept to geographic entity. New Phytologist, 192(2), 316-318. http://
dx.doi.org/10.1111/j.1469-8137.2011.03893.x.

Pausas, J. G. (2004). Changes in fire and climate in the eastern iberian peninsula
(Mediterranean Basin). Climate Change, 63, 337-350.

Pausas, J. G., & Ferndndez-Mufioz, S. (2012), Fire regime changes in the Western
Mediterranean Basin: From fuel-limited to drought-driven fire regime, Climatic
Change, 110, 215-226. http://dx.doi.org/10.1007 /s10584-011-0060-6.

Pechony, O., & Shindell, D. T. (2010). Driving forces of global wildfires over the past
millennium and the forthcoming century. Proceedings of the National Academy of
Sciences of the United States of America, 107(45), 19167-19170. http://dx.doi.org/10.
1073/pnas. 1003669107,

Pyne, S. J., Andrews, P. L., & Laven, R. D. (1996). Intreduction to wildland fire (20
Edition). .

Quazi, S. A., & Ticktin, T. (2016). Understanding drivers of forest diversity and structure
in managed landscapes: Secondary forests, plantations, and agroforests in
Bangladesh, Forest Ecology and Management, 366, 118-134. http://dx.doi.org/10.
1016/j.foreco.2016.01.024,

R Core Team (2016). R: A language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing.

Rodrigues, M., de la Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of
the explanatory factors of human-caused wildfires in Spain using geographically
weighted logistic regression. Applied Geography, 48, 52-63. http://dx.doi.org/10.
1016/j.apgeog.2014.01.011.

55



Chapter 5: Spatial-temporal distribution of fire regime features

A. Jiménez-Ruano et al.

Rodrigues, M., Jiménez, A., & de la Riva, J. (2016). Analysis of recent spatial-temporal
evolution of human driving factors of wildfires in Spain. Natural Hazards, 84(3),
2049-2070. http://dx.doi.org/10.1007/s11069-016-2533-4.

San-Miguel-Ayanz, J., Moreno, J. M., & Camia, A. (2013). Analysis of large fires in
European Mediterranean landscapes: Lessons learned and perspectives. Forest Ecology
and Management, 294, 11-22, http://dx.doi.org/10.1016/j.foreco.2012.10.050.

San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., ...
Amatulli, G. (2012). Comprehensive monitoring of wildfires in europe: The european
forest fire information System (EFFIS). In J. Tiefenbacher (Ed.). Approaches to
managing disaster - assessing hazards, emergencies and disaster impacts (pp. 87-105). .

Syphard, A., Radeloff, V., Keeley, J., Hawbaker, T., Clayton, M., Stewart, S., et al. (2007).
Human influences on California fire regimes. Ecological Applications, 17(5),
1388-1402. http://dx.doi.org/10.1890/06-1128.1.

Véazquez, A, Climent, J. M., Casais, L., & Quintana, J. R. (2015). Current and future
estimates for the fire frequency and the fire rotation period in the main woodland

56

Applied Geography 89 (2017) 100-111

types of peninsular Spain: A case-study approach. Forest Systems, 24(2), 13. http://dx.
doi.org/10.5424/fs/2015242-06454.

Vélez, R. (2001). Fire situation in Spain. In J. G. Goldammer, R. W. Mutch, & P. Pugliese
(Eds.). Global forest fire assessment 1990-2000 (pp. 295-301). Roma: FAO.

Wang, Y., & Anderson, K. R. (2010). An evaluation of spatial and temporal patterns of
lightning- and human-caused forest fires in Alberta, Canada, 1980-2007. International
Journal of Wildland Fire, 19(8), 1059-1072. http://dx.doi.org/10.1071/WF09085.

Whitman, E., Batllori, E., Parisien, M.-A., Miller, C., Coop, J. D., Krawchuk, M. A,, ...
Haire, S. L. (2015). The climate space of fire regimes in north-western North America.
Journal of Biogeography, 42(9), 1736-1749. http://dx.dol.org/10.1111/jbi.12533.

Xu, D., Shao, G., Dai, L., Hao, Z., Tang, L., & Wang, H. (2006). Mapping forest fire risk
zones with spatial data and principal component analysis, Science in China, Series E:
Technological Sciences, 49(Suppl. 1), 140-149, http://dx.doi.org/10.1007 /511434~
006-8115-1.



Chapter 5: Spatial-temporal distribution of fire regime features

Nat. Hazards Earth Syst. Sci., 17, 1697-1711, 2017
https://doi.org/10.5194/nhess-17-1697-2017

© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Exploring spatial-temporal dynamics of fire regime features in

mainland Spain

Adrian Jiménez-Ruano, Marcos Rodrigues Mimbrero, and Juan de la Riva Fernandez

GEOFOREST Group, IUCA, Department of Geography and Land Management, University of Zaragoza,

Pedro Cerbuna 12, 50009, Zaragoza, Spain

Correspondence to: Adridan Jiménez-Ruano (jimenez @ unizar.es)

Received: 15 May 2017 — Discussion started: 29 May 2017
Accepted: 25 August 2017 — Published: 4 October 2017

Abstract. This paper explores spatial-temporal dynamics
in fire regime features, such as fire frequency, burnt area,
large fires and natural- and human-caused fires, as an essen-
tial part of fire regime characterization. Changes in fire fea-
tures are analysed at different spatial — regional and provin-
cial/NUTS3 — levels, together with summer and winter tem-
poral scales, using historical fire data from Spain for the pe-
riod 1974-2013. Temporal shifts in fire features are investi-
gated by means of change point detection procedures — Pettitt
test, AMOC (at most one change), PELT (pruned exact linear
time) and BinSeg (binary segmentation) — at a regional level
to identify changes in the time series of the features. A trend
analysis was conducted using the Mann—Kendall and Sen’s
slope tests at both the regional and NUTS3 level. Finally, we
applied a principal component analysis (PCA) and varimax
rotation to trend outputs — mainly Sen’s slope values — to
summarize overall temporal behaviour and to explore poten-
tial links in the evolution of fire features.

Our results suggest that most fire features show remark-
able shifts between the late 1980s and the first half of the
1990s. Mann—Kendall outputs revealed negative trends in the
Mediterranean region. Results from Sen’s slope suggest high
spatial and intra-annual variability across the study area. Fire
activity related to human sources seems to be experiencing
an overall decrease in the northwestern provinces, particu-
larly pronounced during summer. Similarly, the Hinterland
and the Mediterranean coast are gradually becoming less fire
affected. Finally, PCA enabled trends to be synthesized into
four main components: winter fire frequency (PC1), summer
burnt area (PC2), large fires (PC3) and natural fires (PC4).

1 Introduction

Wildfire is a disturbance affecting many ecosystems on
a global level. Fire itself is a very dynamic landscape pro-
cess, which depends on different factors, such as weather,
vegetation type and structure, fuel moisture, land use and
human activity (Falk et al., 2011). Understanding wildfire
phenomenon is still a challenging task, especially when fac-
ing climate and/or socioeconomic changes (Pausas and Kee-
ley, 2009) as is the case of Spain (Pausas, 2004; Pausas
and Ferniandez-Muiioz, 2012; Turco et al., 2014) and other
EUMed regions (Moriondo et al., 2006; Salis et al., 2014;
Venildinen et al., 2014). In this context, fire regime char-
acterization may contribute to improving our knowledge on
how wildfires generally behave. For example, understanding
spatial and temporal patterns of wildfire features may lead to
more effective management strategies or prevention policies.

Improved understanding of fire regimes may be achieved
by providing deeper insights into the spatial patterns of fire
regime features over a certain period of time (i.e. homoge-
nous areas with similar fire regime characteristics). From
a temporal perspective, previous studies reported the exis-
tence of temporal changes or trends in the evolution of sev-
eral fire regime features (Flannigan et al., 2009; Rodrigues
etal., 2013; Turco et al., 2016). However, despite there being
evidence of temporal variability in fire regime features, it is
not usually considered when defining, characterizing or out-
lining fire regimes. The concept of fire regime is commonly
defined as the average conditions of fire that remains recur-
rent and consistent within a particular area and occurring
over a certain period of time (Krebs et al., 2010). Accord-
ing to this definition, it seems clear that both space and time
are taken to be stationary, but fire regime components are

Published by Copernicus Publications on behalf of the European Geosciences Union.

57



Chapter 5: Spatial-temporal distribution of fire regime features

1698

in fact highly variable across time and space (Morgan et al.,
2001). Recently, several works studying fire regimes were
conducted in Spain, among which those by Moreno and Chu-
vieco (2012) and Moreno and Chuvieco (2016) are notable as
the latest attempts to deal with fire regime characterization.
However, in these works, the behaviour of fire regime fea-
tures is still assumed to be homogeneous or stationary over
time. To our understanding, the concept or definition of fire
regime has to include changes in fire features over the study
period. This is ultimately the goal of our proposal: to char-
acterize the temporal evolution of fire regime features so that
they can be employed to refine and improve the spatial out-
line of fire regimes, for example, by using trend outputs as an
additional input of the cluster or zoning algorithm.

Analyses of spatial-temporal trends of fire regime features
are common in the literature. The most widespread approach
addresses changes in fire frequency and burned area (Ka-
sischke and Turetsky, 2006; Pausas and Fernidndez-Muiioz,
2012; Rodrigues et al., 2013; Zavala et al., 2011). In the
Mediterranean region, the main findings indicate a general
decrease during the period 1985-2011 (Turco et al., 2016)
in the annual number of wildfires and burned area, although
a certain spatial variability is observed in the trends. For in-
stance, over the last few decades, the burned area in Spain
has decreased. Conversely, the yearly number of fires has
increased, except on the Mediterranean coast (Turco et al.,
2016). However, most studies focus mainly on analysing
“generic” fire (number of fires and burned area). This is par-
ticularly true for Spain, which lacks a detailed analysis of
fire trends based on a spatial-temporal approach. We believe
that a proper characterization of fire regime must take into
account additional features, such as fire size, cause or sea-
sonality. Even though some studies dealing with the tempo-
ral dimension of wildfires do exist (Serra et al., 2013), most
of them present some limitations, such as a short time se-
ries (less than 20 years of data). Meanwhile, analyses using
a longer time series do not include many fire regime features
and stay with the overall number of fires and burned area
(Pausas, 2004; Pausas and Fernandez-Muioz 2012; Moreno
et al., 2014). Specifically, we stress the importance of assess-
ing the evolution of large fires (fires with more than 500 ha
burned; San-Miguel-Ayanz et al., 2013) and the potential dif-
ferences relating the ignition source of a wildfire, either nat-
ural or human caused.

Therefore, the analysis of the temporal dimension of fire
regime features must be extended to these other features in
order to provide a more detailed picture of the evolution
of fire activity with the ultimate goal of characterizing fire
regimes. Similarly, advances must be made in applying trend
detection procedures. Determining whether a certain feature
changes significantly is useful but not sufficient. Further in-
sights into trend magnitude must be provided so that we can
compare trends among several regions and explore possible
relationships among temporal changes in fire features.
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The aim of this study is to analyse spatial-temporal
trends of several fire features during the period 1974-2013
and explore potential relationships among those detected.
In addition, this work would also allow progress and fur-
ther developments in the fire regime zoning. The analy-
sis is conducted at several spatial, such as regional and
NUTS3/provincial level, and autumn—winter and spring—
summer temporal scales in mainland Spain. Data on fire
regime features were retrieved from historical fire records
stored in the EGIF (General Wildfires Statistics) database.
Firstly, seasonal shifts in the evolution of fire feature were
examined using change point detection techniques in three
different regions comprising the whole of mainland Spain.
We used several checkpoint techniques to determine if and
when significant changes in the temporal evolution of each
fire regime feature takes place. Trend detection procedures
were then applied at the two different spatial levels to address
the spatial-temporal variability of each fire feature. The pur-
pose was to determine whether fire features vary over time
and, if so, its sign — upward or downward — and strength. Fi-
nally, complementary analyses were applied to uncover po-
tential links in the evolution of fire features.

2  Study area

The study area encompasses the whole of mainland Spain
(thus excluding the Balearic and Canary archipelagos and the
autonomous cities of Ceuta and Melilla). Spain is very bio-
physically diverse, presenting a wide variety of climatic, to-
pographical and vegetation communities. This diversity also
appears when discussing socioeconomic conditions in terms
of settlement systems and population structure, production
sector, changes in land use and land cover, or structure of the
territory.

From a climatic perspective, mainland Spain is charac-
terized by contrasting climatic conditions. According to the
Spanish Climate Atlas (AEMET, 2011) and based on the
Koppen—Geiger climate classification system (last version
from 1936) we found cold (D), temperate (C) and dry (B)
climates. Csa (temperate with dry or hot summer) is the type
of climate which covers most of the Iberian Peninsula, oc-
cupying approximately 40 % of its surface. It covers the ma-
jority of the southern central plateau region and the Mediter-
ranean coastal regions, with the exception of the arid zones in
the southeast, where we found BWh (hot desert) conditions.
Cold climates are located in the highest mountain ranges
in both the Pyrenees and Iberian mountain ranges (Dfb-c)
and also in small areas of the mountainous regions at higher
altitudes in the Cantabria Mountains, the Iberian mountain
ranges, Central Ranges and the Sierra Nevada (Dsb-f). Fi-
nally, Cfa (temperate with a dry season and hot summer) is
mainly seen in the northeast area, within an area of medium
altitude which surrounds the Pyrenees and the Iberian moun-
tains.
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From a biogeographical point of view, mainland Spain
is divided in two biogeographical regions: Furosiberian, lo-
cated in the northwestern area, and the Mediterranean, cover-
ing the remaining area. The Eurosiberian area is mostly cov-
ered by various types of vegetation from deciduous oak and
ash to evergreen oak woodlands (Quercus robur, Fraxinus
excelsior or Fagus sylvatica), but this region also has a quite
important component of forest plantations such as Pinus ra-
diata and Eucalyptus globulus. In turn, the Mediterranean re-
gion presents complex mosaics of agricultural systems and
plant communities. Sclerophyllous and evergreen vegeta-
tion, such as Quercus ilex, Quercus suber and thermophilous
scrublands (maquis and garrigue formations), dominate the
region. Forest areas mainly consist of pine species (Pinus
halepensis, Pinus sylvestris, Pinus nigra, Pinus pinea or
pinaster). Furthermore, bioclimatic (altitudinal) belts exist
within each region in mountain areas such as the Pyrenees
along the French border or Sierra Nevada on the southern
Mediterranean coast.

Due to the variety of landscapes, climate and socioeco-
nomic conditions, three different regions — Northwest (NW),
Hinterland (HL) and Mediterrancan (MED) — were outlined
(Fig. 1), following the criteria established by the Spanish
Environmental Ministry in their annual fire reports (MA-
GRAMA, 2002, 2007, 2012). These regions portray homo-
geneous areas in terms of wildfire activity by merging entire
provinces or autonomous communities and have been previ-
ously used on other recent works like Moreno et al. (2014).
The spatial coverage of these regions is similar to other zon-
ing proposals like Sousa et al. (2015) or Trigo et al. (2016),
being also based on NUT3S aggregations, although they in-
clude Portugal as well. The NW region includes the au-
tonomous communities of Galicia, Asturias, Cantabria and
the Basque Country, as well as the provinces of Le6n and
Zamora. This region is located within the Eurosiberian re-
gion, excluding the Pyrenees. The HL region includes all
of the autonomous communities without coastline, except
for the provinces of Leén and Zamora (included in the NW
region). This region is located in the transition boundary
between the Mediterranean and Eurosiberian regions, thus
sharing characteristics in terms of climate influence and
plant species. Finally, the MED region, situated within the
Mediterranean biogeographical region, includes all the au-
tonomous communities along the Mediterranean coast.

2.1 Fire data

Fire records from 1974 to 2013 were collected from the EGIF
database and fire count data, the size of the total burned area,
ignition triggering date and fire cause were retrieved for each
fire event, later summarized by season at NUTS3 level. Only
information on fires larger than 1ha was retained because
small fires (i.e. fires with less than 1 ha affected) were not
fully compiled until 1988. This is a well-known issue affect-
ing other regions in the Mediterranean as Portugal (Pereira
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et al., 2011). Additionally, it is important to remember that
in the case of the autonomous community of Navarre, fire
data were only available from 1988. Hence, all the analyses
conducted in Navarre were based on a slightly different study
period (1988-2013).

In addition to NUTS3 level, we also included a regional
scale of aggregation, together with two different fire seasons.
Thus, annual data were split into a spring—summer season (S)
from April to September and an autumn—winter season (W)
from October to March. From all available fire data informa-
tion (see Table 1), eight fire features were then constructed
for each fire season, NUTS and region:

Number of fires (N): total number of events, regardless
of size or ignition source.

Burned area size (B): total fire affected area, regardless
of size or ignition source.

Number of large fires (N500): number of fires above
500 ha burned, regardless of ignition source.

Burned area from large fires (B500): overall affected
area from fires above 500ha, regardless of ignition
source.

— Number of natural fires (NL): number of fires triggered
by lightning.

— Burned area from natural fires (BL): overall burned area
from fires triggered by lightning.

— Number of human fires (NH): number of fires triggered
by an anthropogenic source.

— Burned area from human fires (BH): overall burned area
from fires triggered by an anthropogenic source.

3 Methods

The methodology consisted of three stages. First, we ex-
plored changes in the temporal evolution of fire features by
means of the Pettitt test and change detection procedures
on a regional scale. Second, a trend detection analysis was
conducted using the Mann—Kendall (MK) test and the Sen’s
slope (SS) at regional and NUTS3 level. The third stage used
a principal component analysis (PCA) to assess potential re-
lationships among trends in fire features at NUTS3 level.

Statistical analyses, plotting and mapping were carried
out using the R statistical software (R Core Team, 2016),
packages changepoint and trend for change point analysis,
kendall and zyp for trend analysis and ggplot2 for plotting
and mapping the final results.
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Figure 1. Spatial distribution of the three regions (Northwest, Hinterland and Mediterranean), NUTS3 and NUTS2 units in mainland Spain

(a) and generalized land cover from CLC 2006 (b).

Table 1. Statistical summary of fire regime features 1974-2013. S: spring—summer; W: autumn-winter. In parentheses, the first value corre-
sponds to inter-region percentage and the second value to intra-region percentage. Burned area data expressed in square kilometres.

Region  Season N N500 NL NH B B500 BL BH
S 100232 503 1445 69 305 21864 4874 486 14568

NW (40) (60.4)  (29.2) (79.1)  (26.9)(96.5) (39.6)(57.4) (33.7)(69.3) (19.7)(79.3) (12.2)(98.6) (33.4) (65.6)
W 65826 133 53 51355 9708 1270 7 7627
(26.2)(39.6)  (7.7)(20.9) 0.9)(3.5) (29.4) (42.6) (15)(30.7)  (5.1)(20.7) 02)(1.4) (175 (34.4)

S 35061 482 2593 21048 13307 6647 1771 7863

HL (13.9)(72.3) (27.9)(96.6) (48.2)(99.2) (12) (67.1)  (20.5)(89.3) (27)(97.5)  (44.6) (99.9) (18) (86.7)
w 13410 17 22 10329 1587 171 1 1207
(5.3)(27.7) (1)(3.4) 0.4)(08) (59329 24107 (0.7)(2.5) 0 (0.1)  (2.8)(13.3)

S 28529 516 1230 17598 16146 10771 1685 10865

MED (I1.4)(78.5) (29.9)(87.5) (22.9)(97.2) (10.1)(77.1) (25)(87.9) (43.6) (91.7) (42.5)(98.9) (24.8) (87.6)
w 7820 74 36 5238 2215 971 19 1531
(3.2)(21.5)  (4.3)(12.5) (0.7)(2.8) (3)(229) (34 (12.1) (3.9)(8.3) (05)(1.1) (3.5 (12.4)

Total 250878 1725 5379 174873 64827 24704 3969 43661

3.1 Change point detection

Change detection or change point detection aimed to iden-
tify times when the probability distribution of a time series
changes. In order to identify change points in our (ime series
we used four different tests.

First we used the Pettitt test, a non-parametric method
commonly applied to detect a single change-point in hy-
drological or climate series with continuous data (Pettitt,
1979). It tests the Hp (no change) against the alternative H;
(a change point exists). One of the advantages of this tech-
nique is its robustness to deal with outliers. In the context
of wildfire science, the Pettitt test has previously been ap-
plied to detect fire regime shifts as a consequence of policy
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and socioeconomic development in Pezzatti et al. (2013) and
Moreno et al. (2014).
The Pettitt test is calculated using the following equation:

I T . .
UtT:Zilejthsgn(Xt—XJ), (1)

where sgn(X) =1for X > 0,0 for X =0and —1 for X <0,
and T is the length of the time series in years. The probability
of a significant change existing is calculated as follows:

=1 6 Uiy )
t)=1—-ex ,

b P\ 35712

where |U;.7| reaches the maximum value where the most
significant change point is found (Pettitt, 1979). This
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methodology allows for the identification of the most proba-
ble change point in the period examined, in each fire feature
by region and season. A specific function has been developed
in R environment to calculate the change point using the Pet-
titt approach.

As an alternative method to the Pettitt test, three additional
algorithms were applied; more specifically, the cpt.meanvar
method to identify changes in mean and variance, calculating
the optimal positioning of a change point for the input data
(Chen and Gupta, 2000):

— AMOC (at most one change) method is the simplest ex-
pression of the change detection algorithms from the
changepoint package. It can detect a single change point
(Hinkley, 1970), much the same as the Pettitt test.

— PELT (pruned exact linear time) is one of the most
widely used methods for change point detection. It can
detect multiple change points in large data sets (Kil-
lick et al., 2012), unlike the Pettitt test or AMOC. It
includes an enhanced optimal partitioning, leading to
a substantially more accurate segmentation. This en-
sures minimum change point detection in a time series,
regardless of the applied penalty value. Thus, PELT is
known as a more precise algorithm, usually outperform-
ing other methods such as binary segmentation. The
CROPS (changepoints for a range of penalties) penal-
izing type was selected. The lower the pen.value is, the
higher the numbers of change points detected. For this
reason, we chose many different minimum pen.values,
in order to find at least one, or no more than two, break-
points. One of the advantages of this last option is that
continuous false change points were avoided commonly
found at the beginning/end of the time series (for exam-
ple, many cases with AMOC algorithm).

— BinSeg (binary segmentation) is an effective method for
multiple change point detection (Scott and Knott, 1974).
It searches for the first significant change point in a se-
quence, then breaks the original sequence into two sub-
sequences: before and after the first significant change
point. The procedure tests the two sub-sequences sepa-
rately for a change point, with the process repeated un-
til no further sub-sequences have change points (Chen
and Wang, 2009). In our case, we previously defined
a possible change point limited in 1 (Q = 1), to obtain
only the most significant. To this end, the default penalty
parameter MBIC (modified Bayes information criterion
penalty) was chosen, which has proved to reduce over-
estimation in the number of change points and often de-
tects the correct model (Bogdan et al., 2008). Therefore,
there is no need to select a penalty value; hence in all the
cases, this value is automatically established as 14.8.

www.nat-hazards-earth-syst-sci.net/17/1697/2017/

3.2 Trend analysis

Change detection procedures determine if and when a certain
feature has undergone a significant change across the study
period. However, does it imply an increase or decrease in the
values of that feature? Moreover, how strong is that change?
Is the change stationary or does it vary over space? To an-
swer all these questions, we used a trend detection procedure
combining the MK and SS.

MK is a non-parametric statistical test appropriate for
identifying trends in time series of data (Kendall, 1975;
Mann, 1945). It is suitable for detecting linear or non-linear
trends (Hisdal et al., 2001; Wu et al., 2008). In this test, the
null (Hg) and alternative hypotheses (H;) are equal to the
non-existence and existence of a trend in the time series of
the observational data, respectively. Previous studies by San-
Miguel-Ayanz et al. (2012) and Rodrigues et al. (2013) sup-
port the use of MK in the context of wildfire science. MK
main outputs are the T value and its associated significance
level (p value). T can be used to determine the sign of the
trend, i.e. upward (t > 0) or downward (t < 0). Trends are
considered significant when p value < 0.05. To facilitate the
interpretation of MK outcomes, we calculated an aggregated
parameter combining the 7 and p value, the so-called “signed
p value”. It combines information on both sign and signif-
icance, calculated as the multiplication of the significance
level either by 1 when 7 > 0 or by —1 when 7 < 0.

The magnitude of the change was subsequently assessed
by means of the SS (Sen, 1968), a non-parametric alterna-
tive for estimating the median slope joining all possible pairs
of observations, which enables a comparison of the magni-
tude of the detected trends. Both MK and SS were calculated
for all fire features by region and NUTS3 level and for both
seasons.

3.3 Principal component analysis and mapping

Finally, PCA was carried out on Sen’s slope’s values in or-
der to synthesize the detected changes. PCA is a widely used
technique for summarizing a large set of variables into fewer
and common factors, reducing the variance of the original
data. Representative principal components (PCs) were se-
lected using the Kaiser criterion (Kaiser, 1960), which only
retains PCs with eigenvalues greater than 1. In turn, the vari-
max rotation (VR) method was applied to identify key trends.
VR transforms the selected PC, maximizing the sum of the
variance and thus obtaining higher coefficients or near to zero
with fewer intermediate values. The objective is to link each
variable to one maximum PC to make interpretation of PCA
results easier (Horst, 1965; Kaiser, 1958).

Furthermore, we summarized the temporal behaviour re-
trieved from PCs on an additional map. Figenvalues from
PCs 1 and 2 were classified into four categories according to
their sign (positive or negative trends) and significance level
(above (significant) or below (non-significant)) a 90 % con-
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Table 2. Change points for AMOC (at most one change), BinSeg (binary segmentation), PELT (pruned exact linear time) methods and Pettitt
test (* significant changes p value < 0.05) by fire feature, region and season from the period 1974-2013. Bold features indicate matching
probable changes in at least three methods. NW is Northwest, HL is Hinterland and MED is the Mediterranean. See Sect. 2.1 for acronyms

and description of fire features.

NW | HL | MED
Summer | Summer | Summer

AMOC BinSeg PELT Pettitt | AMOC  BinSeg PELT Petiitt | AMOC BinSeg PELT Pettitt
N - 2006 2000, 2006 2005 | - 1977 1977 1983 | 1994 1994 1994 1994*
B - 1990 1990 1991* | — 1977 1977 1991 | - 1994 1994 1994*
N500 — 2006 2006, 2008 1990 | - 1991 1981,1983,1991 1991 | 1994 1994  1995,1997 1994*
B500 — 2006 2006, 2008,2010 1991 | — 1977 1977 1991 | - 1994  1992,1994  1994*
NL - 2006 1982, 1984 1988* | — 2006 1980, 2006 1980 | 2011 1994 2011 1996
BL - 2006 2006, 2010 1988 | - 1990 1990 1995 | 1995 1994 1994 1994
NH - 1976 2000, 2006 2006 | — 1977 1977 1997* | — 2005 1991,1993  1994*
BH - 2008 2008 1990 | - 1977 1977 1977 | - 1994  1990,1994  1994*

Winter | Winter | Winter

AMOC BinSeg PELT Pettitt | AMOC  BinSeg PELT Pettit | AMOC BinSeg PELT Pettitt
N - 1984 1984 1987* | - 1987 1987 1987* - 2005 1995, 1997 1999
B - 1984 1984, 1989 1987 | — 1989 1989 2000 1985 1985 1985 1986*
N500 — 1989 1990, 1993, 1995 1996 | — 1977 1995, 2009 1989 1984 1984 1992,1999  1986"
B500 — 1984 1990, 1993 1996 | — 1977 1995, 2009 1989 1984 1984 1992,1999  1986*
NL 1994 1993 2000, 2007 1993 | - 1976 1976 1990 - 1977 1977 1992
BL - 1984 2002, 2007 1993 | 1990 1989 1990, 1994 1990 - 1977 1977 1999
NH 1987 1987 1987 1987 | - 1987 1987 1987* - 2005 2005 2005
BH - 1984 1984 1987% | — 1989 1989 1987 1981 1981 1981 1986*

fidence interval. PCs 3 and 4 were only shown when signifi-
cant. In this way, we were able to outline homogeneous areas
according to the observed temporal evolution.

4 Results
4.1 Change point detection

Only those cases where at least three of the methods agree
in the year of change are taken as change points. Table 2
summarizes the year(s) of change obtained by the four algo-
rithms. The majority of change points were detected between
the late 1980s and the early 1990s. Change points have been
detected in the MED region in N S, B, N500, B500, BL S,
NH S and BH. Summer changes are consistently observed
in 1994 in the MED features, whereas changes in the win-
ter season in this region appear around in 1984-1986. Ad-
ditionally, another six change points were found in the NW
region in NH W in 1987, NL W in 1993 and B S in 1991 and
two in N W and B W were found in 1984—1987. Finally, one
change point was detected in N S, but in 2005-2006. In HL,
five change points were found in N W and NH W in 1987,
N500 S and BL W in 1990-1991 and finally BH S in 1977.
It is important to note that some fire features in particular re-
gions are very few, such as in HL and NW regions, which do
not appear in Figs. 2 and 3.
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4.2 Trends analysis
4.2.1 Region level

Table 3 summarizes the results from MK. Similar to change
point analysis, the MED region stands out as the one with
most significant changes. In general, the region returns
mostly downward trends in all fire features, significant in
all cases and seasons, except NL, NH and BH during win-
ter. Only a few features underwent a trend either way in the
NW region. Significant upward trends were detected in N,
B, NH and BH. In all cases, trends occurred during the win-
ter season. Significant downward trends were found in B and
B500 during summer. Again, HL is the region with fewest
significant trends. Overall, human-related features (NH and
BH) show significant upward trends in summer and winter,
whereas N increases during winter.

4.2.2 NUTS3 level

Trend detection analysis at NUTS3/provincial level com-
bines MK and SS values. Maps in Fig. 4 summarize the re-
sults of this section. Every single map displays the results for
a given fire feature. The overall value of the feature, i.e. to-
tal number of fires, burnt area and number of human-caused
fires, is represented by symbol (circle) size. The colour of
the circle indicates whether the MK test denotes a significant
trend or not. Grey circles represent non-significant trends,
whereas coloured symbols denote significant trends. For the
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Figure 2. Detected change points and temporal evolution of fire frequency features (log scale) for the period 1974-2013 in the three regions
examined: Northwest is indicated by the green line, Hinterland by the light blue line and the Mediterranean by the orange line. Column (a)
refers to the summer season, while (b) is winter. Dashed vertical lines represent probable change points. See Sect. 2.1 for acronyms and

description of fire features.

significant trends, the value of the SS is plotted inside the
circle. We used a gree—yellow—red colour ramp to represent
both the sign of the trend (negative in green and positive in
red) and the trend magnitude according to the SS value.
Observing the spatial distribution of significant trends, an
increment in N was found in provinces of the northwestern
area and the western provinces of the hinterland on the bor-
der with Portugal. Similar to the results at regional level,
provinces on the Mediterranean coast show a decrease in
the number of fires, although some provinces in the south-
ern region (Andalusia) do not show significant trends. How-
ever, differences in the seasonal behaviour were observed,
with increasing trends found in the eastern provinces in NW.

www.nat-hazards-earth-syst-sci.net/17/1697/2017/

In turn, provinces with significant decreasing trends were
located along the Mediterranean coast, southern Andalusia
and the majority of provinces in Galicia. Winter N clearly
presents an increase for most of the NW region and many
areas of the HL.

This spatial distribution changes slightly for total B and
summer B compared to those observed in N, being more vis-
ible in the northwestern area (Galicia and Asturias) and large
part of Andalusia, where negative trends play a decisive role
at the expense of positive trends. However, NH shows more
increases across the territory, except the Mediterranean coast.
However, with BH, decreases are more evident, mainly con-
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Figure 3. Detected change points and temporal evolution of burned area features (log scale) for the period 1974-2013 in the three regions
examined: Northwest is indicated by the green line, Hinterland by the light blue line and the Mediterranean by the orange line. Column (a)
refers to the summer season, while (b) is winter. Dashed vertical lines represent probable change points. See Sect. 2.1 for acronyms and

description of fire features.

centrated in the northeast coastal areas, some provinces of
the northwest and Andalusia.

The spatial distribution of SS values across mainland
Spain reveals a high spatial variability in trend magni-
tude. The strongest trends according their standard deviation
(SD < —1.64) or (SD > 1.64) were found in the NW area,
both positive and negative. Strong positive trends were iden-
tified in winter fire features relating to frequency, such as to-
tal N and N-NH, but also with burned areas, as with B and
BH. In contrast, the main negative trends were located again
in the NW region for some summer fire features like N, B,
NH and BH. In addition, the rest of the territory is covered by
intermediate values, mainly in total N and B, B S, N W and
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NH. However, in most areas moderate negative trends play
a major role (especially in the Mediterranean coast) whereas
moderate positive dynamics are concentrated in the western
provinces of hinterland.

4.3 Principal component analysis and varimax rotation

PCA was applied to SS values. Results from PCA provide an
overview of the most relevant links among trends in fire fea-
tures. According to the Kaiser criterion, 4 components (rep-
resenting 88 % of the variance) out of the initial 14 were se-
lected. Consequently, VR was only calculated for those four
PCs. According to PCA eigenvalues (Table 4), PC1 (38 %
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Figure 4. Spatial distribution of selected significant Sen’s slope (SS) values from 1974 to -2013 according to Mann—Kendall. SS classes are
based on the following intervals: decrease (< —1.6), small decrease (—1.6; —0.5), stable (—0.5; 0.5), small increase (0.5; 1.6) and increase
(> 1.6). Proportional symbols represent the number of wildfires and burned area value. SS value is displayed in colour using standard
deviation intervals. Provinces without symbols represent non-significant trends according Mann—Kendall test. See Sect. 2.1 for acronyms

and description of fire features.

of the variance) is associated with changes in fire frequency,
particularly the number of fires and human-caused fires dur-
ing winter. PC1 gathers N (0.44), N W (0.52) and NH W
(0.45). PC2 (27 % of the variance) relates to the fire-affected
area. B (0.47), B S (0.44), BH S (0.44) and N S (0.43), sug-
gest that burned area trends are mainly related to summer hu-
man dynamics and a slight increase in summer fire frequency.
Large fire trends are noticeably isolated in PC3 (15 % of the
variance in terms of both frequency and burned area). Finally,
PC4 (8 % of the variance) separates natural fires dynamics in
the same way as large ones fall into PC3. In general, PC1

www.nat-hazards-earth-syst-sci.net/17/1697/2017/

relates to winter fire frequency, PC2 to summer burnt area,
PC3 to large fires and PC4 to natural fires.

Figure 5 displays PC values at NUTS3 level. The NW and,
to a lesser extent, MED regions show the highest magni-
tude of change when looking at the four PCs in the same
picture. PC1 displays both the highest and lowest values in
the NW region, although some provinces in the northeast
area of the Mediterranean also show low values. PC2 shows
higher values over the HL region and lower in the west-
ern area of NW. Lower values were observed for PC3 in
some provinces of the Ebro Valley and others, such as Va-
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lencia, Cadiz and Ourense. In contrast, some provinces in
the western NW show moderately increased values (espe-
cially in Le6n). However, PC4, which represents naturally
caused fires, exhibits intermediate positive values all over the
study region, especially some provinces in the hinterland of
the NW region, Valencia and Cadiz. Finally, the main nega-
tive values are located in several provinces on the Cantabrian
(north) coast and the central Pyrenees (Huesca).

Figure 6 displays the summary of PCA. Increased fire
frequency was observed only in the NW region, in the in-
land provinces of Ledn, Zamora and Ourense, as well as
in the Cantabrian cornice. Nevertheless, the burnt area de-
creased throughout the region. A significant winter frequency
decrease was solely found in Pontevedra. However, a non-
significant winter frequency decrease was observed along the
Mediterranean coast and most of the interior of the coun-
try. In these latter areas, an increased summer burnt area was
also observed. In contrast, a significant decrease in the sum-
mer burnt area was only detected in the Galician provinces
(NW). In addition, significant trends in large or natural fires
were found in the three regions. Increased lightning fire ac-
tivity was observed in Ledn and Zamora (NW) and Valencia
(MED). Lesser natural fire activity was detected in Asturias
(NW) and Huesca (HL). In turn, the occurrence of large fires
was more frequent in Leén and Pontevedra (NW), whereas
the opposite could be found in Ourense (NW), Huesca (HL)
and Valencia (MED).

5 Discussion

In this paper, we present an analysis of spatial-temporal
trends of several fire regime features at different scales for
mainland Spain. Various statistical methods for time series
were applied to historical fire data to (i) explore the temporal
behaviour of fire features and (ii) investigate key relation-
ships in trends, with the end purpose of the research being to
improve the definition of fire regime. It should be noted that
the analysis is based on historical fire records, and thus there
are some limitations related to landscape-level fuel build-up
that cannot be addressed.

Change detection procedures suggest the existence of
change points in several fire features (Table 2). Changes were
mostly found in the Mediterranean region from the late 1980s
to the first half of the 1990s. Moreno et al. (2014) support
our findings for number of fires and burned area on a sea-
sonal scale, and they also found similar change points us-
ing the Pettitt test on a stepwise approach with an 11-year
moving window. This work is a particularly good match for
our objective because the same regions and fire data from
the EGIF database were used, although the study period was
slightly different (1968-2010) and only examined number
of fires and burnt area. In particular, these authors observed
downward changes starting from the 1990s to the present in
the Mediterranean region for both winter and summer and in
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the summer of Northwest and Hinterland, which are in line
with our findings (see Fig. 2). They concluded that climate
might have played a role in the change points of the Mediter-
ranean region (mid-1980s and 1990s) and the Northwest re-
gion (1991). In addition, the change points we detected in
the Northwest region for the number of winter fires (Fig. 2)
might be linked to different causes, such as rising popula-
tion density, agricultural activities and more cases of arson,
as Moreno et al. (2014) have pointed out. However, increased
investment in fire suppression might have played a role in re-
ducing the burned area (Seijo and Gray, 2012). However, this
is a difficult aspect; in this sense the analysis in the north-
ern region of Portugal (Fernandes et al., 2014) found that the
shift towards decreasing area burned did not happen in areas
with unsuccessful/insufficient fire-fighting efforts.

Overall, all methods detect significant changes in some fire
features in the Mediterranean and the Northwest regions dur-
ing both seasons, although slight differences in the reported
year do exist.

We considered it necessary to assess other fire regime fea-
tures, such as large fires and fire sources. The inclusion of
trends in large fires is justified because of their remarkable
socioeconomic and natural impact (Alvarado et al., 1998;
San-Miguel-Ayanz et al., 2013). Change detection suggests
that the number of large fires has changed since the mid-
1990s throughout the Mediterranean (see Fig. 2), supported
by findings from MK, which detects a decrease in frequency
and affected area (Table 3). Cardil and Molina (2013) re-
port similar changes, although these authors have taken large
fires to be those burning more than 100 ha and have excluded
some provinces from their assessment. They and others, like
Brotons et al. (2013) and Ruffault and Mouillot (2015), sug-
gest that large fires have decreased because extinguishing
methods have improved, again, mainly due to the extraor-
dinary investment that Spain has devoted to fire suppression.

Findings from change detection are supported and com-
pleted by those from trend analysis. At a regional level, the
Mediterranean region shows a negative trend in the majority
of fire features (see Table 3). The Northwest and Hinterland
share a positive trend during winter. Number of fires presents
a general downward trend in both seasons in the Mediter-
ranean and during summer in Northwest. In the case of the
Hinterland region, the trend in the number of fires suggests
a higher frequency in winter. This behaviour was also found
by Zavala et al. (2011) and Turco et al. (2016). The latter
found an apparent shift in the mid-1980s, the same as we
detected. Among the feasible causes that may explain this
spatial contrast, we found factors such as land use changes
caused by land abandonment leading to vegetation recov-
ery during recent years (Bonet and Pausas, 2007; Castellnou
et al., 2010), resulting in an accumulation of fuels. How-
ever, the burned area shows a decrease in all regions and
seasons. Previous studies by Rodrigues et al. (2013), Spano
et al. (2014) and Turco et al. (2016) have also found nega-
tive trends for a very similar time span. These works sug-
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Figure 5. Spatial distribution of the principal component coefficients of Sen’s slope, 1974-2013. Values represented using standard deviation
intervals. Sen’s slope classes are based on the following intervals: decrease (< —2.5), small decrease (—2.5; —0.5), stable (—0.5; 0.5), small

increase (0.5; 2.5) and increase (> 2.5).

Table 3. Signed p value of Mann-Kendall test in the period 1974-2013 by fire feature, season and region. Values in bold correspond to
significant trends (p value < 0.05), with their corresponding symbol + or — for positive or negative trends, respectively. NW is the Northwest;
HL is the Hinterland; MED is the Mediterranean region. See Sect. 2.1 for acronyms and description of fire features.

N N500 | NL | NH
S w w | s w | S w
NW  —(0.14)  +(0.01) | —(0.03) +(0.26) | +(0.14)  —(0.49) | +(0.77) +(0.01)
HL 4 (021) +(0.01) | —(022) —(0.39) | +(0.62) —(0.03) | +(0.01) +(0.01)
MED —(0.01) —(0.01) | —(0.01) —(0.01) | —(0.11) +(0.13) | —(0.01) —(0.54)
B B500 | BL | BH
S w w | s w | S w
NW = (0.01)  +(0.03) | —(0.13) +(041) | +(0.68) —(028) | —(0.13) +(0.01)
HL = (025) —(0.95) | +(0.51) —(0.48) | — (044 —(0.08) | +(0.84) + (0.84)
MED —(0.01) —(0.01) | —(0.01) —(0.01) | —(022) +(0.06) | —(0.01) +(0.01)
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Figure 6. Summary of spatial-temporal behaviour from principal component analysis. Thick arrows mean significant trends, and thin ones

are non-significant trends according to 90 % confidence interval.

Table 4. Varimax rotation correlation values, standard deviation
(SD) and variance (VAR) from principal component analysis on
Sen’s slope results, 1974-2013. The most meaningful features (cor-
relation > 0.43 or < —0.43) are marked bold. See Sect. 2.1 for
acronyms and description of fire features.

PC1 PC2 PC3 PC4

SD 23 195 1.47 1.07
VAR 0.38 027 0.15 0.08
Fire N 044 023 —0.14
feature NS 0.18 0.43 —0.11
NWwW 0.52 0.11 —0.10
B 0.47
BS —0.18 0.44 0.11
BW 0.35 0.21
N300 S 0.63
B500 S 0.69
NL S 0.60
BL S 0.60
NH S 0.19 036 -0.17 0.12
NH W 0.45
BHS —-020 044 —0.14 0.27
BHW 0.27 —0.14 0.29

gest that the decrease might be explained by recent improve-
ments in management of wildfires and monitoring systems.
Additionally, the European Forest Fire Information System
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(EFFIS) observed a clear downward trend in the total burnt
area in some southern European countries (including Spain)
after 1990, partly due to improved fire protection services
(Schmuck et al., 2010). Nevertheless, the Northwest region
during winter emerges as the sole exception, with the af-
fected area showing an upward trend. It can be argued that
a persistent increase in arson has tended to extend the sur-
face affected in this area (Ganteaume et al., 2013). Finally,
positive trends are detected in winter in the number of hu-
man fires in the Northwest and Hinterland regions (both sum-
mer and winter), contrasting with a decrease found in the
Mediterranean region. Human-burnt area follows a positive
trend mainly during winter in the Northwest and in many ar-
eas in the south, whereas during summer a decrease is more
widespread. This fact suggests that summer human-burnt
area is declining, but intensifies during winter. The reasons
which may explain this fact could relate to a continuance of
arson attacks as a common practice which still remains. To
our knowledge, this is the first analysis of fire frequency and
burned area based on the source of the fire. Therefore, we
cannot establish any comparison.

Downscaling to NUTS3/provincial level, Sen’s slope has
exposed the underlying spatial heterogeneity in the magni-
tude of the trends, both positive and negative (Fig. 4). In this
respect, number of fires is the feature with the highest de-
gree of change. Trend magnitude in the number of fires ap-
pears to be distributed along a west-to-east gradient, starting
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with increasing dynamics in the west and ending with down-
ward trends in the eastern Mediterranean provinces. In con-
trast, the sharpest decreases are observed in features relating
to burned areas such as burned area, burnt area during sum-
mer and human-burnt area during summer. However, this be-
haviour is reversed during winter, although trend magnitude
is less marked. This is probably due to the improvement in
fire extinguishing or encouraging monitoring and prevention
(MAPA, 1988; Rodrigues et al., 2016), particularly encour-
aged during summer. Fires ignited by lightning perhaps show
the most contrast as there is a marked dichotomy between
west and northeast. For instance, decreasing dynamics are
found in the northeast area, whereas major upward trends are
situated in the western half of the region, which is consid-
ered one of the most lightning-ignition-prone areas of Spain
(Ortega et al., 2012). According to our results, there seems
to be increased fire activity from natural causes. However,
trends are more noticeable in the number of natural fires than
in natural burned area, thus the average size of lightning-
caused fires seems to be shrinking. It is important to note
that other seasonal partitions like those reported by Moreno
et al. (2014), Sousa et al. (2015) and Trigo et al. (2016) have
been explored, finding almost no differences.

Finally, PCA—VR enables trends to be grouped to pro-
vide an easily readable description and characterization of
fire regime at provincial level, also clarifying the spatial pat-
tern of key fire trends. Therefore, we extracted four main
components (see Table 4, Figs. 5 and 6), i.e. four distinct
temporal behaviours: winter fire frequency (PC1), summer
burnt area (PC2), large fires (PC3) and natural fires (PC4).
The first two components are associated with seasonal fire
activity, whereas components 3 and 4 relate to intrinsic char-
acteristics of wildfires, such as fire size and ignition source,
respectively. PC1 has led to identifying winter frequency
trends and human-caused frequency during winter as key
trend features, while PC2 gathers trends from burned area
features, but mostly summer trends (burned area and human-
burnt area), indicating that summer fire dynamics might play
a secondary role compared to winter, at least in terms of the
strongest temporal trend. However, the last two PCs, large
fires and natural fires trends, appear to be similarly important.
In addition, a seasonal contrast is clearly evident between the
Northwest region dynamics and the rest of mainland Spain
(i.e. negative trends located mainly in Galicia).

6 Conclusions and future work

In this paper, we have explored spatial-temporal changes of
several fire regime features in Spain at regional and provin-
cial levels. To this end, we combined change point detec-
tion techniques, trend detection procedures and PCA, ap-
plied to fire data from 1974 to 2013. Our results suggest that
two main trends based on seasonal differences can be distin-
guished: fire frequency during winter and burned area during
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summer. It is important to highlight that in both cases human
cause is strongly correlated to the trends, and thus apparently
changes in burned area and fire frequency are partially con-
trolled by human-caused fires. Additionally, mapping SS and
PCA results at NUTS3 level suggests different behaviour in
the northwestern provinces, which return the highest values,
in terms of both frequency (upward trends) and burnt area
(downward trends).

Change detection suggests a main breakpoint in the tem-
poral evolution of fire features around the late 1980s and in
the first half of the 1990s. In contrast, the Mann—Kendall test
on a regional scale has revealed that the Mediterranean re-
gion presents a high degree of negative trends in the majority
of fire features, in contrast to the Hinterland and Northwest.
According to Sen’s slope, the main trends at NUTS3 level
show high spatial-seasonal variability, and several trend gra-
dients linked to the number of fires and naturally caused fires
were detected. In this regard, overall fire frequency shows an
upward tendency, particularly strong during winter, while the
burned area exhibited a general downward trend.

The analysis of spatial-temporal trends opens new re-
search lines. For instance, further evaluation is required to
incorporate other benchmark spatial units to provide greater
detail than found at provincial level (for instance, grid cells).
Nevertheless, deeper insights into causes explaining tempo-
ral behaviour of the main fire regime features should be
explored, especially those linked to weather conditions and
land use changes. Finally, the role of small fires (1 < ha) can
be included, thus enriching fire regime assessment in order
to avoid potential bias caused by their exclusion. In any case,
the analysis given in this paper should provide a useful refer-
ence to obtain spatially and temporally explicit assessment of
fire regime changes, to help improve delimitation of homoge-
nous fire regime areas and to gain a more complete overview
of wildfire phenomenon.
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CHAPTER 6: THE INFLUENCE
OF FIRE-WEATHER ON THE
EVOLUTION OF FIRE ACTIVITY

This chapter describes the results, discussion and main
conclusions obtained from the analysis of spatial and temporal
associations between monthly time series of fire weather danger
indices (Fire Weather Index, Burning Index and Forest Fires
Danger Index) at regional and local level. Decomposition of time
series was the first step, then apply cross-correlation to explore
seasonal associations at regional scale, as well as, a Pearson’s
correlation was calculated between each index and 18 fire-activity
subsets by fire size and cause at local scale.
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ARTICLE INFO ABSTRACT

Keywords: In this paper we investigate spatial-temporal associations of fire weather danger and fire regime features from
Wildfire 1979 to 2013. We analyze monthly time series of fire activity (number of fires and burned area) and fire weather
Time series danger rating indices (Fire Weather Index, Burning Index and Forest Fire Danger Index) at two spatial scales: (i)
Seasonal cycles regionally, splitting the Spanish mainland into Northwest, Hinterland and Mediterranean regions; and (ii) lo-
3::;er cally, using the EMCWF grid. All analyses are based on decomposing time series to retrieve differential indicators
- of seasonal cycles, temporal evolution and anomalies. At regional scale we apply lagged cross-correlation ana-

lysis (4 lags or months before fire) to explore seasonal associations; and trend detection tests on the temporal
evolution component. At the local scale, we calculate Pearson correlation coefficients between each individual
index and the 18 possible fire-activity subsets according to fire size (all sizes, > 1 ha and > 100 ha) and source of
ignition (natural, unintended and arson); this analysis is applied to both cycles, temporal and anomalies series.

Results suggest that weather controls seasonal fire activity although it has limited influence on temporal
evolution, i.e. trends. Stronger associations are detected in the number of fires in the Northwest and Hinterland
regions compared to the Mediterranean, which has desynchronized from weather since 1994. Cross-correlation
analysis revealed significant fire-weather associations in the Hinterland and Mediterranean, extending up to two
months prior fire ignition. On the other hand, the association between temporal trends and weather is weaker,
being negative along the Mediterranean and even significant in the case of burned area. The spatial dis-
aggregation into grid cells reveals different spatial patterns across fire-activity subsets. Again, the connection at
seasonal level is noticeable, especially in natural-caused fires. In turn, human-related wildfires are occasionally
found independent from weather in some areas along the northern coast or the Ebro basin. In any case, this effect
diminishes as the size of the fire increases. Our work suggests that for some regions of mainland Spain, these fire
danger indices could provide useful information about upcoming fire activity up to two months ahead of time
and this information could be used to better inform wildland fire prevention and suppression activities.

1. Introduction

Understanding the complexity and dynamics of fire regimes is
growing in importance as the size and severity of wildfires increase in
many regions (Falk et al., 2011). Many factors are involved when de-
fining fire regimes; it is widely recognized the crucial role humans play
in wildfire incidence (San-Miguel-Ayanz and Camid, 2009) but it is also
indisputable the remarkable influence exerted by weather and climate.
Generally speaking, wildfires are the result of complex human-envir-
onment interactions and synergies (Koutsias et al., 2012; Krebs et al.,
2010; Liu et al., 2012; Liu and Wimberly, 2016). The final affected area

* Corresponding author.
E-mail address: jimenez@unizar.es (A. Jiménez-Ruano).

https://doi.org/10.1016/j.jenvman.2018.09.107

depends on the fire conducive weather, fuel availability and topography
(Drobyshev et al., 2012; Parisien et al., 2011; Whitman et al., 2018),
but also on fire suppression and site accessibility, thus shaping the re-
sulting fire perimeter (Flannigan et al., 2009; Krebs et al., 2010;
Papadopoulos et al., 2013; Shakesby and Doerr, 2006). Notwith-
standing, weather factors influence both fire ignition and spread
(Thompson et al., 2011). For instance, coincident high temperatures
and extended drought circumstances may promote larger fires (Camia
and Amatulli, 2009; Pinol et al., 1998; Trigo et al., 2016; Turco et al.,
2014; Urbieta et al., 2015).

In Spain, several works report an overall decrease of wildfire
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frequency along the Mediterranean coastlands but an intensification in
the remaining territory (Turco et al., 2016). Likewise, a recent paper by
Jiménez-Ruano et al. (2017b) reported increased fire activity in the
Northwest area of Spain, one of the most fire-affected regions in Europe
(Koutsias et al., 2016; Pausas and Fernandez-Munoz, 2012). Further-
more, winter fires and large fires are more frequently observed, par-
tially induced by human activities (Jiménez-Ruano et al., 2017a) but
also related to the lengthening of the fire season (Jolly et al., 2015).
Therefore, we can safely assume fire dynamics are, to some extent,
linked to climate variability. As a matter of fact, some studies already
suggest a transition towards more climate-driven fire regimes at a
global scale (Pechony and Shindell, 2010) and an increased role of
climate factors in fire occurrence (Rodrigues et al., 2016).

However, one of the main undefeated challenges of fire science is to
ascertain the extent to which climate and human factors are influencing
fire regime dynamics. In other words, what role does weather play in
the evolution and temporal behavior of fire incidence? Does it depend
on the source of ignition? A number of studies on wildfire incidence
have focused on current climate (Abatzoglou and Williams, 2016; Bedia
et al., 2013; Parente et al., 2016; Pausas, 2004; Turco et al., 2014) as
well as future scenarios (Boulanger et al., 2014; Mori and Johnson,
2013; Perera and Cui, 2010); but studies examining the temporal
weather-fire interactions still has room for improvement.

In this sense, a widespread approach to measure the influence of
weather on wildfires has been the use of fire weather danger rating
indices. The Canadian Fire Weather Index (FWI) is the most established
index being applied worldwide (Van Wagner, 1987); without being
exhaustive, we find examples of use of FWI in North America (Jain

et al., 2017; Turetsky et al., 2004; Wang et al., 2015; Wotton et al.,
2017), Europe (Dupire et al., 2017; Viegas et al., 2006), and also in
Iberian Peninsula (Bedia et al., 2012). Likewise, other rating indices

have been explored such as the United States Burning Index (BI)
(Schoenberg et al., 2007) or the McActhur's Forest Fire Danger Index
(FFDI) in Australia (Sanabria et al., 2013). However, few works com-
pare (i.e., Nolasco and Viegas, 2006; Pérez-Sanchez et al., 2017) the
performance of different fire weather indices.

In this study, we investigate the temporal association between
weather factors and fire incidence, using fire weather rating indices as a
proxy of short-term weather conditions. We analyze temporal correla-
tions between monthly time series of fire weather danger indices (FWI,
BI and FFDI) and fire regime features (fire frequency and burned area)
in the period 1979 to 2013. Analyses were carried out at two different
spatial levels; regions, splitting mainland Spain into three homogenous
areas in terms of fire activity (i.e. term that refers to two variables:
number of fires and total burnt area combination) and climate condi-
tions; and at a local level, using the Furopean Centre for Medium-Range
Weather Forecasts (ECMWF) grid (0.75%x0.75°, roughly 82 x 82km).
Time series of weather indices and fire data were decomposed (season,
trend and remainder), analyzed and compared using a combination of
correlation and trend detection procedures. Our main goals are (1) to
determine the extent to which weather controls intra and inter-annual
fluctuations of number of fires and burned area at a regional scale, and
(2) to detect spatial patterns according to fire size and ignition source.

2. Materials and methods
2.1. Study area

The study area is mainland Spain (thus excluding both the Balearic
and Canary archipelagos and the autonomous cities of Ceuta and
Melilla). Spain is very biophysically diverse, presenting a wide variety
of climatic, topographical, and environmental conditions. Mainland
Spain is dominated by two biogeographical regions. The Eurosiberian
region covers most of the northern area of the country. It is char-
acterized by an Oceanic climate (according to Koeppen's climate clas-
sification - Cfb), mostly covered by various types of vegetation from
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deciduous oak (Quercus robur, Fraxinus excelsior or Fagus sylvatica) and
ash to evergreen oak woodlands, but this region is also heavily domi-
nated by forest plantations such as Pinus radiata and Eucalyptus globulus.
The Mediterranean region covers the remaining territory. Hot-summer
Mediterranean (Csa) and cold semi-arid (BSk) climates characterize this
area, which therefore has notably drier and warmer conditions than the
Eurosiberian region. These conditions, coupled to human activity, favor
complex mosaics of agricultural systems and plant communities.
Sclerophyllous and evergreen vegetation, such as Quercus ilex and
thermophilous scrublands (maquis and garrigues formations), dominate
the region, and forest areas mainly consist of pines (Pinus halepensis,
Pinus sylvestris, Pinus pinea or Pinus pinaster). Furthermore, bioclimatic
(altitudinal) belts exist within each region in mountain areas such as
the Pyrenees along the French border or Sierra Nevada on the southern
Mediterranean coast.

Due to the variety of conditions the Spanish Ministry of Agriculture
and Environment outlined 3 major regions (Fig. 1) portraying homo-
genous fire regimes: Northwest (NW), Hinterland (HL) and Mediterra-
nean (MED). The NW region includes the autonomous communities of
Galicia, Asturias, Cantabria and the Basque Country, as well as the
provinces of Ledn and Zamora. This region is located broadly within the
Eurosiberian region, excluding the Pyrenees mountain ranges. The HL
region includes all of the autonomous communities without coastline,
except for the provinces of Leén and Zamora (which belong to NW). HL
is located in the transition inland between the Mediterranean and
Eurosiberian regions, thus sharing climate influence and plant species
from both of them. Finally, the MED region, situated completely within
the Mediterranean biogeographical region, includes all the autonomous
communities along the Mediterranean coastlands, as well as the wes-
tern provinces of Andalusia.

2.2. Fire weather danger rating indices

We have explored 3 of the most widespread fire weather danger
rating indices in the literature: the Canadian Fire Weather Index (FWI),
the US Burning Index (BI) and Australian Forest Fire Danger Index
(FFDI). These indices summarize weather conditions related to the
‘burning potential’; nonetheless FWI and BI also reflect fuel moisture
whereas FFDI is a pure meteorological index.

FWI was computed following the Van Wagner and Pickett (1985)
specifications, using a specifically-written C+ + library. We used noon
weather (either 12.00 or 13.00 local standard time) daily gridded data
from the ECMWF Interim Reanalysis (Dee et al., 2011). The US BI
parameters (fuel moistures and indices) were computed following
Bradshaw et al. (1983). The final Bl index represents the expected rate
of spread and heat release of a given fire. Again, gridded data from the
ECMWF was employed to build the index. To ensure spatial-temporal
homogeneity, FWI and BI calculations were constrained to fuel model G
(short needle, heavy dead), because this heavily weights long time-lag
fuels, thus better representing seasonal wetting-drying cycles (Jolly
et al., 2015). Finally, FFDI was calculated following the steps estab-
lished by McArthur and expressed as equations by Noble et al. (1980).
The Drought factor for these equations was calculated using the im-
proved formula presented by Griffiths driven by the Keetch-Byram
Drought Index, which was calculated using daily maximum tempera-
ture and precipitation from each ECMWF reanalysis dataset and mean
annual precipitation values from the WorldClim climate dataset
(Hijmans et al., 2005). See Jolly et al. (2015) for deeper insights on the
calculation of the indices. Fig. 2 shows the overall workflow followed to
calculate every index.

2.3. Fire data and fire-activity subsets
Wildfire information in the period 1979-2013 was retrieved from fire

reports in the Spanish General Statistics Forest Fires database (EGIF),
compiled by the Spanish Department of Defense Against Forest Fires The
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Fig. 2. Overall workflow to obtain the Fire Danger Weather Rating Indices employed in the study (see Jolly et al., 2015, for more details).

EGIF database stands out for its precision and completeness, since is one of
the oldest wildfire databases in Europe, beginning in 1968 (Vélez, 2001).
Among other valuable information, fire reports provide the starting point
of each fire event —recorded on a 10 x 10 km reference grid—, the ignition
source, the affected burned area size, and detection date.

Two sets of fire-related time series were constructed at a monthly
level: the overall fire frequency (N -number of fires) and burned area
(BA - total affected area in has) were summarized at a regional level
(Table 1); additionally fires were assign to its corresponding ECMWEF-
grid (Fig. 3). Fire data was then split into several fire-activity subsets of
ignition source (natural, negligence/accident and arson) and fire size
(All sizes, > 1 ha and > 100 ha). Negligence and accidental fires will be
further referred to as ‘unintended’.

2.4. Methods

Fire-weather relationships were analyzed in 3 stages: (1) first we

decompose time series of weather data and fire features; (2) then we
investigate spatial-temporal associations at a regional level; finally, (3)
we try to identify spatial patterns in fire-weather associations at grid
level. The whole process involves several statistical procedures. We use
time series decomposition to split temporal observations into its main
components, cross-correlation to investigate seasonal cycles, Mann-
Kendall and Sen's slope for trend detection and Pearson's correlation
coefficient to explore spatial patterns of association at local level.

All statistical procedures, maps and plots were obtained using the R
statistical programming language (R Core Team and R Development
Team Core, 2017), packages astsa for cross-correlation and trend and
Mann-Kendall and Sen's slope tests; raster and rgdal for spatial data
manipulation; stats for Pearson's correlation analysis; and ggplot2 for
mapping and plotting.

2.4.1. Decomposing monthly time series
Time series of fire activity and weather indices were decomposed

77



Chapter 6: The influence of fire-weather on the evolution of fire activity

A. Jiménez-Ruano et al.

Table 1
Number of fires and burned area summary per ignition cause and fire size
globally and regionally for the period 1979-2013.

Size Fire frequency Burned area (ha)

Natural Unintended Arson Natural  Unintended Arson

Spanish mainland (whole study area)

All 20,336 95,607 273,043 373971 1,175,281 2,734,781
>1lha 4,923 39,706 124,316 372,225 1,163,028 2,700,633
>100ha 348 1,521 4,601 333,684 867,602 1,628,286

Northwest

All 3,848 26,408 223,149 38,122 190,636 1,777,329
>1lha 1,308 12,142 101,116 37,673 187,120 1,748,864
>100ha 74 345 3,208 26,405 88,565 879,687

Hinterland

All 10,785 38,104 29554 177,672 429,890 453,538
>1lha 2,474 15,791 14,226 176,800 425,030 450,019
>100ha 193 621 762 157,617 311,510 327,553

Mediterranean

All 5703 31,095 20,340 158,177 554,755 503,913
>1lha 1,141 11,773 8,974 157,751 550,878 501,750
>100ha 81 555 631 149,662 467,527 421,047

Journal of Envir I M 241 (2019) 575-586
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using Seasonal-Trend Decomposition (STL; Cleveland et al., 1990). STL
is a very versatile and robust method to divide time series allowing the
detection of both gradual changes (trend) and cycles (season). More
importantly, decomposing enables further analysis such as cross-cor-
relation (CC) whose performance is affected by underlying temporal
structures; hence it is strongly recommended that time series were de-
trended beforehand.

STL consists in a sequence of Locally Weighted Regression Smoother
(LOESS) procedures that split a time series into three components:
trend, season and remainder. For a detailed description of the algorithm
see Cleveland et al. (1990). For the sake of comprehension, hereafter we
will refer to season, trend and remainder assuming the following
meaning:

e “Season” as the component obtained that represents exclusively the
positive and negative peaks of the detected seasonal cycles within
the year.

e “Trend” as the component extracted from the time period that only
takes into account the inter-annual evolution throughout the same,
disregarding seasonal cycles.

o “Remainder” as the component that is left over from the two

Frequency total

Natural

| Unintended | Arson

All

ST
INERD
INEREN

141, 1,000-5,000 1115,000-10,000
Number of ﬁres.10 000-50,000 50,000 B

>100 ha

Burned area total

Natural

Unintended [ Arson

All

7
g

1-10,000 10,000-50,000 Jf50,000-100,000
Burned area (h2) .04 000-300,000[f>300.000

>100 ha

b e e

Fig. 3. Spatial distribution of total number of fires (top) and total burned area (bottom) across size-and-cause subsets.
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previous ones, and which therefore can be understood as anomalies
or extreme events (both exceptionally high and low values) that are
outside the average values of the trend and seasonal time series.

2.4.2. Spatial-temporal associations at regional level

Our first objective was to determine the extent to which weather
controls intra-annual (seasonal) fluctuations of fire activity. To answer
this question we conducted a cross-correlation (CC) analysis at a re-
gional level using the season component from STL. Cross-correlation is
a standard method that estimates the degree of similarity between two
discrete time sequences (x and y) as a function of the displacement
(lagged or the delay in the synchrony of two temporal events) of one
relative to the other (Venables and Ripley, 2002). We followed formula
(1 and 2) about the definitions of the lags established by Venables and
Ripley (2002) who extended to several time series observed over the
same interval:

%) = cov(Xi(t+ T).X(T)) @

min(n—t, n)

cii(t) = % Z

s=max(1, —t)

Xi(s+ =% ] [(xj(s) -X)

(2)
where are X; and X; are the two different time series, t is a particular
observation, T is the whole time series, s is the scale estimator, c is the
correlation or covariance of these observed pairs. In this case, auto-
correlation is not symmetric in t for i = j.

In our context, we were seeking the association between time series
of fire activity (y) related to past lags in each fire danger index (x). A set
of 4 lags (0, 1, 2 and 3 months) was established as the maximum time
window of weather influence.

With the purpose of assessing inter-annual dynamics of fire activity
and FWI, BI and FFDI, we applied the Mann-Kendall test (MK) coupled
with Sen's slope (SS); this combination allows us to identify statistical
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significant trends and quantify the magnitude of the change. MK is a
non-parametric statistical test suitable for identifying trends in times
series (Kendall, 1975; Mann, 1945). This test contrasts the null hy-
pothesis (Ho) and alternative hypothesis (H;) of non-existence or ex-
istence of trend, respectively. MK outputs are the T value, whose value
determine the sign of the trend (upward: T > 0; downward T < 0); in
turn the significance level of the test identifies significant trends (p-
value < 0.05). Then, we evaluated the magnitude of the changes by
means of SS (Sen, 1968). SS is also a non-parametric procedure that
estimates the median slope by joining all pair-wise combinations of
observations.

2.4.3. Local correlation analysis and mapping

To identify spatial patterns in fire-weather associations, we applied
correlation analysis at pixel level by means of the Pearson's R correla-
tion coefficient (Best and Roberts, 1975; Hollander and Douglas, 1973).
Pearson's R is a parametric statistical test that indicates the extent to
which two variables are linearly related. The test requires at least one of
the variables to be normally distributed; in our case, the three fire
danger indexes (FWI, BI and FFDI) fulfil this requirement. Pearson's R
ranges between +1 and —1, where 1 is perfect positive linear corre-
lation, 0 is no linear correlation, and —1 is negative linear correlation.
We calculated and mapped Pearson's R at grid level for each fire-ac-
tivity subset (Fig. 3) reporting the R correlation coefficient and its
statistical significance (p < 0.05). The process was repeated using each
weather index.

3. Results
3.1. Relationships between fire weather danger and fire activity

Fig. 4 and S1-S2 (Appendix) show the temporal evolution of the
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Fig. 4. Time series of FWI (yellow line), fire frequency (red line) and burned area (green line). All variables are normalized into a 0-1 range. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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lable Z

Cross-correlation coefficients between seasonal plus random effects components of FWI, BI and FFDI by monthly lags (=3, —2, —1 and 0) and fire frequency and
burned area by region (NW: Northwest, HL: Hinterland and MED: Mediterranean).Fire features were log-transformed and normalized before the analysis.

Region Fire feature FWI BI FFDI
Lag -3 Lag -2 Lag -1 Lag O Lag -3 Lag -2 Lag -1 Lag 0 Lag -3 Lag —2 Lag -1 Lag 0
NW Frequency -0.27 0.10 0.36 0.38 -0.29 0.02 0.33 0.40 -0.27 0.05 0.32 0.41
Burned area -0.25 0.10 0.36 0.38 -0.28 0.01 0.31 0.39 -0.24 0.06 0.32 0.40
HL Frequency -0.26 0.20 0.55 0.64 -0.28 0.15 0.50 0.61 -0.24 0.20 0.55 0.65
Burned area -0.23 0.11 0.36 0.35 -0.26 0.10 0.38 0.38 -0.22 0.10 0.35 0.36
MED Frequency -0.15 0.29 0.63 0.73 -0.21 0.22 0.57 0.64 -0.19 0.24 0.62 0.75
Burned area -0.08 0.30 0.62 0.70 -0.17 0.21 0.55 0.64 -0.12 0.26 0.61 0.72
Values in bold represent correlations greater than +0.10.
FWI-BI-FEDI (respectively) and fire features at regional level. Generally Table 3

speaking, the connection between fire danger indices and fire features is
noticeable. For instance, fire frequency in the Hinterland and Northwest
region closely follows the temporal fluctuation of fire danger whereas
the Mediterranean greatly differs since the mid-90s.

The seasonal decomposition of fire activity reveals a secondary peak
in late winter-early spring particularly noticeably in the Northwest re-
gion for fire frequency (Fig. 5 and S3-S4 Appendix). However, as we
move towards the Mediterranean region, the magnitude of this secondary
peak decreases. In turn, the trend component of fire danger has been
progressively increasing in all regions (Fig. 6 and S5-S6 Appendix).
Nonetheless, fire activity shows different tendencies depending on the
region. The Northwest region is the most stationary, although during the
last decade fire features depict a downward trend. The Hinterland region
showed an increase until 2010, decreasing afterwards. In the case of
Mediterranean, this decline is also present since 2000.

Results from cross-correlation support and complement the afore-
mentioned seasonal performance. We detect a generalized and strong
positive association between seasonal fire activity and fire danger indices
(Table 2). Overall, correlations are statistically significant in lags 0 and -1,
decreasing and losing significance as lag increases. Correlations in N are
usually greater than in BA, and higher in FWI than in BI-FFDI; although
regional dissimilarities do exist. The MED region shows the highest cor-
relations for FFDI (Njag—o = 0.75, Njgg— 1 = 0.62; BA.g_o = 0.72,BA,, .
1 = 0.61) followed by HL (Nl_, = 0.65, Nl = —1 = 0.55; BA;_, = 0.36,
Baj__; = 0.35). The most streaking result from this analyses is the mod-
erate correlation values observed in the NW region for FWI (N,_, = 0.38,
Ni—.1 = 0.36; BA,_y = 0.38, BA,_.; = 0.36). This fits the expected beha-
vior of the region given its secondary occurrence peak in fire incidence
during winter related to agricultural burnings.

One of the most remarkable findings is the consistent positive
trend of FWI-BI-FFDI across regions, thus mainland Spain experiences
increased fire weather potential over time. Nonetheless, fire activity
performs differently across regions (Table 3). Fire frequency shows
significant and positive trends only in NW and HL, more intense in the
NW region (SS 0.49 vs. 0.20). On the contrary, fire occurrence in the
MED region tends to decay. Burned area displays non-significant
trends in all the study regions excluding MED, with a significant ne-
gative trend. Hence, it is obvious that the evolution of fire activity
differs from the one by FWI-BI-FFDI in most of the study area. This is
noticeable in the disconnection of fire danger indices and fire activity
in the Mediterranean after the 90s (Fig. 4 and S1-52 Appendix).

Mann-Kendall coefficients Tau and Sen's slope output of trend component of the
decomposed time series of FWI, BI and FFDI, fire frequency and burned area in
each region. Significant cases (p value < 0.05) are denoted by an asterisk.
Only burned area was log-transformed and normalized before analyses.

Fire feature ~ Northwest Hinterland Mediterranean

Tau Sen's slope  Tau Sen's slope  Tau Sen's slope
FWI 0.31*  0.001 0.49*  0.001 0.39*% 0.001
BI 0.36*  0.001 0.52*  0.001 0.39* 0.001
FFDI 0.40% 0,001 0.58*  0.001 0.46* 0.001*
Frequency 0.24*  0.49* 0.36*  0.20* -0.28* -0.13*
Burned area  0.01 0.00 0.02  0.00 -039*  -0.01*

Therefore, short-term weather conditions have limited ability to
control dynamics in fire activity other than seasonal cycles, at least at
global/regional level. In general, fire danger seems to be more related
to intra-annual cycles of fire activity while has a limited influence on
long-term trends.

3.2. Differences between fire danger indices by fire feature and fire-activity
subset

At a first glance, regarding local level, the association of fire activity
with weather indices is greater in the seasonal component and, in
general, stronger for fire frequency than for burned area. This is in-
ferable from the higher value of the correlation coefficients and the
larger number of significant locations we found. Overall, fire danger
indexes are better linked to fire ignition source than fire size; however,
differences were detected in terms of spatial patterns and also de-
pending on the ignition source or the final area of the fires.
Additionally, the remainder component is usually more correlated with
human caused fires above 1 ha. In turn, the spatial patterns observed
across fire weather danger rating indices resemble one another, de-
picting a similar picture when comparing either components of time
series or fire-activity subsets (Figures from S7 and S8 Appendix). In any
case, BI (Figs. 7 and 8) seems to provide more insightful outputs in
terms of Pearson's coefficients and spatial patterns, not only in the
seasonal component as well as in the trend component. On the other
hand, the others fire danger indices (FWI and FFDI) show similar
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in each fire size-cause subset and component (season and trend). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)

average Pearson's R (Figs. 59 and S10 Appendix).

At a seasonal level, significant correlations were found in the whole
study area regardless of the fire-activity subset or fire feature. However,
natural-caused fires portray a more homogenous pattern compared to
those triggered by a human-related source. R's values in natural fires are
consistently higher and positive, whereas we observe spatial gaps of
low (and even negative) correlation values in the central North and East
area in the case of anthropogenic fires, especially in arson fires. This
pattern is not observed in large fires, which tend to be positively related
at seasonal level irrespective to the source of ignition.

The trend component performs differently, displaying contrasting
situations across fire-activity subsets. Overall, burned area shows weak
association with fire weather indices, even though significant values
area detected. In that regard, more than 40% of the significant locations
display negative associations, suggesting poor influence of weather over
burned area trends. The yearly evolution of natural fires seems to be
slightly linked to weather trends in the Northeastern end but only in the
case of the number of small fires. Correlation values in the remaining
fire-activity subsets of natural fires are, on average, below the 0.46
threshold in the case of fire frequency and 0.17 in burned area.
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Nonetheless, locations within the Hinterland and Mediterranean re-
gions display significant and positive correlations in the case of fre-
quency of small-to-medium human-caused fires. The effect of size over
trend correlations is fairly sturdier than in the seasonal component;
correlation values decrease as fire size increases, as is noticeable in both
unintended and arson fires.

Finally, the remainder component —which maybe ultimately linked
to extreme events or anomalies — shows moderate to low correlation
values no matter the subset. However, the most outstanding result is the
occasional existence of positive and significant associations in some
fire-activity subsets. These are more noticeable and widespread in fire
frequency than in burned area. If we focus on all fires or those above
1 ha burned, the association is found significant elsewhere in terms of
number of fires. If we only account for large fires, then significant re-
lationships are limited to the Northwest region. This pattern is also
observed in the case of burned area, but in this case significant locations
are only observed in central and Northwest Spain.
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4, Discussion

In this study we explored time-based associations among fire
weather danger rating indices and two of the most important fire re-
gime features (i.e. fire frequency and burned area) at regional and local
level. This enabled us to understand the diverse contribution of weather
conditions to fire incidence by regions, whereas we delve into the detail
of the spatial-local distribution of associations depending on fire size
and ignition cause.

Our results underline a desynchronize of fire-weather and fire re-
gime in the Mediterranean region since 1994. The reasons that might be
explain this aspect is to be linked to a change in firefighting policy such
France (Curt and Frejaville, 2018; Fréjaville and Curt, 2015). At the
same time, fire danger conditions show a general growth, which has
been reported over large forest areas over European Mediterranean
countries (Moriondo et al., 2006), due to the rising frequency of years
with high fire risk, the longer fire danger season and the greater like-
lihood of extreme events.

Generally speaking, we observe a close association between short-
term (up to 2 months) weather conditions and seasonal cycles of fire
activity. The association is stronger in fire frequency than burned area
and in the case of BI than in the rest of indexes, although with slight
regional differences (Figs. S1 and S2, Appendix). For instance, in the
case of fire frequency the correlation is higher in the Hinterland and
Mediterranean regions (Jiménez-Ruano et al., 2017b) while the
Northwest displays moderate seasonal correlations; likely due to the
secondary peak of fire incidence during winter months linked to human
activities in the last (Moreno et al., 2014; Sousa et al., 2015). It is worth
noting that this region accounts for 75% of arson fires, especially to
remove scrub for obtaining pasture for livestock or to reduce stubble
(Moreno Rodriguez, 2016). As we expected, CC outputs (Table 2)
pointed out that fire weather danger conditions have a remarkable as-
sociation during the ignition month -lag 0- that weakens towards a
month before -lag -1-, although remaining statistically significant.

On the other hand, the temporal evolution expressed as the trend
component performs differently. Fire weather indices display sig-
nificant increasing trends all over the study area (Jolly et al., 2015). In
the same line, increased fire occurrence in the Northwest region of
mainland Spain (Jiménez-Ruano et al., 2017a) and growing tendency
towards severe fire-prone situations in the inland region have already
been documented (Martinez et al., 2009; Trigo et al., 2016). Thus, we
may conclude that fire frequency tends to increase over time, both in
areas where there was already a high incidence and in areas where
there was less, so that fire activity becomes spatially more extensive
(Moreno Rodriguez, 2016). However, the Mediterranean region seems
to behave otherwise, with an overall decrease both in fire ignitions and
affected area (Jiménez-Ruano et al., 2017a; Turco et al., 2016). Our
findings suggest that, to some extent, trends in fire frequency in the
central and north regions are connected with the inter-annual evolution
of fire weather indices, except in the case of large fires. On the other
hand, the Mediterranean region is somewhat desynchronized from the
overall increasing trend of fire weather indices, particularly clear since
the 90s (Fig. 4). Furthermore, dynamics in burned area do not appear to
be as strongly linked to weather as ignition does. In this sense, it is well-
known that fire activity in the Mediterranean region is controlled by
longer periods of high temperatures and/or lower fuel moisture (Rivas
Soriano et al., 2013). In fact, fire weather conditions represent around
25% of the influence over the spatial distribution of fires in other
Mediterranean environments such as the south of France (Ruffault
et al., 2017). In contrast, in the south Alps, in the late 20th century the
climate influence is decreasing in favor of human activities and fuel
availability (Zumbrunnen et al., 2009). According to our findings, this
effect is limited to the intra-annual (seasonal) cycles of fire activity but
not connected to the inter-annual evolution, i.e., warm and dry periods
during summer promote fire incidence but warmer conditions along the
years do not favor further fire activity.
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The spatial disaggregation of correlation exposed local underlying
patterns of association. Again, the link is stronger in seasonal cycles
than in temporal evolution, and weaker in burned area compared to fire
frequency. Overall, weather conditions influence fire ignition to a
higher extent than burned area size. Fire propagation is a more con-
voluted process involving a number of factors both environmental —fuel
load or landscape structure- or anthropogenic -fire suppression
(Koutsias et al., 2012; Krebs et al., 2010; Liu et al., 2012; Liu and
Wimberly, 2016). On the other hand, accounting for the ignition source
or the final size of the fire allows more insightful analyses. In fact, the
proportion of small fires has been increasing from the period
1974-1993 and today they remain stable at these high percentages,
around 70% (Jiménez-Ruano et al., 2017a; Moreno Rodriguez, 2016).
Furthermore, addressing human-related fires separately allowed us to
identify spatial gaps of correlation with fire weather indices such as
those in fire frequency in the central north area of the country. In this
sense, it is well-known that in some locations of the NW, fires are
triggered by arsonists taking advantage of dry-warm weather situations
(Prestemon et al., 2012), which can ultimately become uncontrolled
depending on the fire-fighting capability and availability (Fuentes-
Santos et al., 2013).

Seasonal variations in burned area from human-related fires are
greatly related to weather conditions, more markedly in the Northwest
of mainland Spain. This result is consistent with the work by Trigo et al.
(2016), who highlighted the western half of the Iberian Peninsula as
more susceptible to large wildfires. Furthermore, unintended fires are
also significantly associated to fire weather danger in the north-central
and east region. In this sense, Badia et al. (2011) have detected an in-
crease in fire danger in Catalonia explained by mean maximum tem-
perature in July in both scrublands and coniferous forests. In that re-
gard, those indices accounting for fuel moisture (BI and FWI) produce
higher correlations and more contrasted spatial patterns than those
purely meteorological (FFDI). In contrast, Jiménez-Ruano et al. (2017b)
reported a decrease in frequency and burned area for wildfires above
500 ha, likely explained by the improvement in fire suppression in-
vestment over the years.

Different local associations were detected in the trend component.
The most interesting outcome was found in locations with negative
associations between fire weather and fire activity, especially in a
number of locations along the Mediterranean coast. Overall, positive
associations are expected, i.e., higher fire danger should lead to more
fire activity; but the existence of such negative associations suggests
that the inter-annual evolution of fire incidence is not fully controlled
by weather. This was already observed at regional level in the
Mediterranean and also locally in the Northeastern region. However,
the HL region brings together some positive correlations with fire
weather trends regardless of the cause.

Finally, analyses on the remainder component revealed a certain
degree of association between anomalies in fire activity and fire
weather indices. This is particularly interesting since these relationships
are consistently positive. Thus, there appears to be some connection
between random anomalies or extreme events.

However, our work has some shortcomings that should be men-
tioned. Firstly, the quality of the dataset used in the analysis could be
improved in terms of resolution spatial. Secondly, it would be inter-
esting to combine meteorological variables and fire indices to build
better models, while improving their predictive power. In this sense, we
can find some examples in De Angelis et al. (2015) who have been able
to enhance the performance with a Maxent approach. On the other
hand, care should be taken with the indiscriminate use of FWI, since in
some areas of Italy it has been observed that FWI probably over-
estimates fire danger, especially during early spring and autumn
(Giannakopoulos et al., 2012). Thus, it seems reasonable to move to-
wards a fine tuning of the existing indices, depending on the analyzed
environment.
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5. Conclusions

In this work we investigate the association between fire danger in-
dices and two of the most common fire regime features, such as number
of fires and burned area, in mainland Spain. We have accounted for all
fire records in the period 1979-2013 in order to explore the joint in-
fluence of FWI, BI and FFDI at regional level, as well as analyzing their
own contribution separately at local level.

Our findings suggest that weather conditions control intra-annual
(seasonal) cycles of fire activity but have a limited influence on long-
term trends. Overall, fire danger is better linked to fire ignition than
burned area size, although differences were detected in terms of spatial
patterns and also depending on the ignition source or the ultimate size
of the fires.

According to cross-correlation outputs, the seasonal influence of
weather is stronger during the first two months before the fire, although
in some regions such as the Hinterlands it remains statistically sig-
nificant up to three months. Seasonal burned area correlation outputs
seem to be more associated to arson cause in the Northwest, the most
fire affected and arson-related region. The assessment of the trend
component points towards the independence of fire activity in the
Mediterranean losing synchronicity with fire weather danger since
1994. Altogether, it suggests that human factors have taken over
weather conditions. In cross-correlations analysis, both FWI and FFDI
were considered useful fire indices due to its good performance at re-
gional level while FWI is widely used in the bibliography.

At local level, the comparison of fire weather indices promotes BI as
the best suited to analyze fire-weather relationships in the context of
mainland Spain due to its higher correlations values. In addition, it
seems to work quite well for the seasonal and trend components of
burned area.
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CHAPTER 7: CHANGE IN
ANTHROPOGENIC DRIVERS

This chapter describes the results, discussion and main
conclusions obtained from the analyses of spatial and temporal
evolution of human drivers factors into the fire regime features.
We employed various regression models (Logit and Poisson
Generalized Linear Models), as well as, trend analysis by means
of Mann-Kendall. In addition, Geographically Weighted
Regression Models are applied to assess spatial-temporal
patterns.
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Abstract Fire regimes are strongly dependent on human activities. Understanding the relative
influence of human factors on wildfire is an important ongoing task especially in human-
dominated landscapes such as the Mediterranean, where anthropogenic ignitions greatly surpass
natural ignitions and human activities are modifying historical fire regimes. Most human drivers
of wildfires have a temporal dimension, far beyond the appearance of change, and it is for this
reason that we require an historical/temporal analytical perspective coupled to the spatial
dimension. In this paper, we investigate and analyze spatial-temporal changes in the contri-
bution of major human factors influencing forest fire occurrence, using Spanish historical sta-
tistical fire data from 1988 to 2012. We hypothesize that the influence of socioeconomic drivers
on wildfires has changed over this period. Our method is based on fitting yearly explanatory
regression models—testing several scenarios of wildfire data aggregation—using logit and
Poisson generalized linear models to determine the significance thresholds of the covariates. We
then conduct a trend analysis using the Mann—Kendall test to calculate and analyze possible
trends in the explanatory power of human driving factors of wildfires. Finally, Geographically
Weighted Regression Models are explored to examine potential spatial-temporal patterns. Our
results suggest that some of the explanatory factors of logistic models do vary over time and that
new explanatory factors might be considered (such as arson-related variables or climate factors),
since some of the traditional ones seem to be losing significance in the presence—absence models,
opposite to fire frequency models. In particular, the wildland—agricultural interface and wild-
land—urban interface appear to be losing explanatory power regarding ignition probability, and
protected areas are becoming less significant in fire frequency models. GWR models revealed
that this temporal behavior is not stationary neither over space nor time.
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1 Introduction

Fire is no longer a significant part of the traditional systems of life; however, it remains
strongly tied to human activity (Leone et al. 2009). Knowledge of the causes of forest fires
and the main driving factors of ignition is an indispensable step toward effective fire
prevention (Ganteaume et al. 2013). It is widely recognized that current fire regimes are
changing as a result of environmental and climatic changes (Pausas and Keeley 2009) with
increased fire frequency in several areas in the Mediterranean Region of Europe (Ro-
drigues et al. 2013). In Mediterranean-type ecosystems, several studies have indicated that
these changes are mainly driven by fire suppression policies (Minnich 1983), climate
(Pausas and Fernandez-Munoz 2012), and human activities (Bal et al. 2011). Human
drivers mostly have a temporal dimension, which is why an historical/temporal perspective
is often required (Zumbrunnen et al. 2011; Carmona et al. 2012). In Mediterranean Europe,
increases in the number of fires have been detected in some countries, including Portugal
and Spain (San-Miguel-Ayanz et al. 2012; Rodrigues et al. 2013). In addition, a recent
work by Turco et al. (2016) suggests huge spatial and temporal variability in fire frequency
trends especially in the case of Spain, where increasing and decreasing trends were
detected depending on the analysis period and scale. This increase in wildfire frequency
and variability, with its associated risks to the environment and society (Moreno et al.
2011, 2014), calls for better understanding of the processes that control wildfire activity
(Bar Massada et al. 2012).

In recent decades, major efforts have been made to determine the influence of climate
change on natural hazards, and to develop models and tools to properly characterize and
quantify changes in climatic patterns. For instance, Global Circulation Models can provide
credible quantitative estimates of future climate change (Randall et al. 2007). In the
particular case of wildfire hazard, most climate models are able to derive fire danger
components and inputs, and thereby characterize a probable fire regime (Lynch et al. 2007;
Chelli et al. 2014). In this regard, a big effort has been invested to explore and assess the
influence of climate change on wildfire hazard. For example, several works such as
Koutsias et al. (2013) or Harris et al. (2014) revealed long-term positive correlation
between fire occurrence and air temperature and heat waves.

However, fire regimes are strongly dependent on human activities (Salis et al. 2013;
Archibald et al. 2013). While physical processes involved in ignition and combustion are
theoretically simple, understanding the relative influence of human factors in determining
wildfire is an ongoing task (Mann et al. 2016). Due to the difficulty of predicting the
peculiarities of human behavior, we face a high degree of uncertainty when modeling
human-caused forest fires. However, it is clear that human-caused fires that occur
repeatedly in a given geographical area are not simply reducible to individual personal
factors, and thus subject to pure chance. They are usually the result of a spatial pattern,
whose origin is in the interaction of environmental and socioeconomic conditions (Kout-
sias et al. 2016). This is particularly true in human-dominated landscapes such as Spain,
where anthropogenic ignitions surpass natural ignitions, and humans interact to a large
degree with the landscape, changing its flammability, and act as fire initiators or sup-
pressors. In such cases, human influence may cause sudden changes in fire frequency,
intensity, and burned area size (Pezzatti et al. 2013). A first step is to identify all the factors
linked to human activity, establishing their relative importance in space and time (Martinez
et al. 2009, 2013). According to Moreno et al. (2014), the number of fires over the past
50 years in Spain has increased, driven by climate and land-use changes. However, this
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tendency has been recently reversed due to fire prevention and suppression policies. This
highlights the influence of changes in the role of human activities as some of the major
driving forces. For instance, changes in population density patterns—both rural and
urban—and traditional activities have been linked to an increase in intentional fires. In this
sense, several works have previously investigated the influence of human driving factors of
wildfires in Spain. These works have explored in detail a wide range of human variables
(Martinez et al. 2009; Chuvieco et al. 2010) and methods. Specifically, Generalized Linear
Models (Vilar del Hoyo et al. 2008; Martinez et al. 2009; Moreno et al. 2014), machine
learning methods (Vega-Garcia et al. 1996; Rodrigues and de la Riva 2014), and more
spatial-explicit models like Geographically Weighted Regression (Martinez et al. 2013;
Rodrigues et al. 2014) have previously been employed. However, all these approaches
could be considered as stationary from a temporal point of view, since they are based on
‘static’ fire data information summarized or aggregated for a given time span. However,
the influence of human drivers cannot be expected to be stationary. Zumbrunnen et al.
(2012) stress the importance of dealing with the temporal dimension of human drivers of
wildfires. Therefore, exploring temporal changes in socioeconomic or anthropogenic dri-
vers of wildfire will enhance our understanding of both current and future patterns of fire
ignition, and thus help improve suppression and prevention policies.

The main goal of this paper is answering the following question. Do human drivers of
wildfire vary over time and space? To do this, we investigate and analyze spatial-temporal
fluctuations in the contribution of the major human factors of forest fire hazard (such as
wildland—urban interface, wildland—agricultural interface, tracks, railways, or protected
areas) in Spain by fitting GLM and GWR models. We hypothesize that the influence of
these socioeconomic drivers on wildfires has changed over this period.

2 Materials and methods
2.1 Study area

The study area covers the whole of peninsular Spain excluding the Balearic and Canary
Islands and the autonomous cities of Ceuta and Melilla. Thus, the total area of the study
region was around 498,000 km?. Spain is very biophysically diverse, presenting a wide
variety of climatic, topographic, and environmental conditions. This diversity also appears
when discussing socioeconomic conditions, in terms of settlement systems and population
structure, productive sector, land-use and land-cover changes, or territory structure. The
complexity of the socioeconomic conditions thus plays a determinant role in wildfire
assessments, which is especially important when modeling human factors, since this
complexity transfers into the relationships between socioeconomic variables and a natural
phenomenon such as wildfire, making the assessment less straightforward.

2.2 Method overview

The proposed method aims to address spatial-temporal changes in the contribution of
human explanatory factors to wildfires. The method is based on fitting yearly logistic and
Poisson GLM (Generalized Linear Models) using historical fire data. These models allow
determining the contribution of each covariate analyzing the Z-values of the beta coeffi-
cients. These models are fitted using three different temporal scales of aggregation of fire
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count data—1, 3, and 5 years—in the period 1988-2012, obtained from the EGIF (General
Statistics of Wildfires) database. The explanatory variables were constructed using data for
different years within the analysis time span in order to reflect possible temporal or
ongoing changes (both response and explanatory variables will be introduced and
described later). Once models are fitted, trend detection—by means of the Mann—Kendall
test—is applied to Z-values of beta coefficients, to determine to which extent their con-
tribution varies over time.

Additionally, in order to search for underlying spatial patterns influencing temporal
variations, we model the spatial distribution of the explanatory factors using Geographi-
cally Weighted Regression (GWR) logit and Poisson models. We fitted separate models for
1990 and 2006 in the 5-year temporal scale, then mapping and comparing the significance
(p < 0.05) of each explanatory factor in both dates.

All the analysis were developed using the R statistical software (R Core Team 2013),
packages kendall and zyp for trend analysis, and g/m for model fitting; with the exception
of GWR that was conducted using the software GWR v4.0.

2.3 Fire data and response variables

The dependent variable for both GLM and GWR models was built from the Spanish EGIF
database using fire records from 1988 to 2012. The EGIF database is one of the oldest
wildfire databases in Europe, beginning in 1968 (Vélez 2001). It is compiled by the
Spanish Department of Defense Against Forest Fires (ADCIF) in the Ministry of Agri-
culture, Food, and Environment (MAGRAMA) from forest fire statistical reports. Among
other useful information relating to fire events, the reports include the starting point of each
fire, recorded on a 10 x 10 km reference grid used by firefighting crews for the approx-
imate location of fire events. Note that this grid is used in this study as the spatial reference
data unit, meaning that all data are obtained from or refer to it. Annual human-caused fire
count data were retrieved from the EGIF database at grid level, spatializing fire records
using the 10 x 10 grid. Figure 1 shows the annual fire occurrence of human-induced fire
ignitions from 1988 to 2012.

Two different response variables were constructed from these data for GLM models:
Fire counts were used as dependent variable in the Poisson models, and fire count data
were also recoded into a binary presence (grid cells with at least 1 fire) or absence (no fire
recorded) variable to construct the response variable for the logistic models.

In turn, three different temporal scales or aggregations—I1, 3, and 5 years—were
explored to account for the effect of fire occurrence temporal (yearly) variability. The
response variable used in the Poisson regression models was aggregated as the sum of fire
counts using a time moving window procedure, so that data for 3 or 5 years were assigned
to the central year of the window. As a consequence, the analysis time spans were reduced
accordingly, to 1989-2011 and 1990-2010 for the 3- and 5-year aggregations, respectively.
The response variable for the logistic regression model fitting was grouped in a similar
way, but in this case as the maximum value instead of the sum. Thus, if at least 1 fire is
recorded in one of the years, the grid is classified as fire-present and vice versa.

From these two sets of dependent variables, we are able to investigate driving factors of
human-caused wildfires from two different perspectives. On the one hand, count data used
in the Poisson models provide insights into factors relating to fire frequency, whereas
presence/absence data are used to determine factors explaining fire occurrence regardless
of frequency.
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Fig. 1 Spatial distribution of number of human-caused wildfires 1988-2012. Low 0 (light brown), high 362
(dark brown). No fire displayed in light gray

The dependent variable for GWR models was constructed following the same
methodology and data. Due to the high computational demand of the GWR method,
several assumptions had to be made: (1) only the 5-year temporal scale of fire data
aggregation was considered; and (2) only the years 1990 and 2006 were explored. These
years were selected based on the reference dates of the Corine land-cover (CLC) project
since it is one of the main sources for the explanatory variables.

2.4 Human driving factors

The explanatory variables were selected and spatialized on the basis of the authors’
experience with models at regional and national scales (Chuvieco et al. 2010, 2012;
Rodrigues et al. 2014; Rodrigues and de la Riva 2014). All these works have explored in
detail human drivers of wildfires combining different temporal and spatial scales (national
and regional), modeling tools (GLM and GWR), and data (statistical or spatial-explicit
information). Specifically, driving factors and explanatory variables were selected on the
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basis of the studies by Rodrigues and de la Riva (2014) and Rodrigues et al. (2014), in
which the main drivers of human causality in mainland Spain were identified. The
explanatory variables were classified according to the typology of the affecting factor
(Leone et al. 2003) as follows:

1. Factors related to socioeconomic changes

e Human presence, population increase, and urban growth. Greater pressure on
wildlands.

Wildland-Urban Interface (WUI) Length of the boundary between populated
and wildland areas inside the 10 x 10 km grid, obtained from CLC for 1990,
2000, and 2006.

Demographic potential (DP) Demographic potential is an aggregate index
related to the ultimate potential of the population. It reflects the demographic
power of the nation and its ability to provide future population growth. The
index was retrieved from Calvo and Pueyo (2008) for 1991, 2001, and 2006 at a
spatial resolution of 5 x 5 km, later rescaled (according to the average value)
to the 10 x 10 km grid.

2. Factors related to traditional economic activities in rural areas

e Agriculture Use of fire to eliminate harvesting wastes and to clean cropland
borders. These procedures are a potential source of ignition due to spread of fire to
forest areas in the vicinity

Wildland-Agricultural Interface (WAI) Length of the boundary between
agricultural and wildland areas inside the 10 x 10 km grid, obtained from CLC
for 1990, 2000, and 2006.

3. Factors which could cause fire mainly by accident or negligence

e Electric lines. Possible cause of ignition by accident.

Power lines (PWL) Length of the high-, medium-, and low-voltage transport
network inside the 10 x 10 km grid forest area, obtained from the Numerical
Cartographic Database 1:200,000 (BCN200). Power lines are spatialized for
1990, 2000, and 2006 using CLC data on forest area extent for each year.

e Presence of roads, railways, and tracks and their accessibility. Increased human
pressure on wildland.

Railways (RR) Length of the railroad network (excluding the high-speed
network) inside the 10 x 10 km grid, obtained from BCN200. Like power
lines, railroads are spatialized for 1990, 2000, and 2006 using CLC data on
forest area extent for each year.

Tracks (TRK) Length of forest tracks and paths inside the 10 x 10 km grid,
obtained from BCN200. Tracks are also spatialized for 1990, 2000, and 2006
using CLC data on forest area extent for each year.
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4. Factors which could hamper fires

e Protected areas Increasing concern about forest protection.

e Protected areas (PA) Delimitation of the area occupied by natural protected
areas and the Natura 2000 network inside the 10 x 10 km grid. Protected areas
are spatialized on a yearly basis using information about date of declaration
available for each individual protected site.

All predictive variables were distributed in space using the 10 x 10 km reference grid.
All the explanatory variables were constructed using data for 1990, 2000, and 2006 (except
Demographic potential, which was retrieved for 1991, 2001, and 2006, and protected
areas, which was constructed separately for each year in the period 1988-2012). In this
way, we were able to reflect the change over time of the explanatory factors due to
socioeconomic shifts, in case they have occurred. To ensure consistency of results, a
collinearity analysis of the explanatory variables was carried out; variables were found to
be linearly independent.

2.5 Generalized linear models

GLM are an extension of linear models that can deal with non-normal distributions of the
response variable, providing an alternative way to transform the response. The distributions
used include those like Poisson, binomial, negative binomial, and gamma. In this study,
Poisson and binomial distributions are used to model the relationship of human-induced
fires and some of their major driving forces to subsequently explore temporal dynamics in
the contribution and significance. These techniques have been traditionally employed in
wildfire modeling. Examples of the application of these models to wildfire research can be
found in Mann et al. (2016), Martinez et al. (2004a, 2009), Syphard et al. (2008),Vas-
concelos et al. (2001), or Zhang et al. (2016). Both regression methods were explored at
three temporal scales (1-, 3-, and 5-year aggregation). Table 1 shows the correspondence
between the data collection of the independent variables and data collection for the
dependent variable, according to the time spans described in Sects. 2.3 and 2.4. Signifi-
cance thresholds were retrieved yearly from each model subsequently used as inputs in
trend detection.

2.6 Trend detection

Temporal trends were calculated using the Mann—Kendall test, a rank nonparametric test
(Henry 1945; Kendall 1975), commonly used in environmental research, and suitable for
detecting linear or nonlinear trends in data time series (Hisdal et al. 2001; Wu et al. 2008).
In this test, the null (Hy) and alternative hypotheses (H;) are equal to the nonexistence and
existence, respectively, of a trend in the time series of the data. The magnitude of the
change was subsequently assessed by means of Sen’s slope (1968), a nonparametric
alternative for estimating the median slope joining all possible pairs of observations.
The computational procedure for the Mann-Kendall test considers the time series of
n data points and T; and 7} as two subsets of data, where i = 1,2,3,...,n — landj =i + 1,
i+ 2,i+ 3, ..., n The data values are evaluated as a sorted time series. Each data value is
compared with all subsequent data values. If a data value from a later time period is higher
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than a data value from an earlier time period, the statistic S (score) is incremented by 1. On
the other hand, if the data value from a later time period is lower than a data value sampled
earlier, § is decremented by 1. The net result of all such increments and decrements yields
the final value of S (Drapela and Drapelova 2011).

Both the Mann—Kendall test and Sen’s slope were applied to Z-values of beta coeffi-
cients from yearly logistic and Poisson GLM models at the three proposed temporal scales.

2.7 Model performance and influence of climate factors

Model performance has been investigated in models at the 5-year temporal scale. Per-
formance of logistic models was evaluated using the area under the receiver operation
curve (AUC; Hanley and McNeil 1982), whereas Poisson models were assessed in terms of
RMSE. This allows determining to which extent we can trust the outcomes of the models
as well as investigate the temporal evolution of model performance.

In addition, in order to explore the influence of biophysical factors, we fitted an
alternative version of the 5-year logit and Poisson models including climate data (average
annual mean temperature and average annual precipitation) from the WorldClim database
(Hijmans et al. 2005) version 2. WorldClim is a set of global climate layers (gridded
climate data) available at several spatial resolutions, specifically developed for ecological
modeling on GIS. Currently, WorldClim provides several datasets for different temporal
scenarios (past, current, and future conditions). In this work, we used data for the current
conditions scenario (1970-2000).

A comparison of models with (Human-Climate) and without (Human-only) climate
factors has been investigated. We analyze AUC and RMSE—for logit and Poisson models,
respectively—comparing both scenarios. In this way, we can establish to which extent
changes in model performance can be endorsed to climate factors.

2.8 Geographically Weighted Regression

GWR is a statistical technique for exploratory spatial data analysis developed within the
framework of Local Spatial Models or Statistics. Local models could be inferred as the
spatial disaggregation of global statistics whose main characteristic is the fact of being
calibrated from a set of spatially limited samples and hence yielding local regression
parameters estimates (Fotheringham et al. 2002). Therefore, GWR techniques extend the
traditional use of global regression models, allowing calculation of local regression
parameters. From a mathematical standpoint, a conventional GWR is described by the
following equation:

vi= > Bplui,vi)xi + &
K

where y;, x;;, and ¢; are, respectively, dependent variable, ky, is the independent variable,
and the Gaussian error at location i; (u;, v;) is the x—y coordinate of the iy, location; and
coefficients f§ (u;, v;) are varying conditionals on the location.

Such modeling is likely to attain higher performance than traditional regression models,
and reading the coefficients can lead to a new interpretation of the phenomena under study.
However, GWR models are not just a simple local regression model like, i.e., moving
window regressions. In a moving window example, a region is drawn around a regression
point and all the data points within this region (neighborhood) or window are then used to
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calibrate a model. This process is repeated over all the regression points obtaining as result
a set of local regression statistics. However, in this example, each point within the
neighborhood is equally considered for regression purposes, no matter its distance to the
target regression point. GWR overcomes this limitation by applying a distance weight
pattern; hence, data points closer to the regression point are weighted more heavily in the
local regression than data points farther away are. In addition to the regression coefficients,
a GWR model calculates several useful statistical parameters to analyze the spatial
behavior of each explanatory variable, such as the value of the Student’s t test, which is
used to determine the level of significance. On the other hand, GLM approaches such as
Geographically Weighted Logistic Regression (GWLR) and Geographically Weighted
Poisson Regression (GWPR) have been incorporated to GWR to extend its functionality
(Fotheringham et al. 2002; Nakaya et al. 2009). The GWR approach has been already
explored in several works such as Koutsias et al. (2010), Martinez et al. (2013) or
Rodrigues et al. (2014).

These two methodologies—GWLR and GWPR—are used in this study to complement
the results from GLM. Several parameters have been accounted for when calibrating GWR
models. Kernel shape and type, bandwidth selection and optimization parameters, or the
local or global nature of the predictors (see Nakaya et al. (2009) for further details of both
method and software). In this work, GWR model fitting was carried out using Fixed
Gaussian Kernel bandwidth, optimized according to the value of AICc, considering all the
predictors as local covariates.

3 Results
3.1 Generalized linear models

Results for logistic regression are a proxy for analyzing whether a fire is likely to occur.
Figure 2 shows the temporal evolution of the significance level and sign (positive or
negative) according to the observed Z-values for each temporal scale of analysis. A visual
analysis of Fig. 2 reveals some qualitative changes in the contribution of several driving
factors, such as WAI, WUI, TRK, and PA, at different temporal scales. Most of the
explanatory factors are significant right across the analyzed temporal span at any timescale,
except for PA and TRK. PA switches its explanatory sense, whereas TRK losses signifi-
cance toward the end of the study period. It is noteworthy that regardless of the considered
timescale, PA changes its significance sign. However, this is more evident at the 5-year
temporal scale being positive until 1995, negative since then until 2007, and mostly
non-significant in the ending period. It also worth mention that WAI slightly loses
explanatory power over time. For instance, looking at the 3- and 5-year scales, Z-values of
WALI, which are higher than any other variable—although very close to WUI during early
years—shrink to values close to DP’s and WUI’s. A similar behavior is observed in WUL.
In turn, DP gains explanatory performance over time reaching WAI’s and WUI’s Z-values
at the end of the analyzed time span.

This behavior is also supported by the results of the trend analysis (Table 2), which
identifies significant (p value < 0.05) decreasing trends in TRK, and RR in the 1-year
scale. In the 3-year scale, almost every explanatory factor shows a decreasing trend but DP,
which shows the opposite and WUI with no significant trend detected. Looking at the
5-year scale, a similar behavior is observed. In this case, WAI shows a significant
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Fig. 2 Temporal evolution of human driving factors. Z-values of beta coefficients for logistic regression.
Dashed lines represent significance thresholds. From fop to bottom, 1-, 3-, and 5-year temporal aggregation
scales

Table 2 Results of the trend detection procedure obtained for the logistic regression models at 1-, 3-, and
5-year temporal aggregation scales

1-year 3-year 5-year

T p value  Sen T p value  Sen T p value  Sen
WAI  —-0.180 0.216 —0.044 —0.447 0.003 —-0.084 —0.381 0.017 —0.085
wul  —-0.127 0.388 —-0.059 -0.162 0.291 —-0.067 —0.438 0.006 —-0.117
DP 0.127  0.388 0.028 0.320 0.035 0.116 0.371  0.020 0.088
TRK  —0.560 0.000 -0.172 —0.668 0.000 —-0.165 —0.762 0.000 —0.201
RR —-0.320 0.027 —-0.093 -0.320 0.035 -0.071 —-0.238 0.139 —0.042
PWL  —0.280 0.053 —0.100 —-0.375 0.013 —-0.140 —0.333 0.037 —0.102
PA —0.080 0.591 —0.024 —=0.352  0.020 —-0.157 —0.362 0.024 —-0.226

Italics represent decreasing significant trends. Bold represents increasing significant trends
Significance threshold p < 0.05
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decreasing trend, same as WUIL RR’s trend becomes not significant. DP shows an
increasing trend at the 5-year temporal scale. According to Sen’s slope, the strongest trends
were detected for TRK and PA at the 5-year scale, thus being the most variable factors in
presence—absence models.

Results obtained for Poisson regression are an indicator of the relationship between fire
frequency and the proposed covariates, i.e., the number of fires likely to occur. As in the
case of logistic regression models, we can observe changes in the significance and con-
tribution of some of the explanatory factors, such as TRK, RR, PA, and WUI. These
changes have been detected both from visual analysis of Z-value plots (Fig. 3) and trend
detection analysis (Table 3). Same as in the logistic regression models, TRK shows a
negative and significant trend (p value < 0.05) at all temporal scales. At the 3-year scale, a
significant decreasing trend has been detected in RR. The 5-year scale reveals positive
trends in the case of PWL and PA, and a negative trend for WUI. Changes in TRK, RR,
and WUI do not imply a loss of significance in their contribution to the models; however,
the increasing trend detected in PA leads to a nonsignificant contribution for the latter years
of the study period (from 2008 to 2010). PA shows a negative contribution in the first few
years, which means that PA zones were related to low fire frequencies; however, the
increase in PA Z-values leads to a loss of significance since they are slowly approaching
zero. Finally, no trend has been identified in the case of WAI regardless of the temporal
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Table 3 Results of the trend detection procedure obtained for the Poisson regression models at 1-, 3-, and
5-year temporal aggregation scales

1-year 3-year 5-year

T p value  Sen T p value  Sen T p value  Sen
WAI 0.027 0870 0.111 0.020 0916 0.023  —0.067 0.695 —0.442
WUl —-0.160 0.272 —0.159 —0.225 0.139 —-0.305 -0.324 0.043 —0.696
DP —0.073  0.624 —0.132 —0.067 0.673 —0.192 —-0.076 0.651 —0.383
TRK  —0.480 0.001 —-1.007 —0.628  0.000 —1.957 —0.648 0.000 —2.071
RR -0.220 0.129 —-0246 —0375 0.013 —0.549 —0.400 0.012 —0.768
PWL 0.100  0.498 0.155 0202 0.187 0.369 0.390 0.014 0.804
PA 0.253  0.080 0.602 0289  0.057 1.187 0.343  0.032 1.390

Italics represent decreasing significant trends. Bold represents increasing significant trends

scale. This means that this covariate remains stable over time, while keeps being the most
important driver of fire frequency.

3.2 GLM performance and influence of climate factors

Figures 4 and 5 show the temporal evolution of model performance in the 5-year logistic
and Poisson models, both for Human-only and Human-Climate scenarios. From the visual
inspection of these figures, two different behaviors can be identified. Logistic models using
only human covariates show a decreasing performance over time, starting from AUC
values over 0.7 to values below 0.65. In turn, once we incorporate climate factors (Climate-
Human), model performance increases compared to the human-only scenario. What is
more, the temporal evolution of AUC, although fluctuates over time, does not decrease as
in the case of the human scenario.

On the other hand, Poisson models, even though they show a considerable temporal
variation of the RMSE, do not show a contrasting behavior between Human-only and
Human-Climate scenarios. In this case, there is almost no difference between the two
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Fig. 4 Temporal evolution of AUC values from human-only and Human-Climate logistic models in the
S-year temporal scale
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Fig. 5 Temporal evolution of RMSE values from human-only and Human-Climate Poisson models in the
5-year temporal scale

scenarios. This suggests that climate conditions have a less decisive influence in fire
counts.

3.3 Geographically Weighted Regression

Global—GLM-—models provide insights into the overall behavior of wildfire drivers. To
determine whether the detected trends and changes are spatially stationary or not, GWLR
and GWPR models have been calibrated at the 5-year temporal scale for 1990 and 2006.
As stated before, GWR models have been adjusted using the GWR 4.0 software. It should
be noted that this application calculates the significance of the covariates using the Stu-
dent’s t distribution instead of the Z distribution although the interpretation of the results is
similar. Tables 4 and 5 summarize the results for GWLR and GWPR models, respectively.

The increase over time of the optimal bandwidth size suggests that there is an under-
lying spatial change in the contribution of the explanatory factors. This increase, which has
been observed in both GWLR (310-880 km) and GWPR (190450 km) models, implies a
reduction in the spatial variability of wildfire drivers.

Table 4 Summary of results for GLM logit and GWLR analysis

Bandwidth (km) GWLR 1990 GWLR 2006
310 880

t values Median Max Min Median Max Min
WAI 6.825 10.004 4.508 6.622 8.362 5.496
WUI 7.942 9.203 3.969 5.803 5.987 5.649
DP 1.882 2,468 1.377 1.645 1.789 1.447
TRK 5.550 8.086 0.669 5.536 6.735 4.757
RR 4.027 4,750 2.377 4.820 5.149 4.416
PWL 7.205 8.420 4.361 5.801 6.068 5.357
PA 1.040 3.156 —1.283 —1.805 —1.453 —-2.063

Significant threshold of ¢ values (p < 0.05) £ 1.65. Italics represent negative significant relationship. Bold
represents positive significant relationship
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Table 5 Summary of results for GLM Poisson and GWPR analysis

Bandwidth (km) GWPR 1990 GWPR 2006
190 450

t values Median Max Min Median Max Min
WAI 33.394 111.129 6.701 36.259 47.780 20.038
WUl 26.147 59.719 11.111 9.747 13.553 6.102
DP 12.037 99,781 0.317 5.254 8.529 2.228
TRK 37.871 82.092 —6.944 16.562 17.545 11.406
RR 18.118 27.558 —0.198 18.351 23.402 10.147
PWL 24.932 42,482 —6.173 24.418 26.269 16.027
PA —5.260 3.799 —-26.150 —5.052 -3.326 —7.360

Significant threshold of r values (p < 0.05) 4 1.65. Italics represent negative significant relationship. Bold
represents positive significant relationship

The change in the contribution of each factor follows a pattern similar to the observed in
GLM logit models, with WAI, WUI, TRK showing a decrease in their contribution to the
probability of occurrence in the 5-year scale. However, the increase in DP’s contribution
detected in GLM logit is missing in GWLR models. This may occur because in GWR
models we compare 1990 and 2006, and the increase in DP’s significance strengthens in
last years after 2006 (Fig. 2). The decrease in PA is also observed in GWLR models. Same
as GLM, PA starts from a positive contribution (the more protected the more affected) to
become a deterrent factor in 2006.

Figure 6 shows the spatial distribution of changes from 1990 to 2006 in GWLR (first
three columns on the left) and GWPR (last three columns on the right) models. The first
two maps are showing the spatial distribution of significance (p < 0.05) obtained from the
spatial distribution of ¢ values in 1990 and 2010. We use a three-color code to represent
whether a covariate is significant and positive (red), significant and negative (light green),
or nonsignificant (light yellow). A third map summarizes the changes in ¢ values from 1990
to 2010. In this way, we can explore whether there is an increase or decrease in ¢ values—
regardless being significant or not. Therefore, we can determine if and where a given
covariate gains or losses contribution to the explanation of wildfire.

As can be seen, almost all covariates in GWLR keep a similar spatial pattern in terms of
explanatory sense and significance level (p < 0.05). For instance, WAI, WUI, TRK, and
PWL are significant and positive all over the study region in both 1990 and 2006. The only
factors that present a loss or gain of significance are DP and PA. DP losses significance in
the southern area of Spain toward 2006, but is still significant in the main urban areas, i.e.,
from the central hinterlands—Madrid—and across the Mediterranean coast—Barcelona to
Valencia. In turn, PA gains significance as a deterrent factor in all areas except the
northeast region. However, if we look at the differences in ¢ values between 1990 and 2006
in GWLR (Fig. 6—right), we can observe that, regardless significance has changed or not,
several areas within the study region are experiencing an increase or decrease in t values.
WAI and TRK increase their explanatory performance across the Mediterranean coast,
whereas the remaining territory shows the opposite. WUI is generally losing explanatory
power except in the northwestern area of Galicia. DP’s t values are greater in 2006 in the
central area (Madrid). RR’s explanatory power is increasing all over the region. Finally,
PWL’ and PA’s ¢ values are lower in 2006 than in 1990. Nevertheless, whereas this fact
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Fig. 6 Spatial distribution of significance of explanatory factors in GWLR (first three columns on the left)
and GWPR (last three columns on the right) models at the 5-year aggregation scale. Each 3-column map set
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implies a loss of contribution in the case of PWL, it means that PA becomes significant and
negative thus preventing fire occurrence.

A similar response has been detected in GWPR (Fig. 6). However, fire frequency dri-
vers show less spatial variation, at least regarding change in significance level. WAL, WUI,
and RR are significant and positive all over the region. DP, TRK, and PWL show some
small areas that exchange significance but are almost stationary. The greatest change is
observed in PA which becomes significant and negative across the study region in 2006,
acquiring significance in the eastern area of Spain. Same as GWLR, there are differences in
t values in GWPR. WAI and TRK present the same spatial pattern that GWLR, increasing



Chapter 7: Change in anthropogenic drivers

Nat Hazards (2016) 84:2049-2070 2065

¢ values mainly in the Mediterranean coast. WUI losses explanatory performance all over
the region. RR and PWL gain explanatory power in both coastal areas. Finally, PA’s
t values decrease in the Mediterranean region, becoming significant and negative as stated
previously.

4 Discussion

This paper analyzes the temporal and spatial evolution of several socioeconomic factors
relating to human causality of forest fires using historical fire data, GLM and GWR
techniques, and trend detection analysis. According to the results, the 5-year scale of fire
occurrence aggregation seems the best choice to deal with spatiotemporal changes of fire
drivers. This temporal scale allows detecting trends from a statistical standpoint besides
‘smoothing’ the temporal pattern of evolution so that changes can be visually addressed as
well. Logistic regression is used as a proxy to determine the probability of a fire taking
place, whereas Poisson models provide insights into the relationship between driving
factors and fire frequency. Our results suggest that human driving factors of forest fires
have shifted in explanatory power. Both trends in logistic and Poisson models revealed
changes in some of the explanatory variables, although more evident in the presence-
absence models. Additionally, according to GWR models, the spatial pattern of explana-
tory performance of driving factors also varies over time in terms of significance and
spatial dimension of the models.

GLM logistic regression models suggest a slight loss of significance of traditional
explanatory factors, such as WAI and WUI (Fig. 2) supported by findings from GWLR.
This is especially important, since agricultural activities have been identified among the
most important factors triggering wildfires both in Spain and the European Mediterranean
region (Rodrigues et al. 2014; Darques 2015). However, this behavior is not stationary
across the study region. The WUI, usually considered the main factor relating to increased
fire risk, and traditionally considered the main human ignition factor in the literature
(Syphard et al. 2007; Martinez et al. 2009; Romero-Calcerrada et al. 2010; Galiana-Martin
et al. 2011), also seems to lose explanatory power, with a significant decreasing trend in the
5-year regression model. However, WUI appears to be replaced by DP, which has
increased its explanatory capacity over time according to GLM, although not detected in
GWLR. In any case, the interpretation of DP in terms of explanatory sense is similar to
WUTI’s involving increased human pressure on wildlands. However, DP is linked on
populated areas close to urban areas, whereas WUI also considers rural settlements closer
to forests (Leone et al. 2003). PA has switched its explanatory sense across the analyzed
period. PA was related to increased fire occurrence probability during early years,
becoming a deterrent factor from the mid-90s until 2007, suggesting increased environ-
mental concern and awareness, but becoming nonsignificant at the end of the time series,
although still with negative values.

To this overall variation of explanatory power, we should add that the loss of perfor-
mance of logistic models in the 5-year temporal scale. The visual analysis of Fig. 4
revealed an increase over time in the contribution of climate factors. The scenario con-
sidering only human covariates losses performance possibly because of the loss of
explanatory power of WAI and WUI, whereas the Climate-Human models remain more
stable and always with higher AUC values. In addition, Climate-Human models are
consistently performing better than the human ones.
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This behavior can be understood in several ways. First, it could be concluded that the
random component of fires associated with human activities is increasing. However, this is
unlikely to be the case since human activities are governed by, or at least subject to,
socioeconomic patterns (Romero-Calcerrada et al. 2010). On the other hand, it might be
that biophysical factors (such as fuel moisture, topography, or climate) are becoming more
significant and can thus no longer be excluded, or should be coupled to human factors to
determine fire-prone areas when dealing with human-only fire occurrence. Nonetheless, it
might be possible that new human explanatory factors are ruling fire occurrence.

According to Fig. 5, the human-only model losses performance possibly because of the
loss of explanatory power of WAI and WUI, whereas the Climate-Human model remains
more stable. This finding might imply that fire prevention policies are achieving success,
since the occurrence of forest fires seems to be less related to human activity and more
determined by environmental conditions. In any case, climate and environmental drivers
should be explored in greater depth using more accurate data from a temporal point of
view, so that yearly climate data are retrieved.

An alternative possibility to explain the observed loss of significance of human driving
factors is that maybe other socioeconomic factors are influencing wildfires. These could be
accounted for by changes in the socioeconomic models or the establishment of new reg-
ulations and/or policies. Despite the increasing contribution of climate factors, AUC values
are moderate (Hanley and McNeil 1982), which means there is still a proportion of fire
ignition that remains unexplained. In this sense, deliberate fires—which have been
increasingly reported since the early 1990s according to the EGIF database (Leone et al.
2009)—remain a source of uncertainty that might explain this. For instance, modeling
deliberate fires would contribute to improving the contribution of human factors. The
deliberate lighting of a fire or arson can be an action with multiple elements and purposes
(Willis 2004) such as revenge or land cleaning. It is thus difficult to synthesize it in terms
of explanatory variables, although there have been several proposals in the case of Spain
(Martinez et al. 2004b). Variables related to arson have been found to be nonsignificant in
structural or historical models (Chuvieco et al. 2010). However, perhaps they should be
accounted for—or at least investigated—in this temporal context, given the observed
temporal dynamics in some driving factors.

Temporal changes in human factors were also detected in the fire frequency regression
analysis. However, in this case, the temporal behavior was rather different. Poisson models
do not show strong changes neither in model performance nor in the main drivers of
wildfire. Opposite to logistic models, human drivers play a decisive role, whereas climate
factors do not contribute to the explanation of overall fire frequency. The WAI remains the
most important variable associated with the number of ignitions both in GLM and GWPR
models, whereas PA seems to be losing significance, being a deterrent factor at the
beginning of the analyzed period and becoming nonsignificant toward 2012. Therefore,
considering the results from the logistic and Poisson models in the same picture, it seems
that fire occurrence is becoming less dependent on human activities, while fire frequency is
still strongly associated with agricultural activities (either by accident or negligence).

In the case of occurrence probability (logistic models), it seems quite clear that human
driving factors are evolving over time. Socioeconomic changes during the last decades
have driven changes in the structure of the Spanish rural landscape, increasing the com-
plexity of the spatial distribution of the WAI and, accordingly, increasing wildfire prob-
ability (Ortega et al. 2012). Trends in fire regimes associated with socioeconomic factors
have been identified in previous studies (Rodrigues et al. 2013; Pezzatti et al. 2013;
Moreno et al. 2014), supporting our findings. In addition, in recent decades the European
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and Spanish authorities and governments have proposed and developed several initiatives
and legislative procedures aiming to improve fire monitoring and prevention. Among other
goals, fire suppression activities or environmental concern and awareness have been
strongly supported. Some examples can be found in the Plan of Priority Action Against
Forest Fires from 1988 (MAPA 1988a), encouraging monitoring and prevention activities
by autonomous communities, as well as improvements to infrastructure; the royal decree
for the regulation of compensation for the cost of fire suppression (MAPA 1988b), also in
1988; and the European regulations of 1992 (CEE 1992) and 1986 (CEE 1986) promoting
prevention through sylviculture, and research into causes, awareness, and professional
training. These policies could contribute to the explanation of the changes in human-
caused driving factors. In this particular sense, fire prevention activities have been
increasingly supported and funded during the last decade. Several initiatives such as the
creation of teams for forest fire prevention, awareness campaigns, or promoting the use of
forest biomass (MAGRAMA 2012) have been promoted ever since 2002 as a part of the
Spanish Forestry Plan along with the Spanish Forest Strategy and the Forest Law.

Finally, GWR models revealed a certain degree of spatial variability. Again, changes
are more important in the case of logistic models (GWLR) compared to Poisson ones
(GWPR). This is not surprising, since it is well known that the explanatory factors of
wildfires in Spain vary over space (Martinez et al. 2013; Rodrigues et al. 2014). Anyhow,
spatial changes have been observed in both cases, being particularly interesting the loss of
influence of WUI both in GWLR and GWPR. Similar to the global models (GLM),
changes in the contribution of PA have been identified in GWLR. Besides the detected
change in the spatial pattern of significance according to  values, models appear to become
local in recent years. The analysis of bandwidth size reveals an increase in the influence
areca in GWR models. This means that both GWLR and GWPR become ‘more global’ over
time.

5 Conclusions and further work

In this paper, we investigate and analyze spatial-temporal changes in the significance and
contribution of the major human factors of forest fire hazards using Spanish historical
statistical data records from 1988 to 2012. Our results suggest that the human driving
factors of wildfires have undergone significant shifts in their explanatory power in the case
of occurrence probability, thus varying over time. However, according to Poisson models,
no significant changes have been observed. Consequently, fire frequency is still strongly
associated with human drivers and with agricultural activities in particular (WAI).
Nonetheless, logistic regression models revealed a slight loss of significance of tradi-
tional explanatory factors. This was especially relevant in the case of the WAI, a variable
that has traditionally been linked to forest fire occurrence in Spain, and the WUI, which is
the most common driver in the literature. On the other hand, the influence of population
density and accessibility (DP) appears to be increasing, so urban pressure on wildlands is a
more influencing driver nowadays. Human factors still play a decisive role in fire occur-
rence, but their overall performance seems to be decreasing over time. In addition, the
overall loss of explanatory power of most of the driving factors indicates that biophysical
factors (such as fuel moisture, topography, or climate) could be playing a more significant
role today. Thus, they can no longer be excluded, but should be coupled to human factors
to determine fire-prone areas or in conducting any kind of wildfire assessment. According
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to our results, fire occurrence is becoming less dependent on human activities, whereas fire
frequency remains associated with agricultural activities (by either accident or negligence).

Our findings also open several new lines for future research. The analysis of the GWR
models suggests a certain degree of spatial variability, which could imply that human
driving factors vary both over space and time. Moreover, deeper insights into the temporal
behavior of driving factors can be explored. Specifically, intra-annual-—seasonal—vari-
ability might be investigated by splitting fire occurrence into summer and winter samples.
Finally, the influence of fire size can also be included, isolating large fires so that fire-
triggering factors are analyzed separately. This is particularly interesting since most
human-induced fires are smaller than 1 hectare. Driving factors might thus vary with fire
size.
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ARTICLE INFO ABSTRACT

Keywords: Over the last decades, authorities responsible on forest fire have encouraged research on fire triggering factors,
Wildfire recognizing this as a critical point to achieve a greater understanding of fire occurrence patterns and improve
Driving factors preventive measures. The key objectives of this study are to investigate and analyze spatial-temporal changes in
Season the contribution of wildfire drivers in Spain, and provide deeper insights into the influence of fire features: cause,
Fire size . S S 5

Canse season and size. We explored several subsets of fire occurrence combining cause (negligence/accident and
GWLR arson), season (summer-spring and winter-fall) and size (< 1 Ha, 1-100 Ha and > 100 Ha). The analysis is

carried out fitting Geographically Weighted Logistic Regression models in two separate time periods
(1988-1992, soon after Spain joined the European Union; and 2006-2010, after several decades of forest
management). Our results suggest that human factors are losing performance with climate factors taking over,
which may be ultimately related to the success in recent prevention policies. In addition, we found strong
differences in the performance of occurrence models across subsets, thus models based on long-term historical
fire records might led to misleading conclusions. Overall, fire management should move towards differential
prevention measurements and recommendations due to the observed variability in drivers’ behavior over time

and space, paying special attention to winter fires.

1. Introduction

Nowadays it is widely agreed that forest fires are a global threat to
ecosystems and landscapes (Pausas and Keeley, 2009) affecting 30-46
million km? per year (Randerson et al., 2012). Wildfire has been tra-
ditionally known as a natural process responsible for the evolution of
forest communities (Pyne, 2009; Wagtendonk, 2009) controlled by
multiple factors such as climate, fuel and physiography. Nonetheless,
fire remains significantly tied to human activity (Leone et al., 2009)
often finding humans acting as both initiators and suppressors, thus
altering the natural fire regime (Chuvieco et al., 2008; San-Miguel-
Ayanz et al., 2013). This may lead to undesired effects on vegetation
structure and composition, the modification of soil properties, in-
creased carbon emissions or hindering ecosystem's services (Doerr and
Santin, 2016; Roman et al., 2013; Vallejo et al., 2009; van der Werf
et al., 2010). In this context, Mediterranean Europe outstands as one of
the most fire-affected regions globally while being a highly populated
territory with ongoing socio-economic changes influencing wildfire
activity (Ganteaume et al., 2013; Vilar et al., 2016). In Mediterranean-

type fire-prone ecosystems, such as Spain, several works have reported
changes in fire regime (Jiménez-Ruano et al., 2017a) as a result of fire
management policies (Moreno et al., 2014), climate (McBean and
Ajibade, 2009; Pausas and Ferndndez-Munoz, 2012) or human activities
(Bal et al., 2011; Vilar et al., 2016).

In recent decades, prevention measures in Spain have gained in-
creased attention after achieving and adequate efficacy in fire sup-
pression (MAPAMA, 2012). In this sense, several initiatives and legis-
lative procedures relating wildfire management have been promoted.
We find examples of those policy implementations in the “Plan of
Priority Action Against Forest Fires” (MAPA, 1988a) or the “Royal Decree
for the regulation of compensation for the cost of fire suppression” both
targeting improvements to suppression infrastructures and also sup-
porting fire monitoring and prevention. Furthermore, fire prevention
has been progressively encouraged over the last two decades via Na-
tional and European regulations (CEE, 1992, 1986; MAPA, 1988b)
promoting awareness campaigns, energy production from forest bio-
mass or funding forest fire prevention teams. All these policies and
initiatives have most likely induced changes in the drivers of wildfires

* Corresponding author. Campus ETSEA, Alcalde Rovira Roure 191, 25198, Lleida, Spain.

E-mail address: rmarcos@eagrof.udl.cat (M. Rodrigues).

https://doi.org/10.1016/j.jenvman.2018.07.098

Received 16 April 2018; Received in revised form 26 July 2018; Accepted 28 July 2018

Available online 01 August 2018
0301-4797/ © 2018 Elsevier Ltd. All rights reserved.

111



Chapter 7: Change in anthropogenic drivers

M. Rodrigues et al.

(Moreno et al., 2014).

Up to date, models of human-caused ignition and/or occurrence
probability have usually been developed on a long-term basis; regard-
less of the time cycles that drive human behavior and environmental
conditions. Structural models and assessments based on long-term his-
torical fire records have fulfilled a key role discovering and unraveling
the function of the main drivers of wildfires. Fire science is now a
mature discipline, after having acquired a considerable base of
knowledge on either what tools and techniques should we employ
(Costafreda-Aumedes et al., 2017); and what factors, variables or dri-
vers must be accounted for (Leone et al., 2003, 2009; Rodrigues and de
la Riva, 2014a).

However, human drivers are known to be non-stationary, thus a
temporal approach is highly recommended (Carmona et al., 2012;
Zumbrunnen et al., 2011). Most attempts to produce fire risk or danger
models that actually deal with the human component of ignition are
based on long-term historical fire records and stationary predictors
(Arndt et al., 2013; Chuvieco et al., 2012; Guo et al., 2016; Martinez
et al., 2009; Miranda et al., 2012; Narayanaraj and Wimberly, 2011,
Rodrigues et al., 2014; Rodrigues and de la Riva, 2014b). According to
Rodrigues et al. (2016), human drivers of wildfire evolved over time,
reporting significant shifts in the contribution of anthropogenic factors
triggering fires which could, ultimately, be related to recent efforts to
improve prevention measures (MAPAMA, 2012) or increased environ-
mental sensitivity to the harmful effects of fire. Knowledge on the
causes and drivers of fires is indispensable to achieve effective fire
prevention and modeling (Ganteaume et al., 2013). In that regard, the
analysis of intra-annual -seasonal- variability of causes, or the influ-
ence of fire size on the contribution of human factors is particularly
interesting (Jiménez-Ruano et al.,, 2017b; Pereira et al., 2011;
Rodrigues et al., 2014). In this sense, Geographically Weighted Re-
gression is a powerful modeling tool able to capture non-stationary
relationships amongst response and predictors. It has been extensively
used in several topics (Cardozo et al., 2012; Chalkias et al., 2013; Wang
et al., 2013; Xiao et al., 2013) and specifically in wildfire science.
Without being exhaustive we found some recent examples of applica-
tion around the globe (Avila-Flores et al., 2010; Nunes, 2012; Oliveira
et al., 2014; Song et al., 2017; William et al., 2017) and in the particular
case of Spain (Koutsias et al., 2010; Martinez et al., 2013; Rodrigues
et al., 2014, 2016).

In this work we investigate the effect of seasonality, fire size and
cause in the explanatory performance of human factors in Spain by
means of Geographically Weighted Logistic Regression models (GWLR).
To our knowledge this is the first attempt to provide spatial and tem-
poral insights on fire drivers exploring at the same time inter and intra-
annual variability coupled to ignition source and resultant fire size, and
exploring the Standardized Precipitation-Evapotranspiration index as
an ignition driver. Our main goals are to (i) identify spatial-temporal
differences in human drivers of wildfires in Spain; (ii) explore dissim-
ilarities in the triggering factors among cause (unintended vs arson) and
fire size; and (iii) determine whether climate factors are taking over
human drivers.

2. Materials and methods
2.1. Study area

The study area is mainland Spain; covering an overall surface
around 498,000 km?. Mainland Spain is a very diverse territory, pre-
senting contrasting topographic, climatic, and environmental (Fig. 1).
The relief is characterized by mountain ranges. There are different
climatic situations from Oceanic humid conditions (Cf) in the north-
west areas to Mediterranean and steppe in central, south and east re-
gions (Cs and Bs). These variety of climates translates into contrasting
biogeographical conditions ranging from evergreen coniferous forest
(Pinus radiata and Eucalyptus globulus) in mountain ranges to oak
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(Quercus ilex, Quercus suber, Quercus robur, Fraxinus excelsior and Fagus
sylvatica) and pine forest (Pinus halepensis, Pinus sylvestris, Pinus nigra,
Pinus pinea or pinaster) or scrublands on the Mediterranean. This di-
versity influences socioeconomic conditions as well. Overall, we find
huge differences in the spatial pattern of settlements and population
density which peaks mainly along the Mediterranean coast and the
central region of Madrid. In turn, complex mosaics of land use and land
cover are present all over the regions, ultimately leading to contact
areas (the so-called interfaces) between human and forest covers.
Therefore, the complexity of socioeconomic conditions plays a decisive
role in forest fire assessments (Rodrigues et al., 2014).

2.2. Fire data and response variables

Fire information was retrieved from the Spanish EGIF database
(MAPAMA, n.d.). EGIF is the official database on wildfires in Spain,
compiled by the “Departamento de Defensa contra los Fuegos Forestales” in
the Ministry of Agriculture, Food, and Environment from forest fire
reports starting in 1968. The EGIF database is one of the oldest and
most complete databases in Europe (Vélez, 2001) being built from in-
dividual fire reports provided by firefighting services.

For each fire event within the periods 1988-1992 and 2006-2010
we retrieved information about the starting location (recorded on a
10 X 10 km reference grid), ignition source (negligence/accident or
arson), fire size, and ignition date. Fires are then split according to their
combination of time period ignition source, season (spring-summer,
May to September; and fall-winter, October to April) and fire size in-
terval (less than 1 Ha, 1-100 Ha and more than 100 Ha), leading to a
total of 24 occurrence subsets. Table 1 summarizes fire count data and
Fig. 2 displays the spatial distribution of fire occurrence. Negligence
and accidental fires will be further referred to as ‘unintended’. Then, we
build a set of binary (1-presence and 0-absence) dependent variables for
each subset. Each cell where at least one fire has occur was classified as
presence and remaining cells as potential absence (Rodrigues et al.,
2016).

2.3. Wildfire driving factors

2.3.1. Human driving factors

We selected and constructed human-related covariates according to
previous works (Chuvieco et al., 2012; Marcos Rodrigues et al., 2016;
Rodrigues et al., 2014; Rodrigues and De la Riva, 2014a), other studies
at regional or national scales (Nunes, 2012; Nunes et al., 2016; Padilla
and Vega-Garcia, 2011) and a recent review on fire occurrence mod-
eling by (Costafreda-Aumedes et al., 2017). Selected covariates are
well-known indicators of fire occurrence and relate to the typology of
factors and drivers proposed and described in Leone et al. (2009, 2003):

Wildland-Agricultural Interface (WAI). Distance of the boundary be-
tween agricultural plots (either rainfed or irrigated) and wildlands
per grid cell, obtained from Corine Land Cover (CLC) 1990 and
2006.

o Wildland-Urban Interface (WUI). Length of the contact line between
urban (populated) and wildland areas within each 10 x 10 km grid,
obtained from CLC 1990 and 2006.

e Demographic potential (DPT). The demographic potential is an index
reflecting current demographic power as well as the ability to pro-
vide population growth in the future. Data on DPT was retrieved
from Calvo and Pueyo (2008). It was originally calculated at
5 x 5km resolution and resampled to 10 X 10 km according to the
average value.

® Power lines (PWL). Length of electric transport power lines crossing
wildland areas within each cell. Network location was obtained
from Base Cartogrdfica Nacional 1:200,000 (BCN200). Same as WUI
and WAL, wildland areas were defined according to CLC 1990/2006.

® Railroads (RR). Length of the conventional railroad network
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Fig. 1. Study area. A) Land use/cover from Corine Land Cover 2000; B) Relief; C) Administrative division.

Table 1

Total of fire occurrences per period, season, ignition source, and fire size. First
parentheses show percentage within the period; second parentheses shows
percentage within season.

1988-1992 2006-2010

Unintended Arson Unintended Arson

Spring-summer

<1Ha 3854 (9.5) 6376 (15.7) 8319 (14) (26.8) 13351 (22.5)
(15.5) (25.7) (43)
1-100 Ha 2927 (7.2) 10859 (26.7) 2768 (4.7) (8.9) 6367 (10.7)
(11.8) (43.8) (20.5)
> 100 Ha 149 (0.4) (0.6) 644 (1.6) 104 (0.2) (0.3) 161 (0.3)
(2.6) (0.5)
6930 (17.0) 17879 (44) 11191 (18.9) 19879 (33.6)
(27.9) (72.1) (36) (64)
Fall-winter
< 1Ha 1314 (3.2) (8.3) 3234 (8) 5366 (9.1) (19) 9994 (16.9)
(20.4) (35.5)
1-100 Ha 1992 (4.9) 8991 (22.1) 2689 (4.5) (9.5) 9796 (16.5)
(12.6) (56.7) (34.8)
> 100 Ha 73 (0.2) (0.5) 263 (0.6) 36 (0.1) (0.1) 288 (0.5) (1)
1.7)
3379 (8.3) 12488 8091 (13.7) 20078 (33.9)
(21.3) (30.7) (78.7) (28.7) (71.3)
TOTAL 10309 30367 19282 39957

crossing wildland areas within each 10 X 10 km grid, obtained from
BCN200. Wildland areas were defined according to CLC.

® Forest tracks (TRK). Distance of tracks, paths or trails inside forest
areas per grid cell (BCN200).

e Natural protected areas (NPA). Total area under protected manage-
ment and belonging to the Natura 2000 network or National Parks.

2.3.2. Climate-related driving factors — Standardized Precipitation-
Evapotranspiration index (SPEI)

To explore the potential influence of climate on fire occurrence we
computed the Standardized Precipitation-Evapotranspiration index
(SPEI); a meteorological drought index that standardize drought across
regions endorsed as a key drought indicator (WWO, 2012). Standar-
dized Precipitation-Evapotranspiration was initially proposed by
Vicente-Serrano et al. (2009) and later updated in Begueria et al. (2014)
and has been employed in recent wildfire analyses such as Turco et al.
(2017). The concurrency of high temperatures and extended drought
periods boost wildfire activity by promoting larger fires. Several studies
report this behavior in southern Europe (Camia and Amatulli, 2009;
Urbieta et al., 2015), the Iberian Peninsula (Trigo et al., 2016) or the
Mediterranean sector in Portugal (Ferreira-Leite et al., 2017) or Spain
(Pinol et al., 1998; Turco et al., 2013). In our particular case, Rodrigues
et al. (2016) suggest an increased role of climate variables (temperature
and precipitation) in fire occurrence models. In the present work, SPEI

was employed to determine the extent to which this is true, far beyond
the already known contribution to burnt area (Turco et al., 2017). Note
that SPEI reflects not only climate patterns but also topographic gra-
dients as physiography has a direct influence in the spatial distribution
of weather and climate (Martin-Vide and Olcina, 2001).

Standardized Precipitation-Evapotranspiration was computed from
climatic data from MOTEDAS (Monthly Temperature Dataset of Spain,
Gonzalez-Hidalgo et al., 2015; Pena-Angulo et al., 2016) and MOPRE-
DAS (Monthly Precipitation Dataset of Spain. Gonzélez-Hidalgo et al.,
2011) datasets (1950-2010). Two separate SPEI were calculated, one in
1998-1992 and another for 2006-2010. Both indexes were calculated
using a 60 month time window and the Hargreaves equation
(Hargreaves, 1994; see equation (1)) to calculate potential evapo-
transpiration.

PET;, = 0.0023 Ry, (Tyy + 17.8) (Tinaxm — Trninm)® 6}

where PET, is the potential evapotranspiration (mm) in a given month
m; Ra is the extraterrestrial radiation, which depends on latitude and
latitude; T, is the monthly mean temperature; T, is the monthly
average minimum temperature; and T, is the monthly average
maximum temperature.

2.4. Generalized Linear Models (GLM)

Generalized Linear Models are an extension of linear models able to
deal with non-normal distributions of the response variable such as
Poisson, binomial, negative binomial, and gamma (Nelder and
Wedderburn, 1972). Generalized Linear Models are a widespread ap-
proach in many research fields and also in fire science being logistic
regression one of the most popular approaches in occurrence modeling
(Bar Massada et al., 2012; Chuvieco et al., 2010; Costafreda-Aumedes
et al., 2017; Ferreira-Leite et al., 2016; Martinez et al., 2009; Padilla
and Vega-Garcia, 2011; Vega-Garcia et al., 1995).

We explored 1000 GLM-logistic models for each combination of
period-season-cause-size. These models were created resampling the
absence values sample (0) in the construction of the dependent vari-
able. We randomly selected as many absence grids as presence grids (1)
do exist on a given occurrence subset, to then construct the corre-
sponding dependent variable. The resulting models allowed (i) to de-
termine which variables were significant (p < 0.05) and (ii) examining
whether the spatial location of absence values was influencing variable
performance. Overall, if a variable was significant in at least 25% of the
models (250 times) it is selected as candidate for the final GWR models.

2.5. Geographically Weighted Logistic Regression (GWLR)

Geographically Weighted Regression is a spatial-explicit statistical
technique considered as a spatial disaggregation of global regression
models. Geographically Weighted Regression extend global regression
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Fig. 2. Spatial distribution of wildfire occurrence.

models allowing to calibrate sets of spatially limited models, thus
yielding local regression outputs (Fotheringham et al., 2002). Such
modeling often outperforms global regression models as well as enables
further interpretation of the analyzed phenomena. Same as their global
counterpart, GWR models produce several statistical outputs such 3
regression coefficients and significance tests but, rather than a single set
of statistical parameters, we obtain a collection of parameters for each
location apiece; thus allowing to account for the spatial variability in
the predictors. A conventional GWR model is described as follows
(Fotheringham et al., 2002):

= Ui, Vi) X + &
Vi ; Bk ( i l) k.i i (2)
where y;, xi; and ¢ are, respectively, dependent variable, k, in-
dependent variable, and the Gaussian error at location i; (u;Vv;) is the X/
Y coordinate of the iy location; and coefficients B (u;v;) are varying
depending on the location.
Logit GWR (Geographically Weighted Logistic Regression or GWLR)
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was applied to each occurrence subset of period, season, cause, and fire
size. Model fitting was conducted using optimized Adaptive Bisquare
Kernel bandwidth (according to the Corrected Akaike Information
Criterion) considering all predictors as local covariates (see Nakaya
et al. (2009) for additional specifics on the method). For each subset we
adjusted 20 different models using the same resampling procedure
described in the GLM section. The calibration of the GWLR models
include a Leave-one-out cross-validation procedure (LOOCV). Outputs
from the LOOCV were used to compute the area under the Receiver
Operating Characteristic (ROC) curve (AUC), a threshold-independent
approach to determine and compare the performance of binary models
(Hanley and McNeil, 1982).

Contrary to Gaussian GWR models, GWLR can only deliver predic-
tions in measured locations, i.e., those points that make up for the
dependent variable (Fotheringham et al., 2002; Nakaya et al., 2009).
Following a similar approach to that by Rodrigues et al. (2014) or Song
et al. (2017), t-values from each model were spatialized using exact
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interpolation methods (Inverse Distance Weighting). This produces a
set of 20 raster maps of t-values per covariate and occurrence subset. To
analyze the results and thus provide insights into the spatial-temporal
changes of variable contribution, t-values from each set of maps were
aggregated according to the median. In addition, the absolute deviation
to the median (MAD) was computed to provide a measure of the dis-
persion or uncertainty of the results (Leys et al., 2013). In this way, the
spatial distribution of the central t-value and its dispersion-uncertainty
were addressed.

In this work we explored 24 subsets of fire occurrence combining
two time periods (1988-1992 and 2006-2010); two human-related
ignition sources (negligence/accident and arson); two seasons
(summer-spring and winter-fall); and three fire size intervals (< 1 Ha,
1-100 Ha and > 100 Ha). A set of 8 triggering factors (7 human-related
and 1 climate-related) were selected and tested. For each occurrence
subset 20 GWLR models were constructed and then averaged using the
median. Every single covariate was then examined in terms of its spatial
pattern of significance according to the Student's t values of the
coefficients. The temporal framework was selected on the basis of
Rodrigues et al. (2016), considering data limitations. Fire records were
only fully reliable since 1988 (Vélez, 2001) whereas climate data were
only available until 2010 (Gonzalez-Hidalgo et al., 2015; Gonzalez-
Hidalgo et al., 2011).

All predictors (both human and climate; see section 2.3) were spa-
tialized using a 10 X 10km reference grid. Human-related variables
were adapted to the study periods 1988-1992 and 2006-2010. Speci-
fically, we used Corine Land Cover maps 1990 and 2006; and data on
Demographic Potential corresponding to 1991 and 2006. In this way,
we account for time-specific settings of the explanatory factors which
may differ from one period to another due to socioeconomic changes.
Additionally, predictors were submitted to collinearity analysis and
were found to be independent (Variance Inflation Index < 4; Fox and
Monette, 1992).

Data manipulation, model calibration, validation, plotting and
mapping (except maps corresponding to the study area which were
elaborated with ArcGIS 10.5) were developed using the R software for
statistical computing (R Core Team and R Development Team Core,
2017) packages: GWmodel for GWLR modeling, gstat for data inter-
polation, car for multicollinearity assessment, dismo for bootstrapping
and accuracy assessment, spei to calculate the Standardized Precipita-
tion-Evapotranspiration index, ggplot2 and lattice for mapping and
plotting, raster, rgdal and sp for spatial data manipulation and parallel
for parallel computing for model development.

3. Results and discussion
3.1. Contribution of driving factors across occurrence subsets

Table 2 summarizes the results from GLM variable selection.
Overall, no variable was significant (p < 0.05) in all occurrence sub-
sets apart from SPEIL Power lines and railroads, are the next predictors
in terms of participation, appearing 18 times, followed by WAI and WUI
(14 times each), forest tracks (13 times), natural protected areas (12
times) and, finally, demographic potential (10 times).

From the ‘occurrence subset’ point of view, there is great variability
in the effective number of predictors. In general lines, subsets of small
fires require more predictors than those considering large fires. Subsets
covering medium-size fires are somewhat in-between, although closer
to small fires'. There is no evident difference in the number of predictors
amongst ignition source or period. However, some predictors do have
some ‘preference’ towards a specific occurrence subset. The Wildland-
Agricultural interface is more frequently selected in fall-winter (9
times). The Wildland-Urban interface appears more often in spring-
summer (9 out of 14 times selected). Natural protected areas, despite
being one of the predictors with less appearances, is most frequently
select in present models (9 out of 12 times selected). Power lines,
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railroads and forest tracks do not show any preference, being present in
most subsets. Again, SPEI is selected in all subsets.

3.2. Spatial and temporal patterns of wildfire driving factors

Figs. 3-10 display the spatial pattern of the significance (p < 0.05,
0.01, 0.001) and explanatory relationship (either positive in brown; or
negative in green) of the covariates. Point size is used to represent
uncertainty -MAD- in the predicted value. Large points vary less than
20% (low); medium-size points vary between 20 and 50% (medium);
and small points vary over 50% (high) around the median.

Several works report a strong contribution of WAI to human-caused
fires in Spain. Rodrigues et al. (2014a) investigated WAI's influence on
fires over 5ha burned in the period 1988-2011. They reported strong
positive relationships all over Spain. Rodrigues and de la Riva (2014a)
reported similar results. In the same line, other works (Chuvieco et al.,
2010; Martinez-Ferndndez and Koutsias, 2011) reached similar con-
clusions. However, we detected a strong variability in the contribution
of WAI across subsets (Fig. 3). This may imply that the explanatory
power of WAI may depend on fire size, season or time period. Rodrigues
et al. (2016) suggest WAI might be losing performance over time be-
cause of forest management policies such as investment in social in-
tervention programs in rural. According to our results WAI seems to be
mostly related to small and large unintended fires during summer-past
subsets. It also displays a positive relationship with small and large fall-
winter fires during the past all over the north region, also observed in
arson fires. Moving towards present WAI loses performance as a fire
occurrence driver during spring-summer except for large unintended
fires in the Southern Mediterranean region. In addition, WAI shows a
strong positive relationship with large fall-winter arson fires in North-
west.

Overall, we can observe a stronger relationship with fall-winter fires
that increases towards present days, in terms of significance and re-
duced uncertainty in the prediction. However, WAI losses performance
during spring-summer months. Fall-winter fires in Spain are mostly
intentional; up to 80% of them are linked to livestock burnings for the
maintenance of pasture (Ganteaume et al., 2013; Leone et al., 2003).
Fire has been traditionally the preferred means to eliminate agricultural
residues, weeds or cleansing field's margins from hedges and shrubs.
The increase in the contribution of WAI during winter-fall may be
promoted by increased mechanization efficiency (Leone et al., 2009),
burn disposal of agricultural byproducts (only allowed during this
season).

Wildland-Urban Interface (Fig. 4) has been commonly considered
the most relevant human ignition indicator (Galiana-Martin et al.,
2011; Martinez et al., 2009; Romero-Calcerrada et al., 2010; Vilar et al.,
2016). In the early 90s WUI is clearly related to small-medium unin-
tended and, to a lesser extent, arson fires. Like WAL, the contribution of
WUI to fire occurrence towards present days was expected to drop.
While this might be the case for spring-summer fires is not happening
during fall-winter. A recent study by Modugno et al. (2016) indicate
that “the probability of large burned surfaces increases with diminishing
WUI distance in regions with a strong peri-urban component as Cataluria,
Comunidad de Madrid, Comunidad Valenciana”. Our results suggest the
WUI appears to gain performance to explain fall-winter small fires,
being significant in all the study area in unintended and arson fires in
models for 2006-2010. In any case, the discrepancies between the
studies may be linked to the difference in the scale of analysis (Eur-
opean vs national) or the spatial unit of analysis (NUTS 3 vs 10 X 10 km
grid).

Additionally, some areas in the south are significant both in past
and present medium arson fires, with the significant-positive area
growing towards present. Therefore, WUI displays a stronger relation-
ship during spring-summer in the past that shifts towards fall-winter in
present years. Decreased contribution of WUI during spring-summer
can be understood as a more sensible behavior of human beings in
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Table 2
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Summary of variable significance (p < 0.05) across subsets from GLM. Number of selected variables reported between parentheses. Bold font indicates variables
significant in GWLR. Effective number of parameters in GWLR models reported between brackets. WAI: Wildland-Agricultural interface; WUI: Wildland-Urban
interface; DPT: Demographic potential; PWL: power lines; RRD: railroads; TRK: forest tracks; NPA: natural protected areas; SPEIL: Standard Precipitation-

Evapotranspiration index.

1988-1992

2006-2010

Unintended Arson

Unintended Arson

Summer < 1Ha WAI, WUL, DPT, PWL, RRD, SPEI
©)[3] 41
1-100 Ha  WUI, PWL, RRD, SPEI (4) [3]

(6) [6]
>100 Ha WAL, WUIL, PWL, TRK, SPEI (5)
4] [5]

Winter < 1Ha WAI, WUI, RRD, TRK (5) [3]

41

1-100 Ha  PWL, NPA, SPEI (3) [3] WAL, WUI, DPT, PWL, RRD, NPA,
SPEI (7) [7]

> 100 Ha WAL DPT, PWL, RRD, SPEI (5) WAL, SPEI (2) [2]

5]

WAI, WUI, RRD, TRK, SPEI (5)

WUI, DPT, RRD, TRK, SPEI (5)

WAL RRD, TRK, NPA, SPEI (5)

WUI, DPT, PWL, RRD, TRK, NPA,
SPEI (7) [6]

WUI, PWL, RRD, NPA, SPEI (5) [5]

WAI, WUI, PWL, RRD, TRK, SPEI WUI, PWL, RRD, TRK, NPA, SPEI (6) PWL, RRD, SPEI (3) [3]

[5]

WAI, DPT, PWL, SPEI (4) [3] DPT, PWL, TRK, SPEI (4) [4]
WUI, PWL, RRD, NPA, SPEI (5) [2] WAI, WUI, DPT, PWL, RRD, TRK,

NPA, SPEI (8) [7]

WAI, WUI, PWL, RRD, TRK, NPA,
SPEI (7) [7]

DPT, PWL, RRD, NPA SPEI (5) [5]

WAI, DPT, PWL, RRD, TRK, NPA,
SPEI (7) [5]
WAL TRK, NPA, SPEI (4) [2]

forest areas, thus as an increased concern about the environment. One
of the cornerstones of fire prevention in Spain are awareness campaigns
and other educational resources, which might be ultimately behind the
observed behavior in WUI during spring-summer (article 44, Ley 43/
2003, de 21 de noviembre, de Montes).

Demographic potential (Fig. 5) is a variable linked to increased
pressure of human beings on wildlands. However, opposite to WUI, DPT
relates to urban areas rather than rural settlements and residential areas
(Calvo and Pueyo, 2008; Rodrigues and de la Riva, 2014a; Rodrigues
et al., 2016). Demographic potential shows positive relationship in
small-unintended past fires alone. The remaining combinations are ei-
ther non-significant or significant negative. The only exception is a
small region in NW for arson fall-winter fires in recent years. Con-
sidering this, we can conclude urban population is not an effective
driver of wildfires. In previous works, changes in DPT were reported as
a strong driver (Rodrigues and de la Riva, 2014a, 2014b), but used as a
standalone value DPT no longer contributes as a fire occurrence driver.
It was somehow related to small unintended fires in past subsets, but
currently appears as a deterrent factor, i.e., fires do not occur near
purely urban areas.

According to Fig. 6, PLW Increases performance towards present.
Power lines are expected to be linked with unintended fires (Leone
et al., 2003, 2009). They are usually related with accidental fires from
sparks or lightning-bolt arcs reaching vegetated areas. We do observe a
more consistent relationship of PWL and small unintended fires in past
and medium-size in present. But significant relationships with arson
fires are also detected, especially in models from 2006 to 2010. There is
no clear explanation to this. It maybe that in some cases the corridors
surrounding power lines are used as pathways leading to forest areas or
that arsonists try to conceal intentional fires as unintended by starting
fires in the neighborhood of power lines. On the other hand, why is the
influence of PWL increasing? There are several reasons why power lines
cause forest fires. The main one is the contact between vegetation and
powerlines, either by directly touching or by fall of the towers or posts.
Less frequent is the short circuit in stations or substations and trans-
formers. Similar to fires triggered close to railways, the number of fires
related with power lines appears to increase (MAPAMA, 2012; WWF,
2005) due to the lack of maintenance (cleansing) of vegetate areas
around lines (WWF, 2005). Depending on the voltage, a buffer
45-100 m wide must be cleared (Ferrer, 2012).

Railroads behave mostly the same as power lines do (Fig. 7). The
fact that most railroads depend on an electric power line source makes
them like ordinary power lines. But, RRD are also associated mainly
with accidental fires. For instance, hot coal transported in semi-open
wagons may lead to fire ignitions. But while it is true that locomotives
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and wagons have been modernized, how is it that the ignition re-
lationship increases instead of decreasing? The answer must be sought
in two main aspects. On the one hand, improvement in infrastructure
has not reached second-order or old railways, especially those crossing
mountain areas. Secondly the lack of cleaning and maintenance of ve-
getation —especially herbaceous and grasslands- in zones around rail-
ways, where sparks, generally coming from the braking, generates po-
tential ignition sources when the environmental conditions are
favorable (WWF, 2005).

Forest tracks are a proxy for accessibility to forest areas. Locations
and forest enclaves easy to reach are prone to fire occurrence; in par-
ticular, arsonist leverage accessibility to forest (Leone et al., 2003).
According to Fig. 8, TRK is related to arson fires during past-spring-
summer models, and to small fires during winter. Same as other factors
depicting human pressure on wildlands (WUI), TRK losses importance
towards present, even becoming negative related, i.e., fires tend to
occur far from forest tracks, except for unintended large fires, perhaps
due to increased recreational use of forest areas (MAGRAMA, 2014).

It is commonly agreed areas under any kind of protection or special
management are expected to experience lower fire occurrence, given
the extra effort to prevent or suppress fires (Chuvieco et al., 2010). In
this sense, NPA (Fig. 9) acts as a deterrent factor associated to increased
concern about the environment. Bearing this in mind, NPA should
display negative relationships (Leone et al., 2003). Fig. 8 shows non-
significant relationship during past-spring-summer models, becoming
an actual deterrent factor towards present days, but only in small and
medium size fires. Overall NPA gains significance towards present as a
restraining driver (Rodrigues et al., 2016). However, it is noteworthy its
positive relationship with arson fires in the Northwest region, possibly
due to conflicts with new management in protected areas (Hovardas,
2012) or even arsonist targeting valuable resources.

The Standardized Precipitation-Evapotranspiration index (Fig. 10)
is the only factor selected as potential driver in every single subset
according to the GLM simulations (Table 2). However, same as other
factors, its contribution in GWLR models is not always found sig-
nificant. SPEI has been previously explored in models of burned area
size Europe (Camia and Amatulli, 2009; Pifol et al., 1998; Trigo et al.,
2016; Turco et al., 2013; Urbieta et al., 2015). In fact, our results
suggest stronger relationship with large fires. To our knowledge there is
no prior analysis of SPEI as an ignition or occurrence driver, at least in
Spain. Overall, SPEI shows negative relationship (the higher the
drought the higher the probability of occurrence) with occurrence, both
during fall-winter and spring-summer. In turn, SPEI's influence seems to
increase towards present. For instance, models for spring-summer large
fires arouse SPEI as significant driver in 2006-2010 but not during
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Fig. 3. Spatial pattern of significance level and explanatory sense of WAI. Blank maps indicate no contribution. Dot color represents significance level and ex-

planatory sense. Dot size represents the level of uncertainty according to MAD.

1988-1992. One of the most streaking results is SPEI's influence during
winter. Fall-winter conditions are usually considered as unfavorable
when it comes to fire triggering. We are aware that our SPEI is calcu-
lated using a long temporal span (60 months) but apparently drought
anomalies also influence fall-winter fires to a certain degree maybe due
to the increased length of the main fire season (Jolly et al., 2015).

3.3. Implications in wildfire modeling

Most models dealing with human-caused fire occurrence are based
on large historical datasets, often disregarding fire size or motivation
(Chuvieco et al., 2012; Martinez et al., 2013, 2009; Rodrigues and de la
Riva, 2014b; Rodrigues et al., 2014; Vilar et al., 2016). However,
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according to the literature there is a clear difference in drivers of nat-
ural, accidental and arson fires (Leone et al., 2003). Our results suggest
differences in the contribution of the analyzed drivers across the
modeled subsets of size, season, and cause. These are usually put to-
gether when modeling fire occurrence. Bearing in mind the noticeably
differences reported in this study, doing so might not be the best
practice, at least when the main goal is investigating the relationship
among occurrence and factors. For instance, WAI is largely related to
small spring-summer fires and strengthens its role in fall-winter fire
occurrence.

From a predictive standpoint, we also find differences in the per-
formance of models. Fig. 11 shows a summary of the AUC from the
Leave-one-out cross-validation. As we can see, performance varies ac-
cording size, season and period. Overall, we find lower performance
towards 2006-2010 particularly high in large fires. In addition, fall-

118

winter models tend to perform best, especially in large fires. Moreover,
models of arson fires slightly outperform those of unintended fires.

3.4. Implications for forest management

According to Badia et al. (2002) forest fire policy overreacted to the
waves of wildfires during the 90s, overemphasizing suppression to the
detriment of prevention; but over the years, the balance between sup-
pression and prevention is slowly accomplished (MAPAMA, 2012). In
fact, prevention measures appear to be working to a certain degree
given the overall drop in the explanatory performance of WUI and WAI
(Fox et al., 2015; Rodrigues et al., 2016), two of the most important
variables associated to wildfires in Spain (Martinez et al., 2009, 2004b;
Rodrigues et al., 2014) and Mediterranean environments (Vilar et al.,
2016). For instance, there is investment in social intervention programs
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Fig. 5. Spatial pattern of significance level and explanatory sense of DPT. Blank maps indicate no contribution. Dot color represents significance level and ex-

planatory sense. Dot size represents the level of uncertainty according to MAD.

in regions with high percentage of fires triggered by accidents due to
the use of fire in rural districts of Asturias, Cantabria, Castilla y Leén or
Galicia. Notwithstanding, it is necessary to go a step further and ac-
tively involve those clusters of individuals most associated with high
accident rates (WWF/Adena, 2016).

On the other hand, climate plays a determinant function, which

appears to grow towards present (Fig. 10). According to Rodrigues et al.
(2016), models disregarding environmental conditions steadily loss
performance over time. In this work, we identified SPEI as one of the
most important indicators of fire occurrence. Indeed, it is better found
in large fire models (Camid and Amatulli, 2009; Pifiol et al., 1998; Trigo
et al., 2016; Turco et al., 2013; Urbieta et al., 2015) but, in any case,
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SPEI is also linked to the occurrence of small and medium fires. This
suggests climate not only influences ignition in the usual way (the drier
the likelier to trigger) but also arsonist may be targeting favorable
conditions for fire ignition. In this regard, it is noteworthy the con-
tribution of SPEI to fall-winter fires. Fall-winter is a season theoretically
unfavorable to fire ignition, but with persistent dry conditions fires can
occur and become uncontrolled (WWF, 2005). For instance, 2015 and
2017 were years with intense fall-winter fire activity tied to an ex-
tended dry period after summer, thus promoting larger fires (68% of
large fires in 2017 triggered during fall-winter; ADCIF, 2017), matching
the expected lengthening in fire season according to Jolly et al. (2015).
Therefore, management strategies must encourage compelling con-
siderations for fall-winter fires. For instance, the policy managing
burning permits for plot cleansing and maintenance must be revised. It
should target promoting a different strategy for the removal of
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agricultural residues (centralized dumping and disposal; use as soil
fertilizer or biomass). Moreover, forest fire crews and on watch per-
sonnel must be active thorough most of the year and not only during the
main fire season, i.e., spring-summer months (Costafreda-Aumedes
et al., 2018).

Finally, natural plus unintended fires account for less than 50% of
fires in Spain (Table 1), with the remaining proportion of fires attrib-
uted to arson fires. Fire cause is usually neglected or disregarded in
most fire modeling approaches given the challenge that poses asso-
ciating arson motivations to traditional fire drivers (Leone et al., 2003;
Martinez et al., 2009, 2004a; Rodrigues et al., 2016). Nonetheless, little
is known about the actual motivations or factors around arson wildfires.
For instance, the European fire database lists as unknown the deliber-
ately started fires reported from the Spanish database compiled in the
European Forest Fire Information System, due to the lack of detail on
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motivations (Camia et al., 2013). Intentional fires have grown in positively related to NPA which suggest arsonist try to burn valuable
number towards present, particularly during fall-winter season. They recreational resources.

appear to be associated to areas close to residential areas in forest en-
claves (WUI) during spring-summer and somehow related to infra-
structures such as railroads and powerlines which might be indirectly
providing accessibility. Moreover, large arson fires in the present are

4. Conclusions

In this work we explore past and present subsets of fire size, cause
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and season to determine whether fire triggering of wildfires factors vary
depending on fire features and time. The study is developed using
GWLR to integrate insights into underlying spatial patterns into the
temporal perspective.

Our results confirm the non-stationary nature of wildfire drivers in
Spain. Results suggest that temporal and spatial differences in fire
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features do exist. For instance, intentional fires in present models are no
longer related to accessibility. Moreover, arsonist might be now tar-
geting favorable climate conditions according the SPEI outputs. In the
same line, human-related factors are losing performance towards pre-
sent days in favor of climate-related drivers.

From a modeling perspective, considering fire events altogether
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disregarding fire features (season, cause and size) is not fully re- management and preventive silviculture must be encouraged. On the
commended. The behavior of fire drivers not only evolved temporally other hand, the loss of performance of human-related factors might be
but varies as well across the analyzed subsets of occurrence. reflecting the success of prevention measures during the study period.

Finally, management policies should be adapted to reflect the dif-
ferent behavior observed in the subsets. Moreover, considering the in-
creasing importance of climate-related drivers, activities targeting fuel
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CHAPTER 8: EVOLUTION AND
CAUSES OF FIRE REGIME
CHANGE

This chapter describes the main results, discussion and
conclusions of the outlining of fire regime zones, their temporal
evolution towards the near future and the analysis of the
influence of drivers of fire activity in the observed fire regime
trajectories. Random Forest is employed to evaluate the
individual contribution of each fire driver, as well as, ARIMA
models are used to forecast the immediate future trend of the
main fire regime features.
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Abstract

Fire regimes are evolving worldwide driven by socioeconomic and environmental changes. Understanding
the forces behind fire regime dynamics is essential to achieve effective wildfire management and
policymaking. The current research belongs to a series of two manuscripts aimed at describing spatial-
temporal dynamics of fire regime and its drivers in mainland Spain. In this work, we identified the main
transitional pathways of fire regime zones between past (1974-1994) and current (1995-2015) conditions to
identify the influence of the main wildfire drivers (demographic potential, climate trends, forest interfaces
and topography). Our methodology combined Principal Component Analysis and Ward’s hierarchical
clustering to identify and spatialize homogenous regions of fire regime on the basis of the main fire regime
features: number of fires, burned area, burnt area from lightning-caused fires, area affected by large fires
(>100 ha) and seasonality. This procedure was replicated in current and past conditions to extract the most
frequent combinations of fire regime typologies, eventually leading to a set of binary response variables
(change versus persistence of fire regime). Finally, Random Forest regression was applied to estimate the
explanatory performance of fire regime drivers for each transition path.

Our results point to an overall decline in fire activity over most of the Spanish territory. The hinterlands
and Mediterranean coast experienced the greatest decrease in fire activity. In contrast, winter activity has
progressed in the North-western region. According to Random Forest outputs, demographic potential
highlights as the main driver of fire regime change (both regressive and progressive), followed by climate
dynamics (temperature and rainfall trends) and topographic features. In turn, Wildland-Agticultural
Interface (WAI) and Wildland-Urban Interface (WUI) were also behind several noticeable trajectories as is
the case of winter fire progression (WAI) or moderate increase in fire incidence linked to human-caused

fires (WUI).
Keywords: Forest fires, fire regime, fire features, wildfire drivers, Random Forest, suppression policy

1. INTRODUCTION

Fire regime is usually defined as the average conditions of wildfire that are persistent and consistent within
a particular region and over a given period (Krebs et al., 2010). Its inception depends on the confluence of
vatious factors, 1.e., climate, humans, fuel and ignition cause (Curt and Frejaville, 2018). Human beings have

129


mailto:rmarcos@eagrof.udl.cat

Chapter 8: Evolution and canses of fire regime change

coexisted with fire during millennia, leveraging it as a tool to modify the landscape to their own needs (Pyne,
2009; Wagtendonk, 2009). In human-dominated landscapes, the extensive use of fire has altered the once
natural fire regime transforming it into an anthropogenic one. During the second half of the 20th century,
the confluence of cropland abandonment in remote areas (promoting fuel accumulation) with the increased
presence of human activities in the wildlands led to a sudden increase in fire activity in some Mediterranean
countries such as Portugal or Spain (MAPAMA, 2017) and, thus, a growing interest in forest fire research
(Leone et al., 2003a; ] G Pausas and Vallejo, 1999; Pifiol et al., 1998). However, ever since the extraordinary
fire waves during the mid-90s a total fire exclusion policy was implemented (Moreno et al., 2014), leading
to the progressive decline in fire activity (Jiménez-Ruano et al., 2017; Silva et al., 2019) and altering the
contribution of human factors (Leone et al., 2003a; Vittorio Leone et al., 2009). For instance, in Spain
agricultural activities seem to be losing significance in explaining fire occurrence over time whereas weather
is growing in importance (Rodrigues et al., 2016). Furthermore, fire prevention and suppression have been
increasingly funded, reaching a top investment of 78 million € in 2015.

Despite the decreasing fire trends, fire-weather scenarios predict more hazardous conditions, threatening
both ecosystems and society (Alcasena et al., 2019; Badia et al., 2011). In this sense, the so-called ‘fire
paradox’ foresees larger fires as a consequence of sustained full fire suppression coupled with fire-prone
climate conditions. Humans play a crucial role in shaping the incidence of wildfires acting either as initiators
or suppressors, resulting in the alteration of the natural fire regime (Alcasena et al., 2019). The relationship
between fire regime and socioeconomic and environmental factors has been addressed in the literature.
Pechony and Shindell, (2010) suggested that climate will drive global fire trends to the point of overcoming
human influence, and there is already evidence of how climate-driven vegetation change can affect regional-
scale fire regimes in Mediterranean type ecosystems (Liu and Wimberly, 2016). Nonetheless, under the
current circumstances, housing density and proximity to roads promote human-related ignitions (Clarke et
al., 2019; Martin et al., 2019; Rodrigues et al., 2019a) whereas lightning ignitions relate to intra-annual
patterns of rainfall (Dickson et al., 2006; Pineda and Rigo, 2017; Wang and Anderson, 2010). In the
European-Mediterranean region the main forces behind wildfire incidence relate to the proximity to roads
and settlements or the recreational use of forest lands (Ganteaume et al., 2013). Likewise, agricultural
activities explain a large fraction of arson and accidental fires (Camia et al., 2013; Rodrigues et al., 2018).
Generally, the combination of climate variations, fuels, and human activities what explains the geographical
gradients for both human and natural-caused fires (Ganteaume et al., 2013). In this sense, the aggressive
fire suppression strategy seems to counterbalance the effects of climate change and human activities (Curt
and Frejaville, 2018) to the point of overriding the influence of weather-drought in some relatively humid
regions of Portugal (Fernandes et al., 2014). Understanding the spatial and temporal extent of fire regime
and the potential drivers fostering their change is essential to identify (and rectify) the ongoing trajectories
in fire activity. To date, regional schemes for fire regime zoning in Spain are scarce and few of them deal
with the underlying drivers of fire activity. The ‘official’ fire regime division in Spain was based on gross
fire statistics, distinguishing between the Mediterranean coast, the northern Atlantic coast and a wide
hinterland region between them (A Cardil and Molina, 2013). However, approaches that are more
sophisticated have been developed recently. Some of them leverage the historical fire records alone
(Jiménez-Ruano and et. al., 2018; Moreno and Chuvieco, 2013), while others rely on the role of fire drivers
(Montiel Molina and Galiana-Martin, 2016; Rodrigues et al., 2019b). However, these studies provide a
‘static’ picture of fire regimes without taking into account their temporal evolution.

In this work, we developed a workflow to identify and outline the spatial-temporal evolution of fire regimes
and investigate the drivers of change. We explored past (1974-1994) and current (1995-2015) fire features
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using historical fire records from the Spanish fire database (EGIF, Estadistica General de Incendios
Forestales; MAPAMA, 2015). We combined cluster analysis and random forest regression to a) outline past
and current fire regime zones, b) identify and characterize the most frequent transitions and, c) assess the
role of drivers in observed trajectories.

2. DATA AND METHODS

The proposed methodology was developed in three stages (see Fig. 1). First, we retrieved historical fire
records from the EGIF database and organized them into two separate datasets, one depicting past
conditions (1974-1994) and another covering the most recent period (1995-2015. According to Jiménez-
Ruano et al. (2017a) and Curt and Frejaville (2017), a major breakpoint in the temporal evolution of fire
activity can be found in the mid-90s. Likewise, fire statistics pointed to the year 1994 as one of the worst in
terms of fire incidence, especially in terms of large fires (MAPAMA, 2017). Then, we identified fire regime
typologies in the current period by means of cluster analysis and projected them into the past using K-
Nearest Neighbor (KNN) classification to determine the main fire regime transitions. Finally, we fitted
several Random Forest models with the most frequent fire regime transitions (change/no change) against
the main fire drivers. All statistical procedures, maps and plots were developed using the R statistical
programming language (R Core Team and R Development Team Core, 2017), stats package was used for
PCA, NbClust for cluster analysis, knnGarden for past cluster assignation, splitstackshape for KINN
validation. Random Forest models were trained and tested using caret (Kuhn, 2008) and pdp packages
(Greenwell, 2017).
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Fig. 1. General workflow of the methodology including input data split, clustering, KINN classification-validation
and Random Forest fitting recent cluster transitions and fire drivers.

2.1. Study area

The study area was mainland Spain, a region covering about 498,000 km®* The region is dominated by a
Mediterranean climate extending from the eastern coast to the hinterlands, with Oceanic conditions along
the northern coast. The Mediterranean climate characterized by high annual thermal amplitude with hot
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summers in the inner region and milder conditions along the coast. Precipitation is distributed irregularly
over the year, peaking in autumn and spring, with a clear minimum during summer. The driest areas extend
across the southeastern region and the Ebro Valley. The Oceanic climate displays milder temperatures
thorough the year and high precipitation distributed regularly throughout the year (average values over
1,000 mm). The broad spectrum of vegetation (Fig. 2) within this region ranges from deciduous oak to
evergreen oak woodlands (Quercus robur L., Fraxinus excelsior L. ot Fagus sylvatica 1..) although this region is
also heavily dominated by forest plantations such as Pinus radiate D.Don and Eucabyptus globulus 1abill. The
vegetation in the Mediterranean is characterized by complex mosaics of agricultural systems and plant
communities such as sclerophyllous and evergreen vegetation, mainly pine species (Pinus halepensis Mill.,
Pinus sylvestris 1., Pinus nigra |.F Arnold, Pinus pinea L. ot pinaster Ait.) and oak (Quercus ilex 1. and Quercus suber
L) forest. In addition, altitudinal belts do exist along the highest mountain ranges such as the Pyrenees
along the French border or Sierra Nevada on the southern Mediterranean coast. These sub-regions host a
large variety of tree species that are common in central Europe.
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Fig. 2. Elevation map in meters above sea level (top-left), spatial distribution of main forest formations derived
from the Spanish Forest Map —MAPA, 2013 (top-right), average annual temperature (bottom-left), and average
annual precipitation (bottom-right).
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Fires in Spain are mostly related to human activities, with 95% of fire occurrence linked to anthropogenic
activities. In turn, natural fires are usually scarce, except for some enclaves around the inner mountain
ranges along the Mediterranean coast. Agricultural activities controls fire incidence in the Northwest region,
with a traditional use of fire in pasture clearing and stubble burning (Moreno et al., 2014). On the other
hand, the Wildland Urban Interface promote fire ignitions in the peri-urban large metropolitan areas.

2.2. Fire data

We computed 5 fire features by grid level (Fig. 3), selected according to existing studies (Jiménez-Ruano et
al., 2017b; Moreno and Chuvieco, 2013; Silva et al., 2019):

¢ Fire frequency (F): total number of wildfires per grid and period.

¢ Winter frequency (FW): number of wildfires occurred during autumn-winter (from October to
March) by grid and period.

e Burned area (BA): total surface burned in hectares of the grid and period.

e Burned area by large fires (BA100): burned area by fires greater than 100 hectares by grid and
period.

e Burned area by nature cause (BAL): surface burned by lightning in the grid and period.

Fire data were acquired from the Spanish fire database (EGIF, Estadistica General de Incendios Forestales;
MAPAMA, 2015). The EGIF database compiles fire records since 1968, gathering information about the
ignition date, fire size, cause and the approximate location of the starting point, among others. We retrieved
fire records at 10x10 km grid level in the period 1974-2015, the longer available at the time this work was
conducted. Fire events were organized in two separate datasets depicting periods of stable conditions in
terms of fire regime features The selected periods were 1974-1994 and 1995-2015 (past and current
henceforth). Small fires (less than 1 ha) were disregarded to ensure the temporal consistency of the analyses,
since these were only compiled systematically after 1988 (Jiménez-Ruano et al., 2017b).

2.3. Identifying fire regime typologies by means of cluster analysis

2.3.1. Training clusters

The cornerstone of the analyses lies in the identification of homogenous groups of fire activity in the two
analyzed periods. We applied cluster analysis, training clusters in the current period to later project them
into the past. The rationale behind was to characterize current fire regimes and assess their evolution from
the past as a necessary step to model the future distribution in the Jiménez-Ruano et al. (“Unpublished
results”). Fire features were first submitted to Principal Component Analysis where components that met
the Kaiser Criterion (Kaiser, 1960) were retained. Then optimized hierarchical clustering was applied to the
selected principal components. The clustering strategy consisted of Canberra distance (Cd) and ward. D2
agglomeration criteria (Sorensen, 1948). The optimal number of clusters was determined using the #bClust
R package using to the highest ranked number of clusters out of the 30 indices available in the package
(Charrad et al., 2014). The resulting clusters were considered representative fire regime typologies.
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2.3.2. Projecting clusters into the past

The set of clusters obtained in the current period was “projected into the past” using k-nearest neighbor
(KINN; Ripley, 1996) classification. KNN is a nonparametric classifier that finds the closest K neighbors
(K=5) according to their similarity/dissimilarity measured as the distance in an N-dimensional space (whete
N equals the number of features characterizing each observation, i.e., N=5 fire features). The assigned class
in KNN is the most frequently observed among the K neighbors. The regular version of KINN determines
the distance between neighbors calculating the Euclidean distance. To be consistent with the clustering
strategy, we used the knnVCN algorithm (Venables and Ripley, 2002), an alternative implementation of
KNN able to measure dissimilarity using the Cd. Cd measures distance as the sum of the fraction of
differences between the coordinates of a pair of observations (Teknomo, 2015). Terms with zero numerator
and denominator are omitted from the sum and treated as missing values (Charrad et al., 2014). The

equation of the Cd is as follows:

d . .
x —_—
Cd (ry) =y LTI
L |xj| + [yjl
Jj=1
where 57 is the first observation with coordinates of the features and jy/ is the second observation with its

corresponding coordinates of the same features. Each term of fraction difference ranges from between 0
tol.

We used the current distribution of clusters and its corresponding values of fire features to reproduce their
spatial distribution under past conditions, i.e. assign the most similar cluster to each grid cell in the past
period. Given the critical importance of the proper identification of clusters, we evaluated the predictive
performance of the KnnVCN approach, i.e., the capability of the method to transfer clusters according to
the observed fire features. To that end, we randomly split the current set of clusters using a 70% of the grid
cells for prediction and the remaining 30% to estimate the agreement in the classification calculating the
Kappa Cohen’s index (Cohen, 1960). In this process, we train clusters using 70% of the data and then,
using the remaining 30%, we compare the ‘observed’ cluster assign from the initial classification, with the
cluster ‘predicted’ applying KnnVCN. This provides a measure of the reliability of the transposing
procedure. The process was repeated resampling the data pool 100 times to ensure the consistency of

agr eement measurements.

2.4. Modeling fire regime change

The main goal of this work was to identify the drivers of fire regime dynamics and its marginal influence in
the evolution of fire activity. To this end, we trained random forest models relating the observed trajectories

of fire regime change and drivers of wildfires.

2.4.1. Dependent variable

The dependent variable, change versus no change in fire regime (cluster type), was constructed from the
combination of current and past cluster typologies at grid level. To do so, we constructed the transition
matrix of cluster typologies between the past and current periods. It must be noted that not all combinations
of change were assessed but only those more frequently observed. Thus, according to the transition matrix,
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we selected those combinations with at least 100 cells for each transition. Then, for each combination
(further referred to as transition type), we built a separate response variable, classifying those cells where a
change of fire regime was observed as 1 and those not changing as 0. For example, those grids where fire
regime 1 was observed both in the past and current times are considered as ‘0’ or no change whereas those
that changed from fire regime 1 to 2 would be labelled as ‘1’ or change.

2.4.2. Explanatory factors

Variables related to wildfire incidence and its temporal evolution were selected based on drivers commonly
reported in the literature (Costafreda-Aumedes et al, 2017; Leone et al., 2003), granting special
consideration to those already explored in Spain (Jiménez-Ruano et al., 2017b; Rodrigues et al., 2018, 20106).

Variables related to human pressure on wildlands (WUI; or the demographic potential) and the presence
of agricultural activities or machinery close to forested areas (WAI), were expected to increase wildfires.
However, those locations close to populated places may also be subject to increased suppression capability,
and thus, smaller fires. In some cases, the presence of agricultural activities alters the duration and timing
of the fire season with increased fires during late winter or early spring. In addition, climate-related variables
(temperature and precipitation) mainly influence the fuel load and moisture content. Consequently, under
hazardous conditions they hinder suppression, leading to potentially larger fires. Finally, we selected
elevation and slope as indicators of the complexity of the terrain. The first also connects with fuel
distribution (altitudinal belts), whereas slope affects both accessibility and fire spread potential. Steeper
slopes impede the movement of ground fire-suppression squads and boosts propagation, thereby fostering
larger fires.

Since we were dealing with a dynamic process (i.e., change in fire regime) we tried to integrate the temporal
behavior of explanatory factors when suitable. In this sense, we built non-stationary indicators of
demographic potential and climate factors. The remaining factors were considered static provided that (i)
they did not change during the study period, as is the case of topographical variables or (ii) the performance
of the model was higher when they were considered stationary, as happens with WUI and WAI All variables
were spatialized using the baseline geometry of the 10x10 km grid (Fig. A1 and Fig. A2, Appendix C). The
following list presents the select drivers of fire regime change:

e Wildland-Agricultural Interface - WAI (m): length of the boundary line between agricultural

lands (CLC code 2) and forest areas (codes 3.1 and 3.2). Land use data were retrieved from Corine
Land Cover 1990, thematic level 3.

¢ Wildland-Urban Interface - WUI (m): length of the boundary line between urban settlements
(CLC code 1.1) and forest areas (codes 3.1 and 3.2). Land use data were retrieved from Corine Land
Cover 1990, thematic level 3

e Demographic potential - DP (dimensionless): The demographic potential is an index reflecting
the “demographic power” as well as the ability to provide population growth in the near future in
terms of accessibility (Calvo and Pueyo, 2008). The calculation of DP is as follows:

n

DP 5 )sp

j=1
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where Pjis the population P at location j; P/ is the population P at location 7 and dr7/ is the distance
by road between locations 7 and ;. It was originally calculated at 5x5 km resolution and resampled
to 10x10 km according to the average value. The demographic potential was expressed as the rate
of change between 1991 and 2001, calculated as:

DP;g91 — DPygo,

DP1991

ADP =

e Temperature — T (C°): average monthly temperature was retrieved from the MOTEDAS database
(Gonzalez-Hidalgo et al., 2015). MOTEDAS data were distributed in a 10x10 km grid; values were
resampled according to the nearest neighbor cells. Temperature data were also converted into a
dynamic trend indicator. We calculated the Sen’s slope (Sen, 1968) of the maximum (daytime)
temperature for the period 1974-2010 as indicator of trend magnitude.

e DPrecipitation — P (mm): average monthly precipitation was retrieved from the MOPREDAS
database (Gonzalez-Hidalgo et al., 2011). As for MOTEDAS, MOPREDAS data were distributed
in a 10x10 km grid, resampled to our grid according to the nearest neighbor cells. Same as
temperature, Sen’s slope was calculated to account for temporal dynamics in rainfall in the period
1974-2010 as indicator of trend magnitude.

e Elevation — Elev (m.a.s.l.): meters above sea level. Altitude was retrieved from the GTOPO30 1
km Digital Elevation model (Earth Resources Observation and Science Center/U.S., 1997). It was
resampled to the of 10x10 km grid as the average elevation of all pixels within a cell.

e Slope — Slp (%): percent of rise in elevation calculated from the altitude layer. Slope was calculated
using the original 1 km resolution, being later resampled into grid cell size as the average slope of
all pixels within a cell.

2.4.3. Random Forest modeling

The procedure to assess the role of the drivers in fire regime change was based on the calibration of
probabilistic binary models, i.e., change vs no change. We selected the Random Forest (RF; Breiman, 2001)
modeling algorithm given its proven predictive accuracy (Bar Massada et al., 2012; Leuenberger et al., 2018b;
Rodrigues and de la Riva, 2014b). RF is a tree-based ensemble algorithm that trains multiple decision trees
by randomly bootstrapping the training sample, keeping 67% of the observations to train the decision tree
and the remaining 33% (Out-Of-Bag, OOB) to evaluate the relative influence of the predictors and the
model itself. The final stage assembles all trees into a final prediction as the average of all individual tree
predictions (Bagging, Breiman, 2001).

For each transition type, we trained and validated 100 RF models, using a random sample of 70% for
training and the remaining 30% for testing the performance of the model. At the training stage, a 10-fold
calibration procedure was conducted to identify the optimal parameters (7ry and ntrees) of the model. Also,
during the training stage the influence of each driver was evaluated by calculating the percentage increase
in the Mean Square Error (normalized between 0 and 1), and its explanatory sense by means of partial
dependence plots (Jerome H Friedman, 2001). To estimate the predictive performance of each model
realization the Area Under the Receiver Operating Characteristic Curve was calculated (AUC; Bradley,
1997). Additionally, the explanatory meaning of the covariates (either positively or negatively related) was
explored by visual inspection of partial dependence plots.
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3. RESULTS
3.1. Fire activity in the study region

According to fire statistics from the Spanish fire database, fire activity has experience a great decline from
past to current conditions (Table 1). There has been a huge decrease in BA, two time lower in the current
period (4,106,790 ha vs 1,998,304 ha). Likewise, BA100 and BAL also diminished towards nowadays. The
decline is also patent in F, though moderate compared with BA. The only feature that has experienced an
increase in figures is FW, augmenting from 31,598 to 50,167 fires burning during winter.

Table 1. Comparison of fire activity between current and past conditions. F: fire frequency, FW: number winter
frequency, BA: burned area, BA100: butned area by large fires, and BAL: natural burned atea.

F FW BA (ha) BA100 (ha) BAL (ha)
Past 117,463 31,598 4,106,790 2838328 288,149
Current 111,605 50,167 1,098,304  1,185599 110,645

3.2. Observed clusters and transitions

Fire features belonging to the current period were submitted to PCA as a preliminary step towards the
cluster analysis. We retained the three first components, which gathered around 98% of the total variance.
The first component (PC1, 58% of the variance) relates to intense human-caused fire incidence, correlating
with all features apart from burned area from natural fires. The second (PC2, 25% variance) mostly
correlated with BL and to some extent with BA100. Noticeably, the loadings of number of fires and winter
fires were negative, thus suggesting PC2 related to rare, large and natural-caused fire events during summer.
The third and last component (PC3, 15% variance), also correlated with natural fires but in this case smaller

and most frequent events (negative correlation with BA100 and positive with F).

3.2.1. Fire regime typologies

Cluster analysis produced five fire regime types (Fig. 4 and Table 2). The KNN classification yielded a good
agreement with an average accuracy of 93.3%. To facilitate the interpretation of the results, clusters were
ranked from 1 to 5 according to their hazardousness. Overall, we considered that clusters leading to
increased burned area or fire frequency, or pointing towards the increased of human influence as more
dangerous and vice versa. Cluster 1 gathered areas with low fire activity. Cluster 2 grouped medium-sized
wildfires with fair contribution of lightning-caused fires. Cluster 3 collected medium-sized fires, but with
fair contribution of human-caused fires. Large fires with frequent lightning fires characterized cluster 4. The
last cluster depicted the greatest fire incidence (fire frequency and burned area) and large fire occurrence,
with a large fraction of winter fires.

Low-to-moderate fire activity typologies (clusters 1 and 2) were the most frequently observed (48.8% and
62.0 % of cells, past and current respectively). The spatial footprint of theses clusters extended over the
hinterlands (Fig. 4), although towards the current period it has progressed towards the Mediterranean coast.
Intermediate fire regime (cluster 3) was more frequent under current conditions (17.1%) than in the past
(10.4%). Clusters showing the highest fire incidence (clusters 4 and 5) covered 20.9% of the fire-affected
territory, decreasing from a 40.9% in the past. Fire regime 4 was observed both in the northwestern end
and the Mediterranean coast in the past, being only observed in small enclaves in these same regions in the
current period. Fire regime 5 was detected also in the northwest under past conditions and some sparse
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locations within the hinterlands. Nowadays, it is only observed along the northern coast, progressing from
cluster 4.

Table 2. Summary of characteristics of fire regime typologies. I': fire frequency, FW: winter frequency, BA: burned
area, BA100: large burned area, and BAL: natural burned area. Bold numbers indicate average values whereas median

appear in italics.
PAST

Cluster ID  Cells % F FW BA BA100 BAL
1 989 299 0.02-0.01 0.00-0.00 0.28-0.09 0.08-0.00 0.00-0.00
2 624 189 0.04-0.04 0.01-0.00 1.45-1.27 1.06-0.87 0.09-0.01
3 344 104 0.07-0.06 0.03-0.02 0.68-0.47 0.04-0.00 0.02-0.00
4 863  26.1 0.24-0.15 0.05-0.03 14.09-9.61 11.16-6.96 1.26-0.07
5 488  14.8 0.37-0.20 0.12-0.06 5.94-2.71 2.17-0.44 0.03-0.00

CURRENT

Cluster ID  Cells % F FW BA BA100 BAL
1 1,657  50.1 0.01-0.07 0.00-0.00 0.13-0.02 0.03-0.00 0.00-0.00
2 393 119 0.04-0.03 0.01-0.00 1.18-7.00 0.87-0.69 0.12-0.07
3 566 171 0.08-0.06 0.03-0.02 0.50-0.35 0.04-0.00 0.01-0.00
4 322 9.7 0.23-0.12 0.09-0.04 12.05-6.9 9.93-5.58 1.12-0.03
5 370 11.2 0.78-0.55 0.40-0.23 8.37-6.03 2.98-1.43 0.06-0.00

Past fire regime (1974-1994) Current fire regime (1995-2015)
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ClusteriD W 1 2 3 4 B 5
MEAN F MEAN FW MEAN BA MEAN BA100 MEAN BAL
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3 4 5 1 2 3 4 1 2 3 4

Fig. 4. Top: spatial distribution of clusters in the two periods. Bottom: distribution of current fire features per cluster (values
were log-transformed to enhance visualization). F: number of fires; FW: number of fires during autumn-winter season; BA:
overall burned area; BA100: burned area from large fires (>100 ha), and BAL.: burned area from natural-caused fires.
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3.2.2. Fire regime transitions

Fig. 5 and Table 3 summarize the most frequent fire regime transitions (CT) and their spatial distribution.
Our findings revealed that lower fire activity (type 1) progressed across the hinterlands towards the
Mediterranean (959 cells out of 3,308). Medium-sized fires associated with lightning fires (type 2) were
confined to the hinterlands in the past. Although its spatial extent shrank over time, this regime shifted
towards the Mediterranean coast over time (119 cells). Intermediate fire regime (type 3) dominated the
northeastern fagade along the Pyrenees in the past. Currently, this typology of fire regime progressed from
higher order types (4 and 5) across the territory, especially in the northwestern end and the Mediterranean
coast. However, the sparse enclaves of type 3 within the hinterlands have usually transitioned from lower
activity (type 1 and type 2) in the past. Large and natural fires (type 4) were most frequent in the past,
covering vast regions in the Northwest, the western half of the hinterlands and most of the Mediterranean
coast. However, their extent has greatly declined towards present, mostly replaced by low activity. Finally,
regimes associated with large incidence of fires in fall-winter (type 5) was scatter over small clusters in the
northwestern region, the hinterlands and a small enclave in the Mediterranean. However, it only persists in

the northern coast, reaching a vast and continuous coverage in the current period.

In general, the decline in fire activity was the most common pathway over time (2-1: 364 cells past-current,
but also 4-1: 242 cells), perhaps being stronger in the Mediterranean area. Nonetheless, we have found
some CTs exhibiting a major increase in fire activity (dark orange cells from Table 3), we consider them
non-significant due to their low number of cells (less than 40). Finally, the most stable typologies were the
1 and 4 (698 and 200 cells, respectively). These fire regimes more persistent are located mainly in the
Northwest region and scattered over numerous mountainous areas of the hinterland (Fig. 5 - top).
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Fig. 5. Frequency histograms (number of cells) of current and past fire regimes (top-left), stable trajectories (top-
right), and transitions (bottom).
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Fig. 6. Top: fire regime transitions between past and current conditions. Bottom: summary of main trajectories across
the study region.
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Table 3. Transition matrix between past-current clusters. The most frequent CT were highlighted in bold. In colot
each degree of CT (major decrease: dark green, minor decrease: light green, minor increase: orange, winter
progression: red). The grey cells correspond to the non-change of clusters. Bold indicates those trajectoties evaluated
by RF modeling.

Past

112 (12.9%) 152 (17.6%) 200 (23.2%) 863 (100%)
19 3.9%) 51 (10.5%) 175 (35.9%) | 488 (100%)
Total [ 1657 (50.1%) 393 (11.8%) 566 (17.1%) 322 (9.7%) 370 (11.2%) | 3308 (100%)

Current
1 2 3 4 5 Total
11 698 (70.6%) 119 (12%) 125 (12.6%) 989 (100%)
2| 364 (58.3%) 105 (16.8%) 111 (17.8%) 624 (100%)
3| 142 (41.3%) 38 (11.0%) 127 (36.9%) 344 (100%)
4
5

3.3. Drivers of fire regime transition

Random Forest modeling provided insights into the overall contribution of wildfire drivers (Table 4). In
general, the performance of the models was satisfactory, yielding AUCs above 0.70 in most of the
transitions investigated. The change from large to low fire activity (5-1 and 4-1, Fig. B10 and Fig. B6 in
Appendix C) attained the highest AUC (0.96 and 0.90, respectively). On the contrary, we obtained modest
performances in those transitions depicting increased fire incidence (1-2: 0.59 and 2-3: 0.60).

The change in the Demographic Potential (DP) was often found as the most influencing factor, displaying
strong positive relationships in declining trajectories, though its contribution weakens in progressive
pathways. For instance, DP portrayed a ‘v-shaped’ curve in trajectories 1-3 and 1-2 (Fig. B1 and Fig. B2 —
Appendix C), corresponding to minor increments in fire incidence. Nonetheless, the increase in DP was
linked with regressive trajectories. Conversely, an inverse relationship was observed in the progression from
large fire activity during summer towards fall-winter. Thus, the incidence of wildfires in locations with
increased human presence declined whereas the loss of DP promoted human-related fires during winter.
Second in importance, we found trends in annual precipitation (P). Overall, increasing trends in P match
declining fire incidence, and decreasing P led to increments in fire activity. There were however some
exceptions to this behavior. For instance, the transition from low incidence to medium-sized natural fires
was promoted by increasing trends in precipitation (Fig. Bl in Appendix C). In turn, slope consistently
showed inverse relationships, regardless of the kind of trajectory. For instance, it promoted the change
from winter and human dominated fire regimes to low activity, which took place mostly in the plains within
the hinterlands or along the Mediterranean coast, only persisting in the northern coast, which is
characterized by complex topography. On the other hand, it influenced progressive trajectories
characterized by medium size fires strongly related to human activities (1-3 and 2-3, Fig. B2 and Fig. B4,
Appendix C). The response to elevation is rather straightforward, the higher the altitude the lower the fire
incidence and vice versa. Transitions leading to increased fire activity (1-3 and 2-3) were cleatly related to
the presence of WUIL Conversely, inverse relationships were observed either in trajectories linked to
increased fires during fall-winter (4-5, Fig. B9 Appendix C) or showing a decline in fire activity (2-1 and 4-
3, Fig. B3 and Fig. B8, Appendix C). Finally, increased WAI boundary promoted the increase in winter fire
frequency.
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Table 4. Red values =direct relationship; blue = inverse relationship; purple = v-like curve. Grey-shadowed means
no clear explanatory sense. Dark green indicates major decrease in fire activity, light green minor decrease, Dark red

major increase and orange minor increase.

Transiton DP Elev Slp T P WAI WUI AUC Description
4-1 100 0 11 45 10 6 30 090
4-2 00 5 25 10 2 0 0  0.71 From high to medium with lightning
3-1 75 55 10 50 100 70 0  0.78 From medium to low
4-3 65 0 100 80 71 25 40 0.64 From high to medium
2-1 100 24 12 15 20 O 50 0.65 From medium with lightning to low
4-5 50 15 0 25 74 100 50 0.76
2-3 50 60 60 20 40 0 100 0.60 Medium with lightning to human
1-3 80 70 100 0 70 20 65 0.72 From low to human

1-2 70 100 24 40 65 26 0 059 From low to medium with lightning
Average 79.0 354 413 315 522 252 335 0.73

4. DISCUSSION

In this work, we presented and applied a methodology to identify and spatialize fire regime typologies that
enabled further insights into the underlying drivers of its spatial-temporal dynamics. To the best of our
knowledge, this was the first attempt to incorporate the temporal perspective into fire regime zoning in
Spain, complementing the findings by Curt and Frejaville (2017) in southern France. The main novelty of
our proposal lies not only in applying the zoning scheme in two historical periods but in completing them
with regression models, deepening into the traits behind the spatial-temporal behavior of fire regime.

Cluster analysis revealed five fire regime typologies. (1) low fire activity, (2) medium-sized wildfires with fair
contribution of natural-cause, (3) medium-sized forest fires with a high weight of human-caused fires, (4)
large wildfires with a remarkable presence of lightning, and (5) the high fire incidence with noticeably winter
activity. The suggested fire regime delimitation (Fig. 4) resembled that from previous work in the same
region (Moreno and Chuvieco, 2013). Although conceptually the approaches were similar, ours
distinguished five fire regime typologies (instead of 4) and required fewer fire features.

These fire regime typologies were successfully transferred into the past using KNN classification (Kappa =
0.9), ensuring the reliability of the observed changes in fire regime. In line with previous studies about
trends in fire activity, the most common pathway led to decreased fire activity, especially along the
Mediterranean coast (Jiménez-Ruano et al., 2017; Rodrigues et al., 2013; Silva et al., 2019). In some enclaves
within the hinterlands and, most of all, in the northwestern end, the observed dynamics pointed towards
the “humanization” of fire regime while keeping the impact of fires in terms of burned area and fire size

(Fig. 5).

According to RF models, the change in DP appeared to be the strongest feature behind fire regime
dynamics, being positively related with higher likelihood of change in all decreasing transitions (Table 4).
Thus, increased DP diminished fire incidence. As population grows so does fire incidence (Costafreda-
Aumedes et al., 2017b). However, the aforementioned relationship is not necessarily true in those regions
under a total fire exclusion policy (Silva et al., 2019) and, paradoxically, there is a tipping point in population
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density (Fig. B3, Fig. B6 and Fig. B7 in Appendix C) from which likelihood of large fires declines (Syphard
etal., 2009). Indeed, human beings foster fire occurrence but under milder temperature and low wind speed
conditions most fires are controlled and extinguished during the initial attack (Duane and Brotons, 2018;
Rodrigues et al., 20192). However, increased human pressure in the WUI has been observed to foster
human-related fire progression (Fig. B2 Appendix C) in the surroundings of Madrid and Central System
Range (Romero-Calcerrada et al., 2008; Vilar del Hoyo et al., 2008). Contrary to the DP, which depicts
overall trends in population and accessibility, the WUI comprises residential settlements in contact with
forestlands. WUI may act both as a source of fire ignitions and as an accessibility corridor for firefighting
brigades enhancing fire containment (Leone et al., 2003b). This may explain the moderate increase in fire
activity but modest size of the resulting fires. Of course, we are talking in terms of average values and trends
and, evidently, large fires still happen. Noteworthy, the loss in DP in confluence with WAI boundaries,
decreased rain and no WUI explained the progression of winter fires (Table 4). We considered the
increment of fire incidence outside the main wildfire season (4-5) as the most hazardous trajectory, since it
implies the shift towards human-related fire activity and an extended wildfire season. Weather conditions
during fall-winter are unfavorable to fire incidence, but under persistent drought events, fires can still occur
and become uncontrolled (Bedia et al., 2014). We found evidence of this in the extraordinary large fire
events during 2017 when 68% of large fires (>500 ha) started during winter (ADCIF, 2017). This peak in
forest fires in the winter season is closely related to both intentional and accidental fires linked to agricultural
activities (Moreno et al., 2014; Prestemon et al., 2012; Rodrigues et al., 2018).

Climate trends showed contrasted relationships. From a geographical point of view, the decreasing
transitions of fire incidence experiencing a rise in temperature are widespread in the hinterlands and along
the Mediterranean coast, supporting the observed disconnection between fire weather danger and fire
incidence due to fire suppression (Jiménez-Ruano et al., 2019). On the other hand, the transitions of
increased weather hazardousness overlapped the mountainous areas in the northern plateau, which showed
growing fire activity due to intensified fire prone conditions in densely vegetated areas (Castedo-Dorado et
al,, 2011; Vazquez and Moreno, 1998). In turn, the increase in precipitation connected with downward
trends in fire activity. Abundant rainfall means higher fuel moisture content which ultimately constrains the
spread of wildfires (Argafaraz et al., 2018). By contrast, inverse associations, i.e. decreasing trends in
precipitation matched both winter progression and minor raise in fire incidence in the northwest (de Luis
etal.,, 2010; Paredes et al., 2006). Finally, elevation and slope displayed a negative link with fire activity, thus
low and flat lands experienced increased fire incidence (Gonzalez and Pukkala, 2007; Viedma et al., 2018).
In fact, this pattern matched the distribution of urban settlements in Spain, which proliferated in coastal
zones and lowlands preferably.

From a managerial and policymaking perspective, our findings may provide valuable guidance and
recommendations. For instance, those regions where a drastic decrease in fire activity was observed
(transitions from types 4 and 5 to 1) are more likely to experience a gradual increase in fuel loads and
continuity. Likewise, cropland abandonment and the decline of extensive livestock envisage larger fires in
the future (Pausas and Paula, 2012). To some extent, the current suppression policy seems to be
counterbalancing this effect but it might become override under an scenario of increased fire weather
danger exceeding the suppression capacity (Fernandes et al., 2014; Jolly et al., 2015; Turco et al., 2018). On
the other hand, the advance in fire activity in some locations highlights the necessity of improving fire
management. For example, more attention must be paid to the autumn-winter wildfire season in
forthcoming years, to a point of even redefining the timing of the fire seasons as suggested by Costafreda-
Aumedes et al. (2018). In summary, the role played by the driving factors is strongly valuable for forest fire
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planning and management, and should be used to help budget allocation and contribute to the design of
extinction and prevention plans (i.e., prescribed burning, fuel cleansing...).

5. CONCLUSIONS

In this work, we proposed the first attempt to outline fire regime regions incorporating a temporal
perspective in Spain. We explored historical past (1974-1994) and current (1995-2015) fire activity (retaining
only the fires burning more than 1 hectare), engaging zoning schemes with exploratory regression analysis.

We identified and characterized five fire regime typologies depicting (1) low fire activity, (2) medium-sized
wildfires with fair contribution of natural-cause, (3) medium-sized forest fires with a high weight of human-
caused fires, (4) large wildfires with a remarkable presence of lightning, and (5) the high fire incidence with
noticeably winter activity. These five typologies were spatialized in the two aforementioned periods to
ascertain the most frequent trajectories of fire regime change. Overall, declining transitions (i.e., conducive
to lower fire activity) were the most common pathways, covering a remarkable extension. However, fire
regimes associated with winter activity have advanced in the Northwest and persisted along the northern
coast.

Our results revealed the link between drivers of wildfire and the observed dynamics. Demographic potential
appears as the main factor involved in most transitions, followed by climate trends. The wildland interfaces
(WAI and WUI) displayed a direct association with increasing transitions (including winter progression)
and inverse in the declining ones.

Finally, from a managerial perspective, our findings may help to identify regions that may experience fuel
accumulation, targeting them as priority interventions areas to decrease the chances of large fires in the
coming years.

Finally, from a managerial perspective, our findings may help to identify regions that may experience fuel
accumulation, targeting them as priority interventions areas to decrease the chances of large fires in the
coming years.
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Abstract

The current research belongs to a series of two manuscripts aiming at describing spatial-temporal dynamics
of fire regime and its drivers in Spain. In this work, we present the first attempt to produce a spatial-
temporal delimitation of homogeneous fire regime zones in Spain providing insights into the near future.
The analyses were based on historical fire records; leveraging autoregressive ARIMA models to project fire
features into the near future. We evaluated the spatial extent of homogenous fire regime zones in three
different periods: past (1974-1994), current (1995-2015) and future (2016-2036). To do so, we applied
Principal Component Analysis (PCA) and Ward’s hierarchical clustering to identify zones of fire regime on
the basis of the spatial and temporal arrangement of their main fire features: number of fires, burned area,
burnt area from natural-caused fires, incidence of large fires (> 100 ha) and seasonality. Clusters of fire
regime were trained in the current period, being later projected into the past and future periods using of k-
Nearest Neighbor classification.

ARIMA modeling forecasted a shrinkage in all fire features except natural-caused fires that remained stable.
Overall, we detected a transition from significant fire incidence in the past towards a situation with moderate
impact of fires in the near future. The Mediterranean coast experienced the largest decline in fire activity
with few locations maintaining the historical levels of occurrence of large fires. On the other hand, the
Northwestern end of Spain depicted a progression towards winter fire activity while still linked to large
fires. This pattern persisted in the near future along the northern coast, whereas an intermix of minor fire
progression and regression was expected thorough the hinterlands and the Mediterranean.

Keywords: Forest fires, fire regime, fire features, ARIMA, future projection, suppression policy
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1. INTRODUCTION

Forest fire management and prevention have gained attention over the years, being currently under the
spotlight due to the uncertain effects of climate and socioeconomic changes. Expenditures in fire
suppression and prevention are increasing globally, especially in fire-prone developed countries where a
total fire exclusion policy is often implemented (Stephens et al., 2014). For instance, the US Federal Land
Management bureau spent more than 2 billion § in fire management during 2015 (Doerr and Santin, 2016).
The annual budget in firefighting in the European Union raises to approximately 2.2 billion € (Faivre et al.,
2018). In the case of Spain, one of the most fire affected countries within the European Mediterranean
region currently ranking second in fire incidence only after Portugal (San-Miguel-Ayanz et al., 2017), fire
suppression and prevention have been increasingly funded up to circa 78 million € in 2015 (MAPAMA,
2017). Therefore, it seems clear that firefighting agencies envisage a worsening fire danger scenario in the
future, with more hazardous weather conditions increasingly threating human and environmental assets
(Alcasena et al., 2019; Badia et al., 2011). For instance, fire incidence seems to be increasing in the
Scandinavian countries. In 2018 this region experienced the warmest fire season within the recording
period, which undoubtedly contributed to boost fire spread and overcome the extinction capacity (Martin
Ruiz de Gordejuela and Puglisi, 2018). However, outside these exceptional cases, the current situation in
those regions and countries historically affected by recurrent fires tells otherwise. In the Mediterranean
Europe the observed number of fires and burned area is decreasing (Turco et al., 20106). At the same time,
a remarkable decline in global fire-related emissions since 1930s is reported reaching the minimum in 2013
(Arora and Melton, 2018; Van Der Werf et al., 2017). One of the main reasons behind this trend relates to
the fire exclusion policy, i.e., suppressing all wildfires in a region (Smith, 2000). Such policy considers
wildfires as a negative hazard and consequently they must be suppressed by all means. Notwithstanding
some authors believe the persistence of such policy will lead to increased large fire activity in the long-run
due to substantial fuel accumulation (the so-called ‘fire paradox’, Otero and Nielsen 2017; Regos et al.,
2014; Westerling, 2016) in conjunction with drier and warmer conditions (Chaparro et al., 2016; Ruffault et
al., 2017; Turco et al., 2017). At the same time, questions about its sustainability are starting to raise (Curt
and Frejaville, 2018).

Projections of fire incidence into the future have been extensively addressed in the literature. They were
usually conducted according to climate change scenarios mostly based on General Circulation Models
(GCM) coupled to IPCC’s emissions scenarios or Regional Climate Models (RCM). Conversely to the
observed trend (overall decrease in fire incidence) most works leveraging climate models envisage increased
fire activity through the XXI century. Without being exhaustive, an increment in burnt area was reported
in Portugal (DaCamara et al., 2014), Canada (Hope et al., 2016), California (Westerling et al., 2011) or the
Iberian Peninsula (Sousa et al., 2015); gross fire activity was expected to augment in Canada (Boulanger et
al., 2013; Wang et al., 2015), Northeast China (Liu et al., 2012), Finland (Kilpeldinen et al., 2010). Similarly,
some works foresee a global (Liu et al., 2010) or regional (Jolly et al., 2015; Moriondo et al., 2006; Wotton
etal., 2017) raise in fire weather danger. Some studies point out diverse tendencies depending on the global
regions (Krawchuk et al., 2009; Pechony and Shindell, 2010), or even opposite trends with increasing
frequency and a stability or slight decrease in burnt area in the Northeast of Spain (Turco et al., 2014).
Although the goal of this work is not criticize climate-based approaches, they mainly address long-term
trends while often disregard suppression efforts in their prediction. Moreover, several authors have pointed
out the bias found between GCM’s simulations and observations (Maraun, 2012). Differences in
precipitation and surface temperature between the present and future climates indicate that present-climate

biases are systematically propagated into future-climate projections at regional scales (Liang et al., 2008). In
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the particular case of Spain, the correlation between fire weather danger and fire incidence has been found
to be rather weak, with weather controlling the seasonal patterns but exerting limited influence in the
observed trends (Jiménez-Ruano et al., 2019). In this sense, suppression-related features such as the time
elapsed until fire brigades reach the fire site or the scattering of suppression media during simultaneous fire
events control the success of the initial attack whereas fire weather relates to sporadic large fire events
(Connor et al, 2017, Duane and Brotons, 2018; Rodrigues et al., 2019a). Accordingly, we propose
decoupling the temporal behavior of fire activity from other covariates (either climate or human related) to
explore the near future evolution of wildfire features under the premise that their temporal behavior already
integrates the influence of their underlying drivers. By doing so, we assume that weather conditions and
human influence in wildfire activity would remain ‘stable’, i.e., they follow the same evolving trajectory and
exert the same influence observed from past to current conditions as described in (Rodrigues et al.,
"Unpublished results", further referred to as 'Part 1").

Among the few modeling techniques that allow to forecast time series of data, the most well-known and
widespread are the Auto-Regressive Integrated Moving Average (ARIMA) models. ARIMA only requires
a univariate time series to forecast its future evolution, although versions that are more sophisticated allow
incorporating additional covariates. ARIMA models are best known for its performance in economics and
marketing (Loi and Ng, 2018; Matyjaszek et al., 2019), but also, environmental studies, such as vegetation
dynamics (Jiang et al., 2010) or climate change (Afrifa-Yamoah, 2015). There are also experiences of
ARIMA modeling in wildfire science. In North-America, Preisler and Westerling (2007) employed ARIMA
to forecast temperature 1-month ahead to evaluate fire danger whereas Miller and Safford (2012) explored
trends in large high severity fires. In Spain, Boubeta et al. (2016) applied ARMA (ARIMA without the
integrated component) to predict weekly burnt area in Galicia. However, to the best of our knowledge there
was no experience assessing the mid-to-long term evolution of fire regime features using ARIMA or any
other autoregressive technique, at least in Spain.

In this work, we developed and exemplified a framework to identify and outline fire regime regions over
time. The proposed approach included for the first time a near-future prospective based on the ongoing
evolution of fire regime features. In the case of Spain, fire regime zoning experiences are scarce, finding
some examples in Jiménez-Ruano et al. (2018), Montiel Molina and Galiana-Martin (2016) and Moreno and
Chuvieco (2013). Nevertheless, these works provide a stationary picture of fire regimes without taking into
account their temporal evolution. But fire incidence is non-stationary (Jiménez-Ruano et al., 2017a; Silva et
al., 2019), a feature that encourages embracing a temporal perspective in fire regime assessments. Our core
methodology allowed to identify homogenous fire regime zones in three different time periods. Past (1974-
1994) and current (1995-2015) situations were addressed using historical fire records from the Spanish fire
database. A third period was set in the near-future (2016-2036) forecasted by means of ARIMA extending
from the current period. We hypothesized that the immediate evolution of fire regime would follow the
ongoing pathway, thus assuming that climatic and human drivers of fire activity (both related to ignition
and suppression) remain stable towards the near future. Our main goals were to a) outline current and past
fire regime zones, b) forecast their immediate future evolution and c) describe the most representative
spatial and temporal trajectories of fire regimes to (¢) evaluate the disruptive effects of the current fire
suppression policy.
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2. DATA AND METHODS

The proposed methodology was sequenced in three stages. First, we retrieved historical fire records in the
period 1974-2015 and organized them in two separate datasets (1974-1994 and 1995-2015). Then, we
forecasted the evolution of fire incidence in the near future (2016-20306) using ARIMA models. Finally, we
identified fire regime typologies in the current period (1995-2015) by means of cluster analysis and projected
them into the past (1974-1994) and near future (2016-2036) using K-Nearest Neighbor (KNN)
classification (see Fig. 1). All statistical procedures and plots were developed using the R statistical
programming language (R Core Team and R Development Team Core, 2017), packages forecast and stats for
future predictions, NbClust for cluster analysis, knnGarden for past and future cluster assignation,
splitstackshape for KINN validation and ggp/oz2 for mapping and plotting. Mapping was conducted using both
R (ggplor2) and ArcGIS Desktop 10.6.
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Fig. 1. General workflow of the methodology including input data split, clustering, KNN classification-validation
and ARIMA validation from current to past and future fire features.

2.1. Study area

The region under study was mainland Spain. The region is mostly dominated by Mediterranean climate,
with Oceanic conditions covering the northern end. Mediterranean climate was characterized by high
annual thermal amplitude with hot summer in the inner region and milder conditions along the coast.
Precipitation distributed irregularly over time and space, with maximums in autumn and spring, and
minimum during summer months. The driest areas are located in the southeast region and the Ebro Valley.
On the other hand, Oceanic climate distinguishes by milder temperature all over the year and high
precipitation regularly distributed throughout the year (average values over 1,000 mm) peaking during
winter. In terms of fire occurrence, the relevance of winter fires is really notable (35.7%), especially in the
Northwest region. In turn, burned area by lightning represents a low fraction of total amount (around 6.5%)

and it is usually concentrated in some mountainous areas. The surface affected by large fires (above 100 ha)
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accounts for 66% of the overall burned area. Comparatively, Spain ranks second in fire frequency (excluding
small, i.e., fires < 1ha) among the most fire-prone countries in Mediterranean Europe (Table 1), after
Portugal and before Italy, France and Greece. In the case of total burnt area, Spain stands out as the most
fire affected, followed by Italy and Portugal.

Table 1. Number of fires and burned area (excluding fires <1 ha) per fire feature in mainland Spain for the period
1980-2016.Source: European Forest Fire Information System.

Portugal Spain France Italy Greece
Burned area 3,973,670 5,991,140 912,309 3,899,998 1,661,816
Yearly burned area 107,396 161,923 24,657 105,405 44,914
Number of fires 669,698 547,135 174,462 337,722 53,983
Yearly number of fires 18,100 14,787 4,715 9,128 1,459

2.2. Fire data

Fire data was collected and organized following the procedure described in Part 1. However, we set a
coarser grid of 30x30 km as spatial unit of analysis to warrant the ‘stability’ of future estimations via ARIMA
models (by holding a larger pool of observations within each cell). Therefore, data from 10x10 km grids
cells was aggregated into 30x30 km resolution as the sum of fire features, leading to a final set of 545 grids.
As in Part 1, we built five fire features to further explore fire regimes distribution and evolution.

¢ Fire frequency (F): total number of wildfires per grid, month and period.
¢ Burned area (BA): total surface burned in hectares of the grid, month and period.
¢ Burned area by nature cause (BAL): surface burned by lightning in the grid, month and period.

¢ Burned area by large fires (BA100): burned area by fires greater than 100 hectares by the grid,
month and period.

e Winter frequency (FW): number of wildfires occurred during autumn-winter (from October to
March) by the grid, month and period.

2.3. Forecasting future fire regime features

As step further from Part 1, we applied auto-regressive models to forecast fire features into the near future.
The targeted period was set at 2016-2036, extending twenty years beyond the historical period. This
prospection assumes a continuant scenatio in which the drivers controlling fire activity keep evolving
following the same pathway observed between past and current conditions. The working premise was that
drivers of fire activity are implicitly integrated in fire features and, thus they are a reflection the drivers
themselves. To this end, we used ARIMA, a set of auto-regressive, integrated and moving average models
for time series analysis. The use if ARIMA results advantageous to achieve our goal since it allows adjusting
and forecasting models from univariate time seties of a response variable, i.e., each fire feature. ARIMA
models can be understood as a “filter’ that separates the signal from the noise, extrapolating only the signal
into the future. ARIMA models can be only applied to stationary time series, i.e. with constant in mean
and variance over time. In this work we submitted monthly time series of the aforementioned fire regime
features in the period 1995-2015 to forecast their temporal evolution into the near future. Since fire features
were known to be non-stationary (Jiménez-Ruano et al., 2017a) they were transformed using their square
root forecasting purposes, and de-transformed afterwards to return to the original scale before being

submitted to cluster analysis.
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The ARIMA model provided several outputs, the most important of which was the mean forecasted value.
Complementarily, ARIMA calculates two confidence intervals (80% and 95%), allowing setting upper and
lower limits in the prediction. As reported by Hyndman and Khandakar (2008), the mathematical
expression of the ARIMA formula is established as follows:

®(B™B(B)(1 — B™P(1 - B)y, = c + 0(B™EI(B)e,

where @ () and 0(3) ate polynomials of orders P and Q respectively, each containing no roots inside the
unit circle. If ¢# 0, there is an implied polynomial of order 4 + D in the forecast function. The main task
in automatic ARIMA forecasting is selecting an appropriate model order, that is the values p, ¢, P, O, D, d.

When d and D are known, the rest of orders are chosen by minimizing the Akaike Information Criterion
(AIC; Akaike, 1974).

Finally, we evaluated the performance of the ARIMA prediction. We calculated the Pearson’s R2 between
ARIMA mean estimations (using data from 1974 to 2004) versus historical observations during the last 10
years of available fire reports (2005-2015). The analysis was applied comparing average values on the
original 10x10 km grid and in the 30x30 km grid, to ascertain the effect of the spatial unit size, which
ultimately justifies the use of the coarser 30x20 km grid.

2.4. Modeling clusters of current fire regimes

In order to identify fire regime typologies and zones, we applied cluster analysis, training clusters in the
current period to later project them into the past and near future. We followed the procedure described in
Part 1, but replicated to the 30x30 km grid. Principal Component Analysis and hierarchical clustering were
applied to obtain fire regime typologies whereas KINN classification was used to project fire regimes into
past and future periods. Finally, we identified the most frequent cluster transitions (CT) building two
specific transition matrixes, one from past-current and another from current-future progressions.
Additionally, we mapped the spatial distribution of cluster change (either towards the future or from the
past), displaying CT categories and calculating the Canberra distance between the cell of origin (current)
and the center of the destination cluster in order to illustrate the magnitude of the change.

3. RESULTS

3.1. Evolution of the fire regime features

Taking the historical period as baseline, future fire features showed a general decrease in their total values
(Fig. 2). According to, Pearson’s R2 coefficient between forecasted and observed fire features (Fig. 3),
ARIMA predictions were reliable, capturing at least the 46% of variance (fire frequency) up to 76% in
burned area. The coefficient of determination was consistently higher in the 30x30, compared to the original
10x10 grid.

The overall decreasing trend in fire activity was also observed in the spatial disaggregation of fire features
(Fig. 4). At first glance, the spatial coverage of the highest interval in the past was greater than any other
period. In fact, the temporal evolution showed a gradual decrease in all features, more noticeably in those
related to burnt area (BA, BAL and BA100) that in the ones expressed as counts (F and FW). The spatial
pattern of the future fire features largely matches the past and current, except in BAL and BA100, where
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values were generally lower and scattered across sparse grids over the territory. The highest activity
concentrates in the Northern region, which in turn, was the most stable. The most pronounced decline in
all fire features was observed along the Mediterranean coast. One of the most striking finding was the
persistence of winter fire counts along the northern coast in the near future.

Fire frequency
60
:
a0
é lH] l (RS | L L
] il I | HlsI‘-IIlH | L |
€ 20 1,‘ | VT I Al || |
= | R ! (T _pfl Bt 11 LCRALAASUARAAAARAAL AR AL MARLRE
so l'|’|’n” ”Il]r” " l'”' 11’!}.7r{‘v1!|,|"‘.
"o ALLLCLCLACACRA LA
1681 1991 2001 2011 2021 2031
Burned area
gm
o
2300
E
§2°° \ 1 "
,gwo ] N 14000001
0 b bddd bbb g
1681 1991 2001 20m 2021 205
Natural burned area
2 300
~
|
=
€
>
= A .."""il‘:.“;"‘-‘”\4: |
’go JJULAuAuLul\JuulAl J—l AAAARMARRAAAMAAARADLML
1881 1891 2001 2011 2021 2031
Large burned area
8 o
2o
3
200
: i
= 100 (18 | [\ A (WY \ AR AAA AR A RAL
E 1 NI TR el e o b
1881 1991 2001 2011 2021 2031
Winter frequency

8

I

J_‘ AL L 4”‘_,]11;.]Il‘.nuulnuunlll
T e U U D T U rpU U e o v u o v v vt
1681 1991 2001 2011 2021 2031

Date

Total winter frequency
3 &

o

Fig. 2. Temporal evolution of fire features during the historic period (black line) and the near future (ARIMA
forecast, blue line) mean with its corresponding upper and lower limits at 80% and 95% (in dark blue and light blue,
respectively). Original values have been transformed to their square root. Red line represents the moving average.
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3.2. Spatial-temporal evolution of fire regime Zones

Fire features in the current period were submitted to PCA and cluster analysis to outline homogeneous
zones of fire activity. We selected three components from the PCA analysis, gathering up to 98% of the
variance (Table 2). The first component (67.2% of the variance) relates to overall fire activity with moderate
loads in all features, excluding natural fires, while being the sole component relating to winter fire
occurrence. Overall, this component was considered to depict the gross of human-caused fire activity. The

169



Chapter 8: Evolution and canses of fire regime change

remaining two components accounted for natural and large fires, respectively. Component 2 (21.5%
variance) positively correlated with BAL and BA100, suggesting that natural fires were somewhat linked to
large fires. Component 3 (10.5% variance), correlates positively with both large fires and overall burnt area.
Both PC2 and PC3, displayed opposed correlation between the highest ranked features (BAL and BA100,
respectively) and winter fire activity, which indicates that either natural or large fires were better linked to

summer season.

Cluster analysis yielded a total of four clusters, i.e., fire regime typologies (Fig. 5 and Table 3), one less than
those obtained in Part 1 due to the disaggregation of the intermediate fire activity cluster (type 3, Part 1)
into ‘adjacent’ clusters (types 2 and 3, Part 2). Clusters were ranked from 1 to 4 according to its
hazardousness. Cluster 1 gathered those locations with low fire activity. Cluster 2 was composed of
Medium-sized wildfires starting in summer with slight contribution of lightning-caused fires. Cluster 3
collected those cells with the greatest occurrence of large fires and natural-caused fires. The last cluster
depicts large fire occurrence and burned area, with almost no contribution of natural fires and with the
highest incidence of winter fires. In terms of spatial extent, low-to-moderate fire activity situations (clusters
1 and 2) were the most frequently observed (38% of cells each). Clusters depicting high fire activity (clusters
3 and 4) accounted for 24% of the cells together.

Table 3. Summary of cluster description. F: fire frequency, FW: winter frequency, BA: burned area, BA100: large
burned area, and BAL: natural burned area. Bold numbers indicate average values whereas median appears in italics.

ClusterID Cells % F FW BA (ha) BA100 (ha) BAL (ha)

1 205 37.6 0.10-0.06 0.03-0.01 0.96-0.39 0.33-0.00 0.03-0.00

2 208 382 0.27-0.19 0.08-0.05 5.09-3.83 3.30-2.23 0.31-0.06

3 80 147 1.25-0.61 0.51-0.15 43.48-31.52 32.61-26.56 4.42-2.46

4 52 9.5 5.14-4.63 2.63-1.92 61.45-44.01 25.81-11.53 0.29-0.09
1.Past (1974-1994) 2.Current (1995-2015) 2 Future (2016-2036)
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Fig. 5. Top: spatial distribution of clusters in the three periods. Bottom: distribution of fire features per cluster (values

4 4 1 2 3 4 i 2 3

were log-transformed to enhance visualization). F: number of fires; FW: number of fires during autumn-winter
season; BA: overall burned area; BA100: burned area from large fires (>100 ha); and BAL: burned area from natural-
caused fires.
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Fig. 6 and Table 4 summarize the observed cluster transitions and their spatial distribution across petiods.
The KNN classification yielded a good agreement with an average accuracy of 89.6% and a Kappa
coefficient around 0.80 (Altman, 1991). Lower fire activity (cluster 1) advanced across the hinterlands
towards the Mediterranean from past to future (110 cells in past-current and 176 current-future, out of
545). Medium-sized fires (cluster 2) were confined to the hinterlands during the past, progressing over the
Mediterranean coast in the current period (62 cells). In the future, its footprint was predicted to reach some
areas of Galicia transitioning from cluster 3 to 2 (36 cells). Large and natural fires (cluster 3) were the most
frequent situation in the past, covering vast regions in the Northwest, the western hinterlands and most of
the Mediterranean coast. However, its extent has greatly declined towards present, mostly replaced by
medium-sized and natural fires. This typology was envisaged to be the least frequent in the near future,
confined to some locations in the Northwest and small enclaves within the Mediterranean and the Central
Mountain Range. Finally, cluster 4 covered mainly the northwestern area, reaching its largest extension in
the current period. We foresaw the persistence of this situation along the northern Cantabrian cornice, and
sparsely located in a small number of cells along the border with Portugal.

Overall, low fire activity gained importance over time (2-1: 80 cells past-current and 147 cells current-future,
but also 3-1: 30 cells and 29 cells). Natural fires were expected to decrease in size (3-2: 62 cells in past-
current and 36 cells in current-future), but at the same time they showed a modest increase in overall area
during the next twenty years (2-3 with 14 cells past-current and 5 cells in current-future). On the other hand,
regions experiencing a minor increase in fire activity will be likely in the future (1-2: 64 cells) with a moderate
enlargement of fire size during summer in the hinterlands. In turn, the highest fire activity (cluster 4) was
envisaged to persist along the northern coast (27 cells), though some spots will transition towards decreased
fire incidence in the future (4-2: 16 cells). Pathways leading to increased winter fires (leading to cluster 4)
were commonly observed in past-current transitions, but less frequent in current-future. Conversely,
naturalization of fire cause (4-2 and 4-3) were expected more often in the current-future transition. Finally,
the most stable fire regimes were clusters 2 and 1 from past to current and cluster 1 in transitions into the

near future.

Past to Current Transition Current to Future Transition

Distance (] 1 ® 3 [ ) 5

® Major decrease Minor decrease Minor increase @ Winter progression No change

Fig. 6. Cluster transitions (CT) more frequent and magnitude of change (in Canberra distance) between current
clusters and past-future fire features.
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Table 4. Transition matrixes between past-current and current-future clusters. The most frequent CT were
highlighted in bold. Color depicts overall trajectories. Major decrease: dark green; minor decrease: light green;

minor increase: orange; winter progression: red). The grey cells correspond to no-change.

Current Future
1 2 3 4 Total 1 2 3 4 Total
L 95 29 2 0 126 . 141 64 0 0 205
754%  23% 1.6% 0% 100% 68.8%  31.2% 0% 0% 100%
) 113 14 2 209 ) 560 5 . 8 208
541%  67% @ 0.9%  100% = O 0% 100%

(<]

3 2 62 60 171 S s 36 12 80
e 363%  351% 100% 45% 15% 100%
. 0 4 4 31 39 A 6 16 3 27 52
0% 102%  102%  795%  100% 115% = 30.8%  58%  519%  100%
Total 205 208 80 52 545 ol | 323 172 20 30 545
37.6%  382%  147%  95%  100% ol | 5930  315%  37%  55%  100%

4. DISCUSSION

In this work, we conducted the multitemporal outline of homogeneous fire regime typologies and zones in
mainland Spain to a) outline fire regime zones for past and current periods, b) predict their immediate future
evolution, and c¢) analyze the main transitions in terms of spatial and temporal patterns. We aimed at
improving the identification and definition of fire regimes in Spain, as well as providing insights into the
effects the current of fire suppression policy. A better knowledge of the fire regimes involves not only
assessing their geographical distributions but considering a temporal framework able to reflect ongoing
changes resulting from policy and managerial practices. To the best of our knowledge, this, and the
complementary work from Part 1, were the first attempts to investigate spatially explicit temporal dynamics
of fire regimes exploring the near future evolution.

Same as in Part 1, the methodological approach sufficed to capture the spatial (cluster plus KINN) and
temporal (ARIMA) patterns of fire regimes (Kappa = 0.8). In turn, ARIMA faithfully outlined both the
temporal and geographical arrangement of fire features, yielding a good predictive performance (R” ranging
from 0.48 to 0.76). However, the size of the spatial unit of analysis had to be downgraded to ensure the
consistency of ARIMA projections (Fig. 3). Fire regime typologies remained mostly equal, although the
number of fire regimes reduced to 4 due to the disaggregation of human-related intermediate activity (type
3 in Part 1). Nonetheless, the nature of the remaining regimes was consistent with Part 1 (see Fig. 3 Part 1
and Fig. 5 Part 2).

ARIMA modeling anticipated a generalized drop in all fire features (A. Jiménez-Ruano et al., 2017a; M.
Rodrigues et al., 2013; San-Miguel-Ayanz et al., 2017; Silva et al., 2019; Turco et al., 2016). Silva et al. (2019)
reported a decline in burned area as a direct effect of the intensification of fire suppression, promoting the
rebound of forest area (i.e., fuel accumulation) as a side effect. It is well known that fire suppression in
Spain (and most countries in the European Mediterranean region) has been overemphasized since the mid-
90s, as a result of an extraordinary fire wave (Badia et al., 2002). Our findings were consistent with the
overall decrease forecasted in fire incidence, particularly patent in features depicting burned area size (A.
Jiménez-Ruano et al., 2017a; Turco et al., 2016).
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Of course, the change in fire regime was not expected to be spatially stationary, nor was it between historical
periods (past to current) neither towards the near future. During the historical petiod, we observed a pattern
very similar to that from Part 1, with a generalized drop in fire activity in the hinterlands and the
Mediterranean coast, the most densely populated area of Spain. Since the mid-90s, suppression and
prevention have been increasingly funded (MAGRAMA, 2012) aiming at protecting human assets often
located within the wildland-urban interface (Alcasena et al., 2019). The WUI region is often considered a
priority protection target due to the increased presence of people and housing (Darques, 2015; Salis et al.,
2014). Due to its specificities, the WUI acts both as a source of potential fire ignitions from increased
pressure on wildlands (Leone et al., 2003b) but at the same time it facilitates accessibility to firefighting
brigades, thus enhancing fire containment. For instance, the most frequent transitions where those coming
from fire regimes dominated by large fires with fair contribution of natural-caused fires towards medium-
sized fires (3-2) or even low fire activity (1-2), especially in the Mediterranean. On the other hand, a
progression towards anthropogenic fires was detected in Galicia (Northwest end of Spain). The most
prominent change in that zone followed the path from fire regime 3 to regime 4, i.e., from large and natural
fires towards increased fire counts, overall burnt area and increasingly hazardous winter season. This
transition is most likely related to accidental fires associated agricultural labors (Moreno et al., 2014;
Prestemon et al., 2012; Rodrigues et al., 2018). From a fire regime perspective, we considered the transition
3-4’ as a progressive (worsening) one given the increased impact of human-caused fires. The foretold
pattern of transition towards the near future resembles the historical one, with decreased fires, especially
along the Mediterranean. The Northwestern region, known as the area with highest fire activity within
Spain, is likely to experience a shift towards more frequent intermediate-size fires during summer. The sole
exception appears in the Northern coast, which was expected to maintain similar fire regimes in the future,
with persistent winter fire activity (Gonzalez-Olabarria et al.,, 2015; Rodrigues et al., 2018), suggesting
increasing role of human activities (Turco et al., 2018).

Despite the overall observed and expected decrease in fire incidence we do not intend to be indulgent nor
minimize the impact of the fire hazard phenomena. The observed patterns and trends would most likely
involve several undesired effects. A wide fraction of wildfire managers and practitioners warn about the
unforeseen consequences of a sustained total fire exclusion policy. The main side effect relates to fuel
accumulation, particularly in abandoned agricultural lands (Pausas and Paula, 2012) but also in those zones
in which the natural fire regime was disrupted (Fréjaville and Curt, 2017), thus consistently excluded from
burning (Piniol et al., 2005). The progression of forested lands coupled to more hazardous climate, envisaged
by most long-term climate projections (Vicente-Serrano et al., 2014), may eventually lead to a raise in the
frequency devastating and severe fires (Costa et al., 2011; San-Miguel-Ayanz et al., 2013) potentially
threatening forest resilience (Stevens-Rumann et al., 2018). In a context of increasing funding of firefighting
means, a shift towards a more proactive management of fuels is recommended. Forest management is
becoming increasingly linked to fire management, progressively integrating prescribed burns or fuel control
into management strategies. Our findings may serve as guideline to identify ‘fire-excluded’ regions, i.ec.,
those areas displaying the most pronounced declining trajectories that would eventually lead to increased
fuel loads. The careful inspection of observed (past-current) and predicted (current-future) changes in fire
regimes can be very informative to further analyze the relative role of fire drivers (land use, climate,
vegetation and topography) and their complex interplay (Morgan et al., 2001b).

However, our proposal has some limitations that must be cleatly stated. The spatial unit of analysis was
rather coarse after downgrading from the original 10x10 km resolution. Despite it sufficed to capture the
nature and distribution of fire regimes, it may preclude more in depth analyses such as explanatory
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regression models of fire regime change (similar to those from Part 1). We assumed a conservative scenatio
of evolution that projects the current evolution of drivers but, even though it is likely to happen, it is not
necessarily going to be case. Furthermore, we extended the observed trend until twenty years beyond the
historical period but that trend may ‘stabilize’ earlier. In that case, we might be overestimating the magnitude
of the forecasted decline.

5. CONCLUSIONS

The current research belongs to a series of two manuscripts aiming at describing spatial-temporal dynamics
of fire regime and its drivers in Spain. In this work, we proposed the first attempt to outline fire regime
zones that incorporates a temporal perspective towards the near future. We investigated three different
temporal spans. Two historical periods, i.e., past (1974-1994) and current (1995-2015), which were built
from historical fires (>1 ha), and a third located in the future (2016-2036), projected from current
observations.

We identified four fire regime typologies depicting (i) low fire activity, (ii) medium-sized wildfires starting
in summer with slight contribution of lightning-caused fires, (iii) large fires linked to natural-caused fires,
and (iv) large fire incidence linked to winter activity. These four typologies were spatialized in the three
aforementioned periods to ascertain the most frequent trajectories of fire regime change. As in Part 1,
regressive trajectories (decline in fire activity) were the most common pathway into the future, with a
significant increase of zones with low fire activity. Nonetheless, fire regimes linked to winter activity were
observed to advance in the Northwest, being expected to persist along the northern coast.

From a managerial perspective, our results allow identifying priority intervention areas that may experience
fuel accumulation, leading to more hazardous conditions and increased chances of large fires in the future.
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CHAPTER 9: TRANSLATING
FIRE REGIME ZONING
SCHEMES INTO PYROREGIONS

This chapter summarizes the final delimitation and
characterization of the pyroregions in mainland Spain, based on
the previous fire regime typologies and trajectories obtained.
Moreover, it adds the spatial overlapping of climatic,
topographical and human factors more related to fire activity to
offer a complete pyrogeographic entity. The methodology has
been based on geo-processing tools in a GIS framework.
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Abstract

The geographical delimitation of pyroregions (homogenous fire regime regions) and their temporal
evolution is an important task in forest fire research. First, it requires an adequate selection of fire features
and drivers; and second, the evolutionary dimension must be included. This article presents a collection of
geographic datasets in a map format created by GIS tools. It includes the first map of pyroregions where
fire regime trajectories over time are included. In addition, reclassified environmental (temperature-
precipitation trends, average elevation and slope) and human variables (WAI, WUI and Demographic
Potential percentage of variation) were overlapped onto the fire regime transitions. The final pyro-
geography scheme consists of 4 general pyroregions with 16 sub-regions, comprising a complete description
of fire regime in mainland Spain and the undetlying fire drivers. The novelty of this data brings the
opportunity for fire-forest management in other countries to apply a similar dataset on a national scale in
order to outline their pyroregions.

Keywords
Pyroregion, pyro-geography, fire regime, spatial modeling, Spain

1. Data

The data presented here shows the spatial distribution of the pyroregions in mainland Spain (Fig. 4), which
includes the most important fire regime trajectories detected over time. In addition, each of the
environmental-human variables is introduced in map format. Environmental factors (Fig. 1) consist of
climate dynamics, more specifically trends in the average temperature and precipitation (over the 1974-2010
period) and topographical aspects (such as average elevation and slope) which are crucial for fuel
distribution, accessibility and fire propagation potential. Finally, anthropogenic drivers are depicted by
variables related to human pressure on wildlands: wildland-urban interface (WUI, top left Fig. 2), the rate
of variation in demographic potential (DP, bottom left Fig. 2), the existence of agricultural activities close
to forested areas, and wildland-agricultural interface - (WAL top right Fig. 2).
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2. Experimental Design, Materials, and Methods

The project design was based first on the characterization of 7 environmental-human variables from
different data sources (see following subsections for more details) strongly linked to the spatial-temporal
behavior of fire regimes in Spain. These factors were selected by the Random Forest regression with the
most frequent fire regime trajectories, see Rodrigues et al. (unpublished results), for more details. In
addition, each of these environmental and human factors were reclassified into three major categories. Low-
medium-high for WAI, WUI, elevation and slope; and decreasing, stable and increasing for the climatic
trends (temperature and precipitation) and Demographic Potential (DP) rate of variation. Environmental-
human mapping was carried out by applying a forest mask to discard grids with less than 25% forest area.

2.1. Climatic factors

We extracted the climatic and topography information from different databases. For climatic variables, the
average monthly temperature was retrieved from the MOTEDAS database (Gonzalez-Hidalgo et al., 2015),
spatialized using a 10x10 km grid, which was assigned to our grid according to the nearest neighboring cells.
Next, the temperature trend was estimated by means of Sen’s slope (Sen, 1968) of the maximum (daytime)
temperature for the period 1917-2010. The average monthly temperature was retrieved from the
MOPREDAS database (Gonzalez-Hidalgo et al., 2011) and also assigned to our 10x10 km grid following
the nearest neighboring cells method. As with temperature, we calculated the Sen’s slope to obtain temporal
dynamics in rainfall for the period 1974-2010.

2.2. Topographical factors

Both elevation and slope were retrieved from the GTOPO30 1 km Digital Elevation Model (Earth
Resources Observation and Science Center/U.S, 1997). The first variable refers specifically to meters above
sea level, and the second to percentage rise elevation calculated from the elevation layer. Both variables
were resampled from the original 1 km resolution to the 10x10 km grid as the average value of all pixels
within a cell.
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Fig.1. Spatial distribution of reclassified environmental and topographical fire drivers. Top left: temperature trend,

top right: precipitation trend, bottom left: elevation, bottom right: slope

2.3. Human factors

The Corine Land Cover 1990 was used to outline both the Wildland Agricultural Interface (WAI) and
Wildland Urban Interface (WUI). The first refers to the length in meters of the boundary line between
agricultural lands and forest areas, and the second to the length in meters between urban settlements and
forest areas. On the other hand, the Demographic potential is a dimensionless variable which reflects the
demographic power as well as the ability to provide population growth in the near future (J. L. Calvo and
Pueyo, 2008). The original database was estimated at 5x5 km resolution; thus we have resampled it to 10x10

km according to the average value. The final demographic potential was expressed as the rate of change
between 1991 and 2001.
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Fig. 2. Spatial distribution of the reclassified Wildland Agricultural Interface (WALI)

2.4. Mapping pyroregions

For the construction of the pyroregions map several phases were carried out (Figure 3):

1) We gathered all the fire records from the EGIF database for the period 1974-2015, the longest
time span available when conducting this research. It is important to note that all fire events below
1-hectare were excluded from the process to avoid temporal inconsistencies, since those were only

registered systematically after 1988.

2) We split the original data into two different datasets, according to Jiménez-Ruano et al. (2017a)
and Fréjaville and Curt (2017), who found a significant change point in the evolution of fire activity
in the mid-1990s. Therefore, the periods obtained were 1974-1994 and 1995-2015 (from now on

referred to as past and current).
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Figure 3. Workflow of the mapping pyroregion process.

3) For each dataset, we extracted information on the number of fires, burned area, natural fires, large
fires (burnt area over 100 hectares) and fires occurring during winter (October to March). Finally,
from this data we computed five fire features on a 10x10 km grid level: fire frequency (F), winter
frequency (FW), burned area (BA), burned area by large fires (BA100) and burned area by natural
cause (BAL).

4) Cluster analysis produced five fire regime types on a 10x10 km grid and four typologies on a 30x30
km grid. We finally decided to focus on the coarser spatial unit (30x30 km) in order to outline the
main fire regime types, thus using 4 typologies of fire regime transitions. These four categories of fire
regime trajectory are ranked according to the danger they pose.
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5) A transition table related the different grids from the 4 fire regime types between past and current
periods obtained a total of 8 final fire regime transition zones (1, 2, 3 and 4) and their corresponding
stable ones (1-1, 2-2, 3-3 and 4-4) for the whole period (1974-2015).

6) The last step was obtaining the final delimitation of pyroregions by geo-processing tools in a GIS
framework. The main task was the spatial overlapping between the 8 final fire regime transition zones

with respect to the 7 environmental-human factors.

1.1. General and sub-pyroregions

The scheme of pyroregions was designed using two hierarchical levels and defining general regions
according to overall transition paths reported by Rodrigues et al. (unpublished results) and Jiménez-Ruano
et al (unpublished results), later dividing them into minor subregions characterized by local drivers and
conditions (Figure 4).

A geographical and toponymical description, with its specific fire regime description coupled with the
contribution of environmental-human fire drivers is provided for each subregion. As a result, we obtained
a total of 4 general pyroregions and 16 sub-pyroregions characterizing the fire regime in mainland Spain. A
detailed description of each of these pyroregions and sub-regions is given below, beginning with a
description of the general regions in terms of the geographical context within mainland Spain, and
concluding with a presentation of the overall trajectory of fire activity and the characterization of the most
influential fire drivers.

(1) Northwest Atlantic. This general pyroregion is located in the Northwest, Cantabrian Cornice and the
west of the provinces of Leén and Zamora and is divided into 4 different sub-pyroregions.

1.1. Atantic Galicia: This pyroregion is located in the western half of Galicia and province of

Ourense. It is characterized by an intensified and persistent winter fire regime. In terms of the fire
drivers, the region presents a medium-high WAI, a low WUI, a generalized decrease in the DP —
although stable in the low estuaries-, a stable temperature but with a south-north gradient from a
decreasing to increasing precipitation tendency. Finally, elevation is generally low, but there are
medium altitudes in the province of Ourense with low-medium slopes across the whole region.

1.2. Cantabrian Cornice: This covers the north face of the Cantabrian Range, more specifically the

Autonomous Communities of Asturias and Cantabria. It is notable for its strong trajectory towards
winter fire activity and maintaining that progression over time. In terms of fire drivers, it has the
longest WAI in northern Spain, a low WUIL a general decrease in DP, although some are stable on
the Cantabrian coast. Climatic trends show stability for temperature and precipitation, but in
Cantabria, a general decrease in rainfall is found. Finally, this region has an elevation gradient from
flat coastal areas to the high altitudes of the Cantabrian Range, resulting in a generally rugged

landscape.

1.3. Le6n and Zamora: This sub-region is located in the western half of the inland provinces of Le6n
and Zamora, as well in the south-eastern corner of Lugo. It can be considered as a transition region
between purely Atlantic and Mediterranean conditions. For this reason, it has mixed fire activity
trajectories, although the persistence and tendency towards minor increases in forest fires is especially
noticeable. From the point of view of the driving factors, it displays a general low-medium WAI an
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overall low WUI (although with medium areas in LLe6n), and a decline in DP. Temperature is generally
stable with some areas of increases in the western mountain ranges. Rainfall presents a similar picture,
although with more and larger areas of increases. Finally, it is a region characterized by its medium
elevations and high areas in the province of Ledn, so that the latter has a slope gradient ranging from
the flattest areas in the east to the steepest in the west.

1.4. Northeast Galicia: This region mainly covers the province of Lugo and the east of A Corufia. It

is characterized by an overall minor decrease in fire activity. Drivers in this region exhibit a medium-
high WAI, low WUI, a general decline in the DP, increases and stable trends both in temperature
and precipitation. It is a flat region with both low and medium slopes.

(2) Inner Mediterranean. This upper pyroregion has the most extensive surface area, occupying most of
the mainland hinterland. It is composed of a total of 6 sub-pyroregions.

2.1. North plateau and Basque Country: This sub-pyroregion is located in the north plateau, the

Basque Country, western half of Ia Rioja and northwest of Navarre. In general, it shows a minor
decrease in fire activity. With human drivers, high WAI can be found in the Basque Country, many
areas of Salamanca, the north of Palencia and scattered over the province of Burgos, a medium
agricultural interface occupies the remaining territory as well as the low WAI in mountainous regions.
Demographic potential shows both stability (flat areas) and decreases (mountainous regions and
western Salamanca). In terms of climatic trends, stable temperatures dominate the region with a few
increasing enclaves (southwest Salamanca and north Burgos). The precipitation trend is stable in most
of the region, although a noticeable decrease is found in the Basque Country and La Rioja, as well as
a notable increase in an area in north Palencia. Finally, medium elevation and low slopes dominate
this unit, but also high altitudes and steep slopes in the Cantabrian Range and the northwest of the
Iberian Range. In turn, low areas are located in Basque Country.

2.2. Ebro valley, Pre-Pyrenees and Lleida plain-highlands: This region mainly covers the Ebro basin,

specifically the provinces of Zaragoza, south of Navarre, most of Huesca, northeast of Teruel and
the flat Pyrenean regions of Lleida. It is characterized by an overall decrease in fire activity, although
it has scattered enclaves of minor increasing trajectories. Regarding human drivers, medium-high
values of WAI dominate, with low values in the mountainous areas. A stable DP is the main category,
although some falls are found in the southwest of Zaragoza and northeast of Teruel. Climate
tendencies in the region exhibit a general rise in temperature, and stability in the rest. Precipitation
trends are stable, except for part of Pyrenees of Lleida, where they are falling. Finally, the topography
gradient ranges from low, flat areas in the Ebro valley to higher, steep slopes in the Pyrenees.

2.3. Eastern of Castilla-T.a Mancha: This covers the southwest face of the Iberian Ranges, more

specifically part of the provinces of Guadalajara, Cuenca, Albacete and some inland areas of Valencia.
It is characterized by an overall minor decline in fire activity. In terms of fire drivers, WAI depicts
medium and some high values, low WUI and stable DP. In turn, stable and rising (east of Albacete
and southeast of Cuenca) temperatures are found in this region, whereas a general stability in rainfall
predominates with some increases in mountain areas. Finally, medium elevations and low slopes are
found.
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2.4. Extremadura and North-Andalusia: This sub-region is located in the north of the Andalusian
provinces of Jaén and Cérdoba, as well as the eastern half of Extremadura. It shows a general minor
decrease in forest fires. From the point of view of human drivers, this region generally has a medium
WAL low WUI and stable DP with some decreases in southeast Caceres, some enclaves in Badajoz
and the southwest of Albacete. Climatic trends display mainly stable temperatures, but also falling in
southwest Albacete-northeast Jaén and rising in the northwest of Jaén-east of Cérdoba. In turn,
rainfall shows both stable (east of Caceres, Badajoz and Jaén) and increasing trends (hinterlands of
Caceres and Cordoba, as well as the south of Badajoz).

2.5. Iberian, southern plateau and mountains: This region extends across the northeast face of Central

System Range, the whole Iberian Range, the south plateau, hinterlands of the Murcia Region, the
Betic mountain systems and the western half of the Sierra Morena. It is characterized by a general
major decrease in fire activity. Fire drivers show medium-high WAI (mainly in the Iberian Range,
Albacete, and northwest border of Andalusia), a generalized low WUI — although medium-size ones
can be found in the south of Avila (surroundings of Madrid). A stable DP dominates the region, with
some increases in areas of Murcia and the south of the province of Avila, whereas decreases can be
found in the western end of north Andalusia and in the east of the province of Badajoz. With climatic
trends, a general increase in temperature can be found in the Iberian Range, in the Sierra of
Guadarrama area, some enclaves of the Betic systems and the east of Badajoz, leaving the rest of the
territory with a stable tendency. However, there are some decreases in temperature in the northwest
of Cordoba and southwest of Albacete. On the other hand, precipitation shows a general stable trend
over this region (mainly in the north half of Iberian Range, west Toledo, Albacete and east of
Badajoz), although it is important to note the presence of extensive areas of rainfall increases in the
northwest border of Andalusia, the Betic systems and the southern half of Iberian Range. Finally,
elevation is mainly high-medium with some low altitudes in inland Valencia, Murcia, Badajoz and the
south-western face of the Sierra Morena. In turn, flat areas dominate the region, although mainly

medium slopes can be found in the mountain ranges.

2.6. Pyrenean mountain range: This region mainly covers the Central Pyrenees (north Huesca,

northeastern Navarre and northwest Lleida). It is notable for a significant decrease and persistence
of low fire activity. The fire drivers are notable for low WAI and WUI, a stable DP increasing in an
enclave in northwest Lleida. With climatic factors, the temperature shows an increase with stable
trends, while precipitation has more stable tendencies, with a region of increases between Huesca
and Lleida. Finally, the outstanding topographical variables are high elevation with very steep slopes.

(3) Inner Mediterranean. This general pyroregion extends through the mountain area and surroundings

of the Central System range. It is formed by 3 different sub-pyroregions:
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3.1. Western Central System Range: This sub-pyroregion is located in the western half of the Central

System mountains, more specifically in the north of Caceres, the southeast of Salamanca and the
southwest of Avila. It can be considered as an inner enclave that has experienced a progression of
fire activity in winter. With human drivers, WAI shows medium-high values, alow WUI and a decline
in the DP trend. The climatic drivers show that temperature is stable, although some increasing areas
are found both in west-east extremes. Rainfall is predominantly stable, with an area of rising trend in
the west. Finally, there is a topographical gradient from the southwest, with low altitudes, to the
northeast with higher elevations, resulting in a predominance of both moderate and high slopes.
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3.2. Central System Range area: This covers the middle part of Central System Range (south-half of
Avila and southeast of Salamanca), the whole Autonomous Community of Madrid, as well as some
areas in the north of Toledo and the west of the province of Guadalajara. Fire activity exhibits minor
increases over the historic period. From the point of view of anthropogenic factors, this area is
dominated by a mainly low-medium WAI a low WUI in most of the territory but with medium-high
values in the northwestern surroundings of Madrid. The DP presents a west-east gradient from
decreasing (Salamanca-west Avila) to an increasing variation (areas near Madrid). Regarding climate
variables, this region is dominated by rising temperatures, while a stable trend characterizes
precipitation. Finally, high-medium elevations are prevalent together with low-medium slopes.

3.3. Northwest Extremadura: This specific sub-pyroregion is located mainly in the western half of

the province of Caceres. It is formed by two different enclaves that have certain similarities as well
as differences. Fire activity shows a minor decrease in forest fires in the west, while in the east there
is 2 mix of decreases and some enclaves of minor increases. With human drivers, medium-low WAI
dominates the region, low WUI, and stable-decreasing DP variation. Temperature exhibits no
significant trend, although there is a general increasing trend in precipitation on the west side, whereas
stability-increases are found in the east. Finally, the area is flat with very low slopes.

(4) Levante and southwest coast. This last upper pyroregion covers the whole of the Spanish
Mediterranean coast, as well as the Andalusian Atlantic coast. It comprises 3 sub-pyroregions:

4.1. Mediterranean corridor and southwest coast: This covers almost the entire Spanish
Mediterranean coast, as well as the Andalusian Atlantic coast. In general terms, it is characterized by
a minor decline in fire activity; however, throughout the region many small enclaves of minor
increases can be found (especially in the provinces of Valencia and Huelva). Human drivers present
a medium-high WAI predominating in the northeast and east of the corridor, whereas, low-medium
WALI is more noticeable in the south. A similar picture is observed for WUI, where the highest urban
contact is located on the Catalonian coast. In turn, stability and increases in DP dominate the sub-
region. Climatic variables exhibit a general rise in temperature (concentrated on the Catalonian and
Valencian coasts) and stability in the south. On the contrary, rainfall trends are stable on the
Catalonian coast, while there is a rising trend on the Valencian and south coasts. Finally, elevations
are predominantly low, although some medium-high altitudes are found in the hinterland of Valencia
and along the south face of the Betic ranges. Slopes are in general moderate-high (rugged relief), with
the exception of flat plains of Huelva.

4.2. Hinterlands of Girona and Lleida: This covers the western half of the province of Girona, the

center-east of the province of Lleida and inland Barcelona. It is dominated by a general and
remarkable decrease in fire activity. Human drivers display mostly medium-high WAI, low WUI and
decreasing DP, although medium-high values of urban interface and increasing population variations
are found in the coastal area of Girona. On the other hand, temperature shows a general rising trend,
while precipitation tends to be stable. Finally, medium-high elevations and slopes dominate this

territory.

4.3. Southern mountainous end: This sub-region is located in the extreme south of mainland Spain,

covering Cadiz, the west of Malaga and south-eastern Seville. It stands out for its general and
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significant decline in fire activity. The anthropogenic factors show a low-moderate WAI and low
WUI although a continuous corridor of medium-high urban interface can be found on the
Mediterranean coastline. In turn, DP exhibits overall stability but with some areas of rising variation
in the east coast. Climatic variables present no trend in temperature, whereas precipitation shows
both increasing (east half) and stable (west half) trends. Finally, it is an area of low elevations with
some medium altitudes in the province of Malaga, thus medium-high slopes dominate the rugged
territory.

0 100
[

General and sub-pyroregions

m Northwest Atlantic E Inner mountain ranges
- Atlantic Galicia - Western Central Sytem Range
- Cantabrian Cornice E Central System Range area

Ledn and Zamora Northwest Extremadura

“ Northeast Galicia

[[27] inner Mediterranean [[47] Levante and southwest coast

North plateau and Basque Country u Mediterranean corridor and southwest coast

m Ebro valley, Pre-Pyrenees and Lleida plain-highlands - Hinterlands of Girona and Lleida
Eastern of Castilla-La Mancha - Southern mountainous end
Extremadura and Norh-Andalusia

- Iberian, southern plateau and mountains

- Pyrenean mountain range

Figure 4. Spatial distribution of the 4 general pyroregions and their corresponding 16 sub-pyroregions.
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CHAPTER 10: CONCLUSIONS
AND FUTURE RESEARCH

This chapter summarizes the main conclusions of this thesis as
well as, presents potential future lines of a further research.






Chapter 10: Conclusions and future research

The methodologies employed in this PhD dissertation have sought to cover the following general purposes:
a) to describe the spatial-temporal distribution of fire features that best characterize the general fire regime,
b) to evaluate the contribution of meteorological danger in the temporal evolution of fire activity, c) to
analyse the spatial-temporal changes of the influence of anthropogenic drivers in human-caused wildfires,
d) to describe and characterize the evolution and causes of fire regime changes, and ) to obtain a general
pyroregion map from the fire regime zoning.

Delimiting and characterizing homogenous fire regime regions (pyroregions) constitutes a laborious and
complex task that must take into account various aspects of forest fires. Firstly, the selection of fire features,
which is an important step as they have undergone spatial-temporal changes. Secondly, knowing which fire
drivers are involved in the trajectories shown by wildfire regimes.

The temporal dimension of fire regimes was the cornerstone of the research. In this respect, we have proved
that fire regimes are non-stationary, showing both trends and marked seasonality in certain regions of
mainland Spain. Therefore, this has facilitated the identification of regions more prone to fires which, in
certain cases, have also been shown to experience a lengthening of the summer fire season.

It is important to emphasize the strong potential of the methods employed throughout the investigation to
characterize fire regimes. In particular, we highlight the performance of multivariate regression, such as
Random Forest in identifying factors underlying fire regime changes, GAM to describe the climate-human
conditions relationship with fire regime features, or GWLR which enabled us to discover the spatial patterns
of drivers. In turn, ARIMA models made it possible to project the temporal inertia of the main fire features
into the near-future. Moreover, classification algorithms, such as KNN, were essential for replicating fire
regime categories in both the past and future; and hierarchical clustering to optimize the fire regime
typologies process. In addition, Mann Kendall and Sen’s slope tests contributed to extracting the temporal
evolution (sign and magnitude of the trend) of time series for the features time series in different stages of
the dissertation.

On the other hand, it is necessary to be aware of some uncertainty in the fire phenomenon models as an
analysis technique. For instance, working with averaged fire features or integrated in main components
(PCA) may mask their variance. The Spanish fire database (EGIF), although it is one of the most extensive
and complete in Europe, contains several changes of criteria in the way fire events were recorded over the
years, which affects wildfire characterization. However, taking as a reference the concept of fire regimes,
such as the mean conditions of fire features in a given area and time, this perspective was deemed more
appropriate for the purposes of simpler and clearer interpretation.
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Main conclusions

The specific conclusions according to the objectives (Chapter 2) are summarized below.

a) Explore the spatial-temporal distribution of fire regime features and their relation with climate-human

factors:

e We have confirmed our hypothesis that, in mainland Spain, there are various fire regimes. The main
fire features are fire frequency, burned area from large fires (>500 ha) and burnt area caused by
lightning. The northwest region constitutes an example of human impact during winter, while
seasonal variability in fire activity in the hinterland and Mediterranean has been mainly driven by
weather conditions. Specifically, the northwest and hinterland regions exhibit high frequency of
summer fires (including large fires), whereas during winter human-induced fires are more common.
The Mediterranean region is best characterized by burned area features, and although fire frequency
is important in summer, it takes second place in winter.

e Two main trends based on seasonality were detected: an increase in fire frequency during winter
and a decrease in burnt area during summer. In both cases, human causality is strongly associated
to fire tendencies and changes. At province or NUTS3 level, different behaviors are found in the
northwest region (increasing in frequency and decreasing in burned area). On the other hand,
change point detection found a common breakpoint in the late 1980s and in the first half of the
1990s. In turn, the Mann-Kendall test indicated that the Mediterranean showed the strongest
negative tendencies, in contrast to the other regions. Finally, Sen’s slope suggested wide spatial-
seasonal variability and some trend gradients related to overall frequency and natural fires.
Generally, the total number of fires depicts a rising trend (greater in winter) whereas there is an
overall decline in burnt area.

b) Estimate the contribution of fire-weather danger on the temporal evolution of fire activity:

e Weather conditions control seasonal cycles of fire activity but have a limited influence on long-term
trends. Fire danger is better related to fire frequency than burned area size; however, diverse spatial
patterns are found, depending on the causality and final fire size. The seasonal influence of weather
is most noticeable in the two months prior to the fire, although in the hinterland this influence
stretches to three months. In the northwest region, seasonal burned area correlations are more
associated with intentionality. The trend component of the Mediterranean has desynchronized with
fire-weather danger since 1994, indicating the predominance of human factors. Finally, FWI and
FFDI indices can be deemed useful for studying fire-weather associations at a regional level, while
Bl is significant at local level.

¢) Analysis of spatial-temporal changes in the role of anthropogenic drivers on wildfires:

e GWR points out that some human drivers vary over time and are losing ground to climate factors,
probably due to a successful fire prevention policy. Therefore, new explanatory factors should be
taken into account (for example: arson variables or climate conditions). However, this temporal
evolution is not stationary in space or time. In particular, both wildland interfaces and protected
natural areas seem to be losing the power to explain the probability of fire ignition.
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d) Characterize the dynamics of recent-future fire regimes and know the drivers of their changes:

Five regime typologies are outlined at 10x10 km grid level (1) low fire activity, (2) medium-sized
wildfires with a fair contribution from natural causes, (3) medium-sized forest fires with a high
proportion of human-caused fires, (4) large wildfires with a significant presence of lightning, and
(5) the high incidence of fire during winter. Overall, falling trajectories are most commonly found,
covering an extensive area, although winter activity has progressed into the northwest and remains
across the north. Demographic potential seems to be the main driver behind most transitions,
followed by climatic tendencies. Wildland interfaces appear to be (WAI and WUI) directly
associated with upward transitions (also winter progression) and inverse to downward ones.

Four fire regime typologies were preserved at 30x30 km grid level (1) low fire activity, (2) medium-
sized wildfires in summer with a small contribution from natural fires, (3), large fires caused by
lightning, and (4) large fires related to winter activity. A reduction in fire activity is the most common
scenario for the future, with a general increase in regions with a low incidence of fire.

e) Translating fire regime zoning schemes into pyroregions:

Four large pyroregions have been outlined and characterized:

(1) The Northwest-Atlantic, which concentrates the strongest winter progression of human-
caused fires, and is driven by moderate-high wildland agricultural interface (WAI), an overall decline
in demographic potential (DP), stable-increasing trends in climate variables in a region with diverse
topography. The main sub-regions are Atlantic Galicia and the Cantabrian Cornice, both
represented by the most noticeable winter progression of wildfires. The Leén and Zamora sub-

region is also noteworthy for a minor increase in fire activity.

(2) The inner Mediterranean, which shows major and minor decreases in fire activity; is influenced
by low WAL in the Pyrenees but medium-high in the remaining territory; stable DP in northern flat
areas, increases in Madrid and Murcia, decreases in the southern plateau; there are temperature
increases in mountain areas; rainfall exhibits a decreasing-increasing gradient from north to south;
medium-high elevation in flat areas with steep slopes in the east.

(3) The inland mountain ranges combine winter fire progression and minor increases in fire
activity; it is driven by medium WAI low-medium WUI near Madrid; a falling to rising west-east
gradient in DP; stable precipitation and increases in temperature; topographical gradients are also
found. It must be pointed out that there are two regions with a moderate increase in forest fires
(the area of the Central System Range and northwest Extremadura). There is also a region with
a strong increase in winter fires in the west of the Central System.

(4) The Levante and southwest coast have slightly reduced fire activity with some enclaves of
minor rises in wildfires, it is influenced by a generalized medium-high WAI, low WUI (but with
medium-high urban interface in Catalonia), stable-increasing DP, significant increases in climate
drivers, and low-medium altitudes with rugged territory.
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Future research

Although this PhD Thesis provides innovative insights into the identification and characterization of fire
regimes, it is logical that there are many aspects which can be explored and improved by promoting further
research. Although the spatial perspective has been assessed at three different levels (regional, provincial,
grid) and the minimum official unit of reference (10x10 km) seems to be the most appropriate, it might be
necessary to move towards a more detailed spatial unit, due to the finer resolution of explanatory variables
which are currently available.

Many and innovative future research lines are opened in terms of a more profound characterization of the
evolution of fire regimes. The temporal dimension has been addressed in detail; however, it is evident that
future estimations entail high uncertainty. Therefore, specific proposals for future research are presented:

1. Deeper insights into causes explaining temporal behavior of the main fire regime features should be
explored, especially those linked to changes in land use.

ii. Small fires (1 < ha) could be included, thus enriching fire regime assessment in order to avoid
potential bias caused by their exclusion.

iii. Move towards fine tuning the existing fire-weather indices, depending on the environment analyzed.
iv. Further investigation into the temporal behavior of driving factors, taking into account seasonal
variability in fire occurrence (divided into summer and winter).

v. Isolate the influence of large fires and analyze fire drivers separately in order to assess the degree of
contribution of fire size.

vi. Consider taking into account fire features in several subsets (e.g. season, cause and size) in the
context of fire modeling, as it helps to more clearly unravel the variability in the occurrence of fire.
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LLas metodologias empleadas en la presente tesis han perseguido cubrir los siguientes propositos generales:
a) determinar la distribucién espacio-temporal de las métricas de incendio que mejor caracterizan al régimen
general del fuego, b) evaluar la contribucién del riesgo meteorologico en la evolucién temporal de la
actividad del fuego, c) analizar los cambios espacio-temporales de la influencia de los factores antrépicos
en los incendios forestales causados por el hombre, d) describir y caracterizar la evolucién y las casusas de
los cambios en el régimen de incendios, y €) obtener una cartografia general de la piroregiones a partir de
la zonificacion del régimen de incendios.

Delimitar y caracterizar regiones homogéneas de régimen de incendios (piroregiones) constituye una tarea
laboriosa y compleja que debe tener en cuenta diversos aspectos de los incendios forestales. En primer
lugar, la seleccion de las caracteristicas del fuego, paso importante debido que estas experimentan cambios
espacio-temporales. En segundo lugar, conocer los factores dirigentes de los incendios involucrados en las
trayectorias mostradas por los regimenes de incendio forestales.

La dimensiéon temporal de los regimenes de incendio ha sido la piedra angular de todas las etapas de la
investigacion. En este sentido, se ha demostrado que los regimenes de incendio no son estacionarios,
mostrando tanto tendencias como una marcada estacionalidad en determinadas regiones de la Espafia
peninsular. Por lo tanto, esto ha facilitado la identificaciéon de regiones con una mayor propension a los
incendios, que, en algunos casos, también han demostrado estar experimentando un alargamiento de la
temporada estival de incendios.

Es importante destacar el alto potencial de los métodos empleados a lo largo de la investigacion para
caracterizar los regimenes de incendios. En particular, destacamos el rendimiento de la regresion
multivariante: como Random Forest en la identificacion de los factores que estan detras de los cambios en el
régimen de incendios, GAM para describir la relacion entre las condiciones climaticas-humanas y las
métricas del régimen de incendios, o GWLR que nos permitié descubrir los patrones espaciales de los
factores dirigentes. A su vez, los modelos ARIMA permitieron proyectar la inercia temporal de las
principales métricas del fuego en el futuro cercano. Incluso los algoritmos de clasificacion como KNN
fueron esenciales para replicar las categorfas de régimen de incendios hacia el pasado y el futuro, o el claster
jerarquico para optimizar el proceso de obtencion de las tipologias de régimen de incendios. Ademas, las
pruebas de Mann-Kendall y pendiente de Sen han contribuido a extraer la evolucion temporal (signo y
magnitud de la tendencia) de las series temporales de las métricas de incendio en diferentes etapas de la

tesis.

Por otro lado, es necesatio recordar la cierta incertidumbre de los modelos del fenémeno del fuego como
técnica de analisis. Por ejemplo, trabajar con métricas de incendio promediadas o integradas en
componentes principales (PCA) puede enmascarar en cierto grado su varianza. La base de datos de
incendios espafiola (EGIF), aunque es una de las mas extensas y completas de Europa, contiene varios
cambios de criterio en la forma en que se registran los sucesos de incendios a lo largo de los afos, lo que
afecta a la caracterizacion de los incendios forestales. Sin embargo, tomando como referencia el concepto
de regimenes de incendios, como las condiciones promedias de las caracteristicas del fuego en una zona y
momento determinados, esta perspectiva se ha considerado mas apropiada a efectos de una interpretacion

mas simple y clara.
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Conclusiones principales

A continuacion, se resumen las conclusiones especificas segun los objetivos presentados en el Capitulo 2.

a) Explorar la distribuciéon espacio-temporal de las métricas del régimen de incendios y su relacion con las

factores climaticos-humanos:

Hemos confirmado nuestra hipétesis de que las tres regiones tradicionales de la Espafia peninsular
tienen regimenes de incendio diferentes. Las principales métricas de incendio son: la frecuencia de
incendios, el 4rea quemada por grandes incendios (> 500 ha) y el area quemada por causa de rayos.
La region Noroeste representa un ejemplo claro del impacto humano durante el invierno, mientras
que la variabilidad estacional en el interior y el Mediterraneo ha sido impulsada principalmente por
las condiciones climaticas. Concretamente, las regiones del Noroeste y del Interior muestran una
alta frecuencia de incendios en verano (incluidos los grandes incendios), mientras que durante el
invierno los incendios humanos desempefian un papel mas notable. La region mediterranea esta
mejor caracterizada por las métricas del area quemada, y aunque la frecuencia de incendios es
relevante durante el verano, ocupa el segundo lugar en invierno.

Se han detectado dos tendencias principales basadas en la estacionalidad: aumento de la frecuencia
de incendios durante el invierno y el descenso del area quemada durante el verano. En ambos casos,
la causalidad humana esta fuertemente asociada a las tendencias y cambios de los incendios. A nivel
provincial o NUTS3 se encuentran diferentes comportamientos en la region noroeste (aumento de
la frecuencia y disminucion de la superficie quemada). Por otra parte, la detecciéon de puntos de
cambio ha encontrado un punto de ruptura comun a finales de la década de 1980 y en la primera
mitad de la década de 1990. El test de Mann-Kendall revel6 que el Mediterraneo presenta las
mayores tendencias negativas, en contraste con el resto de regiones. Finalmente, la pendiente de
Sen sugiri6 una gran variabilidad espacio-temporal y algunos gradientes de tendencia relacionados
con la frecuencia general y los incendios naturales. En general, el nimero total de incendios
representa un aumento (mayor en invierno), mientras que el area quemada experimenta una

disminucién general.

b) Estimar la contribucion del riesgo de incendio meteorolégico en la evolucion temporal de la actividad de

los incendios:

202

Las condiciones climaticas controlan los ciclos estacionales de la actividad del fuego, pero tienen
una influencia limitada en las tendencias a largo plazo. El riesgo de incendio esta mas relacionado
con la frecuencia de incendios que con el tamafio del area quemada, sin embargo, se encuentran
diversos patrones espaciales dependiendo de la causalidad y el tamafio final del incendio. La
influencia estacional del clima es mas notable en los dos meses anteriores al incendio, aunque en el
interior esta influencia alcanza significativamente los tres meses. Para el caso de la regién Noroeste,
las correlaciones estacionales de areas quemadas estan mas asociadas a la intencionalidad. En cuanto
al componente de tendencia del Mediterraneo, muestra una desincronizacion con el peligro de
incendios desde 1994, revelando la supremacia de los factores humanos. Por ultimo, los indices de
FWI y FFDI pueden considerarse utiles para el estudio de las asociaciones de entre incendios y
meteorologia a nivel regional, mientras que el indice BI destaca a nivel local.
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¢) Analisis de los cambios espacio-temporales en el peso de los factores antropogénicos en los incendios

forestales:

GWR senala que algunos factores humanos varian con el tiempo y estan perdiendo protagonismo
dando paso a los factores climaticos, probablemente debido a una exitosa politica de prevencion de
incendios. Por lo tanto, deberan tenerse en cuenta nuevos factores explicativos (por ejemplo:
variables relacionadas con incendios provocado o condiciones climaticas). Sin embargo, esta
evolucion temporal no es estacionaria ni en el espacio ni en el tiempo. En particular, tanto las
interfaces forestales como las areas naturales protegidas parecen estar perdiendo poder explicativo
en términos de la probabilidad de ignicién del fuego.

d) Caracterizar la dindmica de los regimenes de incendios recientes-futuros y conocer las causas de sus

cambios:

Se han esbozado cinco tipologias de régimen de incendios a nivel de cuadricula de 10x10 km (1)
baja actividad de incendios, (2) incendios forestales de tamafio medio con una contribucion justa
de causa natural, (3) incendios forestales de tamafio medio con un alto peso de incendios de origen
humano, (4) incendios forestales de gran tamafio con una presencia notable de los causados por
rayo, y (5) la alta incidencia de incendios durante el invierno. En general, las trayectorias de descenso
son la situacién mas comun, cubriendo un territorio extenso. Aunque, la actividad invernal ha
progresado hacia el noroeste y persiste a lo largo del norte. El potencial demografico parece ser el
principal impulsor de la mayorfa de las transiciones, seguido de las tendencias climaticas. Las
interfaces forestales (WAI y WUI) aparecen asociadas directamente a transiciones ascendentes

(también progresion invernal) e inversamente a tendencias descendentes.

Asimismo, se han conservado cuatro tipologias de régimen de incendios a nivel de cuadricula de
30x30 km: (1) baja actividad de incendios, (2) incendios forestales de tamafio medio en verano con
baja contribucion de incendios naturales, (3) incendios de gran superficie relacionados con los rayos,
vy (4) grandes incendios relacionados con la actividad invernal. La disminucién de la actividad de los
incendios es la situaciéon mas comuin hacia el futuro inmediato, con un aumento general de las
regiones con baja incidencia de incendios.

e) Trasladar los esquemas de zonificacién del régimen de incendios en piroregiones:

- Se han trazado y caracterizado cuatro grandes piroregiones:

(1) El noroeste Atlantico, que concentra la mayor progresion invernal de los incendios provocados
por el hombre, y esta impulsado por una interfaz agricola forestal moderada y alta (WAI), una
disminucién general del potencial demografico (DP) y tendencias estables en aumento de las
variables climaticas en un territorio de topografia diversa. Las principales subregiones son la Galicia
Atlantica y la Cornisa Cantabrica, ambas representadas por la mas notable progresién invernal
de los incendios forestales. Destaca también la subregion de Ledn y Zamora, que se caracteriza
por un leve aumento de la actividad de incendios.

(2) El Mediterraneo interior, que presenta disminuciones mayores y menores de la actividad de

los incendios; esta influenciado por un WAI bajo en los Pirineos pero medio-alto en el resto del
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territorio; DP estable en las zonas llanas del norte, aunque con aumentos en Madrid y Murcia, asi
como disminuciones en la meseta sur; la temperatura muestra aumentos en las zonas montafiosas
y las precipitaciones presentan un gradiente decreciente que aumenta de norte a sur. Por dltimo, la
elevacion es media-alta con zonas llanas y pendientes pronunciadas en el este.

(3) Las cordilleras interiores combinan la progresiéon invernal del fuego con pequefios
incrementos de la actividad del fuego; esta impulsada por un WAI medio-bajo, WUI medio cercano
a Madrid; DP presenta un gradiente oeste-este de decrecimiento a aumento; estabilidad en la
precipitacion y aumentos de temperatura; existen gradientes topograficos. Cabe destacar dos
subregiones con un aumento moderado de los incendios forestales (entorno del Sistema Central
y el Noroeste de Extremadura), pero también encontramos una region con un marcado aumento
de los incendios invernales en el oeste del Sistema Central.

(4) El "Levante" y la costa suroeste destaca por una ligera disminucién de la actividad de los
incendios con algunos enclaves de pequefios incrementos en los incendios forestales, estd
influenciado por una generalizada WAI media-alta, una WUI baja (pero con una interfaz urbana
media-alta en Catalufia), una DP estable y creciente, incrementos significativos en los generadores
de cambio climatico, en las altitudes medias-bajas y en el territorio escarpado.

Futuras investigaciones

Aunque esta tesis proporciona nuevas perspectivas sobre la identificacion y caracterizacion de los regimenes
de fuego, es légico que existan muchos aspectos en los que profundizar y mejorar, promoviendo otras
investigaciones futuras. Aunque el aspecto espacial se ha evaluado en tres niveles diferentes (regional,
provincial, cuadricula) y la unidad minima oficial de referencia (10x10 km) parece ser la mds adecuada,
podria ser necesario avanzar hacia una unidad espacial mas detallada, debido a la mayor resolucién de las
variables explicativas actualmente disponibles.

Se abren muchas e innovadoras lineas de investigacion futuras en términos de una caracterizacion mas
profunda de la evolucién de los regimenes de incendios. LLa dimension temporal ha sido abordada en detalle,
sin embargo, es evidente que en la estimacion futura se asume una alta incertidumbre. Por lo tanto, se
presentan algunas propuestas especificas de investigacion:

i. Se debe ir una comprension mas profunda de las causas que explican el comportamiento temporal
de las principales métricas del régimen de incendios, especialmente las relacionadas con los cambios
en el uso del suelo.

ii. Podtian incluirse los conatos (1 < ha), lo que enriqueceria la evaluacién del régimen de incendios
para evitar los posibles sesgos causados por su exclusion.

iii. Avanzar hacia una puesta a punto de los indices meteorolégicos existentes, en funcion del entorno
analizado.

iv. Se podria desarrollar una investigaciéon mas detallada sobre el comportamiento temporal de los
factores impulsores, teniendo en cuenta la variabilidad estacional de la ocurrencia de incendios (dividida
en verano e invierno).

v. Aislar la influencia de los grandes incendios y analizar por separado los factores dirigentes de
incendios para evaluar el grado de contribuciéon del tamano del fuego.
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vi. Considerar la posibilidad de tener en cuenta las caracteristicas del fuego en agregados en varios
subconjuntos (por ejemplo, por estacién, causa y tamafo) en el contexto de la modelizacion de
incendios, ya que ayuda a desentrafiar con mayor claridad la variabilidad del fenémeno del fuego.
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APPENDIX A: SUPLEMENTARY
MATERIAL OF FIRE REGIME
FEATURES

This appendix presents the supplementary material of the paper
entitled “Understanding wildfires in mainland Spain. A
comprehensive analysis of fire regime features in a climate-
human contex?’ which shows complementary results obtained
in this publication.
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Appendix 1 Supplementary maps

Number of summer wildfires Number of winter wildfires

014 40 75 125 212 444 Sq.km 014 40 75 125 212 444 sq.km

Percentage of lightning-cause summer wildfires Percentage of lightning-cause winter wildfires

Figure Al. Fire features by season of the entire study area. Note that the scale in the map for
each variable is adjusted to its own range to maximize the visualization of spatial variation
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Number of summer large fires

Number of winter large fires

Figure Al. Fire features by season of the entire study area. (Continued)
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Appendix 2 Supplementary tables

Table Al. Values and ranges of climatic variables in each region and season. Both variables,
temperature and precipitation, were reclassified in ten equal groups.

R Temperature Temperature average Precipitation Total precipitation average
reclassified values (“C) reclassified values (mm)
1 19 -19.61 1 169.75 — 227
2 19.62 -20.23 2 228 —284.67
3 20.24 -20.84 3 284.68 —342.08
4 20.85 -21.50 4 342.09 - 398.26
Northwest summer 5 21.51-22.13 5 398.27 - 45534
6 22.14-22.77 6 45535 -512.09
7 22.78 - 23.39 7 512.10 - 569.14
8 23.40-24.04 8 569.15 — 626,19
9 24.05 -24.68 9 626.2 — 683.24
10 24.69 —25.3 10 683.25 — 740.29
! 9.37-10 1 227.61 —348.27
2 10.01 - 10.63 2 348.28 — 468,94
3 10.64 11.29 3 468.95 589.61
4 11.3-11.94 4 589.62-710.3
Ntk wlisiss 3 11.95 -12.61 3 710.4-831
6 12.62 - 13.26 6 831.1 - 951.76
7 13.27-13.94 7 951.77-1,072.4
8 13.95 - 14.58 8 1,072.5 - 1,193.1
9 14.59 - 15.24 9 1,193.2 - 1,313.8
10 15.25 - 15.88 10 1,313.9 - 1,434.75
/ 20.2-21.1 / 140.11 - 196.79
2 21.11-22.1 2 196.8 — 253.48
3 22.11-23.1 3 253.49-310.17
4 23.11-24.1 4 310.18 - 366.86
Hinterland o) 24.11-25.1 5 366.87 — 423.55
summer 6 25.11-26.1 6 423.56 - 480.24
7 26.11 -27.11 7 480.25 - 536.93
& 27.12-28.11 8 536.94 — 593,62
9 28.112-29.11 9 593.63 - 650,31
10 29.12 - 30.11 10 650.32 - 707
1 9.69—-10.48 1 152.24 - 242.04
2 1049-11.3 2 242.05-331.86
3 11.31-12.116 3 331.87 —421.68
4 12.12-1292 4 421.69-511.5
Hinterland 35 12.94 - 13.74 5 511.51 - 601,32
winter 6 13.75 - 14.56 6 602.33 - 692.14
7 14.57 - 15.379 7 692.15 - 781,96
8 15.38-16.19 8 781.97 - 871,78
9 16.20-17 9. 871.79-961.6
10 17.01 -17.8 10 961.7 - 1,051.51
/ 19.35 -20.49 / 72.15-123.59
2 20.5 - 21.64 2 123.6 - 174.97
3 21.65 -22.79 3 174.98 - 226.42
4 22.8-23.94 4 22643 -277.87
Mediterranean ) 23.95-25.15 5 277.88 - 329.32
summer 6 25.16-26.3 6 329.33 -380.77
7 26.31 -27.46 7 380.78 — 432,22
8 27.47 - 28.64 8 432.23 - 483.77
9 28.65-29.79 9 483.78 — 535,22
10 29.8 —30.94 10 535.23 — 586.67
/ 9.3-10.34 i 163.04 —226.84
2 10.35-11.35 2 226.85 —290.68
3 11.36 - 12.36 3 290.69 - 354.52
4 12.37-13.48 4 354.53 - 418.36
Mediterranean L) 13.49 - 14.53 5 41837 -482.2
winter 6 14.54 - 15.6 6 482.21 - 546.01
7 15.61 - 16.66 7 546.02 - 609.85
8 16.67-17.73 8 609.86 — 673.69
9 17.734 - 18.79 9 673.7-737.5
10 18.8 - 19.84 10 737.6 - 801.4
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Appendix 3 Supplementary graphs
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Figure A3. Estimated partial effects of number of fires (N), burned area of natural fires (BL)
and burned area of large fires (B500) (solid line) with 95% confidence bands (shaded area) in
the Northwest region (NW) and both seasons (spring-summer on first three rows on the top,
autumn-winter on the last three rows on the bottom) for temperature (T) first column on the left,
precipitation (P) second column in the center and human pressure (H) third column on the right.
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Hinterland summer
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Figure A4. Estimated partial effects of number of fires (N), burned area of natural fires (BL)
and burned area of large fires (B500) (solid line) with 95% confidence bands (shaded area) in
the Hinterland region (HL) and both seasons (spring-summer on first three rows on the top,
autumn-winter on the last three rows on the bottom) for temperature (T) first column on the left,
precipitation (P) second column in the center and human pressure (H) third column on the right.
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Mediterranean summer
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Figure AS. Estimated partial effects of number of fires (N), burned area of natural fires (BL)
and burned area of large fires (B500) (solid line) with 95% confidence bands (shaded area) in
the Mediterranean region (MED) and both seasons (spring-summer on first three rows on the
top, autumn-winter on the last three rows on the bottom) for temperature (T) first column on the
left, precipitation (P) second column in the center and human pressure (H) third column on the
right.
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Figure A6. Multidimensional scatterplots for total burned area. Note values are given on the
logarithmic scale.
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Figure A7. Multidimensional scatterplots for percentage of lightning.
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APPENDIX B: SUPLEMENTARY
MATERIAL OF FIRE-WEATHER

This appendix presents the supplementary material of the paper
entitled “The role of short-term weather conditions in temporal
dynamics of fire regime features in mainland Spair’ which
shows complementary results obtained in this publication.
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The role of short-term weather conditions in temporal dynamics of fire regime features in mainland Spain
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Figure S1. Time series of BI (yellow line), [ire [requency (red line) and burned area (green line). All variables are normalized into a 0-1

range.
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Figure S2. Time series of FFDI (yellow line), fire frequency (red line) and burned area (green line). All variables are normalized into

a 0-1 range.
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Figure S3 Time series of seasonal component of Bl (yellow line), fire frequency (red line) and burned area (green line). All variables
are normalized into a 0-1 range.
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Figure S4. Time series ol seasonal component of FFDI (yellow line), fire frequency (red line) and burned area (green line). All
variables are normalized into a 0-1 range.

232



Appendix B

SEASON COMPONENT
Fire frequency Burned area
| Unintended | Arson Unintended I
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-6.8-0.6-0.4 020002040608

Figure S7. Spatial pattern of Pearson coeflicients between FWI vs. seasonal, trend and remainder components of fire frequency (left)
and burned area (right). Green to yellow values indicate negative association; yellow 1o red indicate positive association. Points mark
significant relationships (p<0.05). Blank pixels indicate no-fire activity in the subset.
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SEASON COMPONENT
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Figure S8. Spatial pattern of Pearson coefficients between seasonality, trend and remainder components of fire frequency-burned
area vs. FFDI. Green to red gradient indicates relationships from negative to positive. Points indicate significant relationships for p

value <0.05. Blank pixels indicate no contribution to the scenario.
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Figure S9. Statistical distribution of the Pearson’s R between total number of fires-burned area and I'WI. Blue gradient categories
show the average of Pearson’s R of pixels in each fire size-cause subset and component (season and trend).
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Figure S10. Statistical distribution of the Pearson’s R between total number of fires-burned area and FFDI. Blue gradient categories
show the average of Pearson’s R of pixels in each fire size-cause subset and component (season and trend).
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APPENDIX C: SUPLEMANTARY
MATERIAL OF DRIVERS OF
CHANGE

This appendix presents the supplementary material of the
accepted paper entitled “Fire regime dynamics in mainland
Spain. Part 1: drivers of change” which shows complementary
results obtained in this publication.
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Fig. Al. Spatial distribution of the human related variables: a) WAI, b) WUI and ¢)
Percentage of variation of demographic potential.
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Sen's slope
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Fig. A2. Spatial distribution of the climate: a) Temperature trend, b) Precipitation trend;
and topography variables: ¢) Elevation and d) Slope.
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Fig. B1. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 1 to 2. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. B2. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 1 to 3. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. B3. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 2 to 1. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. B4. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 2 to 3. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. BS. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 3 to 1. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. B6. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 4 to 1. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. B7. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 4 to 2. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. B8. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 4 to 3. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.
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Fig. B9. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 4 to 5. Elev: Elevation, DP:
Demographic potential, P: Precipitation, Slp: Slope, T: Temperature, WAI: Wildland
Agricultural Interface, WUI: Wildland Urban Interface.

249



Appendisc C

P(change) P(change) % contribution

P(change)

Change from type 5to 1

100
75
50
25

,

Elev

WAI  WUI

DP P Sp T
var
1.00

0.75

0.50 —//P

0.25

0.00

0 500 1000 2000

Elev

1500

1.00

0.75

o

0.50
0.25

0.00

0.04 0.06 0.08

1.00

0.75
.

0.50

0.25

0.00

Oe+00 2e+05

WAI

1e+05 3e+05

P(change) P(change) P(change)

P(change)

1.00
0.75
0.50
0.25

0.00

-20 -10 0 10
DP
1.00

0.75

n .

0.50

0.25

0.00

2.5 5.0 7.5 12.5

Slp

10.0

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00 -

0 10000 20000 40000

Wul

30000

Fig. B10. Overall fire driver’s contribution and the percentage of change for each
explanatory variable in the fire regime transition from type 5 to 1. Elev: Elevation, DP:
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APPENDIX D: PRELIMINARY
PYROREGIONS DELIMITATION

This appendix presents the work “Identifying pyroregions by
means of Self Organizing Maps and hierarchical clustering
algorithms in mainland Spain” forming part of the conference
proceedings in Advances in Forest Fire Research 2018. It
summarizes a preliminary attempt to define spatial-temporal
definition pyroregions employing Self Organizing Maps (SOM),
including the structural and trend component of fire regime
features.
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Abstract

Defining pyro-regions, i.e., of homogenous zones of fire activity, is an on-going task in Spain with few
case studies in the literature. Their characterisation and understanding is a crucial step towards improving
forest fire management and prevention. It is widely agreed that fire activity is non-stationary. Several works
already report temporal dynamics in fire frequency and burned area. In this work we propose a spatial-
temporal approach to define pyro-regions considering both structural and temporal fire behaviour using
historical fire records from the EGIF database. A combination of Self Organizing Maps (SOM) and
hierarchical clustering is applied to time series (1974-2015) of fire regime features: number/burned area of
summer fires, number/burned area of large fires (>500 ha), number/burned area of natural fires,
number/burned area of winter fires and number of small fires (<1 ha). The structural component of fire
activity is computed as the average value whereas the temporal evolution is addressed by means of Sen’s
slope.

Prior to cluster analysis, fire features were submitted to Principal Component Analysis with Varimax
rotation. Eigenvalues were then pre-classified using SOM. Subsequently, hierarchical clustering was applied
to SOM outputs. We obtained a set of 4 structural clusters relating to increased number of fires; low fire
incidence, slightly linked to winter season; large and natural fires; and moderate impact of human-related
large fires mainly. The process was repeated using Sen’s slope to build the dynamic component, ultimately
characterised by: highly dynamic winter with increased in summer frequency; increased summer burned area
and natural fires; and small fires; and no trend.

Keywords: forest fires, pyro-regions, Sen’s Slope, SOM, hierarchical clustering, Spain

1. Introduction

Forest fires are a highly complex phenomenon affecting most ecosystems worldwide. Fire is known
as a natural process responsible for the evolution of wild communities, but nowadays it has been
altered, with potential undesired effects on vegetation structure, composition and ecosystemic
functions. Fire activity is controlled by multiple factors such as climate, fuel, physiography and human
activity. Humans influence fire incidence acting as both initiators and suppressors, increasing the
complexity of the phenomena. Thus, understanding fire regime’s components and behaviour (both
temporal and spatial) may improve our current knowledge. Mapping fire regimes may contribute
enhancing fire planning or risk assessment; as well as diminishing undesired ecological impacts
(Morgan ef al. 2001). In this sense, one of the most promising lines of study lies in the definition and
characterization fire regime itself. Fire regime is usually described using several quantifiable
parameters such as affected area, fire frequency, cause, seasonality, fire size, etc. (Boulanger et al.
2014). Currently, there still is an open debate on the definition of the concept itself, with slight
variations depending on the scale of analysis, the length of the study period or the available
information.
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Several attempts to define fire regimes from different approaches are already found in the literature.
Without being exhaustive we find some analyses using remote sensing data (Chuvieco et al. 2008) or
climate information (Boulanger ef al. 2013, 2014; DaCamara et al. 2014). Others employ fire weather
danger indexes coupled to fuel and environmental conditions (Perera and Cui 2010). Despite of the
success in the characterisation of fire regime, most works still rely on existent zoning schemes to
spatialize their boundaries and extent: administrative units (Pereira ef al. 2015), ecoregions (Malamud
et al. 2005; Kasischke and Turetsky 2006; Perera and Cui 2010; Mori and Johnson 2013) or a
combination of both (Wotton ef al. 2010).

In the case of Spain, examples of fire regime zoning are really scarce, with Moreno and Chuvieco
(2013) as the most representative effort. We find other examples in Vazquez de La Cueva et al. (2006)
and more recently in Montiel Molina and Galiana-Martin (2016). These approaches are mostly based
on cluster analysis, the most used and well-known zoning approach. They are a flexible multivariate
technique with different available implementations, widely used to analyse ignition points distribution
(Wang and Anderson 2010; Serra et al. 2013; Pereira et al. 2015; Parente et al. 2016) or occurrence
large fire linked to synoptic climatology (Rasilla et al. 2010). Nevertheless, all of them provide a static
picture of fire regime, i.e., disregarding the evolution of fire features over time and space. For this
reason, a temporal perspective is extremely necessary.

In this work we propose and exemplify a method to outline homogenous fire regime zones (the so-
called pyroregions) in mainland Spain. We combine average information of fire features with their
temporal evolution (trend detection) during the study period (1974-2015). The method is based on
PCA and Self Organizing Maps coupled to hierarchical clustering. Such combination of methods is
applied to the averaged values of fire features and their respective trends, separately. By doing so we
are able to discriminate static and dynamic pyroregions.

2. Materials and methods
2.1. Study area

The study area encompasses the whole mainland Spain covering a surface of around 498,000 km?>.
Climate distribution in the region allows to differentiate two regions: Mediterranean and Oceanic. The
first one is characterized by high annual thermal amplitude with hot-summer in the inner region and
milder conditions towards the coast. Precipitation is irregularly distributed both in terms of time and
space, with maximums peaking in autumn and spring. In addition, the driest areas are located in the
southeast region and the Ebro Valley (inner Mediterranean region). On the other hand, Oceanic climate
is notable by milder temperature values during summer-winter with high precipitation values regularly
distributed throughout the year (average values over 1,000 mm) with maximum during winter. From
the biogeographical point of view, the Oceanic area is covered by diverse types of vegetation from
deciduous to evergreen oak woodlands (Quercus robur, Fraximus excelsior or Fagus sylvatica) and
large areas of scrubland and grassland, as well as areas with afforestation of fast-growing species such
as Pinus radiata and Eucaliptus globulus. The Mediterranean vegetation coexists with complex
mosaics of agricultural systems and plant communities, such as sclerophyllous and evergreen
vegetation. Oak (Quercus ilex) and pine (mainly Pinus halepensis, the most widespread of the species
introduced by afforestation) forest, and thermophilous scrubland, dominate the region. In addition,
altitudinal belts exist within the highest ridges such as the Pyrenees along the French border or Sierra
Nevada on the southern Mediterranean coast, being home to a large variety of tree species which are
common in central Europe (deciduous species, beech, oak, and some mountain pines: Pinus uncinata,
Pinus sylvestris).
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2.2. Fire data

Fire records in the period 1974-201 5 were collected from the General Wildfire Statistics (EGIF).
Selected fire records were on a 10x10 km UTM reference grid. Then, fire frequency, total burned area
(ha), ignition date and source were extracted from the database. [s it important to note, that only those
grids with at least a 25% of forest cover were retained for analysis. Therefore, 3,308 out of 5200 grids
were finally considered in the analyses.

‘ \ . Algeria 0 100 200km
- 3416m
s | Autonomous
[ Northwest Hinterland [ ] Mediterranean — ] g | Communites

om

Figure 1 - Spatial distribution of the three regions (Northwest, Hinterland and Mediterranean) also NUTS3 and
NUTS?2 units in mainland Spain (left) and digital elevation model (right)

Two fire seasons were defined with the aim of differentiating the intra-annual peaks of fire activity
(August and March). So, annual fire data were split into spring — summer season (S), from April to
September; and autumn-winter season (W) from October to March. From all available fire information,
we computed 9 fire features: number of fires and burned area during summer (NS-BAS), summer
frequency and burnt area of large fires —above 500 ha— (N500, B500), summer frequency and burnt
area of natural fires (NL-BL), number of fires and burnt area during winter (NW-BAW) and total
number of small fires (N <1 ha).

2.3. Temporal evolution of fire features

In order to account for the temporal dimension of fire activity during the analyzed time span we
estimated the magnitude of the temporal change using Sen’s slope (Sen 1968) test. This allows to
outline fire zones according to the temporal behavior of fire features rather than address the average
‘structural’ pattern alone.

2.4. Environmental and human factors

To characterize the final pyroregions we used data related with environmental and human factors.
Temperature and precipitation data in the period 1974-2010 were extracted from MOTEDAS
(Gonzalez-Hidalgo et al. 2015) and MOPREDAS (Gonzalez-Hidalgo et al. 2011) datasets (Figure 3).
Additionally, forest communities were derived from the Forest Map of Spain. Finally, the Human
Pressure Index (Figure 2) was calculated according to Jiménez-Ruano et al. (2017).
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Figure 2 - Spatial distribution of the Human Pressure Index (left) and main forest formations from National Forest
Map (right).
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Figure 3 - Climate factors. Top-left, average summer temperature; top-right, average winter temperature; bottom-left,
summer mean annual precipitation; bottom-left, winter mean annual precipitation
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2.5. Principal Component Analysis and Varimax rotation

Prior to submit fire data to cluster analysis, a PCA with varimax rotation was applied to reduce the
amount of information. All fire features (both structural and dynamic) were scaled before applying
PCA. Principal Components (PC) were selected according to the Kaiser Criterion, i.e., only those PC
with standard deviation over 1 were retained.

2.6. Clustering overview

The objective of clustering analysis is grouping objects into categories such that objects within one
cluster share more in common with one another than they do with the objects of other clusters (Gore
2000). Many clustering algorithms do exist. The most basic variants resort to data partition and
minimizing the distance between points of a same group from another assigned as center. Among all
the clustering methods, we selected hierarchical clustering coupled to Selt-Organizing Maps to
delineate our pyroregions.

The purpose of hierarchical clustering is determinate the best clustering scheme from different
results obtained. It is proceeded with the application of various combinations of number of clusters,
distance measures and clustering methods. This algorithm routinely produce a series of solutions
ranging from » clusters to a solutions with only one cluster present (Charrad et al. 2014). It requires a
dissimilarity measure (or distance) and an agglomeration criterion. Many distances area available
(Manhattan, Euclidean, etc.) as well as several agglomeration methods (Ward, single, centroid, etc.).
In our case, we employed all methods available in the NbClust function from RStudio, the Canberra
distance and the Ward D2 method (Murtagh and Legendre 2014), which minimizes the total within-
cluster variance and the dissimilarities are squared before cluster updating.

SOM is a neural-network algorithm that implements an orderly mapping whose main strength lies
in converting complex and non-linear relationships between high-dimensional data (Kohonen 1998).
In other words, it compresses information while keeping topological and metric relationships of the
input data. The algorithm consists of a two-dimensional model of regular grid of nodes, where some
data are associated with each node. In each iteration, the SOM algorithm computes all the models to
best describe the domain of the observations. The idea is to group the similar models that are closer to
each other in the grid than the more dissimilar ones.

As aforementioned the cluster approach was applied both to ‘structural’ and ‘dynamic’ components,
thus 2 sets of cluster were obtained. In a final step we overlay all clusters (structural and dynamic) to
into the final pyroregions.

3. Results

Figures 4 and 6 show the spatial distribution of the structural (4) and dynamic (3) clusters, and their
description, respectively. First structural cluster characterises by high fire activity but no large fires; it
extends across the Northwest region. In turn, cluster 2 comprises areas of moderate winter activity, in
the remaining territory. Cluster 3 brings together summer large fires (>500 ha) caused by lightning.
This cluster covers mostly mountain ranges. Finally, cluster 4 brings together medium-size human-
caused fires.

Dynamic clusters depict a different behaviour. Tendencies were grouped into clusters 1 and 3. In
the first case, winter trends and the increase in summer small fires are grouped in cluster 1.
Geographically, these trends are located in the north-western end, some locations of the inland
mountain ranges and few spots of the Mediterranean basin. Remaining trends depict an increase in
overall area burned during summer and decreased incidence of natural fires (Table 1), occupying an
area that mainly extends over the northern and northwest hinterlands.
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When combining both cluster approaches into a single product we obtain a final set of 8 pyroregions
(Figures 5 and 6). Generally speaking, three main groups of pyroregions can be distinguished: (1) those
experiencing increase in the fire activity, especially small fires; (2) regions with no noticeable trend;
and (3) those characterised by increased summer burnt area and lightning-triggered wildfires.

Cluster static
o 1
® 2
® 3
® 4
Cluster trends
o 1
2
3

L

0 100 200Km ‘ Algeria Autonomous
[ — Iy(:o&o\ P Communities
Figure 4 - Spatial distribution of the clusters structural (colour codes) and dynamic (shape codes).

Tuble 1 - PCA-Varimax eigenvectors of the first two components of static (fire features averages) and the first three
components for trends in fire features

Fire features NS BAS N500 | B500 | NL BL NW BAW | N <lha
Static PCl1 0.526 | 0.148 -0.152| 0.526 | 0.328 | 0.529
PC2 -0.508 | -0.436 | -0.581 [-0.212|-0.408
PCl1 0.534 | -0.271 0.512 | 0.262 | 0.557
Trends PC2 -0.702 |-0.705
PC3 0.674 0.230 | 0.672 | -0.203
Cluster 1 Cluster 2 Cluster 3 Cluster 4
BAS N-s N<tha
- D _—
8500 N_W
NL BL
Cluster 2 Cluster 3
e NS
BA_S ::- N<tha ) N<tha
NL O BA_W BA_W
BL NW

Figure 5 - Description of the contribution percentage for each fire feature in each cluster static (four on the top) and
in each cluster of trends (three on the bottom)

258



Appendixc D

Advances in Forest Fire Research 2018 - D. X. Viegas (Ed.)
Chapter 3 — Fire Management

2%

1 - High frequency + increase winter activity + increase summer & small fires
2 - High frequency + no trends

3 - High frequency + increase summer burned area & natural fires

4 - Low fire incidence + no trends

5 - Large and natural fires + high summer burned area + increase winter activity + increase summer & small fires
6 - Large and natural fires + high summer burned area + no trends

7 - Large and natural fires + high summer burned area & natural fires

8 - Moderate large fires mainly human-caused + no trends

Figure 6 - Spatial distribution of the final pyroregions

The most relevant pyroregion in terms of spatial extent is 4 (55.1%), characterized by a low fire
incidence without trends. Secondly, pyroregion 8, covering 16.4% of the territory, is represented by
medium-sized fires mainly anthropogenic. With a 10.2% of the study area, pyroregion 6 combines
large and natural fires with an increase in summer burned area. Pyroregion 1 (5.4% area) is mainly
located in the Northwest region. It shows a high fire frequency linked to winter dynamics, as well as
an increase in summer and small fires. Remaining pyroregions account for just over 1% and less than
4% individually. In summary, they would reach roughly 11.6% of the territory. These are characterized
by a high frequency with no trends (2), or with an increase in summer burnt area and natural fires (3).
In addition, large fires with an increase in summer-winter activity and small fires (5) and large fires
associated with an increase in summer burnt area and natural fires (7).

3.1. Characterization of pyroregions based on environmental and human variables
The inclusion of climate-and-human variables enables deeper insights into the characterisation of
the pyroregion (Figure 7):
Pyroregion 1: small winter fires and increased summer fire activity. It covers conifer and reforested
communities with large rainfall and moderate warm winters and low human pressure.
Pyroregion 2: low fire activity in areas with moderate rainfall, temperate winters and summers.
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Pyroregion 3: increasing winter fire incidence in shrubland communities linked to increased human
pressure, large precipitation and moderate temperatures.

Pyroregion 4: low fire activity in isolated warm regions with conifer and mixed forest.

Pyroregion 5: low fire activity increasing during summer. It covers warm and dry regions with a
variety of forest communities. Low human pressure.

Pyroregion 6: large natural fires with moderate-low human pressure, high temperature and low
rainfall; affecting the whole spectrum of forest communities.

Pyroregion 7: very low fire activity in shrubland communities.

Pyroregion 8: natural fires in warm and dry locations affecting tree communities.

4. Discussion

The proposed methodology enabled identifying 8 pyroregions providing a more complete picture
than previous attempts. We took a step further, not only by bringing in the dynamic component of fire
incidence but digging into more sophisticated zoning techniques. Our contribution further deepens into
fire features while complementing them with their main trends such as the rise in summer and winter
activity or the increase in small fires.

Pyroregion 1 Pyroregion 1 Pyroregion 1 Pyroregion 5 Pyroregion § Pyroregion 5
NS TS Broadleaf NS TS Broadieaf
BAS 80 N<tha 80 80 BA_S g N<tha
80 % 40 Conifers 2 Shrubs
P A PW » +
NS00 BA_W : NS00 BAW
. ® BrENg
8500 W 8500 W Mixed . N
N BL o ™ N BL Pl
Pyroregion 2 Pyroregion 2 Pyroregion 2 Pyroregion 6 Pyroregion 6
NS TS Broadleaf NS Broadieaf
BAS 80 Netha 80 8 BAS 50 N<tha 80
.\ 80 60 5
Conifers S Shrubs 40
40 40 o =
NS00 20 BAW L pw 5 NS00 0 BA_W 8 2 ad
8500 W Mixed 4_/ Reforested  B500 N_W
HP ™ ’ HP ™
NL  BL Dehesa LT Dehesa
Pyroregion 3 Pyroregion 3 Pyroregion 3 Pyroregion 7 Pyroregion 7 Pyroregion 7
NS TS Broadleaf ':55 TS Broadleaf
BAS 80 N<ina 88 88 BA_S N<iha 80 80
7 3 2 Conife 08 Shrubs ﬁ * Conifers 2 Shrubs
40 PS 40 W Hers <40 - PS PW
N500 20 BA_W 20 2 NS00 20 BA_ W 20
[ - 0 S o
8500 W - Mixed " Reforesteq  B500 Nw Mixed " Reforested
HP ™w
Ry BL HP ™ b NL BL Dehesa
Pyroregion 4 Pyroregion 4 Pyroregion 4 Pyroregion 8 Pyroregion 8 Pyroregion 8
N_S TS Broadieaf N_S TS Broadieaf
BA_S . 80 Nctha 80 BA_S x N<iha 3 80
?g 4 Conifers Shrubs 40 PS 40 PW
N500 2 BAW i PW b N500 20 BAW 2
8500 W Mixed Reforested 500 o Mixed Reforested
HP ™
P
NL BL # L Dehesa N 8L Dehesa

Figure 7 - Pyroregion description. Left column, fire features; center, environmental and human drivers; right, forest
communities.

When combining the resulting pyroregions with climatic and human factors, we deliver deeper
insights into what factors may be driving fire regimes. Our findings suggest coincidence between
temporal clusters of increased fire activity (except for natural fires) dominated by pine woodland and
reforestation communities (Vazquez ef al. 2015). In many areas of Spain, plantations for timber
harvesting and pine tree forests were promoted over the last decades (Pausas ef a/. 2004). This factor
is known to increase flammability in the event of favourable weather conditions (Shakesby 2011).

Regarding climatic factors, fire-prone conditions along the Mediterranean coast seem to promote
larger human-cause fires, especially during summer. However, the correspondence of climate with
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trend clusters is not clear. In this sense, the human impact (represented here as the combination of the
length of wildland-urban and wildland-agricultural, WUI-WALI interfaces and demographic potential)
seems to be more closely related with fire activity (Rodrigues and de la Riva 2014).

5. Conclusions

In this work we propose a pyrogeographical characterization of fire behaviour using averaged of
fire features and their main temporal trends in mainland Spain. We submitted fire data in the period
1974-2015 to PCA and cluster analysis.

Our findings suggest 8 different pyroregions in mainland Spain, depicting by three structural fire
regimes (high fire frequency, large-natural fires and medium size human-cause wildfires) and two
main trends (overall increase in fire activity) and decrease in the incidence of natural fires. The
implications of the delimited pyroregions play a crucial role in better understanding fire regimes in a
broad context, not only in terms of their structural patterns but also of its main trends. Moreover,
assessing the environmental and human conditions in the proposed pyroregions improved our
understanding of the underlying drivers of fire regimes.
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An analysis of wildfire frequency and burned area relationships with
human pressure and climate gradients in the context of fire regime
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Understanding fire regime is a crucial step towards achieving a better knowledge of the wildfire phenomenon.
This study proposes a method for the analysis of fire regime based on multidimensional scatterplots (MDS). MDS
are a visual approach that allows direct comparison among several variables and (ire regime [eatures so that we
are able to unravel spatial patterns and relationships within the region of analysis. Our analysis is conducted in
Spain, onc of the most firc-affected arcas within the Mediterrancan region. Specifically, the Spanish territory has
been split into three regions — Northwest, Hinterland and Mediterranean — considered as representative [ire regime
zones according to MAGRAMA (Spanish Ministry of Agriculture, Environment and Food). The main goal is to
identify key relationships between fire frequency and burnt area, two of the most common fire regime features,
with socioeconomic activity and climate. In this way we will be able to better characterize fire activity within each
fire region.

Firc data along the period 1974-2010 was retricved from the General Statistics Forest Fires database (EGIF).
Specifically, fire frequency and burnt area size was examined for each region and fire season (summer and winter).
Socioeconomic activity was deflined in terms of human pressure on wildlands, i.e. the presence and intensity ol
anthropogenic activity near wildland or forest areas. Human pressure was built from GIS spatial information
about land use (wildland-agriculture and wildland-urban interface) and demographic potential. Climate variables
(average maximum temperature and annual precipitation) were extracted from MOTEDAS (Monthly Temperature
Dataset of Spain) and MOPREDAS (Monthly Precipitation Dataset of Spain) datasets and later reclassified into
ten categories. All these data were resampled to fit the 10x10 Km grid used as spatial reference for fire data.

Climate and socioeconomic variables were then explored by means of MDS (o (ind the extent o which (ire
frequency and burnt areas are controlled by either environmental, human, or both factors. Results reveal a
noticeable link between fire frequency and human activity, especially in the Northwest area during winter. On
the other hand, in the Hinterland and Mediterranean regions, human and climate factors ‘work” together in terms
of their relationship with fire activity, being the concurrence of high human pressure and favourable climate
conditions the main driver. In turn, burned area shows a similar behaviour except in the Hinterland region,
were firc-affected arca depends mostly on climate factors. Overall, we can conclude that the visual analysis of
multidimensional scatterplots has proved to be a powerful tool that facilitates characterization and investigation of
fire regimes.
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Assessing the influence of small fires on trends in fire regime features at
mainland Spain

Adrian Jimenez-Ruano, Marcos Rodrigues Mimbrero, and Juan de la Riva Ferndandez

IUCA, GEOFOREST Group, Department of Geography and Land Management, University of Zaragoza, Zaragoza
(jimenez@unizar.es)

Small fires, i.e. fires smaller than 1 Ha, represent a huge proportion of total wildfire occurrence in the Mediter-
ranean region. In the case of Spain, around 53% of [ires in the period 1988-2013 fall into this category according
to the Spanish EGIF statistics. However, the proportion of small fires is not stationary over time. Small fires are
usually excluded from most analysis, given the chance of introducing or falling into temporal bias, being almost
mandatory in those assessments using data before the 90s. Inconsistences and inhomogeneity problems related
to the diversity of criteria and/or registration procedures among Autonomous Regions are found before that date,
although it is widely agreed that small fires arc consistently registered starting from 1988. Nevertheless, in terms
of fire regimen characterization it is important to know to what extent small fires contribute to the overall fire
behaviour.

The aim of this study is to analyse spatial-temporal trends of several fire features such as total number of
fires and burned area, number and burned area of natural and human fires, and the proportion of natural/human
causc in the period 1988-2013 at province level (NUTS3). The analysis is conducted at the mainland Spain at
annual and seasonal time scales. We are mainly interested in exploring differences in spatial-temporal trends
including or excluding small fires and dealing with them separately as well. This allows determining the extent to
which small [ires may aflect [ire regime characterization. We employed a Mann-Kendall test (or trend detection
and Sen’s slope to evaluate the magnitude of the change. Both tests were applied for each fire feature aggregated
at NUTS3 level for both autumn-winter and spring-summer seasons.

Our results show significant changes in the cvolution of annual wildfire frequency; especially strong when
small fires are accounted for. A similar outcome was observed in natural and human number fires during the
spring-summer season. The increase in number of fires seems to be reversed during autumn-winter. At seasonal
scale, the inclusion of small fires allows (o detect significant trends in all of (ire [requency [eatures, except natural
fires. In turn, neither burned area features do not significantly affect the trends through incorporating small fires.
Theretore, the inclusion/exclusion of small fires do influence observed trends mostly in terms of fire frequency.
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Assessing the influence of fire weather danger indexes on fire frequency
and burned area in mainland Spain
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Fire danger rating indexes based on weather data are a well-established way to identify favorable ignition-spread
conditions. In this study, we invesligate the association between FWI (Canadian Fire Weather Index), BI (US
Burning Index) and FFDI (Australian Forest Fire Danger Index) with [ire occurrence (N} and burnt area size (BA)
at regional level in Spain. Fire indexes were retrieved [rom the European Centre for Medium-Range Weather
Forecasts (ECMWEF) Interim Reanalysis, laler aggregaled into a Composite Fire Danger Index (CFDI) which is
calculated as the average normalized value of I'WI, BI and I'I'DI. Fire frequency and burnt area statistics were
calculated from the Spain’s General Statistics on Wildfires database.

Monthly time series (from 1979 to 2013) of CFDI, N and BA were constructed and later decomposed into
seasonal and trend components, representative of the intra-annual cycles and the temporal evolution of fire
activity, respectively. The resulting series are then compared by means of cross-correlation functions (CCF).
CCF allows identifying lags in the association between two variables. Here, we applied CCF to the decom-
posed time series of CFDI, N and BA exploring several lags (-3, -2, -1 and 0 months). Additionally, we
applied the Mann-Kendall test to the trend component so that we can detect significant trends. The proposed
mcthod was applicd using two spatial scales. In a first attempt we split Spain into three regions — Northwest
(NW), Hinterland (HL) and Mecditerrancan (MED) — providing a broader picturc. In a second stage we uscd
a morc spatial-cxplicit approach, applying CCF on a pixcl-basis (0.75x0.75%), allowing mapping corrclation valucs.

Regional results reveal a strong positive association between N, BA and CFDI for 0 and -1 lag compar-
isons. Overall, cross-correlations are greater in the HL (NI1=0=0.74, Nl=-1=0.59; BAI=0=0.60, Bal=-1=(.45)
and MED (N1=0=0.64, Nl=-1=0.48; BAI=0=0.43, Bal=-1=0.23) regions, and higher in the case of number
of fires. The NW region shows moderate correlations (NI=0=0.43, Nl=-1=0.29; BAI=0=0.50. Bal=-1=0.36)
possibly due to its dilferential intra-annual behavior, with a secondary occurrence peak during winter way
larger than the other regions. This secondary maximum is linked with human activities rather than weather
conditions, which may explain the low correlation values. In the case of the trend component an increase in
CFDI is detected. In turn, according to Mann-Kendall, N shows signiflicant and positive lrends in NW and
HL, while MED experienced decreased fire occurrence. BA showed non-significant trends in all the study area
excluding MED, with a negative trend. However, correlation values depict a different scenario than that from
the seasonal component. No association is detected in NW (N,BAl=n~20). The combination of negative trend in
N and BA and overall positive trend in CFDI produces negative correlations values (N,BAl=n<0.3). The only
region with positive association is observed in N in HL. (NI=n>0.4). We can conclude that weather conditions
control intra-annual variation of fire activity but has limited influence on long-term trends. The spatial disaggre-
gation of the CCF yields positive association of CFDI and N both for season and trend components in part of Spain.
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The role of drought length and magnitude in the temporal evolution of fire
occurrence and burned area size in mainland Spain
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Understanding the contribution of dry periods to forest fire behaviour is a key factor to determine the potential
impacts of climatc change. Several works suggest that coincident drought conditions and high temperatures
promote larger fires, which may experience increased occurrence given the more than likely growth of extreme
weather events. However, while analysing relationships between drought and burnt area is a common topic in
wildfire science, few works have dealt with their impact in fire occurrence and cause. To explore the influence
ol drought on wild(ires we computed the Standardized Precipitation-Evapotranspiration Index (SPEI). a standard
meleorological index that normalizes drought across regions and climates, recommended as a drought indicator by
the World Meteorological Organization. SPEI was used to summarize the influence of drought duration (temporal
scale of the SPEI calculation) and magnitude (value of SPEI) on fires in Spain. Our main goal was to analyse
the relationships between drought, fire frequency (N) and burned area (BA) in different scenarios of fire size (all
fires, fires above 1 Ha and fires above 100 Ha) and ignition source (natural, unintended and arson). To do so, we
constructed time scries of fire activity and SPEI at monthly Ievel. Fire data series (N and BA) were constructed
using fire records from the Spanish General Statistics on Wildland Fires database (EGIF). In turn, SPEI was
calculated at different time scales (3. 6, 12 and 24 months). Time scrics were then decomposed into scason and
trend components and submitted to correlation analysis by mcans of the Spearman’s Rho Rank Correlation test.
This procedure was conducted for each combination of temporal component, fire size, ignition source and SPEI
level to provide a deep insight into the underlying factors linked to the temporal evolution of fire activity.

Correlation outputs suggest that short-lerm droughts (SPEI 3 and 6) have more influence in lire occurrence
(N) than extended droughts (SPEI 12 and 24), in part because the laler are uncommon events. The seasonal cycles
of short-term SPEI are highly associated (o the occurrence of human-caused (unintended plus arson) large (ires
(size >100 Ha). Natural fires in the hinterland region of Spain require longer dry conditions, being more correlated
to SPEI 6 than SPEI 3, but not going any further (SPEI 12 or 24). Regarding the trend component, which is
linked to the overall temporal evolution of forest fires, the larger association is detected between natural fires
above 1 Ha and SPEI 3. On the other hand, despite showing high correlation values in some regions, change in
accidental and arson fires do not show strong association with SPEI-drought. The affected burnt area (BA) depicts
a different spatial pattern. Scasonal cycles of BA scem to be strongly associated to SPEI 24, thus with prolonged
dry conditions. This behavior is clearly displayed in the northern half and hinterland of mainland Spain. On the
contrary, the trend component of BA is more spatially diverse and dispersed across the territory, with no clear
pattern.
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