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Social contagion models on hypergraphs
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Our understanding of the dynamics of complex networked systems has increased significantly in the last
two decades. However, most of our knowledge is built upon assuming pairwise relations among the system’s
components. This is often an oversimplification, for instance, in social interactions that occur frequently within
groups. To overcome this limitation, here we study the dynamics of social contagion on hypergraphs. We develop
an analytical framework and provide numerical results for arbitrary hypergraphs, which we also support with
Monte Carlo simulations. Our analyses show that the model has a vast parameter space, with first- and second-
order transitions, bistability, and hysteresis. Phenomenologically, we also extend the concept of latent heat to
social contexts, which might help understanding oscillatory social behaviors. Our work unfolds the research line
of higher-order models and the analytical treatment of hypergraphs, posing new questions and paving the way
for modeling dynamical processes on higher-order structures.
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Network science has had a radical impact on our knowl-
edge about critical dynamics in complex systems. In par-
ticular, new and relevant phenomena arise when investigat-
ing social and biological contagion processes [1–7]. For in-
stance, while homogeneous spreading models predict finite
critical points [2,6,7], heterogeneous networks often present
vanishing transitions [1,2,6–8], supporting the predictions in
real-world networks [9–12]. Contagion models cover many
aspects, from different types to richer substrates underlying
the process itself. A relevant development is the extension of
contagion processes to multilayer networks, leading the way
to combinatorial higher-order models. Indeed, multilayers’
structural [13–17], spreading [7,14], and diffusion proper-
ties [13,18] have new and richer phenomenology. Neverthe-
less, as recently argued in Ref. [19], real data are revealing
that pairwise relationships—the fundamental interaction units
of networks—do not capture complex dependencies.

Indeed, modern messaging systems (e.g., WhatsApp, Tele-
gram, and Facebook Messenger, among others) allow users to
communicate in groups, which creates a direct channel among
all members. In other words, modern information spreading
is often a one-to-many process. Additionally, biological and
team collaborations are also inherently group structured, sim-
ilarly to some types of molecular interactions [20]. Comple-
mentary, there is evidence from social and biological studies
indicating that higher-order structures have crucial dynamical
effects [21–24]. Therefore, higher-order interactions are ubiq-
uitous, and understanding their properties and impacts is of
paramount importance. Notably, the sizes of such groups can
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span orders of magnitude. Thus, graph-projection-based ap-
proaches might not be sufficient to describe systems involving
interactions over many different scales and orders.

Combinatorial higher-order models [19] offer a way to
describe these systems as they overcome the limitations of
lower-order network models. In a first attempt, Bodó et al. [21]
proposed an SIS disease spreading in a hypergraph. Next,
Iacopini et al. [22] presented a model of social contagion
defined on simplicial complexes and provided approximate
solutions for complexes of order three. Their model presented
new phenomenological patterns associated with the critical
properties of the dynamics. However, their proposed model
is still very constrained, both structurally and dynamically.
Here we extend their model both structurally and dynami-
cally. Structurally, we adopt hypergraphs, which generalize
the concept of graphs, by allowing an edge to have an arbitrary
number of nodes (see Fig. 1 for an illustration). Hypergraphs
relax the structural restrictions required by simplicial com-
plexes as they impose virtually no limitation on the type,
size, and mutual inclusion of interactions, thus, representing
more faithfully and naturally real systems. From the dynami-
cal viewpoint, we incorporate explicit critical-mass dynamics
(each hyperedge is an independent critical-mass process),
generalizing the one modeled in Ref. [22]. The resulting
model displays a rich complex phenomenology, remaining
very flexible and able to cover a wide range of systems. We
uncover the presence of discontinuous transitions and bista-
bility led by higher-order interactions and critical-mass dy-
namics. Notably, these critical properties contrast with conta-
gion models on graphs-models, which instead usually display
continuous transitions, e.g., SIS or SIR disease spreading,
regardless of the structural configuration. Therefore, assuming
a graph projection of a hypergraph might lead to wrong
results. Here we report analytical and numerical analyses of
the theoretical framework that we introduce as well as results
for several limiting cases and hypergraph structures. We round
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FIG. 1. Graphical representation of a hypergraph. Mathemati-
cally, V = {v1, v2, v3, v4, v5, v6, v7, v8}, E = {e1, e2, e3, e4}, where
the hyperedges are e1 = {v1, v2, v3}, e2 = {v3, v4, v5, v6}, e3 =
{v6, v7} and e4 = {v8}.
off the paper by discussing several implications of our study
and, most notably, the role of critical mass dynamics in social
contagion, providing insights that could help explain reported
differences in experimental results [24–27].

Let us first introduce some formal definitions. A hyper-
graph is defined as a set of nodes, V = {vi}, where N = |V|
is the number of nodes, and a set of hyperedges E = {e j},
where e j is a subset of V with arbitrary cardinality |e j |. If
max (|e j |) = 2 we recover a graph. We remark that we do not
explore this scenario since it recovers standard models. On
the other hand, if for each hyperedge with |e j | > 2 its subsets
are also contained in E , we recover a simplicial complex
(for more on the hypergraph structure, see the Supplemental
Material [28], Sec. I). Figure 1 shows an example of a hy-
pergraph. In an arbitrary hypergraph, we associate with each
individual vi a Bernoulli random variable Yi (complementary
Xi). If the node vi is active Yi = 1 (Xi = 0), otherwise Yi = 0
(Xi = 1). To each active node, we associate a deactivation
mechanism, modeled as a Poisson process with parameter δi,

Nδi
i (Yi

δi−→ Xi). For each hyperedge, j, we define a random
variable Tj = ∑

k∈e j
Xk , which is the number of active nodes

in the hyperedge. If Tj is equal or above a given threshold,

� j , we associate a Poisson process with parameter λ j , N
λ j

j

(that is, if Tj � � j , then Xk
λ j−→ Yk , ∀k ∈ e j). In other words,

the dynamics is given by a threshold process that becomes
active only above a critical mass of activated nodes. Moreover,
if |e j | = 2, we assume directed Poisson processes, implying
that it is not a threshold process anymore. This definition
allows for recovering traditional SIS contagion models. While
the proposed model is general, allowing for arbitrary hetero-
geneity in parameters, we focus on more straightforward, but
representative, cases. We assume that δi = δ and λ j = f (|e j |),
where f is an arbitrary function of the cardinality of the
hyperedge. It is also convenient to define � = ��∗N�, where
the parameter �∗ is a real number representing the fraction of
active nodes.

The exact equation that describes the aforementioned
dynamics can be written as

dE(Yi )

dt
= E

⎛
⎝−δYi + [1 − Yi]

∑
e j∩{vi}	=∅

λ j

∑
B

1{Yi=0,Tj�� j }

⎞
⎠,

(1)

where the first summation is over all hyperedges containing
vi and the second over all the possible dynamical microstates
inside the hyperedge e j , denoted by the set B. Furthermore,
1{Tj�� j ,Yi=0} is an indicator function that is 1 if Yi = 0 and
the critical mass in the hyperedge is reached and 0 otherwise.
Naturally, the order parameter is defined as the expected
fraction of active nodes, i.e., ρ = 1

N

∑
i E(Yi).

Although Eq. (1) captures the exact process, it cannot be
numerically solved. Thus, assuming that the random variables
are independent and denoting yi = E(Yi), we obtain the first-
order approximation, given as

dyi

dt
= −δyi + λ(1 − yi )

∑
e j∩{i}	=∅

|e j |∑
k=� j

λ∗(|e j |)Pe j (K = k),

(2)

where we assume that the spreading rate is composed by the
product of a free parameter and a function of the cardinality,
i.e., λ j = λ × λ∗(|e j |). In this formulation, the expectation of
the indicator function follows a Poisson binomial distribution
(for more on this approximation, see Ref. [28], Sec. II).
Formally,

E(1{(Tj−Yk )�� j }) ≈
|e j |∑

m=� j

Pe j (K = l ), (3)

Pe j (K = l ) =
∑
A∈Fl

∏
i∈A

yi

∏
j∈Ac

(1 − y j ), (4)

where Fl is the set of all subsets of k integers from
{1, 2, . . . , n = |e j |}, A is one of those sets, and Ac is its
complementary. Intuitively, A accounts for the possibly active
nodes and Ac the possibly inactive ones. Thus, the summation
over Fl considers all possible nodal state configurations in a
given hyperedge. Equation (4) is not numerically stable if |e j |
is large [29]. Considering the discrete Fourier transform, we
obtain a numeric stable solution as [29]

Pe j (K = k) = 1

n + 1

n∑
l=0

C−lk
n∏

m=1

[1 + (Cl − 1)ym], (5)

where C = exp ( 2iπ
n+1 ), which then allows one to compute

the solution for arbitrarily large hyperedges. Interestingly,
although the whole argument is quite intricate, Eq. (5) is
simple, allowing the numerical evaluation of Eq. (2).

Our main result is that a rich and diverse phase space,
generally populated by continuous and discontinuous tran-
sitions and hysteretic behaviors, characterizes contagion on
hypergraphs. In particular, we have analytically observed
discontinuity and bistability in the order parameter on top
of some regular structures. We provide full details of the
calculations in Ref. [28] (see Secs. III and IV) for two lim-
iting cases, namely, a hypergraph composed of a hyperedge
containing all nodes in addition to (1) a random regular
network (which we call a hyperblob) and (2) a star (referred
to as a hyperstar).

For the sake of clarity, let us show the main results for
the hyperblob. In this case, we can exploit the structural
symmetries to solve ρ(λ, λ∗, δ), obtaining two locally stable
solutions. Specifically, consider a hypergraph built up as a
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homogeneous set of pairwise interactions with average degree
〈k〉 and a single additional hyperedge containing all nodes. In

this case, the order parameter can be solved as (for the full
derivations, see Ref. [28], Sec. III)

ρLower =
{

1 − δ
〈k〉λ , if λ

δ
� 1

〈k〉
0, otherwise

(6)

ρUpper = −δ + 〈k〉λ − λ∗λ +
√

4〈k〉λ∗λ2 + [δ + (−〈k〉 + λ∗)λ]2

(2〈k〉λ)
, (7)

where a second-order phase transition for ρLower is naturally obtained as λ
δ
� 1

〈k〉 [7]. Furthermore, the discontinuities can also
be calculated as

λL
c = δ

〈k〉 − �∗〈k〉 , (8)

λU
c = − δ�∗

λ∗�∗ − λ∗ + (�∗)2〈k〉 − �∗〈k〉 . (9)

Phenomenologically, a discontinuity implies that our system possesses a “social latent heat” that is released or accumulated
at a constant value of λ. More specifically, before the discontinuity, “energy” has been stored in the partial activation of the
hyperedges. At the discontinuity this “energy” is absorbed (released) at once for a constant value of λ. In fact, the social latent
heat can be expressed as

Ql
(
λX

c

) = [ρUpper(λ, δ, λ∗, N ) − ρLower(λ, δ, λ∗, N )]λ=λX
c
, (10)

where Ql (λX
c ) can be Ql (λL

c ) (energy absorbed) or Ql (λU
c ) (energy released). Therefore, for this structure, the latent heat is

expressed as

Ql
(
λX

c

) =
{

δ − λ(λ∗ + 〈k〉) +
√

[δ + λ(λ∗ − 〈k〉)]2 + 4λ∗〈k〉λ2

2〈k〉λ

}
λ=λX

c

, (11)

where λX
c can be (λL

c or λU
c ). In fact, this expression is true for

any value of λ, but its physical interpretation is valid only near
the discontinuity, which in turn depends on ρc = �∗. We refer
the reader to Ref. [28] for more details.

Figure 2 shows the general phenomenology of the sys-
tem obtained from the analytical solution, i.e., the first-order
approximation, of the equations describing the contagion
dynamics for the hyperblob. As can be seen in Fig. 2(a),

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Ql(λ
L
c )

Ql(λ
U
c )

λc

(a)

ρLower

ρUpper

ρc(Θ
∗, λ∗(|e|))

ρ�

ρ∗

0.0 λc λ
λ

0.0

0.2

0.4

0.6

0.8

1.0

Θ
∗

(b)

I

II

III

IV

V

FIG. 2. Results for the hyperblob. (a) Possible solutions for a fixed �∗ = 0.5. In red and blue are the upper and lower solutions (branches),
respectively. The transition from the lower to the upper solution (upper to lower) occurs at the intersection of the lower (upper) solution with
a value of ρc in which the upper solution became stable (unstable). The discontinuity is characterized by the latent heat, Ql (λL

c ) or Ql (λU
c ).

At λc = 0.2, the lower solution shows a second-order phase transition. (b) Schematic of the parameter space: Region I: the absorbing state
for both the lower and upper solution; Region II: only the lower solution is stable (the global critical mass is not reached, ρ < ρc); Region
III: ρUpper is stable and ρLower = 0 (below the critical point); Region IV: ρUpper > ρLower > 0 and both are stable (bistable); Region V: only the
upper solution is stable (the global critical mass was reached, ρ � ρc).
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there are two possible solutions, ρLower and ρUpper. The so-
lution depends on the initial conditions and the threshold,
�∗, which, together with the structure, defines a value ρc

where the dynamics exhibit a discontinuity. If ρ(t = 0) � ρc,
the solution is given by ρ = ρUpper (forward phase diagram).
On the other hand, if ρ(t = 0) < ρc and ρ(t = 0) 	= 0, then
ρ = ρLower (backward phase diagram). The arrows show these
solutions as the size of the jump (i.e., the magnitude of the
latent heat). Note that the lower solution can exhibit a second-
order phase transition. Next, in Fig. 2(b) we instead represent
the corresponding parameter space, which is composed of
five distinct regions, as explained in the figure caption. We
assumed the most general case, where the lower solution has
a transition from the absorbing state to an active state, here
at λc. We remark that, for some structures, the lower solution
might have a vanishing critical point (e.g., the hyperstar), i.e.,
λc → 0, thus slightly changing this picture. Finally, we have
compared both analytic and numeric estimates of the latent
heat for this hypergraph structure. The results show that the
absolute error between analytical and numerical simulations
is of order 10−2–10−3 in hypergraphs with N = 104 (see
Ref. [28], Sec. VI.E and Table I), indicating that the first-order
approximation is accurate.

Thus, generically, the solutions for a social contagion
dynamics on hypergraphs can be mathematically expressed as

ρ� =
{
ρLower if ρLower < ρc

ρUpper if ρLower � ρc
, (12)

ρ∗ =
{
ρUpper if ρUpper � ρc

ρLower if ρUpper < ρc
, (13)

where ρ� is obtained if ρ(t = 0) < ρc, and ρ∗ if ρ(t =
0) � ρc, where ρc is a global critical mass, i.e., the value
of ρ at which the discontinuity appears. As before, we note
that the lower solution (branch) might also exhibit a second-
order (continuous) phase transition, denoted by λc in Fig. 2,
from the absorbing state (ρ = 0) to the active state (ρ > 0).
Furthermore, for a given hypergraph with fixed δ and λ∗, the
discontinuity points are formally defined as

λL
c = argλ[ρLower(λ, δ, λ∗, N ) = ρc], (14)

λU
c = argλ[ρUpper(λ, δ, λ∗, N ) = ρc], (15)

thus, also defining the bistable region, (λU
c , λL

c ).
Although a closed solution for the general case is not pos-

sible, Monte Carlo simulations and numerical evaluation of
Eq. (2) are reasonable alternatives to characterize our system
(see Ref. [28], Sec. VI). Here we focus on a hypergraph with
an exponential distribution of cardinalities (i.e., the number of
nodes inside a hyperedge), P (|e|) ∼ μ exp (−μ|e|) with the
constraint that |e| � 2. Dynamically, we set λ∗ = log2(|e|).
This choice is arbitrary, but we choose here the log2(|e|) func-
tion because it grows sublinearly. Note that, if a hyperedge
cardinality goes to infinity, the average spreading value tends
to zero: lim|e|→∞

log2(|e|)
|e| = 0. The impact of such a function

is yet unknown, and we leave this analysis for future work.
Figures 3(a) and 3(b) show that the order parameter and

the susceptibility follow the patterns expected for a first-order
transition, i.e., both are discontinuous. Moreover, the order

FIG. 3. Estimation of ρ and χ using the QS method in a hyper-
graph with an exponential distribution of hyperedge cardinalities and
N = 104. The dynamical parameter are: δ = 1.0, λ∗ = log2(|e j |),
and �∗ = 0.1, 0.2. (a) The susceptibility; (b) the order parameter. We
considered two initial conditions for the QS method, ρQS (t = 0) =
0.01, darker colors, and ρQS (t = 0) = 1.00 lighter colors. (c) The
distribution of active node estimated using the QS method at λ =
0.086 and �∗ = 0.2 [the crossing between the two susceptibility
curves, in Fig. 3(a)].

parameter is bistable, implying the presence of a hysteresis
loop. This phenomenon is opposed to an SIS on a graph. The
SIS has a second-order phase transition, characterized by a
continuous behavior of the order parameter and a diverging
susceptibility in the thermodynamic limit. Complementarily,
Fig. 3(c) shows the distribution of active nodes in the upper
and lower branches. In the former, we have a bell-shaped
distribution, similar to the supercritical regime of an SIS
process [7,30]. In the latter, we have a distribution peaked
at one, similar to the subcritical regime (absorbing state) of
an SIS process [7,30]. We emphasize that Fig. 3(c) displays
the distribution of active nodes for the upper (left panel) and
lower (right panel) branches and that the complete distribution
for a given λ in a region where both solutions exist is bimodal.
Intuitively, one expects that lower cardinality hyperedges are
responsible for the lower branch as they are easier to activate
than the higher cardinality ones. Note that, in regular cases,
such as the hyperblob (see Ref. [28], Secs. III and IV),
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the giant pairwise component has N nodes. However, for
the exponentially distributed cardinality scenario, this is not
the case. Although P (|e| = 2) � P (|e| = k), k = 3, 4 . . . , N
(exponential distribution), the largest connected component, is
very small, six nodes in the simulated hypergraph. Therefore,
in this scenario, the lower branch is determined by hyperedges
with cardinality lower but greater than two. The generality
of the reported phenomenological behavior suggests that the
observed dynamics are a consequence of group-group inter-
actions. Additional experiments (reported in Ref. [28]) for
a hypergraph with a power-law distribution of cardinality
further corroborated these results. In all systems, we found
similar qualitative behavior for finite networks.

Our results are relevant because they provide a theo-
retical foundation for, and a phenomenological explanation
to, seemingly different experimental findings [24–27,31–33].
These works reported critical mass levels needed to change
an established equilibrium of 10% in some experiments and
30%–40% in others, in apparent contradiction. The formalism
here developed naturally brings forth plausible hypotheses for
these observations and show that both ranges are possible.
On the one hand, studies based on a single group suggest a
threshold between 30%–40%, a situation that can be modeled
as a single hyperedge in our formalism. On the other hand,
a critical mass of 10% would correspond to a population
that is composed of groups of diverse sizes, each one with
a (larger) activation threshold. In other words, it is possible
to have individual groups exhibiting a threshold �∗ between
30%–40%, and at the same time, a global critical mass, ρc, for
the whole population of about 10% due to group intersections.
A second reason that could explain the experimental findings
is even more straightforward: admittedly, the fact that our
model shows bistability also enables, for a given λ, two
possible solutions for ρ corresponding to the lower and the
upper branches. That is, the system might be operating in the
region where both solutions are larger than zero and stable.

In summary, in this paper, we have developed a framework
that allows extending the study of social contagion models
when group interactions are relevant. This is achieved by
considering hypergraphs as the substrates that capture such
many-to-many interactions. First, our work opens the path to
deal with new dynamical processes on top of higher-order
models and specifically on hypergraphs. Second, we showed
that simple dynamical processes could exhibit very rich dy-
namics, with different transitions, bistability, and hysteresis.
Hypergraphs are ubiquitous, and our theory suggests that
such a structure allows for the phase diagram reported here.
Several findings support the relevance of this methodology.
We remark that, depending on the structure, traditional graph-
projected models may lead to wrong results. Ultimately, the
uncovered phenomenology allows explaining seemingly con-
tradictory experimental findings in which group interactions
play a major role. We also mention that many interesting
questions arise from our work. For instance, if one assumes
that energy is proportional to ρ, our model might display
phenomena reminiscent of a Carnot cycle for social contexts,
which might help to understand abrupt changes and oscilla-
tory patterns in social behaviors.
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