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Disordered hyperuniformity in superconducting vortex lattices
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The current carrying capability of type II superconductors under magnetic fields is determined to a large
extent by the interaction of superconducting vortices with pinning centers. Vortices are arranged in lattices
with varying degrees of disorder depending on the balance between the intervortex interactions and the pinning
strength. We analyze here vortex arrangements in disordered vortex lattices of different superconducting systems,
single crystals (Co-doped NbSe2, LiFeAs, and CaKFe4As4), and amorphous W-based thin films (with critical
temperatures Tc from 4 K to 35 K and critical fields from 3.4 T to more than 90 T). We calculate for each case
the structure factor and number variance and compare to calculations on an interacting set of partially pinned
particles. We find that random density fluctuations appear when pinning overcomes interactions and show that
the suppression of density fluctuations is correlated to the presence of interactions. We discuss the results within
the framework of hyperuniform distributions and find that all studied lattices follow a similar increase of the
number variance with the defect density.

DOI: 10.1103/PhysRevResearch.2.033133

I. INTRODUCTION

Particles occupying sites of a random lattice present den-
sity fluctuations at all length scales. It has been proposed
that increasing interparticle interactions reduces long-range
density fluctuations, deviating from random behavior [1,2].
The absence of density fluctuations occurs in all ordered
lattices, including those with very-long-range order such as
moiré patterns and quasicrystals. Density fluctuations can be
described by discussing power laws in the structure factor S(k)
and the number variance σ 2(R). The term “hyperuniformity”
was coined to gather ordered as well as disordered lattices
with reduced density fluctuations [1,2]. It has been shown that
disordered hyperuniform lattices can be created by artificially
designing disordered patterns without density fluctuations at
large length scales [1–12]. It is not yet fully clear however how
to link density fluctuations with interactions in a disordered
hyperuniform system. Recently, disordered hyperuniform be-
havior has been found in the contact number between subsys-
tems of particles [7,8], although the origin of the suppressed
density fluctuations remains under debate [13].
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Here we address the behavior of vortices in type II super-
conductors. Vortices are whirlpools of currents, each carrying
a flux quantum [14,15]. They repel each other and often form
ordered lattices with intervortex distances a0 ∝ 1√

H
. Intervor-

tex interactions are screened above the penetration depth λ,
which is most often much larger than the intervortex distance
a0 [16–19]. In thin films, λ strongly increases with decreasing
thickness and vortices interact through their stray field, which
leads to a long range Coulomb-like 1

r interaction [20–22].
Vortices are pinned at defects in superconducting crystals
and these defects are often randomly distributed. How the
vortex lattice reacts to pinning depends on pinning strength
and distribution as well as stiffness of the vortex lattice and
determines the capability of type II superconductors to carry
large currents. The degree of order in superconducting vortex
lattices is determined by the balance between pinning and in-
teraction strengths and is related to the critical current [14,15].
The question we address here is to what extent intervortex
interactions can eliminate density fluctuations while allowing
the formation of a disordered lattice due to pinning. The
influence of vortex arrangements with suppressed density
fluctuations in the current carrying capability of a supercon-
ductor was analyzed theoretically in Ref. [11]. Arrangements
of vortices in cuprate superconductors at very small magnetic
fields where weak intervortex interactions are weak were
discussed in Ref. [23].

We analyze here vortex lattices in bulk superconductors
and in thin films obtained in Refs. [24–28] and provide
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additional data in a thin film. We mostly focus on lattices
with large amounts of disorder. We calculate S(k) and σ 2(R)
and discuss the power laws as a function of k and R. We
discuss data on a nanostructured W-based thin film (W-film-1)
with strong pinning and polycrystalline vortex lattice arrange-
ments that are disordered at high magnetic fields. We show
results in Co-doped 2H-NbSe2, a system with strong pointlike
pinning centers that also leads to polycrystalline hexagonal
lattices which increase the level of disorder when increas-
ing magnetic fields [25]. We discuss a W-based thin film
with weak one-dimensional (1D) disorder potential created
by the discommensuration between the vortex lattice and a
linear nanostructure. This film shows ordered vortex lattices
consistent with a Bragg glass at low magnetic fields that are
disordered at high magnetic fields (W-film-2) [24,29]. We
consider that the ordered lattices are representative of the
behavior expected in 2H-NbSe2 or other materials with well-
ordered lattices [30–34]. Finally, we discuss two iron-based
superconductors with strongly disordered lattices and strong
pointlike intrinsic pinning at all magnetic fields, LiFeAs and
CaKFe4As4 [26,27]. We find a gradual appearance of density
fluctuations with increasing disorder in the lattice that suc-
cessfully describes all studied vortex lattices.

II. METHODS

To analyze interactions in vortex lattice images we first
have to recall the meaning of the spatial dependence of the
structure factor and number variance. We show in Figs. 1(a)
and 1(b) images including matrices of points distributed
on a two-dimensional square. Points are positioned ran-
domly [Fig. 1(a)] and following a hyperuniform distribution
[Fig. 1(b)]. Both images are square and have the same size,
with area A, and the same number of points N . In a ran-
dom distribution [Fig. 1(a)], there are density fluctuations at
all length scales. In a hyperuniform distribution [Fig. 1(b)],
density fluctuations disappear at large length scales. We
have generated the hyperuniform distribution of Fig. 1(b) by
starting with points arranged in a square lattice of constant
a0 = √

A/N . We then add to each lattice point a vector �r
with random coordinates, whose absolute value r < 2a0 [inset
of Fig. 1(b)]. The result is a random distribution which is
spatially uniform for length scales larger than the intercell
distance. It is important to realize that there are no further
signatures of the ordered lattice in Fig. 1(b) other than the
large-scale uniformity.

The calculation of the number variance is very useful to
discuss density fluctuations [1,2,11]. It is given by σ 2(R) =
〈N2(R)〉 − 〈N (R)〉2, where N (R) is the number of points in-
side a circle of radius R. The variance σ 2(R) increases with R
as a power law σ 2(R) ∝ Rβ . In a random distribution of points
[Fig. 1(a)], σ 2(R) grows as the dimension (i.e., with the area,
according to the large number law) so that β = 2 [Fig. 1(c)].
On the other hand, in a hyperuniform distribution [Fig. 1(b)],
σ 2(R) grows as the dimension minus one (i.e., with the
perimeter) with β = 1 [Fig. 1(d)]. Ordered lattices provide a
strong decay for small wave vectors and an oscillating σ 2(R)
with a dip each time R is somewhat smaller than integer
multiples of the average interparticle distance [35].

FIG. 1. Set of points distributed in a 2D space, obtained by
assigning some pixels the value 1 following (a) a random distribution
and (b) a hyperuniform distribution. Note that both distributions of
points are fully disordered. In the inset of (b) we show schematically
how we created the hyperuniform distribution. We started from
a square lattice (gray crosses) with lattice constant a0 and added
to each lattice point a vector with random coordinates �r = (x, y)
and magnitude r < 2a0. This gives the distribution of black dots.
(c) and (d) Variance of the distribution σ 2 as a function of the radius
normalized to a0, calculated as explained in the text. Here σ 2(R)
follows a power law with the exponent β (red dotted line). Result
are shown for (c) the random distribution shown in (a) and (d) the
hyperuniform distribution shown in (b). The structure factor S(k)
normalized to one for large values of the reciprocal space vector k
is shown for (e) the random distribution shown in (a) and (f) the
hyperuniform distribution shown in (b). Here S(k) also follows a
power law with exponent α [red dotted lines in (e) and (f)].

To calculate the structure factor S(k) we use the Fourier
transform of the image of the vortex positions and make the
radial average over the Fourier transform. In the Fourier space,
the structure factor S(k) decreases at small k with the power
law S(k) ∝ kα . In the random distribution α = 0 [Fig. 1(e)],
while in the hyperuniform distribution α > 1 [Fig. 1(f)].
There is a relation between the exponents of S(k) and those
of σ 2(R). When 0 < α < 1, β = 2 − α, and when α > 1, β

remains locked at 1. Ordered lattices show a Bragg peak at
the reciprocal lattice wavelength and a strongly decaying S(k)
for small k.
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In the Appendix we illustrate in greater detail how to
obtain S(k) and σ 2(R). We first Delaunay triangulate all
vortex positions, eliminating missing bonds in the sides of the
image and carefully verifying that every vortex was correctly
identified, as in Ref. [24]. We then use the resulting matrix of
points to perform the calculation of S(k) and σ 2(R) and obtain
the exponents as described above (see Fig. 1). In the Appendix
we describe in detail how to calculate σ 2(R) from an image of
a disordered vortex lattice (Fig. 4 in Appendix).

As the results in W-film-1 have not been published, we
provide a few experimental details. We acquire the image in
zero-field cooled conditions at 100 mK using the system de-
scribed in Refs. [24,28,36]. The sample has been made using
a focused ion beam assisted deposition and has a composition
similar to the composition of W-film-2, which has perfectly
ordered lattices in a large range of magnetic fields, described
in Ref. [24]. The critical temperature is 5 K [37,38]. However,
contrary to W-film-2, here the substrate has strong random
thickness modulations at a length scale of about 200 nm,
which considerably enhance pinning. The vortex lattice rear-
ranges accordingly, showing a polycrystalline pattern, which
we discuss in the Appendix (Fig. 5).

We perform the numerical simulation using the following
procedure, which tries to mimic the dynamics of real vortices
as much as possible. Vortices are represented by interacting
points. We distribute N points at random on a square sample
with periodic boundary conditions. We choose N = 2000,
which is a number large enough to avoid undesirable bound-
ary effects and small enough to converge quickly under our
dynamics. We fix a certain percentage of points (between
10% and 50%) in their initial random positions, while the
rest points are free to move and tend to minimize their
potential energy. We use a 1/r interaction, which converges
faster than the usual intervortex interaction and produces
a similar spatial distribution. We do not take into account
the fact that the intervortex interaction is screened above λ,
although this should not greatly influence the comparison to
the experiment. The procedure selects a point at random and
chooses a possible new position displaced by a small distance
from the original position in a random direction. If the new
position minimizes the system energy, the point is moved to
the new position; otherwise is kept in the old position. These
energy relaxing displacements are repeated iteratively. After a
number of displacements equal to 1000 times the number of
points, changes in positions are minute, since the system has
reached a metastable state, and we stop the algorithm. Once
a final configuration has been reached, we run a Delaunay
triangulation algorithm to determine the nearest neighbors
of any point and calculate the proportion of points with a
number of neighbors different from 6, in order to be able to
compare directly with experiment. Finally, we calculate S(k)
and σ 2(R), obtaining β from the slope of σ 2(R), as discussed
previously for the experimental results.

III. RESULTS

In Fig. 2 we show our results. We start with lattices in Co-
doped 2H-NbSe2 [Figs. 2(a) and 2(b)] [25]. We find S(k) ∝ kα

with α � 1 and β = 1. We then show results in the amorphous
W-based film (W-based-1) in Figs. 2(c) and 2(d). We find a

FIG. 2. The left column shows the structure factor S(k) obtained
for vortex lattices in many different materials as a function of the
reciprocal lattice vector k in units of 2π

a0
in each image. The right

column shows the variance σ 2(R) obtained in the same materials. A
few images of vortex positions are shown between graphs. (a) and
(b) Results in Co-doped NbSe2 with data taken from Ref. [25]. The
lateral size of the images is 375 nm. (c) and (d) Results obtained in a
W-based thin film with strong pinning (W-film-1). The lateral sizes of
the images are 1700, 1000, and 750 nm. (e) and (f) Results in LiFeAs
with data from Ref. [26]. The lateral size of the images is 500 nm.
(g) and (h) Results in a highly ordered W-based thin film (W-film-2)
with a very weak 1D disorder potential, with data from Ref. [24].
The lateral sizes of the images are 1000 nm (2.5 and 3 T), 550 nm (4
and 5 T), and 500 nm (5.5 T). (i) and (j) Results in pure CaKFe4As4

from Ref. [27]. The lateral sizes of the images are 400 and 470 nm.
Points are joined by lines as a guide. We plot all data in logarithmic
scale and provide the power-law dependences with exponents α = 1
for S(k) and β as shown in the legends of the figures for σ 2(R). See
also Table I.
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TABLE I. Superconducting parameters of the systems studied
here, critical temperature Tc and critical magnetic field Hc2. Pinning
is by point defects in Co-NbSe2 [25] and by strong surface corruga-
tion in W-film-1 and is in both cases strong. In the W-film-2, there is
an extremely weak interaction between the vortex lattice and the film,
due to a weak linear nanofabricated structure [24]. In LiFeAs pinning
is by point defects [26]. In CaKFe4As4 pinning is very strong [27,39–
42]. The exponent β of the variance σ 2(R) is obtained from the
data in Fig. 2. Random behavior is characterized by β = 2 and no
crystalline order. The deviation from random towards disordered
hyperuniform is seen by β decreasing from 2 towards 1 in the
absence of crystalline order. Crystalline order shows the presence or
absence of a visible oscillating pattern in σ 2(R) (last row).

Parameter Co-NbSe2 W-film-1 W-film-2 LiFeAs CaKFe4As4

Tc (K) 5.7 4 4 17.5 35
Hc2 (T) 3.4 6.4 6.4 15 ≈90
β 1 1 1.3 1.1–1.5 1.7
oscillating σ 2(R) yes yes yes-no yes-no no

very similar behavior, with α � 1 and β = 1. Both of these
systems thus show close to hyperuniform behavior. They also
both show that there is short-range hexagonal order in all
studied images at length scales well above a0. We can see this
in the oscillations appearing in σ 2(R) close to integers of a0.
The resulting polycrystalline vortex lattices are shown in the
Appendix (Figs. 5 and 6).

In Figs. 2(e) and 2(f) we show results in W-film-2, from
Ref. [24]. At small magnetic fields, hexagonal order is nearly
perfect with just a few dislocations. This provides oscillations
close to integers of the lattice constant and β ≈ 1. When
increasing the magnetic field, the number of defects in the
lattice increases, particularly above about 4 T. The corre-
sponding angular and positional correlation functions show
the proliferation of topological defects in the lattice [24]. At
5 T the lattice has no long-range positional nor orientational
order [24]. Here we show that S(k) and σ 2(R) remain with
the same power-law dependences, with β = 1.1 and α � 1
for magnetic fields below or equal to 5 T. At 5T, although
the lattice has neither long-range positional nor orientational
order (see Ref. [24]), the length scale for orientational order
is sufficiently large to provide β ≈ 1, i.e., near disordered hy-
peruniform behavior. When reaching 5.5 T, the decay length
for orientational order goes from about five times a0 down
to a couple of a0 [24]. At the same time, the oscillations in
σ 2(R) vanish totally at 5.5 T. However, there is also a strong
deviation from hyperuniformity, with an increase of β to 1.6.
Thus, the onset of strong disorder leads to a tendency to form
a random distribution of vortices.

In Figs. 2(g) and 2(h) we show results in LiFeAs, from
Ref. [26]. The vortex lattice is highly disordered above about
2 T, with no clear hexagonal patterns observed at any length
scale. As discussed in Ref. [26], the structure factor has a
square-shaped orientational dependence, which shows that
overall there is a tendency of the vortex lattice to lock its
shape to the square crystal lattice. Note that oscillations in
σ 2(R) are much less pronounced than in other cases, although
these are clearly visible at 2 T. The coefficient α is slightly
smaller than one and β is close to one at 2 T but increases

FIG. 3. (a) Exponent of σ 2(R), β, as a function of the standard
deviation normalized by the intervortex distance SD

a0
. (b) Exponent

β as a function of the defect density. We show results (circles) for
the systems of Fig. 2, with colors similar to those in Fig. 2: Green
is Co-NbSe2, orange is W-film-1, blue is LiFeAs, red is W-film-2,
and violet is CaKFe4As4. Open circles indicate results where σ 2(R)
has an oscillatory behavior, showing the presence of hexagonal order.
Closed circles show situations with a fully disordered vortex lattice
and no oscillations in σ 2(R). Gray points show the result of the
numerical simulation discussed in the text (the gray dashed line is
a guide to the eye).

with the magnetic field. This situation is close to a disordered
hyperuniform arrangement. Note that, despite the presence of
disorder, the vortex interaction is not negligible since there
the tendency of the disordered vortex lattice is to show square
arrangements at small distances [26].

Next we analyze highly disordered vortex lattices in
CaKFe4As4, from Ref. [27]. We find [Figs. 2(i) and 2(j)] a
considerable deviation from disordered hyperuniform behav-
ior, with β close to or larger than 1.5 and α less than 1. We
find no signatures of oscillations in σ 2(R).

We summarize all results in Table I. The actual positions
of vortices in all discussed lattices are given in the Appendix
(Fig. 7). We can now plot (Fig. 3) β as a function of the stan-
dard deviation (SD) in the nearest-neighbor vortex positions
normalized to the intervortex distance a0, SD

a0
, and the density

of defects in the vortex lattice (we call a defect a vortex with
coordination number different from 6).

If we start from an ordered lattice, we are close to β = 1
and SD

a0
as well as the defect density close to zero. We see

that when there are oscillations in σ 2(R) (open points in
Fig. 3), β = 1 although the SD

a0
and the defect density can

be quite large. Notice that there are no data with β = 1 and
SD
a0

larger than about 30–40% of the intervortex distance. This
ressembles a Lindemann criterion. Above a certain fluctuation
amplitude ( SD

a0
), the ordered lattice is unstable.

When we have a randomly disordered vortex lattice, we
expect β tending towards 2 and large values for SD

a0
and of

the defect density. This indeed occurs for the fully disordered
lattices of CaKFe4As4, with LiFeAs at 11 T and with W-
film-2 at 5.5 T (closed circles in Fig. 3). For fully disordered
hyperuniform or close to hyperuniform behavior, we expect β

close to 1. Either SD
a0

or the density of defects or both should
be large. In LiFeAs at 2 T we observe β close to 1 and a small
SD
a0

but a large number of defects. As shown in Ref. [26], the
disordered lattice is locked to the crystal lattice, following its
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orientation. In W-film-2 at 5 T we observe similar parameters,
β close to 1 and a small SD

a0
but a large number of defects.

There are oscillations in σ 2(R) highlighting that orientational
order is maintained up to several a0. Thus, the appearance
of disordered hyperuniformity, or the decrease in density
fluctuations in disordered lattices, is linked to the presence of
interactions, either in the form of locking to the crystal lattice
(LiFeAs) or in short-range orientational order (W-film-2).

We have performed a numerical simulation to get low-
energy configurations of interacting vortices with a fixed pro-
portion of fixed vortices, as described in Sec. II. In Fig. 3 (gray
points) we show the results for the exponent β as a function of
the standard deviation normalized by the intervortex distance
[Fig. 3(a)] and of the defect density [Fig. 3(b)]. The agreement
with experimental results is fairly good, giving support to the
idea that the degree of hyperuniformity is associated with the
number of defects in the lattice. Numerical simulations also
serve to obtain an indication of the number of defects in terms
of the number of pinning points included in the calculation.
In the Appendix (Fig. 8) we show how these two quantities
are related. We note that the number of defects is clearly
correlated with the number of pinning sites and it is a bit
larger than the latter, especially at low densities of pinning
sites.

In vortex lattices, the number of defects is a consequence
of the balance between the pinning energy and the intervortex
interactions. For example, in LiFeAs, disorder appears rela-
tively far from Hc2, with a vortex lattice that interacts strongly
through the crystalline lattice, as shown by the fourfold sym-
metry in the structure factor discussed in Ref. [26]. This leads
to β close to 1, with a large number of defects, although
SD
a0

is maintained to relatively small values. When increasing
the magnetic field there is a strong tendency towards random
behavior. In W-film-2 with β close to 1, strong disorder
appears at 5 T (which is 0.78Hc2), although with a smaller
defect density and with enough orientational order to present
maxima in σ 2(R). At a slightly larger magnetic field, at 5.5 T
(which is 0.85Hc2), the lattice of W-film-2 yields to random
disorder and β increases to 1.5, with practically the same SD

a0
but a larger number of defects.

We note that the model produces lattices that have very
small values of SD

a0
in Fig. 3(a). These lattices do not appear in

the experiment (no points below SD
a0

� 0.1). When the vortex
lattice still has short-range positional order (open circles in
Fig. 3), β = 1. In this group of data, we have lattices that
show defects and polycrystalline arrangements (W-film-1 and
Co-NbSe2, shown in Fig. 3), as well as ordered lattices with
a very small number of defects (open red circles of W-film-
2 in Fig. 3). In the latter the positional correlations decay
exponentially with distance [24], which explains why the
SD
a0

remains above 0.1. Fully ordered hexagonal lattices (or
the vortex Bragg glass with algebraically decaying positional
correlation) provide β ≈ 1 for close to zero SD

a0
in the repre-

sentation of Fig. 3 [24,29,43–46].

IV. DISCUSSION

The vortex lattice arrangements are a consequence of the
balance between elastic and pinning energies. In Co-doped

NbSe2 and in the W-film-1 thin film, pinning is strong but
structured, leading to hexagonal vortex clusters observed at
all magnetic fields. On the other hand, in CaKFe4As4 pinning
centers are so strong and randomly distributed that the vortex
lattice is essentially randomly disordered in the whole range
of magnetic fields studied [27,39–42]. In W-film-2, where the
disorder potential is very weak, the vortex lattice is only disor-
dered when it is very soft, very close to Hc2, but then the vortex
distribution shows a strong tendency to disorder randomly,
because intervortex interactions are very weak. In LiFeAs we
have qualitatively the same behavior as in CaKFe4As4, but
with weaker pinning. Furthermore, the intervortex interaction
with nonlocal contributions due to the influence of the crystal
lattice symmetry [18,47] is still important and responsible for
decreasing density fluctuations.

The vortex lattice of LiFeAs depends strongly on the tem-
perature range where the magnetic field is applied. There are
measurements showing hexagonal vortex lattices in the same
magnetic field range [48], whereas the ones we have used
here [26] and neutron scattering experiments [49] provide dis-
ordered lattices. Notice that the disordered lattices discussed
here are locked to the crystal lattice. This is a rather peculiar
combination of long-range interaction and disorder. Locking
can be explained by nonlocal corrections to the London model
that favor a fourfold vortex lattice [18,47].

It is relevant to note that the only disordered lattices with
close to hyperuniform behavior (β ≈ 1, points in Fig. 3 corre-
sponding to LiFeAs at small magnetic fields and to W-film-2
at 5 T) have relatively small SD

a0
. In the case of LiFeAs,

data follow closely the calculations. Therefore, we expect that
fully disordered vortex lattices will not fall to the behavior
of lattices showing fluctuations in σ 2(R) as a consequence of
short-range order (open circles with β ≈ 1 in the representa-
tion of Fig. 3), but rather follow the smooth increase of β with
the amount of disorder predicted by the model.

Calculations show that the vortex glass can present dis-
ordered hyperuniformity in a range of magnetic field and
temperatures in the presence of strong repulsive interactions
and quenched disorder [11]. Those authors proposed a phase
diagram with the close to disordered hyperuniform behavior
in between the Bragg glass and the random vortex glass.
Our results confirm indeed the presence of this intermediate
state and show that it can be obtained as a balance between
interaction and pinning.

In a recent work, vortex lattices at very small magnetic
fields were analyzed in view of their hyperuniform proper-
ties. Those authors analyzed images of the high-Tc cuprate
superconductor Bi2Sr2CaCu2O8+δ with magnetic Bitter dec-
oration in the presence of disorder [23]. At small magnetic
fields, vortices are very far apart and their mutual repulsion
is small [50,51]. Vortex arrangements are then strongly influ-
enced by their interaction with pinning centers. Furthermore,
at high temperatures, close to the transition to the normal state,
the vortex lattice melts, leading to the vortex liquid which is
a dynamic tangle of vortices [52,53]. Therefore, experiments
at small magnetic fields are made by cooling from the liquid
phase, which results in quenched vortex arrangements [54].
The authors of Ref. [23] concluded that long-wavelength fluc-
tuations are systematically suppressed in the vortex lattice at
small magnetic fields, as a consequence of the hydrodynamic
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(b)(a)

FIG. 4. Example for the calculation of σ 2(R) and S(k) in a vortex
lattice image. (a) Image obtained in CaKFe4As4 at 4 T. Vortices
are the yellow colored patches. The vortex lattice is disordered.
(b) Black points show the vortex positions of (a). These are obtained
by calculating the center of mass of each white patch in (a), obtained
as described in the text. In the inset we show the Fourier transform
of the image of the vortex positions. To calculate σ 2(R), we produce
randomly located circles with varying radius R, such as those shown
schematically in different colors. Circles with the same radii are
shown in the same color.

properties of the liquid phase, which leads to deviations from
fully random vortex distributions.

V. CONCLUSION

In summary, we have analyzed the conditions for the
formation of disordered hyperuniform vortex lattices in super-
conductors at high magnetic fields. The vortex lattice shows

a tendency away from random behavior and towards hype-
runiformity when the number of pinning centers is between
30% and 40%. We find that the length scale of the interaction
plays a minor role in determining the strength of density
fluctuations. Instead, the balance between pinning and vortex
lattice stiffness controls density fluctuations, with a contin-
uous variation between density fluctuations and disorder in
the lattice. We show that the decreased density fluctuations
require intervortex interactions. We conclude that we can
identify emergent correlations in a vortex lattice using the
structure factor S(k) and number variance σ 2(R) and show
that disordered vortex lattices are characterized by suppressed
density fluctuations.
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FIG. 5. Vortex lattice in the W-film-1 thin film for different values of the magnetic field: (a) 0.03 T, (b) 0.07 T, (c) 0.09 T, (d) 0.11 T, and
(e) 5 T. Vortices are shown as black regions. Red bars are 120 nm long. The position of each vortex, identified by the method mentioned in the
text, is shown by blue dots. Vortices with fewer than five nearest neighbors are shown as green dots and with seven nearest neighbors as white
dots. Pairs of such vortices provide one dislocation. Black lines provide the Delaunay triangulation of the vortex lattice. Hexagons show the
orientation of the lattice in different parts of the images. Lattices showing different orientations are separated by yellow dashed lines.
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FIG. 6. Results in Co-doped NbSe2, from Ref. [25], for (a) 2.5 T, (b) 2.7 T, and (c) 3.3 T. We represent vortices, triangulation, lattice
orientation, and red scale bars as in Fig. 5.

FIG. 7. Vortex positions in all the images analyzed in this work.
(a) Vortex positions in Co-doped NbSe2, from Ref. [25]. (b) Results
obtained in a W-based thin film with strong pinning (W-film-1).
(c) Results in a highly ordered W-based thin film (W-film-2) with a
very weak 1D disorder potential, with data from Ref. [24]. (d) Results
in LiFeAs, obtained from data from Ref. [26]. (e) Results in pure
CaKFe4As4, from Ref. [27]. Magnetic fields are given at each panel.
Scale bars in red are 200 nm long.

PNICTEYES (Grant Agreement No. 679080). M.O. acknowl-
edges support from Fundación Séneca through Grant No.
19907/GERM/15. We also acknowledge SEGAINVEX at
UAM. R.C. acknowledges the support of a fellowship from
“la Caixa” Foundation (ID 100010434). The fellowship code
is LCF/BQ/PR19/11700008.

APPENDIX

To calculate σ 2(R) and S(k) we start by finding vortex
positions following Ref. [24]. We maximize the contrast in
the image, inserting a threshold that gives a clear view of
vortices as single colored and extended disks. We calculate the
center of mass of each disk and use this to identify the position
of each vortex. This leads to the matrix of points shown in
Fig. 4(b). We then make the Fourier transform to find S(k). To
calculate σ 2(R) we follow Ref. [11]. We generate circles of
size R centered at randomly generated positions and increase
R from the average intervortex distance a0 to nearly the size
of the image. We use two conditions. First, circles have to
be complete and within the image. Second, circles cannot

FIG. 8. Density of defects (vortices with coordination number
different from 6) vs the density of fixed points (pinned vortices) in
the matrix positions from the calculations described in the text.
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overlap. We schematically show a few circles in Fig. 4(b). In
each circle, we count N (R), the number of vortices inside the
circle, and obtain σ 2(R) = 〈N2(R)〉 − 〈N (R)〉2 by averaging
over many circles. When R is small, we obtain in one trial
many circles spanning the whole image. When R is large, we
obtain just a few circles. We make the calculation in such
a way as to increase the number of random tries giving the
center of the circles with R, taking care that we average over
at least 100 circles for all R.

In W-film-1, vortices get pinned by differences in the thick-
ness of the thin film, as described in detail in Refs. [37,55].
In Figs. 5(a)–5(e) we show results with increasing magnetic
fields in W-film-1. We see that the vortex lattice remains with
regions showing hexagonal order at all magnetic fields. We
observe that regions with different vortex lattice orientation

are separated by regions with a large number of dislocations.
The smallest ordered regions appear at relatively large mag-
netic fields. A further increase of the magnetic field towards
Hc2 leads to a disordered random configuration, shown in
Fig. 5(e), where we can still identify hexagonally ordered
regions of finite size. This lattice is accordingly still hyper-
uniform, but with a large density of defects (about 40%).

In Fig. 6 we show the vortex lattice in Co-doped NbSe2.
Regions with hexagonal order are observed at all magnetic
fields [Figs. 6(a)–6(c)] and the number of defects can be quite
large, of about 40% [25].

For completeness we show all vortex positions used to
calculate the structure factor and number variance in Fig. 2
in Fig. 7. We also show the density of defects vs the pinned
points from the model calculations in Fig. 8.
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