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The Sun is a well-studied astrophysical source of axionlike particles (ALPs), produced mainly through
the Primakoff process. Moreover, in the Sun there exist large-scale magnetic fields that catalyze an
additional ALP production via a coherent conversion of thermal photons. We study this contribution to the
solar ALP emissivity, typically neglected in previous investigations. Furthermore, we discuss additional
bounds on the ALP-photon coupling from energy-loss arguments, and the detection perspectives of this
new ALP flux at future helioscope and dark matter experiments.
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I. INTRODUCTION

Axionlike particles (ALPs) are ultralight pseudoscalar
bosons awith a two-photon vertex aγγ, predicted by several
extensions of the Standard Model (see [1,2] for compre-
hensive reviews). The two-photon coupling allows the
conversion of ALPs into photons, a ↔ γ, in external electric
or magnetic fields. In stars, this leads to the Primakoff
process, which induces the production of low mass ALPs in
the microscopic electric fields of nuclei and electrons. An
ALP flux would then cause a novel source of energy loss
in stars, altering their evolution. In this context, the stron-
gest bound comes from helium-burning stars in globular
clusters, giving gaγ < 6.6 × 10−11 GeV−1 for ma ≲ 1 keV
[3]. Another interesting possibility is the conversion in a
macroscopic field, usually a large-scale magnetic field. In
this case, the momentum transfer is small, the interaction is
coherent over a large distance, and the conversion is best
viewed as an axion-photon oscillation phenomenon in
analogy to neutrino flavor oscillations. This effect is
exploited to search for generic ALPs in light-shining-
through-the-wall experiments (see, e.g., the ALPS [4] and
OSQAR [5] experiments), for solar ALPs (see, e.g., the
CAST experiment [6,7]) and for ALP dark matter [8] in
microwave cavity experiments (e.g., the ADMX experiment
[9]). In particular, the solar ALP search in a helioscope, like

CAST, exploits the production of an ALP flux with E ∼
OðfewÞ keV via Primakoff process in the Sun core and its
backconversion into x rays in the large-scale magnetic field
of the detector. The absence of an ALP signal allows one
to get the best experimental bound on the photon-ALP
coupling, gaγ ≲ 6.6 × 10−11 GeV−1 for ma ≲ 0.02 eV [10],
comparable with the one placed from helium-burning stars.
The Sun can be a source of intense magnetic fields that

can be relevant for ALP conversions. Notably, in [11] it was
studied the possibility to trigger ALP conversions in x rays
in the intense magnetic fields of the sunspots on the Sun
surface. Observations of the Soft X-rays Telescope (SXT)
on the Yohkoh satellites allows us to obtain bounds on
gaγ ≲Oð10−10Þ GeV−1. Presumably, this bound can be
strengthened with a dedicated Sun observation by the
current NuStar satellite experiment [12]. Furthermore, even
though in the Standard Solar Models (SSMs) [13,14] the
Sun is assumed as a quasistatic environment, seismic solar
models have been developed including large-scale mag-
netic fields in different regions of the solar interior [15,16].
The presence of these B fields may trigger conversions of
the thermal photons into ALPs, creating an additional ALP
flux besides the one produced by the Primakoff conver-
sions. Some preliminary characterization of this flux has
been presented in talks [17,18]. However, a detailed
calculation is still lacking in the literature. Only recently
there appear dedicated studies of the ALP flux produced
in the solar interior via conversions in the B fields of
longitudinal plasmons [19,20] (see also [21–23]). Our work
complements these results by taking into account the
conversions into ALPs for transverse, as well as longi-
tudinal photon modes in the solar plasma.
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The plan of our paper is as follows. In Sec. II we describe
the model of the solarB fields wewill use to characterize the
photon conversions into ALPs. In Sec. III we revise the
conversions of photon into ALPs for longitudinal and
transverse modes. In Sec. IV we solve the ALP-photon
kinetic equations in order to compute the ALP production
rate, taking into account the photon absorption in the solar
plasma. In Sec. V we calculate the solar ALP fluxes from
magnetic conversions. In Sec. VIwe present a new bound on
the ALP-photon coupling gaγ from energy-loss argument
associated with ALPs emitted from photon conversions inB
fields. In Sec. VII we discuss the detection perspectives for
these fluxes. Finally, in Sec. VIII we summarize our results
and we conclude. Then follows Appendix A, where we give
details of the calculation of conversion probabilities into
ALPs for transverse and longitudinal photons; Appendix B,
where we describe the solution of the ALP-photon kinetic
equations; and Appendix C, where we present the thermal
field theory approach. We show that the kinetic and the
thermal field theory approach lead to the same ALP
production rates.

II. SOLAR MAGNETIC FIELDS

The magnetic field of the Sun is most important in three
different regions, the radiative zone (r≲ 0.7R⊙), the
exterior (convective) zone (r≳ 0.9R⊙), and the intermedi-
ate region between these two, called the tachocline
(r ∼ 0.7R⊙). Here, we are using the standard notation R⊙ ¼
6.9598 × 1010 cm for the solar radius [14]. In our work for
simplicity we assume spherical symmetry for the solar
magnetic field, described by a radial profile BðrÞ (see the
seismic model in [24] for a toroidal magnetic field).
The radiative zone (for r ≤ r0 ¼ 0.712R⊙) is character-

ized by the following profile [25]

BðrÞ ¼ Kλ

�
r
r0

�
2
�
1 −

�
r
r0

�
2
�
λ

Brad; ð1Þ

where Kλ ¼ ð1þ λÞð1þ 1=λÞλ, with λ ¼ 1þ 10r0=R⊙,
and 1 × 107 G≲ Brad ≲ 3 × 107 G. This range was deter-
mined by Couvidat et al. [16]. They used the precision on
solar sound speed and density to rule out fields with
intensity B0 ∼ 104 T and arguments on the solar oblateness
to set the upper value.
The field profile in the tachocline is simulated as

BðrÞ ¼ Bm

�
1 −

�
r − r0
d

�
2
�
; for jr − r0j ≤ d; ð2Þ

where r0 ¼ 0.712R⊙ is the center of the zone and d is its
half-width. As benchmark parameters in the tachocline we
set d ¼ 0.02R⊙, while 3×105G≲Bm≡Btach≲5×105G.
These bounds were set by Antia et al. by the observation
of the splittings of solar oscillation frequencies [26].

Similarly, the field profile in the upper layers is simu-
lated as in Eq. (2), with r0 ¼ 0.96R⊙, d ¼ 0.035R⊙, and
2 × 104 G≲ Bm ≡ Bconv ≲ 3 × 104 G. These bounds were
also set in Ref. [26], from an analysis of the Global
Oscillation Network Group. The radial profile of the solar
magnetic field described above is shown in Fig. 1.

III. PHOTON-ALP CONVERSIONS IN THE SUN

A. Photon dispersion in a plasma

The dispersion relation of a photon in a plasma has the
form [27]

ω2 − k2 ¼ πT;Lðω; kÞ; ð3Þ
where ω and k are the photon frequency and wave number
and πT;Lðω; kÞ are the projection of the photon polarization
tensor for the transverse (T) and longitudinal (L) modes,
respectively. In particular, for the energies we are interested
in, the dispersion relation for transverse photons (TP)
becomes [27]

ω2 − k2 ≈ ω2
p; ð4Þ

where

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παne
me

s
¼ 1.31 × 1018

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne

1026 cm−3

r
R−1
⊙ ; ð5Þ

is the plasma frequency, with ne the electron density, the
numerical expression referring to typical solar conditions,
in units of the solar radius R⊙.
Instead, the longitudinal mode, the so-called longitudinal

plasmon (LP), has a dispersion relation [27]�
ω

ωp

�
2

¼ 1þ 3p
mne

�
k
ωp

�
2

; ð6Þ
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FIG. 1. Profile of solar magnetic field BðrÞ as a function of the
normalized radius r=R⊙. In each region we take the following
ranges: Brad ∈ ½1; 3� × 107 G [16], Btach ∈ ½3; 5� × 105 G [26],
and Btach ∈ ½2; 3� × 104 G [26].

ERSILIA GUARINI et al. PHYS. REV. D 102, 123024 (2020)

123024-2



where p is the equilibrium pressure. In the typical con-
ditions of the solar plasma, the second term on the right-
hand side is negligible. Therefore, in the Sun the dispersion
relation for LP reduces to

ω2 ≈ ω2
p: ð7Þ

We now discuss how TP and LP mix with ALPs in a
plasma. The derivation of the equations of motion for such
a system is given in Appendix A.

B. Transverse photons

The ALP-photon interaction Lagrangian is given by [28]

L ¼ −
1

4
gaγaFμνF̃μν; ð8Þ

where a is the ALP field, gaγ is the ALP-photon coupling,
Fμν is the electromagnetic field tensor, and F̃μν ¼
1=2ϵμνρσFρσ its dual. Equation (8) is responsible for the
mixing among ALP and photons.
Transverse photons mix with ALPs only through an

external transverse magnetic field Bext ≡BT . We denote
with A⊥ and Ak the components of the vector potential A
perpendicular and parallel to BT , respectively. Assuming a
uniform magnetic field we can reduce the general 3 × 3
mixing problem into a 2 × 2 system involving only Ak and
a, described by a Schrödinger-like equation [28,29]

i∂z

�
Ak
a

�
¼ HT

�
Ak
a

�
; ð9Þ

where the Hamiltonian for the transverse modes reads (up
to an overall phase diagonal term)

HT ¼
�

ω2
p=2ω gaγBT=2

gaγBT=2 m2
a=2ω

�
: ð10Þ

The TP-ALP conversion probability after traveling a
distance z in a uniform magnetic field BT is given by [28]

PðγT → aÞ ¼ ðΔT
aγzÞ2

sin2ðΔT
oscz=2Þ

ðΔT
oscz=2Þ2

; ð11Þ

where we have introduced

ΔT
aγ ¼ gaγBT=2;

ΔT
osc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΔT

aγ
2 þ ðΔp − ΔaÞ2

q
: ð12Þ

In solar units,

ΔT
aγ ¼

gaγBT

2
;

≃ 1.2 × 10−1
�

gaγ
10−11 GeV−1

��
BT

3 × 105 G

�
R−1
⊙ ;

Δp ¼ −
ω2
p

2ω
≃ −2.46 × 1017

�
ω

keV

�
−1
�

ne
1026 cm−3

�
R−1
⊙ ;

Δa ¼ −
m2

a

2ω
≃ −1.76 × 1014

�
ma

10 eV

�
2
�

ω

keV

�
−1
R−1
⊙ :

ð13Þ

The radial behavior of these quantities in the Sun is
shown in Fig. 2. The plasma frequency has been charac-
terized taking as reference the Solar Model AGSS09 [14],
which we will use as benchmark for our estimations. For
the solar B fields we used the model of Sec. II.
Remarkably, the TP-ALP conversion probability exhibits

a resonant behavior. Indeed, it is easy to see from Eq. (11)–
(12) that the probability is maximal when Δa ¼ Δp, i.e.,
when m2

a ¼ ω2
p. In this situation the ALP dispersion

relation (dot-dashed curve in Fig. 3) matches the one of
the TP (continuous curve). From Fig. 2, one realizes that
the resonance occurs in the radiative zone at r ∼ 0.3R⊙
for ma ∼ 100 eV. Instead, the resonance in the tachocline
occurs at r ∼ 0.7R⊙ for ma ∼ 10 eV. In the following we
will take these values of ALP mass as benchmark for the
calculation of resonant ALP production. In principle, we
may have also a resonant conversion in the convective zone
at r ∼ 0.9R⊙ for ma ∼ 1 eV. However, due to the lower
local temperature and to the smaller magnetic field the
resultant ALP flux would be smaller than the previous ones
and we will neglect it hereafter.
Finally, we need to take into account that thermal

photons are continuously emitted and reabsorbed in the
Sun. This process is characterized by the transverse photon
absorption coefficient rate Γabs, defined as the inverse of the
photon mean free path λmfp. An explicit calculation of this

FIG. 2. Radial behavior of the parameters for TP-ALP con-
versions [Eq. (13)] as a function of r=R⊙.
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rate is presented in [30]. We take its numerical values,
shown in Fig. 2, from [31]. One realizes that the photon
absorption coefficient Γabs in the solar plasma is not
negligible with respect to the other oscillation parameters.
Rather, it is always larger thanΔT

aγ. Therefore, it needs to be
included in the treatment of the problem. We will account
for this effect using a kinetic approach which includes
simultaneously photon conversion and absorption in order
to characterize the ALP emission rate, as we will show
in Sec. IV.
Here we limit ourselves to a simple estimation of the

conversion probability PðγT → aÞ. First, we consider the
resonant case and we assume that the distance traveled by
the photon in the B field is equal to its mean free path
λmfp ¼ Γ−1

abs, since for larger distances the photon scatter-
ings break the coherence of the oscillations. For the photon
transverse modes the resonance occurs when m2

a ¼ ω2
p,

thus ΔT
osc ≡ ΔT

aγ ≪ Γabs as we see from Fig. 2. Therefore in
Eq. (11) we have that sin2ðΔT

oscΓ−1
absÞ=ðΔT

oscΓ−1
absÞ2 ≈ 1. Then

the TP-ALP conversion probability reads

PðγT → aÞ ≈
�
gaγBTΓ−1

abs

2

�
2

≈ 5.34 × 10−22

×

�
gaγ

5 × 10−11 GeV−1

�
2
�

BT

3 × 105 G

�
2

×

�
Γ−1
abs

0.4 cm

�
2

: ð14Þ

Next, we consider the off-resonance conversion probability.
For the photon transverse modes, when the resonance
condition does not apply we can take ma ∼ 0, so that
ΔT

osc ≈ Δp. From Fig. 2, we see that Δp ≫ Γabs, thus in
Eq. (11) we can approximate sin2ðΔT

oscΓ−1
absÞ ≈ 1=2, since

there are many photon oscillations within a mean free path
Γ−1
abs and we can just consider the average of the oscillatory

term. In this case the TP-ALP conversion probability
becomes

PðγT → aÞ ≈ 1

2

�
gaγBT=2

Δp

�
2

≈ 2.14 × 10−36

×
�

gaγ
5 × 10−11 GeV−1

�
2
�

BT

3 × 105 G

�
2

×

�
1026 cm−3

ne

�
2
�

ω

keV

�
2

: ð15Þ

Thus, the off-resonance TP-ALP conversion probability is
much smaller than the resonant one. However, the resonant
conversions involve only a small fraction of photons in a
given shell of the Sun. Therefore, a complete calculation of
the ALP flux is necessary to determine which contribution
would dominate.

C. Longitudinal photons

Longitudinal plasmons mix with ALPs in a plasma
through an external longitudinal magnetic field. There-
fore, we consider a uniform external magnetic field along
the z direction Bext ¼ BLẑ. If we take ω ≃ ωp ≃ ωa, we can
linearize the Maxwell’s equations for longitudinal modes,
obtaining [22]

i∂z

�
AL

a

�
¼ HL

�
AL

a

�
; ð16Þ

where AL is the longitudinal plasmon field and a the ALP
field and the Hamiltonian of the system is

HL ¼
�

ωp ΔL
aγ

ΔL
aγ ωa

�
: ð17Þ

Then, the LP-ALP conversion probability is [23]

PðγL → aÞ ¼ ðΔL
aγzÞ2

sin2ðΔL
oscz=2Þ

ðΔL
oscz=2Þ2

; ð18Þ

with

ΔL
aγ ¼

gaγBL

2
; ð19Þ

ΔL
osc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΔL

aγ
2 þ ðωa − ωpÞ2

q
; ð20Þ

where the numerical value of ΔL
aγ can be calculated as

for ΔT
aγ in Eq. (13). The LP-ALP conversion presents a

FIG. 3. Dispersion relation for an ALP with mass ma (dot-
dashed curve). The ALP mass was assumed large enough to
distinguish the dispersion relation from that of an ordinary photon
(dotted curve). The ALP dispersion crosses the one of the LP
(dashed curve) for ω ¼ ωp, where the resonance occurs. For TP,
the only possibility of crossing between the ALP dispersion
relation and the transverse photon one (continuous curve)
is m2

a ¼ ω2
p.
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resonance for ω ¼ ωp, when the ALP dispersion relation
(dot-dashed curve) crosses the LP one (dashed curve), as
shown in Fig. 3.
Concerning the LP absorption, in [30] it has been shown

that for these modes one finds the same expression as
for the TP absorption rate. Therefore, also in this case
Γabs ≫ ΔL

aγ. Concerning the resonant conversion probabil-
ity, one finds the same numerical expression of Eq. (14) for
the TP.

IV. ALP PRODUCTION RATE

As we have seen in the previous Section, the photon
absorption rate Γabs in the Sun is not negligible with respect
to the others oscillation parameters. Thus, TP-ALP and
LP-ALP oscillations are interrupted by collisions and
we have to face the problem of treating simultaneously
oscillations and collisions. A suitable formalism is pro-
vided by the kinetic approach developed for relativistic
mixed neutrinos in the presence of collisions [32]. This
formalism has been applied to different mixing problems,
such as the mixing of photons with hidden photons in the
Sun [30], which we closely follow in our derivation. Details
are given in Appendix B. In Appendix C, we show that
this approach is equivalent to the thermal field theory
formalism.
To begin, we present a completely general formalism,

starting from two bosonic fields A and S, which evolve
according to the linearized equation of motion

i∂t

�
A

S

�
¼

�
ωA μ

μ ωS

��
A

S

�
; ð21Þ

where ωA is the energy associated with the field A, ωS the
one associated with the field S, and μ is a mixing term that
we assume to be small with respect to the diagonal terms.
The Hamiltonian in Eq. (21) can be written as

H ¼
�
ωA μ

μ ωS

�
¼ ωA þ ωS

2
I þ

� 1
2
Δω μ

μ − 1
2
Δω

�
;

ð22Þ

where Δω ¼ ωA − ωS. For such a system, we can define
the oscillation frequency

Δosc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 þ Δω2

q
: ð23Þ

We consider the case in which collisions occur for the A
quanta (i.e., the photons in our case). We assume that the
field A interacts with the medium, namely with the solar
plasma, which can absorb a quantum with rate Γabs and
produce one with rate Γprod. The equations of motion for
such a system, described by the density matrix ρ, are the
Liouville equations [32]

_ρ ¼ −i½H; ρ� þ 1

2
fGprod; I þ ρg − 1

2
fGabs; ρg; ð24Þ

where

Gprod ¼
�Γprod 0

0 0

�
; Gabs ¼

�Γabs 0

0 0

�
: ð25Þ

We remind the reader that the diagonal components of
the density matrix contain the occupation numbers of A and
S quanta, while the off-diagonal components take into
account the coherence between these two states. Note that
in Eq. (24) the commutator on right-hand side describes
the dynamical evolution of the system while the anticom-
mutators correspond to the collisional terms. In thermal
equilibrium Γprod ¼ e−ωðkÞ=TΓabs and the S type particles
are not excited, while we assume that the A type particles
obey the Bose-Einstein statistics fBE ¼ ðeωðkÞ=T − 1Þ−1,
where ωðkÞ is the photon energy. A nonequilibrium
situation is described with a small deviation δρ from the
thermal equilibrium state ρeq. In this limit one finds a steady
state solution for the S quanta production rate

Γprod
S ≡ _nS ¼

Γμ2

ðωA − ωSÞ2 þ Γ2=4
1

eωðkÞ=T − 1
; ð26Þ

with Γ ¼ ð1 − e−ωðkÞ=TÞΓabs, i.e., the total collisional rate.
For simplicity of notation we will denote ωðkÞ≡ ω,
implying its dependence on the photon moment k. From
Eq. (26) we obtain that the A − S mixing process is
resonant; i.e., it is maximal for ωA ¼ ωS. The result in
Eq. (26) is completely general and it is valid both at
the resonance and off resonance, since it was obtained
under the only assumption that the mixing term μ is small
relatively to the diagonal terms ∼Δω. This condition
always applies in the solar plasma, for both TP and LP.
Thus, we can adopt Eq. (26) to describe the TP-ALP and
LP-ALP conversion rates.

A. Photon transverse modes

The Hamiltonian for TP-ALP system in Eq. (10) can be
written (up to a term proportional to the identity matrix) as
in Eq. (22)

HT ¼
�
q=2 ΔT

aγ

ΔT
aγ −q=2

�
; ð27Þ

where here q ¼ ðω2
p −m2

aÞ=2ω. Thus, with the substitu-
tions μ → Δaγ and Δω → q, from Eq. (26) we obtain the
TP-ALP conversion rate

Γprod
a ¼

�
ΓΔT

aγ
2

ðΔp − ΔaÞ2 þ Γ2=4

�
1

eω=T − 1
: ð28Þ
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The expression in Eq. (28) is valid both on resonance and
off resonance and we will use it to estimate the ALP flux
expected at Earth arising from these conversion processes.

B. Photon longitudinal modes

The Hamiltonian for LP-ALP system in Eq. (17) can be
written as in Eq. (22)

HL ¼
�Δ=2ω ΔL

aγ

ΔL
aγ −Δ=2ω

�
; ð29Þ

where in this case Δω ¼ ωp − ωa. If we insert this
expression of Δω and we replace μ → ΔL

aγ in Eq. (26)
we obtain the LP-ALP conversion rate

Γprod
a ¼

�
ΓΔL

aγ
2

ðωp − ωaÞ2 þ Γ2=4

�
1

eω=T − 1
: ð30Þ

Contrarily to the photon transverse modes, the expression
in Eq. (30) is valid only on resonance, since it is based
on the evolution of on shell LPs; i.e., it is obtained
assuming that ω ∼ ωp ∼ ωa and it is not applicable for ω
very far from ωp. On the other side, a general result free of
these limitations has been recently obtained in [19,20] from
a thermal field theory calculation (cf. Appendix C). We
checked that on resonance this latter result [see Eq. (C16)]
agrees with our previous one.

V. SOLAR ALP FLUXES

The solar ALP flux on Earth is given by [33]

dNa

dt
¼ g

4πD2
⊙

Z
d3r

d3k
ð2πÞ3 Γ

prod
a ; ð31Þ

whereD⊙ ¼ 1.49 × 1011 m is the Earth-Sun distance, Γprod
a

is the ALP production rate expressed by Eq. (26), the factor
g is the number of the photon polarization states (g ¼ 1 for
LP and g ¼ 2 for TP), and the integral is performed over the
photon momenta k and over the solar volume. From
Eq. (31) we recover the differential ALP spectrum expected
at Earth

dΦa

dω
¼ g

ð2πÞ3D2
⊙

Z
R⊙

0

drr2
Z

dΩkω
2Γprod

a ; ð32Þ

where we assumed relativistic states ω ≈ k and Ωk is the
solid angle around the direction of photon momentum k. In
the following we will perform the radial integral over the
SSM AGSS09 [14]. We now focus on the estimation of the
ALP flux at Earth from different conversion processes in
the solar magnetic fields for TP and LP modes.

A. Flux from TP-ALP conversions

The TP-ALP conversion process is dominated by the
resonance, where the TP-ALP conversion probability
[Eq. (11)] is maximal. Due to the extremely peaked nature
of the resonant condition, we can approximate the ALP
production rate [Eq. (28)] with a delta function

Γprod
a;T ≈ 2πΔT

aγ
2δðΔp − ΔaÞ

1

eω=T − 1
;

≈
π

2
ðgaγBTÞ2δ

�
ω2
p −m2

a

2ω

�
1

eω=T − 1
: ð33Þ

If we insert the last expression in Eq. (32), we note that the
integration over the solar volume gives

Z
drδðqÞ ≈

���� dqdr
����
−1

res
¼ 2ω

���� dω
2
p

dr

����
−1

res
: ð34Þ

To evaluate the above expression, we model the electron
density in the region r≲ 0.8R⊙ with a simple exponential
form

ne ¼ n0ee−r=Re : ð35Þ

The best fitting parameters for the solar model AGSS09 are

Re ¼ R⊙=9.89; ð36Þ

n0e ¼ 1.11 × 1026 cm−3: ð37Þ

We thus find

���� dω
2
p

dr

����
−1

res
¼ 1

m2
a

���� d ln nedr

����
−1

res
¼ 1

m2
a
Re: ð38Þ

Furthermore, we notice that in the case of resonance
ΔT

osc ≡ ΔT
aγ ≪ Γabs (see Fig. 2). Therefore, during the

resonance the photons are continuously rescattered such
that information about their polarization is lost. The photon
trajectories can form any angle with the magnetic field B.
Since the photon trajectories are not straight, this angle is
not correlated with the magnetic field direction and the
photon polarization. Therefore, we have to perform a
local angular average in the resonance shell before per-
forming the integral in dΩk of Eq. (32). For a generic
photon polarization, the BT strength entering the conver-
sion probability is

BT ¼ jBðzÞ · ϵ̂j ¼ jBðzÞ sin ϑðzÞ cosφj; ð39Þ

where z is the position vector of the resonance region in a
particular direction ẑ, ϵ̂ is the photon polarization vector
(jϵ̂j ¼ 1, ϵ̂ × ẑ ¼ 0), ϑ is the angle between the magnetic
fieldBðzÞ and the photon propagation direction x̂ and φ the
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angle between BT (the component of the magnetic field
perpendicular to z) and ϵ̂. We define

hB2
Ti ¼ jBj2

Z
dφ
2π

dΩϑ

4π
sin2ϑcos2φ ¼ 1

3
jBj2: ð40Þ

Therefore, in Eq. (33) we should substitute B2
T → hB2

Ti ¼
jBj2=3.
Finally, the ALP flux spectrum from resonant conver-

sions in the solar magnetic field is obtained inserting
Eqs. (34)–(40) into Eq. (32), obtaining

dΦa;T

dω
¼ 1

3πD2
⊙

�
gaγjBðrresÞj

ma

�
2

r2resRe
ω3

e
ω

Tres − 1
; ð41Þ

where rres is the position in the Sun where the resonance
condition occurs for the fixed value of ma and Tres is the
temperature at the same position.
Let us first consider the ALP spectrum for the resonance

in the tachocline at r ∼ 0.7R⊙, where ma ∼ 10 eV and
B ∼ 3 × 105 G, where the homogeneous B field has its
peak, as shown in Fig. 1. An analytic approximation to the
solar ALP spectrum is provided by a fit with the three-
parameter function [33]

dΦa;T

dω
¼ g210C

�
ω

ω0

�
α

e−ðαþ1Þ ω
ω0 ; ð42Þ

where C is a normalization constant, the energy ω is
expressed in keV, and ω0 is an energy scale with the
property ω0 ¼ hωi. Numerical values of C, α and ω0 are
shown in Table I.
We can obtain the total ALP flux Φa;T from resonant

conversions in the solar magnetic fields expected at Earth
by integrating Eq. (41) [or equivalently Eq. (42)] over the
energies ω. Using Eq. (42) and the fit parameters in Table I
we obtain the following flux quantities for ma ¼ 10 eV

Φa;T ¼ 2.48 × 1010g210 cm−2 s−1; ð43Þ

hωi ¼ 0.6 keV; ð44Þ

La;T ¼ 1.51 × 10−5g210L⊙; ð45Þ

whereLa;T is theALP luminosity,L⊙¼3.8418×1033 ergs−1

is the Sun luminosity and g10 ¼ gaγ=10−10 GeV−1.

We now focus on the resonant production at r ∼ 0.25R⊙,
i.e., the one with ma ¼ 130 eV. Here we present results
obtained assuming B ¼ 3 × 107 G. We find the following
flux quantities

Φa;T ¼ 1.63 × 1014g210 cm−2 s−1 keV−1; ð46Þ

hωi ¼ 2.76 keV; ð47Þ

La;T ¼ 0.2g210L⊙: ð48Þ

Finally, if we are far from resonance we can assume
ma ≈ 0. In this case ΔT

osc ≈ Δp ≫ Γabs, as shown in Fig. 2.
Thus, the rate in Eq. (28) reduces to

Γprod
a;T ≃ Γabsð1 − e−ω=TÞ ΔT

aγ
2

ðω2
p=2ωÞ2

1

eω=T − 1
: ð49Þ

If we insert Eq. (49) in Eq. (32) and we integrate over the
solar profile, then we obtain the ALP flux spectrum at Earth
from off-resonant production. In this case the direction ϑ
between the fieldB and the photon direction of propagation
does not change during the conversions, since many
oscillations occur into a single photon mean free path.
However, the azimuthal angle φ between the transverse
field BT and the photon polarization ϵ̂ would change. Thus,
we perform an average over φ before the integral over dΩk
in Eq. (32), i.e.,

Z
dΩk

Z
2π

0

dφ
2π

jBj2 sin2 ϑðxÞ cos2 φ ¼ π
4

3
jBj2: ð50Þ

The dominant contribution for the off-resonant flux
comes from the radiative zone, since here the B-field
amplitude reaches the highest value. Taking the peak value
B ¼ 3 × 107 G we find the following flux quantities for
nonresonant ALP spectrum flux

Φa;T ¼ 5.2 × 109g210 cm−2 s−1; ð51Þ

hωi ¼ 3.15 keV; ð52Þ

La;T ¼ 1.92 × 10−8g210L⊙: ð53Þ

We report in Table I the fitting parameters of the energy
spectrum of Eq. (42) for the three cases we considered.
In Fig. 4, we compare the fluxes from TP-ALP conversions
in solar magnetic fields. As expected, we see that the non-
resonant contribution is always subdominant with respect
to the resonant ones. The band width in each flux con-
tributions represents the uncertainty coming from the
magnetic field models, as shown in Fig. 1.

TABLE I. Parameters of the solar ALP spectrum for different
values of ma.

ma (eV) C ω0 (keV) α

10 9.4 × 1011 0.61 2.46
130 1.36 × 1015 2.80 2.47
0 8.3 × 1010 3.15 3.16
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B. Flux from LP-ALP conversions

The ALP production rate for LP-ALP conversions in the
solar magnetic fields is given in Eq. (30). Since the largest
contribution arises from conversions in the radiative zone,
we will present results just for the largest value of the B
field in this region, i.e., B ¼ 3 × 107 G. Also in the case of
LP-ALP conversions the process is extremely peaked
around the resonance, thus we can approximate Γprod

a;L with
a delta function

Γprod
a;L ≈ 2πΔL

aγ
2δðωp − ωaÞ

1

e
ω
T − 1

: ð54Þ

In the case of LP there is just one projection of the magnetic
field which is longitudinal to the photon propagation
direction, i.e., BL ¼ jB cos ϑj. Then, in the resonant shell
we should average

hB2
Li ¼

Z
dΩϑ

4π
jBj2 cos2 ϑ ¼ 1

3
jBj2: ð55Þ

If we insert this expression in Eq. (32) we obtain the ALP
flux from LP-ALP conversion in the Sun

dΦa;L

dω
¼ 1

12πD2
⊙
r2res

ω2g2aγjBðrresÞj2
eω=T − 1

1

jω0ðrresÞj
; ð56Þ

where rres is the position in the Sun where the resonance
ω ¼ ωp occurs, jω0ðrresÞj ¼ jdωp=drj computed at r ¼ rres
and we have denoted with ω ≈ ωa ≈ ωp the ALP and
photon energies. The result in Eq. (56) agrees with the one
recently obtained in Ref. [20]. Using Eq. (38), the deriva-
tive in Eq. (56) can be expressed as

���� dωp

dr

����
−1

res
¼ 2Re

ωp
: ð57Þ

Adopting the SSM AGSS09 [14] to compute the plasma
frequencies we obtain the ALP flux spectrum shown in
Fig. 5. The flux shows a peak at ω ∼ 0.12 keV. The flux
quantities are found to be

Φa;L ¼ 2.18 × 1010g210 cm−2 s−1; ð58Þ

hωi ¼ 0.13 keV; ð59Þ

La;L ¼ 3.34 × 10−6g210L⊙: ð60Þ

VI. ENERGY-LOSS BOUNDS

We now discuss the phenomenological consequences of
these solar ALP fluxes. We start considering the possibility
to place a new bound on ALP-photon coupling gaγ based on
the ALP emissivity from photon conversions in B fields.
On the basis of the energy-loss argument one can set a
bound on the coupling gaγ imposing the condition [34]

La ≲ 0.03L⊙; ð61Þ

which is obtained from the combination of helioseismology
(sound speed, surface helium and convective radius) and
solar neutrino observations. Assuming the usual ALP
emission by Primakoff process, whose estimated luminos-
ity is La ¼ 1.8 × 10−3g210L⊙ [33], the quoted bound is
gaγ ≲ 4.1 × 10−10 GeV−1. Now we consider the case of
the ALP flux from resonant conversions for masses
ma ∼Oð100Þ eV. Using the luminosity associated with
this flux we can set the upper limit on gaγ as shown in
Fig. 6 where the blue region is the excluded one in the
parameter space ðma; gaγÞ by resonant processes in the
radiative zone of the Sun assuming a field with amplitude

FIG. 4. Comparison between the fluxes from TP-ALP con-
versions in solar magnetic fields for resonant conversions in the
tachocline for ma ¼ 10 eV (continuous curve), in the radiative
zone for ma ¼ 130 eV (dashed curve) and non-resonant case
for ma ¼ 0 (dotted curve). The bands width reflects the un-
certainty related to the B-field models (see Fig. 1). The largest
contribution is given by the resonant production. We assume
gaγ ¼ 5 × 10−11 GeV−1.

FIG. 5. ALP flux expected at Earth from LP-ALP conversions
in the solar magnetic field of the radiative zone (B ¼ 3 × 107 G).
The flux was computed assuming gaγ ¼ 5 × 10−11 GeV−1.
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Brad ¼ 3 × 107 G. The orange region is the excluded one
by the same process, assuming a field with amplitude
Brad ¼ 1 × 107 G. In particular,

gaγ ≲ ð3.8 − 11.2Þ × 10−11 GeV−1;

for 100 eV≲ma ≲ 140 eV: ð62Þ
This new bound is even more stringent than the constraint
derived from Helium burning stars in GCs, gaγ < 6.6 ×
10−11 GeV−1 [3]. For ALP masses outside the previous
range, the bound worsens, as shown in Fig. 6. For instance,
for ma ∼ 30 eV we obtain a limit comparable with the one
from the Primakoff process. For conversions of TP in the
case of ma ∼ 10 eV and ma ¼ 0 and for the LP conver-
sions, the associated ALP luminosity is much smaller than
the Primakoff one, as results from Eqs. (45) and (60),
respectively. Therefore, the contribution to the energy loss
is subleading with respect to the Primakoff process.

VII. DETECTION PERSPECTIVES

In order to assess the possibility to detect the solar ALP
fluxes from conversions in B fields we show in Fig. 7 the
different ALP fluxes from conversions in B fields and
we compare them with the Primakoff flux (dotted curve,
see, e.g., [35] for a recent calculation), which represents
a benchmark for experimental searches on solar ALPs.
Starting from the ALP flux from TP conversions, we see
that for ma ∼ 10 eV the ALP flux (continuous curve) is
peaked at energies below the CAST threshold [33]
(ω < 2 keV), shown as vertical line in the figure. There
are plans to lower the threshold in the sub-keV region in
the future helioscope IAXO [36]. However, masses larger
than ma ∼ 1 eV are not accessible even to this experiment.
For these large masses, the coherence of ALP-photon

conversions in the magnetic field of the helioscopes is lost
and consequently the sensitivity is rapidly reduced. In
principle, there are ideas for a new class of helioscopes, like
the proposed axion modulation helioscope experiment,
which could be sensitive to ALPs with masses from a
few meV to several eV, thanks to the use of a time
projection chamber [37]. Studies for low mass weakly-
interacting massive particles (WIMPS) are already being
carried out by the TREX-DM experiment [38,39], which is
taking data at the Canfranc Underground Laboratory [40].
The project aims at demonstrating the feasibility to reach
low backgrounds at low energy thresholds for dark matter
searches, which require similar detection conditions as
for ALPs.
Concerning the ALP flux coming from resonant TP-ALP

conversions in the radiative zone of the Sun, corresponding
to an axion mass ma ∼ 130 eV (short-dashed curve), the
flux is expected to be much larger than the Primakoff one
above the CAST threshold. However, CAST cannot detect
it due to the loss of coherence of ALP-photon conversions
in the detector. In principle, ALPs with mass ma ∼ 100 eV
could be detected with a dark matter detector like the
Cryogenic Underground Observatory for Rare Events
(CUORE), which exploits the inverse Bragg-Primakoff
effect to detect solar axions [41]. CUORE is expected to
cover a mass range ma ≲ 100 eV. Notice, that for ma ≥
10 eV there are some cosmological constraints to be taken
into account. Indeed, the ionization of primordial hydrogen
(xion) from ALPs decaying into photons sets the bound
gaγ ≲ 5 × 10−13 GeV−1 for ma ∼ 102 eV [42]. However, in
cosmological models with low-reheating temperature these

FIG. 6. The blue region is the excluded one in the parameter
space ðma; gaγÞ by resonant processes in the radiative zone of the
Sun assuming a field with amplitude Brad ¼ 3 × 107 G. The
orange region is the excluded one by the same process, assuming
a field with amplitude Brad ¼ 1 × 107 G. The horizontal black
lines represent the bound set by the helium burning stars and by
Primakoff ALP emission in the Sun.

FIG. 7. Contributions from all ALP fluxes from the Sun. The
dotted line represents the Primakoff flux. The continuous and the
short-dashed blue lines are the flux from the resonant conversion
in the solar magnetic fields for an axion massma ¼ 10 eV (in the
tachocline) and ma ¼ 130 eV (in the radiative zone), respec-
tively. The long-dashed curve represents the ALP flux from non-
resonant conversions of TP modes. The dot-dashed line is the flux
from the LP-ALP conversions. The vertical line is the CAST
energy threshold. The bands width represents the uncertainty
associated with the magnetic field model, as shown in Fig. 1.
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bounds can be easily evaded (see, e.g., [43] for a dis-
cussion). On the contrary, our ALP signal from the Sun is
not affected by the cosmological model. Therefore, its
possible detection would also point towards a nonstandard
cosmological scenario.
Moving now to the case of the nonresonant conversions

of TP modes (ma ¼ 0, long-dashed curve) we realize that
this contribution can reach a few % of the Primakoff
process in the same energy range. In case of a positive
detection of an ALP flux in a future helioscope, precision
spectral studies in principle might determine it as an excess
with respect to the expected Primakoff flux.
Finally, the case of the ALP flux from LP-ALP con-

versions (dot-dashed curve) has been recently discussed in
Ref. [20]. There, the authors suggest the possibility of
detecting ALPs from LP conversions in the energy range
10−2 keV≲ ω≲ 10−1 keV through an upgraded version of
IAXO [36]. They forecast to have a sensitivity down to
ma ≃ 10−2 eV. We address the interested reader to this
interesting and detailed work for further details.

VIII. CONCLUSIONS

We have characterized the ALP production in the large-
scale solar magnetic fields and discussed the perspectives
for their detection in helioscopes and dark matter detectors.
In particular, we have characterized both resonant and non-
resonant conversions of transverse photons, which have not
been taken into account so far. At this regard, we have
considered realistic models for the solar B field in the
radiative zone and in the tachcoline of the Sun. We first
studied the problem from a theoretical point of view, using
a kinetic approach based on the evolution of the density
matrix for the photon-ALP ensemble. With this approach,
we estimated the production rate of ALPs in the Sun and we
used it to estimate the ALP flux expected at Earth. The
expression of the ALP production rate obtained in this way
is completely general and has been specialized to study
ALPs production from both LP and TP conversions.
In the case of the ALP flux from LP-ALP conversions,

we reproduce the result recently obtained in [19], using the
thermal quantum field theory approach. This flux results
peaked at E ∼ 100 eV, and might be detectable with an
upgraded version of IAXO [20]. The ALP flux from TP
conversions, for ALPs with mass ma ∼ 10 eV, associated
to resonant conversions in the tachochline, is found to be
peaked below the CAST threshold. A dedicate investiga-
tion is necessary to assess the experimental possibility to
detect such a low-energy flux. Conversely, the ALP flux
arising from transverse photon-ALP conversions for ALPs
with mass ma ∼ 100 eV in the radiative zone, is dominant
above the CAST threshold and it is larger that the Primakoff
one. In principle, this flux might be detected using the dark
matter detector CUORE. Furthermore, this ALP flux allows
us to improve the bound on gaγ from energy-loss in the Sun,
even exceeding the bound from helium-burning stars in

globular clusters. The ALP flux from nonresonant con-
versions of TP modes can reach a few % of the Primakoff
process in the same energy range. Therefore, it might
produce a distortion of this flux, possibly producing
observable signatures in the case of a precise measurement
of the solar ALP spectrum.
In conclusion, our work completes the recent studies of

Ref. [19,20] about the production of ALPs in the solar
magnetic fields via longitudinal plasmons, including also
the analysis of the photon transverse mode. Despite
challenges in measuring this flux, it is intriguing to realize
that the Sun can be the source of additional ALP fluxes
beyond the well-studied one from Primakoff conversions.
A positive measurement of this flux would shed new light
not only on ALPs, but also on the magnetic field in the Sun.
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APPENDIX A: PHOTON-ALP MIXING
IN A PLASMA

Let us now consider an ALP-photon system in a plasma.
We start from the Lagrangian of a photon coupled with the
pseudoscalar field a, i.e., the ALP field

L ¼ −
1

4
FμνFμν þ 1

2
ð∂μa∂μa −m2

aa2Þ

−
1

4
gaγaFμνF̃μν þ JμAμ; ðA1Þ

where gaγ is the axion-photon coupling, Jμ is the electro-
magnetic current, Aμ is the vector potential, Fμν is the
electromagnetic field tensor, and F̃μν ¼ 1=2ϵμνρσFρσ its
dual. From Eq. (A1) one recovers Maxwell’s equations

∂μFμν ¼ Jν þ gaγF̃μν∂μa;

ð□þm2
aÞa ¼ −

1

4
gaγFμνF̃μν;

∂μF̃μν ¼ 0: ðA2Þ

1. Transverse modes

Transverse modes are characterized by an electric fieldE
transverse to the photon momentum and a magnetic field B
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transverse to both. We consider a strong external magnetic
field Bext such that the total field is B ≈Bext. According to
the discussion of Sec. III A the photon dispersion relation
for TP is

ω2 ¼ k2 þ ω2
p; ðA3Þ

where ωp is the plasma frequency. For the purpose of our
discussion we rewrite just three Maxwell’s equations
[Eqs. (A2)] in a nonexplicitly covariant form

∇ · E ¼ ρe − gaγBext ·∇a;

∇ ×Bext − ∂tE ¼ −gaγBext∂taþ J;

ð□þm2
aÞa ¼ −gaγBext · ∂tA; ðA4Þ

where ρ ¼ −ene is the electron charge density, A is the
time-varying part of the vector potential for the external
magnetic field and □ ¼ ∂2

t −∇2. Note that we are con-
sidering only the electrons in plasma equations, since we
are assuming that ions provide a uniform background
which does not participate in plasma motion. For the
transverse mode k · Bext ¼ 0. Thus for clarity of notation
we identify the magnetic field Bext ≡ BT to denote that it is
a transverse field. Moreover, we make the assumption that
E ≪ BT. Then, Maxwell’s equations [Eqs. (A4)] become

□A ¼ gaγBT∂ta;

ð□þm2
aÞa ¼ −gaγBT · ∂tA: ðA5Þ

We specialize our calculation to a wave of frequency ω
propagating in the z direction and we denote with A⊥ and
Ak the components of the vector potential A perpendicular
and parallel to BT , respectively. Thus the equations of
motion for the TP-ALP system become [28]

2
64ω2 þ ∂2

z þ 2ω2

0
B@

Δ⊥=ω nR 0

nR Δk=ω gaγBT=2ω

0 gaγBT=2ω −m2
a=2ω2

1
CA
3
75

×

0
B@

A⊥
Ak
a

1
CA ¼ 0; ðA6Þ

where nR corresponds to the so-called Faraday effect,
which denotes the possibility of rotation of the plane of
polarization in optically active media with a consequent
mixing of A⊥ and Ak. Moreover

Δ⊥ ¼ Δp þ ΔCM⊥ ;

Δk ¼ Δp þ ΔCM
k ;

Δp ¼ −
ωp

2ω
: ðA7Þ

The terms ΔCM⊥;k describe the Cotton-Mouton effect, i.e., the
birifrangence of fluids in the presence of a transverse
magnetic field. The vacuum Cotton-Mouton effect arises
from QED one-loop corrections to the photon polarization
when an external magnetic field is present. In this case we
define ΔQED ¼ jΔCM⊥ − ΔCM

k j and it is defined as

ΔQED ¼ 24α2

135

ρB
m4

e
ω: ðA8Þ

This QED correction is found to be negligible with respect
toΔp in the case of solar plasma. For transverse modes only
the component Ak of the vector potential couples to the
ALP. Moreover, if we neglect the Faraday effect (nR ¼ 0)
and we assume that the magnetic field is uniform, we can
reduce the general 3 × 3 problem of Eq. (A6) to the 2 × 2
system involving only Ak and a. In the ultrarelativistic
limit, i.e., for energies ω ≫ ma and ω ≫ ωp, we can
linearize Eq. (A6). As a result of linearization we obtain
a linear Schrödinger-like equation [28]

i∂z

�
Ak
a

�
¼ −ωI þ

�
ω2
p=2ω gaγBT=2

gaγBT=2 m2
a=2ω

��
Ak
a

�
:

ðA9Þ

Thus the Hamiltonian for the transverse modes reads (up to
an overall phase diagonal term)

HT ¼
�

ω2
p=2ω gaγBT=2

gaγBT=2 m2
a=2ω

�
: ðA10Þ

Finally, we obtain the TP-ALP conversion probability after
traveling a distance z in a uniform magnetic field BT [28]

PðγT → aÞ ¼ ðΔT
aγzÞ2

sin2ðΔT
oscz=2Þ

ðΔT
oscz=2Þ2

; ðA11Þ

where we have introduced

ΔT
aγ ¼ gaγBT=2;

ΔT
osc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΔT

aγ
2 þ

�
ω2
p −m2

a

2ω

�
2

s
: ðA12Þ

2. Longitudinal modes

Longitudinal modes are allowed only in presence of a
medium, that is in our discussion is the solar plasma. The
photon dispersion relation for LP is

ω2 ¼ ω2
p: ðA13Þ

In this case ∇ · B ≠ 0, thus the plasma equations of motion
and the relevant Maxwell’s equations are [22,23,44]
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∂ne
∂t þ∇ · ðnevÞ ¼ 0; ðA14Þ

∂v
∂t þ ðv ·∇Þv ¼ e

m
ðEþ v ×BÞ − 1

mne
∇p; ðA15Þ

∇ · ðEþ gaγBaÞ ¼ eðne − n0eÞ; ðA16Þ

ð□þm2
aÞa ¼ gaγaE · B: ðA17Þ

The goal is now compute the LP-ALP conversion pro-
bability, assuming that no LP absorption exists in the
plasma. In the case of longitudinal modes we have to
combine Eqs. (A14) and (A15) with Maxwell’s equations.
We consider a uniform external magnetic field along the
z direction B ¼ BLẑ and we consider the plane wave
approximation; i.e., we assume that all the fields vary as
eiðk·x−ωtÞ. Moreover, we take into account a small pertur-
bation to the electron number density

ne ¼ n0e þ δn; ðA18Þ

where n0e is the equilibrium value and δn ≪ n0. If we
finally take ω ¼ ωp ¼ ωa, i.e., the photon energy coinci-
dent with the plasma frequency and with the ALP energy,
then we can linearize Maxwell’s equations Eqs. (A16)–
(A17) for longitudinal modes, obtaining [22]

i∂z

�
AL

ak

�
¼

�
ωp gaγBL

=2

gaγBL
=2 ωa

��
AL

ak

�
; ðA19Þ

where we have introduced the fields δn ¼ ineAL and
a ¼ ωpmeak=ek. Thus the Hamiltonian of the system is

HL ¼
�

ωp ΔL
aγ

ΔL
aγ ωa

�
: ðA20Þ

The LP-ALP conversion probability is

PðγLP → aÞ ¼ ðΔL
aγzÞ2

sin2ðΔL
oscz=2Þ

ðΔL
oscz=2Þ2

; ðA21Þ

where

ΔL
aγ ¼

gaγBL

2
; ðA22Þ

ΔL
osc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ΔL

aγ
2 þ ðωa − ωpÞ2

q
: ðA23Þ

APPENDIX B: KINETIC APPROACH

In order to determine the ALP emission rate in the Sun
due to the conversions of photons in magnetic fields we
closely follow the kinetic approach developed in [30] for

the case of hidden photons. We consider the system
introduced in Sec. IV constituted by two bosonic fields
A and S. We assume that the field A interacts with the
medium, namely with the solar plasma, which can absorb a
quantum with rate Γabs and produce one with rate Γprod.
The kinetic equation for the density matrix ρ of the A − S
ensemble is given by [32]

_ρ ¼ −i½Ω; ρ� þ 1

2
fGprod; I þ ρg − 1

2
fGabs; ρg; ðB1Þ

where

Ω ¼
�
ωA μ

μ ωS

�
¼ ωA þ ωS

2
I þ

� 1
2
Δω μ

μ − 1
2
Δω

�
;

ðB2Þ

and

Gprod ¼
�Γprod 0

0 0

�
;

Gabs ¼
�Γabs 0

0 0

�
: ðB3Þ

In thermal equilibrium Γprod ¼ e−ω=TΓabs and the S type
particles are not excited, while we assume that the A
type particles obey the Bose-Einstein statistics fBE ¼
ðeω=T − 1Þ−1. A nonequilibrium situation of Eq. (B1) is
described with a small deviation δρ from the thermal
equilibrium state ρeq, thus

ρ ¼ ρeq þ δρ ¼
�
fBE 0

0 0

�
þ δρ: ðB4Þ

In Eq. (B1) the collision terms, i.e., the anticommutators,
vanish for ρeq, thus the Liouville equation reduces to

_ρ ¼ −i½Ω; ρ� − 1

2
fG; δρg; ðB5Þ

where we have introduced G ¼ diagðΓ; 0Þ, with Γ ¼
ð1 − e−ω=TÞΓabs, i.e., the total collisional rate. We can write
δρ as

δρ ¼
�
nA g

g nS

�
; ðB6Þ

where nA is the occupation numbers of A quanta, nS the
occupation numbers of S quanta, and g represents the
mixing between the two levels. If we insert Eqs. (B4)–(B6)
into Eq. (B5) we obtain the equations of motion

_nA ¼ −ΓnA − 2μImðgÞ; ðB7Þ
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_nS ¼ 2μImðgÞ; ðB8Þ

_g ¼ −
�
1

2
Γþ iΔω

�
gþ iμðfBE þ nA − nSÞ: ðB9Þ

The mixing μ is always small so basically we are never
far from the thermal equilibrium, i.e., fBE ≫ nA and
fBE ≫ nS. In this limit Eq. (B9) reads

_g ¼ −
�
1

2
Γþ iΔω

�
gþ iμfBE: ðB10Þ

Assuming the initial condition gð0Þ ¼ 0 the solution of
Eq. (B10) is then

gðtÞ ¼ 1 − e−ðiΔωþΓ=2Þt

Δω − i Γ
2

μfBE: ðB11Þ

After an initial transient, Eq. (B11) approaches the steady-
state solution

g∞ ¼ Δωþ iΓ=2
Δω2 þ Γ2=4

μfBE: ðB12Þ

If we insert this latter in Eq. (B8) we finally obtain the S
quanta production rate

Γprod
S ≡ _nS ¼

Γμ2

ðωA − ωSÞ2 þ Γ2=4
1

eω=T − 1
: ðB13Þ

From Eq. (B13) we obtain that the A − S mixing process is
resonant; i.e., it is maximal for ωA ¼ ωS. The result in
Eq. (B13) is completely general and it is valid both at the
resonance and off resonance, since it has been obtained on
the only assumption that the mixing term μ is small relative
to the diagonal terms ∼Δω. This condition always applies
in the solar plasma, both for photon TP and LP modes.

APPENDIX C: THERMAL FIELD
THEORY APPROACH

Here, we show how the equations for the axion pro-
duction rate can also be derived using the thermal field
theory approach proposed in Ref. [45]. In this formalism,
the production rate can be expressed as

Γprod ¼ −
ImΠa

ωðeω=T − 1Þ ; ðC1Þ

where the axion self-energy Πa is defined in terms of
the exact axion propagator Da through D−1

a ¼ ðk2 þ Π2
aÞ.

Making use of the axion-photon interaction, Laγ ¼
gaγð∂μaÞAνF̃

μν
ext, it is possible to formally express Πa in

terms of the exact photon propagator DðγÞ:

Πa ¼ m2
a þ g2aγpμpνF̃

μα
extF̃

νβ
extD

ðγÞ
αβ ; ðC2Þ

where p is the axion momentum. Thus, the problem
reduces to the determination of the photon propagator in
a plasma at finite temperature and in presence of an
external magnetic field. This problem is, in general, quite
difficult (see, e.g., [46]). However, in the present case we
see that the magnetic field corrections to the propagator
are small. In fact, the magnetic field insertions are of the
order of

ffiffiffiffiffiffiffiffiffiffi
eBext

p ¼ 7.7B1=2
1 eV, where B1 ¼ B=1 T. This

scale is always much lower than the temperature in the
plasma, for the conditions we are interested in. We thus
ignore these corrections and consider the photon propa-
gator expected in an isotropic medium at finite temper-
ature. This case is considerably simpler and is discussed
in several references (see, e.g., Ref. [47] for a pedagogi-
cal introduction).
The photon polarization tensor in and isotropic plasma

can be expressed in a covariant form introducing the plasma
four-velocity uμ, which in the plasma frame reduces to
ð1; 0⃗Þ, and the photon momentum vector Kμ, which in the
plasma frame reduces to ¼ ðω; k⃗Þ. Following Ref. [48], we
define the tensor

η̃μν ¼ ημν − uμuν; ðC3Þ

and the two vectors

K̃μ ¼ Kμ − ωuμ; ðC4Þ

qα ¼
1ffiffiffiffiffiffiffiffiffiffi
K2k2

p ðk2uα þ ωK̃αÞ: ðC5Þ

Notice that qα → ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
Þ−1ðjk⃗j;ωk̂Þ in the plasma

reference frame, and so it represents the unit vector along
the longitudinal direction (see, for example, [49]).1 Hence,
we can define the projection operator along the longitudinal
direction as

Qαβ ¼ −
1

K2k2
ðk2uα þ ωK̃αÞðk2uβ þ ωK̃βÞ: ðC6Þ

The orthogonal projector is defined as

Pαβ ¼ η̃αβ þ
K̃αK̃β

k2
: ðC7Þ

Notice that P andQ satisfy the properties P2 ¼ P,Q2 ¼ Q,
and ðPQÞμα ¼ ðQPÞμα ¼ 0.

1The temporal component is chosen in such a way to make it
perpendicular to K, which, because of gauge invariance, is
necessarily an eigenvector of the photon self-energy.
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With these definitions, the exact photon propagator in an
isotropic medium has the form

DðγÞ
αβ ¼ −

Pαβ

K2 − πT
−

Qαβ

K2 − πL
þ ðα − 1ÞKαKβ

K4
; ðC8Þ

where πT;L are eigenvalues of the photon self-energy
corresponding to the transverse and longitudinal direction,
while α is the gauge parameter.
We can now proceed to extract the tensorial form of the

axion self-energy from Eq. (C2). First, let us notice that
K ¼ pþ qt, where p is the axion momentum and qt ¼
ð0; q⃗tÞ is the momentum transferred from the magnetic
field. The energies of the axion and of the photon are the
same. Moreover, the axion and photon momenta have
the same direction. Thus, we can calculate the momen-

tum transfer as jq⃗tj ¼ jq⃗γj− jq⃗aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−m2

γ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−m2

a

p
.

Since jq⃗aj ∼ ω, we can assume that p⃗ ∼ k⃗, in our con-
ditions. With this simplification, the term pμF̃

μα
ext, which

appears in Eq. (C2), reduces to ð−k⃗ · B⃗;−ωB⃗Þ in the
plasma frame. Thus, we find pμF̃

μα
extqα ¼

ffiffiffiffiffiffi
K2

p
BT and

pμF̃
μα
extpμF̃

μβ
extPαβ¼ω2ðB2−B2

TÞ¼ω2B2
L, where BL;T refer,

respectively, to the direction parallel and perpendicular to
the photon momentum. Thus,

Πa;T ¼ g2aγ
ω2B2

T

K2 − πT
; Πa;L ¼ g2aγ

K2B2
L

K2 − πL
: ðC9Þ

We can now proceed to extract the imaginary parts.
For the transverse mode we find:

ImΠa;T ¼ g2aγω2B2
T

1

K2 − ReπT − iImπT
: ðC10Þ

In a nonrelativistic plasma, ReπT ¼ ω2
p. Moreover, we

should interpret ImπT ¼ −ωΓT . So, finally,

ImΠa;T ¼ −g2aγω2B2
T

ωΓT

ðm2
a − ω2

pÞ2 þ ðωΓTÞ2
; ðC11Þ

and so,

Γa;T ¼ g2aγω2B2
TΓT

½ðm2
a − ω2

pÞ2 þ ðωΓTÞ2�ðeω=T − 1Þ : ðC12Þ

For the longitudinal mode we find:

ImΠa;L ¼ g2aγK2B2
L

1

K2 − ReπL − iImπL
: ðC13Þ

In a nonrelativistic plasma, ReπL ¼ K2ω2
p=ω2. Thus,

multiplying numerator and denominator by ðω2=K2Þ, we
find

ImΠa;L ¼ g2aγK2B2
L

ω2=K2

ω2 − ω2
p − iðω2=K2ÞImπL

: ðC14Þ

We should therefore interpret ðω2=K2ÞImπL ¼ −ωΓL. So,
finally,

ImΠa;L ¼ −g2aγω2B2
L

ωΓL

ðω2 − ω2
pÞ2 þ ðωΓLÞ2

; ðC15Þ

and

Γa;L ¼ g2aγω2B2
LΓL

½ðω2 − ω2
pÞ2 þ ðωΓLÞ2�ðeω=T − 1Þ : ðC16Þ
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