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ABSTRACT 

In the present work, the effects of the peak temperature (400–550 °C), absolute pressure (0.2–0.9 

MPa), gas residence time (100–200 s) and reactor atmosphere (pure N2 or a mixture of CO2/N2) on 

the pyrolysis behavior of wheat straw pellets were investigated. A factorial design of experiments 

was adopted to assess the effects of the above-mentioned factors on the pyrolysis products, the exergy 

efficiencies related to them and to the overall process, and the heat required. The pyrolysis 

energy/exergy assessment is nowadays of great interest, for the scaling of the installations from lab-

scale to commercial-scale. Results showed that, as expected, the peak temperature was the most 

influential factor on the yields and distributions of all the pyrolysis products as well as the char 

properties related to its potential stability and pore size distribution. However, an increased pressure 

enhanced the release of the gas species at the expense of the liquid products, without altering the final 

char yield. The char exergy efficiency was negatively affected by an increase in peak temperature, 

whereas its effect on the exergy efficiency of the produced gas resulted to be positive. It was also 

found that pressurized pyrolysis favored the exergy efficiency of the process, even at relatively high 

pyrolysis peak temperature. For the biomass feedstock and the range of operating conditions studied 

here, thermodynamic irreversibilities of the pyrolysis system were considerably lowered when the 

process was conducted at 550 °C, 0.9 MPa and using a mixture of CO2 and N2 as carrier gas at 

relatively short residence times. 
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1. Introduction 

The term char  refers to a carbon-rich, fine-grained, porous substance, produced from the thermal 

decomposition of biomass under oxygen-limited conditions and at relatively low temperatures [1]. It 

is otherwise known as biochar when obtained from plant biomasses and its use is addressed to soil 

applications. Nowadays, char can be used in a wide range of applications [2], such as solid fuel, 

reductant agent, soil amendment and as a precursor for activated carbons [3]. 

Among the wide range of thermochemical processes, slow pyrolysis is a promising route to 

produce char with relatively high yields, obtaining gas as a co-product for cogeneration use. As 

already stated by Mok and Antal [4], the pyrolysis process is very complex, since it comprises both 

endothermic (i.e., evaporation and tar formation) and exothermic (i.e., formation of char and gas) 

steps. Furthermore, the global amount of energy will depend on the operating conditions considered 

for the process. Hence, energy and exergy assessments are of great interest for scaling the process up 

to a commercial scale [5]. It is important to note that the energy analysis provides the amount of 

energy required for pyrolysis, while the exergy analysis gives information about the energy quality, 

since exergy accounts for the irreversibility of the process and the maximum work that can be 

obtained [6]. In other words, exergy shows a reverse relationship with energy sustainability: a 

decrease in energy quality loss corresponds to the incline of sustainability [7]. For this reason, its 

assessment could result to be of great relevance in order to evaluate and improve the efficiency related 

to the thermochemical routes of different biomasses [8]. 

Given the high number of variables affecting the pyrolysis process and the wide range of available 

biomass sources, a large variability in the char yield and properties should be expected. Therefore, 

one of the main challenges nowadays is to optimize the process conditions of pyrolysis in order to 

obtain the most appropriate char for a given application. 

Peak temperature (also referred as highest treatment temperature) can be defined as the highest 

temperature reached during the pyrolysis process [9]. According to the general trend reported in 
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literature (see, for instance, Duman et al. [10], Di Blasi et al. [11], and Demirbaş [12]), the char yield 

decreases when the peak temperature increases, whereas the fixed-carbon content in the final char 

gradually rises with an increasing temperature [13]. 

Another process parameter widely reported in literature, which markedly affects the final char 

yield, is the gas residence time. An increase in the gas residence time (i.e., lower carrier gas flow 

rates) results in a prolonged contact between the solid and gas phases, leading to a further 

decomposition of the tarry vapors onto the solid carbonaceous matrix through secondary reactions 

such as condensation, repolymerization and thermal cracking [14]. As a consequence, the char yield 

increases at the expense of the bio-oil yield, as reported by Heo et al. [15], Akhtar and Amin [16], 

and Guedes et al. [17].  

The effect of the absolute pressure on the char properties results to be very interesting to study in 

deep. To date, relatively few studies have focused on the effect of  the absolute pressure on the char 

yield and its properties [18]. In particular, many authors such as Antal et al. [19,20], Rousset et al. 

[21], Recari et al. [22] and Qian et al. [23] reported an increase in the char and gas yields at the 

expense of the condensable fraction when both absolute pressure and gas residence time increased. 

This increase in char yield can be explained by a major role of the secondary reactions [24]. 

Nevertheless, some recent studies reported a negligible [25] or even negative effect [26] of the 

absolute pressure on the char yield. Such effect could be attributed to a certain enhancement of the 

steam gasification rate with the pressure, which results in a certain consumption of char. The 

magnitude of its influence will depend on the nature of the feedstock (since a high content in alkaline 

metals will further promote gasification) as well as the selected operating conditions in terms of vapor 

residence time, reactor configuration, and partial pressure of volatiles.  

Another important parameter that can affect the pyrolysis behavior of biomass is the type of carrier 

gas employed to maintain the oxygen-limited/free conditions [27]. The introduction of a potentially 

oxidative carrier gas such as CO2 in a pyrolysis environment is promising in terms of energy recovery 
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and ability to scale-up, since the flue gas generated by combustion of pyrolysis gas can be recycled 

into the pyrolysis process.  

Keeping all the above-mentioned considerations in mind, the aim of the present study is to analyze 

the effects of peak temperature, absolute pressure, gas residence time and type of pyrolysis 

atmosphere (pure N2 or a binary mixture of CO2 and N2, 60:40 v/v) on the pyrolysis behavior of wheat 

straw pellets in a lab-scale fixed-bed reactor. A 2-level full factorial design was adopted in order to 

study the true effects of the parameters, even considering the interaction effects among them (if any). 

In addition, energy and exergy assessments of the slow pyrolysis system were carried out in order to 

investigate the influence of the above-mentioned operating parameters on the thermodynamic 

performance. The novelty of this work lies not only in our experimental approach to simultaneously 

assess the effects of four operating conditions on the pyrolysis behavior and products properties, but 

also in the comparison of the operational efficiency (i.e., exergy balance) for several working 

conditions. To the best of our knowledge, only a few studies are found in literature reporting a 

comprehensive exergy assessment for different biomass sources at different pyrolysis temperatures 

[28], without considering any other process parameters (see, for instance, the excellent previous 

studies by Boateng et al. [29], Parvez et al. [30], and Atienza et al. [31]). Therefore, the present study 

is among the first ones to investigate the influence of the absolute pressure, which can certainly affect 

the pyrolysis exothermicity and, consequently, both the energy required for the pyrolysis process and 

its exergy efficiency. 

2. Material and Methods 

2.1 Biomass feedstock 

Wheat straw (WS) pellets (7 mm OD and approximately 12 mm long) were used as raw feedstock 

for the char production. The WS pellets were manufactured without using any binder. The as-received 

biomass was directly pyrolyzed without any preliminary milling step, in order to improve the 

carbonization efficiency, with a consequent augment of the fixed-carbon content in the final char 
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[32]. The WS pellets were characterized by proximate analysis (performed in quadruplicate according 

to ASTM standards D3173 for moisture, D3174 for ash, and D3175 for volatile matter) as well as 

ultimate analysis, which was carried out in triplicate using a combustion elemental analyzer Leco 

CHN628 (Leco Corporation, USA). The high heating value (HHV) of the feedstock was estimated 

from the ultimate analysis using the Channiwala and Parikh correlation [33]. In addition, X-Ray 

Fluorescence (XRF) spectroscopy analysis (ADVANT’XP+XRF spectrometer from Thermo ARL, 

Switzerland) was performed in order to determine the inorganic constituents of the biomass ash.  

The WS constituents were determined by leaching the biomass sample in a benzene/ethanol 

mixture, followed by a boiling step firstly in a NaOH solution, then in a H2SO4 solution. The 

description of the procedure is given in Appendix A.  

2.2 Slow Pyrolysis process 

2.2.1 Design of pyrolysis experiments 

An unreplicated 2-level full factorial design was adopted to evaluate the true effects of four factors: 

peak temperature (400–550 °C), absolute pressure (0.2–0.9 MPa), gas residence time (100–200 s) and 

type of pyrolysis environment (from pure N2 to a binary mixture of 60:40 v/v of CO2/N2, 

respectively). The heating rate and the soaking time (at the peak temperature) were kept constant 

approximately at 5 °C min–1 and 1 h, respectively. Three replicates at the center point (475 °C, 0.55 

MPa, 150 s and 30:70 v/v of CO2/N2) were carried out to estimate both the experimental error and 

the overall curvature effect [34]. A special attention was paid on the analysis of the response variables 

related to the long-term stability of produced chars. Furthermore, the factorial design was also used 

to understand how the four factors could affect the evolution of the mass-loss rate along the pyrolysis 

process. For this purpose, the percentage of mass loss, the maximum value of the time-derivative of 

mass-loss (DTGmax), the area of the devolatilization peak (Areapeak) and the temperature at which 

DTGmax is attained (Tmax) were considered as the main responses to be investigated. The structure of 

the regression model (using normalized values for factors in the range from –1 to 1) used during 

statistical analysis was the following: 
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ŷ	=	β0	+	β1T	+	β2P	+	β3τ	+	β4CO2	+	β12TP	+	β13T·τ +	β14T·CO2	+	β23P·τ	+	β24P·CO2	+	

β34τ·CO2          (1) 

where β0, βi, βij are the intercept, linear, and 2-way interaction coefficients, respectively. All the 

statistical calculations were conducted using Minitab software (v17). The estimated regression 

coefficients, the associated p-values (from t-tests) and the adjusted coefficients of determination (Radj
2 ) 

were taken as indicators of the goodness of regression models.  

2.2.2 Pyrolysis setup 

Slow pyrolysis experiments were carried out in a bench-scale fixed-bed reactor, which was already 

described in a previous work [35]. A detailed outline of the pyrolysis plant is displayed in Fig. 1. 

Blank tests (i.e., empty reactor) were carried out in order to correct the thermal expansion effects (i.e., 

buoyancy effect). They were performed at the same ranges of peak temperature (400−550 °C) and 

absolute pressure (0.2–0.9 MPa) and using the same heating program than those conducted with 

biomass.  

The temperature profiles inside the bed were measured by four thermocouples placed in two 

thermowells, located at the axis and at a radial distance of 35 mm from the axis, respectively. The 

thermocouples were placed two by two in the thermowells, at different heights from the bottom of 

the sample basket: 10 mm (TC0 and TC1) and 70 mm (TC2 and TC3). The proper residence time of 

the gas phase within the reactor (100–200 s at selected pyrolysis peak temperature and pressure 

values) as well as the pyrolysis environment (pure N2 or a mixture CO2/N2) were guaranteed by 

adjusting the mass flow rates at STP conditions for both N2 and CO2. The real flow rate of the carrier 

gas within the reactor varied approximately between 1.60 and 3.30 L min–1, which corresponded to 

gas-hourly space velocity (GHSV) values ranged from 18 to 36 h–1 (assuming a void-volume fraction 

of 0.9 for the entire reactor).  

After each experiment, the char produced was collected and weighted. The glass traps and their 

flexible connections were weighted before and after each run to estimate the total mass of liquid 
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(organics + water). The pyrolysis liquid was recovered directly from the condensers without 

undergoing any washing step with solvents. The water content was evaluated by Karl Fischer titration, 

while the organic fraction was determined by difference from the total mass of liquid. The 

composition of the main components of the pyrolysis gas (i.e., CO2, CO, CH4 and H2) was evaluated 

using a micro gas chromatograph (µ-GC, Agilent 490) equipped with two analytical columns: a 

PolarPlot U (He as carrier gas) and a Molsieve 5A (Ar as carrier gas).  

 

Fig. 1. Schematic layout of the pyrolysis plant: (1) pyrolysis reactor, (2) biomass bed, (3) 

condensation system, (4) volumetric gas meter, (5) micro-GC, (6) ceramic tube, (7) weighing 

platform. 

2.2.3 Characterization of the pyrolysis products 

The mass yield of char (ychar), produced gas (ygas), organic condensable compounds (yorg) and 

produced water (ywat) were calculated in a dry and ash-free (daf) basis. The produced char samples 

were characterized by proximate analysis and, additionally, ultimate analyses were performed on both 

chars and liquid products using the same procedures described for the biomass feedstock. The fixed-
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carbon yield (yFC), firstly introduced by Antal and Gronli [9], was adopted to evaluate the 

carbonization efficiency. It was defined as following: 

yFC 	=	xFC ychar          (2) 

where xFC is the fixed-carbon content in mass fraction (daf basis). The fixed-carbon yield corresponds 

to the fraction of organic matter initially present in the biomass feedstock, which was converted into 

fixed carbon. 

The BET specific surface areas (SBET) of the chars were determined from the CO2 adsorption 

isotherms at 0 °C, since chars typically present a highly ultra-microporous structure. The adsorption 

isotherms were obtained using an ASAP 2020 gas sorption analyzer (Micromeritics, USA). The 

samples (approximately 120 mg) were firstly degassed under dynamic conditions at 150 °C until 

constant weight was reached. Ultra-micropore volume (Vultra, i.e. pore size lower than 0.7 nm) of the 

samples was calculated adopting a Grand Canonical Monte Carlo method (GCMC) for carbon slit-

shaped pores. All the calculations related to the adsorption isotherms were carried out using the 

MicroActive software (Micromeritics). In addition, Fourier transform infrared analyses (FT-IR) were 

performed using a Perkin Elmer FT-IR Spectrometer with PIKE Technologies GladiATR and 

Spectrum software in order to determine the functional groups on the surface of the produced chars. 

The FT-IR analyses were performed at least in triplicate under a range of wavenumber of 400 to 4000 

cm–1 with a resolution of 4 cm–1, doing 16 scans for each point in order to accomplish a reliable level 

of accuracy. 

2.2.4 Energy and exergy assessment 

The enthalpy required for the process that should be supplied externally (Qprocess) and the exergy 

efficiencies related to the char (Ψchar), produced gas (Ψgas) as well as the global exergy efficiency of 

the process (Ψprocess) were partly calculated using the process simulation software Aspen Plus v10 

(Aspentech, USA). The pyrolysis reactor was simulated as a yield reactor block, in which the WS 

pellets (nonconventional component) were converted into char, CO2, CO, CH4, H2, water, and 

condensable tars. The mass flow rate of each stream was defined on the basis of the experimental data 
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generated in the pyrolysis device. A layout of the control volume considered for simulations is 

illustrated in Fig. 2, where T0, Tp and P are the reference temperature (25 ⁰C), pyrolysis peak 

temperature (which was also considered as the process temperature) and process absolute pressure, 

respectively. 

 

Fig. 2. A schematic layout of the control volume considered for energy and exergy assessment. 

The methodology followed to calculate the energy and exergy balances was based on that reported 

by Atienza et al. [31]. Briefly, Qprocess was calculated according to Eq. (3), where hin and hout are the 

specific input and output enthalpies (in MJ kg−1), respectively. 

Qprocess=hout - hin          (3) 

On the other hand, the exergy efficiencies were calculated as following: 

Ψi	=	100 eout,i
∑ ein

          (4) 

where eout,i is the exergy of the product (char or gas), and Σein is the sum of the input exergies (both 

physical and chemical). The exergy associated to the heat required for the process was also taken into 

account in Eq. (4). Calculations were conducted assuming the following considerations: (i) the 

standard reference was T0 = 25 ⁰C and P0 = 0.1 MPa, (ii) chemical exergies for all the involved species 

were obtained from the literature [36], (iii) process heat losses as well as kinetic and potential exergies 

of the streams were considered to be negligible [37], (iv) the energy and exergy contents inherent to 

the carrier gas streams were considered in the respective balances, and (v) the exergies of condensable 
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tar streams were not calculated (due to the impossibility to know their real chemical composition) 

and thus they were taken as exergy losses. 

3. Results and discussion 

The full characterization of the wheat straw pellets (in terms of biomass constituents as well as 

proximate, ultimate and XRF analyses) is reported in Table A.1 (Appendix A). The mass-balance 

closures of all the pyrolysis tests were comprised between 85% and 99%. These marginal losses were 

attributed to errors in collecting the produced gases, especially due to the higher flow rates when the 

pressure increased. Therefore, the mass yields of the pyrolysis products were calculated attributing 

the error in the mass-balance closure to minor accuracies in determining the mass of produced gas. 

The repeatability of the mass-loss profiles was assessed by performing three replicates at the central 

point of the experimental design, which indicated a reasonable level of repeatability. Therefore, a 

blank test of the central point was carried out, and then subtracted to the raw mass-loss curves. Results 

from the analysis of repeatability are also given in Appendix A (Fig. A.1).  

3.1 Pyrolysis behavior 

Fig. 3 simultaneously shows the time derivative of the mass-loss and the temperature profiles, 

along the biomass bed at the axis (TC0 and TC3) and at a radial position of 35 mm (TC1 and TC2), for 

all the experiments conducted (at 400 and 550 °C, 0.2 and 0.9 MPa, and 100 and 200 s) under a pure 

N2 atmosphere. As it can be seen from Fig. 3, the peak of the time derivative of the mass loss (dashed 

black line) was always recorded during the devolatilization step, which typically occurred between 

200 and 400 °C. In this range of temperatures, exothermic peaks were visible in the temperature 

profiles, which are related to the heat of reaction released by the secondary reactions. According to a 

previous work [35], after increasing the pressure from 0.2 to 0.9 MPa, the devolatilization occurred 

in a narrower period of time. In other words, the devolatilization rate was higher. This was due to the 

effect of the absolute pressure, which greatly enhanced the kinetics of the reactions involved in the 

devolatilization. Also, the temperature profiles were affected by the increase in pressure, becoming 
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more homogeneous and reducing the gradient between them, probably due to an enhanced convective 

heat transfer, as a consequence of a higher N2 flow rate to ensure the proper vapor residence time. 

Furthermore, the secondary charring reactions were also promoted by an increased pressure, as 

proved by the more pronounced exothermic peaks measured at 0.9 MPa. The observed slight decrease 

in temperature (of about 30 °C) after attaining the exothermic peak at higher pressures was probably 

due to a transient response of the PID controller (i.e., a lower power was supplied to the furnace 

during a relatively short period). 

Interestingly, a change in the gas residence time resulted in a different shape of the devolatilization 

peak. As shown in Figs. 3b and 3f, after increasing the gas residence time at lower pressure (0.2 MPa), 

a double peak appeared. This could be due to the longer contact time between the produced tarry 

vapors and the forming char, leading to simultaneous production of secondary char and permanent 

gases. However, when the gas residence time at higher pressures increased (Figs. 3d and 3h), the 

double peak disappeared, similarly to what seen at low residence times (Figs. 3a, 3b, 3e and 3g). 

However, these peaks resulted to be lower than the corresponding peaks recorded at the same 

conditions of peak temperature, absolute pressure and pyrolysis atmosphere but at higher residence 

times. This could be explained by a combined effect of pressure and gas residence time. On the one 

hand, the pressure could promote devolatilization, as mentioned above, enhancing the gas production; 

on the other hand, an increase in pressure together with an increase in the gas residence time, can also 

promote the secondary charring reactions, counterbalancing the release of volatiles during the 

devolatilization step. 
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Fig. 3. Time derivative of the mass loss and evolution of the temperatures within the bed in axial (TC0 

and TC3) and radial (TC1 and TC2) positions for the experiments conducted under N2 at (a) 400 °C, 

0.2 MPa and 100 s; (b) 400 °C, 0.2 MPa and 200 s; (c) 400 °C, 0.9 MPa and 100 s; (d) 400 °C, 0.9 

MPa and 200 s; (e) 550 °C, 0.2 MPa and 100 s; (f) 550 °C, 0.2 MPa and 200 s; (g) 550 °C, 0.9 MPa 

and 100 s; and (h) 550 °C, 0.9 MPa and 200 s. 

  

  

  

  

0 100 200 300 400

-2

0

2

4

6

8

10
-d

(m
as

s 
lo

ss
) d

t-1
 (g

 m
in

-1
)

time (min)

WS_400_0.2_100_N2

(a) 0

100

200

300

400

500
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)

0 100 200 300 400
-2

0

2

4

6

8

-d
(m

as
s l

os
s)

 d
t-1

 (g
 m

in-1
)

time (min)

WS_400_0.2_200_N2

0

100

200

300

400

500
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)

(b)

0 100 200 300 400

-5

0

5

10

15

20

25

30

35

-d
(m

as
s l

os
s)

 d
t-1

 (g
 m

in-1
)

time (min)

0

100

200

300

400

500
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)

WS_400_0.9_100_N2

(c)
0 100 200 300 400

-5

0

5

10

15

20

25

-d
(m

as
s l

os
s)

 d
t-1

 (g
 m

in-1
)

time (min)

WS_400_0.9_200_N2

0

100

200

300

400

500
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)

(d)

0 100 200 300 400
-2

0

2

4

6

8

10

12

-d
(m

as
s l

os
s)

 d
t-1

 (g
 m

in-1
)

time (min)

0

100

200

300

400

500

600

700
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)

WS_550_0.2_100_N2

(e)
0 100 200 300 400

-2

0

2

4

6

8

10

-d
(m

as
s l

os
s)

 d
t-1

 (g
 m

in-1
)

time (min)

0

100

200

300

400

500

600

700
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)

WS_550_0.2_200_N2

(f)

0 100 200 300 400
-10

0

10

20

30

40

50

60

-d
(m

as
s 

lo
ss

) d
t-1

 (g
 m

in
-1

)

time (min)

WS_550_0.9_100_N2

0

100

200

300

400

500

600

700
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)

(g)
0 100 200 300 400

-3

0

3

6

9

12

15

18

21

24

27

30

-d
(m

as
s l

os
s)

/d
t-1

 (g
 m

in-1
)

time (min)

WS_550_0.9_200_N2

(h) 0

100

200

300

400

500

600

700
 TC 0
 TC 1
 TC 2
 TC 3

Te
m

pe
ra

tu
re

 (°
C)



15 
 

The switch from a pure N2 atmosphere to a mixture of 60 vol. % of CO2 and 40 vol. % of N2 in 

the pyrolysis environment resulted to be irrelevant on both the evolution of the mass-loss and the 

temperature profiles in the entire campaign of experiments. For this reason, the plots related to the 

mass loss along the experiments carried out under the mixture N2/CO2 are not shown. 

The influence of the operating conditions on the evolution of the mass-loss rate of wheat straw 

pellets was also investigated using the full factorial design described in Section 2.2.1. Fig. 4 displays 

the normal plot of the standardized effects of the operating conditions on the mass loss, Tmax, DTGmax 

and Areapeak. As expected, the mass loss (see Fig. 4a) was favored by temperature, which promoted 

the thermal degradation of biomass. Furthermore, also pressure contributed to intensify the final mass 

loss, likely as a consequence of the relatively higher carrier flow rate, which swept the volatile species 

away from the reactor (thus suppressing the formation of secondary char), and, to a lesser extent, 

some steam gasification of char (which was promoted by the increased pressure). On the other side, 

an increase in the gas residence time reduced the mass loss, enhancing the secondary charring 

reactions, as explained above. The roles of the absolute pressure and gas residence time during the 

devolatilization process were confirmed from the results concerning DTGmax (see Fig. 4b), which 

resulted to be markedly enhanced by pressure and reduced when the gas residence time increased. In 

addition, the negative influence of the absolute pressure on Areapeak (Fig. 4c) was completely in 

agreement with the observations described before (i.e., an increase in pressure results in a narrower 

peak). Tmax (Fig. 4d) appeared to be positively affected by the peak temperature of the process. This 

could be attributed to the more severe heating when the peak temperature was higher. Furthermore, 

an interaction of effects between the peak temperature and the absolute pressure was responsible for 

a decrease in Tmax, probably due to some convective effect related to the higher flow rate of carrier 

gas used at high pressure. More details about the statistics and the numerical results of this section 

are given in Tables A.2 and A.6. 
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Fig. 4. Normal plots of standardized effects (α=0.05) for (a) the mass loss (%), (b) DTGmax, (c) 

Areapeak, and (d) Tmax (square, significant effect; circle, non-significant effect). Regression models are 

given above each plot. 

3.2 Pyrolysis products distribution 

The distributions of the pyrolysis products obtained along the experiments is listed in Table 1. In 

the next subsections, results concerning the yield of char, condensable organic compound and 

permanent gases are discussed. The statistical results related to this section are given in Table A.3. 
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Parameter Response variable 

T  

(⁰C) 

P 

(MPa) 

τ   

(s) 
CO2 (%v) 

ychar  

(−) 

yorg    

(−) 

ywat   

(−) 

ygas   

(−) 
yCO21 yCO1 yCH41 yH21 

550 0.2 100 0 0.276 0.084 0.307 0.334 5.365 2.917 0.215 1.333 

475 0.55 150 30 0.294 0.125 0.291 0.360 5.310 3.606 0.975 0.387 

550 0.9 100 0 0.276 0.105 0.207 0.413 7.099 1.877 1.939 1.546 

400 0.9 100 0 0.317 0.098 0.163 0.421 7.174 3.115 0.520 0.092 

400 0.2 100 0 0.311 0.133 0.240 0.316 5.037 2.896 0.457 0.057 

475 0.55 150 30 0.290 0.102 0.227 0.380 3.970 3.478 0.934 0.377 

550 0.2 200 60 0.288 0.111 0.290 0.311 3.881 3.694 1.431 0.942 

400 0.2 100 60 0.293 0.146 0.311 0.251 3.949 2.374 0.345 0.043 

400 0.9 200 0 0.324 0.094 0.199 0.383 6.543 2.637 0.636 0.105 

550 0.2 100 60 0.280 0.123 0.283 0.314 2.872 5.180 1.732 1.326 

550 0.2 200 0 0.285 0.112 0.268 0.335 5.176 2.690 1.371 1.133 

550 0.9 100 60 0.279 0.093 0.202 0.425 7.324 3.168 0.419 0.447 

400 0.9 200 60 0.317 0.096 0.190 0.397 7.562 1.787 0.515 0.070 

400 0.2 200 60 0.332 0.137 0.275 0.257 3.763 2.790 0.428 0.049 

475 0.55 150 30 0.297 0.101 0.238 0.364 5.427 3.391 1.026 0.421 

550 0.9 200 60 0.288 0.109 0.251 0.352 5.763 2.677 0.988 0.395 

400 0.2 200 0 0.327 0.122 0.265 0.286 4.699 2.363 0.410 0.043 

400 0.9 100 60 0.309 0.084 0.167 0.440 7.678 2.724 0.979 0.108 

550 0.9 200 0 0.284 0.085 0.216 0.414 6.832 2.465 1.770 1.574 

1 The gas yields are given in mmol g–1 of daf biomass. 

Table 1. Experimental distributions obtained respectively for ychar, yorg, ywat, ygas, yCO2, yCO, yCH4 and 

yH2. 

3.2.1 Char yield 

The normal plot of the standardized effects of the operating conditions on the resulting char yield 

is reported in Fig. 5. According to the results illustrated for the mass loss in Section 3.1, an increase 

in the peak temperature led to a decrease in the final char yield, whereas an increase in the gas 

residence time significantly improved it. 

The effect of peak temperature was qualitatively in agreement with a large number of studies 

available in literature [11,38], which reported a higher thermal degradation of cellulose and 



18 
 

hemicelluloses in the range of 250–450 °C [39], depending on the type of feedstock. Moreover, the 

effect of the gas residence time agreed with the results obtained for the mass loss. As mentioned 

above, an increase in the gas residence time resulted in a prolonged contact between the gas and solid 

phases, allowing the tarry vapors to repolymerize with a major extent instead of leaving the reaction 

zone as they were produced. As a consequence, the resulting char yield was higher. In addition, the 

char yield did not seem to be affected by the absolute pressure, according to Melligan et al. [25] and 

to one of our previous works [35]. However, this result is also in contrast with many earlier works; 

for instance, Manyà et al. [26,40] reported in both studies a negative effect of the absolute pressure 

on char yield, whereas Noumi et al. [41] observed a decrease in char yield when pressure increased. 

The reasons for this discrepancy could be various, such as the range chosen for the gas residence 

time, which may result too short to appreciate the pure effect of the pressure on the char yield. Another 

possible explanation could be that the effect of pressure, responsible of the formation of the secondary 

char, is counterbalanced by another effect of itself, which promotes a low (but certain) extent of the 

steam gasification. In other words, the additional char produced through secondary charring reactions 

could be compensated by a certain consumption of carbon via steam gasification. This theory is 

strengthened by the presence of alkali and alkaline earth metal species (AAEMs) contained in the 

wheat straw pellets, which enhance the kinetics of the reaction under higher pressures [42]. The 

experimental char yields, which are reported in in Table 1, varied from 0.276 to 0.332. As expected, 

the lowest values were obtained from pyrolysis at 550 °C and a gas residence time of 100 s. 
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Fig. 5. Normal plot of the standardized effects (α=0.05) for ychar (square, significant effect; circle, 

non-significant effect). Regression models are given above each plot. 

3.2.2 Organic condensable compounds and produced water yields 

Fig. 6a shows the normal plot of the standardized effects of the selected parameters on the yield 

of organic condensable compounds. As expected, the absolute pressure had a remarkable, negative 

effect on it, since typically an increase in pressure favors the gas yield at the expense of the 

condensable products. In addition, the pressure promotes the formation of secondary char, leading to 

a higher consumption of volatiles and a further release of permanent gases (Fig. 6a). According to 

this, yorg decreased up to 0.084 (see Table 1) when pressure was high. The enhanced production of 

gases with high pressures also affected negatively the water yield (Fig. 6b), as already reported by 

Ates et al. [43], probably due to an enhancement of reaction kinetics such as that of the water gas 

shift (also thermodynamically favored at lower temperatures), which led to a higher consumption of 

water. 
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Fig. 6. Normal plots of the standardized effects (α=0.05) for (a) yorg and (b) ywater (square, significant 

effect; circle, non-significant effect). Regression models are given above each plot. 

3.2.3 Non-condensable gases yield and their distributions 

As visible in Fig. 7, the total gas yield was greatly affected by the absolute pressure, which boosted 

the release of gaseous species up to 0.440 (see Table 1). The yields of the main gas components (CO2, 

CO, CH4 and H2) have been analyzed and the normal plots of the standardized effects of the operating 

conditions on them are displayed in Fig. 8, whereas their yields are listed in Table 1. The yield of 

CO2 (Fig. 8a) markedly increased with pressure, primarily due to the promoted decarboxylation of 

hemicelluloses and cellulose [23]. An increase in pressure also resulted in a lower yield of CO (Fig. 

8b), likely due to the promotion of the water gas shift reaction kinetics. This was completely in 

agreement with the considerations related to the water content described above. An additional 

consumption of CO could be due to a certain extent of the Boudouard reaction at high pressure. In 

addition, and as deduced from Fig. 8b, the Boudouard equilibrium could be shifted towards the CO 

production when the peak temperature and CO2 concentration in the pyrolysis atmosphere increased, 

thus leading to a higher yCO. Regarding the CH4 and H2 releases (Figs. 8c and 8d), their yields notably 

increased with the peak temperature, as a consequence of a major extent of the methanation and 

dehydrogenation reactions at temperatures above 500 °C. 
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Fig. 7. Normal plots of the standardized effects (α=0.05) for ygas (square, significant effect; circle, 

non-significant effect). Regression models are given above each plot. 

    

    

Fig. 8. Normal plots of standardized effects (α=0.05) for (a) yCO2, (b) yCO, (c) yCH4 and (d) yH2 (square, 

significant effect; circle, non-significant effect). Regression models are given above each plot. 
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3.3 Char properties 

The char properties related to its potential stability and textural properties are shown in Table 2. 

All the regression coefficients of the models related to this section are shown in Table A.4. 

Parameter Response variable 

T   

(⁰C) 

P  

(MPa) 

τ   

 (s) 

CO2 

 (%v) 

H:C  

(−) 

O:C  

(−) 

xFC  

(%) 

yFC  

(−) 

SBET  

(m2 g-1) 

Vultra  

(cm3 g-1) 

550 0.2 100 0 0.3683 0.0811 83.8538 0.230 229 0.085 

475 0.55 150 30 0.4637 0.1066 81.9321 0.239 203 0.050 

550 0.9 100 0 0.3527 0.0684 86.5415 0.238 214 0.080 

400 0.9 100 0 0.6169 0.1125 72.5910 0.236 154 0.049 

400 0.2 100 0 0.6720 0.1526 71.8470 0.220 157 0.052 

475 0.55 150 30 0.4627 0.0931 80.4669 0.232 194 0.071 

550 0.2 200 60 0.3650 0.0728 86.3462 0.248 217 0.081 

400 0.2 100 60 0.6300 0.1357 72.9954 0.214 157 0.052 

400 0.9 200 0 0.6081 0.1141 75.3153 0.243 160 0.052 

550 0.2 100 60 0.3374 0.0734 86.1236 0.240 222 0.086 

550 0.2 200 0 0.3662 0.0699 86.1469 0.244 216 0.082 

550 0.9 100 60 0.3294 0.0679 85.5851 0.236 219 0.083 

400 0.9 200 60 0.5696 0.1013 76.2568 0.242 158 0.050 

400 0.2 200 60 0.6498 0.1299 72.4933 0.240 152 0.049 

475 0.55 150 30 0.4739 0.0993 81.6941 0.242 187 0.067 

550 0.9 200 60 0.3312 0.0633 85.8450 0.244 224 0.086 

400 0.2 200 0 0.6350 0.1219 74.1738 0.242 152 0.049 

400 0.9 100 60 0.5462 0.0992 76.8011 0.237 159 0.052 

550 0.9 200 0 0.3422 0.0669 86.4768 0.245 213 0.082 

 

Table 2. Experimental results of H:C and O:C atomic ratios, xFC, yFC, SBET and Vultra related to the 

produced chars.  

3.3.1 Potential stability and aromatic fraction 

The fixed carbon content and the atomic H:C and O:C ratios were considered as rough indicators 

of the potential stability (i.e., carbon sequestration potential) of the produced chars. In light of the 

results displayed in Fig. 9, it can be deduced that the potential stability was markedly improved by 

both the peak temperature and, to a lesser extent, absolute pressure. In fact, the increase in peak 
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temperature led to higher fixed carbon contents (up to 86.6%), due to the higher aromatization of the 

char structure, making it more stable. This is also confirmed by the reduction of both H and O contents 

in the char, as it could be deduced from Figs. 9b and 9c for the atomic H:C and O:C ratios, 

respectively. The positive effect of the absolute pressure on the char stability was a direct consequence 

of its role played in the production of secondary char (as mentioned in Section 3.2.1), which is less 

reactive and more stable than the primary one. 

    

    

Fig. 9. Normal plots of standardized effects (α=0.05) for (a) xFC, (b) atomic H:C ratio, (c) atomic O:C 

ratio and (d) yFC (square, significant effect; circle, non-significant effect). Regression models are 

given above each plot. 

From Fig. 9d, it can be seen that the fixed-carbon yield was positively affected by both the peak 

temperature and gas residence time. In particular, the effect of the latter resulted to be more 

significant, since the effect of the peak temperature was the product of its positive contribution to the 

-4 -2 0 2 4 6 8 10 12
1

5

10

25

50

75

90

95

99

T

τ

P

CO2

T*CO2

T*P

T*τ

P*CO2

τ*CO2

P*τ

(%
)

Standardized effect

xFC = 79.349 + 6.516·T

(a)
-50 -40 -30 -20 -10 0

1

5

10

25

50

75

90

95

99

T

τ

P
CO2

T*CO2

T*P

T*τ

P*CO2

τ*CO2

P*τ(%
)

Standardized effect

H:C = 0.4825 - 0.1334·T - 0.0205·P - 0.0127·CO2 + 0.0103·T·P + 0.0082·τ·CO2

(b)

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
1

5

10

25

50

75

90

95

99

T

τP

CO2

T*CO2

T*P

T*τ
P*CO2

τ*CO2

P*τ

(%
)

Standardized effect

O:C = 0.0959 - 0.0252·T - 0.0090·P + 0.0052·T·P

(c)
-3 -2 -1 0 1 2 3 4 5 6

1

5

10

25

50

75

90

95

99

T

τ

P

CO2
T*CO2

T*P

T*τ
P*CO2

τ*CO2

P*τ

(%
)

Standardized effect

yFC = 0.2375 + 0.0032·T + 0.0061·τ

(d)



24 
 

xFC and its negative one to the ychar. In light of these results, it was possible to deduce that the highest 

value of yFC was achieved for the experiments carried out at 550 °C and 200 s, with a value comprised 

between 0.24 and 0.25 (see Table 2). 

3.3.2 Textural properties 

Fig. 10 shows the normal plots of the standardized effects of the operating conditions on the BET 

surface area (SBET) and the ultra-micropore volume (Vultra). It appeared that the peak temperature was 

the only factor to significantly affect both the surface area and the ultra-micropore volume. This was 

probably due to a more extended thermal degradation of biomass at higher temperatures leading to a 

further release of the volatile species, thus leading to the formation of new pores. The ranges of values 

of SBET and Vultra were 152–229 m2 g-1 and 0.049–0.085 cm3 g-1, respectively. Interestingly, the 

absolute pressure had no significant effect on the porosity development in the range of 0.2–0.9 MPa, 

in contrast with previous works [25,44], which reported a slight or even dramatic decrease in the BET 

surface area. This result was attributed to a clogging of the pores by tar deposits as a consequence of 

the high pressure. In this sense, the observed no significant effect of the absolute pressure on the 

textural properties analyzed here makes mild pressurized pyrolysis particularly attractive to produce 

wheat straw-derived chars with enhanced properties in terms of potential stability without affecting 

their porosity development. 

    

Fig. 10. Normal plots of standardized effects (α=0.05) for (a) SBET and (b) Vultra (square, significant 

effects; circle, non-significant effects). Regression models are given above each plot. 
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3.3.3 FT-IR Spectra and surface chemistry 

Results from FT-IR spectra firstly showed that the gas residence time seemed to have no effect on 

the char surface chemistry. Hence, only the set of spectra for chars obtained at 200 s is shown in Fig. 

A.2. The switch from a pure N2 atmosphere to the mixture CO2/N2 at 400 °C resulted into a slight 

increase in the bands at 1250, 1550 and 1750 cm–1, which correspond to oxygen-containing groups, 

such as lactones, carboxyl groups, aldehydes and ketones. A substantial decrease in all the bands was 

observed when the temperature increased from 400 °C to 550 °C, as a consequence of a decrease in 

the volatile content and, thus, in the surface functionalities of the produced chars. The presence of 

CO2 in the atmosphere at 550 °C, regardless of the pressure applied, led to higher bands visible in the 

spectra than those observed under a N2 atmosphere, especially around 1250 cm–1 (C-O vibrations), 

probably due to a certain surface oxidation. 

3.4 Energy and exergy analysis 

Fig. 11 shows the normal plot of the standardized effects of the selected operating factors on 

Qprocess and the exergy efficiencies, whereas the energy and exergy balances obtained along the whole 

set of experiments are summarized in Table 3. The statistics outcomes related to this section are 

reported in Table A.5. 

First, it is important to note that the most part of the Qprocess values resulted to be slightly negative, 

in contrast with the values typically low but positive reported in literature for pyrolysis at atmospheric 

pressure [45]. This could be attributed to the reactor pyrolysis configuration (in which the carrier gas 

is not forced to pass through the bed) as well as the relatively large particle size of WS pellets. Both 

factors might result in enhanced secondary reactions, which are highly exothermic. 

From Fig.11a, it can be observed that a further increase in the absolute pressure from 0.2 MPa to 

0.9 MPa led to higher values of Qprocess. This result, which seems to be contradictory to the more 

exothermic peaks observed for experiments conducted at 0.9 MPa (see Fig. 3), could be explained by 

a dilution of the exothermicity of the overall process, due to the increase in the carrier gas flow rate 
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at high pressure (to guarantee the proper gas residence time), since the higher the flow rate, the higher 

the heat needed to be supplied to the system. 

Parameter Response variables 

T 

(⁰C) 

P 

(MPa) 

τ 

(s) 

CO2 

(%v) 

Qprocess 

(MJ kg-1) 

Ψchar 

(%) 

Ψgas 

(%) 

Ψprocess 

(%) 

550 0.2 100 0 –0.50 40.94 12.27 54.94 

475 0.55 150 30 –0.65 42.87 10.67 55.52 

550 0.9 100 0 –0.18 40.90 16.19 58.99 

400 0.9 100 0 0.01 46.70 10.32 59.55 

400 0.2 100 0 –0.39 52.01 7.63 60.62 

475 0.55 150 30 0.18 42.98 11.96 56.69 

550 0.2 200 60 –0.48 42.93 14.55 58.91 

400 0.2 100 60 –0.54 42.56 6.10 51.97 

400 0.9 200 0 –0.21 48.06 9.42 59.24 

550 0.2 100 60 –0.38 40.66 15.70 58.11 

550 0.2 200 0 –0.53 42.65 12.74 56.59 

550 0.9 100 60 0.79 41.92 14.16 59.53 

400 0.9 200 60 –0.22 47.03 6.74 55.54 

400 0.2 200 60 –0.32 48.45 7.26 56.92 

475 0.55 150 30 –0.34 43.90 12.88 58.51 

550 0.9 200 60 –0.10 43.63 10.26 55.92 

400 0.2 200 0 –0.65 48.08 7.02 56.28 

400 0.9 100 60 0.42 45.71 11.08 59.09 

550 0.9 200 0 –0.05 42.47 16.10 60.38 

 

Table 3. Experimental results obtained for Qprocess, Ψchar, Ψgas and Ψprocess. 

An increase in the pyrolysis peak temperature resulted to be significantly negative for Ψchar (Fig. 

11b), meaning that the useful work obtained from chars produced at 550 °C was lower than that of 

chars produced at 400 °C. A reason to explain this finding is the lower yields of high-temperature 

chars. It is also important to highlight that, although the greater irreversibility, more severe conditions 

of temperature generally develops other important properties in the char, such as higher surface area 

and higher recalcitrance. In light of this, depending on the application that char addresses, it would 

be more or less appropriate to increase the temperature at the expense of a greater irreversibility. 
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Fig. 11. Normal plots of standardized effects (α=0.05) for (a) Qprocess; (b) Ψchar; (c) Ψgas; and (d) 

Ψproccess (square, significant effects; circle, non-significant effects). Regression models are given 

above each plot. 

The peak temperature positively affected Ψgas, since more refined gas products were released at 

higher pyrolysis temperatures. As seen from Fig. 11d, the absolute pressure was the only factor that 

had a significant (and positive) main effect on the exergy efficiency of the overall process. The 

available literature focused on the effects of pressure on the exergy efficiency is very limited and 

mainly restricted to gasification processes. Nonetheless, the positive effect of pressure on the exergy 

efficiency was already observed by Srinivas et al. [46]. The opposite trend was however observed by 

Prins et al. [47] and Wang et al. [28], who reported a negative effect of pressure on the exergy 

efficiency of the overall biomass gasification process. From the regression model for Ψprocess, which 
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is given in Fig. 11d, it can be deduced that two sets of operating conditions (both at high pressure and 

peak temperature) led to the lowest extent of thermodynamic irreversibility involved in the process: 

(1) 550 °C, 0.9 MPa, 200 s, and pure N2; and (2) 550 °C, 0.9 MPa, 100 s, and CO2/N2 60:40 v/v. 

From a practical point of view, the second set of operating conditions appears to be the most 

convenient one, since relatively high flow rates of recycled CO2-containing flue gas could easily be 

implemented in scaled-up process plants. 

4. Conclusions 

Despite the fact that there is not a unique combination of pyrolysis operating conditions capable 

to simultaneously optimize all the response variable analyzed here, some useful considerations can 

be drawn from the results above discussed: 

• Although, as expected, the pyrolysis peak temperature was the most influential operating 

factor, the absolute pressure also played a key role during the devolatilization process of wheat 

straw, enhancing the release of the gas species at the expense of the liquid products and 

without affecting neither the yield of char nor its microporosity. An increased pressure also 

improved the potential stability of the resulting char, due to the greater extent of the secondary 

charring reactions. The gas residence time was also responsible to modify the course of the 

devolatilization, by prolonging the solid/gas phases contact and, consequently, further 

promoting the secondary char reactions. Its influence was reflected on the improved char yield 

and carbonization efficiency. 

• The switch from a pure N2 atmosphere to the mixture of CO2/N2 resulted to be irrelevant on 

the pyrolysis behavior of wheat straw pellets, except for a slight increase in the yield of CO 

released. This finding opens the possibility of recycling the flue gas stream as a gas carrier in 

the pyrolysis process instead of using a more expensive inert gas. Furthermore, the presence 

of CO2 in the carrier gas favored the availability of oxygenated functional groups on the 

surface of resulting chars, regardless of the peak temperature and absolute pressure. 
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• From an applied research point of view, the most important finding from this study is the fact 

that pressurized pyrolysis —which implies a considerable reduction of the reactor vessel as 

well as the costly downstream compression steps— favors the exergy efficiency of the 

process, even at relatively high pyrolysis peak temperature. For the biomass feedstock and the 

range of operating conditions studied here, thermodynamic irreversibilities of the pyrolysis 

system were considerably lowered when the process was conducted at 550 °C, 0.9 MPa and 

using a mixture of CO2 and N2 as carrier gas at relatively short residence times. Under these 

same conditions, the resulting produced char also exhibit very good properties in terms of 

potential stability (which is essential for biochar purposes) as well as a considerable 

availability of oxygen-containing functionalities on surface with a certain microporosity 

development (being both properties valuable for further uses of chars in value-added 

applications). 
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Appendix A. Supplementary material 

Nomenclature 

Areapeak= area of the devolatilization peak (g) 

DTGmax= peak of the time derivative (g min–1) 

eout,i= exergy of the product i (MJ kg−1) 

hin= input specific enthalpy (MJ kg−1) 

hout= output specific enthalpy (MJ kg−1) 
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Qprocess= enthalpy required for the process that should be supplied externally (MJ kg−1) 

SBET = Brunauer–Emmet–Teller specific surface area (m2 g–1) 

TC# = temperatures measured by the thermocouples placed within the reactor (°C) 

Tmax = temperature peak of the devolatilization step (°C) 

Vultra = ultra-micropore volume (cm3 g–1) 

xFC = mass fraction of fixed-carbon in the char (daf basis) 

ychar = mass yield of char in a dry and ash-free basis (−) 

yFC = fixed-carbon yield in a dry and ash-free basis (−) 

ygas = mass yield of produced gas in a dry and ash-free basis (−) 

yorg = mass yield of condensable organics in a dry and ash-free basis (−) 

ywater = mass yield of produced water in a dry and ash-free basis (−) 

τ = gas residence time 

Ψchar= exergy efficiency of the char (−) 

Ψgas= exergy efficiency of the gas product (−) 

Ψprocess= exergy efficiency of the overall process (−)  

Σein= sum of the input exergies (MJ kg−1) 

Σeout= sum of the output exergies (MJ kg−1) 

Acronyms 

AAEMs = alkali and alkaline Earth metal species 

daf = dry-ash-free 

FT-IR = Fourier Transform Infrared spectroscopy 

GCMC = Grand Canonical Monte Carlo 

GHSV = gas hourly space velocity (h−1) 

HHV = High Heating Value (MJ kg−1) 

PID = proportional integral derivative 

WS = wheat straw 
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XRF = X-Ray Fluorescence spectroscopy 

µ-GC = micro gas chromatograph 
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