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ABSTRACT Induction heating has become the reference technology for domestic heating applications due
to its benefits in terms of performance, efficiency and safety, among others. In this context, recent design
trends aim at providing highly flexible cooking surfaces composed of multi-coil structures. As in many other
wireless power transfer systems, one of the main challenges to face is the proper detection of the magnetic
coupling with the induction heating load in order to provide improved thermal performance and safe power
electronic converter operation. This is specially challenging due to the high variability in thematerials used in
cookware as well as the random pot placement in flexible induction heating appliances. This paper proposes
the use of deep learning techniques in order to provide accurate area overlap estimation regardless of the
used pot and its position. An experimental test-bench composed of a complete power converter, multi-coil
system and real-time measurement system has been implemented and used in this study to characterize the
parameter variation with overlapped area. Convolutional neural networks are then proposed as an effective
method to estimate the covered area, and several implementations are studied and compared according to
their computational cost and accuracy. As a conclusion, the presented deep learning-based technique is
proposed as an effective tool to estimate the magnetic coupling between the coil and the induction heating
load in advanced induction heating appliances.

INDEX TERMS Inductive heating, resonant power conversion, wireless power transfer, deep learning, neural
network, electromagnetic design, induction heating, home appliances.

I. INTRODUCTION
Induction heating (IH) [1] is a form of wireless power transfer
which enables contactless heating of materials. It is based
on applying an alternating magnetic field to the induction
target or load (FIGURE 1), with frequencies which range
usually from few kHz to several hundreds of kHz depend-
ing on the desired penetration depth and application. This
magnetic field causes the heating of the material mainly
by two physical phenomena: induced currents and magnetic
hysteresis. In order to generate the required magnetic field,
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power electronic converters are needed, being resonant power
conversion commonly used due to its high efficiency and
power density.

Induction heating offers the user many advantages derived
from its inherent contactless nature. Since it is non-invasive
heating method, it provides more reliable heating processes,
safer and cleaner, being of great interest in industry. Besides,
heating can be performed very quickly and with accurate
control due to the use of high-performance power electronic
converters, leading to superior heating systems. Last but not
least, since the heating is directly performed in the induc-
tion heating load, efficiency is greatly improved compared
with other heating methods due to the avoidance of thermal
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FIGURE 1. Induction heating fundamentals.

inertias and heat dissipated to the ambient. When specifically
speaking of domestic induction heating [2], induction heat-
ing provides significant advantages compared with resistive
or gas heating, including faster cooking, safer and cleaner
operation, because the cooking surface reaches much lower
temperatures, as well as more accurate control and improved
efficiency. Because of these advantages, induction heating
is nowadays being applied to a wide range of applications
including, but not limited to, industrial [3], vehicular [4],
domestic [5], and biomedical applications [6].

FIGURE 2. Domestic induction heating appliance.

A typical domestic induction heating appliance
(FIGURE 2) is composed of the power electronic converter,
the induction coil, a cooking surface, typically made of vitro-
ceramic glass due to its excellent mechanical and aesthetical
qualities, and the pan to be heated. The coil generates an
alternating magnetic field that, in typical IH applications
causes the heating of the target material by means of induced
currents. In these conditions, the penetration depth δ is
defined as:

δ =

√
ρ

πµ0µr f
, (1)

where ρ and µr are the material resistivity and relative mag-
netic permeability, µ0 is the vacuum magnetic permeability,
and f is the excitation frequency generated by the inverter.
These values change with the pot material and, consequently,
so does the electrical equivalent seen by the inverter. The
coupled induction coil – pan system is usually modelled as
the series connection of an equivalent resistor and inductor,
RL, Lr, which forms part of a resonant tank that determines

the operation of the converter [2]. These equivalent electrical
parameters are dependent of other parameters such as the pot
materials, operating frequency, temperature and, specially,
the coupling between the coil and the pan to be heated. For
this reason, it is essential to obtain coupling information to
optimize the induction heating system operation.

Despite the many advantages of domestic induction heat-
ing, there are still significant challenges to face. One of
the most relevant is the magnetic coupling detection, which
still remains unsolved for many wireless power transfer sys-
tems [7]. This is especially true when modern induction
heating systems with multi-coil structures are being devel-
oped, where magnetic coupling has high variability and plays
a key role in the converter performance. For this reason,
the aim of this paper is to propose a deep learning-based
magnetic coupling detection system. The prosed system will
take advantage of a cost-effective and accurate measurement
system for multi-coil architectures to extract the information
required from the complete set of coils. Afterwards, convo-
lutional neural networks (CNNs) will be used to estimate the
percentage of area covered by the induction load in each coil.
The proposed scheme has been developed using a 48-coil
domestic induction heating prototype and several pan mate-
rials, proving the feasibility of this proposal.

The remaining of this paper is organized as follows.
Section II introduces advances induction heating appliances,
focusing onmulti-coil structures, and provides a review of the
state-of-the-art IH load identification techniques. Section III
describes the proposed magnetic coupling detection system,
including the power converter and measuring system, and
the proposed neural network architecture and its training and
data augmentation process. Finally, the results for different
CNNs are presented and discussed in Section IV, and themain
conclusions of this paper are summarized in Section V.

II. ADVANCED INDUCTION HEATING APPLIANCES
Nowadays, modern induction heating appliances have
advanced towards providing higher user performance by
adding improved power electronics for higher power,
efficiency and power density, automatic cooking capabilities,
temperature control, IoT and advanced interface capabilities,
or integrated venting capabilities. One of the most successful
research areas is the design of flexible cooking surfaces,
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FIGURE 3. Advanced induction heating appliances: (a) total-active-surface concept and (b) detail of the coil-pot coupling.

also called total-active-surface concept, by using multi-coil
arrays to implement a complete cooking surface [8]. This
provides a superior user performance, since the user can use
any pot, anywhere and with any shape, but at the same time
implies new challenges for the power converter and magnetic
coupling detection. This section reviews flexible cooking
surfaces and the detection techniques previously proposed.

A. FLEXIBLE COOKING SURFACES
Flexible cooking surfaces are composed by a set of coils
able to adapt its operation to the size, shape and position of
the induction heating load/s. Initial implementations of such
systems considered the use of concentric coils with different
diameter that were activated depending on the size of the pot
to be heated [9]. However, the pot center must be aligned with
the inductor and, consequently, the position was still fixed.

Modern flexible induction heating appliances
(FIGURE 3 (a)) are composed by a set of smaller
coils [20], [21], typically more than 20, that can adapt to
the size, shape and position of the induction heating loads.
Consequently, the user obtains the highest flexibility degree
in its use. In order to power such systems, typically specially

designed multiple-output resonant inverters are used. These
include combinations of half/full-bridge structures [22],
multi-inverter topologies [23], or matrix converters [24].

Despite the main advantages of flexible induction heat-
ing appliances, it is clear that in these configurations
(FIGURE 3 (b)) the magnetic coupling is highly variable
and, therefore, it is essential to provide a magnetic coupling
detection system. This will allow not only to optimize the
heating distribution, but also to provide safer operation of
the inverter and those partly coupled coils. Next subsection
reviews the previously proposed identification and detection
systems.

B. REVIEW OF IDENTIFICATION AND
DETECTION SYSTEMS
In the past, several identification and detection systems have
been proposed in order to address and mitigate uncertainties
inherent to the highly variable coupling in wireless power
transfer systems and, more specifically, domestic induction
heating systems. Table 1 summarizes the main proposed
approaches in the state-of-the-art.

TABLE 1. Induction heating load identification and detection systems.
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FIGURE 4. Power electronics and measurement architecture of the proposed system. The input current iac passes an electromagnetic
compatibility filter (EMC) and its is rectified to obtain a dc- bus, ib, vb. After that, the inverters composed of SH and SL switches
generates the medium frequency current to supply the resonant tank, io, composed of the coil-pot electrical equivalent, RL,ni– Lr,ni, and
the resonant capacitor Cr.

Most of the previously proposed techniques are aimed at
obtaining the equivalent electrical parameters of the load.
In [10], a high-performance hardware is proposed for on-line
identification, whereas in [14] and [15] particle swarm
optimization and the pseudo energy method are employed,
respectively, to achieve off-line identifications. However, all
these methods are only valid for off-line calculation. Only
in [18] and [17], on-line identification of the equivalent elec-
trical parameters is performed in real-time by evaluating sim-
plified analytical expressions or DFT analysis, respectively.

Instead of focusing on the electrical parameters, other
researches have studied IH load temperature to improve the
heating process either using infrared sensors [13] or the
IH coil as an inductive sensor [12]. In [11], off-line FEM
simulations are correlated with experimental measurements
to obtain the material magnetic properties. In [19], a neural
network-based system was used to perform the classification
of the pot material for a fixed single-inductor structure. Only
in [16], off-line impedance variation is used to obtain an
estimation of the covered area. However, this approach is not
intended to be used in on-line identification or multi-load
systems.

In this context, the aim of this paper is to provide a cov-
ered area estimation system based on convolutional neural
networks that can provide an accurate estimation in modern
multi-coil systems. Next section details the proposed system.

III. PROPOSED MAGNETIC COUPLING
DETECTION SYSTEM
The proposed magnetic coupling detection system is based
on using the information provided by the array of induction
heating coils and processing it using a convolutional neural
network. This section details the proposed power converter
and measurement system, as well as the CNN structure and
training procedure.

A. POWER ELECTRONICS AND MEASUREMENT
ARCHITECTURE
In order to supply the proposed multi-coil architecture, a
multiple output converter structure is proposed. FIGURE 4
shows the proposed power converter and measurement sys-
tem for a ni IH loads system. It is based on a set of series
resonant half-bridge inverters [25]. Each induction heating
load is modelled by its equivalent electrical parameters,
RL,ni−Lr,ni. These elements form parts of the resonant power
converter resonant tank, together with the resonant capacitor
Cr, which is equal for all the inductors, and therefore signifi-
cantly affects to the operation and the performance of each
converter. It should be noted that the electrical equivalent
parameters of each load change significantly with the IH
load coupling and, therefore, it is essential to obtain this
information to provide efficient and safe operation.
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The equation that defines the operation for each load of the
aforementioned circuit is:

RL io(t)+ Lr
dio(t)
dt
+

1
Cr

∫
io(t)dt = vo(t), (2)

In order to monitor the main operational parameters of the
proposed multi-coil system, the resonant capacitor voltage is
measured to provide an accurate and cost-effective estimation
of parameters such as output power, P, output current, Irms,
quality factor, defined as Qi = ωLr,i

/
RL,i, or the soft-

switching conditions. In the proposed system, these param-
eters are calculated from the values of the resonant capacitor
voltage Vc using the following expressions [17]:

I2o,rms =
Cr

Lr

(
V 2
c,rms −

Vs
Tsw

∫ DTsw

0
vc(t)dt

)
, (3)

Qsw =
ωswCr

(
V 2
c,rms −

Vs
Tsw

∫ DTsw
0 vc(t)dt

)
Po

, (4)

Po = fswCrVs (vc(t = 0)− vc(t = DTsw)) , (5)

where D and Tsw are the applied switching period and duty
cycle.

This measurement system will allow not only to provide
the target output power desired by the user, but also to use
this information to estimate the IH load coupling using the
proposed deep learning techniques as it is explained in next
subsection.

B. PROPOSED CONVOLUTIONAL NEURAL NETWORK
Deep neural networks have evolved in recent years to be
applied to solve a wide range of engineering problems. One
of the main reasons for the success of deep neural networks in
recent years is that they do not require very detailed feature
engineering efforts as other data-based methods, being able
to learn complex patterns from large amounts of data [26].
A standard (fully connected) neural network N is composed
of different layers that perform a linear transformation of the
input data followed by a nonlinear transformation and can be
mathematically described as:

N (x) = αL+1 ◦ βL ◦ αL ◦ . . . ◦ β1 ◦ α1(x), (6)

where x is the input to the neural network, L is the number
of layers, α is an affine transformation and β is a nonlin-
ear function. The nonlinearity applied to the data is usu-
ally a hyperparameter that can be chosen, but recently the
non-saturation function, often called Rectifier Linear Unit
(ReLU) has been very successful to avoid common problems
during the training of large networks and is defined as:

ReLU : β(x) = max{0, x}. (7)

The use of Convolutional Neural Networks (CNNs) has been
also a key component for the solution of complex problems
using machine learning [27], especially in the field of image
recognition [28], big data [29], or human motion pattern
recognition [30]. A convolutional neural network uses a fil-
ter or kernel, which is typically of much smaller size than

the original data dimensions. The kernel averages the local
properties in a structured data set, such as an image or, in this
case, the data from each IH coil. The underlying assumption
is that in images, or in the case of the multi-coil system
considered in this work, the properties of a pixel, or a coil,
are strongly correlated with the properties of the neighboring
elements. This enables the use of convolutional networks that
have a significantly lower number of parameters than fully
connected networks, because only the elements in the kernel
need to be learned. As a result, deeper networks that can learn
higher level abstractions can be designed and successfully
trained [26]. In addition to this, CNNs has a much lower coef-
ficient number than their fully-connected counterparts. This
is a key benefit in low-memory implementations, such as the
ones based in microcontrollers for the proposed applications.

Regardless of the architecture chosen for a neural network,
the training is always performed by solving a complex non-
convex optimization problem in which a measure of accuracy
between the output and the known labels is minimized. Very
often, and also done in this paper, the mean squared error
is used so that the training procedure consists in solving the
following optimization problem

min
W ,b

1
Ns

Ns∑
i=1

(y(i) −N (x(i)))2, (8)

where W and b are the weights and biases that describe the
affine transformations of each layer of the neural networkN ,
Ns is the total number of training samples. For each data pair i,
the known label that corresponds to each input x(i) is denoted
by y(i).

In this paper, the proposed multi-coil system will be used
as sensor for the IH load coupling, neglecting the need of
additional sensors (FIGURE 5, left). A CNN is proposed to
be used to predict the area coverage of each inductor of the
multi-coil system (FIGURE 5, right) based on the following
input data for each one of the coils: output power, P, current,
Irms, and quality factor, Q.

A multi-coil system with a total of ni = 48 coils is
considered. The proposed neural network uses a total of n
convolutional layers with kernels of dimensions (i, j, k) for
each inputmagnitude (P, Irms,Q). Before the ReLU activation
function is evaluated, each kernel is applied pl times within
the convolutional layer l. Pooling layers are not used, as it
is often done in image recognition, because the size of the
input data is manageable and does not need to be reduced.
The kernel is moved one inductor at a time for each convolu-
tional layer, that is the stride is chosen equal to one, and the
input data is augmented with zeros on the boundary of the
multi-coil system so that the dimensions of the data remain
the same after applying the convolutional layer (padding is
chosen equal to one). This is a common technique to deal
with the borders of images or other structured data. The loss
function is chosen as the mean squared error between the
measured area coverage and the area coverage predicted by
the network.
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FIGURE 5. Proposed convolutional neural network-based area overlap estimation system. The input layer is 48 coils x
3 parameters whereas the output is the percentage of the area coverage in each of the 48 coils. Each convolution layer includes
p kernels of dimensions I , j , k plus a ReLU layer.

C. TRAINING AND DATA AUGMENTATION
A major challenge for the successful application of machine
learning in engineering applications is the need for large
amounts of data that must be used within the training process.
If the data needs to be collected experimentally, this can
lead to very time and cost-intensive experiments that ren-
der the approach inapplicable in practice. This is especially
important in the proposed multi-coil IH applications, since
the number of combinations of pot diameters, materials and
positions makes the problem unmanageable.

To mitigate this problem, in this work data augmentation
techniques are used, which are also often used on other
fields [31]–[33]. The experimental test-bench for data col-
lection is shown in FIGURE 6(a), which is similar to a real
48-coil IH appliance. Considering that all coils are equal,
the parameters of interest are experimentally obtained for
different coverage areas in a single coil. Consequently, a set
of pots of different materials and radius R are located above a
coil of radius r , being R�r, and separated a distance d . Then,
this distance d is modified to obtain the required parameters
used as input of the CNN, i.e. P, Irms, Q, for different area
coverages. After this experimental data is available, data
augmentation consists to expand this data to a full multi-coil
system composed of ni elements (FIGURE 6(b)). Then, a set
of pots of randomized radius R and materials are located in a
random position, (cx, cy), over the multi-coil structure. After
that, the covered area for each inductor is calculated using the
following expression

A1...ni
= r2acos((d2 + r2 − R2)/(2dr))

+R2acos((d2 + R2 − r2)/(2dR))

−0.5
√
(−d+r+R)(d+r−R)(d − r + R)(d + r + R).

(9)

FIGURE 6. Data augmentation scheme for NN training: (a) Detail of the
structure under analysis and (b) complete system diagram.

Finally, the CNN input parameters for each coil, P, Irms,
Q, are obtained by linear interpolation of the experimen-
tal data. This technique has been applied to simulate the
simultaneous presence of several pots over the cooking sur-
face, enabling realistic operating conditions training. This
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FIGURE 7. Experimental test-bench.

procedure enables the generation of large sets of data for
training and test, based on experimental measurements, that
are otherwise not feasible due to the large number of different
combinations and required measurements.

IV. RESULTS
In order to test the proposed CNN-based magnetic cou-
pling detection system, the experimental test-bench shown
in FIGURE 7 has been used. It consists on a ni = 48
coil induction heating system supplied by a multiple-output
resonant inverter with monitoring capabilities as shown
in FIGURE 4.

TABLE 2. Equivalent electrical parameters of the studied materials.

To generate the required data, three different materials
have been used, whose electrical parameters are summarized
in Table 2. These materials present typical electrical values
common in commercially available IH loads for the given
coils. The radius of the coils is 4 cm and the radius of the
pot is 12 cm. The procedure detailed in Section III is then
applied to extract the experimental values of the electrical
parameters, P, Irms, Q, for different area coverages from 0 to
100% in 10% steps to properly account for the nonlinear
behavior. FIGURE 8 summarizes the obtained values, which
have been normalized to the value for 100% coverage, for the
three different materials (#1-#3). An important conclusion is
that the monitored parameters exhibit a non-linear and non-
monotonous evolution, increasing the problem complexity
and making CNN a suitable approach to build the proposed
magnetic coupling detection system.

The previously detailed data augmentation technique is
used to generate 106 data points for training the proposed
convolutional networks and 2.5·105 data points for testing.

FIGURE 8. Evolution of the normalized parameters power (P), RMS
current (Irms) and quality factor (Q) with the covered area for three
different materials: material #1 (a), material #2 (b) and material #3 (c).

Since the final aim is the digital implementation of the pro-
posed system, different CNN architectures have been studied
and compared according to the required arithmetic resources
and the obtained accuracy. Training has been performed using
Caffe deep learning framework and the NVIDIAGTX1085Ti
GPU. The training algorithm used is the adaptive moment
estimation (ADAM), and the batch size used is 103.
Table 3 summarizes the studied convolutional neural

network, considering its architecture, i.e. number of convolu-
tions and kernel structure, and the obtained accuracy includ-
ing root mean squared error (RMSE), maximum error (ME)
and percentage of errors greater than 5%, expressed in area
coverage%. Besides, multiply and accumulate blocks (MAC)
have been considered as a relevant architecture index, since it
is a direct indicator of the required digital hardware. The table
also shows the number of coefficients that need to be stored
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TABLE 3. Summary of studied convolutional neural network
architectures.

to represent each neural network which is an indicator of
the required memory. The number of coefficients is reported
as the sum of two numbers which represent the coefficients
needed to store the weights and the biases of each network.
In this table, it can be seen that all the implementations
achieve low RMSE and E>5% values. A critical parameter
for this application is ME, since a significant error can lead to
a coil/inverter overheating that may damage irreversibly the
appliance. From this table, it can be seen that implementa-
tions number 3 and above achieve ME lower than 10%, being
sufficient for the proposed applications.

Table 4 has been included for comparing the proposed
CNN implementation with a standard fully-connected imple-
mentation. As it has been aforementioned, CNN benefits
from the fact of having a structure that takes into account
neighbor coils, providing much accurate results for a simi-
lar digital resources consumption. Moreover, fully-connected
implementation requires to store a higher number of coeffi-
cients to represent the corresponding neural networks, which
jeopardizes low-memory implementations typical of this
application.

TABLE 4. Standard fully-connected implementations for comparison with
the proposed CNN implementation.

V. CONCLUSIONS
Flexible domestic induction heating appliances provide
higher user performance by enabling a new total active sur-
face concept. In this context, there is a high load variability
and it is essential to provide new and effective magnetic
coupling detection systems.

This paper has proposed a new magnetic coupling detec-
tion system for multi-coil architectures based on deep
learning techniques taking advantage of an accurate and
cost-effective measurement system. Due to the nature of the
data, similar to problems in image recognition, convolutional
neural networks are applied to obtain an accurate estimation
of the covered area in each inductor.

In order to train the proposed neural network and test
the proposed approach, a 48-load induction heating proto-
type has been used. Several neural network architectures
have been studied and compared considering computational
resources and accuracy. As a conclusion, the proposed mag-
netic coupling detection system achieves excellent accuracy
for the domestic application, and it is proposed as an effective
method to improve flexible induction heating appliances.
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