

Trabajo Fin de Grado

Correlación entre propiedades petrofísicas de distintos tipos de rocas

Correlation between petrophysical properties of different types of rocks

Autora Irene Monterde Espada

Directores

María Teresa Román Berdiel Emilio Pueyo Morer

Departamento de Ciencias de la Tierra Facultad de Ciencias Universidad de Zaragoza

> Curso 2019-2020

ÍNDICE

1- ABSTRACT	2
2- INTRODUCCION	2
	3
4- METODOLOGIA	3
4.1 Muestreos	3
4.2 Susceptibilidad	4
4.3 Velocidad ondas sísmicas	5
4.4 Densidad	7
5- SITUACIÓN GEOGRÁFICA Y GEOLÓGICA	8
6- RESULTADOS	1
6.1 Susceptibilidad magnética1	1
6.2 Velocidad de propagación de las ondas sísmicas1	2
6.3 Densidades (método Arquímedes)1	8
7- DISCUSIÓN1	9
7.1 Susceptibilidad magnética1	9
7.1.1 Resultados de las medidas1	9
7.1.2 Calibración susceptómetros2	0
7.2 Velocidad de propagación de las ondas sísmicas2	1
7.3 Densidades (método Arquímedes)2	1
7.4 Correlación entre las propiedades físicas2	2
8- CONCLUSIONS	3
9- BIBLIOGRAFÍA	4
ANEXOS	6

1-ABSTRACT

A study of some petrophysical properties (magnetic susceptibility, primary seismic wave propagation velocity and bulk density) has been carried out on a selection of twenty-five samples. In order to carry out the selection of samples, large variety of rocks have been taken, both in terms of rock type, lithology, age, etc., so that the results are representative of several groups of rocks. This study focuses on the analysis of magnetic susceptibility, primary seismic wave propagation velocity and bulk density in order to see the relationships between physical properties and their petrology, as well as studying possible correlations between the three measured petrophysical properties.

To do this, an analysis of their magnetic susceptibilities has been carried out with the measurement of three different susceptometers (KT-10, KT-20 and SM-20) to obtain representative data, to see the characteristics of each susceptometer and to characterize the correlation among them.

The calculation of the primary seismic wave propagation speed is performed by the nondestructive Pundit-PL tool, which sends P-waves through one transducer to the sample surface and it is received by the second transducer, measuring the time it takes to reach one to the other.

The densities of the rocks were calculated by Archimedes' method: firstable weighing the dry samples on a balance, secondly with paraffin and finally immersed in water.

Then, the correlations of the petrophysical properties with each other were seen and if they varied according to the petrological characteristics of the corresponding sample. In the correlations, trends can be seen in which the simples with higher density present a higher propagation speed of seismic waves and a higher magnetic susceptibility.

Keywords: Petrophysical properties, magnetic susceptibility, velocity of propagation, seismic waves, Archimedes.

2-INTRODUCCIÓN

Desde el punto de vista físico, las rocas presentan diferentes propiedades que derivan de características puramente petrográficas: de la mineralogía, del tamaño de grano, morfología y porosidad. Estos caracteres petrográficos varían en función del tipo de roca y de su petrogénesis, y a menudo, la relación entre rasgos petrográficos y parámetros petrofísicos no siempre es fácil de determinar.

Las variaciones de las propiedades físicas de las rocas (densidad, susceptibilidad magnética y velocidad de propagación de las ondas sísmicas) permiten la identificación de la geología del subsuelo, mediante métodos de exploración geofísica (por ejemplo, aquellos basados en campos potenciales, magnetismo y gravedad terrestre).

En este sentido, podemos definir la Petrofísica como una disciplina científica que caracteriza y modeliza el comportamiento físico de las rocas, encuadrándola dentro de las Ciencias Geológicas.

El estudio de las propiedades físicas de las rocas tiene varias finalidades, una de ellas es el conocer la estructura en profundidad de una zona, y así avanzar en el conocimiento. Además, tiene numerosas aplicaciones en la actualidad ya que las rocas y los suelos son los materiales sobre los que se realizan obras de ingeniería civil (edificios, túneles, presas, carreteras, etc.) y

constituyen el soporte en el encuentran los diferentes recursos (agua, gas, petróleo, geotermia etc.) (Benavente, D., et al.,2004) o su utilidad como almacenes geológicos (gas natural, CO₂, hidrógeno, etc.).

Para el estudio de sus propiedades físicas, las muestras fueron sometidas al análisis de su susceptibilidad magnética con tres distintos susceptómetros, se calcularon las velocidades de propagación de ondas sísmicas P y sus densidades por medio del método de Arquímedes.

3- OBJETIVOS

El objetivo principal del presente trabajo es realizar un estudio para analizar las características petrofísicas de las distintas muestras y discutir si presentan una relación con sus características litológicas. Para ello, otros objetivos específicos son:

- Describir litológicamente las 25 muestras.
- Medir la susceptibilidad magnética con distintos susceptómetros.
- Calibrar los susceptómetros y caracterizar sus calibraciones.
- Medir la velocidad de propagación de ondas sísmicas.
- Calcular la densidad por Arquímedes.
- Estudiar si existe algún tipo de correlación entre las tres propiedades medidas.

4-METODOLOGÍA

4.1 Muestreos

Para llevar a cabo este trabajo se ha seguido la siguiente metodología de trabajo de gabinetelaboratorio:

- En primer lugar, se seleccionaron las 25 muestras a estudiar teniendo en cuenta que debían de ser heterogéneas (tipo de roca, génesis, litología, edad, etc.) para que los resultados sean representativos de varios grupos de rocas y así poder ver cómo varían las propiedades físicas a estudiar con la petrología de las muestras. Las muestras se han denominado con las siguientes siglas: TU2, TU3a, TU1d, GR39, GR45, ASP-16, EN, EN2, Pe, Ye-3, Ca, 5EKE, Me1b, Me1d, Ag12, e12-3, e1, Ar, LP, BL-2, BR-1, MG-1, LM1, CB-1 y FR.
- En segundo lugar, se realiza una breve descripción litológica de cada una de las muestras.
- En tercer lugar, se realizan las medidas de susceptibilidad magnética (apartado 4.2) en 19 muestras de la colección (TU2, TU3a, TU1d, GR39, GR45, ASP-16, EN, EN2, Pe, Ye-3, 5EKE, Me1b, Me1d, Ag12, e12-3, e1, Ar, LP y BL-2) con tres susceptómetros diferentes (KT10, KT20 y SM20), lo que nos permitirá hacer correlaciones de las medidas con los diferentes aparatos.
- En cuarto lugar, se realizan las medidas de las velocidades de ondas sísmicas en las muestras (apartado 4.3) en 15 muestras de la colección (TU2, TU3a, TU1d, EN2, Ye-3, Ca, 5EKE, Me1b, e12-3, LP, BR-1, MG-1, LM1, CB-1 y FR) con el Pundit PL-200.
- En quinto lugar, se realizan medidas de densidades (apartado 4.4) de las 15 muestras empleadas en la medida de velocidades de ondas sísmicas.

4.2 Susceptibilidad

Los cuerpos materiales poseen propiedades magnéticas, las cuales dependen básicamente de la composición electrónica. Al colocar un cuerpo en un campo magnético (H), se comporta de una forma particular de acuerdo con su configuración interna. Este comportamiento se cuantifica mediante la Susceptibilidad Magnética (χ) la cual, según Gili (1993), es la medida de la tendencia a magnetizarse una sustancia cuando se coloca en un campo magnético externo y se pueden clasificar los materiales según el valor de su susceptibilidad magnética en:

- → Diamagnéticos (χ<0): Su campo magnético interno tiende a ser menor que el externo y tiene dirección opuesta al campo (Figura 1). No es permanente y persiste sólo mientras el campo externo esté presente</p>
- → Paramagnéticos (χ>0): Su campo magnético interno es mayor que al que está sometido y son atraídos con mayor o menor fuerza hacia un imán (alineándose con el campo magnético). Colocados en un campo magnético uniforme, tienden a concentrar las líneas de fuerza, que no es permanente (Figura 1). Estos materiales poseen electrones no apareados y asimetría en las órbitas.
 - Ferromagnéticos: Cuerpos con susceptibilidad magnética muy elevada. El momento magnético permanece incluso
 - cuando no se aplica un campo magnético externo (Figura 1).

 Sin campo Magnético aplicado (H = 0)
 Campo magnético(H) Aplicado

) diamagnético
 Imagnético
 Imagnético

 paramagnético
 Imagnético
 Imagnético

 ferromagnético
 Imagnético
 Imagnético

 Imagnético
 Imagnético
 Imagnético

 <t

Figura 1: Esquema modificado, según Carmona (2017), de los tres tipos de materiales según su susceptibilidad magnética. En la primera columna se muestra el comportamiento de los tres cuerpos sin campo magnético externo (H=0) y en la segunda aplicando un campo magnético externo.

Para calcular las susceptibilidades magnéticas de las muestras se van a seguir los siguientes pasos:

- En primer lugar, se lavan las 19 muestras con agua para retirar el polvo que tienen en superficie ya que el polvo es magnético y daría datos erróneos.
- En segundo lugar, se miden las susceptibilidades magnéticas de las muestras con tres distintos susceptómetros (Tabla 1): KT-10, KT-20 y SM-20. Con cada uno se toman alrededor de 10 medidas en cada muestra. Las medidas deben ser en una mesa sin ningún tornillo para que los resultados no sean erróneos.

Susceptómetro	Sensibilidad	Rango de medida	Frecuencia	Dimensiones	Diametro bobina	Imagen
KT-10	1x10°-6 SI units	0,001x10°-3 a 333,333x10°-3 SI units	10 kHz	200mm x 57 mm x 30 mm	65 mm	
KT-20	1x10^-7 SI units	0,001 x 10°-3 a 1999.99 x 10°-3 Sl units	1/10 kHz o 10/100 kHz	260 mm x 72 mm x 60 mm	66 mm	
SM-20	1x10°-6 SI units	0,000 a 999x10°-3 SI units	10 kHz	100 mm × 65 mm × 25 mm	50 mm	

Tabla 1: Características de los tres susceptómetros empleados: KT-10 (Terraplus, & GeoResults), KT-20 (GeoResults, 2016) y SM-20 (GFInstruments, 2002).

- En tercer lugar, con los resultados obtenidos, se utiliza el software Kaleidagraph para calcular la tabla de estadísticas de cada muestra. En la tabla de estadísticas se ponen los siguientes datos:
 - Valor mínimo y máximo: La susceptibilidad menor y mayor medida de cada muestra.
 - Sumatorio (∑): Se suman todas las medidas.
 - Número de medidas: Cantidad de medidas realizadas en cada muestra.
 - La media (x): La suma de n valores, de las susceptibilidades medidas, y dividido por n, donde n es el número de sumandos según Medhi (1992).
 - La moda (M_o): Es el valor de susceptibilidad con mayor frecuencia según Damodar (1995).
 - La desviación estándar (s): Indica que tan heterogéneos son los resultados. Se calcula restando la media a cada resultado y elevando esas diferencias al cuadrado según Pearson (1894).
 - El error estándar de la media (S_x): Es el error debido a la estimación de la media total a partir de las medias de cada muestra. Es decir, es la desviación estándar de todas las muestras según Abraira (2002).
 - La varianza (σ^2): Representa la variabilidad de los datos respecto a su media. Se puede calcular restando a cada dato la media y elevando esta diferencia al cuadrado, luego se suman todas las diferencias según Pearson (1894).
 - Skewness: Representa el grado de simetría que presenta una distribución de probabilidad de una variable aleatoria según Pearson (1905). Se puede medir mediante el coeficiente de asimetría de Fisher (CA_F):

$$CA_F = \frac{\sum_{i=1}^{N} (x_i - \dot{x})^3}{N * S_x^3}$$

 Kurtosis: Indica la cantidad de datos que hay cercanos a la media, de manera que a mayor grado de kurtosis, más escarpada será la curva según Pearson (1905):

$$Kurtosis = \frac{\sum_{i=1}^{N} (x_i - \dot{x})^4}{N * S_x^4} - 3$$

 Por último, se realizan gráficas con los datos obtenidos en la tabla de estadísticas para ver la relación de la susceptibilidad magnética con sus características litológicas (apartado 6.1).

4.3 Velocidad ondas sísmicas

En la Tierra, cuando hay actividad sísmica, se liberan repentinamente ondas energéticas conocidas como ondas sísmicas. Estas ondas están dentro de la categoría de ondas elásticas. Se pueden clasificar en dos grupos (Espíndola, 1994):

- \rightarrow Ondas internas: Se propagan desde su origen hasta la superficie.
 - Ondas primarias (P): Se propagan produciendo oscilaciones del material con el que se encuentran en el mismo sentido en el cual se propagan (v=7,5km/seg).
 - Ondas segundarias (S): Se propagan produciendo movimientos perpendiculares a la dirección en que se propagan (v=4,2km/seg).
- → Ondas superficiales: Se propagan sobre la superficie de la Tierra.
 - Ondas de Rayleigh: Se propagan con un movimiento elíptico retrógrado.
 - Ondas de Love: Se propagan con un movimiento de las partículas, perpendicular y horizontal a la dirección de propagación.

Se van a emplear las ondas P para medir la velocidad de los pulsos de ultrasonido con el Pundit PL-200.

Este método de ensayo consiste en determinar la velocidad de pulso ultrasónico a partir de la generación de pulsos de ondas P emitidos por un transductor electroacústico en contacto con la superficie de la muestra. Después de recorrer la muestra, estos pulsos son recibidos y convertidos en energía eléctrica por un segundo transductor situado a una distancia determinada del primer transductor; el tiempo de tránsito se mide electrónicamente y la velocidad del pulso ultrasónico se puede establecer dividiendo la distancia de los transductores entre el tiempo de tránsito. La velocidad depende de la densidad y las características elásticas del material.

Con esta técnica también podemos identificar la existencia de defectos internos ya que el tiempo que tarda el pulso en recorrer de la superficie a un defecto y viajar de regreso, permite que sea localizada la posición del defecto. La velocidad de las ondas P viene dada por la siguiente ecuación (<u>http://www.biblioteca.udep.edu.pe</u>):

$$V = \sqrt{\left(\frac{E}{P} * \frac{(1-\mu)}{(1+\mu)(1+2\mu)}\right)}$$

Donde: E= Módulo Elasticidad Dinámico, P= Densidad, μ= Razón de Poisson

Para realizar los ensayos de velocidad de pulso ultrasónico se va a emplear el Pundit PL-200 (Figura 2):

Figura 2: Imagen del Pundit PL-200 tomada en el laboratorio. Consiste en una pantalla táctil, 2 transductores de 54 kHz, 2 cables BCN de 1,5 cm, acoplador, varilla de calibración, cable adaptador BNC, fuente de alimentación y cable USB (<u>www.proceq.com</u>).

- En primer lugar, se calibran los transductores para evitar que de datos erróneos.
- En segundo lugar, para medir la velocidad con los transductores, se seleccionan varias caras en la muestra para obtener resultados representativos de la muestra. Para la medición se coloca un transductor en una cara y el otro en la cara opuesta de la muestra (Figura 3). Para facilitar la medición, evitar que los transductores no estén paralelos y conseguir que estén perfectamente enfrentados. Se dibujaron líneas a lápiz en la superficie de la muestra para posicionar los transductores a lo largo de esas líneas y asegurar el posicionamiento correcto de los mismos. A cada línea se le da una letra. Todas las líneas, con la misma orientación, se juntan en un eje (el cual se denominará con las letras de las líneas de las que está compuesto). Hay ejes que solo estarán compuestos por una línea. Se debe medir la distancia de entre los transductores, en cada eje, y meterlo como dato en el Pundit PL-200.

Figura 3: Representación con flechas la posición de los dos transductores en las dos distintas caras en las que se hicieron las medidas en la muestra 5EKE. Los transductores tienen que estar paralelos y uno en cada cara opuesta de la muestra.

- Luego se miden el tiempo de transito de las ondas P en las muestras con el Pundit. Se realizan entre 15 y 20 medidas en cada eje, dependiendo del tamaño de la muestra.
- Por último, se pasan los datos obtenidos al ordenador con el programa PL-Link.
- Se realizan tablas con las medidas obtenidas. Con la distancia entre transductores y el tiempo obtenido se puede calcular la velocidad de las ondas P (v_p) para cada muestra: v_p =espesor/tiempo.
- Con las v_p obtenidas, se hacen gráficos en el programa Kaleidagraph. Los gráficos van a mostrar las distintas velocidades obtenidas, para ver como varía la v_p dependiendo de la orientación de medida respecto a la estructura interna de la muestra.

4.4 Densidad

El cálculo de la densidad de las muestras se basa en el principio de Arquímedes. Este principio nos indica que "todo cuerpo sumergido dentro de un fluido experimenta una fuerza ascendente llamada empuje, equivalente al peso del fluido desalojado por el cuerpo".

Debido al efecto del empuje, los cuerpos sumergidos en un fluido tienen un peso

aparentemente menor a su verdadero peso, y le llamamos peso aparente. El valor de la fuerza de empuje se determina mediante la diferencia del peso real y la del peso aparente (Terán, 2014): *Empuje = peso real – peso aparente*

- Primero se fragmentan las 15 muestras empleadas en el apartado 4.3 en trozos de unos 10 cm³. Se saca un fragmento de cada muestra, se debe siglar con la misma sigla que la muestra original para evitar equivocaciones.
- Se deben pesar los trozos en seco en la balanza de precisión marca Cobos (Figura 4).

Figura 4: Imagen de la balanza de marca Cobos empleada para las medidas.

 Luego, se calienta la parafina QP 213206.0914 de Panrec para que se vuelva líquida (Figura 5).

Figura 5: Imagen tomada en el momento del calentamiento de la parafina.

- Se atan los trozos a hilos de pescar y se meten a la parafina líquida y se espera a que se seque la capa. Cuando se haya secado se vuelven a pesar los fragmentos con la capa de parafina. Se debe hacer este paso para que en el pesaje con agua la muestra sea impermeable y no absorba agua, de este modo no habrá pesajes erróneos ni afectará la porosidad.
- Finalmente se rellena un frasco con dos litros de agua y se cuelgan los fragmentos de la balanza con el hilo y el clip de modo que se sumerjan al frasco sin tocar el fondo ni los bordes para medir el peso del fragmento en el agua (Figura 6).

Figura 6: Imagen tomada en el momento de pesaje de un fragmento sumergido en el frasco de agua. Como se puede ver en la imagen, la báscula se coloca encima de un soporte de madera, el cual tiene un hueco en la zona superior que permite pasar el clip y el hilo de pescar para la toma de datos.

• Se calcula la densidad de la muestra mediante el método de Arquímedes:

$$\rho_{muestra} = \frac{m1}{(m2 - m3) - \frac{m2 - m1}{\rho_{parafina}}}$$

Donde la densidad de la parafina es 0,8 gr/cm³, m1: peso muestra en seco, m2: peso muestra con parafina, m3: peso muestra con parafina y sumergida en agua.

5-SITUACIÓN GEOGRÁFICA Y GEOLÓGICA

En la colección de muestras estudiadas se encuentran tanto muestras de España, como de Francia e Italia (Anexo 1); más concretamente del Pirineo, de la Cuenca del Ebro, de la Cordillera Ibérica, del Macizo Ibérico, del Macizo Armoricano y de la región volcánica de Tusculum. Se dividen las 25 muestras (Tabla 2) en cuatro grupos según su origen de formación:

- Rocas ígneas: Las tobas y lavas de Tusculum (Italia) cuaternarias se localizan al norte del volcán Albano. Los granitos carboníferos del macizo Veiga, al norte del Macizo Ibérico. El gabro de Loscos en la zona centro-septentrional de la Cordillera Ibérica. Las granodioritas carboníferas de Eaux-Chaudes forman parte del manto alpino de Gavarnie (Francia). La Iherzolita es de la zona norpirenaica, del Albiense.
- Roca metamórfica: El esquisto, del Proterozoico y Paleozoico, del Macizo Armoricano (Francia) se sitúa entre el Golfo de Vizcaya y el Canal de la Mancha.
- Rocas sedimentarias: La marga de la cuenca de Mauleon (Francia), de edad Aptiense inferior - Albiense inferior, se sitúa al norte del Pirineo. Las areniscas de Ena son de la Formación de Campodarbe, del Biarritzense. Las calizas la cuenca de Calatorao son de la Formación Chelva, del Jurásico medio. El alabastro es de la cuenca terciaria del Ebro y a la fosa terciaria de Calatayud. La dolomía de Blancas es de la Formación Mosqueruela- Barranco de los Degollados, del Cretácico superior. La caliza de Bielsa (circo de Barrosa y cabalgamiento de Gavarnie) es de edad devónica. La caliza con nummulites de Guara es del Grupo de Ager, de edad Cuisiense-Luteciense. La limolita de Cabuerniga es de la Formación de Loma de Somera, del Jurásico superior-Neocomiense inferior. La caliza del Grupo Enciso, de edad Barremiense superior-Aptiense inferior, se sitúa en la Cuenca de Cameros.
- Otros: La escayola no se puede situar ni geográfica ni geológicamente porque es un producto industrial.

Sigla	Nombre	Descripción	Génesis	Ubicación y edad	Bibliografía	Imagen
TU2	E	Roca ígnea heterogénea, con tonalidades marronáceas y fragmentos blanquecinos, aspecto terroso, alta porosidad, peso ligero.		Pertenecientes a las		Landa and a second s
TU3a	Tobas de Tusculun	Roca ígnea heterogénea, con tonalidades grisáceas y fragmentos blanquecinos,	Formada por la acumulación de cenizas u otros elementos volcánicos muy pequeños expelidos por los respiraderos durante una erupción volcánica.	ruinas de Tusculum, del Cuaternario, las cuales se encuentran en el borde norte del cráter externo del volcán Albano, en los montes Albanos.	(Casas, A.M. et al., 2016)(Casas, A., 2020)	
TU1d		aspecto terroso, alta porosidad, peso ligero.				the second
GR39	de Veiga	Roca ígnea calcoalcalina. Su composición es básicamente el de una granodiorita (Q, Ol, K- Fdto). Presenta textura profídica. Tonos grises y blanquecinos.	Formada por una intrusión ígnea en el norte de la cordillera Hercínica, en un	Pertenecientes al macizo Veiga, el cual se encuentra en la zona	(Román-	
GR45	Granitos	Roca ígnea calcoalcalina. Su composición es básicamente el de una granodiorita (Q, Ol, K- Fdto). Presenta textura profídica. Tonos grises y anaranjados.	ambiente extensional. Forma una auerola metamórfica.	norte de la cordillera Hercínica. La intrusión está datada a finales del Carbonífero.	Berdiel, I., et al., 1995)	A DECEMBER OF
ASP-16	Margas de Mauleon	Roca sedimentaria, de color grisáceo y aspecto masivo.	Formada en un ambiente terrestre de lagoon que se transforma en ambiente marino (movimiento extensional). Deformada posteriormente.	Perteneciente a la cuenca de Mauleon de la parte norte del Pirineo. De edad Aptiense inferior- Albiense inferior.	(Olivia-Urcia, B., et al., 2010)	Ast - 26
EN						E
EN2	Arenisca de Ena	Roca sedimentaria, de grano fino, en corte fresco es de color gris azulado y por oxidación pasa a marrón amarillento. No presenta discontinuidades ni porosidad significativa.	Niveles areniscosos con morfología en cuña o irregular, alternantes con lutitas, de la Formación Campodarbe. Es una formación terciaria continental, de tipo fluvial.	Pertenecientes a la Formación Campodarbe que forma parte del sinclinorio del Guarga (Huesca). Es del Eoceno superior (Biarritzense).	(Arranz, E., et al., 2004)	EN2
Pe						
Ye-3	e Calatorao	Roca sedimentaria, de grano fino, porosidad muy baja y muy dúctil. Color gris	Depositadas en una plataforma carbonatada marina muy somera y restringida del Jurásico Medio (Fm. Chelva). Formadas por restos de Belemnites y Ammonites.	Caliza bioclástica del Jurásico Medio (Formación Chelva)	(Arranz, E., et	Ye-2
Ca	Calizas d	oscuro, masiva y con bioturbación.	Precipitación del carbonato de calcio y la acumulación de restos orgánicos bajo condiciones fuertemente reductoras que favorecieron la concentración y consevación.	depositada en la cuenca de Calatorao (Zaragoza).	al., 2004)	

5eke	Alabastro	Grano fino y porosidad muy baja. Brillo cereo. Es muy dúctil. Translúcido.	Los depósitos yesiferos son progresivamente sepultados por la sedimentación de materiales aluviales llegados con posterioridad. Con la profundidad aumenta la temperatura provocando el yeso en anhidrita. La anhidrita se vuelve a poner en contacto con aguas subterráneas.	Yeso alabastrino del Mioceno depositado en la cuenca terciaria del Ebro y fosa terciaria de Calatayud, rama aragonesa de la Cordillera Ibérica.	(Arranz, E., et al., 2004)	
ME1b	nsculum	Roca volcánica heterogénea, con tonalidades marronáceas, aspecto consistente, baja porosidad y peso medio- pesado.	Formada por la llegada del magma a	Pertenecientes a las ruinas de Tusculum del Cuaternario, las cuales se	(Casas, A.M. et	
Me1d	Lavas de T	Roca volcánica heterogénea, con tonalidades marronáceas y grisáceas, aspecto consistente, baja porosidad y peso medio-pesado.	la superficie cuando hay una erupción volcánica.	encuentran en el borde norte del cráter externo del volcán Albano, en los montes Albanos.	2016)(Casas, A., 2020)	
Ag12	Gabro de Loscos	Roca plutónica fanerítica, ligeramente porfídica, con alto contenido en plagioclasa y macrocristales de clinopiroxeno alterados debido a un proceso de hidratación. Tiene tonos ocres y grisáceos.	Intrusión gabroica de tamaño mediano, a unos 5 km de profundidad que da como resultado una anomalía magnética en Loscos.	Pertenece a la localidad de Loscos, en la zona centro-septentrional de la Cordillera Ibérica. Data 293+-2,5 Ma (K/Ar de la biotita).	(Calvín, P., et al., 2014)	
e12-3	de Eaux-Chaudes	Granodiorita con biotita, con textura fanerítica. Grano de tamaño medio. Tonos grisáceos.	Fase tectónica con movimiento compresivo-cizalla con intrusiones	Pertenecen al pluton varisco de Eaux-Chades, de finales del Carbonífero, el cual se encuentra en el extremo	(Izquierdo- Llavall, E., et	
e1	Granodioritas	Granodiorita con biotita, con textura fanerítica. Grano de tamaño medio. Tonos marronáceos.	graníticas.	noroccidental de la Zona Axial de los Pirineos y forma parte del manto alpino de Gavarnie.	al., 2012)	<u> </u>
Ar	Esquisto del Macizo Armoricano	Roca metamórfica de grado medio, con alto contenido en minerales laminares (mica, clorita, talco, grafito).	Alteración metamófica de arcillas y lodos.	Pertenece al Macizo Armoricano, al noroeste de Francia, entre el Golfo de Vizcaya y el Canal de la Mancha. Del Proterozoico y Paleozoico.	Bonnet, S., et al., 2000)	
LP	Lherzolita pirenaica	Roca ígnea, ultramáfica (peridotita). Presenta grano grueso y altas cantidades de olivino, ortopiroxeno y clinopiroxeno. Cuenta con tonalidades marronáceas y verdosas.	Se forma por la hiperextensión de los márgenes y la exhumación del manto. Se forma a alta presión y a alta temperatura.	Pertenece a la zona Norpirenaica. De edad Albiense.	(Gago Revuelta, J., 2013).	
BL-2	Dolomía de Blancas	Dolomía recristalizada en la que se preservan las envueltas micríticas de los bioclastos originales y sus moldes internnos. El cemento está reemplazado por mosaicos de microesparita y macroesparita. Porosidad muy alta.	Roca formada por la sedimentación de esqueletos de organismos marinos.	Dolomía del Cretácico superior (Fm. Mosqueruela- Fm. Barranco de los Degollados) de Blancas (Teruel).	(Arranz, E., et al., 2004)	
BR1	Caliza de Bielsa	Caliza gris gruesamente estratificada con aspecto masivo.	En el Devónico, en el cabalgamiento de Gavarnie, hay un desarrollo importante de facies carbonatadas despues del periodo marino tranquilo rico en plancton del Silúrico.	Se localiza en el circo de Barrosa (valle de Bielsa) y forma parte del cabalgamiento de Gavarnie. Es del Devónico.	(Ríos, L. M., et al., 1982)	6

MG-1	Caliza con nummulites de Guara	Caliza carbonatada que forma parte de la Fm. Guara con alto contenido en nummulites y alveolinas (bioconstrucciones con fábrica granosostenida), que presentan imbicación. Color grisáceo.	Las calizas se originan por sedimentación en la plataforma carbonatada, en el margen pasivo de la cuenca de antepaís Surpirenaica. Parece más adecuado pensar en un sistema de barras litorales (barriers) que en grandes < <dunas> submarinas. Pasan lateralmente al flysch de Hecho.</dunas>	Afloran en todas las Sierras Exteriores, así como en el anticlinal de Boltaña, en la terminación occidental de la Sierra de Leyre y en la Sierra de Alaiz. Edad Cuisiense-Luteciense y parte inferior del Biarritziense. Forma parte del Grupo de Ager.	(Silva-Casal, R., et al., 1975)	
LM1	Escayola	Es un producto industrial q mu	ue se obtiene del yeso natural. Es un ye y fino, con pureza >90% en mineral alje	eso de alta calidad y grano ez.	https://www.q uimica.es/encic lopedia/Escayo la.html	
CB-1	Limolita de Cabuerniga	Roca sedimentaria detrítica, compuesta principalmente por limo . Presenta grano muy fino (0.002 mm - 0.06 mm). Color rojizo heterogéneo con manchas ocres.	Se ha formado como resultado de un ciclo detrítico transgresivo-regresivo. Las limolitas forman parte del tramo 2 de la Fm. de Loma Somera, marcando el máximo de la transgresión.	Forma parte de la Fm. De Loma Somera del Grupo Cabuerniga, al sur de Cantabria y al NE de Palencia. Edad Jurásico superior-Neocomiense inferior.	(García, A., et al., 1982)	
FR	Caliza del Grupo Enciso	Roca sedimentaria de color grisáceo, compuesta mayoritariamente por carbonato de calcio.	Los sedimentos del Grupo Enciso fueron depositados en sistemas lacustres de tipo rampa de baja energía y bajo gradiente. Las calizas se generaron en la cuenca de sedimentación por precipitación directa bioinducida y a partir de los restos esqueléticos de organismos.	Se encuentra en la Cuenca de Cameros, situada en el extremo noroccidental de la Cordillera Ibérica. Forma parte del Grupo Enciso de edad Barremiense superior- Aptiense inferior.	(Alonso Azcárte, J., et al., 1999)	

Tabla 2: Descripción litológica, génesis, ubicación y edad de las 25 muestras estudiadas, todas ellas pertenecen a la colección de la Universidad de Zaragoza.

6-RESULTADOS

6.1 Susceptibilidad magnética

Medida	E12-3	E-1	LP	5EKE	AR	EN	Ca	Ye-3	BL-2	TU2	TU3a	TU1d	ME1b	ME1d	GR-45	AG12	ASP-16	Pe	GR39
KT10-1	203	226	25750	-1	140	74	243	58	9	414	2236	32770	34920	8321	89	46590	0	64	88
KT10-2	197	264	28140	-2	147	73	248	56	4	411	2196	30840	28640	9038	93	44370	2	62	81
KT10-3	206	234	23720	-3	150	70	245	50	5	381	2171	28290	35670	8982	91	28620	4	61	87
KT10-4	201	228	25390	-2	133	71	240	59	5	315	2280	29100	37120	7584	88	22660	1	65	66
KT10-5	200	199	19160	-3	128	77	243	68	4	410	2096	22530	35310	6050	95	24740	4	62	84
KT10-6	210	189	19250	-6	132	78	248	70	6	445	2884	28870	35250	9944	90	21550	2	59	96
KT10-7	212	268	18340	-1	144	78	250	54	8	362	2741	19550	32260	7547	116	20710	3	60	105
KT10-8	185	221	19080	-5	131	75	240	63	4	432	2879	28050	38800	9949	164	20970	5	63	116
KT10-9	191	168	18730	-3	132	74	244	61	3	291	2802	23460	31250	8474	144	32000	4	62	100
KT10-10	182	180	18600	0	130	77	237	60	1	302	2556	24630	34130	7549	138	35020	2	63	105
KT10-11	181	261	25920	-3	144	77	256	61	3	239	2905	24450	38290	6246	109	24400	5	65	65
KT10-12	177	233	25160	-2	136	76	252	69	6	277	2756	25500	31310	6950	116	31500	2	60	101
KT20-1	184	227	24000	0	142	112	282	88	0	377	2850	27200	32600	7440	90	27100	33	90	136
KT20-2	203	221	15900	0	127	114	270	90	2	321	2600	27700	31400	7830	95	28300	25	91	129
KT20-3	196	272	23800	0	146	103	235	88	0	421	2860	27100	31300	6510	86	29700	32	110	113
KT20-4	199	243	22900	0	135	105	258	96	8	297	2290	17800	35400	9710	102	31200	36	94	125
KT20-5	197	212	17400	0	158	110	268	105	4	327	2290	20500	31100	8860	95	28500	12	109	117
KT20-6	201	165	23900	0	134	111	240	115	3	343	2130	22400	27500	8250	114	29400	7	114	135
KT20-7	210	192	18900	0	140	112	231	109	0	363	2180	30600	31800	10900	113	36900	5	115	92
KT20-8	183	195	17300	0	159	109	261	89	1	304	2830	18500	20700	7820	149	20300	9	108	99
KT20-9	199	233	14400	0	110	92	258	86	1	388	2820	27300	36600	9390	154	24700	в	72	88
KT20-10	175	238	10400	0	158	101	261	91	2	280	2280	19600	33300	9670	82	27400	6	89	75
SM20-1	209	131	10400	-20	142	59	231	67	-12	353	1500	33300	34800	5290	149	15600	13	39	44
SM20-2	108	162	18700	-7	132	61	236	64	-2	419	2100	29400	27600	4670	111	23100	29	40	62
SM20-3	206	168	16200	-25	139	52	222	63	-16	333	2740	32900	41500	5180	58	29800	9	41	49
SM20-4	199	164	17100	-6	125	61	233	42	-4	354	1870	32300	36500	4600	138	18500	25	55	95
SM20-5	181	138	22300	-9	129	52	239	35	-11	308	2650	31700	31100	5280	153	19800	12	53	56
SM20-6	173	146	15800	-10	133	61	226	53	-9	336	2120	25700	26900	8860	128	20900	6	57	57
SM20-7	171	149	11600	-23	138	59	242	56	-18	327	2820	23200	32600	9360	67	27100	27	47	39
SM20-8	147	150	10300	-17	113	58	218	38	-8	267	2780	16800	28200	7730	92	22600	8	51	130
SM20-9	168	65	12700	-3	85	52	235	43	-8	269	2720	22400	28900	11900	103	23800	20	51	72
SM20-10	126	137	14900	-5	102	61	237	61	-11	253	2830	14200	25500	6580	106	19800	6	53	91

Tabla 3: Tabla de los valores de susceptibilidad (x10-6 SI) obtenidos para las 19 muestras, medidos con los susceptómetros KT-10, KT-20 y SM-20.

						KT1	0					
Variable	Minimum	Maximum	Sum	Points	Mean	Median	RMS	td Deviation	Variance	Std Error	Skewness	Kurtosis
E12-3	177	212	2345	12	195,4	198,5	195,8	11,9	142,4	3,4	-0,2	-1,3
E-1	168	268	2671	12	222,6	227,0	224,8	33,0	1092,1	9,5	-0,2	-1,1
LP	18340	28140	267240	12	22270,0	21485,0	22549,8	3698,8	13681164,0	1067,8	0,2	-1,7
5EKE	-6	0	-31	12	-2,6	-2,5	3,0	1,7	2,8	0,5	-0,6	-0,1
AR	128	150	1647	12	137,3	134,5	137,4	7,4	55,3	2,1	0,4	-1,3
EN	70	78	900	12	75,0	75,5	75,0	2,7	7,1	0,8	-0,6	-0,8
Ca	237	256	2946	12	245,5	244,5	245,6	5,5	30,3	1,6	0,3	-0,7
Ye-3	50	70	729	12	60,8	60,5	61,0	6,1	36,9	1,8	0,0	-0,8
BL-2	1	9	58	12	4,8	4,5	5,3	2,2	4,9	0,6	0,3	-0,3
TU2	239	445	4279	12	356,6	371,5	362,7	69,0	4764,6	19,9	-0,3	-1,3
TU3a	2096	2905	30502	12	2541,8	2648,5	2560,4	321,1	103095,2	92,7	-0,2	-1,7
TU1d	19550	32770	318040	12	26503,3	26775,0	26750,8	3791,6	14376024,0	1094,5	-0,1	-0,7
ME1b	28640	38800	412950	12	34412,5	35085,0	34536,5	3054,4	9329384,1	881,7	-0,3	-0,7
ME1d	6050	9949	96634	12	8052,8	7952,5	8147,9	1296,0	1679718,9	374,1	0,0	-1,0
GR-45	88	164	1333	12	111,1	102,0	113,7	25,4	646,8	7,3	0,9	-0,5
AG12	20710	46590	353130	12	29427,5	26680,0	30625,5	8859,0	78481584,0	2557,4	0,9	-0,5
ASP-16	0	5	34	12	2,8	2,5	3,2	1,6	2,5	0,5	-0,1	-1,0
Pe	59	65	746	12	62,2	62,0	62,2	1,9	3,8	0,6	0,0	-1,0
GR39	65	116	1094	12	91.2	92.0	92.4	15.7	245.2	4.5	-0.3	-0.8

Tabla 4: Tabla con los datos estadísticos, calculados mediante Kaleidagraph, de las medidas realizadas con el susceptómetro KT10.

	КТ20											
Variable	Minimum	Maximum	Sum	Points	Mean	Median	RMS	td Deviatior	Variance	Std Error	Skewness	Kurtosis
E12-3	175,0	210,0	1947,0	10,0	194,7	198,0	195,0	10,7	114,0	3,4	-0,6	-0,7
E-1	165,0	272,0	2198,0	10,0	219,8	224,0	221,7	30,3	919,3	9,6	-0,2	-0,4
LP	10400,0	24000,0	188900,0	10,0	18890,0	18150,0	19405,3	4682,5	21925444,0	1480,7	-0,3	-1,0
5EKE	0,0	0,0	0,0	10,0	0,0	0,0	0,0	0,0	0,0	0,0	NA	NA
AR	110,0	159,0	1409,0	10,0	140,9	141,0	141,7	15,5	241,2	4,9	-0,5	-0,4
EN	92,0	114,0	1069,0	10,0	106,9	109,5	107,1	6,7	45,4	2,1	-1,1	0,3
Ca	231,0	282,0	2564,0	10,0	256,4	259,5	256,9	16,3	266,0	5,2	-0,3	-0,9
Ye-3	86,0	115,0	957,0	10,0	95,7	90,5	96,2	10,3	105,3	3,2	0,9	-0,8
BL-2	0,0	8,0	21,0	10,0	2,1	1,5	3,1	2,5	6,1	0,8	1,4	1,3
TU2	280,0	421,0	3421,0	10,0	342,1	335,0	344,7	44,7	2000,3	14,1	0,3	-1,0
TU3a	2130,0	2860,0	25130,0	10,0	2513,0	2445,0	2529,8	306,9	94178,9	97,0	0,1	-1,8
TU1d	17800,0	30600,0	238700,0	10,0	23870,0	24750,0	24266,1	4602,9	21186778,0	1455,6	0,0	-1,5
ME1b	20700,0	36600,0	311700,0	10,0	31170,0	31600,0	31453,5	4441,2	19724556,0	1404,4	-1,3	1,3
ME1d	6510,0	10900,0	86380,0	10,0	8638,0	8555,0	8726,6	1307,3	1709084,4	413,4	0,1	-0,8
GR-45	82,0	154,0	1080,0	10,0	108,0	98,5	110,6	25,2	635,1	8,0	0,9	-0,5
AG12	20300,0	36900,0	283500,0	10,0	28350,0	28400,0	28639,1	4278,7	18307222,0	1353,0	0,1	0,6
ASP-16	3,0	36,0	168,0	10,0	16,8	10,5	20,9	13,1	172,8	4,2	0,4	-1,6
Pe	72,0	115,0	992,0	10,0	99,2	101,0	100,1	14,1	198,0	4,4	-0,5	-0,8
GR39	75,0	136,0	1109,0	10,0	110,9	115,0	112,7	21,3	454,5	6,7	-0,3	-1,2

Tabla 5: Tabla con los datos estadísticos, calculados mediante Kaleidagraph, de las medidas realizadas con el susceptómetro KT20. Cabe destacar que el KT20 no mide datos en negativo, solo lo pone como 0 (5EKE).

						SM2	20					
Variable	Minimum	Maximum	Sum	Points	Mean	Median	RMS	Std Deviation	Variance	Std Error	Skewness	Kurtosis
E12-3	108	209	1688	10	168,8	172	171,76204	33,479015	1120,8444	10,586994	-0,5232069	-0,776
E-1	65	168	1410	10	141	147,5	143,72891	29,382534	863,33333	9,2915732	-1,8357094	2,6962
LP	10300	22300	150000	10	15000	15350	15438,847	3852,5605	14842222	1218,2866	0,40666412	-0,676
5EKE	-25	-3	-125	10	-12,5	-9,5	14,638989	8,0311892	64,5	2,539685	-0,4171508	-1,387
AR	85	142	1238	10	123,8	130,5	125,0224	18,383568	337,95556	5,8133945	-1,0586075	-0,058
EN	52	61	576	10	57,6	59	57,725211	4,0055517	16,044444	1,2666667	-0,6635078	-1,325
Са	218	242	2319	10	231,9	234	232,01487	7,6948756	59,211111	2,4333333	-0,5760982	-0,812
Ye-3	35	67	522	10	52,2	54,5	53,387264	11,802071	139,28889	3,7321427	-0,2073435	-1,515
BL-2	-18	-2	-99	10	-9,9	-10	10,931606	4,8864893	23,877778	1,5452436	-0,0576982	-0,652
TU2	253	419	3219	10	321,9	330	325,38024	50,02988	2502,9889	15,820837	0,3177052	-0,43
TU3a	1500	2830	24130	10	2413	2685	2454,9847	476,53961	227090	150,69506	-0,7688462	-0,85
TU1d	14200	33300	261900	10	26190	27550	26996,685	6904,4993	47672111	2183,3944	-0,5490105	-1,059
ME1b	25500	41500	313600	10	31360	30000	31719,994	5023,1022	25231556	1588,4444	0,76833469	-0,416
ME1d	4600	11900	69450	10	6945	5935	7324,1539	2451,8032	6011338,9	775,32825	0,82549691	-0,497
GR-45	58	153	1105	10	110,5	108,5	114,68261	32,349652	1046,5	10,229858	-0,2555685	-1,036
AG12	15600	29800	221000	10	22100	21750	22449,41	4158,7926	17295556	1315,1257	0,39116329	-0,457
ASP-16	6	29	155	10	15,5	12,5	17,67767	8,9597867	80,277778	2,8333333	0,40056992	-1,454
Pe	39	57	487	10	48,7	51	49,096843	6,5667513	43,122222	2,0765891	-0,4249531	-1,329
GR39	39	130	695	10	69.5	59.5	74.482884	28.23414	797.16667	8.928419	0.98649729	0.0228

Tabla 6: Tabla con los datos estadísticos, calculados mediante Kaleidagraph, de las medidas realizadas con el susceptómetro SM20.

6.2 Velocidad de propagación de las ondas sísmicas

Para el cálculo de la moda y de la media se han tenido solamente en cuenta los valores superiores a 500 x 10^{-6} , salvo en TU2, debido a que los valores más bajos son errores porque no son valores aceptables para v_p en rocas.

Se ha calculado la media en todas las muestras y se ha sacado la moda de los histogramas realizados, tanto para el total como para cada eje. Además, se ha calculado la moda en las muestras que había buenas medidas y no había mucha dispersión.

Las modas calculadas aparecen en el Anexo 2, la moda basada en los histogramas se menciona a continuación ya que es más representativa que la calculada.

- Rocas ígneas:
 - Tobas de Tusculum

En la muestra TU1d el <u>rango</u> de v_p va de 510,14 m/s hasta 1240,10 m/s (Tabla 10, Anexo 2). La <u>media</u> para el total de las medidas es 969,71 m/s, para las realizadas según el eje A es

814,58 m/s, según el eje B 1109,97 m/s y según C 937,42 m/s. La moda, según los histogramas (Fig. 7), es 1000 m/s para el total de las medidas, 400 m/s para las medidas realizadas según la dirección del eje Α, 1100 m/s según В y 1000 m/s según C.

Los valores de las medias y las modas para el total de las medidas y para los ejes B y C están todos en el rango 937-1100, siendo A el eje que da los valores más bajos, pero también más dispersos.

Figura 7: Histogramas de frecuencia de los valores de v_p para la muestra TU1d, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Ejes A, B y C).

En la muestra TU2 el <u>rango</u> de v_p va de 225,63 m/s hasta 1240,10 m/s (Tabla 11, Anexo 2). La <u>media</u> para el total de las medidas es 669,07 m/s, para el eje A es 779,81 m/s, para el eje B es 608,16 m/s y para el eje C es 596,16 m/s. La <u>moda</u>, según los histogramas (Fig. 8), es 450 m/s para el total, 500 m/s para las medidas realizadas según la dirección del eje A, 550 m/s según B y 450 m/s según C.

Figura 8: Histogramas de

frecuencia de los valores de v_p para la muestra TU2, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A, B y C).

En la muestra TU3a el <u>rango</u> de v_p va de 568,65 m/s hasta 1371,24 m/s (Tabla 12, Anexo 2). Se han juntado todas las líneas de medida ya que se realizaron en la misma orientación. La <u>media</u> es 943,63 m/s. La <u>moda</u>, según el histograma (Fig. 9), es 1000 m/s.

Figura 9: Histogramas de frecuencia de los valores de v_p para la muestra TU3a para los cuatro ejes que se han medido, los cuales se realizaron en la misma dirección, por lo que se han juntado.

- Lavas de Tusculum

En la muestra ME1b el rango de v_p va de 544,17 m/s hasta 1651,87m/s (Tabla 13, Anexo 2). La

<u>media</u> es 983,41 m/s para el total, 1053,77 m/s para el eje A y 862,40 m/s para el eje C. La <u>moda</u>, según los histogramas (Fig. 10), es 800m/s para el total, 800m/s para el eje A y 750 m/s para el eje C. Ni la media ni la moda de B se tienen en cuenta porque todos los valores son <500.

Figura 10: Histogramas de frecuencia de los valores de v_p para la muestra ME1b, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A, B y C).

Granodioritas de Eaux-Chaudes

En la muestra E12-3 el <u>rango</u> de v_p va de 517,87 m/s hasta 1936,42 m/s (Tabla 14, Anexo 2). La <u>media</u> es 1235,58 m/s para el total, 1327,36 m/s para el eje A, 1134,26 m/s para el eje B y

1260,38 m/s para el eje C. La moda, según el histograma (Fig. 11), es 1300m/s para el total, para el eje A y para el eje B y 1700 m/s para el eje C. En el eje C, en el cual se hicieron las medidas paralelamente a la foliación hay una mayor v_p que en los otros dos ejes, los cuales eran perpendiculares a la foliación.

Figura 11: Histogramas de frecuencia de los valores de v_p para la muestra E12-3, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A, B y C).

- Lherzolita pirenaica

En la muestra LP el <u>rango</u> de v_p va de 528,01m/s hasta 1171,72m/s (Tabla 15, Anexo 2). La <u>media</u> es 796,10 m/s para el total, 690,56 m/s para el eje A, 608,53 m/s para el eje B, 944,52 m/s para el eje C y 725,96 m/s para el eje D. La <u>moda</u>, según el histograma (Fig. 12), es 700m/s para el total, 500m/s para el eje A, 600m/s para el eje B, 1000m/s para el eje C y 900 m/s para el eje D. Los datos son poco representativos y presentan una gran dispersión, lo cual puede ser debido a errores en las medidas.

Figura 12: Histogramas de frecuencia de los valores de v_p para la muestra LP, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A, B y C). El eje B presenta bastantes errores de medida, da valores muy bajos.

- Rocas sedimentarias
 - Arenisca de Ena

En la muestra EN2 el <u>rango</u> de v_p va de 588,23m/s hasta 2054,38m/s (Tabla 16, Anexo 2). La <u>media</u> es 1234,18 m/s para el total, 1207,59 m/s para el eje a y 1255,27 m/s para el eje B+C+D. La <u>moda</u>, según el histograma (Fig. 13), es 1300 m/s para el total, para el eje A y para el eje B+C+D. Cabe destacar que los valores en ambas direcciones son similares y los histogramas tienen una forma también parecida

Figura 13: Histogramas de frecuencia de los valores de v_p para la muestra EN2, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A, B+C+D). Se han agrupado los ejes B, C y D ya que fueron medidos en la misma dirección.

- Calizas de Calatorao

En la muestra Ca el <u>rango</u> de v_p va de 541,14m/s hasta 1851,85m/s (Tabla 17, Anexo 2). La <u>media</u> es 979,89 m/s para el total, 964,54 m/s para el eje A+B+C+D, y 1080,73 m/s para el eje E+F. La <u>moda</u>, según el histograma (Fig. 14), es 800m/s para el total, 900m/s para el eje A+B+C+D y 1450m/s para el eje E+F.

Figura 14: Histogramas de frecuencia de los valores de v_p para la muestra Ca, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A+B+C+D, E+F). Se han agrupado los que fueron medidos en la misma dirección.

Ye-3 Tot

En la muestra Ye-3 el rango de v_p va de 507,74m/s hasta 2022,22m/s (Tabla 18, Anexo 2). La media es 1169,80 m/s para el total, 1163,34 m/s para el eje A+B+C+D y 1175,91 m/s para el eje E+F+G+H. La moda, según el histograma (Fig. 15), es 1200m/s para el total de la muestra, 1200m/s para el eje A+B+C+D y 1300m/s para el eje E+F+G+H. Ambos ejes presentan una v_p muy similar.

Figura 15: Histogramas de frecuencia de los valores de v_p para la muestra Ye-3, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A+B+C+D, E+F+G+H). Se han agrupado los que fueron medidos en la misma dirección.

Alabastro

En la muestra 5EKE el rango de v_p va de 528,14m/s hasta 1568,12m/s (Tabla 19, Anexo 2). La media es 996,33 m/s para el total, 968,97 m/s para el eje A+B+C+D+E+F y 1132,93 m/s para el eje G. La moda, según el histograma (Fig. 16), es 1000m/s para el total y para el eje A+B+C+D+E+F y 1400m/s para el eje G.

Figura 16: Histogramas de frecuencia de los valores de v_p para la muestra 5EKE, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A+B+C+D+ E+F, G). Se han agrupado los que fueron medidos en la misma dirección (todos menos G).

Caliza de Bielsa

En la muestra BR1 el rango de v_p va de 621,59m/s hasta 1464,02m/s (Tabla 20, Anexo 2). La media es 882,41 m/s para el total, 772,93 m/s para el eje A y 1015,77 m/s para el eje B. La moda, según el histograma (Fig. 17), es 900m/s para el total y para el eje A y 1100m/s para el eje B.

Figura 17: Histogramas de frecuencia de los valores de v_{p} para la muestra BR1, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (Eje A+B+C+D+ E+F, G). Se han agrupado los que fueron medidos en la misma dirección (todos menos G).

- Caliza de nummulites de Guara En la muestra MG-1 el <u>rango</u> de v_p va de 614,28 m/s hasta 1904,76 m/s (Tabla 22, Anexo 2). La <u>media</u> es 1146,96 m/s para el total, 1266,66 m/s para el eje A y 995,32 m/s para el eje B. La <u>moda</u> según el histograma (Fig. 18), es 900m/s para el total, 1300m/s para el eje A y 950m/s para el eje B. El eje A, el cual se midió paralelamente a la foliación, presenta una mayor v_p que el eje B, el cual se hizo perpendicular a la foliación.

Figura 18: Histogramas de frecuencia de los valores de v_p para la muestra MG-1, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (eje A y B).

Limolita de Cabuerniga

En la muestra CB1 el <u>rango</u> de v_p va de 736,13 m/s hasta 2416,11 m/s (Tabla 21, Anexo 2). La <u>media</u> es 1471,23 m/s para el total, 1528,93 m/s para el eje A y 1444,59 m/s para el eje B+C. La <u>moda</u>, según el histograma (Fig. 19), es 1800m/s para el total de la muestra y para el eje A y 1300 m/s para el eje B+C.

Figura 19: Histogramas de frecuencia de los valores de v_p para la muestra CB1, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (eje A y B)

Caliza del Grupo Enciso

En la muestra FR el <u>rango</u> de v_p va de 524,34 m/s hasta 1331,52 m/s (Tabla 23, Anexo 2). La <u>media</u> es 765,21 m/s para el total, 638,01 m/s para el eje A, 819,79 para el eje B y 744,26 m/s para el eje C. La <u>moda</u>, según el histograma (Fig. 20), es 550m/s para el total y el eje B, 600m/s

para el eje A y 800m/s para el eje C. Los datos obtenidos son poco representativos y con bastantes errores en las medidas debido a ser una muestra difícil de medir, tanto por su superficie rugosa como por su grosor variable.

Figura 20: Histogramas de frecuencia de los valores de v_p para la muestra CB1, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (eje A, B y C).

• Otros

- Escayola En la muestra LM1 el <u>rango</u> de v_p va de 790,54 m/s hasta 1445,60 m/s (Tabla 24, Anexo 2). La <u>media</u> es 1219 m/s para el total, 1259,70 m/s para el eje A, 1260,28 m/s para el eje B y 1142,86 m/s para el eje C. La <u>moda</u>, según el histograma (Fig. 21), es 1350m/s para el total y para el eje A, 1300m/s para el eje B y 1100m/s para el eje C. Son muy buenas medidas sin apenas errores.

Figura 21: Histogramas de frecuencia de los valores de v_p para la muestra CB1, tanto para el total de medidas como para cada dirección del espacio en el que se ha medido (eje A, B y C).

	Seco (gr)	Parafina (gr)	Agua (gr)	Densidad
BR1	96,15	96,84	58,03	2,53
FR	70,9	71,14	45,25	2,77
LM1	20,95	26,69	0,19	1,08
CB1	31,38	32,18	17,25	2,25
TU3a	82,84	83,91	45,43	2,23
Са	94,4	95,09	58,87	2,67
5EKE	48,93	49,64	28,3	2,39
TU2	135,56	141,22	70,53	2,13
ME1b	88,9	89,35	55,13	2,64
LP	55,77	56,62	33,07	2,48
TU1d	73,77	74,16	46,52	2,72
E12-2	99,76	100,11	62,58	2,69
MG-1	38,54	38,92	24,22	2,71
EN2	113,15	113,41	69,2	2,58
Ye-3	104.03	104.23	64.68	2.65

6.3 Densidades (método Arquímedes)

Tabla 7: Cálculo de las densidades de las muestras. Se han puesto las muestras ígneas en azul, las sedimentarias en naranja y la escayola (origen industrial) en gris.

La densidad se ha calculado en las 15 muestras (Tabla 7) por medio del método de Arquímedes. La densidad más baja corresponde a la escayola (LM1) y la más alta a la caliza del Grupo Enciso (FR).

- Rocas ígneas: Las tobas se caracterizan por ser ligeras y de consistencia porosa, su densidad va de 2,13gr/cm³ a 2,71gr/cm³, siendo la más ligera TU2 y la más densa TU1d. La lava (ME1b) tiene una densidad similar a las tobas, siendo 2,64gr/cm³. La granodiorita de Eaux-Chaudes (e12-3) 2,68 gr/cm³ y la lherzolita (LP) 2,48 gr/cm³.
- Rocas sedimentarias: La arenisca de Ena (EN2) tiene de densidad 2,57 gr/cm³. Las calizas de Calatorao tienen la densidad casi igual 2,64 gr/cm³ (Ye-3) y 2,66 gr/cm³ (Ca). El alabastro (5EKE) se caracteriza por ser ligero y tiene 2,39 gr/cm³ de densidad. La caliza de Bielsa (BR1) 2,53 gr/cm³, la caliza de nummulites de Guara (MG-1) 2,71 gr/cm³, la limolita de Cabuerniga (CB1) 2,52 gr/cm³ y la caliza del Grupo Enciso (FR) 2,77 gr/cm³.
- Otros: La escayola (LM1) se caracteriza por ser muy ligera y tener muy poca densidad, lo que se corresponde con el 1,08 gr/cm³ obtenido.

7-DISCUSIÓN

7.1 Susceptibilidad magnética

7.1.1 Resultados de las medidas

Figura 22: Histogramas de los valores en los tres susceptómetros. Está marcado el límite de 500 10⁻⁶ S.I para separar las muestras diamagnéticas y paramagnéticas (valores inferiores) de las ferromagnéticas (superiores).

Dentro de las rocas ígneas tenemos una diversidad muy alta de valores (Fig. 22):

- En las tobas de Tusculum hay mucho cambio a pesar de tener el mismo origen de formación, esto es debido a que la susceptibilidad es una propiedad logarítmica. La muestra TU2 presenta valores paramagnéticos (< 500 10⁻⁶ S.I.), mientras que en las muestras TU3a y TU1d son del rango ferromagnético (> 500 10⁻⁶ S.I.).
- En las lavas de Tusculum pasa igual, hay mucha diferencia en los valores. ME1d y ME1b tienen valores ferromagnéticos.
- El gabro de Loscos (Ag12) también presenta valores muy altos de tipo ferromagnético.
 La lherzolita pirenaica también.
- Las granodioritas de Eaux-Chaudes (e12-3, e1) tienen valores paramagnéticos muy similares.

La roca metamórfica, el esquisto del Macizo Armoricano (Ar) tiene valores paramagnéticos (Fig.22).

Dentro de las rocas sedimentarias también dominan los valores del rango paramagnético (Fig. 22):

- En la marga de Mauleon (ASP-16) los valores son paramagnéticos.
- En las areniscas de Ena (EN, Pe) los valores paramagnéticos son muy similares.
- En las calizas de Calatorao (Ye-3, Ca) también los valores paramagnéticos son similares, pero tienen mayor diferencia, siendo los valores de Ca mayores.
- En el alabastro (5EKE) y en la dolomía de Blancas (BL-2) los valores son diamagnéticos.

7.1.2 Calibración susceptómetros

Figura 23: La gráfica A es la gráfica de calibración entre el susceptómetro KT20 (eje Y) y el KT10 (eje X). Ambos ejes son logarítmicos. La gráfica B considera solo los valores <500 (paramagnéticos). La recta roja es la regresión lineal del ajuste, la cual presenta una ecuación de recta colocada en la parte superior de las gráficas.

Figura 24: La gráfica A es la gráfica de calibración entre el susceptómetro SM20 (eje X) y el KT10 (eje Y). Ambos ejes son logarítmicos. La gráfica B considera solo los valores <500. La recta roja es la regresión lineal del ajuste, la cual presenta una ecuación de recta colocada en la parte superior de las gráficas.

Figura 25: La gráfica A es la gráfica de calibración entre el susceptómetro KT20 (eje Y) y el SM20 (eje X). Ambos ejes son logarítmicos. La gráfica B considera solo los valores <500. La recta roja es la regresión lineal del ajuste, la cual presenta una ecuación de recta colocada en la parte superior de las gráficas.

En general los tres susceptómetros de campo utilizados presentan una buena calibración entre ellos (Fig. 23, 24 y 25), tanto para el intervalo total de las medidas, como para el intervalo paramagnético (< 500 10-6 S.I.). Lamentablemente, no se ha podido hacer la calibración de estos instrumentos con el equipo de laboratorio más sensible de AGICO Como se puede ver en la tabla 8, las funciones de regresión de KT10-KT20 (ambas) y la del KT10-SM20 (porción paramagnética) son la que más se alejan de la relación 1:1, es decir pendiente de 1. En cualquier caso, las diferencias están por debajo del 10% en todos los instrumentos comparados. Una explicación posible para esta pequeña desviación, al menos en lo que concierne al KT20, es la medida a diferente frecuencia respecto al KT10 y SM20 y como los materiales superparamagnéticos son dependientes de la frecuencia de medida da resultados diferentes.

Calibración	Rango medida	Ecuación de la regresión	Pendiente	Coeficiente de regresión (R)
KT20 KT10	0 a 5x10^4	y=70,955+0,91188x	0,91188	0,99854
K120-K110	de -100 a 500	y=18,813+0,9272x	0,9272	0,98976
KT10 SN420	0 a 5x10^4	y=200,21+1,1485x	0,98865	0,98865
KT10-310120	de -100 a 500	y=9,3532+1,0926x	1,0926	0,98234
KT20 SN420	0 a 5x10^4	y=253,97+1,0472x	1,0472	0,98713
K120-310120	de -100 a 500	y=27,282+1,015x	1,015	0,97419

Tabla 8: Calibración de los tres susceptómetros.

7.2 Velocidad de propagación de las ondas sísmicas Comparación con la curva Nafe-Drake

Figura 26: Gráfico de dispersión con v_p en el eje Y, y la densidad en el eje X. Muestras sedimentarias e ígneas por separado con sus respectivas curvas de tendencia.

Como se puede ver en la figura 27, ambos tipos de muestras presentan unas vp inferiores a las de la curva Nafe-Drake y además no están dentro de su rango correspondiente.

Figura 27: Gráfico de la curva P de Nafe-Drake modificado de <u>www.wiki.ser.org</u>. Comparación del gráfico de dispersión de v_p (Figura 26) con la curva Nafe-Drake, la cual refleja la relación entre la vp y la densidad de las rocas en la naturaleza.

7.3 Densidades (método Arquímedes)

La densidad de la granodiorita se corresponde a su densidad tipo (2,6 gr/cm3) (<u>www.limoit.com</u>) y la lherzolita da una un poco inferior a su densidad tipo (2,8-2,9 gr/cm³) (<u>www.rocks.comparenature.com</u>).

Las calizas tienen un rango de densidades de 2,53-2,77 gr/cm3, dependiendo del tipo que sea, lo que se corresponde a su densidad tipo que va de 2,2 a 2,9gr/cm³ (Hernández, 2001). La arenisca de Ena ha salido más densa que su densidad tipo (2,4 gr/cm³) (www.ingemecanica.com). La densidad de la limolita (CB1) se corresponde con su característica de ser ligera y alto contenido en limo (Figura 28).

Figura 28: Histograma con las densidades de las muestras. La escayola (LM1) es la densidad más baja y la única por debajo de 2gr/cm³. El resto está en un rango de 2,13-2,77 gr/cm³.

Variable	KT-10	Densidad	Vp (media)
E12-3	195,4	2,68949249	1235,58
E-1	222,6		
LP	22270,0	2,48004447	796,1
5EKE	-2,6	2,39237257	996,33
AR	137,3		
EN	75,0		
Ca	245,5	2,66987202	979,89
Ye-3	60,8	2,64707379	1169,8
BL-2	4,8		
TU2	356,6	2,13094396	669,07
TU3a	2541,8	2,23032914	943,63
TU1d	26503,3	2,7168769	969,714756
ME1b	34412,5	2,64131323	983,41
ME1d	8052,8		
GR-45	111,1		
AG12	29427,5		
ASP-16	2,8		
Pe	62,2		
GR39	91,2		
BR1		2,53376375	882,413025
FR		2,77061352	765,214728
CB1		2,25269203	1471,23
MG-1		2,70931459	1146,96455
EN2		2,57832973	1234,18

7.4 Correlación entre las propiedades físicas

Tabla 9: Correlación entre las propiedades físicas de las muestras. En la columna Vp se ha usado la media calculada para cada muestra. En azul están las muestras ígneas, en naranja las sedimentarias y en verde la metamórfica.

Figura 29: Correlación entre la densidad y la velocidad de propagación de ondas P. En la gráfica A no se diferencian las muestras por su origen y se puede ver una tendencia en cuanto a mayor densidad, tener mayor velocidad de propagación de las ondas P. En la gráfica B se diferencian entre las muestras ígneas (las cuales presentan una tendencia de a mayor densidad, mayor v_p) y las sedimentarias (las cuales presentan la tendencia contraria).

Figura 30: Correlación entre susceptibilidad magnética y densidad. Como se puede ver, hay una tendencia en cuanto a mayor densidad, mayor susceptibilidad magnética va a presentar la muestra. Tanto las muestras ígneas como las sedimentarias presentan la misma tendencia, salvo que las sedimentarias en rangos paramagnéticos y las ígneas en ferromagnéticos (Enkin, R. J., et al., 2020). La muestra sedimentaria que falta es porque en las escalas logarítmicas no se aceptan valores negativos.

Figura 31: Correlación entre susceptibilidad magnética y velocidad de propagación de las ondas P. Como se puede ver, hay una tendencia a presentar una mayor susceptibilidad magnética cuando tienes una menor velocidad de propagación de las ondas P.

8- CONCLUSIONS

- Igneous samples have the highest values of magnetic susceptibility, in the range of ferromagnetism. In addition, igneous samples can also be paramagnetic. Instead, sedimentary are only paramagnetic or diamagnetic.
- The best susceptometer is the KT-10, since it allows to measure negative susceptibilities (which the KT-20 does not allow, that is, the KT-20 does not measure in the diamagnetic range) and it has a larger coil diameter than the SM-20, which, in addition, is influenced by superparamagnetic minerals.
- Vp values too low are obtained for the rocks studied, which may be related to the calibration of the Pundit-PL 200 or the sensors used for the measurements. Despite this, there are samples that give fairly homogeneous results that allow some conclusions to be drawn, compared to others that have a very high dispersion and therefore very inconclusive results:
 - In the measurements of v_p , there are samples that present a homogeneous Vp despite the direction of measurement (e.g. EN2, Ye-3, where there is no observable foliation).
 - While in others cases, when the direction of measurment is parallel to the observable folation planes, Vp presents higher values than when the direction of measurement is perpendicular to it. This indicates that Vp is an anisotropic property closely related to the discontinuity planes present in the rock, and that therefore it can serve to characterize these discontinuities indirectly.
- The density vs v_p graph (section 7.4) shows a trend from upper density to higher vp, what was expected. But in sedimentary samples the trend is reverse.
- The susceptibility vs. density graph shows a trend in which the samples with the highest density have a higher magnetic susceptibility, both in igneous and sedimentary samples. This graph shows the separation between the paramagnetic (sedimentary) and the ferromagnetic (igneous) samples.
- The susceptibility vs v_p graph is also constant for paramagnetic samples and in ferromagnetic samples there is a lower vp in those with higher susceptibility.

Thus, in conclusion, the graphs have shown some trends, but not clear relationships due to the small number of samples studied and possible errors in the measurements, especially in the vp.

9- BIBLIOGRAFÍA

Abraira, V. (2002). *Desviación estándar y error estándar* - Editorial Elsevier. Recuperado 2 de junio de 2020, de

https://web.archive.org/web/20120713023615/http://www.elsevier.es/es/revistas/semergen -medicina-general--familia-40/desviacion-estandar-error-estandar-13041428-notasestadisticas-2002

Access denied | wiki.seg.org used Cloudflare to restrict access. (s. f.-b). Recuperado 4 de julio de 2020, de https://wiki.seg.org/wiki/Dictionary:Nafe-Drake_relation

Alonso Azcárate, J., Rodas, M., Fernández Barrenechea, J. M., & Mas Mayoral, J. R. (1999). Factores que controlan la evolución de los parámetros cristaloquímicos y asociaciones minerales en las rocas sedimentarias del Grupo Enciso (Cretácico Inferior), Cuenca de Cameros, La Rioja (Norte de España). Revista de la Sociedad Geológica de España, 12(3-4), 439-451.

Arranz, E., Buj, O., Franco, B., Gisbert, J., & Mateos, I. (2004). La piedra natural en Aragón. Zaragoza, España: Gobierno de Aragón.

Benavente, D., Bernabéu, A. M., & Cañaveras, J. C. (2004). Estudio de propiedades físicas de las rocas. *Enseñanza de las Ciencias de la Tierra*, 12(1), 62-68.

Bonnet, S., Guillocheau, F., Brun, J. P., & Van Den Driessche, J. (2000). *Large-scale relief development related to Quaternary tectonic uplift of a Proterozoic-Paleozoic basement: The Armorican Massif, NW France*. Journal of Geophysical Research: Solid Earth, 105(B8), 19273-19288.

Calvín, P., Casas, A. M., Villalaín, J. J., & Tierz, P. (2014). *Reverse magnetic anomaly controlled by Permian Igneous rocks in the Iberian Chain (N Spain)*. Geologica acta, 12(3), 0193-207.

CAPITULO III: VELOCIDAD DE PULSOS DE ULTRASONIDO, UNA PRUEBA NO DESTRUCTIVA DEL CONCRETO. (s. f.). Recuperado 4 de junio de 2020, de http://www.biblioteca.udep.edu.pe/BibVirUDEP/tesis/pdf/1 153 164 104 1438.pdf

Carmona, R. (2017). *Propiedades magnéticas* - PDF Free Download. Recuperado 1 de junio de 2020, de <u>https://docplayer.es/23207860-Propiedades-magneticas.html</u>

Casas, A. (2020): Interpretation of magnetic anomalies of geological and archaeological origins in a volcanic área. (Tusculum site, Lazio, Italy): methodological proposals.

Casas, A. M., Diarte-Blasco, P., Beolchini, V., García-Benito, C., & Pocoví, A. (2016). *Aplicación de la prospección magnética a la arqueología romana*. Enseñanza de las Ciencias de la Tierra, 24(24.3), 373.

Gujarati, D. N. (1995). Basic econometrics. New York: McGraw-Hill

Enkin, R. J., Hamilton, T. S., & Morris, W. A. (2020). The Henkel petrophysical plot: Mineralogy and lithology from physical properties. Geochemistry, Geophysics, Geosystems, 20, e2019GC008818. https://doi.org/ 10.1029/2019GC008818

Escayola. (s. f.). Recuperado 23 de mayo de 2020, de <u>https://www.quimica.es/enciclopedia/Escayola.html</u>

Espíndola, J. M. (1994). *Terremotos y ondas sísmicas* (Vol. 1). UNAM.

Gago Revuelta, J. (2013). Diagénesis de las formaciones Mesozoicas de la zona Nord Pirenaica.

García, A., & Pujalte, V. (1982). Litoestratigrafía y Facies del grupo Cabuerniga (Malm-Valaginiense inferior?) al S de Cantabria - NE de Palencia (Vol. 8). Madrid, España: Geología Ibérica.

Geological Map of Western Europe. (s. f.). Recuperado 1 de junio de 2020, de <u>http://www.discoveringfossils.co.uk/europe_geology_map.jpg</u>

GeoResults. (2016). KT- 20 Magnetic Susceptibility & Conductivity Meter User's Guide (Vol.1.3b).Recuperadodehttps://www.aseg.org.au/sites/default/files/KT-20%20User%20Manual%20%28GR%29.pdf

Gili, J. (1993). Introducción biofísica a la resonancia magnética. Centre Diagnóstic Pedralbes.

Hernández,C.(2001). Ensayos.RocasCalizas.Recuperadodehttp://www.utm.mx/temas/temas-docs/ensayo1t14R.pdf

Izquierdo-Llavall, E., Román-Berdiel, T., Casas, A. M., Oliva-Urcia, B., Gil-Pena, I., Soto, R., & Jabaloy, A. (2012). *Magnetic and structural study of the Eaux-Chaudes intrusion: understanding the Variscan deformation in the Western Axial Zone (Pyrenees)*. International Journal of Earth Sciences, 101(7), 1817-1834.

Lherzolita Roca | acerca Lherzolita. (s. f.). Recuperado 2 de julio de 2020, de <u>https://rocks.comparenature.com/es/lherzolita-roca/model-122-0</u>

Medhi, J. (1992). *Statistical Methods*. Hoboken, NJ, Estados Unidos: Wiley.

Museo de rocas ígneas. (s. f.). Recuperado 2 de julio de 2020, de <u>http://linoit.com/users/elsamo32/canvases/MUSEO%20DE%20ROCAS%20%C3%8DGNEAS#:%</u> <u>7E:text=Su%20enfriamiento%20comienza%20muy%20lentamente,2%2C6%20g%2Fcm3%20</u>.

Olivia-Urcia, B., Román-Berdiel, T., Casas, A., Pueyo, E., & Osacar, C. (2010): *Journal of Structural Geology*. Madrid, España: Elsevier, 362-376.

Pearson, Karl (1894). «On the dissection of asymmetrical frequency curves». *Philosophical Transactions of the Royal Society* A 185: 71-110. Bibcode:1894RSPTA.185...71P. doi:10.1098/rsta.1894.0003.

Pearson, Karl (1905), "Das Fehlergesetz und seine Verallgemeinerungen durch Fechner und Pearson. A Rejoinder" [The Error Law and its Generalizations by Fechner and Pearson. A Rejoinder], *Biometrika*, 4 (1–2): 169–212, doi:10.1093/biomet/4.1-2.169, JSTOR 2331536

Pesos Específicos y Densidades de los Materiales. (s. f.). Recuperado 2 de julio de 2020, de <u>https://ingemecanica.com/tutoriales/pesos.html</u>

Proceq. (s. f.). PUNDIT PL-200 VELOCIDAD DE PULSO ULTRASÓNICO. Recuperado 4 de junio de 2020, de

https://www.proceq.com/uploads/tx_proceqproductcms/import_data/files/Pundit%20PL-2_Sales%20Flyer_Spanish_high.pdf

Puigdefábregas, C. (1975). La sedimentación molásica en la cuenca de Jaca.

Ríos, L. M., Lanaja, J. M., & Frutos, E. (1982). Mapa geológico de España 1: 50.000. Hoja 179 (Bielsa). IGME.

Román-Berdiel, T., Pueyo-Morer, E. L., & Casas-Sainz, A. M. (1995). *Granite emplacement during contemporary shortening and normal faulting: structural and magnetic study of the Veiga Massif (NW Spain)*. Journal of Structural Geology, 17(12), 1689-1706.

Silva-Casal, R., Aurell, M., Payros, A., Serra-Kiel, J., & Pueyo, E. L. (2016). *Primeras evidencias de la plataforma carbonatada Bartoniense del Prepirineo aragonés: el Miembro calizas de Santo Domingo*. Geo-Temas, 16(1), 181-184.

Terán, L. V. (2014). Principio de Arquímedes. *Vida Científica Boletín Científico de la Escuela Preparatoria* No. 4, 2(3).

Terraplus, & GeoResults. (s. f.). *KT-10 v2 Magnetic Susceptibility, Conductivity and Combined Magnetic Susceptibility / Conductivity Meter (Vol. 2.1)*. Recuperado de <u>https://www.aseg.org.au/sites/default/files/KT-10%20User%20Manual%20%28GR%29.pdf</u>

ANEXOS

Anexo 1: Mapa de la situación geológica de las muestras estudiadas

Figura 32: Mapa geológico de Europa según Kirkaldy (1967) modificado. Situados geográficamente los puntos de origen, de las muestras estudiadas (Tabla 2): 1- Granitos de Veiga (GR39, GR45); 2- Areniscas de Ena (EN, EN2, Pe); 3- Calizas de Calatorao (Ye-3, Ca); 4- Alabastro de Calatayud (5EKE); 5- Gabro de Loscos (Ag12); 6- Granodioritas de Eaux-Chaudes (e12-3, e1); 7- Lherzolita pirenaica (LP); 8- Dolomía de Blancas (BL-2); 9- Caliza de Bielsa (BR1): 10- Caliza con nummulites de Guara (MG-1); 11- Limolita de Cabuerniga (CB-1); 12- Caliza del Grupo Enciso de Cameros (FR); 13- Marga de Mauleon (ASP-16); 14- Tobas y lavas de Tusculum (TU2, TU3a, TU1d, ME1b, Me1d); 15- Esquisto del Macizo Armoricano (Ar). Todas las muestras forman parte de la colección de la Universidad de Zaragoza. La escayola (LM1) no se indica ya que es un producto industrial.

Anexo 2: Tablas de la velocidad de propagación de la onda P en las muestras estudiadas.

• Rocas ígneas:

	-	Tobas d	e Tusculı	ım
Name	Time (s)	Thickness (m)	Velocidad (m/s)	Media ejes
TU1d-A1	0,0000643	0,078	1213,063764	
TU1d-A2	0,0000802	0,078	972,5685786	
TU1d-A3	0,0002091	0,078	373,0272597	
TU1d-A4	0,0001942	0,078	401,6477858	
TU1d-A5	0,0001529	0,078	510,1373447	814 5776875
TU1d-A6	0,0000784	0,078	994,8979592	814,5770875
TU1d-A7	0,0001846	0,078	422,5352113	
TU1d-A8	0,0000996	0,078	783,1325301	
TU1d-A9	0,0004019	0,078	194,0781289	
TU1d-A10	0,0001252	0,078	623,0031949	
TU1d-B1	0,0000537	0,058	1080,074488	
TU1d-B2	0,0000556	0,058	1043,165468	
TU1d-B3	0,0000546	0,058	1062,271062	
TU1d-B4	0,0000533	0,058	1088,180113	
TU1d-B5	0,0000513	0,058	1130,604288	1109 969128
TU1d-B6	0,0000746	0,058	777,4798928	1105,505120
TU1d-B7	0,0000435	0,058	1333,333333	
TU1d-B8	0,0000553	0,058	1048,824593	
TU1d-B9	0,0000392	0,058	1479,591837	
TU1d-B10	0,0000484	0,058	1198,347107	
TU1d-C1	0,0000569	0,047	826,0105448	
TU1d-C2	0,0000603	0,047	779,4361526	
TU1d-C3	0,0000484	0,047	971,0743802	
TU1d-C4	0,0000631	0,047	744,8494453	
TU1d-C5	0,0000462	0,047	1017,316017	937 4171503
TU1d-C6	0,0000461	0,047	1019,522777	557,4171505
TU1d-C7	0,0000379	0,047	1240, 105541	
TU1d-C8	0,0001558	0,047	301,6688062	
TU1d-C9	0,0000526	0,047	893,5361217	
TU1d-C10	0,000045	0,047	1044,444444	
		Media total	969,7147563	

Tabla 10: Muestra TU1d. Se ha hecho la media total y en todos los ejes.

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda / media ejes
TU2-A1	0,0001201	0,079	657,785179	
TU2-A2	0,0001712	0,079	461,4485981	
TU2-A3	0,0000645	0,079	1224,806202	
TU2-A4	0,0001552	0,079	509,0206186	
TU2-A5	0,0001536	0,079	514,3229167	
TU2-A6	0,0000901	0,079	876,8035516	
TU2-A7	0,0000635	0,079	1244,094488	
TU2-A8	0,000155	0,079	509,6774194	
TU2-A9	0,0000655	0,079	1206,10687	
TU2-A10	0,0000645	0,079	1224,806202	1224 206202
TU2-A11	0,0000676	0,079	1168,639053	1224,000202
TU2-A12	0,0001047	0,079	754,5367717	
TU2-A13	0,0001033	0,079	764,7628267	
TU2-A14	0,000077	0,079	1025,974026	
TU2-A15	0,0001206	0,079	655,0580431	
TU2-A16	0,0000983	0,079	803,6622584	
TU2-A17	0,0001288	0,079	613,3540373	
TU2-A18	0,0001536	0,079	514,3229167	
TU2-A19	0,0000699	0,079	1130,18598	
TU2-A20	0,0001186	0,079	666,1045531	
TU2-B1	0,0002723	0,089	326,8453911	
TU2-B2	0,0001272	0,089	699,6855346	
TU2-B3	0,0001263	0,089	704,6714173	
TU2-B4	0,0001586	0,089	561,1601513	
TU2-B5	0,0002187	0,089	406,95016	
TU2-B6	0,0002356	0,089	377,7589134	
TU2-B7	0,0001446	0,089	615,4910097	
TU2-B8	0,0001526	0,089	583,2241153	
TU2-B9	0,0000784	0,089	1135,204082	
TU2-B10	0,0001433	0,089	621,0746685	608 1643137
TU2-B11	0,0001438	0,089	618,9151599	000,10 10107
TU2-B12-	0,0001644	0,089	541,3625304	
TU2-B13	0,0001592	0,089	559,0452261	
TU2-B14	0,0001089	0,089	817,2635445	
TU2-B15	0,0001889	0,089	471,148756	
TU2-B16	0,0000681	0,089	1306,901615	
TU2-B17	0,0001951	0,089	456,1763198	
TU2-B18	0,0001653	0,089	538,415003	
TU2-B19	0,000086	0,089	1034,883721	
TU2-B20	0,0001566	0,089	568,3269476	
TU2-C1	0,0002342	0,122	520,9222886	
TU2-C2	0,0000776	0,122	1572,164948	
TU2-C3	0,0000758	0,122	1609,498681	
TU2-C4	0,0001472	0,122	828,8043478	
TU2-C5	0,0002433	0,122	501,4385532	596,1621925
TU2-C6	0,0002864	0,122	425,9776536	
TU2-C7	0,0005407	0,122	225,6334381	
TU2-C8	0,0002652	0,122	460,0301659	
TU2-C9	0,0001908	0,122	639,4129979	
TU2-C10	0,0003332	0,122	366,1464586	
		Moda total	1224,806202	

Tabla 11: Muestra TU2. Se ha hecho la moda total y del eje A. Del B y C la media.

Name	Time (s)	Thickness (m)	Velocidad (m/s)
TU3a-D20	0,0001591	0,041	257,69956
TU3a-D19	0.0002149	0.041	190 8752328
TU2- D19	0.0004222	0,041	220.0420250
103a-D18	0,0001239	0,041	330,9120258
TU3a-D17	0,0000487	0,041	841,889117
TU3a-D16	0,0000399	0,041	1027,568922
TU3a-D15	0 000122	0.041	336 0655728
TU26 D14	0,000122	0,041	705 (70053736
103a-D14	0,0000581	0,041	/05,6798623
TU3a-D13	0,0000669	0,041	612,8550075
TU3a-D12	0,0000403	0,041	1017,369727
TU32-D11	0.0000484	0.041	847 107438
7050 011	0,0000407	0,041	047,107430
TU3a-D10	0,0000477	0,041	859,5387841
TU3a-D9	0,0000469	0,041	874,2004264
TU3a-D8	0,0000461	0,041	889,3709328
TU3a-D7	0 0000476	0.041	861 3445378
	0,0000387	0,011	1050 431535
1058-06	0,0000587	0,041	1059,451525
TU3a-D5	0,0000561	0,041	730,8377897
TU3a-D4	0,0000483	0,041	848,8612836
TU3a-D3	0.0000476	0.041	861.3445378
TU22 D2	0.0000414	0.041	000 2291642
TU5a-DZ	0,0000414	0,041	990,3381043
TU3a-D1	0,0002834	0,041	144,6718419
TU3a-C20	0,0000413	0,041	992,7360775
TU3a-C19	0 0000428	0.041	957 9439252
TU2e C19	0,0000414	0,011	000 2281642
1034-018	0,0000414	0,041	990,3381043
TU3a-C17	0,0000596	0,041	687,9194631
TU3a-C16	0,0000343	0,041	1195,335277
TU3a-C15	0,0000482	0.041	850,6224066
TU32-C14	0.0000405	0.041	272 202020
105d-C14	0,000495	0,041	020,2020283
TU3a-C13	0,0000493	0,041	831,643002
TU3a-C12	0,000049	0,041	836,7346939
TU3a-C11	0.0000403	0.041	1017.369727
TU22 C10	0.0000415	0,011	097 0519072
1034-010	0,0000413	0,041	567,5516072
TU3a-C9	0,0000329	0,041	1246,200608
TU3a-C8	0,0000398	0,041	1030,150754
TU3a-C7	0.0000386	0.041	1062.176166
TU20 C6	0.0000204	0.041	1040 600127
1034-00	0,0000394	0,041	1040,009137
TU3a-C5	0,0000411	0,041	997,56691
TU3a-C4	0,0000415	0,041	987,9518072
TU3a-C3	0,000032	0,041	1281,25
TU22-C2	0 0000300	0.041	1326 8608/11
TU3- C1	0,0000303	0,041	1320,000041
103a-C1	0,0000299	0,041	13/1,23/458
TU3a-B20	0,0001502	0,041	272,9693742
TU3a-B19	0,000046	0,041	891,3043478
TU3a-B18	0 0000448	0.041	915 1785714
TU3e B17	0,0000443	0,041	027 00191
103a-817	0,0000442	0,041	927,60181
TU3a-B16	0,0000497	0,041	824,9496982
TU3a-B15	0,0000656	0,041	625
TU3a-B14	0.0000502	0.041	816 7330677
TU20 P12	0.0000488	0.041	940 1620244
TU3a-B13	0,0000488	0,041	640,1039344
103a-B12	0,0000399	0,041	1027,568922
TU3a-B11	0,0000574	0,041	714,2857143
TU3a-B10	0.0000396	0.041	1035.353535
TI 132-B0	0.0000341	0.041	1202 346041
1058-05	0,0000341	0,041	1202,340041
TU3a-B8	0,0000392	0,041	1045,918367
TU3a-B7	0,0000395	0,041	1037,974684
TU3a-B6	0,0000391	0,041	1048,59335
TU3a-B5	0.0000486	0.041	843.6213992
TU20 P4	0.0000205	0.041	1027 074/04
103d-04	0,0000395	0,041	1037,974684
103a-B3	0,0001259	0,041	325,655282
TU3a-B2	0,0000721	0,041	568,6546463
TU3a-B1	0,0000351	0,041	1168,091168
TU3a-420	0.0000577	0.041	710 5719237
TU30 A10	0.0000497	0,041	0/1 000117
TUSa-A19	0,000487	0,041	041,889117
TU3a-A18	0,0000333	0,041	1231,231231
TU3a-A17	0,0000587	0,041	698,4667802
TU3a-A16	0,0001237	0.041	331,4470493
TU32-015	0.0001247	0.041	328 2800020
TU2	0.000124/	0,041	520,7050530
103a-A14	0,000583	0,041	/03,2590051
TU3a-A13	0,00004	0,041	1025
TU3a-A12	0,0000323	0,041	1269,349845
TU3a-A11	0,0000334	0.041	1227 54491
TU20 410	0.0000477	0.044	0E0 5207044
TUSA-ALU	0,000477	0,041	659,5387841
TU3a-A9	0,0000326	0,041	1257,668712
TU3a-A8	0,0000389	0,041	1053,984576
TU3a-A7	0,0000479	0.041	855.9498956
T1132-06	0.000022	0.041	1242 424242
105a-A0	0,000033	0,041	1242,424242
103a-A5	0,000039	0,041	1051,282051
TU3a-A4	0,0000387	0,041	1059,431525
TU3a-A3	0,0000469	0.041	874,2004264
T1122-42	0 000029	0.041	1079 047260
105a-AZ	0,000038	0,041	1070,947308
TU3a-A1	0,0000389	0,041	1053,984576
	· ·		

 Lavas de Tuscu 	ulum
------------------------------------	------

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda / media ejes
ME1b-A1	0,0001073	0,093	866,7287978	
ME1b-A2	0,0001408	0,093	660,5113636	
ME1b-A3	0,0000666	0,093	1396,396396	
ME1b-A4	0,0000789	0,093	1178,707224	
ME1b-A5	0,0001079	0,093	861,9091752	
ME1b-A6	0,0001056	0,093	880,6818182	
ME1b-A7	0,0000563	0,093	1651,865009	
ME1b-A8	0,000085	0,093	1094,117647	
ME1b-A9	0,000165	0,093	563,6363636	
ME1b-A10	0,0000722	0,093	1288,088643	1052 775420
ME1b-A11	0,0000685	0,093	1357,664234	1035,773435
ME1b-A12	0,0000538	0,093	1728,624535	
ME1b-A13	0,0001709	0,093	544,1778818	
ME1b-A14	0,0000639	0,093	1455,399061	
ME1b-A15	0,0001088	0,093	854,7794118	
ME1b-A16	0,0000822	0,093	1131,386861	
ME1b-A17	0,0000725	0,093	1282,758621	
ME1b-A18	0,0000788	0,093	1180,203046	
ME1b-A19	0,000195	0,093	476,9230769	
ME1b-A20	0,0000878	0,093	1059,225513	
ME1b-B1	0,0002033	0,059	290,2115101	
ME1b-B2	0,0001819	0,059	324,3540407	
ME1b-B3	0,000229	0,059	257,6419214	
ME1b-B4	0,0003157	0,059	186,8862844	
ME1b-B5	0,000179	0,059	329,6089385	
ME1b-B6	0,0005166	0,059	114,2082849	
ME1b-B7	0,0004937	0,059	119,5057727	
ME1b-B8	0,0004505	0,059	130,9655938	
ME1b-B9	0,0002256	0,059	261,5248227	
ME1b-B10	0,00022	0,059	268,1818182	
ME1b-C1	0,0000421	0,037	878,8598575	
ME1b-C2	0,0000414	0,037	893,7198068	
ME1b-C3	0,0000515	0,037	718,4466019	
ME1b-C4	0,0000492	0,037	752,0325203	
ME1b-C5	0,0000309	0,037	1197,411003	920,39801
ME1b-C6	0,0000402	0,037	920,39801	,
ME1b-C7	0,0000393	0,037	941,475827	
ME1b-C8	0,0000479	0,037	772,4425887	
ME1b-C9	0,0000509	0,037	726,9155206	
ME1b-C10	0,0000402	0,037	920,39801	
		Moda total	920,39801	

Tabla 13: Muestra ME1b. Se ha hecho la moda total y del eje C, mientras que en el A se ha hecho la media.

Tabla 12: Muestra TU3a. Se ha hecho la moda total (todas las líneas se han juntado en un eje porque tenían la misma orientación.

-Granodiorita de Eaux-Chaudes

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda / media ejes
E12-3-A1	0,0000814	0,067	823,0958231	
E12-3-A2	0,0000755	0,067	887,4172185	
E12-3-A3	0,0000557	0,067	1202,872531	
E12-3-A4	0,0000517	0,067	1295,938104	
E12-3-A5	0,0000508	0,067	1318,897638	
E12-3-A6	0,0000517	0,067	1295,938104	
E12-3-A7	0,0000518	0,067	1293,436293	
E12-3-A8	0,0000598	0,067	1120,401338	
E12-3-A9	0,0000425	0,067	1576,470588	
E12-3-A10	0,0000422	0,067	1587,677725	1205 028104
E12-3-A11	0,0000352	0,067	1903,409091	1295,958104
E12-3-A12	0,0000346	0,067	1936,416185	
E12-3-A13	0,0000423	0,067	1583,92435	
E12-3-A14	0,0000525	0,067	1276, 190476	
E12-3-A15	0,0002539	0,067	263,8834187	
E12-3-A16	0,000056	0,067	1196,428571	
E12-3-A17	0,0000513	0,067	1306,042885	
E12-3-A18	0,0000435	0,067	1540,229885	
E12-3-A19	0,0000512	0,067	1308,59375	
E12-3-A20	0,0000511	0,067	1311,154599	
E12-3-B1	0,0000735	0,084	1142,857143	
E12-3-B2	0,0001622	0,084	517,8791615	
E12-3-B3	0,0000569	0,084	1476,274165	
E12-3-B4	0,0000683	0,084	1229,868228	
E12-3-B5	0,0000949	0,084	885,142255	
E12-3-B6	0,0000564	0,084	1489,361702	
E12-3-B7	0,0001892	0,084	443,97463	
E12-3-B8	0,0001797	0,084	467,4457429	
E12-3-B9	0,0000757	0,084	1109,643329	
E12-3-B10	0,0001425	0,084	589,4736842	1134 267136
E12-3-B11	0,0000516	0,084	1627,906977	115 1,207 150
E12-3-B12	0,0000667	0,084	1259,370315	
E12-3-B13	0,0000657	0,084	1278,538813	
E12-3-B14	0,0000647	0,084	1298,299845	
E12-3-B15	0,0000642	0,084	1308,411215	
E12-3-B16	0,000076	0,084	1105,263158	
E12-3-B17	0,0000749	0,084	1121,495327	
E12-3-B18	0,0000677	0,084	1240,768095	
E12-3-B19	0,0000693	0,084	1212,121212	
E12-3-B20	0,0000669	0,084	1255,605381	
E12-3-C1	0,0002682	0,126	469,7986577	
E12-3-C2	0,0001883	0,126	669,1449814	
E12-3-C3	0,0000803	0,126	1569,115816	
E12-3-C4	0,000097	0,126	1298,969072	
E12-3-C5	0,000078	0,126	1615,384615	1260,380044
E12-3-C6	0.0000749	0,126	1682,242991	
E12-3-C7	0,0000745			
	0,000067	0,126	1880,597015	
E12-3-C8	0,000067	0,126	1880,597015 1317,991632	
E12-3-C8 E12-3-C9	0,0000745 0,0000956 0,0001711	0,126 0,126 0,126	1880,597015 1317,991632 736,4114553	

Tabla 14: Muestra E12-3. Se ha hecho la moda total y la del eje A. En el eje B y C se ha hecho la media.

- Lherzolita Pirenaica

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda / media ejes
LP-A1	0,0001202	0,082	682, 1963394	
LP-A2	0,0000708	0,082	1158, 19209	
LP-A3	0,0001717	0,082	477,5771695	
LP-A4	0,0001918	0,082	427,5286757	
LP-A5	0,0001553	0,082	528,0103026	600 5654276
LP-A6	0,0002171	0,082	377,7061262	090,5054270
LP-A7	0,0001194	0,082	686,7671692	
LP-A8	0,0001496	0,082	548, 1283422	
LP-A9	0,0001922	0,082	426,6389178	
LP-A10	0,0002063	0,082	397,4793989	
LP-B1	0,0001283	0,064	498,8308652	
LP-B2	0,0002697	0,064	237,3007045	
LP-B3	0,0001115	0,064	573,9910314	608,5366007
LP-B4	0,000269	0,064	237,9182156	
LP-B5	0,0000992	0,064	645, 1612903	
LP-C1	0,0000508	0,058	1141,732283	
LP-C2	0,0000692	0,058	838,150289	
LP-C3	0,0000386	0,058	1502,590674	
LP-C4	0,0000495	0,058	1171,717172	
LP-C5	0,0000513	0,058	1130,604288	044 5107625
LP-C6	0,000105	0,058	552,3809524	544,5197035
LP-C7	0,0001004	0,058	577,689243	
LP-C8	0,0000604	0,058	960, 2649007	
LP-C9	0,0000595	0,058	974,789916	
LP-C10	0,0000584	0,058	993, 1506849	
LP-D1	0,0000431	0,04	928,0742459	
LP-D2	0,0000431	0,04	928,0742459	
LP-D3	0,0000609	0,04	656,8144499	928,0742459
LP-D4	0,0000667	0,04	599,7001499	
LP-D5	0,0000673	0,04	594,3536404	
		Moda total	928,0742459	

Tabla 15: Muestra LP. Se ha hecho la moda total y del eje D; en el resto se ha hecho la media.

• Rocas sedimentarias

- Arenisca de Ena

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda/ media ejes
EN2-A1	0,000048	0,069	1437,5	
EN2-A2	0,0000561	0,069	1229,946524	
EN2-A3	0,0000676	0,069	1020,710059	
EN2-A4	0.0000596	0.069	1157.718121	
EN2-A6	0,0000605	0,069	1140,495868	
EN2-A7	0,000054	0,069	1277,777778	
EN2-A8	0,0000943	0,069	731,7073171	
EN2-A9	0,0001002	0,069	688,6227545	
EN2-A10	0,0000473	0,069	1458,773784	1207,599802
EN2-A11	0,0000547	0,069	1261,42596	
EN2-A12	0,0000546	0,069	1263,736264	
EN2-A15	0,0000324	0,009	1326 923077	
EN2-A14	0.0000435	0,009	1586 206897	
EN2-A16	0.0000465	0.069	1483.870968	
EN2-A17	0,0000542	0,069	1273,062731	
EN2-A18	0,0000525	0,069	1314,285714	
EN2-A19	0,0000826	0,069	835,3510896	
EN2-A20	0,0000522	0,069	1321,83908	
EN2-B1	0,0000331	0,068	2054,380665	
EN2-B2	0,0000549	0,068	1238,615665	
EN2-B3	0,000042	0,068	13/0 2062/0	
EN2-84	0,0000504	0,068	1297 709924	
EN2-B6	0,0000548	0.068	1240.875912	
EN2-B7	0,0001156	0,068	588,2352941	
EN2-B8	0,0000546	0,068	1245,421245	
EN2-B9	0,0001069	0,068	636,1085126	
EN2-B10	0,0000509	0,068	1335,952849	
EN2-B11	0,0000448	0,068	1517,857143	
EN2-B12	0,0000549	0,068	1238,615665	
EN2-B13	0,0000544	0,068	1250	
EN2-B14	0,0000469	0,068	1449,89339	
EN2-B15 EN2-B16	0,0000824	0,008	1287 878788	
EN2-B17	0,0000435	0,068	1563,218391	
EN2-B18	0,0000589	0,068	1154,499151	
EN2-B19	0,000055	0,068	1236,363636	
EN2-B20	0,0000541	0,068	1256,931608	
EN2-C1	0,0000417	0,068	1630,695444	
EN2-C2	0,0000425	0,068	1600	
EN2-C3	0,0000506	0,068	1343,8/3518	
EN2-C4	0,0000463	0,068	1408,082505	
EN2-C6	0.0000587	0.068	1158,432709	
EN2-C7	0,000061	0,068	1114,754098	
EN2-C8	0,0000541	0,068	1256,931608	
EN2-C9	0,0000465	0,068	1462,365591	
EN2-C10	0,0000552	0,068	1231,884058	1238.615665
EN2-C11	0,0000646	0,068	1052,631579	
EN2-C12	0,0000552	0,068	1231,884058	
EN2-C13 EN2-C14	0,0000481	0,068	1256 921609	
EN2-C15	0,0000341	0,068	817,3076923	
EN2-C16	0,0000476	0,068	1428,571429	
EN2-C17	0,0000535	0,068	1271,028037	
EN2-C18	0,0000522	0,068	1302,681992	
EN2-C19	0,0000575	0,068	1182,608696	
EN2-C20	0,0000539	0,068	1261,595547	
EN2-D1	0,0000332	0,068	2048,192771	
EN2-D2	0,00004/8	0,068	1357 295420	
EN2-D3	0.0000501	0,008	1307.692308	
EN2-D5	0,0000528	0,068	1287,878788	
EN2-D6	0,0000498	0,068	1365,461847	
EN2-D7	0,0000509	0,068	1335,952849	
EN2-D8	0,0000526	0,068	1292,775665	
EN2-D9	0,0000629	0,068	1081,081081	
EN2-D10	0,0000703	0,068	967,2830725	
EN2-D11 EN2-D12	0,0000549	0,068	1428 571420	
EN2-D12 EN2-D13	0,0000476	0,068	920 1623816	
EN2-D14	0,0000538	0.068	1263.94052	
EN2-D15	.,	2,500	1295,238095	
EN2-D16	0,0000525	0,068		
	0,0000525	0,068	1343,873518	
EN2-D17	0,0000525 0,0000506 0,000053	0,068 0,068 0,068	1343,873518 1283,018868	
EN2-D17 EN2-D18	0,0000525 0,0000506 0,000053 0,000074	0,068 0,068 0,068 0,068	1343,873518 1283,018868 918,9189189	
EN2-D17 EN2-D18 EN2-D19	0,0000525 0,0000506 0,000053 0,000074 0,0000544	0,068 0,068 0,068 0,068 0,068	1343,873518 1283,018868 918,9189189 1250	

 Caliza de Calatora
--

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Media / moda ejes
Ca-F5	0,0001359	0,192	1412,80	
Ca-F4	0,0001453	0,192	1321,40	
Ca-F3	0,0002213	0,192	867,60	
Ca-F2	0,000146	0,192	1315,07	
Ca-F1	0,0001305	0,192	1471,26	
Ca-E20	0,0001729	0,121	699,83	
Ca-E19	0,0002236	0,121	541,14	
Ca-E18	0,0004712	0,121	256,79	
Ca-E17	0,0001734	0,121	697,81	
Ca-E16	0,0000844	0,121	1433,65	
Ca-E15	0,0002643	0,121	457,81	
Ca-E14	0,0001979	0,121	611,42	
Ca-E13	0,0002952	0,121	409,89	1080,730082
Ca-E12	0,0001349	0,121	896,96	
Ca-E11	0,0001733	0,121	698,21	1
Ca-E10	0,0000923	0,121	1310,94	
Ca-E9	0,0000939	0,121	1288,60	
Ca-E8	0,0001017	0,121	1189,77	
Ca-E7	0,0001015	0,121	1192,12	
Ca-E6	0,0000856	0,121	1413,55	
Ca-E5	0,0000857	0,121	1411,90	1
Ca-E4	0,0000705	0,121	1716,31	
Ca-E3	0,0002864	0,121	422,49	1
Ca-E2	0,0001163	0,121	1040,41	
Ca-E1	0,000092	0,121	1315,22	
Ca-D20	0,0000472	0,04	847,46	
Ca-D19	0,0000467	0,04	856,53	
Ca-D18	0,0000389	0,04	1028,28	
Ca-D17	0,0000383	0,04	1044,39	
Ca-D16	0,0000381	0,04	1049,87	
Ca-D15	0.0000392	0.04	1020.41	
Ca-D14	0,0000722	0,04	554,02	
Ca-D13	0.0000452	0.04	884.96	
Ca-D12	0.0000455	0.04	879.12	
Ca-D11	0,0000462	0,04	865,80	
Ca-D10	0.0000457	0.04	875.27	
Ca-D9	0.0000462	0.04	865.80	
Ca-D8	0.0000377	0.04	1061.01	
Ca-D7	0.0000456	0.04	877.19	
Ca-D6	0,0000454	0.04	881.06	
Ca-D5	0,0001012	0.04	395.26	
Ca-D4	0.0000727	0.04	550.21	
Ca-D3	0,0000472	0.04	847.46	
Ca-D2	0,0000386	0.04	1036.27	
Ca-D1	0.0000292	0.04	1369.86	
Ca-C20	0,0000399	0.04	1002.51	
Ca-C19	0,0000557	0.04	718.13	
Ca-C18	0.0000641	0.04	624.02	
Ca-C17	0.0000454	0.04	881.06	
Ca-C16	0,000045	0.04	888,89	
Ca-C15	0.0000457	0.04	875.27	
Ca-C14	0.0000453	0.04	883.00	
Ca-C13	0.0000544	0.04	735.29	
Ca-C12	0.0000373	0.04	1072 39	
Ca-C11	0.0000457	0.04	875 27	
Ca-C10	0.0000453	0.04	883.00	
Ca-C9	0,0000433	0,04	1021 00	
Ca-C8	0.0000633	0,04	631 01	
Ca-C7	0.0000467	0,04	856 52	
(2-06	0,0000407	0,04	1032 50	
Ca-C0	0,0000387	0,04	1023,59	1

Tabla 16: Muestra EN2. Se ha hecho la moda total y la del eje B+C+D, en el eje A se ha hecho la media.

Ca-C5	0,000031	0,04	1290,32	
Ca-C4	0,0000305	0,04	1311,48	
Ca-C3	0,0000326	0,04	1226,99	
Ca-C2	0,0000312	0,04	1282,05	
Ca-C1	0,0000233	0,04	1716,74	075 373533
Ca-B20	0,0000451	0,04	886,92	6/3,2/3323
Ca-B19	0,0000463	0,04	863,93	
Ca-B18	0,0000456	0,04	877,19	
Ca-B17	0,0000464	0,04	862,07	
Ca-B16	0,0000376	0,04	1063,83	
Ca-B15	0,0000376	0,04	1063,83	
Ca-B14	0,0000378	0,04	1058,20	
Ca-B13	0,0000374	0,04	1069,52	
Ca-B12	0,0000453	0,04	883,00	
Ca-B11	0,0001004	0,04	398,41	
Ca-B10	0,0000474	0,04	843,88	
Ca-B9	0,0000458	0,04	873,36	
Ca-B8	0,0000451	0,04	886,92	
Ca-B7	0,0000376	0,04	1063,83	
Ca-B6	0,0000305	0,04	1311,48	
Ca-B5	0,0000386	0,04	1036,27	
Ca-B4	0,000046	0,04	869,57	
Ca-B3	0,0000457	0,04	875,27	
Ca-B2	0,0000996	0,04	401,61	
Ca-B1	0,0000395	0,04	1012,66	
Ca-A20	0,0000456	0,04	877,19	
Ca-A19	0,0000457	0,04	875,27	
Ca-A18	0,0000455	0,04	879,12	
Ca-A17	0,0000452	0,04	884,96	
Ca-A16	0,0000448	0,04	892,86	
Ca-A15	0,0000445	0,04	898,88	
Ca-A14	0,0000561	0,04	713,01	
Ca-A13	0,0000406	0,04	985,22	
Ca-A12	0,0000223	0,04	1793,72	
Ca-A11	0,0000331	0,04	1208,46	
Ca-A10	0,0000455	0,04	879,12	
Ca-A9	0,0000451	0,04	886,92	
Ca-A8	0,0000459	0,04	871,46	
Ca-A7	0,0000369	0,04	1084,01	
Ca-A6	0,0000284	0,04	1408,45	
Ca-A5	0,0000372	0,04	1075,27	
Ca-A4	0,0000366	0,04	1092,90	
Ca-A3	0,0000372	0,04	1075,27	
Ca-A2	0,000032	0,04	1250,00	
Ca-A1	0,0000216	0,04	1851,85	
		Moda total	875,27	

Ye-3-G3 0,0000719 0,091 1265,646732 Ye-3-G2 0,0003655 0,091 248,9740082 Ye-3-G1 0,0000 0,091 130 Ye-3-F20 0,000045 0,091 2022,222222 Ye-3-F19 0,0000565 0.091 1610,619469 1169.66583 Ye-3-F18 0.0000778 0.091 Ye-3-F17 0,0000707 0,091 1287,128713 Ye-3-F16 0,0001296 0,091 702,1604938 Ye-3-F15 0,0000709 0,091 1283,497884 Ye-3-F14 0.0000608 0.091 1496.710526 Ye-3-F13 0,0000612 1486,928105 0,091 Ye-3-F12 0,0000694 0,091 1311,239193 Ye-3-F11 0,0001959 0,091 464,5227157 Ye-3-F10 0,0001525 0,091 596,7213115 Ye-3-F9 0,0002439 0,091 373,103731 Ye-3-F8 0,0000975 0,091 933,3333333 Ye-3-F7 0.000089 0.091 1022.47193 Ye-3-F6 0,0000961 0,091 946,930281 Ye-3-F5 0,000096 0,091 947,9166667 Ye-3-F4 0,000094 0,091 968,0851064 Ye-3-F3 0.0000753 0.091 1208.499336 Ye-3-F2 0,0000574 0,091 1585,365854 0,0000475 1915,789474 Ye-3-F1 0,091 Ye-3-E20 0,000045 0,091 2022,222222 Ye-3-E19 0,0000458 0,091 1986,899563 Ye-3-E18 0,0000561 0,091 1622,103387 Ye-3-E17 0,0000585 0,091 1555,555556 Ye-3-E16 0.00007 0.091 1300 0,0000889 1023,622047 Ye-3-E15 0,091 Ye-3-E14 0,0004499 0,091 202,2671705 Ye-3-E13 0,0002782 0,091 327,1028037 Ye-3-E12 0,0000694 0,091 1311,239193 Ye-3-E11 0.0000621 0.091 1465,378422 1463,022508 Ye-3-E10 0,0000622 0,091 Ye-3-E9 0,0002854 0,091 318,8507358 Ye-3-E8 0,0001706 0,091 533,4114889 Ye-3-E7 0,0001713 0,091 531.2317572 Ye-3-E6 0,0000886 0,091 1027,088036 Ye-3-E5 0,0001129 0,091 806,0230292 0,000119 764,7058824 Ye-3-E4 0,091 Ye-3-E3 0,0000565 0,091 1610,619469 Ye-3-E2 0,0000564 0,093 1613,475177 Ye-3-E1 0,0000622 0,091 1465,378422

1311,239193

Tabla 17: Muestra Ca. Se ha hecho la moda total y en el eje A+B+C+D; en E+F se ha hecho la media.

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda ejes
Ye-3-H20	0,0000544	0,091	1672,794118	
Ye-3-H19	0,0000627	0,091	1451,355662	
Ye-3-H18	0,0000787	0,091	1156,289708	
Ye-3-H17	0,0000797	0,091	1141,781681	
Ye-3-H16	0,0002515	0,091	361,8290258	
Ye-3-H15	0,0002602	0,091	349,7309762	
Ye-3-H14	0,0002679	0,091	339,6789847	
Ye-3-H13	0,0000992	0,091	917,3387097	
Ye-3-H12	0,000069	0,091	1318,84058	
Ye-3-H11	0,0001141	0,091	797,5460123	
Ye-3-H10	0,0000768	0,091	1184,895833	
Ye-3-H9	0,0000854	0,091	1065,57377	
Ye-3-H8	0,0000787	0,091	1156,289708	
Ye-3-H7	0,0001672	0,091	544,2583732	
Ye-3-H6	0,000167	0,091	544,9101796	
Ye-3-H5	0,000078	0,091	1166,666667	
Ye-3-H4	0,0000701	0,091	1298, 145506	
Ye-3-H3	0,0000694	0,091	1311,239193	
Ye-3-H2	0,0000698	0,091	1303,724928	
Ye-3-H1	0,0001055	0,091	862,5592417	
Ye-3-G20	0,0001	0,091	910	
Ye-3-G19	0,0002734	0,091	332,8456474	
Ye-3-G18	0,0000543	0,091	1675,87477	
Ye-3-G17	0,0000631	0,091	1442,155309	
Ye-3-G16	0,0000796	0,091	1143,21608	
Ye-3-G15	0,0000722	0,091	1260, 387812	
Ye-3-G14	0,0000723	0,091	1258,644537	
Ye-3-G13	0,0000734	0,091	1239,782016	
Ye-3-G12	0,0001999	0,091	455,2276138	
Ye-3-G11	0,0002856	0,091	318,627451	
Ye-3-G10	0,0000697	0,091	1305,595409	
Ye-3-G9	0,0000699	0,091	1301,8598	
Ye-3-G8	0,0001144	0,091	795,4545455	
Ye-3-G7	0,0000645	0,091	1410,852713	
Ye-3-G6	0,0000732	0,091	1243,169399	
Ye-3-G5	0,0000656	0,091	1387,195122	
Ye-3-G4	0,0000724	0,091	1256,906077	

Ye-3-D20	0,0000829	0,082	989,1435464	
Ye-3-D19	0,000084	0,082	976, 1904762	
Ye-3-D18	0,0000543	0,082	1510,128913	
Ye-3-D17	0,0000551	0,082	1488,203267	
Ye-3-D16	0,000063	0,082	1301,587302	
Ye-3-D15	0,0000898	0,082	913,1403118	
Ye-3-D14	0,0002916	0,082	281,2071331	
Ye-3-D13	0,0001615	0,082	507,7399381	
Ye-3-D12	0,0001529	0,082	536,2982341	
Ye-3-D11	0,0000606	0,082	1353,135314	
Ye-3-D10	0,0000687	0,082	1193,595342	
Ye-3-D9	0,0001531	0,082	535,5976486	
Ye-3-D8	0,0003826	0,082	214,3230528	
Ye-3-D7	0,0003735	0,082	219,5448461	
Ye-3-D6	0,0001876	0,082	437,1002132	
Ye-3-D5	0,0000716	0,082	1145,251397	
Ye-3-D4	0,0000709	0,082	1156,558533	
Ye-3-D3	0,000054	0,082	1518,518519	
Ye-3-D2	0,0000536	0,082	1529,850746	
Ye-3-D1	0,0000529	0,082	1550,094518	
Ye-3-C20	0,0002006	0,082	408,773679	
Ye-3-C19	0,0000548	0,082	1496,350365	
Ye-3-C18	0,0000711	0,082	1153,305204	
Ye-3-C17	0,0000809	0,082	1013,597033	
Ye-3-C16	0,0000715	0,082	1146,853147	
Ye-3-C15	0,0002919	0,082	280,9181226	
Ye-3-C14	0,0001528	0,082	536,6492147	
Ye-3-C13	0,0000613	0,082	1337,683524	
Ye-3-C12	0,0000692	0,082	1184,971098	
Ye-3-C11	0,0000693	0,082	1183,261183	
Ye-3-C10	0,0000705	0,082	1163,120567	
Ye-3-C9	0,0001772	0,082	462,7539503	
Ye-3-C8	0,0000711	0,082	1153,305204	
Ye-3-C7	0,0000804	0,082	1019,900498	
Ye-3-C6	0,0000625	0,082	1312	
Ye-3-C5	0,0000624	0,082	1314,102564	
Ye-3-C4	0.000054	0.082	1518.518519	

31

Ye-3-C3	0,0000446	0,082	1838,565022	
Ye-3-C2	0,0000527	0,082	1555,97723	
Ye-3-C1	0,0000978	0,082	838,4458078	1199 /05707
Ye-3-B20	0,0000491	0,082	1670,0611	1100,403/9/
Ye-3-B19	0,0002415	0,082	339,5445135	
Ye-3-B18	0,0000596	0,082	1375,838926	
Ye-3-B17	0,0000606	0,082	1353,135314	
Ye-3-B16	0,0000614	0,082	1335,504886	
Ye-3-B15	0,0003952	0,082	207,4898785	
Ye-3-B14	0,0001508	0,082	543,7665782	
Ye-3-B13	0,0002685	0,082	305,4003724	
Ye-3-B12	0,0000695	0,082	1179,856115	
Ye-3-B11	0,0000534	0,082	1535,580524	
Ye-3-B10	0,000069	0,082	1188,405797	
Ye-3-B9	0,0001606	0,082	510,5853051	
Ye-3-B8	0,0003844	0,082	213,3194589	
Ye-3-B7	0,0000781	0,082	1049,93598	
Ye-3-B6	0,0000679	0,082	1207,658321	
Ye-3-B5	0,0000578	0,082	1418,685121	
Ye-3-B4	0,0000558	0,082	1469,53405	
Ye-3-B3	0,0000537	0,082	1527,001862	
Ye-3-B2	0,0000529	0,082	1550,094518	
Ye-3-B1	0,0000503	0,082	1630,218688	
Ye-3-A20	0,0000441	0,082	1859,410431	
Ye-3-A19	0,0001681	0,082	487,804878	
Ye-3-A18	0,0000693	0,082	1183,261183	
Ye-3-A17	0,0000714	0,082	1148,459384	
Ye-3-A16	0,0003037	0,082	270,0032927	
Ye-3-A15	0,0000952	0,082	861,3445378	
Ye-3-A14	0,0003823	0,082	214,4912372	
Ye-3-A13	0,000152	0,082	539,4736842	
Ye-3-A12	0,0000691	0,082	1186,685962	
Ye-3-A11	0,000069	0,082	1188,405797	
Ye-3-A10	0,0000685	0,082	1197,080292	
Ye-3-A9	0,0002913	0,082	281,4967388	
Ye-3-A8	0,0003236	0,082	253,3992583	
Ye-3-A7	0,0000702	0,082	1168,091168	
Ye-3-A6	0,000069	0,082	1188,405797	
Ye-3-A5	0,0000768	0,082	1067,708333	
Ye-3-A4	0,0000589	0,082	1392,190153	
Ye-3-A3	0,0000565	0,082	1451,327434	
Ye-3-A2	0,0000546	0,082	1501,831502	
Ye-3-A1	0,000058	0,082	1413,793103	
		Moda total	1311 239193	

Figura 18: Muestra Ye-3. Se ha hecho la moda total y en todos los ejes.

Δ	a	h	а	c	t	r	റ
- AI	a	υ	a	э	ι		υ

_

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda / media ejes
5EKE-G10	0,0001027	0,153	1489,776047	
5EKE-G9	0,0001082	0,153	1414,048059	
5EKE-G8	0,0001644	0,153	930,6569343	
5EKE-G7	0,0001081	0,153	1415,356152	
5EKE-G6	0,0001706	0,153	896,8347011	1122 025764
5EKE-G5	0,0001879	0,153	814,2629058	1132,933704
5EKE-G4	0,0001032	0,153	1482,55814	
5EKE-G3	0,0001477	0,153	1035,883548	
5EKE-G2	0,0001969	0,153	777,0441849	
5FKF-G1	0.0001062	0 153	1440 677966	

Tabla 19: Muestra 5EKE. Se ha hecho la moda total y del eje A+B+C+D+E+F; en G se ha hecho la media.

1.1					
	5EKE-D18	0,0000423	0,061	1442,080378	
	5EKE-D17	0,0000866	0,061	704,3879908	
Γ	5EKE-D16	0,0000722	0,061	844,8753463	
	5EKE-D15	0,0002402	0,061	253,9550375	
	5EKE-D14	0,0000804	0,061	758,7064677	
	5EKE-D13	0,0000538	0,061	1133,828996	
	5EKE-D12	0,0002289	0,061	266,4919179	
	5EKE-D11	0,0002275	0,061	268,1318681	
	5EKE-D10	0,0001645	0,061	370,8206687	
	5EKE-D9	0,0001516	0,061	402,3746702	
	5EKE-D8	0,0000678	0,061	899,7050147	
	5EKE-D7	0,0000675	0,061	903,7037037	
	5EKE-D6	0,0001542	0,061	395,5901427	
	5EKE-D5	0,0001042	0,061	585,4126679	
	5EKE-D4	0,000056	0,061	1089,285714	
	5EKE-D3	0,0001947	0,061	313,3025167	
	5EKE-D2	0,0000782	0,061	780,0511509	
ſ	5EKE-D1	0,0000502	0,061	1215,139442	1100 420201
ſ	5EKE-C20	0,0000691	0,061	882,7785818	1198,428291
ſ	5EKE-C19	0,0000606	0,061	1006,60066	
ſ	5EKE-C18	0,0002303	0,061	264,8719062	
	5EKE-C17	0,0000584	0,061	1044,520548	
ſ	5EKE-C16	0,0000615	0,061	991,8699187	
	5EKE-C15	0,0000699	0,061	872,6752504	
Γ	5EKE-C14	0,0001402	0,061	435,0927247	
	5EKE-C13	0,0000901	0,061	677,0255272	
	5EKE-C12	0,0001132	0,061	538,869258	
	5EKE-C11	0,0001659	0,061	367,6913803	
	5EKE-C10	0,0000625	0,061	976	
	5EKE-C9	0,0000977	0,061	624,3602866	
	5EKE-C8	0,0000956	0,061	638,0753138	
H	5EKE-C7	0,0000913	0,061	668,1270537	
	5EKE-C6	0,0000601	0,061	1014,975042	
ł	5EKE-C5	0,0000676	0,061	902,3668639	
ł	SEKE-C4	0,0000558	0,061	1093,189964	
ł	SEKE-C3	0,0000616	0,061	990,2597403	
ł	SEKE-CZ	0,0001796	0,061	339,6436526	
ł	SEKE-CI	0,0000637	0,061	072 0067624	
ł	SEKE-B20	0,0000627	0,001	1070 646018	
ł	SEKE-B19	0,0000505	0,001	021 2077000	
ł	SEKE-B18	0,00000000	0,001	528 1385281	
ł	SEKE-B16	0.0001193	0.061	558 0969808	
h	SEKE-B15	0.0000456	0.061	1337.719298	
h	5EKE-B14	0.000062	0.061	983.8709677	
Ē	5EKE-B13	0,0000458	0,061	1331,877729	
	5EKE-B12	0,000101	0,061	603,960396	
	5EKE-B11	0,0000465	0,061	1311,827957	
	5EKE-B10	0,000055	0,061	1109,090909	
	5EKE-B9	0,0000549	0,061	1111,111111	
	5EKE-B8	0,0000466	0,061	1309,012876	
	5EKE-B7	0,0000915	0,061	666,6666667	
	5EKE-B6	0,000058	0,061	1051,724138	
	5EKE-B5	0,0000563	0,061	1083,48135	
	5EKE-B4	0,0000703	0,061	867,7098151	
+	5EKE-B3	0,000103	0,061	592,2330097	
+	5EKE-B2	0,0000403	0,061	1513,64/643	
ł	SEKE-B1	0,000403	0,061	1513,647643	
H	SEKE-AZU	0,000042	0,061	1452,380952	
H	SERE-A19	0,0000420	0,061	1451,924005	
H	SEKE-A17	0,0000433	0,001	1020 06680	
ŀ	SEKE-A16	0,0000538	0,001	1184 /66019	
ł	SEKE-A15	0.0000313	0.061	1224 899598	
h	5EKE-A14	0.0000513	0.061	1189.083821	
t	5EKE-A13	0,000058	0,061	1051,724138	
Ē	5EKE-A12	0,0000506	0,061	1205,533597	
Ī	5EKE-A11	0,0000503	0,061	1212,723658	
ſ	5EKE-A10	0,0000497	0,061	1227,364185	
ſ	5EKE-A9	0,0000509	0,061	1198,428291	
	5EKE-A8	0,0000511	0,061	1193,737769	
ļ	5EKE-A7	0,0000502	0,061	1215,139442	
Ļ	5EKE-A6	0,0000586	0,061	1040,955631	
ļ	5EKE-A5	0,0001515	0,061	402,640264	
ļ	5EKE-A4	0,0002199	0,061	277,3988176	
ŀ	5EKE-A3	0,0000522	0,061	1168,582375	
╞	SEKE-AZ	0,0000703	0,061	1011,608624	
L	SEKE-A1	0,0000/03	0,061	867,7098151	
			woud total	1025,210084	

 Caliza de Bielsa 					
Name	Time (s)	Thickness (m)	Velocidad (m/s)	Media ejes	
BR1-A1	0,0000874	0,057	652, 173913		
BR1-A10	0,0001182	0,057	482,2335025		
BR1-A11	0,0000742	0,057	768,1940701		
BR1-A12	0,0000833	0,057	684,2737095		
BR1-A13	0,0002477	0,057	230,1170771		
BR1-A14	0,0000812	0,057	701,9704433		
BR1-A15	0,0000487	0,057	1170,431211		
BR1-A16	0,0000675	0,057	844,444444		
BR1-A17	0,0000793	0,057	718,7894073		
BR1-A18	0,0000917	0,057	621,5921483	772 0211071	
BR1-A19	0,0000902	0,057	631,9290466	, / 2, 33113/1	
BR1-A2	0,0000667	0,057	854,5727136		
BR1-A20	0,0000805	0,057	708,0745342		
BR1-A3	0,000059	0,057	966,1016949		
BR1-A4	0,0000658	0,057	866,2613982		
BR1-A5	0,0000659	0,057	864,9468892		
BR1-A6	0,0000642	0,057	887,8504673		
BR1-A7	0,0000794	0,057	717,884131		
BR1-A8	0,0000852	0,057	669,0140845		
BR1-A9	0,0001481	0,057	384,8750844		
BR1-B1	0,0000567	0,059	1040,564374		
BR1-B10	0,0000468	0,059	1260,683761		
BR1-B11	0,000043	0,059	1372,093023		
BR1-B12	0,000049	0,059	1204,081633		
BR1-B13	0,0000606	0,059	973,5973597		
BR1-B14	0,0000625	0,059	944		
BR1-B15	0,0000551	0,059	1070,780399		
BR1-B16	0,0002147	0,059	274,8020494		
BR1-B17	0,0000538	0,059	1096,654275		
BR1-B18	0,000045	0,059	1311,111111	1015 777702	
BR1-B19	0,0000599	0,059	984,9749583	1013,77702	
BR1-B2	0,0000706	0,059	835,694051		
BR1-B20	0,0000737	0,059	800,5427408		
BR1-B3	0,0000853	0,059	691,6764361		
BR1-B4	0,0001629	0,059	362,1853898		
BR1-B5	0,000138	0,059	427,5362319		
BR1-B6	0,0001778	0,059	331,8335208		
BR1-B7	0,0000876	0,059	673,5159817		
BR1-B8	0,0000633	0,059	932,0695103		
BR1-B9	0,0000403	0,059	1464,019851		
		Media total	882,413025		

Tabla 20: Muestra BR1. Se ha hecho la media total y en todos los ejes.

_

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Media ejes
MG-1-A1	0,0000593	0,076	1281,618887	
MG-1-A2	0,0000505	0,076	1504,950495	
MG-1-A3	0,0000488	0,076	1557,377049	
MG-1-A4	0,0000614	0,076	1237,785016	
MG-1-A5	0,0000515	0,076	1475,728155	
MG-1-A6	0,0000787	0,076	965,6925032	
MG-1-A7	0,0000517	0,076	1470,019342	
MG-1-A8	0,0000649	0,076	1171,032357	
MG-1-A9	0,0000692	0,076	1098,265896	
MG-1-A10	0,0000439	0,076	1731,207289	1266 661174
MG-1-A11	0,000053	0,076	1433,962264	1200,001174
MG-1-A12	0,000073	0,076	1041,09589	
MG-1-A13	0,0000536	0,076	1417,910448	
MG-1-A14	0,0000399	0,076	1904,761905	
MG-1-A15	0,0000502	0,076	1513,944223	
MG-1-A16	0,0000588	0,076	1292,517007	
MG-1-A17	0,0001093	0,076	695,3339433	
MG-1-A18	0,0000544	0,076	1397,058824	
MG-1-A19	0,0001085	0,076	700,4608295	
MG-1-A20	0,0000626	0,076	1214,057508	
MG-1-B1	0,000036	0,043	1194,444444	
MG-1-B2	0,0001098	0,043	391,6211293	
MG-1-B3	0,0000436	0,043	986,2385321	
MG-1-B4	0,0000271	0,043	1586,715867	
MG-1-B5	0,0001277	0,043	336,7267032	
MG-1-B6	0,0000474	0,043	907,1729958	
MG-1-B7	0,0000413	0,043	1041,162228	
MG-1-B8	0,0000505	0,043	851,4851485	
MG-1-B9	0,0000592	0,043	726,3513514	
MG-1-B10	0,000101	0,043	425,7425743	995 3220327
MG-1-B11	0,0001013	0,043	424,4817374	333,3220321
MG-1-B12	0,0000383	0,043	1122,715405	
MG-1-B13	0,0001439	0,043	298,818624	
MG-1-B14	0,0002621	0,043	164,0595193	
MG-1-B15	0,0000441	0,043	975,0566893	
MG-1-B16	0,0000454	0,043	947,1365639	
MG-1-B17	0,0000374	0,043	1149,73262	
MG-1-B18	0,00007	0,043	614,2857143	
MG-1-B19	0,0000506	0,043	849,8023715	
MG-1-B20	0,0000312	0,043	1378,205128	
		Media total	1146,964549	

Caliza de nummulites de Guara

Name	Time (s)	Thickness (m)	Velocidad (m/s)	woda ejes
CB1-A1	0,0000346	0,065	1878,612717	
CB1-A2	0,0000346	0,065	1878,612717	
CB1-A3	0,0000366	0,065	1775,956284	
CB1-A4	0,0000352	0,065	1846,590909	
CB1-A5	0,0000363	0,065	1790,633609	
CB1-A6	0,0000372	0,065	1747,311828	
CB1-A7	0,0000468	0,065	1388,888889	
CB1-A8	0,0000688	0,065	944,7674419	
CB1-A9	0,0000438	0,065	1484,018265	
CB1-A10	0,0000883	0,065	736,1268403	1070 (12717
CB1-A11	0,0000438	0,065	1484,018265	18/8,612/1/
CB1-A12	0,0001582	0,065	410,8723135	
CB1-A13	0,0000449	0,065	1447,66147	
CB1-A14	0,0000366	0,065	1775,956284	
CB1-A15	0,0000546	0,065	1190,47619	
CB1-A16	0,0000442	0,065	1470,588235	
CB1-A17	0,0000325	0,065	2000	
CB1-A18	0,000046	0,065	1413,043478	
CB1-A19	0,0000369	0,065	1761,517615	
CB1-A20	0,0000352	0,065	1846,590909	
CB1-B1	0,0000373	0,072	1930,294906	
CB1-B2	0,0000383	0,072	1879,895561	
CB1-B3	0,0000468	0,072	1538,461538	
CB1-B4	0,000039	0,072	1846,153846	
CB1-B5	0,0000406	0,072	1773,399015	
CB1-B6	0,0000377	0,072	1909,814324	
CB1-B7	0,0000383	0,072	1879,895561	
CB1-B8	0,0000405	0,072	1777,777778	
CB1-B9	0,000034	0,072	2117,647059	
CB1-B10	0,0000568	0,072	1267,605634	
CB1-B11	0,0000552	0,072	1304,347826	
CB1-B12	0,0000457	0,072	1575,492341	
CB1-B13	0,0000451	0,072	1596,452328	
CB1-B14	0,0000464	0,072	1551,724138	
CB1-B15	0,0000417	0,072	1726,618705	
CB1-B16	0,0000402	0,072	1791,044776	
CB1-B17	0,000039	0,072	1846,153846	
CB1-B18	0,0000382	0,072	1884,816754	
CB1-B19	0,0000383	0,072	1879,895561	
CB1-B20	0,0000298	0,072	2416,107383	1879.895561
CB1-C1	0,0000438	0,072	1643,835616	
CB1-C2	0,0000521	0,072	1381,957774	
CB1-C3	0,000056	0,072	1285,714286	
CB1-C4	0,0000564	0,072	1276,595745	
CB1-C5	0,0000745	0,072	966,442953	
CB1-C6	0,0001136	0,072	633,8028169	
CB1-C7	0,0000446	0,072	1614,349776	
CB1-C8	0,0000529	0,072	1361,058601	
CB1-C9	0,000052	0,072	1384,615385	
CB1-C10	0,0000629	0,072	1144,674086	
CB1-C11	0,0000769	0,072	936,2808843	
CB1-C12	0,0000612	0,072	11/6,4/0588	
CB1-C13	0,000062	0,072	1161,290323	
CB1-C14	0,0000596	0,072	1208,053691	
CB1-C15	0,0000856	0,072	841,1214953	
CB1-C16	0,0000575	0,072	1092,564492	
CB1-C17	0,0000575	0,072	1252,173913	
CB1-C18	0,0000565	0,072	12/4,336283	
CB1-C19	0,000564	0,072	12/6,595745	

Limolita de Cabuerniga

. . .

-

Tabla 21: Muestra CB1. Se ha hecho la moda total y en todos los ejes.

1368,821293

1879,895561

0,072

Moda total

Tabla 22: Muestra MG-1. Se ha hecho la media total y en todos los ejes.

CB1-C20 0,0000526

	-	Caliza	del Grup	o Enciso
Name	Time (s)	Thickness (m)	Velocidad (m/s)	Media eies
FR-A1	0,0000923	0,042	455,0379198	-
FR-A2	0,0000864	0,042	486,1111111	
FR-A3	0,000057	0,042	736,8421053	
FR-A4	0,0000801	0,042	524,3445693	
FR-A5	0,0000568	0,042	739,4366197	638 0122086
FR-A6	0,00022	0,042	190,9090909	030,0123500
FR-A7	0,0000681	0,042	616,7400881	
FR-A8	0,00007	0,042	600	
FR-A9	0,000202	0,042	207,9207921	
FR-A10	0,0002287	0,042	183,6466987	
FR-B1	0,000073	0,049	671,2328767	
FR-B2	0,0000542	0,049	904,0590406	
FR-B3	0,0000368	0,049	1331,521739	
FR-B4	0,0000881	0,049	556,1861521	
FR-B5	0,0000715	0,049	685,3146853	
FR-B6	0,0000401	0,049	1221,945137	
FR-B7	0,0000405	0,049	1209,876543	
FR-B8	0,0000481	0,049	1018,711019	819,7914152
FR-B9	0,0000526	0,049	931,5589354	
FR-B10	0,0000533	0,049	919,3245779	
FR-B11	0,0000887	0,049	552,4239008	
FR-B12	0,0000831	0,049	589,6510229	
FR-B13	0,0001508	0,049	324,933687	
FR-B14	0,0000521	0,049	940,4990403	
FR-B15	0,0000963	0,049	508,8265836	
FR-C1	0,0001125	0,08	711,111111	
FR-C2	0,0002599	0,08	307,8106964	
FR-C3	0,0002916	0,08	274,3484225	744,2665556
FR-C4	0,0001027	0,08	778,9678676	
FR-C5	0,0002754	0,08	290,486565	
		Media total	765,2147281	

Otros

- Escayola

Name	Time (s)	Thickness (m)	Velocidad (m/s)	Moda ejes
LM1-A1	0,0000784	0,097	1237,244898	
LM1-A2	0,0000676	0,097	1434,911243	
LM1-A3	0,0000714	0,097	1358,543417	
LM1-A4	0,0001227	0,097	790,5460473	
LM1-A5	0,0000878	0,097	1104,783599	
LM1-A6	0,0000695	0,097	1395,683453	
LM1-A7	0,0000703	0,097	1379,800853	
LM1-A8	0,000071	0,097	1366,197183	
LM1-A9	0,0000796	0,097	1218,592965	
LM1-A10	0,0000708	0,097	1370,056497	1205 692452
LM1-A11	0,0000705	0,097	1375,886525	1595,065455
LM1-A12	0,0000797	0,097	1217,06399	
LM1-A13	0,0000779	0,097	1245,186136	
LM1-A14	0,0000868	0,097	1117,511521	
LM1-A15	0,0001054	0,097	920,3036053	
LM1-A16	0,0000709	0,097	1368,124118	
LM1-A17	0,0000671	0,097	1445,603577	
LM1-A18	0,0000695	0,097	1395,683453	
LM1-A19	0,0000724	0,097	1339,779006	
LM1-A20	0,0000703	0,097	1379,800853	
LM1-B1	0,0000618	0,08	1294,498382	
LM1-B2	0,0000621	0,08	1288,244767	
LM1-B3	0,000062	0,08	1290,322581	
LM1-B4	0,0000583	0,08	1372,212693	
LM1-B5	0,0000626	0,08	1277,955272	
LM1-B6	0,0000615	0,08	1300,813008	
LM1-B7	0,0000967	0,08	827,3009307	
LM1-B8	0,0000905	0,08	883,9779006	
LM1-B9	0,0000614	0,08	1302,931596	
LM1-B10	0,0000604	0,08	1324,503311	1221 11/200
LM1-B11	0,0000601	0,08	1331,114809	1331,114805
LM1-B12	0,0000619	0,08	1292,407108	
LM1-B13	0,0000594	0,08	1346,801347	
LM1-B14	0,0000585	0,08	1367,521368	
LM1-B15	0,0000601	0,08	1331,114809	
LM1-B16	0,0000613	0,08	1305,057096	
LM1-B17	0,0000612	0,08	1307,189542	
LM1-B18	0,0000616	0,08	1298,701299	
LM1-B19	0,0000581	0,08	1376,936317	
LM1-B20	0,0000624	0,08	1282,051282	
LM1-C1	0,0000407	0,0542	1331,695332	
LM1-C2	0,0000437	0,0542	1240,2746	
LM1-C3	0,0000387	0,0542	1400,516796	
LM1-C4	0,0000429	0,0542	1263,403263	
LM1-C5	0,0000483	0,0542	1122,153209	
LM1-C6	0,000058	0,0542	934,4827586	
LM1-C7	0,0000477	0,0542	1136,268344	
LM1-C8	0,0000485	0,0542	1117,525773	
LM1-C9	0,0000474	0,0542	1143,459916	
LM1-C10	0,0000479	0,0542	1131,524008	1122,153209
LM1-C11	0,0000493	0,0542	1099,391481	
LM1-C12	0,0000483	0,0542	1122,153209	
LM1-C13	0,0000469	0,0542	1155,65032	
LM1-C14	0,0000416	0,0542	1302,884615	
LM1-C15	0,0000548	0,0542	989,0510949	
LM1-C16	0,0000382	0,0542	1418,848168	
LM1-C17	0,0000736	0,0542	736,4130435	
LM1-C18	0,0000477	0,0542	1136,268344	
LM1-C19	0,0000476	0,0542	1138,655462	
LM1-C20	0,0000469	0,0542	1155,65032	
		Moda total	1395,683453	

Tabla 24: Muestra LM1. Se ha hecho la moda total y en todos los ejes.