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Resumen

La Teoría de Galois estuvo motivada por la pregunta de si es posible expresar las soluciones de una
ecuación polinómica de grado mayor o igual que cinco en términos de sus coeficientes. La respuesta
fue clara: no es posible. Para ello, la propiedad de que para un polinomio con coeficientes en un
cuerpo exista una fórmula función de sus coeficientes que determine sus raíces se traduce al lenguaje
matemático como resubilidad por radicales, y para una clase particular de extensiones de cuerpos, las
extensiones de Galois finitas, se establece una biyección entre los subgroups del Grupo de Galois sobre
dicha extensión y sus cuerpos intermedios, de manera que existe una correspondencia unívoca entre
subgrupos y subcuerpos. La caracterización de la resolubilidad por radicales lo termina de poner en
manifiesto: para cada polinomio f con coeficientes en un cuerpo K, se define su Grupo de Galois como
el Grupo de Galois sobre su cuerpo de escisión sobre K, de manera que f será resoluble por radicales si
y solamente si el Grupo de Galois de f sea resoluble.

El presente trabajo se aleja de este enfoque para estudiar el Grupo de Galois sobre extensiones de Galois
que pueden ser infinitas. Se utilizarán resultados del caso de las extensiones finitas y comprobaremos
que existe, con alguna salvedad, una versión del Teorema Fundamental de la Teoría de Galois ya gener-
alizada a extensiones de cuerpos de grado infinito. Será necesario definir una topología, la Topología de
Krull, sobre dichos Grupos de Galois, y estudiar las propiedades topológicas que aparecen en ellos, así
como sus consecuencias, con el fin de contar con la herramienta de la Topología para el cumplimiento
del objetivo de este trabajo. Este será, a grandes rasgos, identificar una clase de grupos topológicos, los
grupos profinitos, con los Grupos de Galois sobre una cierta extensión.

La memoria se encuentra dividida en tres capítulos, los cuales corresponden a dos bloques temáticos
principales: la presentación de los grupos profinitos y los sistemas inversos y, posteriormente, exponer
un caso concreto de estos en los Grupos de Galois sobre extensiones infinitas. Inicialmente se presen-
tarán los grupos profinitos y los Grupos de Galois como independientes, y posteriormente, se presen-
tarán los resultados que relacionan ambos.

En el capítulo 1, se introduce al lector en los sistemas inversos de un conjunto de espacios topológicos,
así como la definición del límite inverso de un sistema inverso en términos de una propiedad universal.
Esta definición se hará operativa al demostrar constructivamente que un límite inverso de un sistema
inverso siempre existe, además de ser único salvo homeomorfismo. Estos límites inversos heredan
una topología, y se discutirá qué invariantes topológicos heredan de los sistemas inversos. Además, se
definirán los espacios profinitos como un caso particular de límite inverso de espacios finitos y discretos,
y se caracterizarán tras varios resultados auxiliares en función de únicamente sus propiedades topológi-
cas: serán espacios compactos, Hausdorff y totalmente inconexos.

En el capítulo 2, estudiaremos un caso particular de espacios profinitos: los grupos profinitos. Los
sistemas inversos serán en este caso de grupos topológicos, y gracias a la previa exposición del primer
capítulo, habrá una clara diferenciación entre las propiedades que aparecen como consecuencia de la
estructura de espacio topológico y las nuevas caracterizaciones que se deben a la compatibilidad de la
estructura algebráica de grupo con la topológica que se da en un grupo topológico.
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iv Resumen

Finalmente, se presentará un ejemplo concreto de grupos profinitos para el caso de los Grupos de Ga-
lois sobre extensiones de cuerpos que pueden ser infinitas. Primero se repasarán conceptos previos de
extensiones de cuerpos y propiedades de las extensiones normales y concretamente de Galois, que son
sustento de los detalles de las demostraciones de los resultados que se mencionan; definiremos un sis-
tema inverso que nos permitirá aplicar resultados de la Teoría de Galois clásica sobre extensiones finitas
y, posteriormente, demostraremos que todo Grupo de Galois sobre una extensión de Galois es isomorfo
a un límite inverso de Grupos de Galois finitos y discretos, con lo que es un grupo profinito. El objetivo
y colofón del trabajo será probar el resultado recíproco: todo grupo profinito será isomorfo a un Grupo
de Galois sobre una extensión; tomará forma en la última sección del capítulo 3, con el teorema:

Teorema. Todo grupo profinito es isomorfo (como grupo topológico) a un Grupo de Galois sobre
una extensión de cuerpos.



Prologue

The theory presented in this thesis has different purposes, depending on the chapter where it is: chapters
1 and 2 include most of the theoretical and auxiliary results that are necessary to understand the last
chapter. There will be also reminders in chapter 3 of the main properties of the Galois groups of finite
Galois extensions that are going to be useful for following everything in depth.

During the thesis there will be mentions to standard topological results that can be found on General
Topology manuals. In our case, [8] has been the source used.
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Chapter 1

Inverse Limits and Profinite Spaces

The results and concepts which are being stated in this chapter will be the knowledge basis of the further
development of the thesis. The results from this part have been adapted and taken from [1].

1.1 Inverse Limits. Inverse Systems.

Definition. A set I endowed with a binary relation � is called a directed partially ordered set or briefly
directed poset if it satisfies

(i) i� i for all i ∈ I;

(ii) i� j and j � k imply i� k for i, j,k ∈ I;

(iii) i� j and j � i imply i = j for i, j ∈ I;

(iv) if i, j ∈ I there exists some k ∈ I such that i, j � k.

Definition. An inverse or projective system of topological spaces over a directed poset I consists of a
family {Xi : i ∈ I} of topological spaces indexed by I and a collection of continuous maps ϕi j : Xi→ X j

defined whenever i� j such that the diagrams of the form, for each i, j,k ∈ I fulfilling i� j � k

Xi Xk

X j

ϕi j

ϕik

ϕ jk

commute, that is, ϕ jk ◦ϕi j = ϕik, assuming that ϕii = IdXi . From now on, we will denote such systems
by {Xi,ϕi j, I} or simply {Xi,ϕi j} if the poset I is clear.

Remark. One can define similarly the concept of inverse or projective system for topological groups, as
long as the sets Xi on the definition are required to be topological groups, and the maps ϕi j, continuous
group homomorphisms. In any case, we may denote {X , Id} the trivial inverse system, consisting of
Xi = X for all i ∈ I and ϕi j = IdX .

Definition. Let Y be a topological space, {Xi,ϕi j, I} an inverse system of topological spaces over a
directed poset I, and let ψi : Y → Xi be a continuous map for each i ∈ I. The family of maps {ψi}i∈I are
said to be compatible if, for i� j the following diagram commutes

Y Xi

X j

ψi

ψ j
ϕi j

that is, ϕi j ◦ψi = ψ j.
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2 Chapter 1. Inverse Limits and Profinite Spaces

Definition. Let X be a topological space together with a collection of compatible continuous maps
{ϕi}i∈I respect to an inverse system {Xi,ϕi j, I}. We say that (X ,ϕi) is an inverse limit or a projective
limit of the inverse system {Xi,ϕi j, I} if the following universal property is accomplished:

Y X

Xi

ψ

ψi
ϕi

Whenever Y is a topological space and ψi : Y → Xi, i ∈ I, is a set of compatible continuous maps, then
there is a unique continuous map ψ : Y → X such that the diagram above commutes, that is, ϕi ◦ψ = ψi

for all i ∈ I. The maps ϕi : X → Xi will be called projections.

Given this definition, our next purpose is to make it operational and find the inverse limit of an
inverse system, together with the compatible continuous maps, up to homeomorphism. This will be the
aim of the next proposition.

Proposition 1.1. Let {Xi,ϕi j, I} be an inverse system of topological spaces over a directed poset I.
Then,

(i) There exists an inverse limit of the inverse system {Xi,ϕi j, I};

(ii) This limit is unique in the following sense: If (X ,ϕi) and (Y,ψi) are two limits of the inverse
system {Xi,ϕi j, I}, then there is a unique homeomorphism ϕ : X → Y such that ψi ◦ϕ = ϕi for
each i ∈ I.

Proof. (i) Let X be the subspace of ∏
i∈I

Xi given by

X =

{
(xi) ∈∏

i∈I
Xi | ϕi j(xi) = x j, i� j

}

endowed with the subspace topology of the product topology defined in ∏
i∈I

Xi . Moreover, consider

ϕi : X → Xi the restriction of the canonical projection πi : ∏
i∈I

Xi→ Xi; the maps ϕi are continuos since

they are defined in terms of the restriction of the projections πi, which are continuous since the topol-
ogy in ∏

i∈I
Xi is the weak topology induced by the family {πi}i∈I . They are also compatible respect to

{Xi,ϕi j, I}, given that ϕi jϕi((xi)) = ϕi j(xi) = x j = ϕ j((xi)) for i � j. X fulfills the inverse limits uni-
versal property given above: For each topological space Y and ψi : Y → Xi a collection of compatible
continuous maps indexed over I,

Y X

Xi

ψ

ψi
ϕi

we can define ψ(y) = (ψi(y)) for each y ∈ Y . ψ is continuous since all its components are continuous,
ϕiψ(y) = ϕi((ψi(y)) = ψi(y) for all i ∈ I and this map is besides the unique one satisfying these condi-
tions: since ϕi are restrictions of canonical projections, every map g such that ϕi ◦ g = ψi must satisfy
that g(y) = ((ψi(y)).
(ii) Assume that (X ,ϕi) and (Y,ψi) are both inverse limits of the inverse system {Xi,ϕi j, I},

X Y

Xi

ϕi

ϕ

ψ

ψi
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By hypothesis, since (X ,ϕi) is an inverse limit and the maps ψi are compatible respect to the inverse
system, the universal property of (X ,ϕi) shows that there exists a unique continuous map ψ : Y → X
such that ϕi ◦ψ = ψi for all i ∈ I. Similarly, applying the universal property of (Y,ψi), since the maps
ϕi : X → Xi are compatible, there exists ϕ : X → Y such that ψi ◦ϕ = ϕi. Then, by composition

X X

Xi

ϕi

ψ◦ϕ

IdX
ϕi

This diagram commutes by construction, ϕi ◦ψ ◦ϕ = ψi ◦ϕ = ϕi. According to the universal property
in 1.1 concerning the definition of the inverse limit (X ,ϕi), they both have to coincide, ψ ◦ϕ = IdX .
Analogously ϕ ◦ψ = IdY , and ϕ is a bijection. Since its inverse is ψ , which is also continuous, ϕ is a
homeomorphism with the same properties as the statement of the proposition.

Remark. Let {Xi,ϕi j, I} an inverse system, by 1.1, there always exists an inverse limit of the inverse
system, considered with the canonical projections ϕi from the proof of 1.1. The inverse limit will be
denoted by lim←−i∈I

Xi or simply lim←− Xi, if the poset I is clear.

1.1.1 Topological Properties of Inverse Limits

Proposition 1.2. Let {Xi,ϕi j, I} be an inverse system of topological spaces over a directed poset I.

(i) If each Xi is Hausdorff, so is lim←− Xi;

(ii) If each Xi is totally disconnected, so is lim←− Xi.

Proof. From now on, and without further notice, we will consider without loss of generality the inverse
limit found on 1.1. All the inverse limits are homeomorphic by 1.1, so it suffices to study the topological
properties on a concrete inverse limit, as they are invariant under homeomorphism.

(i) If all the spaces Xi are Hausdorff, then the product set (with the product topology) ∏
i∈I

Xi is Hausdorff,

and since lim←−Xi is a subspace of the product, it is also Hausdorff since this property is hereditary on
products and subspaces.
(ii) The product of totally disconnected spaces is analogously totally disconnected, and this property is
hereditary on subspaces. Thus, lim←−Xi is totally disconnected.

Lemma 1.3. If {Xi,ϕi j, I} is an inverse system of Hausdorff topological spaces, then lim←−i∈I
Xi is a closed

subspace of ∏
i∈I

Xi.

Proof. Equivalently, we have to prove that ∏i∈I Xi− lim←−Xi is open. Let (xi) ∈ ∏i∈I Xi− lim←−Xi, there
exists r � s such that ϕrs(xr) 6= xs. Since all the spaces Xi are Hausdorff, there are two open disjoint
neighbourhoods U and V of ϕrs(xr) and xs respectively. Moreover, since the map ϕrs is continuous,
and ϕrs(xr) ∈ U , by continuity there is an open neighbourhood U ′ of xr such that ϕrs(U ′) ⊆ U , so
considering the basic open subset W = ∏i∈I Vi where Vr = U ′, Vs = V and Vi = Xi, for i 6= r,s, (xi) ∈
W ⊆∏i∈I Xi− lim←−Xi and lim←−Xi is closed.

Proposition 1.4. Let {Xi,ϕi j, I} be an inverse system of compact Hausdorff topological spaces over the
directed poset I. Then, lim←−

i∈I
Xi is a compact Hausdorff topological space.

Proof. By Tychonoff Theorem, ∏i∈I Xi is compact since all the spaces Xi are compact. The product of
Hausdorff spaces is also Hausdorff, and then ∏i∈I Xi is Hausdorff. As lim←−i∈I

Xi is a subspace of ∏i∈I Xi,
it is Hausdorff, and by 1.3, it is closed and subspace of a compact space, so compact, and lim←−i∈I

Xi is
compact Hausdorff as the claim states.
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Proposition 1.5. Let {Xi,ϕi j, I} be an inverse system of compact Hausdorff nonempty topological
spaces Xi over the directed set I. Then, lim←−Xi is nonempty.

Proof. For each j ∈ I let

Yj =

{
(xi) ∈∏

i∈I
Xi | ϕ jk(x j) = xk, k � j

}
All the spaces Xi are nonempty by hypothesis, by the Axiom of Choice ∏i∈I Xi 6= /0 and there is an

element (xi) ∈ ∏i∈I Xi. There is a sequence (yi) where yr =

{
ϕ jr(x j) if r � j
xr if r � j

For every k � j,

since j � j and ϕ j j = IdX j , ϕ jk(y j) = ϕ jk(ϕ j j(x j)) = ϕ jk(x j) = yk so (yi) ∈ Yj. In particular, Yj 6= /0.
With an analogous argument as in 1.3, Yj is closed for each j ∈ I and if j � j′ by definition Yj′ ⊆Yj and
therefore given that I is a poset, the family of sets {Yj | j ∈ I} has the finite intersection property, i.e.,
any finite collection of sets belonging to this family has nonempty intersection; since all the sets Yj are
closed and subspaces of ∏i∈I Xi, which is compact due to Tychonoff Theorem, the intersection

⋂
j∈I

Yj has

to be nonempty. Also,
lim←−Xi =

⋂
j∈I

Yj 6= /0

so lim←−i∈I
Xi is nonempty.

Proposition 1.6. Let (X ,ϕi) be an inverse limit of an inverse system {Xi,ϕi j, I} of non-empty compact
Hausdorff spaces indexed by I. The following assertions hold:

(i) ϕi(X) =
⋂
j�i

ϕ ji(X j);

(ii) The family F = {ϕ−1
i (U) | i ∈ I,U open in Xi} forms a base of neighborhoods for the topology

on X;

(iii) If Y is a subset of X satisfying ϕi(Y ) = Xi for each i ∈ I, then Y is dense in X;

(iv) A map θ : Y → X is continuous if and only if each map ϕi ◦θ is continuous;

(v) If f : X → A is a continuous map from X to a discrete space, then f factors through Xi for some i:
for some i ∈ I there is a continuous map g : Xi→ A such that f = g◦ϕi.

Proof. (i): Consider j � i; by the compatibility of the maps {ϕi}i∈I respect to the inverse system
{Xi,ϕi j, I}, ϕ ji ◦ ϕ j = ϕi, ϕi(X) = ϕ ji ◦ ϕ j(X) ⊆ ϕ ji(X j) for all j � i, therefore ϕi(X) ⊆

⋂
j�i

ϕ ji(X j).

Now, let i ∈ I be fixed and a ∈
⋂
j�i

ϕ ji(X j); for j � i we define

Yj =
{

y ∈ X j | ϕ ji(y) = a
}

By hypothesis all the spaces Xi are Hausdorff, so {a} is closed. ϕ ji continuous, Yj = ϕ
−1
ji (a) is closed

for all j � i and subspaces of compact spaces, so compact. For all j � i, Yj 6= /0 and for each k that
i � j � k and yk ∈ Yk, by definition a = ϕki(yk) = ϕ ji ◦ϕk j(yk) and ϕk j(yk) ∈ Yj, so we can define an
inverse system {Yj,ψk j, j � i} where the maps ψk j are the restrictions of ϕk j for k � j � i to the spaces
Yl both in the start space and the target space. By 1.5, lim←− j�i

Yj 6= /0 and there exists (b j) j�i ∈ lim←− j�i
Yj;

For every k � j � i, ϕk j(bk) = b j and ϕ ji(b j) = bi = a. The next step which shall be followed is to
extend the sequence (b j) j�i; in order to do that, if l ∈ I and l � i, for j � i, l one defines bl = ϕ jl(b j);
this choice is independent of j: For any other choice of j′ � i, l and k � j, j′

ϕ jl(b j) = ϕ jl ◦ϕk j(bk) = ϕkl(bk) = ϕ j′l ◦ϕk j′(bk) = ϕ j′l(b j′)
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Thus, (bi)i∈I belongs to lim←−I
Yi ⊆ X and ϕi(b) = bi = a since its a restriction of the canonical projection.

(ii):X is endowed with the subspace topology of the product, all the open sets in X have the form
P = X ∩∏

i∈I
Ui where Ui = Xi for all i ∈ I\{i1, . . . im}, and Uir open in Xir for all r = 1, . . . ,m. Therefore,

F will be a basis of the topology in X if for every a∈ P there is U open in Xk such that a∈ ϕ
−1
k (U)⊆ P.

Let a = (ai) ∈ P and k ∈ I so that k � i1, . . . im. The sets ϕ
−1
kir (Uir) are open since ϕkir is continuous,

ak ∈ ϕ
−1
kir (Uir) since ϕkir(ak) = air ∈Uir ; Let U =

m⋂
r=1

ϕ
−1
kir (Uir), by finite intersection of open sets, U is

open and it is a neighbourhood of a because ϕk(a) = ak ∈ ϕ
−1
kir (Uir) and for every b = (bi) ∈ ϕ

−1
k (U),

ϕk(b) = bk ∈U and bir = ϕkir(bk) ∈Uir , so a ∈ ϕ
−1
k (U)⊆ P as we wanted to see.

(iii): For every nonempty open set in Xi, namely U , U = Xi ∩U = ϕi(Y )∩U 6= /0, so ϕi(Y )∩U 6= /0
which implies Y ∩ϕ

−1
i (U) 6= /0. Since F is a basis by (ii), Y is dense in X .

(iv) from (ii): If θ is continuous, by composition so is ϕi ◦ θ . On the opposite direction, since F is
a basis for the topology in X , it suffices to show that θ−1(ϕ−1

i (U)) is open for every open set U , but
θ−1(ϕ−1

i (U)) = (ϕi ◦θ)−1(U) and ϕi ◦θ is continuous.

(v): Let A0 = f (X). A0 is compact because f is continuous and X is compact. Also, A0 is discrete
since it is a subspace of A. Thus, A0 is finite.1 Let a ∈ A0, define Ya = f−1(a); since A is discrete,
{a} is open and by continuity Ya is open. Because of the same reason, {a} is closed in A and by
the continuity of f , Ya is closed. By 1.4 X is compact, Ya is a closed subset of X and hence Ya is
compact so it can be expressed as a finite union of basis elements from F in (ii). Owing to the fact
that A0 is finite and F from (ii) is a basis, each Ya is open so it is a union of elements in F , and
by compactness there is a finite family ϕ

−1
j1 (U1), . . . ,ϕ

−1
jn (Un) such that each Ya is a union of some of

those open sets. Then, for k ∈ I satisfying j1, . . . , jn � k the compatibility of the maps ϕl yields to
ϕk jr ◦ϕk = ϕ jr , ϕ

−1
jr (Ur) = ϕ

−1
k (ϕ−1

k jr (Ur)) and for each a ∈ A0, Ya = ϕ
−1
k (Va) where Va is an open set

of Xk. Let D = Xk\ ∪a∈A0 Va, notice f−1(A0) = X = ϕ
−1
k (∪a∈A0Va) and D∩ϕk(X) = /0, so from (i)

D∩
⋂
j�k

ϕ jk(X j) = /0; each set ϕlk(Xl) is closed since they are compact subspaces of a Hausdorff space,

D is closed and a subspace of a compact set, so it is compact and the family {D∩ϕ jk(X j)} j�k can not
have the finite intersection property since it has empty intersection; there must be l1, . . . , ls indices such
that D∩ϕl1k(Xl1)∩·· ·∩ϕlsk(Xls) = /0. Picking i� l1, . . . ls, for k� l � i by commutativity of the inverse
system diagrams in 1.1, ϕik(Xi) = ϕlk(ϕil(Xi))⊆ ϕlk(Xl) and

ϕik(Xi)⊆ ϕl1k(Xl1)∩·· ·∩ϕlsk(Xls)⇒ D∩ϕik(Xi) = /0⇔ ϕik(Xi)⊆
⋃

a∈A0

Va (1.1)

Finally, let Wa = ϕ
−1
ik (Va) for each a ∈ A0, Wa is open, Wa1 ∩Wa2 = /0 if a1 6= a2: We constructed the

sets Va so that they are union of the sets ϕ
−1
k jr (Ur); since ϕ

−1
jr (Ur) 6= /0, ϕ

−1
k jr (Ur) ⊆ ϕk(X) and each Va

is contained in ϕk(X). Then, for every x ∈Wa1 ∩Wa2 , ϕik(x) ∈ Va1 ∩Va2 , but we assumed that a1 6= a2,
/0 = Ya1 ∩Ya2 = ϕ

−1
k (Va1 ∩Va2) so Va1 ∩Va2 ⊆ Xk\ϕk(X), Va1 ∩Va2 = /0 and Wa1 ∩Wa2 = /0. By (1.1) for

every x ∈ Xi there is an a ∈ A0 such that ϕik(x) ∈ Va, so x ∈ ϕ
−1
ik (Va) =Wa, Xi = ∪a∈A0Wa and the map

g : Xi→ A mapping Wa to a ∈ A is continuous as A is discrete and the sets Wa are open, and f = g◦ϕi

by construction.

1A space X is limit point compact or weakly countably compact if every infinite subset of X has at least one accumulation
point, i.e., for all B⊆ X s.t. |B| ≥ℵ0, B′ 6= /0. Every compact set is limit point compact, so A0 is limit point compact, but this
set is also discrete, so it must not have any infinite subset, so to speak, it is finite.
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Lemma 1.7. Let {Xi,ϕi j, I} be an inverse system of compact Hausdorff spaces and X a compact Haus-
dorff space. Suppose that {ϕi}i∈I is a set of compatible continuous and surjective maps. Thus, the
corresponding induced map θ : X −→ lim←−Xi given by x 7→ (ϕi(x)) is surjective.

Proof. Considering the constant inverse system {X , Id, I}, the maps {ϕi}i∈I from X to Xi are compatible
on {Xi,ϕi j, I} , for every i � j, ϕi j ◦ϕi = ϕ j. Let (xi) ∈ lim←− Xi, and X̃i = ϕ

−1
i (xi) 6= /0 by surjectivity.

Xi is Hausdorff for all i ∈ I, then {xi} is closed in Xi, and by continuity, X̃i is a closed subset of X
compact, so X̃i is compact for all i ∈ I. For each x ∈ X̃i, ϕi(x) = xi and if i � j, ϕ j(x) = ϕi j(xi) = x j,
we have that x ∈ X̃ j and X̃i ⊆ X̃ j. Every finite intersection of the sets X̃i is non-empty: for every family
i1, . . . , ir ∈ I there exists j � i1, . . . , ir and X̃ j ⊆ X̃i1 ∩ ·· · ∩ X̃ir . X is compact, so applying the finite
intersection property ⋂

i∈I

X̃i 6= /0

and x ∈
⋂

i∈I X̃i satisfies θ(x) = (xi).

1.2 Profinite Spaces

After all these propositions, the next step is to characterize a certain class of topological spaces which
will give the reader the chance to understand why all the last results have been shown. This is neverthe-
less the last section in which some properties of topological spaces will be discussed. Again, the main
source for this section has been [1].

Definition. A topological space X which arises as the inverse limit

X = lim←−
i∈I

Xi

of finite spaces Xi endowed with the discrete topology is called Profinite Space or Boolean Space.

Lemma 1.8. Let X be a compact Hausdorff topological space, and let x ∈ X. Then, the connected
component C of x is the intersection of all closed and open neighbourhoods of x.

Proof. Let {Ut | t ∈ T} be the family of all open and closed neighbourhoods of x, and

A =
⋂
t∈T

Ut

Every closed and open neighbourhood U of x contains C: indeed, C =C∩X =C∩(U∪Uc) = (C∩U)∪
(C∩Uc). U is closed and open, so as C is connected it has to be either C∩U = /0 or C∩Uc = /0. Recall
that C∩U 6= /0 as x∈C∩U ; it has to be C∩Uc = /0 and C⊆U , for every closed and open neighbourhood
of x, hence C ⊆ A. It remains to show that A⊆C, but by the maximality of C, it suffices to see that A is
connected. Let U,V be two closed sets in A (and in X , as A is closed) such that A =U ∪V,U ∩V = /0,
we are going to prove that either U or V are empty. Moreover, U,V are closed subspaces of X , which
is compact, so U and V are compact and disjoint. X is Hausdorff by hypothesis, so there are two U ′,V ′

open sets such that U ⊆U ′,V ⊆V ′ and U ′∩V ′ = /0. Moreover,

[X\U ′∪V ′]∩A = /0⇒ X\U ′∪V ′ ⊆
⋃
t∈T

Uc
t

X\U ′∪V ′ is a closed subspace of X , which is compact, so X\U ′∪V ′ is compact and there is a finite set
F ⊆ T satisfying

X\U ′∪V ′ ⊆
⋃
t∈F

Uc
t ⇒ [X\U ′∪V ′]∩

⋂
t∈F

Ut = /0 (1.2)

where B =
⋂

t∈F Ut is an open and closed neighbourhood of x. On the other hand, by (1.2) B⊆U ′∪V ′

and B = B∩ (U ′ ∪V ′) = (B∩U ′)∪ (B∩V ′), x ∈ B. Without loss of generality, if x ∈ B∩U ′, B∩
U ′ is open and closed and a neighbourhood of x, so by definition A ⊆ B∩U ′ ⊆ U ′ and it has to be
V =V ∩A⊆V ′∩A = /0.
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Definition. An equivalence relation R on a topological space X is said to be open (or respectively,
closed ) if for every x ∈ X , the equivalence class xR is an open set in X .

Remark. Take into account the following properties regarding the definition above:

(a) If R is open, then it is also closed, since X is the union of disjoint open sets (the equivalence
classes) and each class xR is the complementary of a union of open sets.

(b) R can be considered as the subset of X ×X given by R = {(x,y) ∈ X ×X | x ∼ y}. In such case,
the concepts of being open as an equivalence relation or being open as a subspace of X ×X are
equivalent: If R is open, then if (x,y) ∈ R, x∼ y and xR×yR is an open set (by product) contained
in R, so R is an open subset of X ×X . Conversely, if R⊆ X ×X is open, (x,x) ∈ R by reflexivity
and there exists a neighbourhood U such that (x,x) ∈U×U ⊆ R and x ∈U ⊆ xR.

This concept of open equivalence relations will be necessary here to prove the following character-
ization of profinite spaces.

Proposition 1.9. Let X be a topological space. Then, the following assertions are equivalent:

(i) X is a profinite space;

(ii) X is compact Hausdorff and totally disconnected;

(iii) X is compact Hausdorff and admits a basis of closed and open sets for its topology.

Proof. (i)⇒ (ii) : Let X be a profinite space, say X = lim←−I
Xi where the spaces Xi are finite and discrete,

by 1.2 since each Xi is Hausdorff and totally disconnected, so is X ; Every Xi is compact since they are
finite and discrete, by 1.4, X is also compact, and the result follows.

(ii)⇒ (iii): Let X be a compact Hausdorff and totally disconnected space. Let W be an open neighbor-
hood of a point x ∈ X . It suffices to show that there is a closed and open neighborhood U of x such that
x ∈U ⊆W . Let {Ut | t ∈ T} be the family of all closed and open neighborhoods of x. The connected
component of x is {x} as X is totally disconnected, by 1.8

{x}=
⋂
t∈T

Ut

W is open, X\W is closed and subset of X . X\W is therefore compact and disjoint from
⋂

t∈T Ut and by
the same argument as in the proof of 1.8 there is F ⊆ T finite such that

(X\W )∩

(⋂
t∈F

Ut

)
= /0 (1.3)

and x ∈
⋂

t∈F Ut ⊆W .

(iii)⇒ (i) : Let X compact Hausdorff such that it admits a basis of closed and open sets for its topology.
Denote by R the collection of all open equivalence relations R on X , and let ψR : X→ X/R be the family
of projections into the quotient space X/R for each R ∈R; for such R ∈R, X =

⊔
x∈X xR; since each

equivalence class xR is open, and by compactness, there are x1R, . . . ,xnR equivalence classes such that
X =

⊔n
i=1 xiR and every equivalence class of X/R equals some of the xiR, so X/R= {x1R, . . . ,xnR}. X/R

is finite and discrete since its topology is the collection of sets {U ⊆ X/R | ψ−1
R (U) is open in X}, as

every union of open sets and in particular of open equivalence classes is open. What’s more, the set R is
ordered as follows: if R,R′ ∈R, then R� R′⇔ xR⊆ xR′ for all x ∈ X , and R is a partially ordered set;
it is also directed, for every R1,R2 ∈R, defining R1∩R2 the equivalence relation with classes xR1∩xR2,
R1∩R2 � R1,R2. Now, if R � R′, let ψRR′ : X/R→ X/R′ given by ψRR′(xR) = xR′. {X/R,ψRR′ ,R} is
an inverse system over R and it remains to see that X ∼= lim←−R∈R X/R. For that purporse, remember

ψR : X −→ X/R
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is a surjection (since its the projection of X into the quotient) and continuous (by the topology defined
on X/R) for all R ∈R, so the induced map

ψ : X −→ lim←−
R∈R

X/R

x 7→ (ψR(x))R∈R

is continuous (given that so are its components) and surjective by 1.7. In order to prove then that ψ is a
homeomorphism, providing that X is compact, it is only left to see that ψ is injective: let x,y ∈ X , x 6= y.
By hypothesis, since X is Hausdorff and it admits a basis of closed and open neighborhoods, there is
an open and closed set U such that x ∈U , y /∈U and U,X\U are both open. Let R ∈R (and R is not
empty) be the relation defined in X by

x∼ y⇔ x,y ∈U

It is obviously reflexive, symmetric and transitive, so R becomes an equivalence relation which is also
open by definition. Take into account that X/R has two elements, these are U,X\U and ψR(x) 6= ψR(y)
so ψ(x) 6= ψ(y) they can not be equal.

1.2.1 Further Comments

The main purpose of this chapter has been studying some properties of the inverse systems and inverse
limits that are going to be necessary for the following development of the thesis. However, and not
less important, in the upcoming sections the reader will acknowledge that we are going to focus on
a particular case of these inverse systems, not over the category of topological spaces, but over the
one of topological groups. Since these topological groups own a topological structure compatible with
the algebraic one, the object of this chapter was not other than discerning which properties come only
from the topological structure; In any case, we could have defined the inverse systems and limits over
the category of topological groups, always assuming that the morphisms are, in such case, continuous
homomorphisms, and the operations on the product sets ∏

i∈I
Gi are carried out componentwise.



Chapter 2

Profinite Groups

Along the previous chapter it has been shown how certain topological spaces which come up as inverse
limits of discrete and finite topological spaces may be characterized in terms of its topological properties.
Beginning with an inverse system {Xi,ϕi j, I}, one builds the inverse limit in terms of the continuous
maps ϕi j and the restrictions of the canonical projections. Here, we will discuss the properties that
appear when we restrict our inverse systems to be formed by topological groups. The main source has
been [1].

2.1 Topological Groups. Definitions and Properties.

Definition. A topological group G is a set with two structures:

(i) (G, ·) is a group with the product · : G×G→ G;

(ii) (G,τ) is a topological space.

which have a compatibility within the two of them, understanding it as the maps

η : G×G→ G

(g,h) 7→ g ·h
ν : G→ G

g 7→ g−1

are both continuous. From now on, we will denote UV = η(U ×V ) = {u · v | u ∈ U,v ∈ V} and
U−1 = ν(U) = {u−1 | u ∈U} for U,V ⊆ G.

Remark. As a result of the compatibility, we can deduce consequences regarding the topological struc-
ture of G:

(i) Let a ∈ G fixed, the translations

La : G→ G

g 7→ ag

and Ra : G→ G

g 7→ ga

are both continuous since they are both restrictions of η and also bijective. Since L−1
a = La−1 ,

R−1
a = Ra−1 , they are homeomorphisms and every local basis B(x) for x ∈ G is fully determined

by the local basis of neighborhoods in 1G, B(1G).

(ii) G is Hausdorff if and only if {1G} is closed (and therefore, all the sets {a} = La(1), a ∈ G
are closed): The implication ⇒) is clear, G is Hausdorff and therefore a T1−space, so {1} is
closed. For a,b ∈ G such that a 6= b, G\{a−1b} is an open neighbourhood of 1, 1 = η(1,1−1) =
η(1,ν(1)) and by the continuity of η and ν there are two open neighbourhoods U,V of 1 such
that UV−1 ⊆ G\{a−1b}. aU = La(U), bV = Lb(V ) are open neighbourhoods of a,b respec-
tively and they are disjoint: if c ∈ aU ∩ bV , c = au,u ∈ U and c = bv,v ∈ V so au = bv and
a−1b = uv−1 ∈UV−1, contradiction.

9
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(iii) If H ≤G, then H is a topological group with the subspace topology of G, and η ,ν are continuous
by restriction. If K EG, the space G/K is a topological group with the quotient topology, that is,
the weak topology induced by the projection π : G→G/K; i.e., τG/K = {U ⊆ G/K | π−1(U) ∈ τG}.
Moeover, π is open: for every open set U in G, π−1π(U) = UK. Given that for every k ∈ K,
Uk = Rk(U) is open as so is U , UK =

⋃
k∈K Uk is open by union of open sets.

(iv) For a normal subgroup K EG, G/K is Hausdorff if and only if K is closed in G: If G/K is
Hausdorff, for x ∈ G\K, it follows that xK 6= K and there are two open sets U,V in G/K such
that xK ∈ U,K ∈ V . Thus, π−1(U) is an open neighbourhood of x and x ∈ π−1(U) ⊆ G\K.
Conversely, for two coclasses xK 6= yK, equivalently xy−1 /∈ K and as η and ν are both continuous
and xy−1 = η(x,ν(y)), there are two neighbourhoods V of x and W of y such that xy−1 ∈VW−1 ⊆
G\K and π(V ),π(W ) are two disjoint open sets that separate xK and yK: bear in mind that if there
exist v ∈V and w ∈W that vK = wK, vw−1 ∈ K which is a contradiction with VW−1 ⊆ G\K.

2.2 Profinite Groups

Definition. A topological group G is profinite if it is the inverse limit of an inverse system formed by
finite groups Gi endowed with the discrete topology. More precisely, there exists an inverse system
{Gi,ϕi j, I} of finite and discrete topological groups such that

G = lim←−
i∈I

Gi

Example. Let G be a group and let N be the family

N = {N EG | G/N is finite and discrete}

N is nonempty since G ∈N , and N is a directed poset by defining the order M � N if and only if
N ≤ M, i.e., N is subgroup of M. If M,N ∈N and N � M let the epimorphism ϕNM : G/N → G/M
which maps xN 7→ xM and is well defined because N ≤M. {G/N,ϕNM,N ∈N } is an inverse system
and the profinite group Ĝ := lim←−N∈N G/N is called the profinite completion of G.

For example, consider G = (Z,+). G is abelian, every subgroup H ≤ G is normal, and H = nZ where
n ∈ H is the integer in H with the lowest modulus |n|. Each group Z/nZ is finite and endowed with the
discrete topology. The profinite completion of G is Ẑ= lim←−n∈NZ/nZ and, as a set, it is formally the set
of sequences a = (a1,a2, . . .) such that an ≡ am(mod m) when m|n.

Lemma 2.1. Let G = lim←−i∈I
Gi where {Gi,ϕi j, I} is an inverse system of finite and discrete groups Gi

and let ϕi : G→Gi, i∈ I, be the restriction of the canonical projections as in 1.1. Then, {Si | Si = kerϕi}
is a fundamental system of open neighborhoods of the identity element 1 in G.

Proof. Let V be an open neighborhood of 1 in G. G inherits the topology as a subspace of ∏i∈I Gi, and
V =W ∩G⊆ G⊆∏i∈I Gi for some W open set in ∏i∈I Xi. Given that each Gi is discrete, {1Gi} is open
for every Gi, 1G = (1Gi)i∈I and there is a finite number of indices in I, namely i1, . . . , it that

1 ∈

(
∏

i 6=i1,...,it

Gi

)
×{1}i1×·· ·×{1}it ⊆W ⊆∏

i∈I
Gi

Let i0 such that i0 � i1, . . . it . We have that

G∩

[(
∏
i 6=i0

Gi

)
×{1}i0

]
︸ ︷︷ ︸

N

= G∩

[(
∏

i 6=i1,...,it

Gi

)
×{1}i1×·· ·×{1}it

]
︸ ︷︷ ︸

M



Profinite Galois Groups - Salvador Rodriguez Sanz 11

Since i0 � i1, . . . , it , if g = (gi) ∈ N, gi j = ϕi0i j(1i0) = 1i j , N ⊆M. Looking into the reverse containment,
x ∈M implies that xi0 = ϕi0(x) ∈ kerϕi0i1 ∩·· ·∩kerϕi0it and by the compatibility of the maps {ϕi}i∈I as
stated in 1.1, ϕi0it ◦ϕi0 = ϕit and 1 = ϕit (x) = xit . Finally, it is clear that

1G ∈ N = Si0 = G∩

[(
∏
i 6=i0

Gi

)
×{1}i0

]
⊆V

Hence, for every neighborhood V of 1G in G there exists some i ∈ I such that Si ⊆V and {kerϕi}i∈I is
a fundamental system of neighborhoods for 1 ∈ G, or in other words, a local basis.

Lemma 2.2. In a compact topological group G, a subgroup H is open if and only if H is closed of finite
index.

Proof. Without loss of generality, we will assume that the index is over left cosets, even though the
number of left cosets or right cosets of H in G is the same.
H is open, G =

⊔
x∈G xH. For every x ∈ G the co-classes are open as so is H and xH = Lx(H). The set

{xH}x∈G is an open covering of G, there is a finite number of open coclasses x1H, . . . ,xnH such that
G =

⊔n
i=1 xiH and |G : H| = |{x1H, . . . ,xnH}| is finite, so H has finite index. Every xiH is also closed:

xiH ∩ x jH = /0 for every i 6= j and G\xiH =
⊔

j 6=i,1≤ j≤n xiH is a finite union of open sets, so it is open.
Every xiH is closed, and H = Lx−1

i
(xiH) is closed. Similarly, if H is closed and has finite index, there

are finitely many left coclasses of H in G, and G =
⊔n

i=1 xiH. H is closed, so is xiH, and they are all
disjoint. By a similar argument than before, xiH is open since G\xiH is a union of closed sets, so it is
closed, and H is open.

Theorem 2.3. The following assertions on a topological group G are equivalent:

(i) G is a profinite group;

(ii) G is a compact Hausdorff totally disconnected space, and for each open normal subgroup U of
G, G/U is discrete and finite.

(iii) G is compact and the identity element 1 ∈ G admits a fundamental system U of open neighbor-
hoods U such that

⋂
U∈U U = 1, and each U is an open normal subgroup of G with G/U finite

and discrete.

(iv) The identity element 1 of G admits a fundamental system U of open neighborhoods U such that
each U is a normal subgroup of G with G/U finite and discrete and

G = lim←−
U∈U

G/U.

Proof. (i)⇒ (ii): Let G be profinite, say
G = lim←−

i∈I
Gi

where Gi are finite and discrete groups. As a topological space, G is a profinite space and G is compact,
Hausdorff and totally disconnected by 1.9. Let U E G be open, since 1 ∈U , by 2.1, the set {Si} is a
fundamental system of open neighborhoods of the identity element 1∈G and there exists i∈ I such that
1 ∈ Si ≤U . In addition, Si = Ker ϕi and it is the kernel of a homomorphism, so it is a normal subgroup
of G, Si E G. By the isomorphism theorem, G/Si ∼= Im ϕi ≤Gi; Si is open, so by 2.2, Si is closed and has
finite index. It follows that the isomorphism between finite groups G/Si ∼= Im ϕi is a homeomorphism:
G is compact and G/Si = π(G) is compact as it is the image of the continuous map π : G→ G/Si, the
isomorphism is continuous as Ker ϕi is open. Then, G/Si is discrete. Applying the third isomorphism
theorem, G/U ∼= (G/Si)/(U/Si), finite and discrete by isomorphism.
(ii)⇒ (iii) : Since G is compact Hausdorff and totally disconnected, it admits a basis of closed and
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open sets for its topology by 1.9, (iii). Let V the family of closed and open neighborhoods of 1. The
intersection

⋂
V∈V V equals the connected component of 1 in G by 1.8, which is {1}, so⋂

V∈V
V = 1

It suffices to show that V ∈ V contains an open normal subgroup U of G, and G/U will be finite and
discrete by hypothesis. Let F = (G\V )∩V 2. Since V is closed and G is compact, V is compact, and by
continuity, so is V 2; hence, since G is compact and Hausdorff, V 2 is closed and F is closed. Let x ∈V ;
then, x ∈ G\F and since G\F is open, and η is continuous, there are Vx, Sx neighborhoods of x and 1
respectively such that Vx,Sx ⊆V and VxSx ⊆ G\F . Additionally, V ⊆

⋃
x∈V Vx and by compactness V ⊆⋃n

i=1Vxi . Denote S =
⋂n

i=1 Sxi , W = S∩S−1. W is symmetric, i.e., W−1 =W , and an open neighborhood
of 1 (by intersection, as ν , the inversion, is a homeomorphism since its inverse is itself and it maps
open sets to open sets); W ⊆V and VW ⊆ G\F , or equivalently VW ∩F = /0. Additionally, VW ⊆V 2,
VW ⊆V so by induction over n ∈ N, VW n ⊆V . Furthermore,

R :=
⋃

n∈N
W n

is open by union of open sets and a subgroup of G. Therefore, R is closed and of finite index, and the
core of R

RG =
⋂
x∈G

x−1Rx

is closed and a normal subgroup of G, so it has finite index, and RG is open. RG is the open normal
subgroup and neighborhood of 1 we were looking for:

RG ≤ R⊆V R⊆
⋃

n∈N
VW n ⊆V

(iii)⇒ (iv) : by hypothesis, G admits a fundamental system of open neighborhoods U of 1 such that⋂
U∈U U = 1 and each U ∈ U is an open normal subgroup of G where G/U is finite and discrete.

Similarly as in previous results, U can be easily defined as a directed poset by defining U �V ⇔U ≤V
for U,V ∈U . Considering the inverse system {G/U,ϕUV ,U } where ϕUV : G/U →G/V is the natural
epimorphism for U � V , and the maps ϕU are the canonical projections into the quotient G/U , they
induce a continuous homomorphism

ψ : G→ lim←−
U∈U

G/U

which maps x∈G 7→ (ϕU(x))U∈U . Since the projections are all surjective and {1} is closed by intersec-
tion of closed sets (as the sets U ∈U are open in G compact, and we apply 2.2), then G is Hausdorff,
and ψ is onto by 1.7. G is compact so it is enough to show that ψ is injective: if x ∈ G and ψ(x) = 1,
then x ∈ U for all U ∈ U , so x = 1. As ψ is a continuous bijection with starting space a group G
compact, ψ is a homeomorphism of topological groups and G∼= lim←−U∈U G/U .
(iv)⇒ (i) : By definition the implication holds.



Chapter 3

Infinite Galois Extensions. Krull
Theorem.

This final chapter will introduce an extension of the fundamental theorem of Galois Theory to infinite
Galois extensions. The answer will be given by Wolfgang Krull’s theorem of inclusion-reversing bijec-
tions. Before that, we will focus on some concepts and prepositions. Most of the results from the Krull
topology on the Galois groups have been taken from [2], [4] and [8]. For the results concerning field
extensions, the principal reference has been [3].

3.1 Field Extensions

We are beginning this part with some key words from Field Theory which will be of importance in the
following results.

Definitions. Let E and K be two fields:

(i) E is a field extension of K if K is a subfield of E. In this dissertation, field extensions are denoted
as E/K. In particular, we will call degree of the extension the dimension of E as a K-vector
space, denoted as [E : K] := dimK E. The extension will be finite if the degree is finite, or infinite
otherwise.

(ii) If X is a subset of E and E/K is a field extension, we will denote the subring K[X ]⊆ E as the set
of finite K-linear combinations of finite products of powers of elements in X . More concretely, if
a∈K[X ], there exist α1, . . . ,αr such that a= f (α1, . . . ,αr) for f ∈K[x1, . . . ,xr]. Also, K(X)⊆E is
the set of all elements ab−1 ∈ E where b 6= 0 and a,b ∈ K[X ]⊆ E; Therefore, K(X) is isomorphic
to the field of fractions of K[X ], and it is a subfield of E.

(iii) An element α ∈ E is algebraic over K if there exists a nonzero polynomial p ∈ K[x] such that
p(α) = 0. The extension E/K is algebraic if every element in E is algebraic over K. Oppositely,
α ∈ E is transcendental if there is no polynomial p ∈ K[x] which has α as a root, and E/K is
transcendental if there is some element in E that is transcendental.

(iv) If E/K is a field extension, then E is finitely generated if E =K(α1, . . . ,αn) for some α1, . . . ,αn ∈ E.
A finitely generated extension E/K will be simple if E = K(α) for some α ∈ E, which will be a
primitive element of E.

(v) K is algebraically closed if the only algebraic extension of K is K itself.

13
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Proposition 3.1. Let K ⊆ E ⊆ F. Then, [F : K] = [F : E][E : K]. In particular, if E/K and F/E are
finite, so is F/K.

Proof. The result follows by considering a particular basis {αi}i∈I of F as an E-vector space and
{β j} j∈J a basis of E as a K-vector space. Let α ∈ F , α = ∑i∈I riαi where ri ∈ E for all i ∈ I. Analo-
gously, ri = ∑ j∈J si jβ j for some si j ∈ K for every j ∈ J. Thus,

α = ∑
j∈J

∑
i∈I

si jβ jαi

The family F = {αiβ j}(i, j)∈I×J generates F over K because every element of F is a K-linear combi-
nation of elements in F . The elements in F are linearly independent over K: for {ti j}(i, j)∈I×J such
that

∑
(i, j)×I×J

ti jαiβ j = ∑
i∈I

∑
j∈J

ti jαiβ j = ∑
i∈I

(
∑
j∈J

ti jβ j

)
αi

As the family {αi} is linearly independent over K ⊆ E„ ∑ j∈J ti jβ j = 0 for every i ∈ I, j ∈ J. On the
same way, by the linear independence of {β j} over K, ti j = 0 for every i ∈ I, j ∈ J. In particular,
[F : K] = |I× J|= |I||J|= [F : E][E : K].

Remark. (i) Following the same notation as before, for every set X ⊆ E, K(X) is a field and, cer-
tainly, it is the smallest field that contains X and E: for any other field F such that K ⊆ F
and X ⊆ F , let a ∈ K[X ] and b ∈ K[X ],b 6= 0 then ab−1 ∈ F and K(X) ⊆ F . Like in the K[X ]
case, if u ∈ K(X), u = ab−1 for a,b ∈ K[X ], b 6= 0 and there exist x1, . . . ,xk ∈ X such that
a ∈ K[x1, . . . ,xk] and y1, . . . ,yr ∈ X that b ∈ K[y1, . . . ,yr]. Then, a,b ∈ K[x1, . . . ,xk,y1, . . . ,yr] and
u ∈ K(x1, . . . ,xk,y1, . . . ,yr).

(ii) A finite extension E/K is algebraic: for evey α ∈E, if the degree of the extension is n = [E : K]< ∞,
then 1,α, . . . ,αn is linearly dependent and there exist t0, . . . , tn ∈K such that t0 + t1α + · · ·+ tnαn = 0,
so α is a root of the polynomial p = t0 + t1x+ · · ·+ tnxn, and p(α) = 0.

Proposition 3.2. Let E/K be a field extension and α ∈ E.

(i) If α ∈ E is algebraic over K, there is a unique monic irreducible polynomial q ∈ K[x] that
q(α) = 0 and K(α) ∼= K[α],[K(α) : K] = deg(q) and 1,α, . . . ,αn−1 is a basis of K(α) over K,
where n = deg(q).

(ii) If α is transcendental, then [K(α) : K] is necessarily infinite, and there is an isomorphism K(α)∼= K(x)
that fixes K elementwise, where K(x) is the field of fractions of the polynomial ring K[x].

Proof. Consider ψ : K[x] → K(α) be the evaluation homomorphism given by p 7→ p(α) for every
p ∈ K[x]. ψ is a ring homomorphism. Remember that K[α] = {t0 + t1α + . . .+ tnαn | n ∈ N, ti ∈ K },
and Im ψ = { f (α) | f ∈ K[x]}= K[α].
(ii): If α ∈ E is trascendental, there is no polynomial with coefficients in K such that α is a root of p,
so Ker ψ = 0 and by the isomorphism theorem K[X ] ∼= K[α] and both rings are isomorphic. Thus, the
fields of fractions are isomorphic, K(α) ∼= K(x), and the extension K(α)/K is necessarily infinite: by
the previous remark, if it would be finite, then it would be algebraic, which is a contradiction.
(i): If α ∈ E is algebraic, there exists a nonzero polynomial p ∈ K[x] such that p(α) = 0 so ψ(p) = 0,
Ker ψ 6= 0. Ker ψ is an ideal of K[x] and K[x] is an euclidean domain, every ideal is principal, so there
exists a unique monic polynomial q ∈ K[x] such that Ker ψ = (q). Also, q is irreducible: as K is a field,
if q = gh then g(α) = 0 or h(α) = 0 and either g ∈Ker ψ or h ∈Ker ψ , but they both have lower degree
than q, which is a contradiction. The ideal (q) is maximal as q is irreducible, so K[x]/(q) ∼= K[α]
and K[α] is a field, K[α] contains all the inverses of the linear combinations of powers of α , so
K[α] =K(α). Finally, notice that 1,α, . . . ,αn−1 is a basis of K(α): if t0+t1α+ . . .+tn−1αn−1 = 0, then
the polynomial r(x) = t0 + t1x+ . . .+ tn−1xn−1 belongs to Ker ψ and has lower degree than q, contra-
diction, t0 = . . .= tn−1 = 0. In addition, let a polynomial f ∈ K[x], by the division algorithm there exist
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c,r ∈ K[x] where deg(r) < deg(q) = n and f = qc+ r, f (α) = r(α) where r has at most degree n−1,
and f (α) is a linear combination in K of the family 1,α, . . . ,αn−1. Given that if α ∈ E is algebraic
K(α) = { f (α) | f ∈ K[x]}, 1,α, . . . ,αn−1 spans K(α) over K.

Definition. Let E/K be a field extension and α ∈ E be algebraic over K. The monic irreducible poly-
nomial q ∈ K[x] from 3.2 is called minimal polynomial or irreducible polynomial of α .

Corollary 3.3. Let E/K be a field extension, α1, . . . ,αr ∈ E algebraic over K. Then, K(α1, . . . ,αr)/K
is finite.

Proof. As α1 ∈ E is algebraic over K, applying 3.2, K(α1)/K is finite. Inductively, α2 is algebraic
over K and K[x]⊆ K(α1)[x], so α2 is algebraic over K(α1) and the extension K(α1,α2)/K(α1) is finite,
so consequently K(α1,α2)/K is finite by 3.1. Reasoning in the same way for every αi, the claim
follows.

The fact of K being algebraically closed has important consequences or different characterizations,
closer to the aim of the definition. If K is algebraically closed, then the only algebraic extension of K is
trivially K. Let p be irreducible and monic in K[x], then, the ideal (p) of K[x] is maximal, F = K[x]/(p)
is a field, and p has degree at least 1. F/K is a field extension, doing the identification K = {t +(p) |
t ∈ K}. The element x+ (p) ∈ F is a root of p ∈ K[x] ⊆ F [x] and F ∼= K(x+ (p)). The extension
F/K is finite by 3.2, so algebraic. K is algebraically closed, F ∼= K, and p must have degree 1, so
every irreducible polynomial over K has degree 1. Assuming that in K[x] all the irreducibles have
degree 1 yields to K being algebraically closed, since for every algebraic extension E/K and α ∈ E,
there is a monic irreducible polynomial p ∈ K[x] such that p(α) = 0, but p must have degree 1, and
p = x−α ∈ K[x], α ∈ K. Another way of stating something equivalent is defining K to be a field in
which every non-constant polynomial in K[x] has a root in K; for every algebraic extension E/K, the
minimal polynomial of α ∈ E has a root in K, but it is irreducible, so it must have degree one and since
it is monic it is of the form x−α ∈ K[x], α ∈ K. If all the irreducibles have degree 1, as K[x] is a unique
factorization domain, then every non-constant polynomial splits in linear factors and they have at least
one root in K.

3.1.1 The Algebraic Closure

Preliminarily, we mention an important extension property for homomorphism into algebraically closed
fields. After defining the algebraic closure, it will become fully useful to extend homomorphisms to
algebraic extensions.

Theorem 3.4. Every homomorphism of a field K into an algebraically closed field can be extended to
every algebraic extension of K.

Proof Reference. The proof shows the existence of the extension using Zorn’s Lemma. For further
details, see [3], IV.§4, 4.2.

Theorem 3.5. Every field K has an algebraic extension that contains a root of every nonconstant poly-
nomial with coefficients in K. Consequently, every field K has an algebraic extension K̄ that is alge-
braically closed, and K̄ is unique up to isomorphism that fixes K elementwise.

Proof Reference. The proof can be found split in two results on [3], IV. §4,4.3. and [3], IV. §4, 4.4.

As a result, 3.5 yields to the definition:

Definition. An algebraic closure of a field K is a field extension K̄/K that is algebraically closed. It
always exists by 3.5, and it is unique up to isomorphism, so we will refer to K̄ as the algebraic closure
of K.
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Remark. Theoretically, the fact that for every field K there is an algebraic extension, namely K̄, such
that it is algebraically closed, has a direct consequence when studying the factorization of polynomials
in K[x]: by the first part of 3.5, for every p ∈ K[x], there exists an extension K1/K that contains a root
of p, a1 ∈ K1, and x− a1 ∈ K1[x] , p = (x− a1)q where q ∈ K1[x]. Inductively, there exists K2/K1 and
therefore extension of K such that q has a root in K2 and eventually there would be an extension Kn/K
such that all the roots of p are in Kn. Since every algebraic extension E/K is contained in K̄, there is
always a field extension of K in which p has all its roots, which is K̄, for every p ∈ K[x].

3.1.2 Normal and Galois Extensions

Definition. Let K be a field. A polynomial f ∈ K[x] is called separable if it has no multiple roots in
some algebraic closure of K. For an algebraic extension E/K, an element α ∈ E is separable over K if
its minimal polynomial is separable; furthermore, the extension itself E/K is called separable if all its
elements are separable over K.

Definitions. Let K be a field.

(i) A polynomial f ∈ K[x] splits in a field extension E/K when it has a factorization f = a(x−
α1) . . .(x−αr) ∈ E[x]. A splitting field over K of a polynomial f ∈ K[x] is a field extension E/K
such that f splits in E and E is generated over K by the roots of f . In other words, the splitting
field of f over K is the smallest field that contains K and the roots of f , which are always in K̄.

(ii) An extension E/K such that K ⊆ E ⊆ K̄ is normal if E is the splitting field over K of a set of
polynomials.

Definition. A field extension E/K is called Galois Extension if it is normal and separable. Without
further notice, we will say briefly that E is Galois over K.

When K has characteristic 0, every irreducible polynomial f ∈ K[x] has degree ≥ 1 and its derivate
is always non-zero, f ′ 6= 0. f has a multiple root α if and only if f (α) = f ′(α) = 0 and particularly
x−α| f , x−α| f ′. However, if f ∈ K[x] is irreducible in K, f does not divide f ′ as f ′ has lower degree
than f , so mcd( f , f ′) = 1 and f can’t have multiple roots: by Bézout’s Identity, there exist p,q ∈ K[x]
satisfying p f +q f ′ = 1 and if f has a multiple root α , 1 = p f (α)+q f ′(α) = 0, contradiction. A field
extension E/K when the characteristic of K is 0 is always separable and it will be Galois if and only if
it is normal.

Example. For example, inQ, the extensionQ(i)/Q is normal since it is the splitting field of x2 +1 ∈Q[x]
and as it is normal and car(Q) = 0, Q(i)/Q is Galois.
When F has characteristic 0, H = {roots of xn−1} is a cyclic group of order n with the product of F̄ ,
and there exists χ such that H is generated by χ , H = 〈χ〉. χ is called an n-primitive root of unity. The
field F(χ) contains H and F(χ) = F(1,χ, . . . ,χn−1), F(χ)/F is normal and separable since car(F) = 0,
so a Galois extension.

Proposition 3.6. Let E/K be a finite separable extension. Then, E/K is simple.

Proof. The proof can be followed with complete details in [3] or [6] for the general cases, and in [7]
when K is infinite.

Proposition 3.7. Let E/K be a normal extension, then E/K is algebraic.

Proof. Let F = {α ∈ E | α is algebraic over K}, K is a subfield of F as every element t ∈ K is a root of
x− t ∈ K[x]; we claim that F is subfield of E: for every a,b ∈ F , there exist two polynomials p,q ∈ K[x]
such that p(a) = 0 and p(b) = 0, and the extensions [K(a) : K] and [K(b) : K] are both finite by 3.2.
Then, [K(a)(b) : K] = [K(a)(b) : K(a)][K(a) : K], K(a,b)/K is finite by 3.3 , so it is algebraic. Notice
that a−b,ab−1 ∈ K(a,b), they are roots of some polynomials, and a−b,ab−1 ∈ F , so F is a subfield of
E. By definition F ⊆ E, and since E/K is normal, E is generated by K and roots of some polynomials
with coefficients in K, algebraic elements belonging to F , E ⊆ F , so F = E and E is algebraic.
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Corollary 3.8. Let E/K be a Galois extension. For every α ∈ E, the extension K(α)/K is finite.

Proof. E/K being Galois implies that E/K is normal, so E/K is algebraic by 3.7. The claim then
follows by 3.2.

Proposition 3.9. Let K be a field and E/K an algebraic extension. The extension E/K is normal if and
only if every irreducible polynomial p ∈ K[x] with a root in E splits in E.

Proof. Let E/K be a normal extension of K. By 3.7, E/K is an algebraic extension of K, so in this
case the assumption of E/K algebraic is redundant. Let p ∈ K[x] be an irreducible polynomial with a
root β ∈ E, assume that p is monic; then, p is by uniqueness the minimal polynomial of β , and by 3.5
and 3.1.1, in the extension K̄/K, p splits and K̄ contains all the roots of p. Let γ ∈ K̄ be another root,
the minimal polynomial of γ is also p and there is a field isomorphism ϕ : K(β )→ K(γ)⊆ K̄ such that
ϕ(β ) = γ and ϕ fixes K elementwise. By 3.4, since E/K(β ) is algebraic as so is E/K, there exists
ψ : E → K̄ homomorphism of fields that extends ϕ; As E/K is normal and ψ preserves K, for every
polynomial q ∈ K[x], and a a root of q, ψ(a) is another root of q, as q(ψ(a)) = ψ(q(a)) = ψ(0) = 0.
Consequently, ψ(E)⊆ E. Also, β ∈ K(β )⊆ E, so ψ(β ) = γ ∈ E. Hence, E contains all the roots of p,
and p splits in E.
For the other implication, as E/K is algebraic, for every α ∈ E the irreducible polynomial pα of α is
well-defined by 3.2 and it splits in E by hypothesis, E = K({roots of pα | α ∈ E}) resulting in E/K
normal.

Corollary 3.10. Let E/K be an algebraic extension. Then, E/K is a normal extension if and only if
ϕ(E)⊆ E for every ϕ : E→ K̄, where ϕ is a homomorphism that fixes K elementwise.

Proof. By an analogous argument like in 3.9 for ψ , we have ϕ(E) ⊆ E in the first implication, as ϕ

fixes K element by element and E is the splitting field of a set of polynomials, so it permutes the roots
of the polynomials with coefficients in K. Conversely, for every irreducible polynomial pα ∈ K[x] with
a root α ∈ E, without loss of generality we can assume that pα is monic. Then, pα is the irreducible
polynomial of α over K. If p has degree 1, α ∈ K, so assume that α /∈ K. As pα has at least degree
2, there exists another root η of pα in K̄ and there is an isomorphism ρ : K(α)→ K(η) that maps α

to η and fixes K. This morphism can be extended by 3.4 to ϕ , and ϕ(α) = η ∈ E. By 3.9, E/K is
normal.

Corollary 3.11. Let E/K be a normal extension and K ⊆M1,M2 ⊆ E subfields. If σ : M1→M2 is an
isomorphism that fixes K elementwise, then there exists an isomorphism θ : E→ E that extends σ .

Proof. By 3.7, E/K is algebraic. M1 is a between field of E/K, so E/M1 is algebraic, and as E/K
is algebraic, E is contained in K̄ which is algebraically closed as we discussed, so by 3.4, there exists
θ : E→ K̄ a field homomorphism that extends σ . θ is a monomorphism as it is a field homomorphism,
and as E/K is normal, there is a set S of polynomials such that E = K(X f | f ∈S ) where X f is the set
of roots of f ∈S , contained in K̄. As σ fixes K element by element, θ fixes every polynomial in K[x]
and for every a ∈ X f , f (θ(a)) = θ( f (a)), so θ(X f ) ⊆ X f . Since θ is injective and each X f is finite, it
has to be θ(X f ) = X f for every f ∈S . It follows that θ(E) = E, and θ is an automorphism of E that
fixes K.

3.1.3 The Galois Group. The Main Theorem for Finite Extensions.

Definitions. Let Aut(E) be the group of automorphisms of a field E.

(i) Let E/K be an extension. The Galois Group of the extension E/K is the group

Gal(E/K) = {σ : E→ E ∈ Aut(E) | σ(k) = k ∀k ∈ K} ≤ Aut(E)

(ii) For every field F and G≤Aut(F), the fixed field of G is FG := {α ∈F | σ(α) =α for all σ ∈G}.
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Example. (i): Let p be prime and F be the finite field of pn elements; F is an extension of Zp as it is a
finite field and F is the splitting field of the polynomial xpn − x ∈ Zp[x], up to isomorphism. Therefore,
the extension F/Zp is normal, and as a Zp-vector space, F is linearly isomorphic to [F : Zp] copies of
Zp, and |F |= pn, so [F : Zp] = n. The polynomial f = xpn − x has at most pn roots and every element
in F is a root of f ; moreover, f ′ = pnxpn−1−1 =−1, mcd( f ′, f ) = mcd(−1, f ) = 0 and the roots of f
are all different, so F = {roots of f}. Particularly, if x ∈ F∗ = F\{0} then xpn−1 = 1 and F∗ is the set of
pn−1-roots of the unity, and F∗ is cyclic as an abelian group with the product. Thus, there exists χ ∈ F
such that F =Zp(χ), χ ∈ F∗. Let α ∈Aut(F) such that α(x) = xp. By Fermat’s Little Theorem, since p
is prime, xp−1 = 1 for every x∈Zp. Also, α is a field homomorphism and it fixes Zp, so α ∈Gal(F/Zp).
Furthermore, α must have order n: if it has order r < n, then for all x ∈ F we have αr = IdF so xpr

= x
and F would have pr elements. Then, 〈α〉 ≤Gal(F/Zp). Finally, notice that χ is algebraic over Zp and
we can take p its irreducible polynomial, which divides f , so is separable since the roots of f are all dif-
ferent, its roots are in F . Thus, p splits in F and it has deg(p) = [Zp(χ) :Zp] = [F :Zp] = n roots. There
are at most n automorphisms of F such that they fix Zp: for every τ ∈ Gal(F/Zp), τ fixes p and it is
fully determined by τ(χ), which has to be another root of p, so |Gal(F/Zp)| ≤ n and 〈α〉= Gal(F/Zp).
Gal(F/Zp) is cyclic of order n, α is called the Fröbenius automorphism.
(ii): Following the same notation as 3.1.2, F(χ)/F is Galois since F(χ) is the splitting field of the poly-
nomial xn−1 over F , and separable as F has characteristic 0. Every automorphism β ∈Gal(F(χ)/F) is
fully determined by β (χ). Furthermore, xn−1 ∈ F [x] and χn = 1, β (χ)n = β (χn) = 1 and β (χ) ∈ 〈χ〉,
say β (χ) = χ i. For any other automorphism ι ∈ Gal(F(χ)/F), ι(χ) = χ j and ιβ (χ) = βι(χ), so
ιβ = βι and they commute, Gal(F(χ)/F) is abelian.

Proposition 3.12. Let E/K be a not necessarily Galois extension and L an intermediate field such that
K ⊆ L⊆ E. Then, if L/K is normal, σ(L) = L for all σ ∈ Gal(E/K).

Proof. As L/K is normal, there is a set S of polynomials in K[x] such that L is the splitting field of
every p ∈ S over K. For every f ∈ S with set of roots X f , X f ⊆ E ⊆ K̄ is finite and every σ ∈
Gal(E/K) fixes f , σ( f ) = f . For every a ∈ X f , σ(a) ∈ X f as f (σ(a)) = σ( f (a)) = 0. Thus, σ(X f )⊆
X f and as X f is finite and σ is injective, σ(X f ) = X f as in 3.11. Then the result is straightforward,
σ(L) = σ(K(X f | f ∈S )) = K(X f | f ∈S ) = L for every σ ∈ Gal(E/K).

Proposition 3.13. Let E/K be Galois. Then, |Gal(E/K)|= [E : K] and EGal(E/K) = K.

Proof. The proof of |Gal(E/K)|= [E : K] will not be discussed here, see [3] V.§3, 3.6 or [6] §4, 4.3.
Let us see that EGal(E/K) = K. Every automorphism in Gal(E/K) fixes K, so for every t ∈ K, σ(t) = t
for all σ ∈ Gal(E/K), K ≤ EGal(E/K). Now, let α ∈ EGal(E/K), assume that α /∈ K. E/K is normal,
by 3.7 E/K is algebraic and there is a monic irreducible polynomial with coefficients in K, namely p,
such that p(α) = 0 by 3.2. As α /∈ K, p has at least degree 2, and there is another root β ∈ K̄ ofpα

in the algebraic closure of K. E/K is Galois over K, so in particular is separable, and β 6= α . Indeed,
E/K is normal, by 3.9, β ∈ E and there is a field isomorphism ρ : K(α)→ K(β ) ⊆ K̄ such that it
fixes K elementwise and maps ρ(α) = β . E/K is particularly normal, by 3.11, there exists θ : E → E
an isomorphism that extends ρ and fixes K elementwise since so does ρ . Thus, θ ∈ Gal(E/K), and
θ(α) = β 6= α , contradiction.

Lemma 3.14. Let E/K be algebraic and separable. If the minimal polynomial over K of each α ∈ E
has degree at most n, then E/K is finite over K and [E : K]≤ n.

Proof. Let α ∈ E,pα the minimal polynomial of α . The subset {deg(pα) | α ∈ E} ⊂ N is bounded by
n, there exists x ∈ E such that deg px is maximal: that is, the only γ ∈ E such that deg(pγ) ≥ deg(px)
is γ = x. For any other β ∈ E, the extension K(β ,x)/K is separable since so is E/K, and it is finite
by 3.3, as x,β are algebraic over K since E/K is algebraic. Applying 3.6 there exists γ ∈ E such that
K(x,β ) = K(γ). By hypothesis, deg(pγ)≤ n and deg(pγ) = [K(γ) : K]≤ n. Furthermore, K(x)≤ K(γ)
and [K(x) : K] = deg(px)≥ deg(pγ) = [K(γ) : K] thus K(x) = K(γ), and every β ∈ E belongs to K(x),
E = K(x) and [E : K] = [K(x) : K]≤ n.
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Proposition 3.15. If G is a finite group of automorphisms of a field E, then E is a finite Galois extension
of EG and, moreover, Gal(E/EG) = G.

Proof. Let F = EG and α ∈ E. The set {σ(α) | σ ∈ G} is finite since so is G, and has cardinality
≤ |G|. Denote more conviniently {α1, . . . ,αk}= {σ(α) | σ ∈G} where α1 = α since IdE ∈G, αi 6= α j

for all i 6= j and k ≤ |G|. The polynomial qα = (x− α1) . . .(x− αk) ∈ E[x] has no multiple roots,
and qα(α) = 0. Every automorphism τ ∈ G maps roots of qα to roots of qα : for any αi = σ(α)
for some σ ∈ G, τσ(α) = α j for some j, as τσ = σ ◦ τ ∈ G. τ fixes qα , hence qα ∈ F [x]. The
extension E/F is algebraic, and the minimal polynomial of α over F exists by 3.2, and it divides qα ,
so it does not have any multiple roots and E/F is separable and [F(α) : F ]≤ deg(qα)≤ |G| so by 3.14,
E/F is finite and [E : F ] ≤ |G|. All the roots of the minimum polynomial are in E for every α , so
E = F({roots of pα | α ∈ E}) and E/F is normal. E/F is Galois; by 3.13, |Gal(E/F)|= [E : F ]≤ |G|
and G≤ Gal(E/F), so G = Gal(E/F) since they are both finite.

We have gathered enough results to prove the Main Theorem for the Finite case

Theorem 3.16. Let E/K be a finite Galois extension. Let S = {F field | K ⊆ F ⊆ E} and R = {H ≤
Gal(E/K)} and consider Φ : S →R such that Φ(M) =Gal(E/M), Ψ : R→S such that Ψ(H) =EH .
Then, Φ and Ψ are inverse of each other, and therefore there is an inclusion-reversing bijection between
the set of between fields of the Galois extension E/K and the set of subgroups of Gal(E/K).

Proof. Φ and Ψ being inverses of each other means proving that EGal(E/M) = M and Gal(E/EH) = H
for every H ≤ Gal(E/K) and K ⊆M ⊆ E. E/K is Galois, so E/M is Galois, by 3.13, EGal(E/M) = M
and |Gal(E/K)| = [E : K] < ∞. For every H ≤ Gal(E/K), H is finite because so is Gal(E/K) and by
3.15, H = Gal(E/EH).

3.2 The Krull Topology on Gal(E/K).

Consider E a field and K a subfield of E, E/K be a possibly infinite Galois extension. We will now
continue further and extend the main theorem for finite extensions to the infinite case, referring to a
topology we will soon define in the Galois groups, called Krull’s topology. In particular, we will bring
here a connection between Galois groups on infinite extensions and the Profinite Groups Theory. First
of all, consider the family of subfields of E:

F = {L | L subfield of E such that the extension L/K is Galois and finite}

We define a topology on Gal(E/K) by considering as a base of open neighborhoods for IdE the family
N of subgroups of Gal(E/K), where N = {Gal(E/L) | L ∈F}. This topology is commonly called
The Krull topology or the finite topology on Gal(E/K)1. This family meets the requirements to form a
basis of a certain topology:

(i) the union of all the elements in N is Gal(E/K): Since K/K is trivially finite and Galois, K ∈F
and F 6= /0, and Gal(E/K)⊆ ∪L∈F Gal(E/L). Trivially all the subfields of E in F contain K, so
∪L∈F Gal(E/L) = Gal(E/K).

(ii) The double intersection of two of these Galois groups is also a union of elements in N : For
L1,L2 ∈F , L1/K,L2/K are both finite, Galois and Gal(E/L1)∩Gal(E/L2) = Gal(E/L1L2) where
L1L2 = L1(L2).L1/K, L2/K are both normal and fiinte, and the composition L1L2/K is separable,
normal and finite. For details, see [3]. In particular, L1L2 ∈F and Gal(E/L1L2) is a basic open
neighborhood of IdE .

1More generally, one can define the Krull topology as follows: for X and Y two sets and M a set of mappings between
X and Y , S a finite subset of X and f ∈ M, the sets V ( f ,S) = {g ∈ M | g(s) = f (s) ∀s ∈ S} are a well defined family of
neighborhoods of each f ∈M and in the particular case of Gal(E/K), they are essentially the family N presented above.
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This all ends up in stating that Gal(E/K) is a topological group and the group operations are continuous
in the generated topology: For the product defined via αβ = β ◦α , let σ ,τ ∈ Gal(E/K). For every
open neighborhood στ ∈U ⊆ Gal(E/K), there is a subfield L ∈F such that L/K is Galois and finite,
In particular the extension is normal, and σ(L)= L,τ(L)= L by 3.12. Moreover, στ ∈στGal(E/L)⊆U
and the image of σGal(E/L)×τGal(E/L) via the product is contained in U , so the product in Gal(E/K)
is continuous. For the inversion, for every σ−1 ∈Gal(E/L)σ−1 ⊆U , the inversion maps σGal(E/L) to
Gal(E/L)σ−1 and the continuity holds.

Remark. From the beginning, we allowed the possibility of E/K being infinite. Even so, for the finite
case, F is formed by all the intermediate fields in E/K and in accordance with the Main theorem for
Galois extensions from 3.16, the only subgroups of Gal(E/K) are the subgroups belonging to N (and
N has them all). Additionally, since E/K is Galois, for every L such that K ⊆ L⊆ E, E/L is Galois and
|Gal(E/L)|= [E : L]< ∞ so all these subgroups are finite, included Gal(E/K). There is a finite number
of intermediate fields between K and E, so F is finite and the intersection⋂

L∈F
Gal(E/L)

is an open set. That intersection contains Gal(E/E), which is trivial, since E ∈F , and it equals {IdE}.
All the Galois groups Gal(E/K) when E/K is finite are also finite and, moreover, discrete.

3.2.1 Inverse Systems of Galois Groups.

First of all, we begin with some technical results in finite extensions which are going to be of importance
in further proof details.

Remark. The family F inherits a poset structure: for every L1,L2 ∈F , L1 ≤ L2 if and only if L1 is a
subfield of L2. Notice that for every L1,L2 ∈F , L1L2 ∈F and L1,L2 ≤ L1L2. The rest of properties of
the posets follow immediately, as L1 ≤ L2 implies in particular that L1 ⊆ L2. Constructing a family of
maps {ϕL2L1}L1≤L2 , where

ϕL2L1 : Gal(L2/K)→ Gal(L1/K)

σ 7→ σ |L1

We have that as a particular case of 3.11, every isomorphism in Gal(L1/K) has an extension to L2
and ϕL2L1 is an epimorphism and also continuous since both spaces are discrete given that L1/K and
L2/K are finite and Galois extensions. Notice that L1/K is in particular normal and L1 is a subfield of
L2, so σ(L1) = L1 for every σ ∈ Gal(L2/K). For every L1 ≤ L2 ≤ L3, ϕL3L1(σ) = σ |L1 = σ |L2 |L1 =
ϕL2L1 ◦ϕL3L2(σ). As a result, {Gal(L/K),ϕL1L2 ,L ∈F} forms an inverse system over F .

Proposition 3.17. Let E/K be a Galois extension. Considering the same inverse system as before,
Gal(E/K) is the inverse limit of the finite groups Gal(L/K) where L ∈F ; as a consequence, Gal(E/K)
is a profinite group.

Proof. Here, we are going to prove the isomorphism of Gal(E/K) with lim←−L∈F Gal(L/K) where the in-
verse limit is considered together with the canonical projections between ∏L∈F Gal(L/K) and Gal(L/K)
for each L ∈F . Also, since L ≤ E for every L ∈F , L/K is finite and Galois, in particular is normal
so the restriction mappings from Gal(E/K) to Gal(L/K) that map every σ ∈ Gal(E/K) to σ |L are well
defined, in accordance with 3.12. Thus, extending these restriction maps to the direct product over all
elements in F , let ϕ be

ϕ : Gal(E/K)→ ∏
L∈F

Gal(L/K)

σ 7→ (σ |L)L∈F
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For every two subfields L1 ≤ L2 in F , ϕL2L1(σ |L2) = σ |L1∩L2 = σ |L1 . The image of ϕ under Gal(E/K)
is contained in lim←−L∈F Gal(L/K). Also, ϕ is a group homomorphism: for every two σ ,τ ∈ Gal(E/K),
ϕ(σ ◦ τ) = ((σ ◦ τ)|L∈F ) = (σ |L)◦ (τ|L) = ϕ(σ)◦ϕ(τ) by 3.12 and our definition of the component-
wise composition in direct products. Moreover, ϕ is injective: let σ ∈ Gal(E/K) such that ϕ(σ) = 1,
then σ |L = IdL for all L ∈F ; let α ∈ E, and p the irreducible polynomial of α in K[x], p is irreducible
and has a root α in E; E/K is normal, p is irreducible and by 3.9 Xα ≡ {roots of p} ⊆ E. The extension
K(Xα)/K is normal since it is the splitting field of p and separable since E/K is separable, K(Xα)/K
is Galois, finite and it contains K(α), so K(Xα) ∈F and σ(α) = σ |K(Xα )(α) = α and σ = IdE . The
image of ϕ is furthermore lim←−L∈F Gal(L/K): for every (σL)L∈F ∈ lim←−Gal(L/K), we define an auto-
morphism of E as follows: let α ∈ E, K(Xα) considered as above, σ(α) := σK(Xα )(α); σ does not
depend on the field chosen in the role of K(Xα); for another field M ∈ F such that K(α) ⊆ M pro-
viding that F is a poset, there exists F ∈ F such that M,K(Xα) ≤ F and by the compatibility with
the maps defining the inverse system, ϕFM(σF) = σF |M = σM and ϕFK(Xα )(σF) = σF |K(Xα ) = σK(Xα )

so σM(α) = σF(α) = σK(Xα )(α). We have that σ ∈ Gal(E/K): it fixes K elementwise, it is injective
and surjective as σL are field isomorphisms and it preserves the field operations in E: σ(α + β ) =
σK(Xα+β )(α +β ) = σK(Xα )(K(Xβ ))(α)+σK(Xα )(K(Xβ ))(β ) = σ(α)+σ(β ) and σ(αβ ) = σ(α)σ(β ) anal-
ogously, ϕ(σ) = (σL) by definition of σ .
It remains to show that ϕ is an isomorphism of topological groups. For that, take into account that for
each N ∈F , Gal(E/N) is a basic neighborhood of IdE and

ϕ(Gal(E/N)) = {(σL) ∈ lim←−
L∈F

Gal(L/K) | σN = IdN }

These are the kernels of the canonical projections intersected with lim←− Gal(L/K), and by 2.1, they
form a fundamental system for IdE and ϕ maps a basis of neighborhoods of IdE to another basis. The
basis of neighborhoods for IdE is moreover formed by images of basic open sets of F , so ϕ is an
homeomorphism, and Gal(E/K)∼= lim←−L∈F Gal(L/K) as topological groups.

Now we can deduce all the consequences we have been dealing with in the past sections, specially
concerning with the topological structure of Gal(E/K).

Corollary 3.18. Let E/K be a possibly Galois infinite extension, and consider Gal(E/K) with the Krull
Topology. Then, Gal(E/K) is compact, Hausdorff and totally disconnected.

Proof. By 3.17, Gal(E/K) is a profinite group; by 2.3, Gal(E/K) is compact, Hausdorff and totally
disconnected.

Proposition 3.19. Let M1 and M2 be between fields of the Galois extension E/K and let γ : M1→M2
be a field isomorphim that fixes K elementwise. Then γ can be extended to an automorphism of E.

Proof. Let N ∈F and BN the subset of ∏
L∈F

Gal(L/K) defined in the following terms:

BN =

{
(σL) ∈ ∏

L∈F
Gal(L/K) | σN |N∩M1 = γ|N∩M1 and σL = σN |L for L≤ N

}
γ is a field isomorphism, restricting γ to N ∩M1, γ|N∩M1 : N ∩M1→ γ(N ∩M1) is a field isomorphism
that fixes every element of K and N/K is finite and Galois. In particular, N/K is normal, so by 3.7, N/K
is algebraic. For every a ∈ N ∩M1, since a ∈ N, there exists a monic irreducible polynomial p ∈ K[x]
such that p(a) = 0 by 3.2, and a∈M1. Applying 3.9, N contains all the roots of p, and γ fixes K element
by element, so γ(a) is another root of p and γ(a)∈N∩M2, so γ(N∩M1)⊆N∩M2 and by an analogous
argument, γ(N∩M1) = N∩M2. Applying 3.11, there exists an automorphism σN : N→ N that extends
γ|N∩M1 and therefore fixes K elementwise, so σN ∈ Gal(N/K). The sequence (σL)L∈F where

σM =

{
σN |M if M ≤ N
IdM if M � N
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for each M ∈F lies in BN so for every N ∈F , BN 6= /0. For every L ∈F , L/K is finite and Galois,
so Gal(L/K) is finite and discrete as we argued in 3.2. Thus, every subset of Gal(L/K) is closed, and
rewriting BN as

BN =

[
∏

L∈F\N
Gal(L/K)×{σN ∈ Gal(N/K) | σN |N∩M1 = γ|N∩M1}

]
∩{(σL) | σL = ϕNL(σN) L≤ N}

BN is intersection of two closed sets, the first one since it is the product of all the groups Gal(L/K)
except the single case in which L = N, and the second one by the proof argument in 1.5. For every two
fields N1,N2 ∈F , N1N2 ∈F , as we explained in §3.2. Then, BN1N2 ⊆ BN1∩BN2 : for every (σL)∈ BN1N2 ,
σNi = σN1N2 |Ni for i = 1,2 and every subfield of N1 or N2 is subfield of N1N2, so BN1N2 ⊆ BN1 ∩BN2 and
inductively, every finite intersection of the sets BN is nonempty. The sets BN are closed and subsets of
compact spaces as for all L ∈F , Gal(L/K) is finite and discrete, so compact, and BN is compact for
every N ∈F . By the finite intersection property, B =

⋂
N∈F BN 6= /0, and B⊆ lim←−L∈F Gal(L/K). Then,

a map in ϕ−1(B) 6= /0, where ϕ is the map from 3.17, extends γ: for σ ∈ ϕ−1(B), σ |N∩M1 = γ|N∩M1 for
all N ∈F , so σ |M1 = γ , as M1 is maximal in {N∩M1 | N ∈F}. 2

Lemma 3.20. Let E/K be Galois. Suppose that E =
⋃
i∈I

Ei where each Ei is a finite extension of K

contained in E. Then {Gal(E/Ei) | i ∈ I} is a base of open neighborhoods of IdE in Gal(E/K).

Proof. Consider i ∈ I fixed, Ei/K is finite so it is algebraic, and moreover, there exist α1, . . . ,αs ∈ Ei

such that Ei = K〈α1, . . . ,αs〉. E/K is Galois, in particular it is normal, so it is algebraic by 3.7. Let
pαi be the minimal polynomial of each αi. E/K is normal, by 3.9, E contains the set of roots of
each pαi , denoted as Xαi , for i = 1, . . . ,s. Then, K(Xαi | i = 1, . . . ,s) contains Ei, and it is normal
and finite over K since it is a finitely generated field by algebraic elements. It is also separable since
so is E/K, and K(Xαi | i = 1, . . . ,s) is Galois over K and finite, so it belongs to F . Thus, for each
Ei there exist N ∈ F such that Ei ⊆ N. Since Ei ⊆ N, Gal(E/N) ≤ Gal(E/Ei) and for every i ∈ I,
Gal(E/Ei) is open: Gal(E/Ei) is a subgroup of Gal(E/K) and it contains an open subgroup Gal(E/N),
so Gal(E/Ei) =

⋃
σ∈Gal(E/Ei) σGal(E/N) open by union of open sets. Conversely, if N ∈F , then N/K

is finite and Galois. In particular it is separable and finite, by 3.6, there exists α ∈N such that N =K(α).
Since E is the union of all Ei, and α ∈ E, there is some j ∈ I such that α ∈ E j and N = K(α) ≤ E j so
Gal(E/E j) ≤ Gal(E/N). Therefore, the family {Gal(E/Ei) | i ∈ I} generates the same topology as
{Gal(E/N) | N ∈F}.

Proposition 3.21. Let M be a between field of the Galois extension E/K. The topology of the subgroup
Gal(E/M) is induced as the subspace topology on Gal(E/K), and Gal(E/M) is a closed subgroup of
Gal(E/K).

Proof. The subspace topology induced on Gal(E/M) has a base of neighborhoods of IdE given by the
intersection with the basic neighborhoods in N , i.e. {Gal(E/M)∩Gal(E/L) | L ∈ F}. Since for
each L ∈F , Gal(E/M)∩Gal(E/L) = Gal(E/LM), the induced topology on Gal(E/M) has a base of
neighborhoods for the identity {Gal(E/LM) | L ∈F}. Applying together 3.17 and 3.18 Gal(E/M) is
a profinite group and in particular compact, it is a compact subspace of Gal(E/K), which is also by
3.18 compact, Hausdorff and totally disconnected, so particularly since it is a compact subspace of a
Hausdorff space, it is closed, and Gal(E/M) is a closed subgroup of Gal(E/K).

2Applying Zorn’s Lemma in the set {N∩M1 | N ∈F} we have that there is a maximal set N∗∩M1 which has to be equal
to M1; if it was not, there would exist x ∈M1\N∗ and we could take a bigger extension of K in F that contains N∗, which will
be N∗(x).
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3.2.2 The Krull Theorem

Here, we arrive to the extension we referred to in the previous parts, concerning to the extension of
the Main Theorem of Galois Theory now on possible infinite Galois extensions. We will characterize,
again, the subgroups of Gal(E/K).

Theorem 3.22. Let E/K be a Galois extension. Then, the map Φ defined by Φ(M) = Gal(E/M) is an
inclusion-reversing bijection from the set of between fields M of the extension E/K to the set of closed
subgroups of Gal(E/K). Its inverse Φ−1 maps each subgroup H of Gal(E/K) to the fixed field EH of
all elements in E fixed by H.

Proof. Denote S = {F field | K ⊆ F ⊆ E} and K = {H ≤ Gal(E/K) | H closed}, Φ : S → K
and let Ψ : K →S such that Ψ(H) = EH , in order to prove that Φ is a bijection and that its inverse
is indeed Ψ, we are going to prove that Ψ ◦Φ = IdS , and Φ ◦Ψ = IdK . As first remarks, notice
that for every between field M in the extension E/K, if M is generated by subfields {Mi | i ∈ I}, that is,
M = K(Mi | i∈ I), then Gal(E/M) =

⋂
i∈I Gal(E/Mi). On the other hand, for every α ∈ E, the extension

K(α)/K is finite by 3.7 and 3.8. Given that

E =
⋃

α∈E

K(α)

by 3.20, {Gal(E/K(α)) | α ∈ E} is a base of open neighborhoods for IdE in Gal(E/K), and if some
Mi is a finite extension of K, there are some α1, . . . ,αr such that Mi = K(α1, . . . ,αr) and Gal(E/Mi) =⋂r

i=1 Gal(E/K(αi)) that is, a finite intersection of basic open neighborhoods, so Gal(E/Mi)≤Gal(E/K)
is open. By 3.21, Gal(E/Mi) is a closed subgroup of Gal(E/K), so if M is generated by all the Mi, then
Gal(E/M) is a closed subgroup by intersection. As we have observed before, Φ is inclusion-reversing
since for every two between fields of the extension E/K, M1 ≤M2, then Φ reverses the order relation,
i.e., Gal(E/M1)≥ Gal(E/M2) and Φ(M1)≥Φ(M2).
Let M be a between field in E/K, let us see that Ψ◦Φ(M) = M, i.e., M = EGal(E/M). By hypothesis E/K
is Galois, so for every between field M, so is E/M and by 3.13, we prove the claim and EGal(E/M) = M.
To see that Φ ◦Ψ = IdK , let H be a subgroup of Gal(E/K), we must prove that H = Gal(E/EH). It
suffices to show that H = Gal(E/M) for some between field M ∈S , as we have already proved that if
H = Gal(E/M), then EH = EGal(E/M) = M. We are going to restrict H to be open: by 3.18, Gal(E/K)
is in particular compact, so every open subgroup of Gal(E/K) has finite index by 2.2. Also, every
open subgroup of Gal(E/K) is closed, and every closed subgroup of finite index is open. Also, if H is
closed, then H is an intersection of basic neighborhoods, and Φ is closed under intersections in the sense
explained above, that is, the intersection of Galois groups images through Φ is another Galois group and
the intersection still lies in the image of Φ, via the composition field; there is no loss of generality then
if we set that H ≤ Gal(E/K) is open. Since N is a base of open neighborhoods of Gal(E/K) for
IdE , there exists some L ∈F such that L/K is finite, Galois, and Gal(E/L) ≤ H. Moreover, L/K is in
particular normal, so by 3.12, for every σ ∈ Gal(E/K), σ(L) = L and the set HL = {σ |L : σ ∈ H} is a
subgroup of Gal(L/K); L/K is finite and Galois, applying the Main Theorem of Galois Theory for the
finite case in 3.16, HL = Gal(L/LHL) and let M = LHL , we claim that H = Gal(E/LHL) = Gal(E/M):
First, for every σ ∈ H, then σ |L ∈ HL and σ is an automorphism of E that fixes every element in M by
construction: indeed, for every α ∈M, σ(α) = σ |L(α) = α and H ≤ Gal(E/LHL).
Conversely, for every σ ∈ Gal(E/LHL), as we know σ |L is an automorphism of L given that L/K is
Galois and finite, and σ |L ∈ Gal(L/LHL) = HL, so there exists τ ∈ H such that σ |L = τ|L and τ−1σ is
the identity in L, that is, τ−1σ ∈Gal(E/L)≤H so τ−1σ ∈H and σ = ττ−1σ ∈H, H = Gal(E/M) and
the rest holds.
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3.3 Profinite Groups as Galois Groups.

Lemma 3.23. Let θ be a not necessarily continuous homomorphism from a profinite group G to the
Galois group of a field extension E/K. For each α ∈ E write Gα := {g ∈ G | θ(g)(α) = α}. Assume
that Gα is open for each α ∈ E and that Eθ(G) = K. Then, E/K is Galois, and θ is continuous and
surjective.

Proof. Consider G profinite and assume Gα is open for every α ∈ E. Let Rα be, for each α ∈ E, the
core over G of the subgroup Gα ≤ G , that is

Rα =
⋂

g∈G

g−1Gαg

By hypothesis, Gα is a subgroup of a profinite group, so by 2.3, since 1G ∈Gα for all α ∈ E, there exists
an open normal subgroup of G such that NEGα and G/N is finite and discrete. Also, since N is normal,
for every g∈G, g−1Ng = N, so accordingly N ≤ g−1Gαg for every g∈G and NERα . N is an open nor-
mal subgroup, Rα =

⋃
a∈Rα

aN, union of open sets, so Rα is open, and normal as h−1Rαh = Rα for every
h ∈ G. Let x1, . . . ,xr ∈ E, and L be the subfield of E such that L = K(θ(g)(x1), . . . ,θ(g)(xr) | g ∈ G).
For every g,h ∈ G,1 ≤ i ≤ r, θ(g)(θ(h)(xi)) = θ(g) ◦ θ(h)(xi) = θ(gh)(xi) and for every g ∈ G,
θ(g)(L) ⊆ L; moreover, {θ(g)(x1), . . . ,θ(g)(xr)} ⊆ θ(g)(L) as x1, . . . ,xr ∈ L, so θ(g)(L) = L and G
acts via θ in Gal(L/K). For every g ∈ G, θ(g)|L is an automorphism of L that fixes K as so does θ(g)
and K ⊆ L. Define the map

ψ : G→ Gal(L/K)

g 7→ θ(g)|L

ψ is a group homomorphism given that so is θ , and ψ is well defined since restricting θ(g) to L yields to
another automorphism of L that fixes K as θ(g) belongs to Gal(E/K). Every g ∈ G such that θ(g)|L =
IdL, fulfills that for every xi,1≤ i≤ r and h ∈ G, θ(g)(θ(h)(xi)) = θ(h)(xi) and θ(gh)(xi) = θ(h)(xi);
as θ is a homorphism, θ(g−1) = θ(g)−1 consequently θ(h−1gh)(xi) = xi and h−1gh ∈ Gxi for every
1 ≤ i ≤ r and h ∈ G, so g ∈ Rx1 ∩ ·· · ∩Rxr , Ker ψ = Rx1 ∩ . . .Rxr normal and open by intersection. We
assumed that G is profinite, and Ker ψ is an open and normal subgroup of G, G/Ker ψ is finite and
discrete by 2.3. Applying the isomorphism theorem

G/Rx1 ∩·· ·Rxr
∼= Im ψ

As a result, θ(G)|L := Im ψ = {θ(g)|L | g ∈ G} ≤ Gal(L/K) is finite. θ(G)|L is a finite subgroup of
automorphisms of the field L, by 3.15, L is a finite Galois extension of Lθ(G)|L and Gal(L/Lθ(G)|L) =
θ(G)|L. As Eθ(G) = K, Lθ(G)|L = K and L/K is finite and Galois. E is a union of fields constructed like
L, more concretely

E =
⋃

α∈E

K(θ(g)(α) | g ∈ G)

and each field Lα = K(θ(g)(α) | g ∈ G) is an extension of K that is finite and Galois, by union E/K
is normal and separable because so are all the Lα . E/K is consequently a Galois extension. Let us see
that θ is continuous: it suffices to show that for every F ∈F and basic neighborhood Gal(E/F) of IdE ,
θ−1(Gal(E/F)) is open in G. First, for each F ∈F , θ−1(Gal(E/F)) = {g ∈G | θ(g)(a) = a, ∀a ∈ F}
which is expressed, in terms of the sets Gα ,

θ
−1(Gal(E/F)) =

⋂
a∈F

Ga

G is profinite, by 2.3 is compact, and by 2.2 every open subgroup of G is open if and only if it is closed
and has finite index. Since all the Ga are open, they are closed, and the intersection ∩a∈FGa is closed,
so we only have to check that it has finite index with respect to G. For that purpose, consider the map:

φ : G→ Gal(F/K)

g 7→ θ(g)|F
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analogous as before; F/K is finite and Galois, so Gal(F/K) is finite and its order is [F : K] by 3.13. In
particular, F/K is normal, so θ(g)|F is well defined as an automorphism of F that fixes K. Similarly,

Ker φ = {g ∈ G | θ(g)(α) = α ∀α ∈ F}=
⋂

α∈F

Gα EG

and by the isomorphism theorem, G/
⋂

α∈F Gα
∼= Im φ ≤ Gal(F/K) and θ−1(Gal(E/F)) is closed and

has finite index, so it is open, and θ is continuous. To see the surjectivity: as G is profinite, in particular
it is compact, and θ(G) is compact in Gal(E/K), which is Hausdorff as it is also profinite, so θ(G) is a
closed subgroup of Gal(E/K). By 3.22, θ(G) = Gal(E/Eθ(G)) = Gal(E/K).

We reach the goal of the thesis, proving that profinite groups and Galois groups with the Krull topol-
ogy are, indeed, indistinguishable up to isomorphism of topological groups, as the following theorem
claims.

Theorem 3.24. Every profinite group is isomorphic (as a topological group) to a Galois group.

Proof. Let K be a field, and assume that G is profinite. By 2.3 there exists a fundamental system N of
open normal subgroups of G such that

⋂
N∈N N = 1 and G/N is finite and discrete for every N ∈N ;

denote
S =

⋃
N∈N

G/N

and
E = K(Xs | s ∈ S)

where {Xs}s∈S is an algebraically independent family over K, that is, there is no f ∈ K[Xs | s ∈ S] such
that f ((Xs)s∈S) = 0. Equivalently, E can be seen as the field of fractions of K[Xs | s ∈ S], the ring of
polynomials with variables indexed by S. Firstly, S is a G-set, that is, G acts on S under an action
Φ : G×S→ S defined by Φ(g,hN)≡ g · (hN) := (gh)N. Φ is a well defined action, as Φ(1G,hN) = hN
and Φ(g1g2,hN) = (g1g2h)N = Φ(g1,Φ(g2,hN)) and for every two classes gN = hN, then gh−1 ∈ N,
g1 · (gN) = (g1g)N, g2 · (hN) = (g2h)N which leads to g1gN = g2hN as gg1g−1

2 g−1 ∈ N, since N EG.

Every element in G defines a bijective map g ·− : S→ S given by g ·σN = Φ(g,σN) = (gσ)N, since it
has an inverse g−1 ·−, and G acts on {Xs | s ∈ S} by extension of the action on S, via g ·Xs = Xg·s. Ex-
tending the action on {Xs | s ∈ S} to E to act as a field homomorphism, there is a group homomorphism
θ : G→ Aut(E) such that θ(g) := g ·− is an automorphism of E for each g ∈ G.

Let α ∈ E, there are s1, . . . ,sr ∈ S, si = giNi, such that α ∈ K(Xs1 , . . . ,Xsr), and following the notation of
3.23, the open subgroup by intersection N1∩·· ·∩Nr is a subgroup of Gα , as for every g ∈ N1∩·· ·∩Nr,
g ·(giNi) = giNi, for every 1≤ i≤ r. Gα is finally open. Let F = Eθ(G), θ can be redefined to be a group
homomorphism θ : G→Gal(E/F) and apply 3.23 on θ , it is surjective and continuous. Moreover, θ is
injective: for every g∈G that θ(g) = IdE , g ·Xs = Xg·s = Xs. By assumption, {Xs | s∈ S} is algebraically
independent, therefore g · s = s for all s ∈ S; particularly g ·N = N for every N ∈N , so g ∈

⋂
N∈N N

and g = 1G. Recall that G is profinite, so by 2.3, G is compact, and θ is a bijection with starting space a
compact group, θ is a homeomorphism, and G∼= Gal(E/F).
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