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de nanoestrcturas metálicas
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Introduction

In 2004 the few-layer graphene was electrically studied [1], which granted the Nobel Prize in
Physics for its authors (A. K. Geim and K. S. Novoselov) six years later. Since then, the study
of two-dimensional (2D) materials has been widely thriving until it became the state-of-the-
art science that it is now. Diverse materials such as metals, superconductors, semiconductors
or insulators have been acquired in its 2D form. Nowadays, Transition Metal Dichalcogenides
(TMDs) are a cutting-edge type of 2D semiconductors, which shines because of its outstanding
properties potentially applicable to optics and optoelectronics [2–7].

What we now refer to as Surface Plasmon Polaritons (SPPs) was predicted as a bound elec-
tromagnetic (EM) mode at a dielectric-metal interface by R. H. Ritchie [8] in the 1950s. The
utmost confinement of these bound modes on the metal surface and its extreme sensitivity to
changes at the surface environment open up a broad range of applications such as chemical sens-
ing or bioimaging, amongst others [9]. Over the years, noble metals have positioned themselves
as the most promising materials to host plasmons (SPPs) in the optical regime [10].

The study of the EM resonances through metallic nanostructured arrays has been a very
active area of research since in 1988 T. W. Ebbesen et al. found out a phenomenon known as
Extraordinary Optical Transmission (EOT) [11], which resonantly enhances the transmittance
of such periodic arrays of holes through plasmons. Thereafter, a countless number of different
designs have been studied [12–14]. EOT is so interesting because of its wide range of applica-
tions, such as sensing, spectroscopic devices or colour filters [15].

Since the generalization of the so-called Berry phase was made by M. V. Berry in 1984 [16],
topology and physics have been in touch via several areas such as condensed matter physics.
One of the main results of this association is the quantum Hall effect, intimately related to the
Chern numbers and the Berry phase. In the end, the idea of creating a system with topological
discretised indices is protecting it against decoherence or other “destructive” phenomena. Berry
phase was also used by K. Y. Bliokh et al. in order to explain the Coriolis effect in optics [20],
which is extremely useful to study the spin-orbit coupling effects that arise when a EM wave
carrying intrinsic angular momentum interacts with a medium.

So, in this work, we will combine the three elements discussed so far in order to study the
emerging phenomena. As a result of this combination we will have a 2D layer placed over a
metallic slab with nanoapertures. The 2D material (TMD) will provide us a stratum where
light-matter interaction becomes possible via its characteristic spin-orbit coupling. And the
drilled metallic nanostructure (noble metal) will be the place where the SPPs will take place.
Lastly, topology resides in the origin of the phenomenon which will allow us to break the system
symmetry with regard to the handedness of the incident polarization: the geometric phase mo-
mentum derived from the topological Berry phase [20] will provide us a spin-momentum locking.
This will lead to chirality, for which one potential application would be using a nanophotonic
structure where we could control the EM fields in order to make them resonate with chiral
molecules, widely used in biology or pharmacology. In fact, this system has been experimentally
explored by C. Genet et al. [21] and our labour now is to establish a theoretical framework
where their results may rely on. Through the course of this work, we have been in touch with
the research group where C. Genet belongs to. This has enabled us to have enlightening talks
with them, providing a better approach to the system due to their previous knowledge about it.
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Objectives and outline

This Final Master’s Thesis has born as a result of intense collaboration with the experimen-
tal research group “Laboratoire des Nanostructures” at “Institut de Science et d’Ingénierie
Supramoléculaires” (ISIS) at Strasbourg, France. Accordingly, the main objective of this thesis
is the development of a theoretical framework from where we can observe the experimental re-
sults provided by this world-class research group and presented in [21]. This theoretical model
that we have formulated intends to explain qualitatively the key points addressed in [21], as well
as to contribute bringing renewed outlook and insight. We will focus on a qualitative approach
because of the expensive computational cost that a quantitative refinement would have. How-
ever, it is noteworthy that the model we will present could be also used for this refinement.

The physical system that we want to study via this theoretical model is composed by only
two elements: an atomic-width material in the presence of a metallic nanostructure. Therefore,
the first secondary objective is the characterisation of both. In Sec. 1 we will discuss the physical
features that we need to know about them, such as the atomically thin material conductivity or
the metal dielectric constant.

After that, we will present the four different cases of system that we will consider. Further-
more, in Sec. 2.1, although in greater detail in App. A, we will explain the procedure to obtain
the governing equations for those four cases, via using the coupled-mode method [14].

Once we will have derived the governing equations, we will have to check the correctness
of them. For that purpose, we will consider the simplest possible system and we will compare
its results with those presented in [13] and with our intuition (see Sec. 3). Both the simpli-
fied governing equations set and its corresponding spectrum will be verified respect [13]. On
the other hand, our original governing equations will be more general than others presented in
the literature. In fact, this will be the first time that these more generic equations will be derived.

After testing our model, we will be prepared to address the general problem of reproducing
the results provided in [21]. However, in order to gain insight on the physical processes in our
system, we will approach the experimental setup stepwise, trying to extract useful information
from each additional feature implemented in it (see Sec. 4).

In Sec. 4.1 we will consider a standard rectangular holey grating for our metallic nanostruc-
ture (akin to [13]) and we will study the main aspects that arise when we consider the absorption
of the whole system. Basically, we will focus on the metal and 2D layer absorptions, but also in
the production of surface plasmon polaritons (SPPs), which will be treated separately in Sec. 4.2.

And finally, we will introduce in our system the last characteristic to recover the configu-
ration used in [21]: an stepwise rotation of the apertures (dimples) along the unit cell of our
metallic nanostructure. We will discuss a new effect that emerges from this rotation: the geo-
metric phase momentum (see Sec. 4.3). The explanation of this new topological effect originates
from the Berry phase, as it is described in [20,21].

Our last objective will be to study the coupling between the 2D layer and the geometric
phase plasmon (observed in [21] and presented in Sec. 4.4) and its dependence on five different
parameters of the system (see Sec. 4.5). And ultimately, we will propose a novel type of unit
cell.

2



1 Features of our system

Our work will be based on the properties of two main structures: first, a two-dimensional (2D)
layer composed of a Transition Metal Dichalcogenide (TMD), whose more interesting aspects
will be described later; second, a metallic slab which will be typically chosen as gold and it will
be drilled, either by holes or by dimples.

1.1 Absorption spectrum of a WS2 monolayer

In this section we will intend to give an idea of how interesting TMDs are and why we want to
use them for our study. After that, we will consider an specific TMD, tungsten disulfide, which
will be used throughout this dissertation, and we will explore it more closely.

Firstly, there are several 2D semiconducting materials which may be attractive, like graphene,
phosphorene, TMDs, a combination of them (so-called van der Waals heterostructures, vdWHs),
etc. All of them share some qualities but they also differ in some other properties, which opens
up a wide range of different potential applications.

Due to the two-dimensionality, charge confinement and reduced dielectric screening are com-
mon for them, which entail that the optical properties are dominated by excitonic (electron-hole)
effects. Furthermore, their Bohr radius is larger than layer width, which implies that quantum
confinement increases the exciton binding energy, changing their absorbing and emitting wave-
lengths. Both phenomena produce that excitons are bound even at room temperature, making
them fruitfully tunable.

Fig. 1: This figure has been borrowed from [21].
Upper: representation of the atomically thin WS2

monolayer. Middle: hexagonal structure of the Bril-
louin zone. Sides: electronic band structure around
both valleys K and K’ of the Brillouin zone, with the
corresponding optical selection rules for left (σ+) and
right (σ−) circularly polarized excitation.

That said, the chemical formula for the
TMDs is MX2, where M is a transition
metal and X is a chalcogen (X = S, Se).
In particular, we will discuss the group-
IV transition metal dichalcogenides, with
M = Mo,W . We will use them be-
cause, apart from their strong light-matter
coupling due to the previous arguments,
they also present direct-band gaps in the
near-infrared and visible regimes, which is
a key feature in order to develop appli-
cations in optics and optoelectronics be-
cause it enhances the light-matter interac-
tion.

From all possible TMDs, we will select
WS2 as the paramount 2D layer throughout
our work (see Fig. 1). This decision is taken
because of two reasons: first, WS2-exciton en-
ergy gaps are larger than the others; second,
this is the mainly-used material by our collab-
orators at ISIS.

There is one more remarkable aspect we must discuss: the direct-band gaps are located in the
so-called K and K’ valleys of the TMDs hexagonal structured Brillouin zone (see Fig. 1). What
is really interesting about these valleys is that through circularly polarized light (left-handed
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or right-handed) we can induce optical transitions in, exclusively, one of the valleys (K or K’,
respectively) (see Fig. 1). This is why TMDs excitons are also called valley excitons and we can
talk about valley as a new degree of freedom, opening a window for valleytronics.

Fig. 2: (a) Real part of α. (b) Absorption of the 2D
layer (WS2).

We have contextualised the use of WS2 as
our 2D layer so now, we need to know its opti-
cal properties. For that purpose, we make use
of the experimental data presented in [22] and
for which we asked the authors. They provide
us with the real and imaginary parts of the di-
electric constant, which are related with mate-
rial conductivity [23] as ε = 1 + 4πiσ2D

hω , where
ε is the dielectric constant, h is the width of
the material (atomically thin, around 1 nm),
ω is the frequency and σ2D is the conductiv-
ity. Here there are two things to be noted:
we are assuming Gauss convention in the way
we wrote the previous expression; and ε, σ2D

and ω depend on the considered wavelength λ.
Since we use Gaussian units, taking a redefi-
nition of the conductivity is more convenient
when we want to compute the absorption of
the 2D film, which is done in App. D for a gen-
eral case. This new quantity is α = 2πσ2D/c,
being c the light speed in vacuum. Combining
both expressions we get: α = πh(ε− 1)/λi, where we have used that ω/c = g = 2π/λ.

Fig. 3: This figure has been borrowed from
[21]. Absorbance spectrum of an exfoli-
ated WS2 monolayer deposited on a glass
substrate.

What really affects to the absorption of the 2D film
is the real part of α, i.e., Re(α). That is why, as well
as Abs2D, we display this quantity in Fig. 2(a) as a
function of energy. We obtain the absorption spectrum
expression of WS2 following the procedure detailed in
App. D and shown in Eq. 156 at that appendix. We
have considered normal incidence (~k0 = ~0), the incident
polarization σ0 = p, the coming medium as vacuum
(εI = 1) and the foregoing as glass (εII = 2.25). We
have taken these conditions because this is the configu-
ration used in [21] for their WS2 absorption spectrum
(see Fig. 3). As it can be seen in Fig. 2, there are
two different curves for each quantity. This is because
experimental data (black) we got from [22] do not pro-
duce the same absorption spectrum as [21] presents (see
Fig. 3). Therefore, we apply a fitting (red) to these data
(see Eq. 1) in order to obtain a better matching between their spectrum and ours.

Re(α)Fitted = 3.5

(
Re(α)Exp. − 0.02 ·

(
E(eV )

1.9

)4

− 2 · 10−3

)
(1)

With this fitting we intend to enhance the Re(α), and thus the absorption, around the lower-
energy peak. In addition, we also intend to eliminate the background from the whole spectrum
provided by the experimental data. Both effects depend on the 2D material quality, which seems
better in our collaborators laboratory than where we asked the data for. Therefore, if we look
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at the red curve of Fig. 2(b) and we compare it with the spectrum of Fig. 3, we can claim that
the agreement between both theirs and ours spectra has significantly improved.

So, we have explained why we use a TMD, in particular WS2, and we have discussed how
we obtain the absorption spectrum of it. As a final point, we must say that the lower-energy
absorption peak corresponds to the A-exciton and the higher-energy to the B-exciton, because
in the following sections we will mainly focus on the A-exciton.

1.2 Gold dielectric constant

Fig. 4: Representation of εM of the gold as a function
of λ using the expression of Eq. 2 and the parame-
ters given in Table. 1. Inset: zoom in the region of
interest.

In this section we will characterise the
gold slab we will use throughout our
work. For this purpose, we will jus-
tify the model that we take and we will
explain from where the different terms
come.

As stated previously, we will be interested
in the near-infrared and optical regimes. It
is well-known that, in this frequency range,
the dielectric constant of some metals (εM )
can be successfully described by means of
the Drude’s model, also called free-electron
model and that takes into account the intra-
band transitions [24]. Nevertheless, gold is not
well-described via Drude’s model in the opti-
cal regime. This is why we need to consider
also the interband transitions, also referred to
as bound-electron effects. We can do this by
making use of the Lorentz-Drude model, which basically consists in the addition of Lorentzians
(only one for gold case). Therefore, this revised model significantly improves the agreement
with the experimental dielectric constant in the near-infrared and optical regimes [25]. Eq. 2
encapsulates this Lorentz-Drude model and Table 1 shows the values for the parameters used in
Eq. 2 to characterise the dielectric constant of the gold, εM .

εM (ω) = εD(ω) + εL(ω) =

(
εr −

ω2
P0

ω(ω + iγ0)

)
+

(
− ∆ε0 Ω2

0

ω2 − Ω2
0 + iωΓ0

)
(2)

Table 1: Parameters of Lorentz-Drude model for gold. εr is dimensionless (Gauss convention) and the
rest of terms are in eV . These data are adapted from [25].

εr ωP0 γ0 ∆ε0 Ω0 Γ0

5.967 8.729 0.065 1.09 2.684 0.433

So finally, the Lorentz-Drude dielectric constant of gold is shown in Fig. 4. There, we can
observe both real and imaginary parts of εM , as well as zoom in the region where we will mostly
work in. Note that the imaginary part of εM weights the absorption of the metal. If we attend
to this in Fig. 4, we observe a maximum around λ ∼ 470 nm, which corresponds to the charac-
teristic gold absorption.
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2 Theoretical model

In this section we will present the theoretical framework where we will work in throughout all
this dissertation. Then, we will explain the key features it possesses and when it can be applied.
After that, we will move on to discuss the general system to be studied (see Sec. 2.1), as well as
the different cases we will consider and their corresponding governing equations. To conclude,
we will carry out a comparison between both metal approximations we will handle (see Sec. 2.2).

The method we will apply has been widely used in the study of electromagnetic (EM) prop-
erties in different metallic structures [12–14,26]. It is known as coupled-mode method or modal
expansion method. It basically consists on considering both electric and magnetic fields as a
superposition of plane waves with different momenta and amplitudes. This is why this method
can also be found as momentum expansion method. Then, writing EM fields for every region
of space in this way and applying the EM boundary conditions at interfaces between different
media, we are able to obtain a set of equations which, if we solve it, returns us the EM fields
amplitudes. Therefore, following this pathway we will know the EM fields expressions at any
point in the space.

It is also worth noting two aspects. Firstly, these expressions are stationary solutions of
Maxwell’s equations, so time dependence (e−iωt) will be removed from this analysis. And sec-
ondly, it may be deduced that the convergence of results depends on how many modes we will
consider for the superposition. It may also be deduced that if we largely increase the number of
modes, the computational cost will indefensibly increase too. Therefore, we will have to make a
compromise in order to find well-enough results within a reasonable time.

Before starting with the general-system discussion, we want to make clear that a detailed
derivation of the equations is done in App. A, and that here we will only give insight on how to
derive them and about some important aspects.

2.1 General system to be studied

Fig. 5: Scheme of the general system (holes).

In Fig. 5 we display a general representation
of the system we will study. The whole space
is divided into four different regions labelled
by I, II, III and IV . Medium I goes from
z = −∞ to z = 0 and it is dielectric with con-
stant εI . Medium II is also dielectric but with
εII , and it covers from z = 0 to z = h1. In con-
trast, medium III is a metallic slab drilled, in
this case, by holes, which are dielectric. The
dielectric constant of the metal is εM while the
holes one is εIII . This region occupies from
z = h1 to z = h2. Last medium is medium IV , which goes from z = h2 to z = ∞, being also
dielectric and characterized by εIV .

At the interface between regions I and II, i.e., at z = 0, we place the 2D layer we explained
in Sec. 1.1. As we already said, it will be characterised by α, encapsulating the conductivity of
the film. So, the distance between this 2D layer and the metallic upper surface is h1. In addition,
metallic slab drillings are not randomly performed. It is a infinitely periodic pattern constituted
by equal “unit cells”. These unit cells have a certain number of holes distributed along it in a
specific way. An example of this is shown in Fig. 25 in App. A, where it is seen that unit cells
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are defined by two lengths: px and py, and every hole will have the same sizes: lx and ly. These
sizes characterise the shape of the holes but not their distribution into the unit cell, which is
defined by two positions and one angle: xc, yc and θc, being the x and y coordinate of the hole
centre and its angle of orientation respect the x axis, respectively. So, this is the general expla-
nation of our system. Now, we will move on to describe some important aspects to be considered.

As we have already stated, we will work with two different types of drillings: holes and
dimples. Holes situation has been outlined in the previous paragraphs because we have used
it as guiding example. On the other hand, for dimples we need to clarify that region IV does
not exist and that h2 extends to the dimples bottom. And of course, after that, we still have
metal. As it can be deduced from the differences between both situations, the quantities we will
compute will differ for each case. For holes we will primarily examine transmittance, i.e., the
EM energy in region IV ; whereas for dimples we will address to absorption or, less frequently,
reflectance.

Before continuing, we want to clarify the topic we initiated about the appropiate number
of considered Bragg modes in the coupled-mode method. Throughout all this work we will
operate with Λ, which will basically be the minimal periodicity of the system, being typically
the distance between different holes (or dimples). We will write px and py as an integer of it,
where this integer is the number of holes in each direction because we will typically distribute
them along x axis. Then, the number of considered modes is related with Mx = px/Λ for the
x direction and My = py/Λ for the y direction, but only in the modal expansions for regions I,
II and IV . Region III is quite special because holes and dimples behave like wave guides. For
these, we will only consider one guided mode, the lower energy or fundamental one (nx = 0 and
ny = 1, because we will usually take ly > lx).

The meaning of this choice of modes number will arise now. Regions I, II and IV modes
are characterised by a quantity we will call G, which is G = {~k0 + ~G, σ}. ~k0 is the inci-
dence momentum vector, which tells us how the incident wave is coming. ~G is a Bragg vector,
which lives in the reciprocal lattice of the unit cell and can be written as ~G = (Gx, Gy)

T =

2π
(
mx
px
,
my

py

)T
. There, mx and my are: mx = {−Mx,−Mx + 1, . . . ,Mx − 1,Mx} ∈ Z and

my = {−My,−My + 1, . . . ,My − 1,My} ∈ Z, and characterise the corresponding mode. On
the other hand, σ corresponds to the polarization degree of freedom. It can take two values:
p or s, which will constitute the polarization basis we will use. This choice of Mx and My is
well-justified in [13] and it produces the minimal number of modes we need to take in order to
be able to excite surface plasmon polaritons (SPPs) on the metal surface. Obviously, the more
modes we take, the better is our simulation. However, this is an acceptable (minimal) consid-
eration and the only consequence is a little displacement of the transmittance peaks in larger
wavelengths. As we have said, this is enough for us because we are interested in a qualitative
approach to the problem, or in other words, we want to achieve a physical explanation and the
tendencies of the processes in our system. This is why we use the minimal model [13]. Just as
clarifying example, if we have only one hole into our unit cell, thus px = py = Λ, Mx = My = 1,
having then three Bragg’s vectors for each direction.

The explicit functional form for the modes in regions I, II and IV is

〈~r‖|~k‖, p〉 =
ei
~k‖·~r‖

k‖
√
pxpy

(kx, ky)
T , (3)

〈~r‖|~k‖, s〉 =
ei
~k‖·~r‖

k‖
√
pxpy

(−ky, kx)T , (4)
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where ~k‖ = (kx, ky)
T = ~k0 + ~G and ~r‖ is a vector of the unit cell. Note that the vectorial

character of the previous expressions is determined by the polarization. When ~k‖ = ~0 the
distinction between the case σ = p and the case σ = s is arbitrary, so we take wilfully that
〈~r‖|~0, p〉 = (1, 0)T /

√
pxpy and 〈~r‖|~0, s〉 = (0, 1)T /

√
pxpy. On the other hand, the fundamental

mode in region III is expressed as

〈~r‖|n〉 =

√
2

lxly
sin(qy(y + ly/2)) · (1, 0)T for ~r‖ inside the hole and 0 otherwise, (5)

where n only refers to we are considering the n-th hole, but the modes for every hole are the
same. Note that, here, the bi-vector and the coordinates (~r‖) belong to the reference framework
of the hole, including any possible rotation of this latter (see App. B.2 for a further explanation).

As we stated previously, in this work we will present two different approximations for the
metallic slab: it is a perfect electric conductor (PEC) or it follows the surface impedance bound-
ary conditions (SIBC) approximation. First, one supposes that the dielectric constant of the
metal is εM = −∞, which implies that the EM fields do not penetrate the metal and they are
zero at the surface. This also implies that there is no absorption by the metal. On the other
hand, the SIBC approximation does consider the EM fields penetration into the metal. This can
be understood as the first-order Taylor expansion in zs = 1/

√
εM , where εM is the actual value

of the dielectric constant (see Fig. 4) and not −∞ as happened for PEC (in that case, zs = 0 and
it corresponds to the zero-order Taylor expansion). This zs is used to relate the tangential com-
ponents of the electric and magnetic fields at the surface of the metal such as | ~E〉 = zs | ~H × ûn〉,
where ûn is an unitary vector orthogonal to the surface and pointing to the inside of the mate-
rial. As the implementation of the SIBC approximation to vertical surfaces (holes walls) would
complicate the calculations, we have decided only to apply it in the horizontal surfaces. How-
ever, the effect of field penetration is phenomenologically considered for the vertical surfaces by
enlarging of hole size. Since the metal is no more a perfect conductor, the EM field penetrate
the material and we do not have the condition of cancelling the fields at the surface. Therefore,
this can be seen as an effective enlarging of the holes. We will model it by the use of the skin
depth, defined as δ = λ·Im(zs)

2π , and we will use it as an addition to the holes length and width
but corrected by a phenomenologically estimated parameter, i.e., l′x,y = lx,y +aδ, being a ' 1.25
for our case [26]. Thus, we have solved the problem of implementing the SIBC approximation
for the vertical surfaces. However, the above definition of zs is perfectly valid when |εM | � εd,
being εd the dielectric constant of the sharing-interface dielectric, but as we are not exactly in
that situation because of the εM dependence on wavelength (see Fig. 4), we are going to con-
sider zs = 1/

√
εM + 1 instead of the previous one. This is a next step refinement of the SIBC

approximation. Here, 1 corresponds to the vacuum dielectric constant, which will be mainly the
sharing-interface dielectric that we will use. Nevertheless, there will be some occasions where we
will utilise glass instead of vacuum, but this fact will do not worry us because we only seek a qual-
itative approach to our colleagues’ results [21] and this previous expression is more than enough.

Having all this into consideration, we could start with the derivation of the governing equa-
tions for the four cases we have stated: PEC with holes, PEC with dimples, SIBC with holes
and SIBC with dimples. However, since the procedure is considerably long, we have decided to
put it entirely in App. A and here we will only highlight the key points.

Instead of the magnetic field, we will use other equivalent quantity whose expression in terms
of the electric field is just through the modal admittance of the corresponding mode (see Eq. 19
of App. A). We will use Dirac’s notation in order to write the modes in the superposition, being
well-defined in Eqs. 3, 4 and 5. Then, we will put the fields for every region in terms of some
parameters (see Eqs. 28, 29, 30 and 31 of App. A), which encapsulate the weights of each mode
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and which are more understandable if we attend to Fig. 26 in App. A. After that, we will make
the EM fields to satisfy the boundary conditions at the three interfaces, providing the equations
we will solve. But before that, we will carry out a redefinition of some parameters in a way that
our unknown quantities then will be the electric field modal amplitudes at both upper and lower
metallic interfaces ({En} and {E′n}, respectively). Now, we are ready to present the governing
equations for each case:

• PEC with holes, derived in App. A.1:

(GI,IInn − Σn)En +
∑
m 6=n

GI,IInm Em −GVnE′n = Iex0,n,

(GIVnn − Σn)E′n +
∑
m6=n

GIVnmEm −GVnEn = 0.
(6)

• PEC with dimples, derived in App. A.2:

(GI,IInn − Σn)En +
∑
m6=n

GI,IInm Em = Iex0,n. (7)

• SIBC with holes, derived in App. A.3:

(GI,IInn − Σn)En +
∑
m6=n

GI,IInm Em −GVnE′n = Iex0,n,

(GIVnn − Σn)E′n +
∑
m6=n

GIVnmEm −GVnEn = 0.
(8)

• SIBC with dimples, derived in App. A.4:

(GI,IInn − Σn)En +
∑
m6=n

GI,IInm Em = Iex0,n. (9)

Our indices (n) correspond to the n-th hole/dimple in the unit cell, so we have two equations
per hole for hole arrays and one equation per dimple for dimple arrays. In fact, we could say we
have one equation per aperture in the unit cell. Also, the equations for dimples do not present
any dependence on {E′n} because it is the electric field modal amplitude at the exit interface,
but it is zero.

Fig. 6: Physical relevance of the
terms that appear in the gov-
erning equations.

Now, we must address the meaning of every term
that appears in the governing equations: GI,IInm , GIVnm,
Σn, GVn and Iex0,n. Their expressions are indicated in
their corresponding appendices because they vary accord-
ing to the considered case (see Apps. A.1, A.2, A.3
and A.4). All of them only depend on a handful
of known quantities such as the 2D layer conductivity
(via α), the modal admittances, some exponentials (depen-
dent on h and h1) and the overlapping integrals (calcu-
lated in detail in App. B). However, what we are re-
ally interested in is the physical meaning of them. For
a greater understanding it is helpful to take a look to
Fig. 6 where we graphically establish a physical relation for
them.
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GI,IInm and GIVnm correspond to the coupling between n-th and m-th apertures throughout any
propagating or evanescent modes at the z = h1 and z = h2 surfaces, respectively. Iex0,n is the
external illumination, basically governed by the coupling between the incident plane wave (in-
dicated by 0) and the waveguide mode corresponding to the n-th entry aperture. GVn represents
the coupling between the z = h1 and z = h2 interfaces but for the same hole (n-th). Obviously
this term only appears if we are considering holes, for dimples there is no exit aperture. Finally,
Σn is related to the bouncing when the EM fields inside n-th hole reach the end of the waveguide.

To conclude, note that this kind of equations has been derived many times [12–14, 26], but
always for a simpler system: only the metallic structure. Here, we present the solution introduc-
ing also a 2D layer before the drilled slab, resulting in different, and more complex, expressions
for almost every term (see App. A).

2.2 Comparison between PEC and SIBC

Firstly, we will discuss, looking at the transmittance (T ) spectrum, the differences of considering
one of the metal approximations or the other one. Needless to say, if we intend to observe the
transmittance spectrum, then we will choose a holey metallic slab. For this purpose, the selected
situation is characterised by the following parameters: {εI = εII = εIII = εIV = 1, px = py =

600 nm, lx = ly = h = 200 nm, ~k0 = ~0, σ0 = p}, where σ0 alludes to the polarization of the
incident plane wave. Note that as we are considering every region as vacuum and we are not
placing the 2D layer yet, h1 is meaningless.

Fig. 7: Transmittance spectrum for both considered
approximations (Gold).

In Fig. 7 we take this chosen situation and
both spectra are shown: gold as PEC (black)
and gold considering the SIBC approximation
(red). In the range of wavelengths we will
work with (mostly visible regime), PEC ap-
proximation is not valid enough because of
two reasons: fields do not penetrate the metal
surface and plasmons do not emerge. SIBC
approximation provides us a framework where
these do happen. However, the SIBC approx-
imation also have some details that may be-
come problematic, like it is uniquely a very
good approximation if the area of vertical
metallic surfaces is much lower than the hor-
izontal ones and the hole size is larger than
the skin depth [26]. Both conditions will
be loosely satisfied throughout all this thesis.
About both spectra comparison, apart from the displacement in wavelengths suffered by the
red curve respect the black, we also observe a notorious reduction in transmittance due to the
absorption of the realistic metal. And on the other hand, one common feature is the appearance
of two different peaks in each spectrum.

Later, we will explain in more detail why it is so necessary that plasmons emerge in our metal
surface. So, in short, for the key results of this thesis we will be using the SIBC approximation
in order to get as close as possible to the real situation.

It is also important to note that even though PEC approximation is not so good in this
regime because of the previous two reasons, there are other wavelengths ranges where it works
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well such as microwaves or THz regime [27]. In addition, a more accurate method would be the
finite-difference time-domain method (FDTD), but it is unfeasible for these kind of problems,
because it is based on real space discretization for Maxwell equations and for the whole struc-
ture. Also, there are finite difference and finite element methods (FDM and FEM, respectively),
which works with a fixed frequency. However, they do not provide physical insight and the
simulations last hours or even days.

Now, we can move on to study the wavelength validity range for which SIBC approximation
is reasonable. Here it is convenient to recall the two quantities we talked about when we pre-
sented this approximation. These are: zs = 1/

√
εM + 1, and the skin depth δ = λ · Im(zs)/2π.

As we said, SIBC approximation can be understood as the first-order Taylor expansion in zs, so
we need it to be small. But, what exactly means to be small? Well, from λ ' 475 on, zs order
of magnitude is rather acceptable (see Fig. 8a). In order to provide insight, one can think about
how zs was if we had a PEC: as εM = −∞, zs is essentially zero but imaginary. The real part
of zs is which encapsulates the absorption of the metal. So, it will be desirable to have both
real and imaginary parts small, with Im(zs)� Re(zs). This threshold wavelength condition is
complemented by the other quantity, the skin depth δ. We also need it to be small because if
we enlarge so much our holes (or dimples) size, these will overlap each other or/and will push
the limits of the unit cell. So, we will consider δ ∈ (20, 50) nm as a permissible skin depth (see
Fig. 8b), confirming λ ∈ (475, 800) nm as a suited regime to work with. Although there is no
problem in extending a bit more the range, up to λ ∼ 900 nm, as we can observe in Fig. 8.

(a) Real and imaginary parts of zs. (b) Skin depth (δ).

Fig. 8: zs and δ in a wide range of wavelengths. Insets: suitable range for SIBC approximation.

3 Checking our model

In this section we will study an ensemble of statements in order to check if our insight about
the system is correct or not. For this purpose, we will select a case as simple as possible and we
will perform some simulations on it. So, there will be some fixed parameters but others will be
free in order to see what happens when we vary them. Before starting with the system charac-
terisation, we want to emphasize that these results will be also used to explain some concepts
that will appear throughout this thesis.

Then, first of all, we will consider the metallic slab as a PEC (i.e., εM = −∞) and it will be
drilled by holes, having thereby the first of all described cases: PEC with holes. So, accordingly,
we will address to the system transmittance. In addition, all regions will be vacuum, which
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means that εI = εII = εIII = εIV = 1. We will also consider that there is no 2D layer yet, which
is equivalent to say that α = 0. Our incident plane wave will be characterised by a zero incident
momentum, ~k0 = ~0 (normal incidence), while the incident polarization will vary. On the other
hand, unit cell dimensions and holes dimensions will remain fixed, being Λ = px = py = 480 nm
and lx = ly = 0.4 · Λ = 192 nm. About the z-direction distances, h = 0.2 · Λ = 96 nm but h1

is irrelevant because εI = εII and there is no 2D layer. And lastly, we will take only one hole
per unit cell. These are all the fixed quantities. Therefore, hole position (~rc), hole angle θc and
incident polarization (σ0) are susceptible to be varied.

Fig. 9 can be used to understand several details about the unit cell, the incident polariza-
tion, the orientation of the holes, etc. We will take Fig. 9a as guide to compare the other ones.
This transmittance spectrum is obtained settling the hole at the unit cell centre, forming the
lower side of the hole an angle of 0o respect the x direction and being p the polarization of the
incident plane wave. Note that this system has been already studied and the spectrum that we
obtain here is alike the presented in [13], as well as the simplified equations we derive taking
this specific configuration.

(a) xc = yc = Λ
2 , θc = 0, σ0 = p (b) xc = yc = Λ

3
(c) σ0 = s

(d) θc = π
2 , σ

0 = s (e) σ0 = σ+ (f) σ0 = σ−

Fig. 9: Transmittance spectrum for six different situations. (a) is the pattern situation and in the captions
of the rest we specify the performed changes respect the first one.

If we shift the hole to another point on the unit cell, we should expect that nothing changes,
given that the unit cell is infinitely periodic into the metallic slab. In fact, this is what happens
when we establish the hole centre at xc = yc = Λ/3 (see Fig. 9b).

And, what happens if we take s as the incident polarization? In Fig. 9c we can see that
transmittance vanishes. This is because, for normal incidence (~k0 = ~0) and s polarization, the
plane wave mode only has y component, while the hole/waveguide mode only has x component
so they cannot couple each other and produce a modal-overlapping which would lead to non-
zero transmittance (Iex0,n = 0). An analogy could be the experiment of trying to observe linearly
polarized light through a polarizer with the opposite linear polarization. And just as remainder,
the hole mode only has x component because we uniquely consider the fundamental mode.
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However, in Fig. 9d, this previous reasoning is compensated by rotating the hole π/2 respect
x direction. In this new situation, the plane wave mode still only has y component but our
hole mode, which only had x component, has been rotated π/2 and now it only has y com-
ponent. Then, both modes have the same component and can couple to produce a non-zero
transmittance. In fact, the obtained spectrum is equivalent to the first one (see Fig. 9a), which
is completely consistent because the plane wave of p polarization (and normal incidence) only
has x component and then it perfectly couples with a non-rotated hole.

We will jointly discuss Figs. 9e and 9f. For both we will set the hole at the centre of the unit
cell and non-rotated respect the horizontal. But, in contrast with Fig. 9a, we will choose σ+

and σ− as the incident polarization, respectively. We have repeatedly said that our polarization
basis is conformed by p and s, but we have not explained in detail what this means. We do
have remarked that the vectorial character of the projection onto the real space of the plane
wave modes is due to the polarization. These have different expressions if we are considering
p or s polarization. Then, we can see them as |p〉 = (1, 0)T and |s〉 = (0, 1)T . On the other
hand, σ+ and σ−, which correspond to left-handed and right-handed circularly polarized light,
respectively, can be also written in terms of these p and s as follows

|σ+〉 ≡ |L〉 =
1√
2

(1, i)T =
1√
2

(p+ is),

|σ−〉 ≡ |R〉 =
1√
2

(1,−i)T =
1√
2

(p− is).
(10)

And coming back to Figs. 9e and 9f, it is logical to see a reduction of exactly half of trans-
mittance because our hole is only coupling with the half of the incident plane wave: the p part
(and both components have the same weight). This fact will be expanded just below.

This notation has some implications when we seek the calculation of quantities such as EM
energy fluxes, Iex0,n or just δG,0. For example, if we tackle the computation of δG,0, the first thing

we have to consider is δG,0 = δ ~G,~0δσ,σ0 , because 0 here represents the incident state, i.e., ~k0 and

σ0, while G represents ~k0 + ~G and σ, i.e., a specific mode of the expansion. δ ~G,~0 is straightfor-

ward because we just have to take mx = my = 0. However, δσ,σ0 turns trickier when σ0 is not
just p or s because σ indeed is, given it is the basis we work with. Of course, δσ,σ0 = 〈σ|σ0〉.
And it implies that when we are computing Iex0,n, for example, we will have a non-zero value for

Iex
(~0,p),n

∝ 〈p|σ0〉 and also for Iex
(~0,s),n

∝ 〈s|σ0〉. This type of reasoning is also done when we need

to compute some energy fluxes, such as Winc (see App. C), but here the required calculations

are like 〈σ0|Y I∗
0 σ0〉 ∝ Y I∗

~0,p

∣∣∣|σ0〉p
∣∣∣2 +Y I∗

~0,s

∣∣|σ0〉s
∣∣2, where |σ0〉p,s are the p and s components of σ0.

As it can be deduced from the used notation, this is not only valid for σ+ and σ− but we can
use it for any sort of polarization, writing it in terms of p and s.

To conclude, we will also want to comment what happens when we extend the unit cell and
the number of holes. As we already stated, throughout this work we will consider Λ as the
typical distance between holes, and when we will add more holes to the unit cell, we will do
it increasing as well the unit cell dimension by Λ factors. So, if, for example, we have three
holes in the unit cell distributed along x direction, then px = 3Λ and py = Λ. Obviously, we
will consider more Bragg modes for x direction than for y direction, concretely 7 = 3 · 2 + 1 for
x and 3 = 1 · 2 + 1 for y. But what we really want to remark here is that, if every hole has
the same angle and size, then the situation with one hole is equivalent to the previous one with
more holes (not shown), leading to equal spectra.
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So, to sum up, we have developed insight by studying simple cases: we have learned what
happens if we relocate the holes, if we rotate them or if we choose an incident plane wave with
a little more complex polarization.

4 Results

In this section we will present the different results we have been extracting over these months of
intensive work. Some of them are already known and will be used to test the well-functioning of
our simulations and to reinforce our understanding of the diverse exhibited phenomena. Others,
in contrast, are novel. Most of them have fruitfully contributed to the enlightening collaboration
that we have enjoyed with our colleagues at ISIS. Because, after all, the main objective of both
this joint effort and this thesis is to provide a qualitative theoretical framework where their
experiments may rely on.

Taking as a reference the experimental setup that our collaborators presented in [21] and
that we have discussed with them, we are going to fix some of the system parameters now. The
dielectric constants of the media are εI = 1 and εII = εIII = 2.25. We are coming from vacuum
and between the 2D layer and the dimples array we introduce glass as spacer. Note here that
they always consider dimples, but when we have to consider holes we will also take εIV = 1.
The holes/dimples sizes are lx = 100 nm and ly = 200 nm. The distance between the 2D layer
and the metal surface is h1 = 5 nm. The depth of the dimples or the metallic width, depending
on if we are considering dimples or holes, is h = 80 nm. In addition, Λ = 480 nm, and if we
consider n holes or dimples, the unit cell size will typically be px = n · Λ and py = Λ, where
the holes/dimples will be evenly distributed along x direction at a distance of Λ. And due to
the infinitely periodic structure of the metal surface, they will be also evenly distributed along
y axis at a distance of Λ. In short, the typical spacing between holes/dimples will be Λ, as well
as the y periodicity, but x periodicity will be n · Λ. Here we want to note that Λ = 480 nm
was optimally chosen by our collaborators in order to enhance the plasmonic branches coupling
that we will see in Secs. 4.2, 4.3, 4.4. The last two features we are going to fix are the 2D layer
and the metallic material: as 2D film we will use the WS2 that we presented in Sec. 1.1, and
as metallic material we will consider the gold introduced at Sec. 1.2, which signifies that we are
going to use the SIBC approximation. Note that, as opposed to Sec. 3, here we will not fix
the incident momentum completely (k0

y = 0) because we will probe over it (k0
x), emerging truly

interesting results from these kind of analyses.

4.1 General features

In Fig. 10 we represent the absorption of the entire system for a wide range of wavelengths and
incident momenta. This total absorption can be computed in terms of the EM energy fluxes
deduced in App. C.3, subtracting the EM flux in the region IV (WIV ) to the EM flux in the re-
gion I (WI), and renormalized respect the incident EM flux (Winc): Abstot = (WI−WIV )/Winc.
It is important to remark that the considered system presents holes drilling the metallic slab.
We only have one hole per unit cell located in its centre and non-rotated (θc = 0o). Also, the
incident polarization we have taken is σ0 = p because, since the hole orientation is aligned with
the x axis, p polarization provides us a maximum coupling between the modes. In Fig. 10 we can
see three highlighted areas, which will be used to discuss the different phenomena that appear
in this representation.
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Fig. 10: Total absorption colour-map in terms of the
wavelength and the x component of the incident mo-
mentum.

The solid red line (see Fig. 10) around
λ ' 1.05 · Λ = 504 nm corresponds to the
absorption produced by the golden slab. As
a result of considering the SIBC approxima-
tion, gold behaves like a realistic metal giving
rise to this kind of absorption. This absorp-
tion wavelength could have been deduced ear-
lier by means of three different observations,
though closely interlinked. Obviously we are
talking about the three above figures which
cover three related aspects about the consid-
ered gold. In Fig. 4 we represented the di-
electric constant of the gold, and if we look at
the imaginary part of εM , we observe that its
maximum is around λ ∼ 500 nm. This also
applies if we have a look at the real part of zs
in Fig. 8a, we observe that, in the valid range
of the SIBC approximation (inset), the maximum is around λ ∼ 500 nm too. The last check
comes from the skin depth. In the valid range of Fig. 8b we realise that at λ ∼ 500 nm the skin
depth maximum takes place. Besides, this is completely consistent with the fact that the skin
depth quantifies the distance that EM fields penetrate the metallic surface. And obviously, the
more they penetrate, the greater is the absorption.

On the other hand, the dashed red line (see Fig. 10) around λ ' 1.273 · Λ = 611 nm corre-
sponds to the absorption produced by the A-exciton of the WS2-layer. In order to prove that
this dashed line corresponds indeed to the mentioned phenomenon, we can focus on the WS2

absorption, shown in Fig. 2(b). As we said in Sec. 1.1, the lower-energy peak is the A-exciton
one, and it is around 2.029 eV . This is a bit confusing because of the units so here we set a simple
rule of thumb down that we will use now and further on: E[eV ] = 1240/λ[nm]. Then, following
this relation we see that 611 nm ≡ 2.029 eV , and therefore we have confirmed the explanation
of this absorption. Note that, even though one may not see this momentum-independent ab-
sorption by reason of the dashed red line over the colour-map, it can be indirectly observed by
the contour lines around it, they flatten at λ ' 1.273 · Λ for all incident momentum. Another
point to be noted is that the order of this absorption is much lower than the gold and it can
be barely observed because of the colour scale. Nevertheless, we will choose a more appropriate
wavelengths range in future plots which will allows us to observe it perfectly, but here we also
wanted to show the gold absorption.

To conclude, we will discuss the phenomenon that is highlighted via the pink rectangular
box (see Fig. 10). The first two phenomena have one thing in common: independence from the
incident momentum, i.e., they hold the same absorption no matter if the incident momentum
takes a value or another. So, both are only wavelength dependent phenomena. However, this
last point is diametrically opposed, it depends on the incident momentum too. We will use what
remains of this section to present just an advancement about the cause of this parabola is the
surface plasmon polaritons (SPPs), or just plasmons. We will not treat them here because we
will dedicate the next section (see Sec. 4.2) to cover entirely this phenomenon.

4.2 Plasmon dispersion relation

Surface plasmon polaritons (SPPs) are a special type of EM modes that arise near (nanometric
scale) a dielectric-metal interface. They are the result of combining a collective excitation of
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the metal free electrons (“surface plasmon”) with EM waves in the dielectric (“polariton”).
They can be implemented in a wide range of scopes of application such as physics (materials),
environmental monitoring, chemical sensing or bioimaging, amongst others [9]. This is because
their interesting features: a high sensitivity to the dielectric material, a strong variation of the
local density of photonic states, the possibility of concentrate light beyond the diffraction limit,
a tight spatial confinement or a very fast response [10]. Now, the plasmonic relation dispersion
can be written, following our notation, as

kSPP =
2π

λ

√
εIIεM
εII + εM

, (11)

where kSPP is the wavevector modulus of this surface wave, εII corresponds simply to the di-
electric constant of the dielectric material and obviously εM is the metal dielectric constant.

If one plots the relation dispersion (not shown), it can be observed that the plasmonic curve
lies to the right of light cone, which means that our incident propagating radiation will not be
enough to excite these SPPs. This is because our radiation lies inside the light cone and therefore
there is no way of conserving simultaneously parallel momentum and energy. However, there are
two main strategies in order to solve this problem: ATR coupling and grating coupling. We will
use the latter: grating coupling. Note that both are methods that use light as exciter, but an
excitation via electrons can also be performed. All these methods can be found in detail at [28].

Basically, when the photon hits our holes/dimples array, it acquires a new momentum cor-
responding to a vector of our unit cell reciprocal lattice (~kR). This can be seen as the plasmonic
band gets folded by means of the reciprocal lattice momentum and, thus, it may be possible to
find a point of this dispersion relation inside the light cone, satisfying both parallel momentum
and energy conservations. This is expressed in Eq. 12,

~kSPP = ~k0 + ~kR, (12)

where ~kSPP is the vectorial form of the plasmonic dispersion relation, ~k0 is the incident
momentum and ~kR is a vector of the reciprocal lattice (see Sec. 2.1).
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Fig. 11: Total absorption colour-map in terms of the
wavelength and the x component of the incident mo-
mentum.

In Fig. 11 we represent again the absorp-
tion of the entire system for a wide range
of wavelengths and incident momenta. Now,
the considered system presents dimples in-
stead of holes, which implies that Abstot =
(Winc−Wref )/Winc, where Winc and Wref are
the incident and reflected EM energy fluxes,
respectively. We only have one dimple per
unit cell located in its centre and non-rotated
(θc = 0o). Also, the incident polarization we
have taken is σ0 = p and we have not intro-
duced the 2D layer in order to remove the hor-
izontal band at λ ' 1.273 ·Λ that we observed
in Fig. 10. The last important remark about
the system taken in Fig. 11 is that we have
chosen εI = εII = εIII = 1 because, in this
way, above the metallic slab we only have one
type of dielectric material. The point is that,
if we considered two different dielectrics for region I and II and h1 was relatively small, Eq. 11
would stop being valid for our system because, in this wavelengths range, the confinement length
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of the SPP in the dielectric is on the order of hundreds of nanometers and the SPP would cross
the interference between both dielectric media.

Coming back to Fig. 11, the solid red line corresponds to Eq. 12 so we can confirm that our
system (colour-map) satisfies the theoretical SPP dispersion relation (red line). In fact, we can
see two different branches, which are

k0
x =

{
+kSPP − 2π/Λ if k0

x < 0,
−kSPP + 2π/Λ if k0

x > 0.
(13)

Note that we have only considered the x components of Eq. 12 because in this situation we set
k0
y and we do not couple with the y direction (dimple at 0o and p polarization).

With this discussion we have completed the explanation about the phenomenon inside the
pink box in Fig. 10 that we presented in Sec. 4.1 too and now we understand why this is a
momentum-dependent phenomenon. Finally, one last remark: we have chosen εI = εII = εIII in
order to get a better agreement between the simulation and the theoretical expression. However,
from now on, we will consider them as different media and therefore Eq. 11 will not be strictly
satisfied. Despite all, it will yield an acceptably good agreement and we will only see a little
displacement.

4.3 Geometric phase

Fig. 12: x-y representation of the unit cell.

In this section we will integrate two more lev-
els of similarity respect the experiments car-
ried out by our collaborators in [21]. The first
one consists in choosing εII = εIII = 2.25
but keeping εI = 1 up. This is because in
their setup a glass is utilised as spacer between
the 2D layer and the dimples array. In fact,
this glass is poly(methyl meth-acrylate). This
choice of dielectric constants will produce a
small displacement when we plot some curves corresponding to the SPP dispersion relation, but
as we said in the previous section (see Sec. 4.2), it is not so relevant. The other point we will
implement in this section is that we will take six dimples per unit cell instead of one, which
means that we will also consider px = 6 ·Λ and Mx = 6. In addition, these dimples will not have
the same orientation but they will be rotated stepwise along the x axis by an angle φ = −π/6.
We can observe a representation of this dimples configuration in Fig. 12. We will not introduce
yet the 2D layer in order to avoid its characteristic absorption interfering.

Basically, what we intend to accomplish in this section is understand the effect of this kind
of rotations over the dimples, and what occurs when we use different incident polarizations (p,
s, σ+ and σ−).

In [21] they explain this phenomenon: this rotating distribution and its orbital period (6 ·Λ)
establish a rotation vector ~Ω = 2π

px
ẑ = 2π

6Λ ẑ. It combines with σ the spin of the incident light,

i.e., plus if it is σ+ and minus if σ−, to produce a geometric phase Φg = −Ωσx. This can be
deduced from the analysis of the topological Berry phase made in [20]. And, from the gradient
of this geometric phase arises a new momentum ~kg = −σ(2π/6Λ)x̂. This implies a new term in
the parallel momentum conservation, which is presented in Eq. 14,

~kSPP = ~k0 + (2π/Λ)(ux̂+ vŷ) + ~kg, (14)
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where (u, v) defines the orders of the plasmonic dispersions, being transverse magnetic (TM) po-
larized along the x direction and transverse electric (TE) polarized along the y axis, respectively.

In Fig. 13 we plot the total absorption as a colour-map depending on the wavelength and
incident momentum in x for four different incident polarizations: σ+ (see Fig. 13a), σ− (see
Fig. 13b), p (see Fig. 13c) and s (see Fig. 13d).
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Fig. 13: Total absorption colour-map in terms of the wavelength and the x component of the incident
momentum for four different incident polarizations. Red lines: SPP dispersion relation branches. Pink
lines: geometric phase branches.

In Figs. 13 we observe two different effects. The red lines refer to the plasmonic dispersion
relation produced by the coupling of the incident light with the reciprocal lattice of our unit
cell (see Sec. 4.2), and we will call them grating plasmonic branches because of its origin. And
the pink lines correspond to this new topological effect presented in this section. Both presents
aspects that are worth noting so we will discuss them separately.

In the first place, the SPP dispersion relation. One could think that as px = 6Λ, then
kR = 2π/6Λ, but nothing could be further from the truth. We need enough momentum to
excite the plasmon and this only happens if we take mx = Mx = n (see Sec. 2.1, this choice is
in [13] as the minimal model), i.e., if kR = 6 · (2π/6Λ) = 2π/Λ. So, the situation is equivalent to
Eq. 13 (only TM modes). Besides, these plasmons branches appear for σ0 = σ+, σ−, p and not
for σ0 = s. This is because we are only computing the excitation due to incident momentum
in the x direction and s is a fully y component vector. Obviously, σ+ and σ− branches are less
intense because only a half of the polarization gets coupled with the dimples, such is seen in
Eq. 10. Another vision about the non-existence of plasmonic branches for the s polarization can
be mathematically seen writing p and s in terms of the circular polarizations, which is done in
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Eq. 15,

|p〉 =
1√
2

(σ+ + σ−),

|s〉 =
1√
2i

(σ+ − σ−).

(15)

From the subtraction which defines s we can also infer the annihilation of the grating plas-
monic branches. And not only that, we can infer the enhancement of the grating plasmonic
branches for p polarization and the appearance of both geometric phase branches too for p and
s.

Secondly, we will discuss the geometric phase branches. There exist an intrinsic link between
u = ±1 and σ = σ± = ±1, having as a consequence that only one new branch appears if the
incident polarization is either σ+ or σ−. In other words, a spin-momentum locked branch
emerges. Therefore, they appear in kSPP = k0

x + u(2π/Λ) − σ(2π/6Λ). So, depending on the
incident handed polarization,

for σ+ : kSPP = k0
x + 2π/Λ− 2π/6Λ,

for σ− : −kSPP = k0
x − 2π/Λ + 2π/6Λ.

(16)

Note that the change of sign in kSPP for σ− corresponds to the associated branch with u = −1
(see lower part of Eq. 13).

This mechanism breaks the left-right symmetry of the modal response of the array, emerging
the chirality. One potential application of this chirality would be using a nanophotonic struc-
ture where we could control the EM fields in order to make them resonate with chiral molecules,
widely used in biology or pharmacology. In Figs. 13a and 13b we observe a geometric phase
branch in the position we have predicted. In addition, we can also see a mirror symmetry with
respect to k0

x = 0 µm−1 between both handed polarizations. On the other hand, Figs. 13c and
13d present two geometric phase branches instead of one because of the fact that they are con-
stituted by a part of σ+ and a part of σ− (see Eq. 15), so both are excited. Although, obviously,
they are much less intense than in σ± cases.

These last results are, qualitatively, in an absolute agreement with the broken left-right sym-
metry that our collaborators presented in [21]. Besides, we have also verified it through several
results that they and we have been exchanging in this time, as well as via discussion meetings.

4.4 Coupling between WS2 and plasmons

In this section we will introduce the 2D layer (WS2). Our objective here is try to observe the
coupling between the WS2 excitons and the geometric phase excited plasmon. From the fact
that the 2D layer takes part in this coupling, instead of looking at the total absorption we will
turn our attention to the absorption of the 2D film Abs2D = (WI −WII)/Winc, where WI is the
EM flux of the region I, WII is the EM flux of the region II and its subtraction is normalized
by the incident EM flux Winc. We will maintain the dimples rotated in the same way we did
in the previous section (see Sec. 4.3), and we will also keep glass as spacer. On the other hand,
since we have seen that σ+ and σ− present mirror symmetry, we will only focus on σ+, i.e., the
left-handed circular polarization.

In Fig. 14 we plot the absorption of the WS2 layer as a function of the wavelength and for
thirty incident momenta: they are linearly spaced from k0

x = −1.5 µm−1 to k0
x = 3.5 µm−1

starting at the bottom and going upwards. In Fig. 14 we clearly observe the A-exciton peak
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around λ ' 1.27 ·Λ, which is characteristic of the 2D layer. On the other hand, we also observe
two of the three branches that we had in Fig. 13a, but just because of the incident momentum
range. However, the order of magnitude of these branches is much lower than Fig. 13a ones,
because in the 2D layer absorption we only note the coupling with this film and not the full
plasmons absorption.

Fig. 14: Absorption of the 2D layer respect wave-
length, for some values of x incident momentum and
σ0 = σ+.

Despite all, we can observe a notewor-
thy feature more in Fig. 14, the conver-
gence of the geometric phase plasmonic band
into the A-exciton band. It occurs around
λ ' 1.27Λ and k0

x = 1 µm−1 (Abs2D ∼
1.5, although it does not correspond to
the absorption itself). This behaviour was
achieved experimentally by our collaborators
in [21], and here we present a theoretical
framework where it is possible to predict
it.

It is also important to clarify that the
lower plasmonic branch corresponds to the
spin-momentum locked SPP branch gener-
ated by the geometric phase; while the upper
branch corresponds to one of the grating plasmonic branches. Obviously, the convergence that
we are interested in is the spin-momentum locked branch into the A-exciton band, because this
is the one due to the left-handed polarization, breaks the left-right symmetry and provides chi-
rality to our system. The other branch, in contrast, also appears equally when we consider the
other handed polarization so it is not so relevant.

The last point we want to remark here is the relevance of taking Λ = 480 nm that we ad-
vanced in Sec. 4. This optimal Λ produces that the convergence of all plasmonic branches takes
place resonantly around the A-exciton band of the WS2-layer. This fact is also explained in [21].

4.5 Varying several parameters

Once we have reviewed and reproduced the main result of [21], we can use our theoretical frame-
work with the aim of enhancing the coupling between the 2D layer and the spin-momentum
plasmonic modes. With this objective in mind, we will select different parameters of our system
and we will study its influence over the coupling separately. In particular, we will consider five
distinct parameters to vary: the depth of the dimples (h), the distance between the 2D layer
and the upper surface of the dimples array (h1), the dielectric constant of the spacer (εII,III),
the ratio between the dimples lengths (ly/lx) and the number of dimples (n).

As we observed in Fig. 14 from Sec. 4.4, the plasmonic effect is not too marked. However,
there exists a simple way of obtaining an amplification of the effect, while maintaining the phys-
ical origin of the phenomena and the main dependences. We will remove the imaginary part of
the metal dielectric constant, causing that the plasmons cannot be absorbed by the metal and
that their only mechanism plasmon loss is radiation. Obviously, this will have as a consequence
the decrease of the total absorption due to the plasmons, but it will do enhance the absorption
of the 2D layer.
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Fig. 15: Absorption of the 2D layer respect wave-
length, for some values of x incident momentum,
σ0 = σ+ and considering the same configuration as
in Fig. 14 but taking Im(εM ) = 0.

Note that this is not experimentally
plausible and we do not intend to pre-
tend that these results will be true re-
sults. We just want to use them as
a guide to improve our system configu-
ration and to probe the spectrum depen-
dence on the parameters that can be ex-
perimentally modulated. In Fig. 15 we dis-
play what happens if we take Im(εM ) =
0 and the consequence is obvious: a re-
markable enhancement of the plasmonic
branches.

We will take the absorption of the 2D layer
shown in Fig. 15 as a pattern plot to compare
the different variations we will carry out in the
following sections. We will hold all parameters fixed except for which varies in each section. Re-
calling these parameters: εI = 1, εII = εIII = 2.25, n = 6, Λ = py = 480 nm, px = 6 · Λ,
ly = 2 · lx = 200 nm, h = 80 nm, h1 = 5 nm, σ0 = σ+ and k0

y = 0 µm−1. The dimples distribu-
tion along the unit cell is the same as Fig. 12 shows, with a rotation of φ = −π/6 stepwise.

We can easily explore lower and greater values through our simulations. In this sense, they
would not need to fabricate each different configuration to test them because we will give to
them a bit more of perspective about the problem.

Varying h

Firstly, we are going to study what happens when we vary the depth of the dimples. For our
experimental collaborators, h ∼ (60− 100) nm, and this is the reason why we chose h = 80 nm.
It is not so correct to select a very small depth because when h < 50 nm the metal partially
becomes transparent. Thus, we choose h = 60 nm and h = 100 nm in order to observe the
dependence of the coupling with respect the dimples depth.

(a) h = 60 nm (b) h = 100 nm

Fig. 16: Absorption of the 2D layer respect wavelength, for some values of x incident momentum,
Im(εM ) = 0 and for two h (left and right).

If we compare Figs. 16a, 16b and 15 we can observe several aspects to be remarked. First,
the greater h is, the more the plasmonic branches suffer a displacement towards greater wave-
lengths. This is very important in order to improve the coupling because we would need to
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approach the geometric branch as close as possible to the A-exciton peak band. Having in mind
this behaviour at the three noted figures, may be an intermediate step between Fig. 15 and
Fig. 16b is even more appropriate: h = 90 nm would be our choice (not shown). On the other
hand, the second dependence on the dimples depth that we can observe in these figures is the
flattening of the plasmonic branches if we increase h. In order to enhance the coupling it is
more convenient to have the peaks as heightened as possible, therefore, this leads to reassert our
choice of h = 90 nm instead of larger depths.

Varying h1

Secondly, we are going to discuss the behaviour of the system as a function of the distance
between the WS2 layer and the upper surface of the metallic slab. Experiment [21] were done
at h1 = 5 nm. The effect of having a smaller or larger distance can be studied by considering
two different cases: h1 = 1 nm and h1 = 15 nm.

(a) h1 = 1 nm (b) h1 = 15 nm

Fig. 17: Absorption of the 2D layer respect wavelength, for some values of x incident momentum,
Im(εM ) = 0 and for two h1 (left and right).

As what happened when we treated the previous parameter, here we have two aspects to be
remarked (see Fig. 17). The first one is that when we increase the parameter h1 we observe a
displacement of the plasmonic branches into greater wavelengths. Likewise, we have to find the
parameter which provides us the better convergence of the geometric branch into the A-exciton
peak band, and obviously, without crossing it. So, something between h1 = 5 nm (see Fig.15)
and h1 = 15 nm (see Fig. 17b) would be ideal. On the other hand, the second aspect to be
discussed is completely opposed to the behaviour of h that we studied in the previous section.
In this case, when we increase h1 we observe an heightening of the plasmonic branches. This
could be thought as counter-intuitive: how is it possible that the coupling increases when we
move the 2D layer away from the dimples array, where the plasmons emerge? We ascribe this
phenomenon to the fact that the plasmon parallel electric field (x and y components) is greater
at a certain distance from the metallic slab than just above it, and it is this plasmon parallel
electric field which couples with the 2D layer. For all this, we have to choose an h1 whose value
is great enough to get an enhancement of the coupling but, at the same time, not too large
because we want to keep the spin-momentum locked branch near the A-exciton band and when
we increase h1 this branch gets shifted to larger wavelengths. Hence, the most appropriate value
for us, after probing between h1 = 5 nm and h1 = 15 nm, is h1 = 10 nm (not shown).
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Varying εII,III

In this section, we are going to study about another feature that we can modify with the objective
of enhancing the coupling. We can take different values for the dielectric constant of the spacer
(εII,III) in order to analyse how it affects the absorption spectrum of the 2D layer. But before
starting with this test, there is an aspect that we must remark. Unlike previous parameters (h
and h1), the dielectric constant of the spacer is not so clearly selectable because it depends on
the chosen material. For example, it is not like h, for which we can decide to drill deeply the
metallic slab and it is solved. Here, we have the constraint of if there exists a dielectric material
with the selected dielectric constant. However, we choose εII,III = 1.5 and εII,III = 3 to see the
spacer dependence.

(a) εII,III = 1.5 (b) εII,III = 3

Fig. 18: Absorption of the 2D layer respect wavelength, for some values of x incident momentum,
Im(εM ) = 0 and for two εII,III (left and right).

Again, we attend to Figs. 18a, 18b and 15 to compare them. We observe the same two
phenomena as we studied the dependence on h. If we reduce the dielectric constant of the
spacer we observe a displacement of the plasmonic branches into lower wavelengths, even cross-
ing the A-exciton band, just like occurs with h. In addition, when we increase this dielectric
constant we notice a little flattening of the plasmonic branches peaks. So, again, we have to
make a compromise: we need a small enough dielectric constant to keep a non-flattened and
heightened plasmonic branches but, at the same time, we also need a large enough εII,III so
that the spin-momentum locked branch converges to the A-exciton band and get an acceptable
coupling. Having this considerations in mind we propose εII,III = 2.5 (not shown) as the opti-
mal dielectric constant of our spacer. On the other hand, coming back to the argument about
the material constraints, we accept that if it is not possible to find any spacer with εII,III = 2.5,
the poly(methyl meth-acrylate), which, as said has εII,III = 2.25, is rather reasonable.

Varying ly/lx

Now, we are going to treat the differences derived from choosing distinct sizes for the dimples.
In order to simplify the analysis, we will keep lx = 100 fixed and we will only vary ly. There
is a little aspect here that we must remark: we have strong restrictions for ly because, if we
enlarge it too much, dimples may overlap each other or/and push the limits of the unit cell. This
limiting value, for lx = 100 nm, is ly = 390 nm. Perhaps it does not seem very large to overlap
or push the limits but we recall that the field penetrates into the metal a distance of the order
of the skin depth into the vertical surfaces. As values to discuss, we have chosen ly = 150 nm
and ly = 250 nm.
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(a) ly/lx = 1.5 (b) ly/lx = 2.5

Fig. 19: Absorption of the 2D layer respect wavelength, for some values of x incident momentum,
Im(εM ) = 0 and for two ly/lx (left and right).

Looking at Figs. 19a, 19b and 15 we can deduce that the two phenomena emerging from
these changes are the same as before. Again, we observe a displacement into greater wavelengths
when we increase ly respect lx. And of course we also appreciate a little flattening of the plas-
monic branches peaks for the same increase. And since we need the geometric phase branch
converging into the A-exciton band and also to be enhanced enough, we choose ly = 200 nm as
our proposition after having probed the intermediate options.

Varying n

Finally, we are going to study the influence of the number of dimples in the coupling between
the spin-momentum locked branch and the 2D layer A-exciton band. This section can be split
in two parts: in the first one we will discuss the dependence on the number of dimples in the
same way that we did with the other parameters and we will explore the geometric phase branch
dependence on the number of dimples; and finally, we will examine a novel type of unit cell that
may provide new intriguing effects.

The first point we must clarify is that if we change the number of dimples, then the angles θc
of the dimples themselves also change. When we had n = 6, the stepwise angle was φ = −π/6
and the shape of its distribution along the unit cell was shown in Fig. 12. However, if we have an
arbitrary number of dimples, n, the angle that we rotate stepwise along the x axis is φ = −π/n.
Here, we are not going to show another unit cell representation for each considered n, but it is
easy to imagine them. If we increase the number of dimples, apart from px increases linearly
too, the rotation of dimples performed along the x axis becomes smoother. In the same way, if
we reduce the number of dimples, this rotation gets more discrete, in the sense that the angle
steps between two of them are more marked.

As we have seen in Sec. 4.3, the geometric phase also depends on the number of dimples
in these configurations. For an arbitrary n, this is ~kg = −σ(2π/nΛ)x̂. This implies that, for
σ+, the geometric branch will appear in k0

x = kSPP − 2π/Λ + 2π/nΛ. So, the more we increase
the number of dimples, the smaller is the distance (in momentum) between the geometric phase
branch and its corresponding grating plasmonic branch (σ+ ⇒ u = +1).

We can observe this fact in Fig. 20. The geometric phase branch (at the middle) gets closer
to the left branch with this tendency. In this Fig. 20 we consider large range in number of
dimples: from n = 3 to n = 20. The case n = 1 is not considered because it is not possible
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to perform a rotation along the dimples in the x axis when we only have one. The case n = 2

is not either considered; in this case, the first dimples would be at θ
(1)
c = 0o and the second at

θ
(2)
c = 90o, this blocks the left-right symmetry breaking and thus, left and right-handed circular

polarizations produce equivalent spectra.

Fig. 20: Absorption of the 2D layer respect x incident
momentum, for λ = 1.4Λ and some values of n, and
taking Im(εM ) = 0.

Once we have studied the behaviour of the
geometric phase branch respect the number of
dimples, we can show the absorption of the
WS2 layer for several specific cases. However,
instead of using the same type of plots as in
the previous parameters discussions, we are
going to use a colour-map to observe more
clearly the dependence on wavelengths and x
incident momentum. We choose n = 3 and
n = 9 as values to compare the different spec-
tra. In Fig. 13a we shown this kind of colour-
map for n = 6 and this incident polariza-
tion, although there are two main differences:
there, we plotted the total absorption of the
system and we did not placed the 2D layer
yet. Then, it is not possible to directly com-
pare that figure with Figs. 21a and 21b here.
However, we can use it as reference, because
the branches positions and shapes are not so affected, particularly when we are considering the
model without metal absorption (setting Im(εM ) = 0).
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(b) n = 9

Fig. 21: 2D layer absorption colour-map in terms of the wavelength and the x component of the incident
momentum for two different number of dimples per unit cell, and Im(εM ) = 0.

In Figs. 21a and 21b there is one main aspect to be emphasized, but from it more arise.
Comparing both figures we can observe that the geometric phase branch (the middle one) has
suffered a displacement getting closer to its parallel grating plasmonic branch when we have
increased n from 3 to 9. This is because of the dependence explained just above. Nevertheless,
this phenomenon has two indirect effects in these spectra. First, we recall the expression for
the geometric phase branch: k0

x = kSPP − 2π/Λ + 2π/nΛ, and the associated plasmonic branch:
k0
x = kSPP −2π/Λ, which are parallel because they only differ in a constant term. This provokes

that while we increase n, the geometric phase branch gets closer not only to the plasmonic
branch but to the A-exciton band too, which is ideal in order to enhance the coupling. Second,
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due to the interaction between the geometric phase branch and the A-exciton band when the
first gets closer to the second, the order of magnitude of Abs2D increases, which is also excellent
for the coupling.

Therefore, taking into account these previous effects one can think about what is the opti-
mal number of dimples to achieve this coupling. Obviously, n = 3 is not enough because we
do not reach the convergence of the geometric phase branch into the A-exciton band, they stay
separated (see Fig. 21a). However, considering n = 5 (not shown) we do reach it and, in fact,
it provides some advantages over larger n’s. If we increase a lot the number of dimples per unit
cell, the computational cost would increase dramatically and the experimental setup would be
more difficult to implement. So, we find that n = 5 is a good compromise and we will use it to
explore the last point.

Fig. 22: x-y representation of the unit cell.

Finally, we will introduce a new type of
unit cell: instead of distributing the dimples
only along the x axis, we will expand the unit
cell not only in the x axis but also in the y
axis and we will distribute them along both
(x and y). In this way, we will rotate the
dimples stepwise along both axis, having as
a result the unit cell shown in Fig. 22. Note
that here we have considered n = 25 dimples
(5 × 5). The stepwise rotation that we have
carried out consists on φ = −π/5 in both di-
rections. Obviously, px = py = 5 · Λ and the
dimples centres are located at the middle of
the corresponding sub cells Λ × Λ. To con-
clude, our last result is shown in Fig. 23, where
we present the 2D layer absorption for a clas-
sic unit cell of five dimples (see Fig. 23a) and
for the new type of unit cell presented in Fig. 22 (see Fig. 23b).
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(b) n = 25, dimples configuration as in Fig. 22.

Fig. 23: 2D layer absorption colour-map in terms of the wavelength and the x component of the incident
momentum for two different number of dimples per unit cell, and Im(εM ) = 0.

Here, we intend to compare both absorptions in order to understand the effects of modifying
the unit cell form in this way. Looking at Fig. 23a and after that, at Fig. 23b we can guess that,
broadly speaking, every branch is in the same position and has the same shape, except for some
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dissimilarities around λ ∼ 1.35 ·Λ in Fig. 23b. Besides, the order of magnitude of this absorption
has been reduced due to the lack of coupling between the geometric phase branch and the A-
exciton band. But here there is one important point: we have also performed rotations along the
y axis, which implies that a new geometric momentum emerges with the same characteristics
as the previous but in the y direction. In order to analyse the behaviour of this new effect
we would need to probe k0

y as well as k0
x. The band structure may present very interesting

topological effects which we leave for future work. Despite all this, these novel type of unit cells
opens up a new range of possibilities to study the left-right symmetry breaking, the “strong”
coupling, the spin-momentum locking and, in essence, the behaviour of the system in relation
to the polarization handedness. Besides, the possibility of performing different-sign stepwise
rotations appears: we may use φx = −π/5 and φy = π/5 being the x and y step rotations in
those directions, respectively. This would provide us a different-sign geometric momenta for
each direction, offering sensitivity to the handedness but using a single setup.
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Conclusion

Throughout this Final Master’s Thesis we have been approaching stepwise to the configuration
presented and studied by our collaborators at ISIS in [21]. We have developed a theoretical
framework from where we have qualitatively explained the phenomena that they observed ex-
perimentally. This analysis has proven to be remarkably satisfactory for all of us. As a result of
this collaboration, we have improved our understanding of this system and of the physics behind
it.

More specifically, we have studied the relevant (for our purposes) properties of the tungsten
disulfide, which was chosen as the atomic-width material that we will use for our work due to its
suitable features. Besides, we also discussed in depth the relevance of considering the metallic
nanostructure as gold, because it is well suited for nanoplasmonics [10].

On the other hand, we have successfully derived the governing equations of the system. As
check, we also considered a simpler system and deduced its equations from the general ones,
recovering the expressions present in the literature [12,13]. In addition, we have also performed
simplified simulations in order to check our intuition about the problem.

And lastly, we considered the full system shown in [21]. We have satisfactorily identified in
our simulations all the effects that our collaborators discussed in their paper: we have observed
the gold typical absorption around λ ' 500 nm, we have also reproduced the absorption owing
to the tungsten disulfide A-exciton around λ ' 611 nm, we have checked that the SPPs disper-
sion relation is in excellent agreement with our simulations, and we have derived from the Berry
phase and observed in our plots the geometric phase momentum, which is accountable for the
spin-momentum locking referred in [21].

The last part of this thesis has been about studying the coupling between the 2D layer and
the geometric phase dependence on different parameters that can be subject to change. This
discussion has been extremely useful in order to shed light on the potential modifications that
our collaborators could carry out to enhance this coupling. A quick recap of these modifications
is presented here: to increase the dimples depth, to increase the distance between the 2D layer
and the metallic array, to increase the spacer dielectric constant, to keep the dimples size and
to reduce the number of dimples (and for further steps, consider n× n unit cells). Our experi-
mentalist colleagues are now manufacturing samples along these guidelines in order to perform
new experiments soon.

In spite of the broad study that we have carried out throughout this dissertation, several areas
still remain unexplored. Here, we intend to recall and raise those ones that would be interesting
and worthwhile to direct our efforts to. After having studied the coupling dependence on the
different parameters individually, we should perform an optimisation of this coupling via the
gradient descent method considering all the parameters simultaneously. We could also consider
the new type of unit cell presented in Fig. 22 and study exhaustively additional effects that
it could exhibit: probing k0

y as well as k0
x, changing the incident polarization or modifying the

rotation direction depending on the axis, amongst many other things. And in order to provide
some quantitative results, we could run several simulations considering a larger number of modes
in the expansion. These simulations would return us spectra with greater accuracy and that
could be useful regarding the strong coupling quantification. So, to sum up, these are the areas
that we will cover in a future work.
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A Obtainment of the equations

A.1 PEC with holes

Here, we will discuss the procedure to obtain the equations which govern our system. Between
the regions I and II (at z = 0) we have a 2D film, whereas the medium III consists on a metallic
slab with filled-by-dielectric holes (or dimples, depending on the considered system). Every
region is dielectric except III, which is metallic and dielectric. The system that we will study is
shown in the Fig. 24. The interface between the regions II and III is presented in the Fig. 25,
where we can see an example of holes distribution in the metal. There is something that we
must clarify: in this App. A.1 we will explain how to obtain the equations in a general way and
then, we will consider the specific remarks which differ from the other sections (see App. A.2,
App. A.3 and App. A.4). Consequently, the particular features of the other cases will be con-
sidered in their respective sections.

Fig. 24: Scheme of the system that we will study.

Fig. 25: x-y plane of our system. The discontinuous lines indicate the limits of the unit cell.

Throughout our work we are going to use the coupled-mode method, which consists on for-
mulating the EM fields as a superposition of plane waves with different amplitudes in each region
of the space. In this way, we could compute the value of the EM fields everywhere.

In the Fig. 25 we use the term “unit cell” because we will consider that our system is infinitely
periodic with this structure as basic module. Also, we will only consider the stationary solutions
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for the Maxwell equations, thereby the temporal dependence of the EM fields will be removed
along the section. Another remark is that we only need to know the EM fields components which
are parallel to the x-y plane, so when we refer to this vectors they are two-components vectors.
The z-component of them could be obtained by the Maxwell equations which involve divergences.

Now, focused in this section, we will study our system with holes (i.e. we have a dielectric
material crossing the metallic slab from the region II to the IV) and considering that our metal
is a PEC (perfect electric conductor, which means that the dielectric constant is εM = −∞).
The relevance of both conditions will arise when we did the fields matching.

The situation is the following: we have a incident plane wave characterised by an incident
momentum (~k0 = (k0

x, k
0
y)
T ) and an incident polarization (σ0), and it scatters with our system

producing other plane waves with different momenta and polarizations. We will use the Dirac
notation so if we project onto the real space we can write:

〈~r‖|~k‖, p〉 = (kx, ky)
T ei

~k‖·~r‖

k‖
√
pxpy

, (17)

〈~r‖|~k‖, s〉 = (−ky, kx)T
ei
~k‖·~r‖

k‖
√
pxpy

, (18)

where ~k‖ = (kx, ky)
T , ~r‖ = (x‖, y‖)

T , k‖ =
√
k2
x + k2

y and, p and s are values for the polarization

σ. Note that the vectorial character of the previous expressions is determined by the polariza-
tion. When ~k‖ = ~0 the distinction between the case σ = p and the case σ = s becomes arbitrary,

so we take wilfully that 〈~r‖|~0, p〉 = (1, 0)T /
√
pxpy and 〈~r‖|~0, s〉 = (0, 1)T /

√
pxpy.

As EM fields we will take the electric field ( ~Ei) but instead of the magnetic field ( ~Hi) we
will use the quantity: −ûz × ~Hi, which is:

|−ûz × ~Hi〉 = ±Y i
~k‖,σ
| ~Ei〉 , (19)

where ûz is the unit vector in the z-direction, i refers to the different regions (i = I, II, III, IV ),
the ± depends on if the the wave is going in the z-direction or in the opposite, respectively, and
Y i
~k‖,σ

is the admittance of the i-th region for the ~k‖ momentum and the σ polarization. These

can be:
Y i
~k‖,p

=
εig

kiz
, (20)

Y i
~k‖,s

=
kiz
g
, (21)

where g = ω/c = 2π/λ and kiz =
√
εig2 − k2

‖. And here, the values of ~k‖ depend on the region

that we are considering. If we are at I, II or IV then

~k‖ = (kx, ky)
T = (k0

x +Gx, k
0
y +Gy)

T , (22)

where ~G = (Gx, Gy)
T = 2π

(
mx
px
,
my

py

)T
is a vector of the reciprocal lattice. There mx and my are:

mx = {−Mx,−Mx + 1, . . . ,Mx − 1,Mx} ∈ Z and my = {−My,−My + 1, . . . ,My − 1,My} ∈ Z,
being Mx and My the number of Bragg’s waves that we will consider. And if we are at the
region III then

~k‖ = (kx, ky)
T = π

(
nx
lx
,
ny
ly

)T
, (23)
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but we will only consider nx = 0 and ny = 1, which is the less energy mode for the hole. Then,
the fundamental waveguide mode is:

〈~r‖|n〉 = (1, 0)T

√
2

lxly
sin(qy(y + ly/2)) for ~r‖ inside the hole and 0 otherwise, (24)

where n only refers to we are considering the n-th hole, but the modes for every hole are the same.

Before writing the fields for all the regions we want to explain the notation we will use for
the plane waves modes and for the holes modes. For us:

|0〉 = |~k0, σ0〉 , (25)

|G〉 = |~k0 + ~G, σ〉 (26)

and
|n〉 = |n-th hole〉 , (27)

but for |n〉 we must clarify that these modes have no defined polarization so we arbitrarily
choose Y III

n = kIIIz /g as the modal admittance of the n-th hole. Both, |G〉 and |n〉, constitute
two orthonormal basis.

Thereby, the EM fields of the different regions are:

| ~EI(z)〉 = |0〉 eikIz(k0)z +
∑
G

rG |G〉 e−ik
I
z(G)z,

|−ûz × ~HI(z)〉 = Y I
0 |0〉 eik

I
z(k0)z −

∑
G

Y I
GrG |G〉 e−ik

I
z(G)z,

(28)

| ~EII(z)〉 =
∑
G

τG |G〉 eik
II
z (G)z +

∑
G

ρG |G〉 e−ik
II
z (G)z,

|−ûz × ~HII(z)〉 =
∑
G

Y II
G τG |G〉 eik

II
z (G)z −

∑
G

Y II
G ρG |G〉 e−ik

II
z (G)z,

(29)

| ~EIII(z)〉 =
∑
n

An |n〉 eik
III
z (n)(z−h1) +

∑
n

Bn |n〉 e−ik
III
z (n)(z−h1),

|−ûz × ~HIII(z)〉 =
∑
n

Y III
n An |n〉 eik

III
z (n)(z−h1) −

∑
n

Y III
n Bn |n〉 e−ik

III
z (n)(z−h1),

(30)

| ~EIV (z)〉 =
∑
G

tG |G〉 eik
IV
z (G)(z−h2),

|−ûz × ~HIV (z)〉 =
∑
G

Y IV
G tG |G〉 eik

IV
z (G)(z−h2),

(31)

where {rG, τG, ρG, An, Bn tG} are the parameters that we will obtain through the matching of
EM fields at the interface between different regions. In other words, via requiring the continuity
of fields at the interfaces. We want to clarify here that when we are summing over G, we are
summing over the reciprocal lattice vectors and the polarizations.

As a picture is worth a thousand words, we will show in the Fig. 26 what all these parameters
mean.
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Fig. 26: In this representation it is shown the physical meaning of each parameter that appears in the
definition of the fields in the different regions (see Eqs. 28, 29, 30 and 31).

Knowing this, let’s start with the interface between regions I and II, i.e. at z = 0.

• Continuity of electric field (parallel-to-the-plane-z = 0 components):

|0〉+
∑
G

rG |G〉 =
∑
G

τG |G〉+
∑
G

ρG |G〉 , (32)

and projecting onto |G〉:
δG,0 + rG = τG + ρG, (33)

because of orthonormality of the basis vectors.

• The magnetic field has a discontinuity characterised by the 2D film conductivity placed at
z = 0, so-called σ2D. However, due to the using of the Gauss convention we will take the
following variable α = 2πσ2D/c. So, the equation we must satisfy is:

|−ûz × ~HII(z = 0)〉 − |−ûz × ~HI(z = 0)〉 = −2α | ~EII(z = 0)〉 . (34)

Thus,

∑
G

Y II
G τG |G〉−

∑
G

Y II
G ρG |G〉− Y I

0 |0〉+
∑
G

Y I
GrG |G〉 = −2α

(∑
G

τG |G〉+
∑
G

ρG |G〉

)
,

(35)
and projecting again onto |G〉:

Y II
G (τG − ρG)− Y I

0 δG,0 + Y I
GrG = −2α (τG + ρG) . (36)

Now, if we look at the interface between regions II and III, i.e. at z = h1:

• Continuity of electric field:∑
G

τG |G〉 eik
II
z (G)h1 +

∑
G

ρG |G〉 e−ik
II
z (G)h1 =

∑
n

An |n〉+
∑
n

Bn |n〉 , (37)
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and projecting onto |G〉, considering from now that eik
II
z (G)h1 = eG and defining the

overlapping integral that we discuss in App. B as SG,n = 〈G|n〉:

τGeG + ρGe
−1
G =

∑
n

AnSG,n +
∑
n

BnSG,n (38)

• The magnetic field is continuous where there is no metal, i.e., in the surface of the hole
(dielectric):∑

G

Y II
G τG |G〉 eG −

∑
G

Y II
G ρG |G〉 e−1

G =
∑
n

Y III
n An |n〉 −

∑
n

Y III
n Bn |n〉 , (39)

but here we project onto |n〉 because it is on the hole where this continuity is satisfied.
Thus, ∑

G

Y II
G τGeGS

∗
G,n −

∑
G

Y II
G ρGe

−1
G S∗G,n = Y III

n An − Y III
n Bn. (40)

And the last interface corresponds to the regions III and IV , i.e., at z = h2:

• Continuity of electric field:∑
n

An |n〉 eik
III
z (n)h +

∑
n

Bn |n〉 e−ik
III
z (n)h =

∑
G

tG |G〉 , (41)

and, projecting onto |G〉 and considering from now that eik
III
z (n)h = en we obtain that,∑

n

AnenSG,n +
∑
n

Bne
−1
n SG,n = tG. (42)

• Again, the magnetic field at z = h2 is only continuous on the hole, thus:∑
n

Y III
n An |n〉 en −

∑
n

Y III
n Bn |n〉 e−1

n =
∑
G

Y IV
G tG |G〉 , (43)

and projecting onto |n〉,

Y III
n Anen − Y III

n Bne
−1
n =

∑
G

Y IV
G tGS

∗
G,n. (44)

In short, we want to know 6 parameters and we have 6 equations in order to look for them
(see Eqs. 33, 36, 38, 40, 42 and 44). Although we really have more than 6 parameters and 6
equations because we have as pairs of {An, Bn} as considered holes, and the same happens with
the parameters which depend on G.

The necessary calculations to obtaining the final equations are a bit tedious so we will omit
them. However, we will explain the main steps in order to achieve our equations. Firstly, we
will isolate the rG from the Eq. 33 and replace it in the Eq. 36. From here, we can take τG as a
function of ρG and introduce it in the Eqs. 38 and 40. Then, we isolate ρG as a function of {An}
and {Bn} from one of these two equations and reintroduce it into the other one. In this way, we
have obtained an equation which relates {An} and {Bn}. Now, we can isolate tG from the Eq. 42
as a function of {An} and {Bn} and replace it into the Eq. 44, obtaining then other equation
which uniquely depends on {An} and {Bn}. So, we are able to compute every parameter if we
solve the system of equations for {An} and {Bn}. Nevertheless, instead of using as parameters
{An} and {Bn} we will use other pair of parameters called modal amplitudes {En, E′n}, which
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correspond to the modal amplitudes of the electric field in the illuminated and no-illuminated
surfaces of each hole (z = h1 and z = h2 interfaces), respectively. They are defined as

En = An +Bn,

E′n = −(Anen +Bne
−1
n ),

(45)

where the negative sign in the second one comes from the fact that the normal vector which is
pointing to the hole has contrary sign to ûz. Then, after substituting these parameters in the
equations we are ready to write the final equation such as:

(GI,IInn − Σn)En +
∑
m6=n

GI,IInm Em −GVnE′n = Iex0,n

(GIVnn − Σn)E′n +
∑
m 6=n

GIVnmEm −GVnEn = 0
(46)

where it is seen that there are a lot of terms that we have not talked about. They depend on the
admitances, on the overlapping integrals, on the exponentials and on the 2D film conductivity.
The shapes of these terms are expressed here below, in the Eqs. 47, 48, 49, 50 and 51.

GI,IInm =
∑
G

iY II
G

(Y II
G + Y I

G + 2α) + e2
G(Y II

G − Y I
G + 2α)

(Y II
G + Y I

G + 2α)− e2
G(Y II

G − Y I
G + 2α)

S∗G,nSG,m, (47)

GIVnm =
∑
G

iY IV
G S∗G,nSG,m, (48)

Iex0,n = i
4Y I

0 Y
II

0 S∗0,neG=0

(Y II
0 + Y I

0 + 2α)− e2
G=0(Y II

0 − Y I
0 + 2α)

, (49)

GVn = iY III
n

2e−1
n

1− e−2
n
, (50)

Σn = iY III
n

1 + e−2
n

1− e−2
n
. (51)

The physical relevance of these terms can be well-understood if we observe the Fig. 27.

Fig. 27: Physical relevance of the terms that appear in the equations for the parameters of our set-up.
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Here we present a little explanation about them. GI,IInm and GIVnm correspond to the coupling
between n-th and m-th apertures throughout any propagating or evanescent modes at the z = h1

and z = h2 surfaces, respectively. Iex0,n is the external illumination, basically governed by the
coupling between the incident plane wave (indicated by 0) and the waveguide mode correspond-
ing to the n-th entry aperture. GVn represents the coupling between the z = h1 and z = h2

interfaces but for the same hole (n-th). Obviously this term only appears if we are considering
holes, for dimples there is no exit aperture. Finally, Σn is related to the bouncing when the EM
fields inside n-th hole reach the end of the waveguide.

A.2 PEC with dimples

In this section we will focus in the system which has dimples instead of holes (i.e. we have
metallic slab dented and these dents are filled with a dielectric material) and considering that
our metal is a PEC (perfect electric conductor, which means that the dielectric constant is
εM = −∞). Again, these both conditions will affect to the fields-matching conditions. Obvi-
ously, in this case the region IV does not exist. In Fig. 28 we show an scheme of this system.

Fig. 28: The system that we will study in this section: dimples.

As we say above, the region IV does not exist because the dielectric does not totally cross
the entire metallic slab. Nevertheless, this system still has a lot of similarities with the system
studied in the App. A.1. Clearly the expressions of the EM fields in the regions I, II and III
have the same form (see Eqs. 28, 29 and 30). And in the same way we have already obtained
the matching conditions at the interfaces: z = 0 and z = h1 (see Eqs. 33, 36, 38 and 40) because
there is no difference for these interfaces in this situation. Here we need to remark that now h
is the dimples depth.

Then, the last matching condition we need is the cancellation of the fields at z = h2. So,∑
n

Anen |n〉+
∑
n

Bne
−1
n |n〉 = 0, (52)

from we infer the last condition:
Anen +Bne

−1
n = 0. (53)

Here it is convenient to recall the expression which relates An’s and Bn’s as result of solving
the Eqs. 33, 36, 38 and 40. This is,

iY III
n (An −Bn)− Iex0,n = −

∑
m

GI,IInm (Am +Bm), (54)

and defining again the modal amplitude as

En = An +Bn (55)
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we can obtain the final equation via some calculations. Thereby,

(GI,IInn − Σn)En +
∑
m 6=n

GI,IInm Em = Iex0,n (56)

The terms which appears in the final expression have the same form as before:

GI,IInm =
∑
G

iY II
G

(Y II
G + Y I

G + 2α) + e2
G(Y II

G − Y I
G + 2α)

(Y II
G + Y I

G + 2α)− e2
G(Y II

G − Y I
G + 2α)

S∗G,nSG,m, (57)

Iex0,n = i
4Y I

0 Y
II

0 S∗0,neG=0

(Y II
0 + Y I

0 + 2α)− e2
G=0(Y II

0 − Y I
0 + 2α)

, (58)

Σn = iY III
n

1 + e−2
n

1− e−2
n
. (59)

And clearly GIVnm = 0 and GVn = 0 because there is no region IV and there is no coupling
then between the entry and the “exit” of the dimples.

A.3 SIBC with holes

In this section we will try to implement a new level of complexity, and thus, of reality, to
our metallic slab. So far we had considered the PEC (Perfect Electric Conductor) approxima-
tion but from now on we will consider the so-called SIBC approximation. It means “Surface
Impedance Boundary Conditions”. This can be understood as a first-order Taylor expansion
in zs = 1/

√
εM (λ) + 1. On the other hand, the PEC approximation constitutes the zero-order

Taylor expansion because for the PEC, εM = −∞ and then zs = 0. This zs is used to relate the
tangential components of the electric and magnetic fields at the surface of the metal such as

| ~E〉 = zs | ~H × ûn〉 , (60)

where ûn is an unitary vector orthogonal to the surface and that points to the inside of the
material.

There is also other aspect provided by the SIBC approximation: the enlarging of the holes
size. Since the metal is no more a perfect conductor, the EM fields penetrate the material and
we do not have the condition of cancelling the fields at the surface. Therefore, this can be seen
as an effective enlarging of the holes because we are not considering the SIBC approximation
for the vertical surfaces, only for horizontal ones. We will model it by the use of the skin depth,
defined as

δ =
λ · Im(zs)

2π
, (61)

and we will use it as an addition to the holes length and width but corrected by a phenomeno-
logically estimated parameter, i.e.

l′ = l + aδ, (62)

being a ' 1.25 for our case [26].

We have already explained the novelties of the SIBC respect PEC so we are ready to present
the calculation of the final equations. Again, the expressions for the EM fields in each region
is the same that we presented in Eqs. 28, 29, 30 and 31. Besides, the matching conditions for
the first interface (z = 0) are the same because nothing changes there (see Eqs. 33 and 36).
However, at the second and third interfaces (z = h1 and z = h2 respectively) the conditions do
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change. Instead of requiring the continuity of the electric and magnetic fields as we did before,
we will require the continuity of a new field (F ) defined below in Eq. 63, and also the continuity
of the magnetic field. This new field is:

|~F 〉 = | ~E〉 − zs | ~H × ûn〉 = | ~E〉 − zs |−ûn × ~H〉 . (63)

Here it is important to remark one point: ~F is continuous at the interface but in both metal and
dielectric (hole). It is continuous at the dielectric surface because both electric and magnetic
fields are continuous independently. And it is also continuous at the metal surface because of
Eq. 60. This is why we will project onto the plane waves modes when we work with the |~F 〉
continuity. And since the continuity of | ~H〉 is only satisfied in the holes, we will project onto
the holes modes when we work with the | ~H〉 (this is only continuous in the holes).

So, if we attend to the interface between regions II and III, i.e. at z = h1:

• Continuity of field F , considering that ûn = ûz,∑
G

(τGeG+ρGe
−1
G ) |G〉−zs

∑
G

Y II
G (τGeG−ρGe−1

G ) |G〉 =
∑
n

(An+Bn) |n〉−zs
∑
n

Y III
n (AnnBn) |n〉 ,

(64)
where projecting onto |G〉 and recalling the definition of the overlapping integrals we
obtain, after some reorders, that

τGeG(1− zsY II
G ) + ρGe

−1
G (1 + zsY

II
G ) =

∑
n

SG,n(An(1− zsY III
n ) +Bn(1 + zsY

III
n )). (65)

Here we define three quantities that we will use right now and a bit later: f±n = 1±zsY III
n ,

f±G = 1± zsY II
G and f

′±
G = 1± zsY IV

G . So, having this in mind we can rewrite the previous
condition as

τGeGf
−
G + ρGe

−1
G f+

G =
∑
n

SG,n(Anf
−
n +Bnf

+
n ) (66)

• Continuity of magnetic field in the hole, so the derived equation is the Eq. 40.

Now, we look at the interface between regions III and IV , i.e. at z = h2:

• Continuity of field F , taking into account that ûn = −ûz,∑
n

(Anen +Bne
−1
n ) |n〉+ zs

∑
n

Y III
n (Anen −Bne−1

n ) |n〉 =
∑
G

tG |G〉+ zs
∑
G

Y IV
G tG |G〉 ,

(67)
projecting onto |G〉 and making use of the previous definitions we can directly write∑

n

SG,n(Anenf
+
n +Bne

−1
n f−n ) = tGf

′+
G (68)

• Continuity of magnetic field in the hole, so the derived equation is the Eq. 44.

Now, we have to solve the six equations that we have (see Eqs. 33, 36, 66, 40, 68 and 44).
For that purpose, we will use a similar procedure to the used in App. A.1. However, in this
case we have to put the modal amplitudes ({En, E′n}) as a function of the modal parameters
({An, Bn}) in other way such as:

En = Anf
−
n +Bnf

+
n ,

E′n = −(Anenf
+
n +Bne

−1
n f−n ).

(69)
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Then, the equations governing our system are:

(GI,IInn − Σn)En +
∑
m6=n

GI,IInm Em −GVnE′n = Iex0,n

(GIVnn − Σn)E′n +
∑
m 6=n

GIVnmEm −GVnEn = 0,
(70)

where the different terms have the following shapes,

GI,IInm =
∑
G

iY II
G

(Y II
G + Y I

G + 2α) + e2
G(Y II

G − Y I
G + 2α)

f+
G (Y II

G + Y I
G + 2α)− e2

Gf
−
G (Y II

G − Y I
G + 2α)

S∗G,nSG,m, (71)

GIVnm =
∑
G

i
Y IV
G

f
′+
G

S∗G,nSG,m, (72)

Iex0,n = i
4Y I

0 Y
II

0 S∗0,neG=0

f+
G=0(Y II

0 + Y I
0 + 2α)− e2

G=0f
−
G=0(Y II

0 − Y I
0 + 2α)

, (73)

GVn = iY III
n

2e−1
n

f+2
n − e−2

n f−2
n
, (74)

Σn = iY III
n

f+
n + e−2

n f−n
f+2
n − e−2

n f−2
n
. (75)

A.4 SIBC with dimples

In this section we will focus again in the system which has dimples instead of holes and we
will consider also the SIBC approximation, which means that the dielectric constant is finite
and it depends on the wavelength. Again, these both features will affect to the fields-matching
conditions. As we said, in this case the region IV does not exist and in the Fig. 28 we can see
an scheme of this system. This case is thus a combination of the Apps. A.2 and A.3.

As we say above, the region IV does not exist because the dielectric does not totally cross
the entire metallic slab. Obviously the expressions of the EM fields in the regions I, II and III
have the same form see (Eqs. 28, 29 and 30). And in the same way we have already obtained
the matching conditions at the interfaces: z = 0 and z = h1 (see Eqs. 33, 36, 66 and 40) because
there is no difference for such interfaces in this situation. Here we need to recall that now h is
the dimples depth.

Therefore, the last matching condition we need is the cancellation of the fields at z = h2,
i.e., at the interface between regions III and IV . For this we will use the cancellation of the
field F defined in the Eq. 63. We have to remark that as the metal exists beyond the dimple,
thus ûn = ûz. So,∑

n

(Anen +Bne
−1
n ) |n〉 − zs

∑
n

Y III
n (Anen −Bne−1

n ) |n〉 = 0, (76)

from we infer that (using the definition of f±n )

Anenf
−
n +Bne

−1
n f+

n = 0. (77)

And now, knowing that the modal amplitude is defined such as

En = Anf
−
n +Bnf

+
n , (78)

40



we are ready to write the final equation of this system:

(GI,IInn − Σn)En +
∑
m 6=n

GI,IInm Em = Iex0,n (79)

The terms that appear in this expression can be written as:

GI,IInm =
∑
G

iY II
G

(Y II
G + Y I

G + 2α) + e2
G(Y II

G − Y I
G + 2α)

f+
G (Y II

G + Y I
G + 2α)− e2

Gf
−
G (Y II

G − Y I
G + 2α)

S∗G,nSG,m, (80)

Iex0,n = i
4Y I

0 Y
II

0 S∗0,neG=0

f+
G=0(Y II

0 + Y I
0 + 2α)− e2

G=0f
−
G=0(Y II

0 − Y I
0 + 2α)

, (81)

Σn = iY III
n

f+
n e
−2
n + f−n

f+
n f
−
n (1− e−2

n )
, (82)

and clearly GIVnm = 0 and GVn = 0 because there is no region IV and there is no coupling
between the entry and the “exit” of the dimples.

41



B Calculation of the overlapping integrals

B.1 Simplest case: non-rotated hole

First of all, we will calculate the overlapping integral of the simplest setup, i.e., a non-rotated
hole, because this procedure will ease the calculation for the rotated case. This means that the
hole orientation angle is θ = 0o for this case. So, the configuration that we will discuss here
is shown in the Fig. 29, where we can properly observe that the hole is characterised by the
position of its centre on the unit cell (xc, yc), also by the length of its sides (lx, ly) and finally
by the angle of orientation (θ), which is 0o in this case and then we do not show it.

Fig. 29: Representation of the case θ = 0.

As we have already introduced, the overlapping integral that we must calculate is:

SG,n = 〈G|n〉 = 〈~G, σ|n〉 =

∫
u.c.
〈~G, σ|~r‖〉 〈~r‖|n〉 d~r‖, (83)

where “u.c.” alludes to that the integration is made over the unit cell {x‖ ∈ (0, px), y‖ ∈ (0, py)},
and here we are going to use ~G = ~k‖ = ~k0 + ~G.

We had previously seen the explicit functional form of the plane waves as a function their
wavevector (~G) and their polarization (σ = s or p). Nevertheless, we write again these forms:

〈~r‖|~G, p〉 = (kx, ky)
T ei

~k‖·~r‖

k‖
√
pxpy

, (84)

〈~r‖|~G, s〉 = (−ky, kx)T
ei
~k‖·~r‖

k‖
√
pxpy

, (85)

but when ~G = ~0 the distinction between the case σ = p and the case σ = s is arbitrary, so we
take wilfully that 〈~r‖|~0, p〉 = (1, 0)T /

√
pxpy and 〈~r‖|~0, s〉 = (0, 1)T /

√
pxpy.
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The fundamental waveguide mode of the n-th hole is:

〈~r‖|n〉 = (1, 0)T

√
2

lxly
sin(qy(y + ly/2)) for ~r‖ inside the hole and 0 otherwise. (86)

Here we write the n-th hole just for generality. However, in this calculations we will only con-
sider one hole (the hole in the Fig. 29).

Regarding these three expressions we must also clarify that kx and ky are the components of

the ~G considered, k‖ =
√
k2
x + k2

y, qy = π/ly and pre-factors are taken to normalize the modes

over the unit cell. The direction of the electric field of the fundamental mode is shown as red
arrows in the Fig. 29. It is also important to emphasize that since the hole mode is zero out
of the latter, we can consider the position vector such as: ~r‖ = ~rc + ~r, where ~rc is the vector
which leads to the hole centre (xc, yc), and ~r = (x, y) is any point of the hole (in the reference
framework of the hole: {x ∈ (−lx/2, lx/2), y ∈ (−ly/2, ly/2)}).

Taking all these details in consideration we can rewrite the Eq. 83 as:

SG,n =

∫
hole
〈~G, σ|~rc + ~r〉 〈~r|n〉 d~r =

∫
hole

f ~G,σ
e−i

~k‖·(~rc+~r)

√
pxpy

√
2

lxly
sin(qy(y + ly/2))d~r, (87)

where f ~G,σ is the outcome of the scalar product of the bi-vector of each mode. In other words:

f ~G,p =
1

k‖
(kx, ky) · (1, 0)T = kx/k‖, (88)

and

f ~G,s =
1

k‖
(−ky, kx) · (1, 0)T = −ky/k‖, (89)

Now, we are going to define a constant (C) which allows us to lighten the notation, this is:

C =

√
2

pxpylxly
f ~G,σ. (90)

Still on the overlapping integral:

SG,n = C

∫
hole

e−i
~k‖·(~rc+~r) sin(qy(y + ly/2))d~r

= Ce−i(kxxc+kyyc)

∫ lx/2

−lx/2
e−ikxxdx

∫ ly/2

−ly/2
e−ikyy sin(qy(y + ly/2))dy

= Ce−i(kxxc+kyyc) · e
−ikxx

−ikx

∣∣∣∣lx/2
−lx/2

·
∫ ly/2

−ly/2
e−ikyy

eiqy(y+ly/2) − e−iqy(y+ly/2)

2i
dy

=
C

2i
e−i(kxxc+kyyc) · 2 sin(kxlx/2)

kx
·
∫ ly/2

−ly/2
e−ikyy(ieiqyy + ie−iqyy)dy

=
C

2
e−i(kxxc+kyyc)lx · sinc(kxlx/2) ·

(
e−i(ky−qy)y

−i(ky − qy)
+

e−i(ky+qy)y

−i(ky + qy)

)∣∣∣∣ly/2
−ly/2

=
C

2
e−i(kxxc+kyyc)lx · sinc(kxlx/2) · ly · (sinc((ky − qy)ly/2) + sinc((ky + qy)ly/2))

=

√
lxly

2pxpy
f ~G,σe

−i(kxxc+kyyc) · sinc(kxlx/2) · (sinc((ky − qy)ly/2) + sinc((ky + qy)ly/2)).

(91)
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In the step from the third line to the fourth we have used that qy = π/ly and thus
e±iqyly/2 = ±i. A second comment is that sinc() corresponds to the cardinal sine function.

Just to emphasize the result:

SG,n =

√
lxly

2pxpy
f ~G,σe

−i(kxxc+kyyc) · sinc(kxlx/2) · (sinc((ky − qy)ly/2) + sinc((ky + qy)ly/2))

(92)
So, this Eq. 92 is the expression for the overlapping integral of the EM modes (plane waves

with hole modes) in a non-rotated hole. As we have already said, the information about the
plane waves is enclosed in G = (~G = (kx, ky), σ) whereas the information about the hole is
enclosed in n, which determines the centre is at (xc, yc) and the side lengths are (lx, ly).

Now it is time to promote to a more general case: a rotated hole. In this way, we will be
able to propose a wider variety of holes configurations. This is going to be presented in the next
section (see App. ??).

B.2 General case: rotated hole

Here we will discuss the case which θ takes an arbitrary value. This configuration is shown in
the Fig. 30.

Fig. 30: Representation of the case arbitrary θ.

Obviously, the overlapping integral that we have to solve is the same that the previous one,
with the difference of having other integration limits. The explicit functional form of the plane
waves takes exactly the same form as before. In contrast, the hole mode is different because of
the angle rotation. However, this can be solved by a shift (θ) in the reference framework. In
this manner, we can recover the form of the hole mode of the θ = 0o case but in the (x′, y′)
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framework. This rotation of the axes is shown in the Fig. 31

Fig. 31: Representation of the axes rotation. From (x, y) framework to (x′, y′) framework shifted an angle
θ.

Hence:

〈~r‖|n〉 = (1, 0)′T

√
2

lxly
sin
(
qy(y

′ + ly/2)
)

for ~r‖ inside the hole and 0 otherwise. (93)

Note that the prime in (0, 1)′T is also important, it takes this form in the primed reference
framework.

Here, it is convenient to state how the coordinates are defined in both reference frameworks
as a function of the other one. Thus:(

x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
,

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x′

y′

)
, (94)

where we assign R(θ) to the matrix which, given (x, y), returns (x′, y′); and R−1(θ) to the matrix
which performs the opposite transformation.

Before solving the overlapping integral, it is convenient to compute the scalar product be-
tween the bi-vectors of both modes. For that purpose, we will need to write the hole bi-vector
in the basis of the plane waves modes using R−1(θ), in order to have both in the same basis and
thus, be able to calculate it.

The expression for the constant C is:

C =

√
2

pxpylxly
f ~G,σ, (95)

but f ~G,σ is different because the bi-vectors have to live in the same basis:

f ~G,p =
1

k‖
(kx, ky) ·

(
cos θ − sin θ
sin θ cos θ

)
·(1, 0)′T =

1

k‖
(kx, ky) ·(cos θ, sin θ)T = (kx cos θ+ky sin θ)/k‖,

(96)
and
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f ~G,s =
1

k‖
(−ky, kx) · (cos θ, sin θ)T = (−ky cos θ + kx sin θ)/k‖. (97)

Taking this into account, the overlapping integral is:

SG,n =

∫
u.c.
〈~G, σ|~r‖〉 〈~r‖|n〉 d~r‖ = C

∫
hole

e−i
~k‖·~r‖ sin

(
qy(y

′ + ly/2)
)
dxdy

= Ce−i(kxxc+kyyc)

∫
hole

e−i
~k‖·~r sin

(
qy(y

′ + ly/2)
)
dxdy

(98)

Since the integration limits are easier to be written in the primed reference framework, we will
perform a change of variables to these (x′, y′). For this purpose, we will use that ~r = R−1(θ)~r′

and that the Jacobian is 1 (dxdy = dx′dy′). Then:

SG,n = Ce−i(kxxc+kyyc)

∫
hola

e−i
~k‖·R−1(θ)·~r′ sin

(
qy(y

′ + ly/2)
)
dx′dy′. (99)

So, we can integrate over the primed coordinates if we define ~k′‖:

~k′‖ = ~k‖R
−1(θ) = (kx, ky)

(
cos θ − sin θ
sin θ cos θ

)
= (kx cos θ + ky sin θ,−kx sin θ + ky cos θ). (100)

Thereby, we obtain an integral with an alike shape such as the first case one, whose resolution
is presented here:

SG,n = Ce−i(kxxc+kyyc)

∫
hole

e
−i~k′‖·~r

′
sin
(
qy(y

′ + ly/2)
)
dx′dy′.

= Ce−i(kxxc+kyyc)

∫ lx/2

−lx/2
e−ik

′
xx
′
dx′
∫ ly/2

−ly/2
e−ik

′
yy
′
sin
(
qy(y

′ + ly/2)
)
dy′

=

√
lxly

2pxpy
f ~G,σe

−i(kxxc+kyyc) · sinc(k′xlx/2) · (sinc((k′y − qy)ly/2) + sinc((k′y + qy)ly/2)).

(101)

Note that in this case f ~G,σ depends on θ, as well as ~k′‖. Now, if we take θ = 0 both recover the
expressions presented in App. ??.

Again, just to emphasize the result:

SG,n =

√
lxly

2pxpy
f ~G,σe

−i(kxxc+kyyc) · sinc(k′xlx/2) · (sinc((k′y − qy)ly/2) + sinc((k′y + qy)ly/2))

(102)
So, this Eq. 102 is the expression for the overlapping integral of the EM modes in an arbitrarily-
rotated hole.
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C Calculation of the energy fluxes

C.1 PEC with holes

In this section we will discuss the general procedure to obtain the energy fluxes for each region
of the space and then, we will particularize for each specific situation. The general system for
which we will figure out the EM fluxes is presented in a previous appendix (App. A.1) or in
Fig. 32.

The calculation of these EM fluxes enables us to study different interesting quantities as the
transmittance or reflectance of the system, or the absorbance of the 2D film and metallic slab.
Therefore, this estimation is crucial for achieving results.

First of all, we need to know the time-averaged EM energy flux per unit time passing through
our system. This is described by the Poynting vector ~S(~r, z), where ~r corresponds to the coor-
dinates which are on the parallel plane to the 2D film, i.e., ~r = (x, y)T . The expression for the
Poynting vector is shown in the Eq. 103 below,

~S(~r, z) =
1

2

(
~E(~r, z) × ~H(~r, z)∗

)
, (103)

where the factor 1/2 comes from the time average of ~S(~r, z, t).

Since we are really interested in the flux that crosses every region of our system, we need to de-
fine four horizontal planes where we will compute these fluxes. These planes are: P1 := (z = 0−),
P2 := (z = 0+), P3 := (z = h+

1 ) and P4 := (z = h+
2 ). P1, P2 and P4 are infinite planes whereas

P3 takes only the section of the hole/dimple. Here, we can say that P1 is replaceable by any
horizontal plane with z < 0 because the region I is dielectric and thus, there is no change in its
flux. This reasoning can be similarly applied to the other defined planes. We just do it in this
way looking for notation simplicity. This is shown in the Fig. 32.

Fig. 32: Scheme of our system. Here we can see the four regions, the four horizontal planes and the
direction of the z-axis. We can also see the different energy fluxes of interest, as well as the definition of
WI : the subtraction of the reflective flux from the incident flux.
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So, the EM energy flux crossing one of the planes, let’s say Pi, can be computed following
the Eq. 104.

Wi =

∫
Pi

d~r Re[ûz · ~S(~r, zi)] =

∫
Pi

d~r Re

[
ûz ·

1

2

(
~Ei(~r, zi) × ~Hi(~r, zi)

∗
)]
, (104)

where i refers to both the regions (I, II, III, IV ) and the planes (1, 2, 3, 4), because there is
concordance between them. And zi refers to the value of the z coordinate which defines the i-th
plane. This EM energy flux can be rewritten such as

Wi =
1

2

∫
Pi

d~r Re
[
〈−ûz × ~Hi(~r, zi)| ~Ei(~r, zi)〉

]
, (105)

using the properties of the scalar and vectorial products, as well as the chosen notation in
App. A.1. It is also important to remark that from now on we will drop the factor 1/2 because
we will normalize every flux by the incident flux Winc, which contains the same factor too.

Now, taking into account this Eq. 105 and the modal expansions of the electric and magnetic
fields presented in App. A.1 (see Eqs. 28, 29, 30 and 31), we are ready to compute each EM
energy flux.

We can start considering P1 and thus, computing WI ,

WI =

∫
P1

d~r Re
[
〈−ûz × ~HI(~r, 0

−)| ~EI(~r, 0−)〉
]

=

∫
P1

d~r Re

[(
Y I∗

0 〈0| −
∑
G

Y I∗
G r∗G 〈G|

)
·

(
|0〉+

∑
G

rG |G〉

)]

=Re

[
Y I∗

0 − Y I∗
0 (r∗0 − r0)−

∑
G

Y I∗
G |rG|

2

]
,

(106)

where we have used the property of orthonormality of the plane waves, i.e.,∫
P1

d~r 〈G|G′〉 = δG,G′ , (107)

being the δG,G′ the Kronecker delta (|G〉’s are the only terms which depends on ~r).

However, since we will only consider that the incident illumination is propagating (kIz(0) =√
εI(ω/c)2 − (k0

x)2 − (k0
y)

2 ∈ R) and thus not evanescent, the term Re[Y I∗
0 (r∗0 − r0)] = 0. This

is because if the incident fields are propagating, then Y I∗
0 is real, but as (r∗0 − r0) is imaginary,

then the product is imaginary too and as a consequence of this, the real part of it is zero. So,
the energy flux for the first plane is

WI = Re

[
Y I∗

0 −
∑
G

Y I∗
G |rG|

2

]
. (108)

The first term corresponds to the incident flux Winc = Re
[
Y I∗

0

]
whereas the second belongs

to the scattering of the incident beam with the surface, i.e., Wref = Re
[∑

G Y
I∗
G |rG|

2
]
. There-

fore, as we had already presented in Fig. 32, WI = Winc −Wref . We are going to keep the
previous expressions in this way but when we will plot these quantities we will normalize by the
incident flux Winc as we already said. We can also observe from the expression for Wref that
only the propagating modes will play a part in the reflection. It is also important to emphasize

48



here that when we say 0 or G we really refer to (~k0, σ0) and (~k0 + ~G, σ = s, p), respectively.

Now, we could think about how to write {rG} in terms of {En, E′n}, because these are the pa-
rameters that we derive from the final equations presented in App. A. However, these {En, E′n}
depend on the considered system (PEC with holes, PEC with dimples, ...) so firstly we will
obtain the other EM fluxes and after, we will particularize for each case.

Then, we consider the second plane, P2, and compute WII ,

WII =

∫
P2

d~r Re
[
〈−ûz × ~HII(~r, 0

+)| ~EII(~r, 0+)〉
]

=

∫
P2

d~r Re

[(∑
G

Y II∗
G (τ∗G − ρ∗G) 〈G|

)
·

(∑
G

(τG + ρG) |G〉

)]

=Re

[∑
G

Y II∗
G (|τG|2 − |ρG|2 + τ∗GρG − τGρ∗G)

]
.

(109)

Despite of the subtraction of the two last terms is imaginary, we must keep all the contribu-
tions because Y II∗

G may be evanescent or propagating in the region II. So, if the mode in this
region is propagating, only the first two terms will contribute to WII , whereas if it is evanescent
the contributions to WII will only come from the last two terms.

We can keep up with the third plane, P3, and compute then WIII ,

WIII =

∫
P3

d~r Re
[
〈−ûz × ~HIII(~r, h

+
1 )| ~EIII(~r, h+

1 )〉
]

=

∫
P3

d~r Re

[(∑
n

Y III∗
n (A∗n −B∗n) 〈n|

)
·

(∑
n

(An +Bn) |n〉

)]

=Re

[∑
n

Y III∗
n (|An|2 − |Bn|2 +A∗nBn −AnB∗n)

]
.

(110)

In this case, we use the same argument as before to preserve all terms.

We are therefore left with the calculation of WIV . So, taking the fourth plane, P4,

WIV =

∫
P4

d~r Re
[
〈−ûz × ~HIV (~r, h+

2 )| ~EIV (~r, h+
2 )〉
]

=

∫
P4

d~r Re

[(∑
G

Y IV ∗
G t∗G 〈G|

)
·

(∑
G

tG |G〉

)]

=Re

[∑
G

Y IV ∗
G |tG|2

]
.

(111)

Just as reminder, we want to say again that we will normalize every flux by the incident. In
this way, there are some interesting quantities we can compute. For example, the transmittance
is defined as

T =
WIV

Winc
=
Re
[∑

G Y
IV ∗
G |tG|2

]
Re
[
Y I∗

0

] , (112)

or the reflectance,

R =
Wref

Winc
=
Re
[∑

G Y
I∗
G |rG|

2
]

Re
[
Y I∗

0

] . (113)
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So, we have the expressions for every energy flux as a function of {rG, τG, ρG, An, Bn, tG}.
Throughout the calculations we made in App. A, we are able to write each parameter in terms
of the modal amplitudes {En, E′n}, but they depend also on the situation that we consider:
it is not the same An for holes or for dimples, or even for PEC or SIBC. Thus, we have the
expressions for the fluxes, which are fixed in terms of the parameters, but the parameters does
change depending on the case

As a consequence, this is the point where we particularize to having holes crossing our metal
and considering it such as a PEC. Using the Eqs. 33, 36, 38 and 40 we can write {ρG, τG, rG}
as a function of {En} in the following way,

ρG =
Y I
G + Y II

G + 2α

(Y I
G + Y II

G + 2α)− e2
G(Y I

G − Y II
G + 2α)

·

(
eG
∑
n

SG,nEn −
2Y I

Ge
2
G

Y I
G + Y II

G + 2α
δG,0

)
, (114)

τG =
2Y I

GδG,0 − ρG(Y I
G − Y II

G + 2α)

Y I
G + Y II

G + 2α
, (115)

and
rG = −δG,0 + τG + ρG. (116)

In order to obtain {An, Bn} as a function of {En, E′n} we just need to attend to the definitions
of these last ones, done in Eq. 45. Therewith,

An = −e−1
n ·

e−1
n En + E′n
1− e−2

n
, (117)

and

Bn =
En + e−1

n E′n
1− e−2

n
. (118)

To conclude, from the definition of {E′n} and taking the Eq. 42 we deduce

tG = −
∑
n

SG,nE
′
n. (119)

As may be seen, the computation of the EM energy fluxes for “PEC with holes” is concluded
since we have obtained the expressions of these fluxes and the parameters. We have recalled
App. A in almost every point because it is there where we did a deeper analysis of the equations
and, thus, of the parameters. We must clarify that some shortenings used above are well-justified
in App. A.1 and we have passed over them because of this.

C.2 PEC with dimples

In this case, we will deal with a PEC again but considering dimples instead of holes. In other
words, now we do not cross completely the metallic slab but we keep metal under our perforation.
We can see a representation of this system in Fig. 33.
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Fig. 33: Scheme of our system. Here we can see the three regions, the three horizontal planes and the
direction of the z-axis. We can also see the different energy fluxes of interest.

Now, the results for this system will be easier to obtain because we will use the previous
section outcome. As we observed from App. A.2, the fourth region does not exist, which means
that {E′n = 0}, WIV = 0 and {tG = 0}. On the other hand, the system that we have just
presented is the same as before until the third region, which has changed. This allows us to
write straightforward some of the desired parameters:

ρG =
Y I
G + Y II

G + 2α

(Y I
G + Y II

G + 2α)− e2
G(Y I

G − Y II
G + 2α)

·

(
eG
∑
n

SG,nEn −
2Y I

Ge
2
G

Y I
G + Y II

G + 2α
δG,0

)
, (120)

τG =
2Y I

GδG,0 − ρG(Y I
G − Y II

G + 2α)

Y I
G + Y II

G + 2α
, (121)

and
rG = −δG,0 + τG + ρG, (122)

which are exactly the same as in the system “PEC with holes” (see App. C.1). It may be also
derived from the continuity of the fields, posed in the App. A, as we did in the previous section
(see App. C.1). Then, we only need to compute the expressions for {An, Bn} as a function of
{En} in order to complete the description of this situation. For this purpose, we will consider
the definition of En and the condition that the fields go to zero at z = h2, i.e.,

En = An +Bn,

0 = Anen +Bne
−1
n ,

(123)

expressions which have already been used in App. A.2. From these, we can write the last two
parameters such as

An = − e−2
n En

1− e−2
n
, (124)

and

Bn =
En

1− e−2
n
. (125)

Therefore, since we have finally written the expressions of the “five” parameters as a func-
tion of the modal amplitude {En}, and the shape of the fluxes is the same as we wrote in the
Sec. C.1, we have just completed the characterisation of the EM energy fluxes for this system:
“PEC with dimples”.
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C.3 SIBC with holes

In this case, we will deal with a metal satisfying the SIBC (Surface Impedance Boundary Con-
ditions) approximation, but we will take again the situation of having holes crossing entirely
the metallic slab. Since the only thing changing respect of App. C.1 is the corresponding metal
approximation, the scheme which represents this system is also shown in Fig. 32.

Obviously, in this case we have to obtain the expressions for all parameters because we
have to infer the four EM fluxes. However, the equations from we infer these expressions are
different. They are included in Ap. A.3. It is clear that the continuity of the fields for the
interface between regions I and II is unchanged, but for the interfaces at z = h1 and z = h2

the situation is different because we considered the continuity of the (~F = ~E − zs ~H × ûn) field.
So, from Eqs. 33, 36, 66, 40, 68 and 44, we can derive the wanted parameters.

ρG =
−2Y I

GeGf
−
G δG,0 + (Y I

G + Y II
G + 2α)

∑
n SG,nEn

e−1
G f+

G (Y I
G + Y II

G + 2α)− eGf−G (Y I
G − Y II

G + 2α)
, (126)

τG =
2Y I

GδG,0 − ρG(Y I
G − Y II

G + 2α)

Y I
G + Y II

G + 2α
, (127)

and
rG = −δG,0 + τG + ρG, (128)

where eG’s and f±G ’s had already been defined in App. A. Apparently the expressions for {τG, rG}
are the same as before but not indeed because {ρG} have been modified by the f±G ’s.

Following the procedure used in App. C.1, in order to obtain the expression for {tG} we must
take the continuity equation for the ~F field at the third interface (see Eq. 68) and the definition
of E′n, which is

E′n = −(Anf
+
n en +Bnf

−
n e
−1
n ). (129)

Combining them we get

tG =
−1

f
′+
G

∑
n

SG,nE
′
n. (130)

Finally, the way of obtaining the last two parameters {An, Bn} is through the definition of
{En, E′n}. E′n is written just above and En is

En = Anf
−
n +Bnf

+
n . (131)

So, solving from these two equations the required parameters:

An = −Ene
−2
n f−n + E′ne

−1
n f+

n(
f+
n

)2 − e−2
n

(
f−n
)2 , (132)

and

Bn =
Enf

+
n + E′nf

−
n e
−1
n(

f+
n

)2 − e−2
n

(
f−n
)2 . (133)
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C.4 SIBC with dimples

Now, we will deal with a metal satisfying the SIBC approximation again. We will consider the
situation of having holes not crossing entirely the metallic slab, i.e., having dimples. Since the
only thing changing respect of App. C.2 is the corresponding metal approximation, the scheme
which represents this system is also shown in Fig. 33.

The results for this system will be easier to obtain because we will use the previous section
outcome. The fourth region does not exist, which means that {E′n = 0}, WIV = 0 and {tG = 0}.
On the other hand, the system that we have just presented is the same as the previous until the
third region, which has changed. This allows us to write straightforward some of the desired
parameters:

ρG =
−2Y I

GeGf
−
G δG,0 + (Y I

G + Y II
G + 2α)

∑
n SG,nEn

e−1
G f+

G (Y I
G + Y II

G + 2α)− eGf−G (Y I
G − Y II

G + 2α)
, (134)

τG =
2Y I

GδG,0 − ρG(Y I
G − Y II

G + 2α)

Y I
G + Y II

G + 2α
, (135)

and
rG = −δG,0 + τG + ρG, (136)

having the same shape as in App. C.3.

By contrast, reaching the expressions for {An, Bn} is not so immediate because we have to
combine the definition of {En}, which is shown at Eq. 131, and the fact that the ~F field goes
to zero at z = h2. This has already been discussed in App. A.4, where we just have to consider
that ûn = ûz because they are dimples rather than holes. The corresponding condition is

Anenf
−
n +Bne

−1
n f+

n = 0. (137)

So, combining both we are able to express {An, Bn} such as

An =
−Ene−2

n

f−n (1− e−2
n )

, (138)

and

Bn =
En

f+
n (1− e−2

n )
. (139)

Then, we have established the expressions for every required parameter, thus ending the
analysis of the EM energy fluxes in all four considered different systems.

53



D Absorption spectrum of a 2D film

In this section we intend to obtain the expression for the 2D film absorption. A representation
of the system we want to solve is shown in Fig. 34.

Fig. 34: Scheme of our system in the most general way. We can observe both regions separated by the
2D film and the parameters characterising each medium. It can also be seen the (z = 0)-plane and the
2D film attribute, σ2D.

As we can deduce from the utilisation of summations in the Fig. 34, we will make use of the
modal expansion method in order to tackle the problem. Basically, the situation consists on two
regions with arbitrary dielectric constant each one and separated by a 2D layer. This 2D layer
has atomic width. Here it is important to remark that we will not use this σ2D conductivity for
our calculations but α, which is just a convenient redefinition:

α =
2πσ2D

c
. (140)

So, what happens is this: we have an incident plane wave coming to the 2D layer and defined
by its incident momentum and polarization. This plane wave scatters against the film and a
portion is reflected and other is transmitted, characterised by r0 and t0 respectively. The portion
that is not either reflected or transmitted, is absorbed.

The procedure that we will follow is equivalent to the used in App. A. Firstly, we will pose
the expressions of the EM fields for both region I and region II. Then, we will require the
satisfaction of the boundary conditions for the parallel electric and magnetic fields. And to
conclude, we will compute the 2D film absorption by the calculation of the EM energy fluxes in
both regions.

Thereby, the EM fields expressions are written as:

| ~EI(z)〉 = |0〉 eikIz(k0)z +
∑
G

rG |G〉 e−ik
I
z(G)z,

|−ûz × ~HI(z)〉 = Y I
0 |0〉 eik

I
z(k0)z −

∑
G

Y I
GrG |G〉 e−ik

I
z(G)z,

(141)

for the first region, and

| ~EII(z)〉 =
∑
G

tG |G〉 eik
II
z (G)z,

|−ûz × ~HII(z)〉 =
∑
G

Y II
G tG |G〉 eik

II
z (G)z,

(142)

for the second.

Every element that we have written above is well-justified in App. A, but just as reminder
we can say that for example |G〉 correspond to the different modes that we consider, or Y i

G is

the modal admitance for the i-th region with momentum ~k0 + ~G and polarization σ. Note that
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the use of Dirac’s notation is just for convenience and, as we have said, can be fully understood
if you recall App. A.

The next step is then to set out the continuity conditions in order to obtain the relations
between {rG} and {tG}. So, at the interface of the two regions, i.e., at z = 0, we have:

• The continuity of the electric field, derived from n̂I,II × ( ~EII − ~EI) = 0, where n̂I,II is the
normal vector to the interface following the direction I → II. This is,

|0〉+
∑
G

rG |G〉 =
∑
G

tG |G〉 , (143)

and if we project onto |G〉, we reach

rG + δ0,G = tG, (144)

where we have applied the basis vectors orthonormality.

• We must satisfy the boundary condition of the magnetic field: ûI,II × ( ~HII − ~HI) = ~j(α).
This condition can be rewritten in the Dirac’s notation as

|−ûz × ~HII(0)〉 − |−ûz × ~HI(0)〉 = −2α | ~EII(0)〉 , (145)

which is, ∑
G

Y II
G tG |G〉 − Y I

0 |0〉+
∑
G

Y I
GrG |G〉 = −2α

∑
G

tG |G〉 . (146)

Now, projecting onto |G〉,

Y II
G tG − Y I

0 δG, 0 + Y I
GrG = −2αtG. (147)

Therefore, combining Eqs. 144 and 147, we obtain that

r0 =
Y I

0 − Y II
0 − 2α

Y I
0 + Y II

0 + 2α
, (148)

and

t0 =
2Y I

0

Y I
0 + Y II

0 + 2α
. (149)

Also, rG = tG = 0, ∀G 6= 0. This means that the reflected and transmitted plane waves have
the same momentum and polarization as the incident.

As a check, we will take a simple case and we will compare it with [29]. We consider normal
incidence, i.e., ~k0 = ~0, which implies that Y i

~0,p
= Y i

~0,s
=
√
εi. We also consider that both regions

are vacuum, in other words, εI = εII = 1. Introducing this constraints to the expressions for r0

and t0 we obtain that

r0 =
1− 1− 2α

1 + 1 + 2α
=
−α

1 + α
, (150)

and

t0 =
2

1 + 1 + 2α
=

1

1 + α
, (151)

which is exactly the same as [29] shows. Then, we can assume our reasoning has been well-made.

Now, we need to compute the energy flux of the incident, the reflected and the transmitted
waves because the absorption is defined as

Abs2D = (Winc −Wref −Wtra)/Winc. (152)
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In order to compute these EM energy fluxes we can have a look to App. C where we have
already explained the pertinent procedure. We have to choose two planes where we will integrate
the Poynting vector, these are P1 := (z = 0−) and P2 := (z = 0+). Hence,

Winc =

∫
P1

d~r Re
[
〈−ûz × ~H inc

I (~r, 0−)| ~EincI (~r, 0−)〉
]

=

∫
P1

d~r Re
[(
Y I∗

0 〈0|
)
· (|0〉)

]
= Re

[
Y I∗

0

]
= Y I∗

0 ,

(153)

Wref =

∫
P1

d~r Re
[
〈−ûz × ~Href

I (~r, 0−)| ~ErefI (~r, 0−)〉
]

=

∫
P1

d~r Re

[(∑
G

Y I∗
G r∗G 〈G|

)
·

(∑
G

rG |G〉

)]

=

∫
P1

d~r Re
[(
Y I∗

0 r∗0 〈0|
)
· (r0 |0〉)

]
=Re

[
Y I∗

0 |r0|2
]

= Y I∗
0 |r0|2,

(154)

Wtra =

∫
P2

d~r Re
[
〈−ûz × ~HII(~r, 0

+)| ~EII(~r, 0+)〉
]

=

∫
P2

d~r Re

[(∑
G

Y II∗
G t∗G 〈G|

)
·

(∑
G

tG |G〉

)]

=

∫
P2

d~r Re
[(
Y II∗

0 t∗0 〈0|
)
· (t0 |0〉)

]
=Re

[
Y II∗

0 |t0|2
]

= Y II∗
0 |t0|2

(155)

where we have removed Re[ · ] because we will only consider propagating waves and thus Y i∗
0

are real.

Therefore, the absorption of the 2D film is

Abs2D =
Y I∗

0 (1− |r0(α)|2)− Y II∗
0 |t0(α)|2

Y I∗
0

. (156)
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