
mathematics

Article

Compensated Evaluation of Tensor Product Surfaces
in CAGD

Jorge Delgado Gracia
Departamento de Matemática Aplicada, Universidad de Zaragoza, 44003-Teruel, Spain; jorgedel@unizar.es;
Tel.: +34-978618174

Received: 15 November 2020; Accepted: 7 December 2020; Published: 14 December 2020 ����������
�������

Abstract: In computer-aided geometric design, a polynomial surface is usually represented in Bézier
form. The usual form of evaluating such a surface is by using an extension of the de Casteljau
algorithm. Using error-free transformations, a compensated version of this algorithm is presented,
which improves the usual algorithm in terms of accuracy. A forward error analysis illustrating this
fact is developed.

Keywords: Bernstein basis; polynomial algorithms; tensor product surfaces; error analysis; error-free
transformations

1. Introduction

The Horner algorithm is the most usual method for the evaluation of polynomials.
Important algorithms in computer-aided geometric design (CAGD) need to compute roots of curves
and surfaces. Some of the algorithms, in order to compute those roots, need to evaluate accurately
the curves and surfaces at points close to the roots (see [1,2]). These evaluations are ill-conditioned,
and accurate evaluation algorithms could play a key role in the performances of some of these root
finding algorithms. In the last few years, in the literature it has been shown that the de Casteljau
algorithm outperforms Horner’s algorithm, among other evaluation algorithms, from the point of
view of accuracy (see [3–8]). The de Casteljau algorithm evaluates polynomials represented in Bézier
form, that is, using the Bernstein polynomials. In CAGD it is the usual evaluation algorithm for
polynomial curves.

In CAGD, polynomials (curves and surfaces) are usually represented in Bernstein form, by using
the Bernstein polynomials of degree n. A polynomial in the Bézier form is evaluated by the de Casteljau
algorithm in the bivariate case and by an extended version in the multivariate case. The error analysis
of these algorithms in [6,7] shows a relative error bound of the following form:

Condition number×O(u), (1)

where u is the unit roundoff of the computing precision. For an ill-conditioned problem, such as the
evaluation of a polynomial at parameters very close to a multiple root, the condition number can
exceed 1/u. In that case we can obtain an approximation of the polynomial at the parameter value
with almost all its digits being false.

Error-free transformations (EFTs) have been studied by Rump and Ogita in [9–11]. In [12],
applying EFTs, Graillat and Langlois presented a compensated version of the usual Horner algorithm
to evaluate polynomials represented in the power basis. Later, in [13] a compensated de Casteljau
algorithm for the evaluation of univariate polynomialas was devised. The relative error bound for this
algorithm has the following form:

u + Condition number×O(u2),

Mathematics 2020, 8, 2219; doi:10.3390/math8122219 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8122219
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/12/2219?type=check_update&version=2

Mathematics 2020, 8, 2219 2 of 12

which improves the bound for the usual de Casteljau algorithms in (1).
In [7], an error analysis was performed for the extension of the de Casteljau algorithm for tensor

product surfaces in Bernstein-Bézier form. In this paper, applying EFTs, we present a compensated
version of this algorithm for the evaluation of those surfaces with improved accuracy.

The layout of the paper is as follows. Section 2 introduces some basic notation and results about
error analysis with floating point arithmetic; the EFTs; the de Casteljau algorithm for polynomial
curves and its compensated version. Section 3 recalls the extension of the de Casteljau algorithm for the
evaluation of tensor product surfaces and the corresponding error analysis. Then, the compensated de
Casteljau algorithm for Bézier tensor product surfaces is devised and the corresponding error analysis
performed, providing a better bound for the error.

2. Basic Notation and Results

2.1. Floating Point Arithmetic and Forward Error Analysis

Given a real number x, the computed element in floating point arithmetic will be denoted by
either f l(x) or x̂. Let us assume that u is the unit roundoff of the arithmetic floating point system we
are using. In error analysis, the study of the effect of rounding errors is usually carried out by using
one of the following two models.

f l(a op b) = (a op b) (1 + δ) or f l(a op b) =
a op b
1 + δ

, |δ| ≤ u, (2)

where op is any one of the operations +,−,×, / (for more details see pages 40–41 of [14]). Now let
us define

γk :=
ku

1− ku
= ku +O(u2), (3)

where k ∈ N0 verifies ku < 1. Given δ1, . . . , δk with |δi| ≤ u for all i, in error analysis it is usual to deal
with quantities θk satisfying that ∏k

i=1(1 + δi) = (1 + θk). In Lemma 3.1 of [14] it was proved that
their absolute value is bounded above by γk, that is, |θk| ≤ γk. The following result summarizes some
classic properties in error analysis (see Lemma 3.3 of [14]).

Lemma 1.

i. (1 + θk)(1 + θj) = 1 + θk+j,
ii. γkγj ≤ γmin(k,j) for max(j, k)u ≤ 1/2,

iii. iγk ≤ γk i,
iv. γk + u ≤ γk+1,
v. γk + γj + γkγj ≤ γk+j.

Condition numbers of the functions to be evaluated are important for the accuracy of the result.
Let us now recall some condition numbers related to the evaluation of functions. Given a space of
functions U defined on Θ ⊂ Rs, a basis B = (b0, . . . , bn) for U and a function f = ∑n

i=0 cibi ∈ U ,
measures of the sensitivity of f (x) to perturbations in c = (cj)

n
j=0 are important in error analysis of the

evaluation algorithms. Thus, given a relative perturbation δ = (δi)
n
i=0 of the coefficients c, we obtain

the function g = ∑n
i=0(1 + δi)cibi, which is related to f . Then for any x ∈ Θ

| f (x)− g(x)| =
∣∣∣∣∣ n

∑
i=0

δicibi(x)

∣∣∣∣∣ ≤ ‖δ‖∞

n

∑
i=0
|cibi(x)|. (4)

The number

SB(f (x)) :=
n

∑
i=0
|cibi(x)|,

Mathematics 2020, 8, 2219 3 of 12

plays the role of a condition number for the evaluation of the function f at x using the basis B
(see [4,5,15–17]).

In CAGD, it is usual that the basis B must be formed of blending functions; that is, each basis
function must be nonnegative on Θ, and the sum of all bases functions must be equal to 1 for all point
in Θ. If B = (b0, . . . , bn) is a basis of blending functions and B̄ = (k0b0, . . . , knbn) (ki ∈ R ∀ i) then
SB(f (x)) = SB̄(f (x)).

In floating point arithmetic, given an algorithm for the evaluation of the function f (x), one obtains
the computed value f l(f (x)) or f̂ (x). From a practical point of view, to obtain an error bound
or estimate for the approximation of the exact evaluation f (x) given by f l(f (x)), it is desirable.
The success on the accuracy of the obtained aproximation when using an evaluation algorithm
despends on:

• The backward error—that is, the error of the calculations of the algorithm;
• The difficulty of the evaluated function—that is, the condition number of the function with respect

to the basis used as a representation by the evaluation algorithm.

In error analysis, the computed f l(f (x)) can be expressed as f l(f (x)) = g(x) = ∑n
i=0(1 +

δi)cibi(x), where δ = (δi)
n
i=0 is a perturbation in c. Thus, the upper bound of the forward error for

evaluation in formula (4) is usually interpreted as a product of the backward error ‖δ‖∞ and the
condition number SB(f (x)) (cf. [14]).

2.2. Error-Free Transformations

Error-free transformations (EFTs) will be taken into account in our algorithms in order to improve
accuracy. In particular, TwoSum and TwoProduct EFTs will be used (see [9]) for computing sums
and products, respectively. The algorithm TwoSum for the sum was presented by Knuth in [18],
whereas the algorithm TwoProduct for the product was presented by Dekker, due to G. W. Veltkamp,
in [19]. Algorithms 1 and 2 show these algorithms (TwoSum and TwoProduct), Algorithm 3 is used by
Algorithm 2.

Algorithm 1 TwoSum algorithm.

Require: a, b
Ensure: [x, y] such that x + y = a + b

x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

Algorithm 2 TwoProduct algorithm.

Require: a, b
Ensure: [x, y] such that x + y = a · b

1: x = a⊗ b
2: [a1, a2] = Split(a)
3: [b1, b2] = Split(b)
4: y = a2 ⊗ b2 	 (((x	 a1 ⊗ b1)	 a2 ⊗ b1)	 a1 ⊗ b2)

Algorithm 3 Split algorithm.

Require: a
Ensure: [x, y] such that x + y = a

1: c = factor⊗ a %factor = 227 + 1 in IEEE 754
2: x = c	 (c	 a)
3: y = a	 x

Mathematics 2020, 8, 2219 4 of 12

Error analyses of both algorithms were presented in Theorem 3.4 of [9] and Théorème 3.14 of [20].
The following result shows a summary of these results.

Theorem 1. Let F be the set of standard floating point numbers corresponding to a certain floating point
arithmetic. If a, b ∈ F, then:

i. [x, y] = TwoSum(a, b) verifies

a + b = x + y, x = a⊕ b, |y| ≤ u|x|, |y| ≤ u|a + b|.

ii. [x, y] = TwoProduct(a, b); if not, underflow occurs,

a · b = x + y, x = a⊗ b, |y| ≤ u|x|, |y| ≤ u|a · b|.

2.3. De Casteljau Algorithm for Polynomial Curves in Bézier Form

The Horner algorithm is the best well-known method for polynomial evaluation. It uses the
monomial basis of the space Pn, Mn := (mn

0 (t), mn
1 (t), . . . , mn

n(t)), t ∈ [0, 1], given by mn
i (t) = ti,

i = 0, 1, . . . , n. Given p(t) = ∑n
i=0 ci mn

i (t), the error analysis of the Horner algorithm in chapter 5
of [14] shows that

|p(t)− f l(p(t))| ≤ γ2n

n

∑
i=0
|ci|ti = γ2n SMn(p(t)), for all p ∈ Pn and t ∈ [0, 1].

In CAGD the usual evaluation algorithm for polynomial curves is the de Casteljau algorithm.
This algorithm evaluates polynomials represented using the Bernstein basis (see [21]). The Bernstein
polynomials of degree n, Bn := (bn

0 (t), bn
1 (t), . . . , bn

n(t)), t ∈ [0, 1], form a basis of Pn and are defined by

bn
i (t) =

(
n
i

)
ti(1− t)n−i, i = 0, 1, . . . , n. (5)

A polynomial

p(t) =
n

∑
i=0

ci bn
i (t) ∈ Pn (6)

is said to be in Bézier form or in Bernstein–/Bézier form. Algorithm 4 shows the de Casteljau algorithm
for the evaluation of polynomials in Bézier form (6).

Algorithm 4 De Casteljau algorithm for the evaluation of p ∈ Pn at t.

Require: t ∈ [0, 1] and (ci)
n
i=0

Ensure: f n
0 (t) ≈ ∑n

i=0 cibn
i (t)

for j = 0 to n do

f 0
j (t) := cj

end for
for r = 1 to n do

for j = 0 to n− r do

f r
j (t) = (1− t)⊗ f r−1

j (t)⊕ t⊗ f r−1
j+1 (t)

end for
end for

A corner cutting algorithm is an algorithm such that each step is formed by linear convex
combinations (see [6]). The de Casteljau algorithm is a corner cutting algorithm. In [6] an error analysis

Mathematics 2020, 8, 2219 5 of 12

of corner cutting algorithms was carried out, which for the particular case of the de Casteljau algorithm
can be written as

|p(t)− f l(p(t))| ≤ γ2n

n

∑
i=0
|ci|bn

i (t) = γ2n SBn(p(t)), for all p ∈ Pn and t ∈ [0, 1].

In addition, the optimal conditioning of Bernstein basis for polynomial evaluation among all
the bases formed by nonnegative polynomials on [0, 1] was shown in [5]. Thus, there does not exist
another basis of Pn, up to positive scaling, formed by nonnegative polynomials on [0, 1] that is better
conditioned for every p ∈ Pn at every point t ∈ [0, 1]. In particular, we have SBn(p(t)) ≤ SMn(p(t)) for
all p ∈ Pn and t ∈ [0, 1]. Hence, the part of the error bound corresponding to the condition number for
the de Casteljau algorithm is lower than the corresponding part of the bound for the Horner algorithm.
In fact, the numerical experiments in [3] show that the algorithms using the Bernstein representation,
like the de Casteljau algorithm, present better stability properties than the Horner algorithm.

2.4. Compensated Evaluation Algorithms for Bézier Curves

It is usual to apply EFTs (see [9] and Section 2.2) in order to devise compensated evaluation
algorithms providing more accurate results. Hence, in [22,23] Graillat, Langlois and Louvet devised a
compensated Horner algorithm for the evaluation of a polynomial in monomial form. In Theorem 5
of [22] it was proved that the evaluation of a degree n polynomial with the compensated Horner
algorithm provides an approximation f l(p(t)) verifying

|p(t)− f l(p(t))| ≤ u|p(t)|+ γ2
2nSMn(p(t)).

In [13] a compensated de Casteljau algorithm for the evaluation of polynomials curves in
Bernstein-Bézier form was presented. In Theorem 5 of [13] it was proved that the evaluation of
a degree n polynomial with the compensated de Casteljau algorithm provides an approximation
f l(p(t)) verifying

|p(t)− f l(p(t))| ≤ u|p(t)|+ 2γ2
3nSBn(p(t)).

According to the previous bound for problems where

2γ2
3n

SBn(p(t))
|p(t)| < u,

the relative error for the approximations provided by the compensated de Casteljau algorithm is u.

3. Evaluation Algorithms for Tensor Product Bézier Surfaces

In CAGD ensor product polynomial surfaces are usually represented in the Bernstein-Bézier form
(see [21]) by using tensor product Bernstein systems.

Definition 1. Let Bm = (bm
0 , . . . , bm

m) and Bn = (bn
0 , . . . , bn

n) be two Bernstein systems defined on [0, 1],
where bk

i and i = 0, 1 . . . , k, are the Bernstein polynomials of degree k. The system Bm ⊗ Bn := (bm
i (x)⊗

bn
j (y))

j=0, ..., n
i=0, ..., m is called a tensor product Bernstein system and the surface

F(x, y) =
m

∑
i=0

n

∑
j=0

Pij bm
i (x) bn

j (y), (x, y) ∈ [0, 1]× [0, 1], (7)

is called a tensor product Bézier surface.

A tensor product Bézier surface can be evaluated by de Casteljau type evaluation algorithm
inspired in the de Castaljau evaluation algorithm for Bézier curves (see [21]). By considering the

Mathematics 2020, 8, 2219 6 of 12

components of the points Pij, the evaluation of (7) depends on the evaluation of scalar functions.
Hence, based on the de Casteljau algorithm for Bézier curves, the corresponding evaluation algorithm
for tensor product Bézier surfaces is shown in Algorithm 5.

Algorithm 5 De Casteljau algorithm for the evaluation of F in (7).

Require: (x, y) ∈ [0, 1]× [0, 1] and (fij)
m,n
i=0,j=0

Ensure: f mn
00 (x, y) ≈ ∑m

i=0 ∑n
j=0 fijbm

i (x)bn
j (y)

for i = 0 to m do

for j = 0 to n do

f 00
ij (x, y) = fij

end for
end for
for i = 0 to m do

for s = 1 to n do

for j = 0 to n− s do

f 0s
ij (x, y) = (1− y) f 0,s−1

ij (x, y) + y f 0,s−1
i,j+1 (x, y)

end for
end for

end for
for r = 1 : m do

for i = 0 to m− r do

f rn
i0 (x, y) = (1− x) f r−1,n

i0 (x, y) + x f r−1,n
i+1,0 (x, y)

end for
end for

In Theorem 5 of [7], error analyses of algorithms evaluating tensor product surfaces were
performed. Taking into account the roundoff error when computing 1	 t, for the particular case of
tensor product Bézier surfaces we have the following error analysis of Algorithm 5.

Theorem 2. Let us consider the system of functions Bmn = (bm
i ⊗ bn

j)
j=0, ..., n
i=0, ..., m defined on [0, 1] × [0, 1].

Let F(x, y) be given by (7), and let us suppose that 3(m + n)u < 1, where u is the unit roundoff. Then, the
value F̂(x, y) = f̂ mn

00 computed in floating point arithmetic through Algorithm 5 satisfies

|F(x, y)− F̂(x, y)| ≤ γ3(m+n)SBmn(F(x, y)).

Compensated de Casteljau Evaluation Algorithm for Tensor Product Bézier Surfaces

In this section we devise a compensated de Casteljau algorithm for the evaluation of tensor
product surfaces—that is, a compensated version of Algorithm 5. In order to track the local errors at
each step, the following EFTs will be used:

[r̂y, ρy] = TwoSum(1,−y), [r̂x, ρx] = TwoSum(1,−x),

[P1,y, π0s
ij] = TwoProduct(r̂y, f̂ 0,s−1

ij), [P1,x, πrn
i0] = TwoProduct(r̂x, f̂ r−1,n

i0),

[P2,y, σ0s
ij] = TwoProduct(y, f̂ 0,s−1

i,j+1), [P2,x, σrn
i0] = TwoProduct(x, f̂ r−1,n

i+1,0),

[f̂ 0s
ij , ξ0s

ij] = TwoSum(P1,y, P2,y), [f̂ rn
i0 , ξrn

i0] = TwoSum(P1,x, P2,x).

Mathematics 2020, 8, 2219 7 of 12

Then we can describe the error in the following way:

l0s
ij = π0s

ij + σ0s
ij + ξ0s

ij + ρy · f̂ 0,s−1
ij , lrn

i0 = πrn
i0 + σrn

i0 + ξrn
i0 + ρx · f̂ r−1,n

i0 ,

(1− y) · f̂ 0,s−1
ij + y · f̂ 0,s−1

i,j+1 = f̂ 0s
ij + l0s

ij , (1− x) · f̂ r−1,n
i0 + x · f̂ r−1,n

i+1,0 = f̂ rn
i0 + lrn

i0 .

Now let us define the global errors at each step as

∂ f 0s
ij = f 0s

ij − f̂ 0s
ij , ∂ f rn

i0 = f rn
i0 − f̂ rn

i0 .

It can be seen that the local error satisfies the following expressions:

∂ f 0s
ij = (1− y) · ∂ f 0,s−1

ij + y · ∂ f 0,s−1
i,j+1 + l0s

ij , ∂ f rn
i0 = (1− x) · ∂ f r−1,n

i0 + x · ∂ f r−1,n
i+1,0 + lrn

i0 . (8)

If computations are performed in exact arithmetic:

F(x, y) = f̂ mn
00 + ∂ f mn

00 . (9)

Taking into account the previous discussion, Algorithm 6 shows the corresponding compensated
version of the de Casteljau algorithms for tensor product Bézier surfaces.

Algorithm 6 Compensated de Casteljau algorithm for the evaluation of F in (7).

Require: (x, y) ∈ [0, 1]× [0, 1] and (fij)
m,n
i=0,j=0

Ensure: res ≈ ∑m
i=0 ∑n

j=0 fijbm
i (x)bn

j (y)
[r̂y, ρy] = TwoSum(1,−y)
for i = 0 to m do

for j = 0 to n do

f̂ 00
ij (x, y) = fij

∂̂ f
00
ij (x, y) = 0

end for
end for
for i = 0 to m do

for s = 1 to n do

for j = 0 to n− s do

[P1,y, π0s
ij] = TwoProduct(r̂y, f̂ 0,s−1

ij (x, y))

[P2,y, σ0s
ij] = TwoProduct(y, f̂ 0,s−1

i,j+1 (x, y))

[f̂ 0s
ij (x, y), ξ0s

ij] = TwoSum(P1,y, P2,y)

l̂0s
ij = π0s

ij ⊕ σ0s
ij ⊕ ξ0s

ij ⊕ ρy ⊗ f̂ 0,s−1
ij (x, y)

∂̂ f
0s
ij (x, y) = l̂0s

ij ⊕
(

r̂y ⊗ ∂̂ f
0,s−1
ij (x, y)

)
⊕
(

y⊗ ∂̂ f
0,s−1
i,j+1 (x, y)

)
end for

end for
end for
[r̂x, ρx] = TwoSum(1,−x)

Mathematics 2020, 8, 2219 8 of 12

for r = 1 : m do

for i = 0 to m− r do

[P1,x, πrn
i0] = TwoProduct(r̂x, f̂ r−1,n

i0 (x, y))
[P2,x, σrn

i0] = TwoProduct(x, f̂ r−1,n
i+1,0 (x, y))

[f̂ rn
i0 (x, y), ξrn

i0] = TwoSum(P1,x, P2,x)

l̂rn
i0 = πrn

i0 ⊕ σrn
i0 ⊕ σrn

i0 ⊕ ρx ⊗ f̂ rn
i0

∂̂ f
rn
i0 = l̂rn

i0 ⊕
(

r̂x ⊗ ∂̂ f
r−1,n
i0

)
⊕
(

x⊗ ∂̂ f
r−1,n
i+1,0

)
end for

end for
res = f̂ mn

00 ⊕ ∂̂ f
mn
00

Now an error analysis of the compensated de Casteljau algorithm for the evaluation of tensor
product surfaces (Algorithm 6) will be carried out. First, an auxiliary result will be proved.

Lemma 2. Let F(x, y) = ∑m
i=0 ∑n

j=0 fijbm
i (x)bn

j (y) be a bivariate polynomial and (x, y) ∈ [0, 1] × [0, 1].
Then, the de Casteljau algorithm for tensor product surfaces, i.e., Algorithm 5, verifies:

i.
n−s

∑
j=0
| f 0s

ij |b
n−s
j (y) ≤

n−s+1

∑
j=0
| f 0,s−1

ij |bn−s+1
j (y) ≤ · · · ≤

n

∑
j=0
| fij|bn−s

j (y), for all i ∈ {0, 1, . . . , m}.

ii.
m−r

∑
i=0
| f rn

i0 |bm−r
i (x) ≤

m−r+1

∑
i=0

| f r−1,n
i0 |bm−r+1

i (x) ≤ · · · ≤
m

∑
i=0
| f 0n

i0 |b
m
i (x) ≤

m

∑
i=0

n

∑
j=0
| fij|bm

i (x)bn
j (y).

Proof.

i. Since f 0s
ij = (1− y) f 0,s−1

ij + y f 0,s−1
i,j+1 and y ∈ [0, 1] we have

| f 0s
ij | = (1− y)| f 0,s−1

ij |+ y| f 0,s−1
i,j+1 |.

By using the recurrence relation of the Bernstein polynomials, bk
i (t) = (1− t)bk−1

i + tbk−1
i−1 (t),

we can derive

n−s

∑
j=0
| f 0s

ij |b
n−s
j (y) ≤

n−s

∑
j=0

((1− y)| f 0,s−1
ij |+ y| f 0,s−1

i,j+1 |)b
n−s
j (y)

= | f 0,s−1
i0 |bn−s+1

0 (y)|+
n−s

∑
j=1
| f 0,s−1

ij |((1− y)bn−j
j (y) + ubn−j

j−1 (y)) + | f
0,s−1
i,n−s+1|b

n−s+1
n−s+1(y)

=
n−s+1

∑
j=0
| f 0,s−1

ij |bn−s+1
j (y).

By iterating this procedure, we obtain all the inequalities in i.
ii. Analogous to i.

The error analysis for f̂ mn
00 was already seen in [7] (and recalled in Theorem 2). Hence, let us see

how the roundoff errors affect the computation of ∂̂ f
mn
00 using floating point arithmetic.

Mathematics 2020, 8, 2219 9 of 12

Theorem 3. Let ∂̂ f
mn
00 be the computed value in Algorithm 6 as an approximation of the exact value ∂ f mn

00 in (8).
If no underflow occurs, then

|∂ f mn
00 − ∂̂ f

mn
00 | ≤ γ2

3(m+n+1)

m

∑
i=0

n

∑
j=0
| fij| bm

i (x)bn
j (y)

Proof. By formula (8) and using i of Lemma 1, we can prove by induction hypothesis on
s ∈ {1, . . . , n} that

∂̂ f
0s
ij = ∂ f 0s

ij +
s

∑
q=1

n−q

∑
k=0

l0q
i,j+kθ3(n+1−q)+2bn−q

k (y),

for i = 0, 1, . . . , m and j = 0, 1, . . . , n− s. Then, analogously, we can also prove by induction hypothesis
on r ∈ {1, . . . , m} that

∂̂ f
rn
i0 = ∂ f rn

i0 +∑n
s=1 ∑r

k=0 ∑n−s
j=0 l0s

i+k,jθ3(n+r+1−s)br
k(x)bn−s

j (y)

+∑r
q=1 ∑

r−q
k=0 lqn

i+k,0θ3(r+1−q)+2br−q
k (x),

(10)

for i = 0, 1 . . . , m− r.
By formula (10) for r = m we can deduce that

∂̂ f
mn
00 = ∂ f mn

00 +∑n
s=1 ∑m

i=0 ∑n−s
j=0 l0s

ij θ3(m+n+1−s)bm
i (x)bn−s

j (y)
+∑m

r=1 ∑m−r
i=0 lrn

i0 θ3(m+1−r)+2bm−r
i (x).

(11)

By Theorem 1 we can derive

|ρy| ≤ u |ry| and |r̂y| ≤ (1 + u)|ry|
|π0s

ij | ≤ u |r̂y · f̂ 0,s−1
ij | ≤ (u + u2) | f̂ 0,s−1

ij | · |ry|
|σ0s

ij | ≤ u |y · f̂ 0,s−1
i,j+1 |

|ξ0s
ij | ≤ u |r̂y ⊗ f̂ 0,s−1

ij ⊕ y⊗ f̂ 0,s−1
i,j+1 | = u |r̂y × f̂ 0,s−1

ij + y× f̂ 0,s−1
i,j+1 − π0s

ij − σ0s
ij |

≤ (u + 2u2 + u3) |ry| · | f̂ 0,s−1
ij |+ (u + u2) |y| · | f̂ 0,s−1

i,j+1 |

(12)

By formulas in (12) we deduce that

|l0s
ij | ≤ |π

0s
ij |+ |σ

0s
ij |+ |ξ

0s
ij |+ | f̂

0,s−1
ij | · |ρy|

≤ (3u + 3u2 + u3)|ry| · | f̂ 0,s−1
ij |+ (2u + u2)|y| · | f̂ 0,s−1

i,j+1 |
≤ 3u

(
|ry| · | f̂ 0,s−1

ij |+ |y| · | f̂ 0,s−1
i,j+1 |

)
+O(u2).

(13)

Analogously we can deduce that

|lrn
i0 | ≤ 3u

(
|rx| · | f̂ r−1,n

i0 |+ |x| · | f̂ r−1,n
i+1,0 |

)
+O(u2). (14)

Taking into account that |ry| = ry, |rx| = rx, |x| = x and |y| = y for x, y ∈ [0, 1] and using
the well known recurrence relation for Bernstein polynomials bk

i (t) = (1− t)bk−1
i (t) + t bk−1

i−1 (t), it is
derived that

∑n−s
j=0

(
|ry| · | f̂ 0,s−1

ij |+ |y| · | f̂ 0,s−1
i,j+1 |

)
bn−s

j (y) = ∑n−s+1
j=0 | f̂ 0,s−1

ij | · bn−s+1
j (y) and

∑m−r
j=0

(
|rx| · | f̂ r−1,n

i0 |+ |x| · | f̂ r−1,n
i+1,0 |

)
bm−r

i (x) = ∑m−r+1
i=0 | f̂ r−1,n

i0 | · bm−r+1
i (x).

(15)

By the error analysis of Theorem 2 performed in [7] we have that

f̂ 0s
ij = f 0s

ij (1 + θ3s) and f̂ rn
i0 = f rn

i0 (1 + θ3(r+n)),

Mathematics 2020, 8, 2219 10 of 12

where θk is a quantity usual in error analysis satisfying that |θk| ≤ γk (for more details see Section 2.1
and [14]). Then we can obtain

n−s+1

∑
j=0
| f̂ 0,s−1

ij | · bn−s+1
j (y) = (1 + θ3(n−1))

n−s+1

∑
j=0
| f 0,s−1

ij | · bn−s+1
j (y) and

m−r+1

∑
i=0

| f̂ r−1,n
i0 | · bm−r+1

i (x) = (1 + θ3(m+n−1))
m−r+1

∑
i=0

| f r−1,n
i0 | · bm−r+1

i (x).

Then, applying Lemma 1 and that |θk| ≤ γk, we derive

∑n−s+1
j=0 | f̂ 0,s−1

ij | · bn−s+1
j (y) ≤ (1 + γ3(n−1))∑n

j=0 | f̂ij| · bn
j (y) and

∑m−r+1
i=0 | f̂ r−1,n

i0 | · bm−r+1
i (x) ≤ (1 + γ3(m+n−1))∑m

i=0 ∑n
j=0 | fij| · bm

i (x)bn
j (y).

(16)

By (13)–(16) we have

∑n
s=1 ∑n−s

j=0 |l
0s
ij |b

n−s
j (y) ≤ 3nu(1 + γ3(n−1))∑n

j=0 | fij| bn
j (y),

∑m
r=1 ∑m−r

i=0 |l
rn
i0 |b

m−r
i (x) ≤ 3mu(1 + γ3(m+n−1))∑m

i=0 ∑n
j=0 | fij|bm

i (x)bn
j (y).

By (11) and taking into account that 3nu(1 + γ3(n−1)) ≤ γ3n and that 3mu(1 + γ3(m+n−1)) ≤
γ3(m+n−1) we conclude

|∂̂ f
mn
00 − ∂ f mn

00 | ≤ γ3(m+n)γ3n

m

∑
i=0

n

∑
j=0
| fij|bm

i (x)bn−s
j (y)

+ γ3(m+n+1)γ3m+2

m

∑
i=0

n

∑
j=0
| fij|bm

i (x)bn
j (y).

Taking into account that γ3(m+n) ≤ γ3(m+n+1) and that, by v of Lemma 1, γ3m+2 + γ3n ≤
γ3(m+n+1), the result follows.

Finally, the following result shows the error analysis of the approximation to a tensor product
Bézier surface F(x, y) obtained with the compensated de Casteljau algorithm (Algorithm 6).

Theorem 4. Let F(x, y) = ∑m
i=0 ∑n

j=0 fijbm
i (x)bn

j (y) be a tensor product Bézier polynomial with fij ∈ R and
res the approximation of F(x, y) computed by Algorithm 6. Then

|F(x, y)− res| ≤ u |F(x, y)|+ γ2
3(m+n)+4SBmn(F(x, y)).

Proof. By Algorithm 6 we have that

|res− F(x, y)| = |(f̂ mn
00 ⊕ ∂̂ f

mn
00)− F(x, y)|

= |(1 + δ)(f̂ mn
00 + ∂ f mn

00 − ∂ f mn
00 + ∂̂ f

mn
00)− F(x, y)|.

By (9) and taking into account that |δ| ≤ u, we deduce

|res− F(x, y)| = |(1 + δ)(F(x, y)− ∂ f mn
00 + ∂̂ f

mn
00)− F(x, y)| ≤ u |F(x, y)|+ (1 + u)|∂ f mn

00 − ∂̂ f
mn
00 |.

Then, by Theorem 3 we have

|res− F(x, y)| ≤ u |F(x, y)|+ (1 + u)γ2
3(m+n+1)SBmn(F(x, y)).

Mathematics 2020, 8, 2219 11 of 12

Since (1 + u)γ3(m+n+1) ≤ γ3(m+n)+4 we can deduce

|res− F(x, y)| ≤ u |F(x, y)|+ γ2
3(m+n)+4SBmn(F(x, y))

and the result follows.

Remark 1. Assuming that (3(m + n) + 4)u < 1, the error bound for the evaluation of tensor product surfaces
by the compensated de Casteljau algorithm obtained in the previous theorem is much lower than the error bound
corresponding to the usual de Casteljau algorithm in Theorem 2. The assumption (3(m + n) + 4)u < 1 is
typical when working in a CAGD framework. In fact, if

γ2
3(m+n)+4

SBmn(F(x, y))
|F(x, y)| < u

the relative error for the approximation provided by the compensated de Casteljau is u.

4. Conclusions

A compensated version of the de Casteljau algorithm for tensor product functions has been
presented. This new method is carried out with the usual floating point arithmetic and operations,
and it uses only the same working precision as the data. With this framework, the following bound for
the relative error of the new compensated method has been provided:

u + γ2
3(m+n)+4

SBmn(F(x, y))
|F(x, y)| ,

which is lower than the bound corresponding to the usual method

γ3(m+n)
SBmn(F(x, y))
|F(x, y)| .

Hence, the new compensated de Casteljau algorithm for tensor product functions can be quite
useful for problems with ill-conditioned situations.

Funding: This work was funded by the Spanish research grant PGC2018-096321-B-I00 (MCIU/AEI), by Gobierno
de Aragón (E41-17R) and Feder 2014–2020 “Construyendo Europa desde Aragón”.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CAGD Computer-aided geometric design
EFT Error-free transformation

References

1. Wei, F.; Zhou, F.; Feng, J. Survey of real root finding of univariate polynomial equation in CAGD/CG.
J. Comput.-Aided Des. Comput. Graph. 2011, 23, 193–207.

2. McNamee, J.M. Numerical Methods for Roots of Polynomials: Part 1: Volume 14, (Studies in Computational
Mathematics); Elsevier: Amsterdam, The Netherlands, 2007.

3. Delgado, J.; Peña, J.M. Running Relative Error for the Evaluation of Polynomials. SIAM J. Sci. Comput. 2009,
31, 3905–3921. [CrossRef]

4. Farouki, R.T.; Rajan, V.T. On the numerical condition of polynomials in Bernstein form. Comput. Aided
Geom. Des. 1987, 4, 191–216. [CrossRef]

http://dx.doi.org/10.1137/080745249
http://dx.doi.org/10.1016/0167-8396(87)90012-4

Mathematics 2020, 8, 2219 12 of 12

5. Farouki, R.T.; Goodman, T.N.T. On the optimal stability of the Bernstein basis. Math. Comp. 1996, 65,
1553–1566. [CrossRef]

6. Mainar, E.; Peña, J.M. Error analysis of corner cutting algorithms. Numer. Algorithms 1999, 22, 41–52.
[CrossRef]

7. Delgado, J.; Peña, J.M. Error analysis of efficient evaluation algorithms for tensor product surfaces. J. Comput.
Appl. Math. 2008, 219, 156–169. [CrossRef]

8. Delgado, J.; Peña, J.M. Algorithm 960: POLYNOMIAL: An Object-Oriented Matlab Library of Fast and
Efficient Algorithms for Polynomials. ACM Trans. Math. Softw. 2016, 42, 19. [CrossRef]

9. Ogita, T.; Rump, S.M.; Oishi, S. Accurate sum and dot product. SIAM J. Sci. Comput. 2005, 26, 1955–1988.
[CrossRef]

10. Rump, S.M.; Ogita, T.; Oishi, S. Accurate Floating-Point Summation Part I: Faithful Rounding. SIAM J.
Sci. Comput. 2008, 31, 189–224. [CrossRef]

11. Rump, S.M.; Ogita, T.; Oishi, S. Accurate floating-point summation part II: Sign, K-fold faithful and rounding
to nearest. SIAM J. Sci. Comput. 2008, 31, 1269–1302. [CrossRef]

12. Graillat, S.; Langlois, P.; Louvet, N. Algorithms for accurate, validated and fast polynomial evaluation. Jpn. J.
Ind. Appl. Math. 2009, 26, 191–214. [CrossRef]

13. Jiang, H.; Li, S.; Cheng, L.; Su, F. Accurate evaluation of a polynomial and its derivative in Bernstein form.
Comput. Math. Appl. 2010, 60, 744–755. [CrossRef]

14. Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd ed.; SIAM: Philadelphia, PA, USA, 2002.
15. Lyche, T.; Peña, J.M. Optimally stable multivariate bases. Adv. Comput. Math. 2004, 20, 149–159. [CrossRef]
16. Peña, J.M. On the optimal stability of bases of univariate functions. Numer. Math. 2002, 91, 305–318.

[CrossRef]
17. Peña, J.M. A note on the optimal stability of bases of univariate functions. Numer. Math. 2006, 103, 151–154.

[CrossRef]
18. Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms; Addison Wesley: Boston,

MA, USA, 1969.
19. Dekker, T.J. A floating-point technique for extending the available precision. Numer. Math. 1971, 18, 224–242.

[CrossRef]
20. Louvet, N. Algorithmes Compensés en Arithmétique Flottante: Précision, Validation, Performances.

Ph.D. Thesis, University of Perpignan, Perpignan, France, 2007.
21. Farin, G. Curves and Surfaces for Computer Aided Geometric Design, 5th ed.; Academic Press: San Diego, CA,

USA, 2002.
22. Langlois, P.H.; Louvet, N.; Graillat, S. Compensated Horner Scheme; Technical Report RR2005-04; Université de

Perpignan Via Domitia: Perpignan, France, 2005.
23. Langlois, P.H.; Louvet, N. How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner

Algorithm. In Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH’07), Montepellier,
France, 25–27 June 2007; pp. 141–149.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0025-5718-96-00759-4
http://dx.doi.org/10.1023/A:1019190220312
http://dx.doi.org/10.1016/j.cam.2007.07.020
http://dx.doi.org/10.1145/2814567
http://dx.doi.org/10.1137/030601818
http://dx.doi.org/10.1137/050645671
http://dx.doi.org/10.1137/07068816X
http://dx.doi.org/10.1007/BF03186531
http://dx.doi.org/10.1016/j.camwa.2010.05.021
http://dx.doi.org/10.1023/A:1025863309959
http://dx.doi.org/10.1007/s002110100327
http://dx.doi.org/10.1007/s00211-005-0660-z
http://dx.doi.org/10.1007/BF01397083
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Notation and Results
	Floating Point Arithmetic and Forward Error Analysis
	Error-Free Transformations
	De Casteljau Algorithm for Polynomial Curves in Bézier Form
	Compensated Evaluation Algorithms for Bézier Curves

	Evaluation Algorithms for Tensor Product Bézier Surfaces
	Conclusions
	References

