
 

Scaling Law Describes the Spin-Glass Response in Theory, Experiments, and Simulations
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The correlation length ξ, a key quantity in glassy dynamics, can now be precisely measured for spin
glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies
either for large external fields or close to the glass temperature. We solve this problem by introducing a
scaling law that takes into account both the magnetic field and the time-dependent spin-glass correlation
length. The scaling law is successfully tested against experimental measurements in a CuMn single crystal
and against large-scale simulations on the Janus II dedicated computer.
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The dynamical arrest found upon cooling glass formers
(spin glasses, fragile molecular glasses, polymers, colloids,
etc.) to their glass temperature Tg is a major open problem
[1,2]. In the longstanding description [3], this slowing
down is caused by the unbounded expansion of cooperative
regions as Tg is approached or as the system is left to age
below Tg, which, in turn, leads to growing free-energy
barriers. A quantitative description of this process is usually
attempted in terms of a correlation length ξ. Unfortunately,
in numerical simulations it is extremely difficult to measure
the quantities that are easily accessible to experiments (and
vice versa), which has led to seemingly irreconcilable
approaches to the computation of the correlation length.
On the one hand, theorists study correlation functions in an
abstract replica space [4–14]. On the other hand, experi-
mentalists measure the system’s response to an applied

external field (either an electric field for glass-forming
liquids [15] or a magnetic field for spin glasses [16–20]).
Reference [12] reconciled the two approaches by measur-
ing the experimental response functions in a numerical
simulation, but it was ultimately based on an approximate
scaling law that breaks down for large fields or close to the
glass temperature Tg. This is especially problematic, since
temperatures T ≈ Tg are the most relevant for the study of
glass formers (ξ is restricted to a very narrow window of
variation if we move away from Tg).
Here, we are able to solve this dilemma in a framework

that completely harmonizes experiments with theory. We
conduct a parallel study of nonequilibrium spin-glass
dynamics both in an experiment in a CuMn single crystal
and in a large-scale simulation of the Ising-Edwards-
Anderson (IEA) model carried out on the Janus II
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custom-built supercomputer [21]. We introduce a scaling
law that describes the system’s response over its entire
natural range of variation.
To be specific, let us consider the zero-field-cooled

protocol (see, e.g., [20]), where the spin glass is suddenly
quenched from a temperature well above Tg down to the
working temperature Tm < Tg and is then left to relax for a
time tw [the growth of the correlation length ξðtwÞ is
unbounded for T < Tg, but very slow]. At time tw, a
magnetic field H is applied and the growing magnetization
Mðt; tw;HÞ is recorded for times tþ tw (the tw dependence
is included because spin glasses perennially age at T < Tg,
slowly approaching equilibrium but never reaching it). The
maximum of the relaxation function dðM=HÞ=d ln t defines
a time teffH directly related to the height of the free-energy
barriers that the system encounters. In a magnetic field, the
Zeeman effect lowers these barriers by an amount propor-
tional to H2 and to the number of spins in a glassy cluster.
Therefore, an Arrhenius law would predict a linear behav-
ior of ln teffH with H2. Yet, see Fig. 1, departures from a
straight line were observed for large values of H2 in the
very first experiment using this approach [16]. In fact, the
Zeeman interpretation has been disputed [17,22] and
identifying a linear behavior in H2 becomes problematic
close to Tg [20].
In what follows, we shall derive a scaling law for the

response to the magnetic field that is still valid for large

fields and close to Tg. As we stated above, the scaling law is
tested against measurements in a single CuMn crystal and
against massive numerical simulations carried out on Janus
II. The single crystal is important because the growth of
ξðtwÞ is not limited like in a polycrystal with grain
boundaries [23]. Specifically, we shall show that the H
dependence has the form

ln
teffH

teffH→0þ
¼ Ŝ

T
ξD−ðθ=2ÞH2 þ ξ−θ=2GðξD−ðθ=2ÞH2;TÞ: ð1Þ

Here, ξ stands for ξðtwÞ, Ŝ is a constant,D ¼ 3 is the spatial
dimension, and θ stands for the replicon exponent
θðx̃Þ [4–6], where x̃ ¼ lJðTÞ=ξðtwÞ and lJðTÞ is the
Josephson length [13,20].

For small values of x the scaling function behaves as
GðxÞ ∼ x2 (x ¼ ξD−ðθ=2ÞH2). Hence, G is of order H4 for
small values of the magnetic field and, if ξ is small (the
typical case well below Tg), the contribution of G can be
neglected for small H. In fact, most previous experiments
and simulations only tested the H2 term in Eq. (1). We find
here, however, that for larger fields, or larger correlation
lengths (which are found only close to Tg), G is the
dominant contribution. Fortunately, Eq. (1) offers a unified
framework that rationalizes the entire range of experiment
and simulations.
Experimental and numerical descriptions.—Our experi-

ments used a commercial dc SQUID to measure the
magnetization of a Cu94Mn6 single crystal with
Tg ¼ 31.5 K, grown at Ames Laboratory, U.S. DOE (see
[20] for details). The sample was quenched from 40 K at
10 K=min to the measuring temperature Tm in zero
magnetic field. After the temperature was stabilized,
the system was aged for a waiting time tw before a
magnetic field H was turned on, and the magnetization
MZFCðt; tw;TmÞ was recorded as a function of time t. The
temperatures were chosen as 28.5 K, 28.75 K, and 29 K, so
Tm ≥ 0.9Tg. The magnetic fields ranged from 16 to 59 Oe.
Table I shows the relevant experimental parameters, includ-
ing the effective replicon exponent θðx̃Þ.
In parallel with these experiments, we have simulated the

Ising-Edwards-Anderson (IEA) model, with Hamiltonian
H ¼ −

P
hx;yi Jxysxsy −H

P
x sx, where sx ¼ �1 is the

FIG. 1. Comparison of the classic experiment from Joh et
al. [16] and present work. Both data sets are for Cu94Mn6. The
data from Joh et al. are from a polycrystalline sample, while data
from the present work come from a single crystal allowing for a
much larger correlation length ξ (see Table I for details). The
figure shows the maximum of the relaxation function as a
function of the squared magnetic field H2. It is easy to estimate
the slope at H2 ¼ 0 (from which ξ is measured) for the data from
Joh et al., which display a linear behavior for H2 ≲ 6 × 104 Oe2.
Instead, the large ξ of the data from the present work not only
causes a larger slope, but also a much larger curvature (see the
enlarged region in the inset) which makes it challenging to
extrapolate the slope to H2 ¼ 0.

TABLE I. Main parameters for our four experiments, including
the correlation length at time tw (in units of the average Mn-Mn
spacing a) and the effective replicon exponent θðx̃Þ, obtained
from the interpolation in [20] of the results in [13].

Tm (K) tw (s) ξðtwÞ=a θðx̃Þ
Exp. 1 28.50 10 000 320.36 0.337
Exp. 2 28.75 10 000 341.76 0.344
Exp. 3 28.75 20 000 359.18 0.342
Exp. 4 29.00 10 000 391.27 0.349
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spin at site x. We have used one sample of a cubic lattice
with periodic boundary conditions, linear size L ¼ 160,
and random couplings Jxy ¼ �1 [24]. In these natural
units, and forH ¼ 0, the IEA model undergoes a spin-glass
phase transition at the critical temperature Tg ¼ 1.102ð3Þ
[26]. We simulated the nonequilibrium dynamics by means
of a Metropolis algorithm. The natural time unit is the
lattice sweep, which roughly corresponds to one
picosecond of physical time. As for the magnetic field,
Ref. [12] estimated from experimental Fe0.5Mn0.5TiO3 data
[27] that H ¼ 1 in the IEA model corresponds to
5 × 104 Oe.
In order to mimic the experimental setup in the simu-

lations, an initial random spin configuration is placed
instantaneously at the working temperature Tm and left
to relax for a time tw, with H ¼ 0. At time tw, the external
magnetic field is turned on and the magnetization
Mðt; tw;HÞ and the correlation function Cðt; tw;HÞ ¼P

x sxðtw;H ¼ 0Þsxðtþ tw;HÞ=1603 are recorded.
Our experimental range (16 to 59 Oe) corresponds to

0.0003≲H ≲ 0.0012 in the IEA model, but the signal-to-
noise ratio limited our simulations to H ≥ 0.005.
We employed two tricks to match these scales. On
the one hand, we can use dimensional analysis [28] to
relate H and the reduced temperature t̂ ¼ ðTg − TÞ=Tg
through

t̂num ≈ t̂exp

�
Hnum

Hexp

�
4=½νð5−ηÞ�

; ð2Þ

where ν ¼ 2.56ð4Þ and η ¼ −0.390ð4Þ are H ¼ 0 critical
exponents [26], while the subscripts exp and num stand for
experiment and simulation. Equation (2) suggests that we
increase t̂num to reach the experimental scale with our range
or Hnum, which results in 0.89≲ Tnum ≲ 0.99. Given our
preexisting database of long simulations at H ¼ 0 [13], it
has been convenient to work at temperatures Tm ¼ 0.9 and
Tm ¼ 1.0 (or t̂ ¼ 0.183 and 0.093).

On the other hand, we have found that, whenH → 0, the
correlation function Cðt; tw;HÞ approaches a constant
value Cpeak at the maximum of the relaxation function
[25], which suggests computing teffH in the simulations from
the equation

CðteffH ; tw;HÞ ¼ Cpeak: ð3Þ
See [29] for a similar choice in an equilibrium context. This
is helpful because Eq. (3) can be solved atH ¼ 0 as well [in
contrast with the magnetization, Cðt; tw;HÞ does not vanish
at H ¼ 0]. The values of Cpeak are given in Table II.
The scaling law.—We work here on the same assump-

tions of Ref. [12], though we shall be able to improve on
their findings.
In equilibrium and for large-enough correlation lengths,

a scaling theory describes the magnetic response to an
external field H [30,31]. Our assumption will be (see also

Refs. [10,11]) that this scaling theory holds as well in
the nonequilibrium regime, at least for large ξðtwÞ and
small H:

Mðt; tw;HÞ ¼ ½ξðtþ twÞ�−ðD=2Þ−½θðx̃Þ=4�

× F
�
H½ξðtþ twÞ�−ðD=2Þ−½θðx̃Þ=4�;

ξðtþ twÞ
ξðtwÞ

�
;

ð4Þ

Because of (at least approximate) full-aging spin-
glass dynamics (see, e.g., [32]), Eq. (3) tells us that ξðtþ
twÞ=ξðtwÞ will be approximately constant close to the
maximum of the relaxation rate (see Fig. 2), and we shall
omit this dependence. Taylor expanding Eq. (4), and
recalling that F ðxÞ ¼ −F ð−xÞ, we find

Mðt; tw;HÞ ¼ χ1H þ χ3
3!

H3 þ χ5
5!

H5 þOðH7Þ; ð5Þ

where [33]

TABLE II. Main parameters for our numerical simulations,
including the replicon exponent θðx̃Þ and the value of Cpeak
employed in Eq. (3).

Tm tw ξðtw; H ¼ 0Þ θðx̃Þ Cpeak

Run 1 0.9 222 8.294(7) 0.455 0.530
Run 2 0.9 226.5 11.72(2) 0.436 0.510
Run 3 0.9 231.25 16.63(5) 0.415 0.490
Run 4 1.0 223.75 11.79(2) 0.512 0.419
Run 5 1.0 227.625 16.56(5) 0.498 0.400
Run 6 1.0 231.75 23.63(14) 0.484 0.383

FIG. 2. A set of relaxation curves SðtÞ ¼ dðM=HÞ=d ln t for
CuMn at T ¼ 29 K and tw ¼ 104 s (top) and for the Ising-
Edwards-Anderson model at T ¼ 0.9 and tw ¼ 222 lattice sweeps
(bottom). The relation between IEA and physical units is
discussed in the text.
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χ2n−1 ∝ b2nðTÞ½ξðtwÞ�ðn−1ÞD−½nθðx̃Þ=2� ð6Þ

[b2nðTÞ is a smooth function of T].
Our improvements over the results of [12] start from the

observation that Eq. (6) predicts the paradoxical result χ1 ∝
ξ−θðx̃Þ=2 (hence, χ1 would go to zero when ξ → ∞). In fact,
Eq. (6) neglects the contribution of the regular part of the
free energy. A better description, then, is

χ1 ¼
ŜðCpeakÞ

T
þ b2ðTÞ
ξθðx̃Þ=2

; ð7Þ

where Ŝ½Cðt; twÞ� is the function appearing in the fluc-
tuation-dissipation relations [34–37] [from now on, we use
the shorthand Ŝ for ŜðCpeakÞ].
Our next assumption will be that we can determine the

excess free energy per spin in a field as it is done in
equilibrium (by integrating M with respect to H)

ΔF ¼ −
�
χ1
2
H2 þ χ3

4!
H4 þ χ5

6!
H6 þOðH8Þ

�
: ð8Þ

Equation (8), combined with Eqs. (6) and (7) leads directly
to Eq. (1) when one makes a few additional hypothesis
[38]: (i) according to an Arrhenius law, see [16,22,39],
teffH =teffH¼0 ¼ exp½NΔF=ðkBTÞ� where N is the number of
spins in a glassy domain, and (ii) N ∝ ξD−θðx̃Þ=2 [12].
The prefactor ξ−θðx̃Þ=2 for the G term in Eq. (1), not

included in Ref. [12], will be crucial here because, unlike in
[12], we shall test Eq. (1) in situations where the G term is
the dominant contribution.
Experimental and numerical results.—We look at relax-

ation function curves exhibited in Fig. 2, from which the
effective times teffH are obtained. Our results for ln teffH
(experiment) and ln teffH =teffH¼0 (simulations) are displayed
in Fig. 3. The technical details about this analysis will
appear elsewhere [25]. Both the experimental and the
numerical data in Fig. 3 deviate very significantly from
linear behavior, which suggests that the G term in Eq. (1) is,
indeed, playing a dominant role.
Our next step is fitting the experimental data to

ln teffH ¼ a0 þ a2H2 þ a4H4 þ a6H6 þOðH8Þ: ð9Þ

Note that, in the experiments, ln teffH needs to be extra-
polated to H ¼ 0 (this is the meaning of the a0 term). Our
coefficients an are listed in Table III. We extract ξ from the
a2 term as explained in Ref. [20]. For the higher-order
terms, Eqs. (1) and (5) predict an ∝ b2nðTÞξ½nD−ðnþ1Þθðx̃Þ�=2.
For instance, the T ¼ 28.75 K data with tð1Þw ¼ 10 ks and
twð2Þ ¼ 20 ks allow a direct test of the scaling relation.
Taking for θðx̃Þ the average value θ ¼ 0.343 [25] we find

ξðtð2Þw Þ=ξðtð1Þw Þ ¼ ½a2ðtð2Þw Þ=a2ðtð1Þw Þ�2=ð2D−θÞ ¼ 1.053;

ξðtð2Þw Þ=ξðtð1Þw Þ ¼ ½a4ðtð2Þw Þ=a4ðtð1Þw Þ�2=ð4D−3θÞ ¼ 1.048;

ξðtð2Þw Þ=ξðtð1Þw Þ ¼ ½a6ðtð2Þw Þ=a6ðtð1Þw Þ�1=ð3D−2θÞ ¼ 1.052:

ð10Þ

We can, therefore, gain access to the G term in Eq. (1) by
subtracting a0 þ a2H2 from the experimental value of
ln teffH .
As for the numerical data, polynomial fits analogous to

Eq. (9) are possible, but result in wildly oscillating curves.
The simplest explanation for this behavior is that our largest
magnetic fields are beyond the radius of convergence of the
Taylor expansion of Eq. (1). One can, however, compute a2
by estimating the derivative of lnðteffH =teffH→0þÞ numerically

FIG. 3. Experimental and numerical ln tweff from the maximum
of the response function in Fig. 2. Top: data from the experiments
in Table I. Lines are fits to a polynomial in H2, as in Eq. (9). The
fit parameters are reported in Table III. Bottom: numerical data
for the runs in Table II (the lines are just guides for the eye).

TABLE III. Experimental data: coefficients an of the poly-
nomial fit of ln teffw , see Eq. (9), as a function of Tm and tw.

Tm (K) tw (s) Coefficient Value

28.5 10 000 a2 −1.551 × 10−3 � 1.03 × 10−4

a4 3.980 × 10−7 � 6.99 × 10−8

a6 −4.363 × 10−11 � 1.29 × 10−11

28.75 10 000 a2 −1.816 × 10−3 � 2.00 × 10−4

a4 4.565 × 10−7 � 1.32 × 10−7

a6 −4.584 × 10−11 � 2.45 × 10−11

28.75 20 000 a2 −2.104 × 10−3 � 1.19 × 10−4

a4 5.889 × 10−7 � 7.88 × 10−8

a6 −7.013 × 10−11 � 1.47 × 10−11

29 10 000 a2 −2.609 × 10−3 � 1.28 × 10−4

a4 1.016 × 10−6 � 8.45 × 10−8

a6 −1.491 × 10−10 � 1.57 × 10−11

PHYSICAL REVIEW LETTERS 125, 237202 (2020)

237202-4



at H2 ¼ 0 [25]. Hence, we can access the G term in Eq. (1)
with the same subtraction that we used for the experimen-
tal data.
Finally, Fig. 4 brings these analyses together to perform a

strong test of Eq. (1) (assuming that the coefficients b4 and
b6 are almost constant in the temperature range of interest).
The agreement with the scaling prediction, manifested in a
data collapse, is striking both for the experimental and the
numerical data [40].
Conclusions.—The melding of experiment, theory, and

simulations, as exhibited in Figs. 2–4, is a spectacular
success of statistical mechanics. If the right questions are
asked, a truly schematic model (namely the Ising-Edwards-
Anderson model) turns out to behave, quantitatively, in the
same way that CuMn does. The crucial ingredients to
uncover this universal behavior have been high-quality
simulations carried out on a custom-built computer, careful
experiments capable of addressing the relevant regime of
very large correlation lengths close to the glass tempera-
ture, and an extension to the nonequilibrium context of the
classical equilibrium scaling theory. We are now able to
model quantitatively—in a framework that encompasses
both experiments and numerical simulations—responses,
autocorrelation lengths, and energy barriers in three-
dimensional spin glasses. This will allow us to address
more exotic phenomena such as rejuvenation (temperature
chaos) and memory effects. Moreover, because spin glasses
are influential in so many other fields (such as econo-
physics, biology, or optimization in computer science), our
work shows that successful modeling of complex systems
is feasible in finite dimensions.
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