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Abstract: In this paper, we formulate the active SLAM paradigm in terms of model-free Deep
Reinforcement Learning, embedding the traditional utility functions based on the Theory of
Optimal Experimental Design in rewards, and therefore relaxing the intensive computations
of classical approaches. We validate such formulation in a complex simulation environment,
using a state-of-the-art deep Q-learning architecture with laser measurements as network inputs.
Trained agents become capable not only to learn a policy to navigate and explore in the absence of an
environment model but also to transfer their knowledge to previously unseen maps, which is a key
requirement in robotic exploration.

Keywords: active SLAM; robotic exploration; optimality criteria; deep reinforcement learning;
deep Q-networks

1. Introduction

Simultaneous Localization and Mapping (SLAM) refers to the problem of incrementally building
the map of a previously unseen environment while at the same time locating the robot on it. Since its
statement, more than three decades ago, it has significantly drawn the attention of the robotics
community and numerous approaches have been developed, either based on novel filter techniques or
optimization methods where inertial and visual measurements may be jointly optimized. See [1–4]
and references there in.

Active localization was first introduced by Burgard et al. [5], where it was proven that picking
actions to minimize the localization’s uncertainty would result in a better localization than using
a passive approach (e.g., Markov localization or adaptive Monte Carlo localization). Active SLAM
augments this approach to the SLAM problem, and it can be defined as the paradigm of controlling
a robot which is performing SLAM so as to reduce the uncertainty of its localization and the map’s
representation [6,7]. Typically, it consists of three stages [8]: (i) the identification of all possible locations
to explore (ideally infinite), (ii) the computation of the utility or reward generated by the actions that
would take the robot from its current position to each of those locations and (iii) the selection and
execution of the optimal action. In the second step, the utility of each action is traditionally computed
by quantifying the uncertainty in the estimation of the two target random variables: the robot’s
pose and the map’s representation. This matrix quantification can be done on the basis of either
Theory of Optimal Experimental Design (TOED) or Information Theory (IT). According to the first one,
four optimality criteria can be inferred from the generic covariance matrix Σ ∈ R`×` of the state vector
x = (x1...x`)T ∈ R`, with eigenvalues λ1...λ`:
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• T-optimality criterion: captures the average variance,

T-opt ,
1
`

`

∑
k=1

λk (1)

• A-optimality criterion: captures the harmonic mean variance, which is sensitive to a lower-than
average value,

A-opt ,

(
1
`

`

∑
k=1

λ−1
k

)−1

(2)

• D-optimality criterion: captures the whole covariance (hyper) ellipsoid,

D-opt , exp

(
1
`

`

∑
k=1

log(λk)

)
(3)

• E-optimality criterion: captures the minimum eigenvalue,

E-opt , min(λk : k = 1...`) (4)

Within IT, Shannon’s entropy (or its variation) is the most commonly used metric, which can be
expressed for an `-dimensional multivariate Gaussian distribution, X ∼ N `(µ, Σ), as follows:

H(X) ,
`

2
(1 + log(2π)) +

1
2

log(det(Σ)) (5)

The proper choice of the criterion is still an open research issue. Since each of them captures a
different metric of Σ, they do not lead to the same behavior neither require the same computational
resources. It is worth noticing that every criterion is right-unbounded and that the following
relationship holds for every well-defined covariance matrix: E-opt ≤ A-opt ≤ D-opt ≤ T-opt.
Moreover, the robot’s state space representation (using quaternions, rotation matrices or Lie algebras)
and the uncertainty representation have recently been shown to be of utmost importance in the criteria
properties and therefore in the algorithm performance [9]. While differential state representations
allow the use of any criterion, absolute representations can only rely on D-opt (or Shannon’s entropy,
equivalently); being the other criteria unable to capture a true metric of the covariance matrix
nor to ensure certain key properties such as their monotonicity during exploratory trajectories.
Further discussion about the monotonocity of optimality criteria under Lie algebra representations
can be found in Appendix A, where the proof of their monotonocity under differential uncertainty
representations is presented.

Aside from traditional methods, such as particle filters [10] or model predictive control [11]
where frontier-based or random tree strategies are generally used, the problem of selecting the most
informative action in robotic exploration has been lately addressed with Deep Neural Networks
(DNN), often equating to Convolutional Neural Networks (CNN). Notably, Deep Reinforcement
Learning (DRL) is suitable for such problems in which the agent must learn by directly interacting
with the environment under partial observability, and where its a priori knowledge is nonexistent.
Thus, some DRL algorithms and strategies originally developed for other decision making problems
(e.g., video-games) have already been successfully applied to robotic navigation and exploration,
such as Deep Q-Networks (DQN) [12] and their double [13], dueling [14] and Rainbow [15] successors,
the Asynchronous Advantage Actor-Critic (A3C) architecture [16], the Soft Actor-Critic (SAC) [17] or
the Prioritized Experience Replay (PER) buffer [18].

A first example of those methods appears in [19], where Tai and Liu used a large CNN to extract
the feature maps of a front-view camera that would be later fed into a 2-layer DQN capable of selecting
the best next action to execute. In this case, experiments were carried out in a complex simulator,
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but convergence of training was only achieved for topologically simple scenarios (e.g., a straight
corridor). Moreover, the same simple scenarios were used in both training and testing stages, being the
agent’s generalization ability unclear. Work in [20] was among the firsts showing that navigation
via DRL was also achievable using the A3C algorithm, notably improving speed convergence with
respect to DQN. However, the acquired knowledge was never tested in environments different
from the training one, hence the environment was again known in all cases. A critic generalization
experiment, though, was carried out in [21], showing that trained agents do not perform as well in
previously unseen maps, and could even demonstrate behaviors comparable to random agents in
certain scenarios. [22] shows a similar approach in which obstacle avoidance problem is tackled using
the D3QN architecture and FastSLAM backend to map the environment and locate the robot on it.

The aforementioned works used simple extrinsic rewards to encourage obstacle avoidance.
However, once navigation was proved to be achievable, motivation and curiosity capabilities [23] were
added to the agents in order to expand the problem to robotic exploration. While some approaches,
frequently called curiosity-driven, encourage the agent to visit user-defined or novel states [24] or
to maximize the coverage of a known map [25], others motivate those actions that minimize the
environment’s uncertainty (i.e., the agent’s knowledge of the environment is maximized). The latter,
that will be referred as uncertainty-based, have been commonly addressed by encouraging the visit of
those states which are more difficult to predict [26,27], although they have been recently tackled on the
basis of true uncertainty metrics. In [28,29] actions are selected so as to maximize the entropy reduction
(information gain or Kullback-Leibler divergence) of a 2-dimensional occupancy grid map; either by
learning in a supervised fashion with labelled cells, or by introducing a metric of it in the DRL’s reward
function, respectively. Another approach to solve the active localization problem that also acts directly
on the reward function design was proposed in [30,31], where the entropy reduction was achieved
by including on it the maximum likelihood (ML) of being in any state (belief accuracy). Recently,
Chen et al. [32] trained both DQN and A2C agents using the underlying SLAM pose-graph through
Graph Neural Networks (GNN). In this case, they combined DRL with exploration graphs in order
to achieve true exploration policies based on the map’s uncertainty (T-optimality), outperforming
random and nearest frontier agents. They showed good generalization results with higher dimensional
state spaces. However, the simulation environment used was a simple grid world in which obstacle
avoidance was not needed and only landmark positions were changed.

In the literature, experiments are usually conducted in extremely-simplified simulation
environments, such as grid-worlds, where the agent moves between cells in a discrete fashion,
and sensors are never modelled. In these cases, the inputs to the DNN range from simple
occupancy-grid maps [33] to combinations of frontier’s and robot’s groundtruth locations [32,34].
More complex and realistic scenarios, although seldom used, are required to feed images [19,22] or
laser measurements [35] to the network. In such cases, it is worth noticing the complexity tackled;
not only in the interaction between the simulator and the training algorithm but also in the physics of
the robot movement, the environment itself and the sensors modelled (and thus their probabilistic
behavior). Knowledge transfer to real environments is yet to be evaluated due to the stage these
approaches are at, and only a few of them have effectively addressed it for navigation—and not
exploration—purposes [19,35].

Over the past few years, the basics of DRL have proved to have a great potential in navigation,
mapping and even exploration tasks. In this work, we aim to study that potential for the active SLAM
decision making problem. In this way, one of the main drawbacks of traditional active SLAM methods
is relaxed by transferring the intensive computations to the DNN training phase, requiring only
feed-forward propagation during evaluation. The paradigm is formulated as a multi-reward DRL
problem, on the basis of classical multi-objective optimization approaches and TOED. On top of Gazebo
simulator, a state-of-the-art DQN is embedded within a Robot Operating System (ROS) framework.
Thus, the use of both an uncertainty-based reward and a complex simulator are jointly taken into
account. Trained agents become capable of making quasi-optimal decisions in order to navigate and
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explore an environment, just from raw laser measurements. Acquired knowledge transfer is tested
in previously unseen scenarios to clarify their generalization ability. Also, traditionally extrinsic and
uncertainty-based rewards are compared to evidence the value of the proposed approach. Table 1
summarizes the differences between our approach and other mentioned literature. It can be noticed
that true uncertainty metrics are needed in order to tackle Active SLAM.

Table 1. Comparison with prior methods.

Task
Accomplished Architecture

Reward
Design

Complex
Environment

Generalization
Unknown env.

Partial
Observability

Tai and Liu [19] Navigation DQN Extrinsic X
Mirowski et al. [20] Navigation A3C Extrinsic X
Wen et al. [22] Navigation D3QN Extrinsic X
Zhelo et al. [26] Goal navigation A3C Intrinsic X
Oh and Cavallaro [27] Goal navigation A3C Intrinsic X
Tai et al. [35] Goal navigation ADDPG Intrinsic X X
Zhu et al. [33] Frontier selection A3C Intrinsic X
Niroui et al. [34] Frontier selection A3C Intrinsic X X X
Gottipati et al. [31] Active localization A2C Posterior belief X X
Chaplot et al. [30] Active localization A3C Posterior belief X X
Chen et al. [29] Exploration DQN Entropy X X
Chen et al. [32] Active SLAM DQN+GNN T-opt X X
Ours Active SLAM D3QN D-opt X X X

This section provided a brief but comprehensive introduction to the problem tackled. The rest of
the paper is organized as follows. In Section 2, active SLAM problem is formulated and the proposed
DRL approach is presented. The experimental setup (consisting of the simulation, SLAM and decision
making modules) and he results obtained and their discussion are shown in Sections 3 and 4. Finally,
the paper conclusions are in Section 5.

2. Problem Formulation

2.1. Traditional Approach

The active SLAM problem is included within a wider mathematical framework,
Partially Observable Markov Decision Processes (POMDP), that generalize such decision making
processes under both action and observation uncertainties. A POMDP is formally defined as a
7-tuple (S ,A, T , Ω,O,R, γ) consisting of the finite agent’s state space S , a finite set of actions A,
a transition function between states T : S ×A → Π(S) where Π(S) is the probability distribution
over S , a finite observation space Ω and its conditional probabilities O : S ×A → Π(Ω), a reward
function R : S ×A → R and the discount factor γ which allows to work with finite rewards even
when planning has an infinite time horizon. Every time step, the agent selects an action to execute
at ∈ A based on the current policy π, generating a transition from st to st+1 ≡ s′, both contained in S ,
where a new observation ot ∈ Ω is made. The goal of the agent is to find the optimal policy π∗ that
maximizes a metric of the reward function, usually defined as the future expected discounted reward
Rt , ∑∞

t=0 γtR(st, at).
Resolution of POMDP can be based on several methods, such as Monte Carlo,

dynamic programming or temporal differences. Reinforcement Learning (RL) algorithms, based on
the latter and Bellman equations, solve the problem by iterating either directly over the policy or over
a value function. This function is just a mapping to real numbers from the value encoded in being at a
certain state, or in a more complex fashion, from the value of being at a certain state and also executing
a certain action according to π; and are denoted as V(s) and Q(s, a), respectively. Both value- and
policy-based trends allow a POMDP resolution when the process itself (i.e., T and O) is not known
nor modelled (model-free).

In any case, RL algorithms are just recurrences over the expected rewards, as shown in Algorithm 1
of Q-learning, or more specifically, in Equation (6)–the Q-function’s Bellman update. The design of
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the reward function is then extremely important in order to achieve the desired goal, as it occurs in
optimization problems with cost functions.

Q∗(s, a) = R(s, a) + γ ∑
s′∈S
T (s, a, s′)max

a
Q∗(s′, a) (6)

Algorithm 1 Q-learning (for deterministic environment).

Parameters: α ∈ (0, 1], γ ∈ (0, 1]
Initialize Q-table with arbitrary Q-values
for episode← 1 to max episodes do

Perceive st
while st not terminal do

Select at ← π(st)
Take at, get rt and perceive st+1
if st+1 is terminal then Qt ← rt
else Qt ← rt + γmax

a
Q(st+1, a)

end if
Q(st, at)← (1− α)Q(st, at) + αQt
st ← st+1

end while
end for

Furthermore, active SLAM can be formulated as a multi-objective optimization problem [7] where
the cost function J must contain the cost of performing a free-collision trajectory (F ) and a metric of
the covariance matrix (U ), which represents the uncertainties in the estimates of the robot’s pose and
the map. As shown hereafter, both terms should be scaled by task-dependent coefficients, and can be
considered in an n-step horizon,

J = ∑
n

βnFn + ∑
n

αnUn (7)

Such formulation can be straightforward generalized to RL problem, just by designing the reward
function as follows,

Raug = RF +RU (8)

where the first term refers to a fully extrinsic reward that accounts for the collision-free trajectories
(i.e., navigation), and the second one is an intrinsic reward, that can be defined inversely proportional
to a metric of the covariance matrix f (Σ), e.g., the aforementioned utility functions. This definition
would motivate the robot not only to navigate the environment but also to explore it, in terms of
improving the estimate of the map’s representation and the robot’s localization on it.

2.2. Neural Network Approach

In Deep Q-learning formulation, the analytical computation of the action-value function
(Q-function) is approximated by a DNN which coefficients θ are iteratively updated by using the
well-known back-propagation algorithm [36]. Let the loss function of this new optimization problem
be the quadratic loss,

L(θ) = 1
n

n

∑
i=1

(
y(i) − ŷ(i)

)2
(9)

where n is the batch size, ŷ = Q(s, a|θ) the estimated Q-value by the DNN, and y the target Q-value,
that can be computed using an auxiliary identical neural network, following [13], with parameters
θ∗, as:

y = R(s, a) + γQ(s′, arg max
a

Q(s′, a|θ)|θ∗) (10)
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Therefore, just by feeding reward function from Equation (8) in the previous equation, the neural
network is recursively taught to visit those states that contributes to an uncertainty reduction. For the
sake of understanding of the approach, Algorithm 2 shows the proposed learning process, using a
dueling double DQN with PER embedded in Gazebo simulation environment.

Algorithm 2 Dueling Double Deep Q-learning with PER in simulation environment.

Parameters: α ∈ (0, 1], γ ∈ (0, 1], U, Ue, ε0, ε f , ε← ε0
Initialize memoryM, δ ≈ 0 and α′ ∈ (0, 1]
Initialize DNN with parameters θ and θ∗ ← θ
Initialize ROS master, Gazebo and SLAM algorithm
for episode← 1 to max episodes do

I Unpause simulation
Reset robot pose, map and SLAM algorithm
Perceive st
I Pause simulation
while st not terminal do

Select at ← π(st|ε)
I Unpause simulation
Execute at during ta seconds
Recover Σ, compute desired f (Σ) and rt
Perceive st+1
I Pause simulation
if st+1 is terminal then et = 1 else et = 0
Store tuple (st, at, rt, st+1, et) inM with max(p)
Sample minibatch fromM
for each tuple in minibatch do

if si+1 is terminal then Qtarget ← ri
else Qtarget ←

ri + γQ(si+1, arg max
a

Q(si+1, a|θ)|θ∗)
end if
Ωi ← Qtarget −Q(si, ai|θ)
pi ← (Ωi + δ)α′

end for
Perform optimization on Ω2 w.r.t. θ
Every U steps set θ∗ ← θ
st ← st+1
ε← min

(
ε0, ε− (ε0 − ε f )/Ue

)
end while

end for

3. Experimental Setup

3.1. Environment Setup

In order to evaluate the proposed approach, several experiments have been conducted in Gazebo
robotics simulator (http://gazebosim.org/). A Turtlebot robot has been used, consisting of with
two differential wheels and a modelled laser sensor that generates n rays equally distributed in the
180◦ front field of view of the robot, each of them with a minimum range of 0.1 m, a maximum
range of 10 m, two-digit decimal precision and a Gaussian noise model with zero mean and small
variance. Three different environments (Figure 1), adapted from [37], have been used during training
and testing stages. The first one, where the agent is trained, consists of a simple maze with 90◦

turnarounds. Second and third environments have a more complex topology, including consecutive
turnarounds and dead-ends, and have been used only during testing (i.e., agents do not improve
their policy anymore, see Figure 2). A training/testing stage consists of a certain number of episodes,
in which the robot moves until either a collision occurs (i.e., gets closer to any obstacle than a defined

http://gazebosim.org/
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threshold of 0.2 m) or 500 steps (i.e., decisions) are consumed. A ROS framework has been used to
connect the simulation environments with the SLAM algorithm and the decision making module,
by using GymGazebo (https://github.com/erlerobot/gym-gazebo) library, based on OpenAI Gym
(https://gym.openai.com/).

(a) Env. 1 (b) Env. 2 (c) Env. 3

(d) Map 1 (e) Map 2 (f) Map 3

Figure 1. Gazebo simulation environments (top) and their corresponding maps generated by the SLAM
algorithm (bottom).
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Figure 2. Training (left) and testing (right) processes.

Every step, the DNN receives the n-dimensional sensed vector and estimates the Q-values for
each possible action, namely going forward, turning right and turning left:

a1 = {v = 0.3, ω = 0}
a2 = {v = 0.05, ω = 0.3}
a3 = {v = 0.05, ω = −0.3}

where v is the linear velocity in m/s and ω is the angular velocity in rad/s; and v 6= 0 in a2 and a3 to
avoid continuous turnings on the same spot. By using a fully extrinsic approach, after each decision

https://github.com/erlerobot/gym-gazebo
https://gym.openai.com/
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making, the environment would reward the agent with a large negative value if a collision occurred,
or with a small positive value otherwise:

RF =


− 100 if collision

1 if ω = 0
− 0.05 if ω 6= 0

(11)

Note that the reward values have been designed empirically, and the penalty to nonzero angular
velocities prevents continuous spins and uneven trajectories.

The proposed uncertainty-based approach requires, following Equation (8), its augmentation
as follows,

Raug =



− 100 if collision

1 + tanh

(
η

f (Σ)

)
if ω = 0

− 0.05 + tanh

(
η

f (Σ)

)
if ω 6= 0

(12)

where η is a task-dependent scale factor and f (Σ) is the D-optimality criterion. Since this criterion
–likewise any other of the presented criteria– is right-unbounded, the tanh(·) function has been used
to bound it in the interval [0, 1] and therefore to maintain a relationship between the free-collision
trajectory and uncertainty terms.

3.2. SLAM

From previous formulation it is clear that the covariance matrix recovery is a key requirement.
In this sense, a slightly modified gmapping [2] algorithm runs on background of the training,
re-initializing its map every episode and communicating the covariance estimate to the learning
module via the ROS architecture (see Algorithm 2). Despite other SLAM algorithms (e.g., [4,38]) would
able to compute more accurate state and covariance estimates, gmapping has been chosen because of its
simplicity and low computational load, which were requirements that have been considered essential
for the stage the study is at.

Every time the algorithm processes a laser scan, it recovers the distribution of the particles’ state
as a Gaussian with mean µ ∈ R3 and covariance Σ ∈ R3×3:

µ =
np

∑
i=1

w̄ixi (13)

Σ =
np

∑
i=1

w̄i(xi − µ)(xi − µ)T (14)

where np is the total number of particles, index i represents a single particle, w̄i = wi/ ∑
np
j=1 wj its

normalized weight and xi = (xi, yi, θi)
T its state vector. After its retrieval, the covariance matrix is

referenced to the previous pose following the absolute formulation available in [9], and published
in ROS.

The main parameters of the algorithm have been tuned to achieve a balance between performance
and low computational load. Since each particle has to carry its own map, only five particles have been
used. The minimum effective number of particles, a key parameter to detect loop closures, has been
set to one-fourth of the total number of particles.
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3.3. Decision Making Module

Hitherto, the simulation environment and the SLAM algorithm have been described.
Decision making is the third and last module of the approach, and it has been done via deep Q-learning
due to the high computational load that multi-agent training (e.g., A3C) would require in Gazebo.

First of all, a vanilla DQN and a double DQN (DDQN henceforth) have been implemented
in TensorFlow. The networks contain two hidden layers, each of them with 24 hidden units and
LeakyReLU activation with negative slope f (x) = −0.01x, and a linear output layer with a number of
hidden units equal to the dimension of the action set. Secondly, a dueling double DQN architecture
(D3QN henceforth) with PER has been implemented, akin to the state-of-the-art network described by
Hessel et al. [15]. It contains two parallel separate flows that encode the value function V(s) and the
advantage function A(s, a). Each flow contains only one hidden layer, with the same structure as the
previous networks, and an intermediate output linear layer (1-dimensional for V and 3-dimensional
for A). Both flows are then non-trivially aggregated to generate the estimate Q(s, a) in the output
layer, again of dimension equal to the size of the action set. In addition, the weights of this network
have been non-randomly initialized to known values that encode a reasonable policy, so as to speed
convergence. In all cases, the target network is hard-updated every 10000 steps, the training algorithm
uses RMSProp optimizer (ε = 1× 10−6, ρ = 0.9), and the agents follow an ε-greedy policy with
decreasing ε in the interval (1, 0.02] during the first 50 training episodes. This policy is nevertheless
changed to a greedy one during testing. The main parameters of the learning algorithm and the
simulator are listed in Table 2.

Table 2. Training and simulation main (hyper)parameters.

Parameter Description Value

α Learning rate 0.00025
γ Discount factor 0.99
M Memory buffer size 20,000
b Minibatch size 64

nin Number of DNN inputs 100
nout Number of DNN outputs 3
Ue Exploration episodes 50
U Steps between θ∗ updates 10,000
η Scaling factor of f (Σ) 0.01

tsim Gazebo real-time factor 10
ta Seconds to apply the action 0.1
s Max. no. of steps per episode 500

4. Discussion of Results

4.1. Reinforcement Learning

To conceptually prove the validity of the approach, a preliminary simple experiment has been
performed where decision making is done via Q-learning. In this case, only five laser measurements
have been used to reduce the computational complexity of this tabular approach, and the reward
function of Equation (12) has been modified so f (Σ) equals to Shannon’s entropy and η = 1. The agent
has been pre-trained in the first scenario to learn some general skills and then trained again in the
second environment, which is more complex. Figure 3 shows the entropy evolution along episodes
during the training phase for the traditional (left) and uncertainty-based (right) approaches. Color maps
indicate the logarithmic occurrence of entropy (darker means lower). In the left figure, entropy trend
is not ordered and any improvements are achieved accidentally, since the algorithm does not bother
on its minimization. The rightmost figure, however, shows a decreasing entropy trend as training
progresses, which matches with the proposed formulation.
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Figure 3. Logarithmic occurrence of entropy along episodes in the second scenario. Results are
shown for traditional (left) and uncertainty-based (right) RL’s reward functions. Darker colors denote
lower occurrence.

4.2. Deep Reinforcement Learning

Once the suitability of the approach has been conceptually proved, it has been extended to
include the benefits of DL. First of all, the three agents (DQN, DDQN and D3QN) have been
trained in the simplest environment with an extrinsic reward, in order to compare their performance,
study their generalization ability and prove that exploration is not achievable with such formulation.
Figure 4 contains their training curves (i.e., the cumulative reward after each episode of the training)
after roughly 30 h and 500 episodes (all experiments have been performed on a laptop with Intel
Core i7-7500U CPU, Nvidia Quadro M520 (2GB) GPU and a 32GB RAM). Light-colored curves
correspond to raw data while bold ones do to outlier-filtered moving averages. DQN agent, depicted in
blue, demonstrates permanent instabilities due to the memory saturation with useless experiences,
resulting in continuous cycles of forgetting and relearning similar policies. DDQN agent (red) mitigates
them, although converged maximum values are slightly lower (i.e., policies are less optimal and
thus trajectories become rougher). Finally, D3QN curve (green) has a significantly more stable
behavior attributable to the PER, and also higher maximum converged values. Note that, in this
case, convergence is much faster because of the non-random initialization of the network weights.

0 100 200 300 400 500
Episodes

−100

0

100

200

300

400

C
um

ul
at

ed
R

ew
ar

d

Deep Q-Network

Raw reward DQN
Raw reward Double
Raw reward Dueling
Moving average reward DQN
Moving average reward Double
Moving average reward Dueling

Figure 4. Cumulative reward during training in environment 1 for DQN (blue), DDQN (red) and D3QN
(green) agents. Light-colored curves correspond to raw data while bold ones do to outlier-filtered
moving averages.

Table 3 shows the performance of each agent in the three scenarios during testing (generalization),
in terms of success ratio (SR, i.e., number of times over all trials that they sense more than 95% of the
map at least once, where 95% have been used instead of 100% due constraints of the laser sensor),
mean number of steps per episode and mean reward per episode. In addition, results have been
averaged over five experiments with different simulation random seeds, and their standard deviation
is presented in parenthesis. D3QN results are the most remarkable in the first environment, as it
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outperforms the reward that a human would obtain by manually controlling the robot (≈350). In the
second environment both DDQN and D3QN show a good behavior. Despite DDQN have higher SR
(and mean steps, thus), the higher mean reward obtained by D3QN proves the generation of more
optimal trajectories: smoother movements and less spins. The third environment presents quite a
challenge not only for being unknown but also because of its complex topology. None of the agents
trained withRF is capable of going across the whole map, leaving some areas such as the top right
corner and the middle dead-end unvisited (see Figure 1f). Besides that, D3QN navigation performance
is exceedingly superior, with mean rewards several times higher than the ones obtained by DQN
and DDQN.

The three trained agents performed well during generalization in the second environment, due to
its similarity to the training one. After the training, the agents have learned to decide when to go
forward and when to steer when an obstacle is close enough. As the complexity of the agent’s
architecture increases, the learned skills complexity grows too. For instance, it can be noticed how
the D3QN agent learned the exact moment to steer so as to maximize rewards (i.e., minimize the
traveled distance). In this sense, the second scenario keep this topology and thus the agent is capable
of transferring the learned skills. The third scenario, however, is more challenging. Several dead-end
corridors appear and also a corridor with two ways. Therefore, the agent must be capable of choosing
the right path or, at least, being able to return when a wrong action is selected. Note that these are skills
that were no taught in the first scenario. In the third environment, only the D3QN agent is capable of
generalizing the learned skills to those needed in order to complete it.

For the purpose of showing the strong effect of not having a priori knowledge of the environment,
a second experiment has been conducted where the simplest trained agent was allowed to store
information of the second environment during a few episodes before being tested on it (denoted as
DQN† in Table 3). Results of the retraining stage are shown in Figure 5. In the beginning, the agent
worsens its performance while the network weights are adjusted, but after about 65 episodes, it is
capable to outperform agents with a more complex architecture, as it is also shown in Table 3. It is worth
noticing too how the standard deviation of the reward significantly increases when the environment is
unknown for the agents, since the input states are unfamiliar. This experiment has not been performed
in the first scenario since DQN agent has been already trained on it. In the third environment, the
required amount of warm-up steps needed for the neural network to adapt was too high, so it is not
presented either. Despite demonstrating a superior behavior, the agent would be learning a whole new
policy based on the information gathered in the new scenario and forgetting the old one.

DQN warm-up evaluation

DQN
DDQN
D3QN
DQN†

Figure 5. Mean cumulative reward and its deviation for DQN (blue), DDQN (red) and D3QN (green)
agents in the second environment. Also, evolution of the cumulative reward for DQN† (orange) over
the number of retraining episodes.
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Table 3. Mean evaluation results in all environments for DQN, DDQN and D3QN agents trained with
RF . Superscript † refers to an agent that was allowed to train briefly before its evaluation on that
scenario, while ‡ does to an agent retrained withRaug.

Agent SR(%) Steps R

Env. 1

DQN 100 500 (0) 352.14 (0.1)

DDQN 100 500 (0) 337.56 (2.2)

D3QN 100 500 (0) 355.31 (0.3)

D3QN ‡ 100 500 (0) 300.1 (9.3)

Env. 2

DQN 72.8 312 (13) 95.55 (14.4)

DDQN 100 500 (0) 192.52 (3.0)

D3QN 89.3 419(9.3) 196.5 (5.7)

DQN † 100 500 (0) 269.98 (4.4)

D3QN ‡ 100 500 (0) 241.1 (29.2)

Env. 3

DQN 0 170 (15) −24.89(8.3)

DDQN 0 253 (16) −42.15(4.8)

D3QN 0 432 (18) 241.56(16.5)

D3QN ‡ 26 459 (97) 261.62(57.5)

Lastly, an experiment has been carried out using the reward proposed in Equation (12).
The previous D3QN agent has been trained again in the first environment during 250 episodes
(reaching a tradeoff between performance and low training time). Evaluation results are shown
in Table 3 under D3QN‡ notation. Note that, for comparison purposes, the mean rewards shown
correspond only to the extrinsic term ofRaug, albeit the complete function was used during training.
Although in the first environment the mean extrinsic reward is significantly lower; in the second one
the agent improves the performance of its predecessors, achieving a 100% SR and obtaining mean
rewards close to the ones that an agent with previous knowledge of the environment would obtain.
In the third environment, the increase in mean steps and reward is also remarkable. However, the most
notable fact is the nonzero SR, meaning that the agent is capable of visiting the whole scenario in
some occasions: a fact that any agent had achieved due the topological complexity of the environment
and since exploration was not encouraged until now. In all cases, the inclusion ofRU has led to the
selection of more optimal actions in terms navigation and robotic exploration; but also to a significant
increase of the standard deviation. This could be mitigated with longer training stages, since the
optimization problem becomes more complex with multi-reward functions.

Previous data has proved the effectiveness of the proposed approach only in terms of navigation,
though. Next, it is shown how uncertainty evolves in both the traditional and the proposed methods.
Figure 6 shows the evolution of the D-optimality criterion during evaluation of D3QN (red) and
D3QN‡ (blue) agents in the three environments. This figure contains the mean behavior (bold curves)
of 50 different episodes (shown in the background), and their confidence interval at 95% (light-colored
areas). In the first two environments the evolution is similar with both agents, however, there is a big
difference on how they achieve such behavior: while D3QN‡ agent looks for the uncertainty decrease,
D3QN achieves it accidentally due to the reduced topological complexity of the environments. In the
third scenario, which is topologically more complex and where D3QN left several areas unvisited
(and therefore loop closures), the use of D3QN‡ results on a significant reduction of D-opt (≈ 34%).
Also, note how the increasing monotonicity property is hold and how discontinuities occur due to
loop closures.
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D3QN
D3QN‡

(a) Environment 1

D3QN
D3QN‡

(b) Environment 2

D3QN
D3QN‡

(c) Environment 3

Figure 6. Evolution of the D-optimality criterion during evaluation for the agents trained with RF
(D3QN, red) andRaug (D3QN‡, blue).

Figure 7 contains the maps generated online by the SLAM algorithm in the three environments
after about 150 testing episodes. Images also contain starting positions (red circles), the detection of
loop closures (black stars), the robot’s trajectory (red arrows) and its uncertainty in X and Y directions
(yellow ellipses). Maps are depicted for D3QN (top) and D3QN‡ (bottom) agents. Firstly, it is notable
the lower uncertainty achieved by the proposed agent in all cases, and the effectiveness of resampling
in comparison to the traditional agent. Moreover, trajectories followed are more optimal and angular
velocity is applied more sparsely (source of uncertainty increase). In the third environment, D3QN‡

agent is strikingly capable of selecting different paths to explore a greater area and resample the
particles (i.e., close the loop) twice. Note that although these maps have been hand-selected to
represent a common behavior of the agent’s policy, do not always reproduce equally due to the
environment and simulation’s randomness.

Finally, a discussion on the complexity of this approach with respect to the traditional active
SLAM algorithm is presented in Appendix B.
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LOOP 
CLOSURE

(a) D3QN, env. 1 (b) D3QN, env. 2 (c) D3QN, env. 3

LOOP CLOSURE

(d) D3QN‡, env. 1

LOOP 
CLOSURE

(e) D3QN‡, env. 2

LOOP 
CLOSURE 2

LOOP 
CLOSURE 1

SECOND PATH    FIRST PATH

(f) D3QN‡, env. 3

Figure 7. Maps built by D3QN (top) and D3QN‡ (bottom) agents in the three environments during
testing. Red circles indicate the starting position, red arrows the trajectory followed, black stars point
out a resample of algorithm particles (loop closures) and yellow ellipses illustrate a measurement of
the uncertainty of robot’s 2D position.

5. Conclusions

In this paper, we have presented a novel approach to solve the Active SLAM paradigm by using
model-free DRL. In contrast to prior approaches that try to effectively address autonomous exploration
with intrinsic rewards, we embedded true uncertainty metrics in the reward function, that stem from
traditional TOED. Despite many works claim to succeed in exploration with extrinsic rewards, we have
proved that performing Active SLAM with such rewards is not feasible. We embedded a state-of-the-art
deep Q-learning architecture on top of Gazebo simulator; and executed a lightweight SLAM algorithm
back-end that allowed the retrieval of the robot’s uncertainty and therefore the computation of
D-optimality. Thus, we were able to truly perform Active SLAM in a complex environment with
realistic models for the robot, the sensors and the environment physics, unlike most related works.
Trained agents are able to select actions so as to reduce the uncertainty via quasi-optimal trajectories
and place recognition. More interestingly, they are also able to transfer the acquired knowledge to
previously unseen maps, a key requirement to solve Active SLAM.

As future work, we aim to embed a more complex state-of-the-art SLAM system to obtain a
more precise uncertainty estimate which also includes a state representation based on Lie algebras,
e.g., ORB-SLAM2 [39], in order to accurately compute optimality criteria, see [9]. To our understanding,
the main limitations of our approach are the DRL architecture and the environments used. Thus,
we plan to test actor-critic algorithms and explore new inputs to feed the networks, e.g., images or the
underlying pose-graphs. Finally, experiments in real world will be conducted where our approach will
be compared to classical active SLAM algorithms, although for now, further theoretical exploration
with simulator validation seems to be more valuable.
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Appendix A. Proof of the Monotonicity Property of the Robot’s Pose Uncertainty

Appendix A.1. Representation of the State

The goal of a SLAM framework is to simultaneously reconstruct both the 3D trajectory of the
system and a sufficiently accurate model of the navigation area, from the observations provided by the
available sensors. Following a reduced-order notation of [40], the state of the system at time k is given
by the tuple:

xk = (Rk, pk) (A1)

where Rk ∈ SO(3) is the rotation matrix and pk ∈ R3 is the translation vector.

Appendix A.2. Representation of the Pose’s Uncertainty

Based on a matrix Lie group representation, at any given time step k, the real location of the
system w.r.t. the global reference frame, Tk, can be represented by the product of a “large” estimated
location, T̄k ∈ SE(3), and a “small” perturbation, d̂k ∈ se(3):

Tk ≡ Tk(Rk, pk) = exp(d̂k)T̄k (A2)

where the perturbation is expressed w.r.t. the first reference frame [41,42]. Considering the perturbation
as a Gaussian random vector dk = (dx, dy, dz, dωx, dωy, dωz)T ∈ R6 for the 3D and dk = (dx, dy, dθ)T ∈
R3 for the 2D case, its mean and covariance matrix are given by:

d̄k = E[dk] (A3)

Σk = E[(dk − d̄k)(dk − d̄k)
T ] (A4)

For notational convenience, the hat operator of Equation (A2) converts the vector dk to a member
of the Lie algebra se(n). That is, for the 2 and 3D cases, respectively:

d̂ 2D
k =

 [dθ]×
dx

dy

0 0

 =


0 −dθ dx

dθ 0 dy

0 0 0

 (A5)

d̂ 3D
k =


[dω]×

dx

dy

dz

0 0

 =


0 −dωz dωy dx

dωz 0 −dωx dy

−dωy dωx 0 dz

0 0 0 0

 (A6)

where [dθ]× and [dω]× are the R2×2 and R3×3 skew symmetric matrices corresponding to the hat
operators in se(2) and se(3).

Elements of Equations (A5) and (A6) from the tangent space se(n) can be associated to
their underlying Lie groups SE(n) by the group exponential maps [43]. Note that an alternative
representation is also possible by considering the “small” perturbation being expressed in the
k-th reference frame Tk = T̄k exp(d̂′k) where d′k and dk are related by the adjoint action on the Lie
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group [40,44] as d′k = AdTk1(dk). However, for the discussion below on monotonicity, it is required that
every perturbation correspond to the same tangent space to be comparable.

Appendix A.3. Uncertainty Propagation

Let’s now consider two noisy poses, TAB and TBC, both contained in SE(3) with their associated
“small” perturbation errors dA and dB. The composed pose, TAC, can be estimated by the
matrix product,

TAC = TAB TBC = exp(d̂A)T̄AB exp(d̂B)T̄BC (A7)

Using the following definition of the adjoint,

exp (AdXY) , X exp (Y)X−1 (A8)

or, equivalently,
exp (Y) = X−1 exp (AdXY)X (A9)

and setting Y = d̂B and X = T̄AB, Equation (A7) results in,

TAC = exp (d̂A) exp (AdTAB d̂B)T̄ABT̄BC (A10)

= exp (d̂A) exp (AdTAB d̂B)T̄AC (A11)

Finally, using the first-order approximation [45–47] of the Baker-Campbell-Haussdorf formula for
the product of the exponential maps, it can be inferred that,

TAC ' exp (d̂A + AdTAB d̂B)T̄AC (A12)

Thus, the perturbation of the composed pose TAC will be:

d̂
′

A ' d̂A + AdTAB d̂B (A13)

Assuming that the perturbation errors dA and dB are uncorrelated with one another,
the uncertainty of d̂

′
A is,

Σ′A ' ΣA + AdTAB ΣB AdT
TAB

(A14)

where AdTAB is the adjoint representation of transformation T̄AB, defined, in SE(2) and SE(3)
respectively, as,

Ad2D
TAB

=


cos φAB − sin φAB yAB

sin φAB cos φAB −xAB

0 0 1

 (A15)

Ad3D
TAB

=

(
RAB DABRAB

0 RAB

)
(A16)

where RAB is an orthogonal rotation matrix and DAB is the 3× 3 skew symmetric matrix related to the
translational part of T̄AB.

Appendix A.4. Monotonicity of Utility Functions

In the literature different utility functions to quantify the uncertainty of the robot’s pose have
been proposed both from the perspective of the TOED and IT: (i) T-opt (trace of the covariance matrix,
or sum of its eigenvalues) [11,48–50]; (ii) D-opt (determinant of the covariance matrix, or product of its
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eigenvalues) [51–53]; (iii) E-opt (maximum or minimum eigenvalue, depending on the notation) [54]
criteria, and (iv) Shannon’s entropy [55,56].

As reported in [9,57,58], monotonicity (the property that states that uncertainty increases as the
robot moves during exploratory trajectories) is essential for adequate decision making in the context of
active SLAM. Moreover, Rodriguez-Arevalo et al. [9] demonstrated that monotonicity holds for any
utility function when uncertainty is represented differentially, regardless of the chosen representation
for the robot’s orientation. Also, Kim and Kim [58] demonstrated that using a Lie-group based
representation monotonicity also holds.

Notably, from Equation (A14),

Σ′A − ΣA ' AdTAB ΣB AdT
TAB

(A17)

it holds that, because ΣB is a positive semi-definite matrix, AdTAB is a non-singular matrix
(with det(AdTAB) = 1) and AdTAB ΣB AdT

TAB
is a positive semi-definite matrix. Also, from [59], if A and

B are symmetric matrices contained in Rn×n it can be stated that,

• A ≥ B⇒ tr(A) ≥ tr(B).
• A ≥ B ≥ 0⇒ det(A) ≥ det(B).
• A ≥ B⇒ λi(A) ≥ λi(B) ∀i = (1, ..., n) with λi the i-th largest eigenvalue of A and B, respectively.

Therefore, because Σ′A ≥ ΣA ≥ 0, the four utility functions would satisfy monotonicity and,
therefore, would result in a reliable decision making.

Appendix B. On the Complexity

Consider a neural network with n the number of inputs, m the number of outputs, H the number
of hidden layers, mi the intermediate outputs of the i-th hidden layer, and hi the number of neurons in
the i-th hidden layer. The computations required to propagate the information trough the network
(feed-forward) during testing are one matrix multiplication and one activation function per layer. Thus,
the number of multiplications performed will be,

n×m1 + m1 ×m2 + · · ·+ mH−1 ×mH + mH ×m (A18)

= n×m1 + mH ×m +
H−1

∑
i=2

mi ×mi−1 (A19)

which allows to express the complexity as:

Θ

(
n×m1 + mH ×m +

H−1

∑
i=2

mi ×mi−1

)
(A20)

where Θ(·) is a strict bound, following the Bachmann–Landau or asymptoticwhere Θ(·) is a strict
bound, following the Bachmann–Landau or asymptotic notation.

Consider now the number of hidden units per hidden layer to be equal for all hidden layers, and
denoted as m̂, and the number of hidden layers to be H = 2. Then, Equation (A20) can be rewritten as:

Θ ((n + m + m̂)× m̂) (A21)

On the other hand, the complexity of applying the activation function can be expressed,
under the previous assumptions, as O (m̂), where O(·) is the upper bound. Therefore, the global
complexity of the problem will be O ((1 + n + m + m̂)× m̂), or, as a function of only the number of
inputs and outputs, Θ (n + m). The number of outputs is equal to the dimension of the action set,
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dim(A) ≡ |A| = m, and the number of inputs directly affects the observation set, O. For example,
in the studied case where a laser scan is used, the dimension of the observation set would be,

dim(O) ≡ |O| =
(
(maxrange −minrange)× 102

)n
= kn (A22)

Thus, the time complexity of solving the problem will be linear in the action set and logarithmic
in the observation set according to Θ (|A|+ log(|O|)).

Traditional resolution of the problem may result in different complexities depending on the
method selected. For example, value iteration for a MDP is known to be O

(
|A| × |S|2

)
complex,

where |S| is the dimension of the state set; and for a POMDP, O
(

c|A| × c|O|
)

with c > 1,
i.e., exponentially complex in the action and observation sets. Note that the previous complexity
corresponds to the most demanding stage, being lower order terms ignored, such as the search over the
action set, or the computation of the utility function that would be, for example, for D-opt, Ω(|S|2.373),
where Ω(·) is a lower bound.
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