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Abstract: This review discusses the different approaches developed by researchers in the last 40 years
for the qualitative and semi-quantitative screening of odorants, with special emphasis in wine aroma
profiling. In the first part, the aims and possibilities of Gas chromatography-olfactometry (GC-O)
as odour-screening and aroma profiling technique are discussed. The critical difference between
approaches is whether the ranking of odorants is carried out on an extract containing all the odorants
present in the product, or on an extract representative of the odorants contained in the vapour phases
that cause the odour and flavour. While the second alternative is more direct and can be more efficient,
it requires a good understanding of the factors affecting orthonasal olfaction, handling volatiles
(purging, trapping, eluting, and separating) and about the sensory assessment of GC effluents.
The review also includes an updated list compiling all the odorants detected in wine by GC-O,
including retention indexes and odour descriptions with a general guideline for the identification
of odorants.

Keywords: odorants; odours; flavour; sensobolome; odour zones; retention index; gas
chromatography-olfactometry

1. Wine Aroma

Wine is a very special food product whose value is increasingly associated with the set of
characteristics, both extrinsic and intrinsic, responsible for the pleasure associated with its consumption.
Extrinsic elements such as connections with geography and history, brand image, or perception of
exclusivity, amplify the pleasure associated with the purely sensory perceptions, which are the intrinsic
and primary elements of wine quality [1]. Within these sensory perceptions, complexity and aromatic
balance are two key elements [2,3]. It should be remarked that the most appreciated wines rarely have
explicit and easy to define aromas, rather they have complex aromatic notes in which some fruit and
freshness perception is essential, along with other spicy, woody or toasted notes, depending on the
type of wine. Note that, especially for experts, the absence of aromatic defects or deviations is also
always an essential element of quality [4].

The set of wine aromatic perceptions includes all the different odours perceived through the nose
during wine consumption. These odours change with time due to the progressive evaporation of the
most volatile compounds once the wine is poured in the glass [5,6], changing both orthonasal and
retronasal perceptions. Behind those odours there are several dozens of wine odorants able to reach
our olfactory epithelia during wine consumption. The set of perceived olfactory perceptions are the
result of various processes of modulation and integration of the primary olfactory signals produced by
each one of the odorants. In the in-mouth perceptions, integration includes stimuli from the senses
of taste and touch. All these integration processes make it difficult to understand the relationship
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between the primary olfactory inputs and the perceived aroma. For instance, cooperative associations
between very weak odorants of more or less similar odours can produce clear and net odours [7,8],
or the strong suppression effects of some components such as 2,4,6-trichloroanisole (TCA) or higher
alcohols [9] can completely suppress other relevant odours. The corollary is that understanding wine
odour characteristics requires more than just studying its most intense odorants.

Some odorants are common to all wines and can be considered “constitutive” of wine. Among them,
the secondary volatile metabolites of alcoholic fermentation, or in the case of oak aged wines, the wood
extractable volatiles. Most of these “constitutive” volatiles are also relatively easy quantified by
GC-MS since they are in affordable concentration ranges (several µg-mg/L). There is, however, a second
group of relatively common odorants, many of which derive from the grape, which can be found in
much wider concentration ranges. Terpenes, norisoprenoids, volatile phenols, vanillins, rotundone,
methoxypyrazines or polyfunctional mercaptans are found in this group. Some of them are responsible
for the specific aromatic properties of certain types of wine. The low concentrations at which they
can become active can complicate the analytical control, particularly in the cases of polyfunctional
mercaptans, methoxypyrazines or rotundone. Something similar happens to some potential off-odours,
such as TCA and other halophenols, or 1-octen-3-one, E-2-nonenal and other fatty acid-derived odorants.
The list of potentially relevant aroma compounds, both positive and negative, increases steadily with
time. This is in part the logical consequence of our scientific and technical progress, but unfortunately,
and particularly for negative aroma compounds, such increase is a side consequence of the increasingly
frequent anomalous climatological phenomena affecting grape maturation.

In this quantitatively complex scenario, and despite the analytical power of current GC-MS and
HPLC-MS instrumentation, we are going to be constantly compelled to evaluate both the presence of
unexpected odorants in the aromatic profile, and to identify quantitative alterations of the aromatic
profiles potentially responsible for odour imbalance. In both situations, GC-O can be very useful if its
basics, potential and limitations are well understood.

2. Gas Chromatography-Olfactometry as a Technique for Screening Odour-Active Molecules

Gas chromatography-olfactometry (GC-O) has been used almost since the introduction of gas
chromatography, as the human nose is the most appropriate detector to monitor the presence of
an odorant in the effluent of a gas chromatograph [10]. For GC-O, the flow at the outlet of the
chromatographic column is divided into two branches by means of a union or Y-joint, one that
carries the analytes to an instrumental detector (FID, MS, . . . ); and another one that takes them to an
olfactometric port, where the human nose acts as a detector of great sensitivity and selectivity. The first
forms of GC-O consisted simply on the sensory description of the effluent from the chromatographic
column with the aim of assessing whether the chromatographic peak was odour active. In the case of
grapes and wines, the first reports date from the 70′s, when the technique was first used to identify C6
alcohols and aldehydes as responsible of the leafy odour of grape leaves [11] and to monitor changes
in aroma composition during aging [12]. One of its first successes was the identification of furaneol as
key off-odour of the wines made with V. labrusca hybrids [13].

The potential of GC-O as a screening technique able to rank the odorants present in a product
attending to their potential relevance in the product begun to be recognized in the 80′s with the
pioneer works of Acree, et al. [14] and Schieberle and Grosch [15]. These authors introduced the two
first systematic approaches for obtaining quantitative parameters related to the olfactory importance
of an odorant in a given product: charm analysis and AEDA, respectively. Charm is the acronym
for Combined Hedonic Aroma Response Measurements and AEDA for Aroma Extract Dilution
Analysis. The techniques will be later presented and discussed with more detail. Now, some previous
disquisitions about the goal of the GC-O screening operation will be elaborated to clarify some concepts
which often are not correctly understood by researchers.

The obvious goal of the GC-O screening operation is to rank the odorants present in the product
attending to their relative implication on the aroma-related sensory properties of the product. For this,
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the shortest way is to carry out the GC-O screening operation on an extract whose composition
closely resembles those of the vapour phases emanating from the product during its olfaction and/or
consumption. However, producing such an extract is not straightforward at present, and it was yet more
complicated 30 years ago. By then, early researchers realized that the direct GC-O study of headspaces
(usually carried out under equilibrium conditions) yielded just a very little fraction of the most volatile
odorants present in the product, which at the end, resulted to be not really much important on its odour
and flavour [16,17]. Those headspace fractions were also so diluted that identification was very difficult.
Because of these reasons, most researchers decided to get a “total extract” from the product, and even
today, the GC-O operation is most often carried out on such total extract after the corresponding
operations of cleaning and concentration. A “total extract” can be easily obtained from any product.
For that, the product just has to be extracted with relatively high volumes of a solvent of medium
polarity (diethyl ether or dichloromethane), preferably using several consecutive extractions. This type
of extracts can easily contain 100% of the odorants present in the original product, and from this point of
view, they are “representative” of the product. However, it is of the outmost importance to understand
that these types of extract cannot provide unbiased estimations of the relative importance of the different
odorants in the sensory properties of the product. The reason for this has to do with the fact that in GC,
all the volatile components introduced in the chromatographic column end volatilized and reach the
detector, regardless of their volatility. On the contrary, in the original product the different odorants are
transferred to the vapour phases at very different proportions, depending on their specific volatilities in
the product matrix. These volatilities do not depend only on the size and boiling point of the odorant,
but on the interactions that it establishes with the matrix. Unfortunately, these volatilities in aqueous
matrixes can be so different between odorants that can completely invalidate the ranking obtained in
the GC-O operation carried out on the total extract. To illustrate this situation let’s take as example
two similarly powerful odorants with very different polarities: vanillin and 2,4,6-trichloroanisol (TCA),
whose properties are summarized in Table 1.

Table 1. Basic chemophysical properties and odour thresholds of vanillin and 2,4,6-trichloroanisol
(TCA), two powerful odorants of very different polarities.

Property Vanillin 2,4,6-Trichloroanisole (TCA)

Molecular weight (g mol−1) 152.2 211.5
Boiling point (◦C) 285 241

Log P 0.59 4.11
Water solubility (mg L−1) 6875 10

Henry’s volatility constant (atm L mol−1 at 25 ◦C) 2.5 × 10−9 1.3 × 10−4

Log Koa 8.3 6.4
Odour threshold in air (µg L−1) 0.008 0.004

Odour threshold in water (µg L−1) 100 0.00003

As can be seen, both odorants have very similar odour thresholds in air, which indicates that they
are similarly powerful, i.e., our noses require similar numbers of molecules of both components to
elicit a detectable odour signal. However, their odour thresholds in water differ by more than 6 orders
of magnitude. This difference is due to the different polarities of both molecules. While TCA is quite
hydrophobic and scarcely soluble in water (log P = 4.1, Wsol = 10 mg L−1), vanillin is quite hydrophilic
and water soluble (log P = 0.59, Wsol = 6.9 g L−1). The volatility from aqueous solutions, is given by
the Henry’s volatility constant, and as can be seen, that of TCA is more than 5 orders of magnitude
higher than that of vanillin, which basically tells us that TCA is more than 5 orders of magnitude more
easily transferred from an aqueous solution to the vapour phase, which explains its much lower odour
threshold in water. Let’s recall, however, what will be the outcome of a GC-O experiment carried
out on a “total extract” obtained from an aqueous product in which both compounds are present at
1 µg L−1. As both components will be equally extracted, the GC-O operation will tell us that both
odorants are equally important in the original product. The truth, however, is that TCA is 300 times
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above threshold, while vanillin is 100 times below. This example should let us conclude that any
GC-O screening operation carried out on a “total extract” most likely provides a biased hierarchy of
odorants. The odorants more retained (less volatile) in the original matrix will be highly over-estimated.
In aqueous and hydroalcoholic matrixes, this will happen to all the polar and water-soluble odorants
(acids, alcohols, phenols, mercaptans . . . ).

Aware of this bias, the most widely used and accepted GC-O screening strategy, originally proposed
by Schieberle and Grosch [15], also known as “sensomic” or “molecular science concept”, includes as
part of the screening strategy the experimental determination of so-called odour activity values (OAVs,
quotients concentration/odour threshold) of all the odorants identified in the GC-O screening. Once the
concentration of the odorant is corrected by its odour threshold in the product matrix, the volatility
differences responsible for the bias of the olfactometric screening become corrected, so that the OAV
list provides an un-biased hierarchy of the odorants in the product, i.e., in this strategy the ranking
provided by the GC-O screening is simply an intermediate operation whose goal is to identify the
molecules with odour in the product but cannot anticipate their role on the sensory properties.

Experience has demonstrated that the “molecular science concept” works. However, it can be
argued that it is time consuming and quite inefficient, since all odorants found in the total extract
have to be identified and quantified, while only a little fraction are relevant. Any strategy providing
extracts for GC-O representative not of the product, but of the vapour phases emanated from the
product, should make it possible to make an earlier selection of the “a priori” most relevant odorants,
saving much work. This requires to overcome the difficulties of obtaining headspace fractions fulfilling
the following two requirements:

(1) To be concentrated enough to detect and identify all relevant odorant of the product
(2) To be truly representative of the vapour phases emanated from the product

These two conditions are nowadays affordable. The comparison between both philosophies,
with some of their advantages and disadvantages are summarized in Table 2.

Table 2. The two different general approaches to GC-O screening operation.

Questions Total-Extract Based Representative Headspace-Extract Based

Goal. What do we rank in the
GC-O screening operation?

All the odorants present in the product, regardless
of differences in transference rates to vapour phases

The odorants responsible for the odours and flavours
elicited by the product

Emphasis The odorants in the product The odorants in the vapour phases emanated from
the product

Extract. What should it contain? All the odorants present in the product (at 100%) The odorants present in the vapour phases emanated
from the product

Result. What have we ranked? Odorants attending to their olfactory importance in
the extract

Odorants attending to their olfactory importance in
the vapour phases

How results of the GC-O relate to
the aroma-related sensory
properties of the product?

Poorly. Olfactometric scores overemphasize the
importance of the odorants more retained in the
food matrix. A valid hierarchy is obtained only

after OAV determination

If the extract is really representative of product
headspaces, olfactometric scores should be closely

related to aroma-related sensory properties of
the product

Disadvantages/difficulties
Too much work. The hierarchy only will emerge
after all OAVs have been estimated (all odorants

have to be identified and quantified)

It is difficult to ensure that the extract is really
representative of the vapor phases. Some odorants

can be at too low levels in the extract for
identification and quantification (a more
concentrated extract may be necessary)

Global assessment Excruciatingly long but trustful Economical and efficient if a good and representative
headspace extract is obtained

To the best of our knowledge, the above classification is proposed for the first time. In general,
researchers tend to name and classify the GC-O screening operation attending to the specific olfactometric
strategy followed (for instance AEDA, NIF, posterior intensity or Osme). However, the olfactometric
strategy is secondary, since it rather affects to the how, while the key definitory parameter of the GC-O
is its goal, which defines the what. Keeping in mind these two different possibilities, the two main
elements of a GC-O screening operation, namely obtaining the extract and the GC-O strategy, will be
briefly discussed.
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3. Sample Preparation Strategies

3.1. Preparation of “Total Extracts”

Most researchers choose the classic option of making a total sample extract (complete aromatic
sensobolome) [18–20], because of concerns about the representativity and concentration achieved by
headspace extracts. The techniques that have been most used in the total extraction technique are
liquid-liquid extraction (generally dichloromethane or ether/pentane) or solid phase extraction (SPE),
which will be briefly commented.

Liquid-liquid extraction (LLE), also known as solvent extraction, is used to separate chemicals
from one solution to another based on the different solubility of the analytes in two immiscible solvents.
Dichloromethane (DCM) is the most widely used solvent to extract odorants due to its relatively high
polarity (log P = 1.25), low solubility in water (17 g L−1) and from water (1.7 g L−1) (4 and 10 times less
than ethyl ether), ease of evaporation (40 ◦C), low flammability, chemical stability and high purity.
Its drawbacks are toxicity, high molecular weight and presence of Cl atoms. LLE most often uses large
volumes of solvents, and consecutive extractions. In general, extraction is oversized to ensure total
extraction (4–6 successive extractions). The so obtained liquid-extract will contain 100% of all volatiles
in the original product, but surely will contain as well little to medium amounts of non-volatile material
(waxes, chlorophylls, sterols, fats, fatty acids, and some not very polar polyphenols), little amounts
of water, and in the case of wine, alcohol. It will be also too diluted and has to be concentrated by
distillation of the solvent.

The water can be easily removed by drying the extract with anhydrous Na2SO4 (1 g/10 mL)
overnight; ethanol can be also partially removed (if required) by washing the partially concentrated
extract several times with brine (1:1 volume). Elimination of the non-volatile material can be trickier.
Normal GC vaporizing injections can tolerate little amounts of non-volatile material in the extracts,
but at some point, the non-volatile material in the GC inlets will inevitably introduce “activity”
which will provoke peak distortion and with time, even the disappearance of active analytes, such as
mercaptans, aldehydes or other polar compounds. Additionally, some artefacts, namely odorants
produced by the thermal degradation of a non-volatile precursor in the injector, can be also observed.
Therefore, dirty extracts will have to be compulsorily cleaned.

Because of that, researchers at Garching (Munich, Germany) developed a specific vacuum
distillation technique known as solvent-assisted flavour evaporation (SAFE) [21] in which the extract
is forced to evaporate under a strong vacuum, leaving behind the non-volatile material. Evaporated
vapours are further condensed with the help of liquid nitrogen in a cleverly designed glass instrument.
The SAFE-treated extract is completely free of non-volatile material and, well worked out, has an
odorant composition very close to the original extract. This extract can then be further concentrated by
careful evaporation (by micro-distillation preferably) to the level required. Concentration factors well
above 1000 with respect to the original sample can be easily attained.

A second possibility for getting total extracts from liquid matrixes, such as wine, is solid phase
extraction (SPE). For getting full advantage of this technique “new” generation polymeric sorbents
with high active surface areas and eventually polar functionalities should be used. These sorbents can
provide distribution coefficients 1000 times above those obtained with dichloromethane, 100 times
better than those obtained with C18 sorbents and more than 20 times better than those obtained
with classical styrene-divinylbenzene copolymers, such as XAD-2 or XAD-4, as is demonstrated in
different references [22–24]. In a comparative study, the highest distribution coefficients from wine
and hydro-alcoholic solutions were obtained with LiChrolut EN from Merck (Darmstadt, Germany)
and Isolute ENV+ from Biotage (Uppsala, Sweden) [24]. For these two sorbents, the geometric mean
of the liquid-solid distribution coefficients of different odorants between hydro-alcoholic solution and
the resins is around 10,000.

The advantage of SPE extraction is that the process is in fact a chromatographic separation,
carried out in the so-called frontal development mode, in which the sample is being continuously fed
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to the SPE bed. The analytes within the bed travel at different rates, depending on their liquid-solid
distribution coefficients. A distribution coefficient 10,000 implies that such analyte will travel 10,000
times slower than the sample solvent, assuming within the SPE bed a 1:1 phase ratio. Then, if a 10 mm
bed, with an approximated internal liquid volume (dead volume) of 0.2 mL, is percolated with 200 mL
of sample, such analyte will have advanced just 1 mm within the chromatographic bed. A second
analyte with a distribution coefficient 1000, will have advanced 10 mm so that will begin to become
lost. But if the sample applied is limited to 100 mL, then this second analyte will occupy just the 5 first
mm of the bed [23]. For getting quantitative extracts, the amount of sample applied per volume of SPE
bed is determined by the most polar and worst extractable wine odorants. In wine, these are polar
compounds such as furaneol, sotolon or vanillin. For getting completely quantitative recoveries of
these compounds, the SPE bed should contain around 15 mg or sorbent per mL of wine processed [25],
but ratios of 4 mg or sorbent per mL of wine still makes it possible to obtain very good extracts [26].
Complete elution with dichloromethane or dichloromethane with 5% methanol requires just 7.5 µL
of solvent per mg of bed. Attending to this, 100 mL of wine can be extracted with just a 400 mg SPE
bed, including a small washing up with 4 mL of a 13% ethanol: water mixture and the aroma will
be recovered with just 3 mL of solvent, after drying the SPE bed. This extract is cleaner than those
obtained by direct extraction and it can be, in general, safely concentrated to 0.3 or 0.1 mL (achieving
concentration factors between 300 and 1000) and injected in the GC inlets, provided that the inserts
contain some inert filling, such as silanized wool, and that the column is conveniently protected by a
guard column.

In spite of the strong simplification in sample workup introduced by SPE, we gave up with total
extracts for GC-O screening of wine more than 15 years ago. Apart from the strong overvaluation of
polar odorants, as discussed in the previous section, the extracts contain so many odorants that many
odour zones in the olfactogram overlap, making difficult the assessment and the identification of the
odorant [27,28]. However, some other researchers value the advantages of this strategy and have used
it recently [29,30].

3.2. Preparation of Headspace-Extracts

As odorants are volatile compounds, headspace approaches have up to three initial important
advantages over strategies based on the direct extraction of the odorants. First, these extracts have a
much smaller risk of overvaluing odorants poorly transferred to the headspace; second, extracts are
completely free of non-volatile material, and third; depending on the approach, most volatile odorants
won’t be lost by evaporation or hidden by the solvent. However, because of a number of reasons,
the study of headspace is more complex of what it may seem. Consequently, we will first describe
and comment the different technical possibilities and will secondly discuss about the question
of representativity.

There are three different major approaches to the study of headspace:

(1) Direct sampling of equilibrated headspace (static headspace)
(2) SPME (or equivalent) sampling of headspace
(3) Dynamic sampling of headspace (purge and trap)

Static headspace techniques are convenient for the analytical determination of a number of volatile
compounds but have a major limitation for being useful for GC-O screening: their low sensitivity.
Consider that in a simple inhalation we can uptake up to 700 mL of air, while static headspace
techniques can hardly deal with 4 or 5 mL of headspace. These techniques, in which the equilibrated
headspace is directly transferred to the GC-O system, are limited by the small flows used in the
GC-capillary columns. With flows in the mL/min range, introducing 5 mL takes at least 5 min and
produces extremely broad peaks for the most volatile compounds, which usually are poorly retained at
the minimum temperature of the GC. Peak broadening can be overcome by using a cryofocussing unit,
but yet, the maximum volume injected will be limited to some few mL. Higher volumes will introduce
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into the cryofocusing unit enough vapours of water and ethanol to produce crystals (ice plugs or
ethanol-ice plugs) which will ruin the chromatographic separation.

These difficulties are easily overcome by sampling the headspace with a SPME fibre. The SPME
fibres have a very low affinity for water and ethanol and can provide huge concentration factors
for many volatile compounds. This technique, introduced by Pawliszyn in the 90s [31], has an
amazing ability to concentrate volatile compounds and yet it can be easily used with simple GC inlets,
not requiring special equipment. These superior advantages make it extremely easy to get very good
chromatograms, and very low detection limits, which has boosted its popularity between researchers.
In fact, a simple search in The Web of Knowledge with the words SPME and wine, yields more than
1100 hits. The technique has been also widely applied as the sampling system for olfactometric analysis
in wines and other alcoholic beverages so that making a comprehensive analysis is out of the scope of
the present review. We will try, instead, to delimit the strengths and weaknesses of the technique for
the purpose of GC-O profiling of wine.

A main characteristic of SPME is the low volume of extracting phase, which can be as low as 0.1 µL
and is never higher than 1.5 µL. Is this little amount of phase what makes possible a fast desorption in
a simple GC split/splitless injector (with an adequate liner). Very narrow peaks, even for the most
volatile compounds, are obtained as a result. A second advantage of the little amount of phase is its
potential to concentrate analytes. If all the molecules of an odorant are satisfactorily extracted from a
10 mL sample volume by the SPME fibre, the injection would provide a 10,000-concentration factor
in a single operation. With standard MS detection this would suffice to measure molecules at ppt
level. These benefits are so appealing that have seduced many researchers. However, little amounts of
phase have two negative side effects that make the approach unreliable in wine GC-O: saturation and
diversity in recoveries.

Regarding saturation, a partition phase (such as PDMS or carbowax) can absorb 10% of its weight,
so that, the maximum mass of volatiles that a SPME fibre can hold is between 0.01 and 0.15 mg.
However, a 10 mL volume of wine contains more than 3 mg of volatiles, excluding ethanol, acetic acid
and ethyl acetate. This implies that the SPME fibre will become saturated whenever contacts volumes
of wine higher than 0.02–0.5 mL, depending on the type of fibre. Under saturation, extraction will be
highly sample and procedure-specific. The relative composition of the extract will depend on hardly
controlled factors, such as the ethanol level, or the sample content in major volatiles (ethyl acetate,
acetic acid, higher alcohols . . . ) [32]. Saturation problems will be still stronger if the fibre contains
adsorbents, such as carboxen. Matrix effects in quantitative analysis can be partly compensated by the
use of adequate internal standards, but this can hardly be done in GC-O.

Secondly, recoveries will be highly variable between the different odorants. The odorants more
favoured will be those ones with high logP (scarcely soluble in wine) of sizes around 120–220 g/Mol
(volatile enough to be transferred to the headspace, and heavy enough to be stabilized in the fibre).
Examples of odorants of this type are the ethyl esters of hexanoic, octanoic, decanoic or of isovaleric
acid or TCA. Recoveries in the SPME operation for these compounds can be between 10 and 50%.
By contrast, least favoured odorants will be those of high polarity (low logP), such as furaneol or
vanillin. As these are highly solubilized in wine, they will be transferred to the fibre very slowly and
always in very low proportions. Recoveries for these compounds can be below 0.001%. Consequently,
the GC-O screening operation will overvalue the least soluble (and most volatile) odorants and will
undervalue those least volatile in the original matrix. It can be reasonably argued that this is what
happens in normal olfaction, but not with differences of the magnitude observed in headspace SPME.

Note that all these problems can go easily undetected, since the chromatograms can look perfect
and the process be repetitive.

We can therefore conclude, that normal SPME is, by its intrinsic limitations (which are also its
strengths), not well suited to provide an objective hierarchy of the odorants in wine by GC-O screening,
nor adequate to provide fine comparisons between GC-O profiles of very different wines. This does
not mean that it cannot be useful to detect and identify specific odorants, such as off-odours or some
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target aroma impact compounds, or that can be a very good complement for the study of the most
volatile odorants of wine, as the extended literature on the topic demonstrates [33,34].

Some of these limitations can be partly overcome with the improved versions of SPME devices,
such as the SPME-arrow, which have come into scene just after the expiration of the limitations imposed
by the patent of SPME [35]. These systems keep the simplicity of the SPME design, and its adaptation
to routine work requires significant but not major changes in the GC system. The major advantage
derives from their higher masses of sorbent (6–20 times higher) and higher exposed surfaces (5–7 times
larger). This will limit the effects linked to the mass-saturation of the fibre (matrix effects), and will
provide higher recoveries for all compounds, particularly to those poorly transferred to the headspace,
which suggests that these systems have an interesting potential for GC-O screening of wine.

Finally, purge and trap strategies are dynamic strategies in which, with the help of an external
stream of inert gas, volatiles emanated or dragged from the wine are trapped in an adsorbent bed.
After the trapping period, trapped volatiles are desorbed, well by elution with a solvent, well by direct
thermal desorption. Only in the first case there is a physical extract with which the GC-O screening
operation will be carried out. In the second case, except with highly advanced thermal desorption
units, the purge and trap process will have to be repeated as many times as required to carry out the
GC-O process. The variables defining the purge and trap process are those controlling the release of
the volatiles from the sample and those others referred to the trapping and desorption.

From the point of view of the release of volatiles, the purge and trap system has to simulate
as much as possible orthonasal olfaction. Olfaction, as when smelling a glass of wine, is basically a
dilution process in which a simple sniff takes 700 mL of headspace at 100 mL s−1 [36,37]. The volume
of headspace sampled is so large, and it is taken so fast, that even agitating the wine in the glass,
the process becomes limited by the transference of volatiles from the liquid to the gas phase. This is a
mass-transfer controlled process, in which the composition of the vapour phase is very different to
those found in equilibrium [38]. It has been demonstrated that anything facilitating the transfer of
volatiles from the liquid to the gas phase, such as bubbling, shaking, increased evaporation surfaces,
warming up, etc., provide extracts closer to equilibrium conditions [39] in which, in comparison to
real olfaction conditions, the most volatile odorants are over-represented versus the least volatile.
Therefore, is essential to avoid agitation, bubbling or heating, and relatively large streams of gas have
to be used. The path from the liquid to the sorbent has also to be neat and short [38,39].

Regarding the trapping of volatiles, Tenax-TA has become a sort of standard for systems using
thermal desorption, because of the high temperatures at which it can be used. However, its sorption
capacity is quite limited in comparison to divinylbenzene-polystyrene copolymers, such as Bond Elute
ENV or LiChrolut EN, providing breakthrough volumes 2 to 3 orders of magnitude smaller than these
other sorbents [38,40]. In addition, the adsorption capabilities of Tenax are particularly limited in
the presence of ethanol. Therefore, unless thermal desorption is strictly required, other polymeric
sorbents are a much better choice. For elution with a solvent, it has been demonstrated that best results
are obtained using dichloromethane containing a 5% in methanol [38]. The presence of methanol is
required to improve the elution of polar odorants, such as furaneol and sotolon.

Balancing advantages and disadvantages of headspace strategies in comparison to total-extraction
strategies, it should be considered that headspace strategies require a far more delicate chromatographic
work. Headspace extracts, by nature, will be less concentrated, particularly in polar odorants highly
retained in the wine matrix. These polar odorants, when present at very low concentrations, will be
very sensitive to any kind of adsorptive activity in the chromatographic inlets, including injector,
pre-column, column and detector. The chromatographic system has consequently to be continuously
and thoroughly checked [41] to ensure that the level of activity does not affect to the chemically most
active odorants, such as mercaptans, amines, aldehydes or highly polar molecules. Activity will not
only distort the chromatographic peaks, but odorants present at low concentrations can be completely
lost by adsorption in active sites. The inconclusive results reported by some authors about the relative
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efficiency of GC-O systems [42], may be related to activity problems, as the suspiciously low number
of polar odorants detected suggests.

4. Olfactometric Strategies

GC-O was initially devised simply as an auxiliary technique to help in the identification of odorants.
However, in the late 1980s various researchers begun conceiving it as a bioassay able to provide an
estimation of the relative important of the odorants present in the same product. As human assessors
can perform different tasks with the smells eluting out of the column (detecting, measuring duration,
measuring intensity, assessing qualities) different strategies have been proposed for semiquantitative
GC-O screening. Those strategies can be classified into three major types:

(1) Based on the determination of thresholds (AEDA, Charm analysis)
(2) Based on the distribution of thresholds among judges (detection frequency) (NIF, SNIF)
(3) Based on the measurement of odour intensity (Posterior Intensity, OSME, Finger Span)

As these techniques have been already the subject of review [43,44], here they will be just
briefly commented.

4.1. Strategies Based on Determination of Thresholds

Two techniques have been developed within this category, AEDA (for Aroma Extract Dilution
Analysis, developed in 1987 by Schieberle and Grosch [15]) and CHARM (Combined Hedonic Aroma
Response Measurements, proposed by Acree, et al. [14] in 1984). Both techniques are based on the
sequential dilution of the aroma extract (following a factor R, where R is usually between 2 and 5).

In AEDA, dilutions are presented sequentially and are often smelled just by one or two judges,
usually the researchers carrying out the study. In this technique, each detected odorant is assigned a
dilution factor (FD), which corresponds to the last dilution at which the odorant was detected at least
by one of the judges. The representation of the FDs vs. the retention indexes is called “aromagram”.
CHARM analysis has a more refined setup. Dilutions are presented in a random order and the signal is
created with the help of a computer. The judges participating in the study press a key of the keyboard
during the duration of an odour, so that by combining (averaging) the signals of the different judges
at the different dilutions, a “peak” (charm peak) for each detected odorant is formed. The signal is
the area of the peak (charm area). The height of the charm peak is coincident with the FD measured
in AEDA.

4.2. Strategies Based on the Distribution of Odour Thresholds among Judges (Detection Frequency)

These strategies make use of the differences in thresholds between individuals. For standard aroma
compounds thresholds between the more sensitive 5% of the population and the 5% least sensitive
differ by 1 to 2 orders of magnitude [45]. This implies that any odorant in the extract at concentrations
within the ranges 0.1 * CThreshold–10 * CThreshold will be detected just by a fraction of the members of
a sensory panel. The fraction detecting the odorant will increase with the concentration following a
logistic regression line. This property can be satisfactorily exploited to rank the odorants present in the
effluent attending to their concentrations in the extract relative to their corresponding thresholds.

Nasal impact frequency (NIF) and surface of nasal impact frequency (SNIF) are the two variants of
methods based on measurement of the frequency. The NIF technique was proposed by Pollien, et al. [46]
and Van Ruth and Roozen [47] in the 1990s and assigns to each detected odorant a number between
0 and 100% corresponding to the proportion of judges detecting the odorant (NIF value). In the
SNIF technique the judges also measure the duration of the odours. The signal is the mean duration
multiplied by the frequency of detection and it is called SNIF [48]. These strategies have been
demonstrated a perfect quantitative performance [49] but require a relatively large sensory panel and
have a limited dynamic range.
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4.3. Strategies Based on the Measurement of Odour Intensity

These strategies make use of a sensory panel trained for measuring the intensity of the odours
eluting out of the GC-O system. There are two basic variants: time-intensity methods, such as OSME,
and posterior-intensity methods, such as Finger Span or Frequency × Intensity methods.

In time-intensity methods, such as the OSME, the panellists are instructed to make a continuous
assessment of the odour intensity of the effluent, somehow imitating a chromatographic detector.
For that, the panellists move an actuator connected to a potentiometer, through a 15 cm path [50].
A verbal description of the odour is also recorded. The subjects perform several repetitions of each
analysis and with the average of the intensities obtained for an odorant, the aromatic profile of the
extract, the “osmogram”, is obtained. The output looks much like a FID chromatogram. The technique,
however, is poorly repetitive, which can be attributed to the difficulty of the sensory task assigned to
the judges.

Better results are obtained by methods treating each one of the odours detected in the effluent as
independent simple events, assigning to each of them an intensity value, regardless of their duration.
This sensory task is better suited to our sensory abilities, and after some training, fairly repetitive
results can be obtained. Two different possibilities have been proposed: the Finger Span method and
direct intensity measurement methods with or without measuring frequency.

The Finger Span method was proposed by Etiévant, et al. [51] in 1999, and takes advantage of
the demonstrated relationship between the intensity of a sensory stimulus and some cross modal
responses, such as the degree of opening between the thumb and index fingers or “finger span” [52,53].
In the proposed method, the index and thumb fingers of the judge are connected to a resistance that
records when and how much the gap between the fingers is opened in response to the intensity of the
perceived odorant [53]. The description of the quality of the odour detected is also recorded with a
voice recording system.

Other researchers make use of a global estimation of the intensity of the odour (magnitude
estimation) using a simple scale, combined or not with the measurement of frequency of detection.
Given the difficulty of the task, the odour scale used is deliberately simple. Typically, a 7 point
scale (0–3 with half values allowed) is used and combined with the measurement of frequency [54]
as previously proposed by Dravnieks [55]. The quantitative performance of the technique was
demonstrated by Ferreira, et al. [56].

4.4. Choosing the Most Adequate Olfactometric Strategy

A corollary of the previous discussion about the type of extract on which the GC-O is carried out,
is that if we have chosen a total extract, the hierarchy of odorants provided by the GC-O will be poorly
correlated to the real importance of the odorants in the original matrix. If this is the case, and we
already have assumed that we will identify, quantify and normalize by the corresponding threshold
all the odorants detected in the operation, then there is not much demand on the GC-O operation,
and whatever strategy will work. This is the reason why AEDA, because of its simplicity, and in spite
of their drawbacks as it is usually practiced [57], is often the technique of choice.

On the contrary, an extract truly representative of the vapour phases of the product deserves a fine
sensory work to obtain a good ranking of odorants. This implies using a sensory panel to account for the
differences between individuals. AEDA or Charm analysis using a smaller number of more separated
dilutions with more assessors can be considered [57,58]. Such approaches will provide a reliable rank of
odorants attending to their relative potencies (ratios Concentration/Threshold) in the sample. However,
as the relationships Intensity/Concentration for different odorants follow power laws with different
exponents, such ranking may not perfectly reflect the rank of odorants by intensity [59,60], which is
the one majorly determining the odour properties of the product. NIF and SNIF techniques have the
advantage that assessors do not require much training. Nevertheless, these techniques have a limited
dynamic range and can hardly classify the odorants into 4 or 5 different categories, having particular
difficulty to rank the most intense odorants [61]. On its side, intensity measurement techniques require



Foods 2020, 9, 1892 11 of 20

training the sensory panel, but they can provide a ranking of the odorants based on relative intensities,
which a priori, should be closely related to the aroma properties of the product. The usefulness of this
approach for the identification of the odorants responsible for sensory differences between different
wines [62,63], subtle differences between similar wines [64,65], defects [66] or even for modelling wine
quality [67] has been repeatedly demonstrated.

5. Identification the Odorants Detected in Wine by GC-O

The GC-O process (sample extraction, concentration and GC-O) provides as output a hierarchical
list with the different odours detected in the experiment, ordered according to the parameter measured
by the chosen GC-O strategy, together with the retention time (possibly in a single GC column) and its
sensory descriptor. Additional steps required to provide a reasonable proposal for the identities of the
detected odorants include standardization of retention times, recording them in a second GC column
and confirmation of the identity of the chemical [68].

To standardize retention times, a solution containing n-alkanes with between 6 and 24 carbon
atoms must be injected in the GC-O system under the same conditions used for the samples. Retention
times are then transformed into retention indexes (RI) using the formula:

RI = 100 ∗
[

tRi − tRz

tR(z+1) − tRz
+ z
]

(1)

where tRi is the retention time of the odour zone i; tRz and tR(z+1) are the retention times of the n-alkanes
eluting immediately before (z) and after (z + 1) the odour zone; and z is the number of carbon atoms
in such n-alkane. For odour zones eluting close to some of the major volatiles in the chromatogram,
such as isoamyl alcohol, the retention indexes estimated with alkanes injected separately will not
be accurate. In these cases, best results will be obtained by direct addition of the couple of alkanes
bracketing the odour zone to the sample extract. In dilution techniques, such as AEDA, retention times
of the odour zones taken at highest dilutions will be more accurate.

The RI in a single GC-O system is not enough to propose a likely candidate for a given
odour, except in obvious cases, such as those of acetic acid, isoamyl alcohol or β-phenylethanol.
It is compulsory to have experimental RIs in a second chromatographic column with a stationary
phase of different polarity. Most typically, the main experiment is carried out in column with a
Carbowax 20M phase (DB-Wax or equivalent), which can provide perfectly symmetrical peaks for
alcohols and acids, major compounds in all fermented products. The complementary phase is
most usually a dimethylpolysiloxane containing a 5% of phenyl substituents (DB-5 or equivalent).
Most chromatography suppliers offer high quality versions of these two phases with minimum activity
towards active molecules, making it possible to get Gaussian peaks even for the most difficult odorants,
such as methional, phenylacetaldehyde, 3-mercaptohexanol or furaneol. As previously mentioned,
the inertness of the chromatographic system has to be frequently verified through the injection of
activity-test mixtures [41,69]. In GC-O experiments carried out with highly concentrated extracts,
such as those obtained by total extraction, the number of odorants can be too high for a reliable
association of the odour zones detected in the two columns. In those cases, it can be necessary to
use a GC-O-GC-O system with the two main chromatographic columns in tandem, so that unclearly
assigned odour zones can be specifically transferred from the main column to the second. Alternatively,
a 4-port valve can be installed in the GC-O system to trap conflicting areas and transfer them to the
second column [70]. A simple device recently offered by Gerstel [71] makes the trick. Once we have
a couple of reliable RIs for our odour zone, its provisional identity can be assigned with the help of
Table 3, which provides an updated compilation of the different odorants detected in the different wine
GC-O experiments carried out by different researchers. The table has 198 entries ranked attending
to the experimental RI in a DB-Wax column obtained in our laboratory and contains 193 identified
odorants and 5 unidentified odour zones. For 132 cases the experimental RI in the DB-5 column are
also reported. Additional open databases such as those from Pubchem [72], NIST, Pherobase [73] or
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Flavornet [74] can be also consulted. However, as these databases compile data from many different
sources higher uncertainties should be expected.

Table 3. Odour zones detected in wine extracts in a GC-O system in two chromatographic columns.

IR DBWax IR DB5 Compound Main Aromas

910 2-Methybutyraldehyde Bread crust, closed

930 Pentanal Aldehyde

934 730 Acetal (1,1-diethoxyethane) Sweet, strawberry, aniseed

935 Propyl acetate Alcoholic, sweet, fruit

937 755 Ethyl propanoate Solvent, sweet, alcoholic

953 752 Ethyl isobutyrate (ethyl 2-methylpropanoate) Lactic, strawberry, sweet

958 Diacetyl (2,3-butandione) Butter, lactic

964 2,4,5-Trimethyl-1,3-dioxolane Solvent, sweet

974 Isopropyl acetate Fruit

995 Unknown Plastic, adhesive

1005 833 Methyl 2-methylbutyrate Fruit, sweet

1012 906 Unknown Alcoholic, solvent, orange peel

1013 837 Isobutyl acetate Fruit, apple

1020 943 α-Pinene Mango, tropical, green, citrus

1025 803 Methyl 3-methylbutyrate Fruit, sweet, anise

1037 801 Ethyl butyrate Strawberry, sweet, lactic, fruit

1052 847 Ethyl 2-methylbutyrate Fruit, sweet, strawberry, anise

1057 695 2,3-Pentanedione Butter, cream

1057 852 2-Ethoxy-3,5-hexadiene Geranium, metallic

1060 Dimethyl disulphide Garlic, sweet, sulphur

1070 853 Ethyl 3-methylbutyrate (ethyl isovalerate) Fruit, sweet, anise

1091 800 Hexanal Herbaceous

1095 2,5-Dimethyl-1,4-dioxane Green, grass

1098 Butyl acetate Green, herbaceous

1102 Isobutanol (2-methylpropanol) Fusel, humidity, bitter

1106 1-Hexen-3-one Almond, toasted

1112 904 3-Methyl-2-buten-thiol Rubber, hop

1127 875 Isoamyl acetate Banana, adhesive

1135 4-Methyl-3-penten-2-one Floral, green

1141 683 1-Penten-3-ol Green, toasted

1142 941 Ethyl 2-methylpentanoate Strawberry, fruit

1147 800 (Z)-3-hexenal Green, grass

1150 1017 β-Pinene Green, grass, green apple

1171 1032 3-Carene Green, vegetal, grass, geranium

1185 960 Ethyl 3-methylpentanoate Fruit, strawberry

1198 969 Ethyl 4-methylpentanoate Fruit, anise

1200 857 (E)-2-Hexenal Toasted

1218 753 Isoamyl alcohol Foot odour, solvent, sharp

1223 1-Hepten-3-one Mushroom
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Table 3. Cont.

IR DBWax IR DB5 Compound Main Aromas

1245 996 Ethyl hexanoate Anise, fruit, ester

1249 Unknown Green, floral

1250 (E)-2-Heptenal Green

1260 Acetoin Lactic, fatty

1286 1014 Hexyl acetate Banana

1292 952 Furfuryl ethyl ether Solvent (Reflex)

1293 1045 Octanal Citrus, rancid

1305 975 1-Octen-3-one Mushroom

1310 2-Octanone Rancid

1310 Unknown Ester, grass

1315 860 2-Methyl-3-furanthiol Fried, toasted

1320 2,5-Dimethylpyrazine Spicy

1348 914 2,6-Dimethylpyrazine Popcorn

1349 987 (Z)-2-Heptenal Fried, rancid

1354 1126 cis-Rose oxide Floral, rose, citrus

1358 Ethyl lactate Synthetic, sharp

1366 872 1-Hexanol Green, leaf, solvent

1378 986 (Z)-1,5-Octadien-3-one Geranium, metallic

1378 1064 Unknown Geranium, green

1380 985 Dimethyl trisulphide Rubbish

1383 4-Mercapto-4-methyl-2-pentanone Boxwood, green, urine

1395 848 (Z)-3-Hexen-1-ol Green grass, grass

1399 1026 2,4,5-Trimethylthiazole Geranium

1403 1114 Nonanal Aldehyde, soap

1410 1080 1-Nonen-3-one Mushroom

1416 Unknown Strawberry

1425 1142 Ethyl cyclohexanoate Anise, fruit, sweet, ester

1428 987 Ethyl 2-hydroxy-3-methylbutyrate Strawberry

1429 2,3,5-Trimethylpyrazine Earthy

1430 1201 Ethyl octanoate Fruit, ester, sweet

1431 1015 2-Octanol Rubbish

1433 1012 1-Octen-3-ol Dust, toasted, citrus, mushroom

1434 Dimethyl methoxypyrazine Cork, humidity

1436 907 Furfurylthiol Toasted, coffee

1440 1080 (E)-2-Octenal Citrus, bitter

1446 1094 2-Isopropyl-3-methoxypyrazine Pepper, earthy, green

1453 909 Methional Boiled vegetables

1455 Acetic acid Vinegar

1460 Ethyl 2-hydroxy-3,3-dimethyl butyrate Strawberry, fruit

1464 1070 Linalool oxide Citrus, floral

1469 828 Furfural Sweet wood, nut

1470 2,3-Diethyl-5-methylpyrazine Meat

1473 1086 2-Ethyl-3, 5(or 6)-dimethylpyrazine Green

1483 Citronellal Lemon

1485 Copaene Sweet wood
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Table 3. Cont.

IR DBWax IR DB5 Compound Main Aromas

1488 Unknown Rubber, new plastic

1489 1003 (E, E)-2,4-Heptadienal Rancid, cucumber

1490 1209 Decanal Floral, soap

1495 Propionic acid Vinegar, boiled potato

1502 1159 Citronellal Lemon, citrus, floral, mop

1507 1156 (Z)-2-Nonenal Chlorine, rancid, aldehyde

1511 1145 3-Nonen-2-one Rancid, wet, fried potato

1514 1172 3-sec-Butyl-2-methoxypyrazine Pepper, earthy

1515 1156 2,3-Diethyl-5-methylpyrazine Rubbish, rotten

1516 4-Vinylpyridine Synthetic

1531 1060 Ethyl 2-hydroxy-4-methylpentanoate Strawberry, ester

1533 1181 3-Isobutyl-2-methoxypyrazine Pepper green

1533 Camphor Mint, green

1538 1167 (E)-2-Nonenal Melon, paper

1542 Unknown Sweet, medicinal

1543 1315 Vitispirane Floral, fruity

1556 Ethyl 3-hydroxybutyrate Sweet

1561 796 2-Methylpropanoic acid (isobutyric acid) Cheese

1562 1100 (R/S)-Linalool Floral, citrus, muscatel

1569 Linalool acetate Floral, fruity

1571 1154 (E, Z)-2,6-Nonadienal Green, cucumber

1593 1158 2-Methylisoborneol Mould, wet land

1618 1270 (Z)-2-Decenal Chlorine, meat

1622 1021 2-Acetylpyrazine Toasted, burned, coffee

1642 822 Butyric acid Vomit, cheese

1655 1106 2 (3 or 4)-Methylbenzaldehyde Burnt hair

1656 1080 Benzene methanethiol Burnt hair

1660 1050 Phenylacetaldehyde Floral, green

1662 2-Acetylthiazole Roasted bread

1666 Undecenal Aldehyde

1670 2-Methyl-3-(methyldithio)furan Fried, barbecue

1674 1261 (E)-2-Decenal Green, rancid

1680 878 3-Methylbutyric acid (isovaleric acid) Foot odour, cheese, perspiration

1717 1217 (E, E)-2,4-Nonadienal Rancid, toasted

1717 (-)-Borneol Earth, mould

1717 2-Phenylethanethiol Sulphur, plastic

1723 910 Methionol (3-methylthiopropanol) Boiled potato, rubber, plastic

1725 Decadienal Aldehyde

1732 1254 3-Mercaptohexyl acetate Boxwood, basil

1735 1195 α-Terpineol Anise, green

1738 1430 Dodecanal Metallic, sea

1740 3-Methyl-2,4-nonanedione Honey, strong

1748 1162 Borneol Camphor, anise

1753 1149 Benzyl acetate Sweet, honey

1763 (E)-2-Undecenal Rancid
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Table 3. Cont.

IR DBWax IR DB5 Compound Main Aromas

1767 1106 2-Acetyl-2-thiazoline Popcorn, pork scratching

1778 1233 Methyl phenylacetate Honey

1786 (E, Z)-2,6-Nonadienol Rancid, toasted

1797 Citronellol Citrus

1805 1329 Ethyl phenylacetate Honey

1807 1360 2,4,6-Trichloroanisole Cork, humidity

1811 1342 (E, E)-2,4-Decadienal Fatty, aldehyde

1812 1254 2-Phenylethyl acetate Roses

1820 1388 β-Damascenone Boiled apple, sweet, compote

1825 1373 Geosmine Mould, wet land, mustiness

1829 1308 (E)-Anethole Anise

1860 1134 3-Mercaptohexanol Thiol, green

1860 989 Hexanoic acid Green, unpleasant

1862 1262 Geraniol Floral, rose, citrus

1865 1100 Guaiacol Medicinal, spiced

1879 1434 α-Ionone Sweet, fruit, violet

1884 1064 Benzyl alcohol Grass

1887 1370 Ethyl dihydrocinnamate Sweet, floral

1913 1289 γ-Octalactone Coconut

1944 1116 β-Phenylethanol Roses

1957 1488 β-Ionone Floral, violet, berry

1958 1134 (Z)-Whisky lactone Coconut, cinnamon, wood

1976 1381 (E)-Whisky lactone Coconut

2001 δ-Octalactone Sweet

2015 1077 o-Cresol Phenolic, medicinal

2032 1386 γ-Nonalactone Sweet, peach

2034 1319 4-Ethylguaiacol Clove, phenolic

2043 1302 Diethyl malate Rose, sweet

2047 1092 Furaneol
(4-hydroxy-2,5-dimethyl-3(2H)-furanone) Candy, sweet, candyfloss

2074 1175 Homofuraneol Candyfloss, peach

2077 Unknown Rose, sweet, phenolic

2080 1190 Octanoic acid Rancid, perspiration, plastic

2094 1103 p-Cresol Animal, leather, stable

2100 1103 m-Cresol Stable, animal, leather

2113 Tetrachloroanisol Chlorine

2116 1404 4-Propylguaiacol Clove, aromatic herbs

2125 1241 2,6-Dichlorophenol Spiced, leaf

2135 Ethyl cinnamate Floral, sweet

2155 1540 Bis(2-Methyl-3-furyl) disulphide Fried, popcorn, toasted

2160 1250 2-Phenoxyethanol Spiced, plasticine

2177 Eugenol Clove, spiced, phenolic

2179 1486 γ-Decalactone Spiced, wood phenolic

2184 1154 4-Ethylphenol Phenolic, leather

2200 1154 3-Ethylphenol Phenolic, leather

2210 1110 Sotolon Liquorice, toasted, curry
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Table 3. Cont.

IR DBWax IR DB5 Compound Main Aromas

2225 o-Aminoacetophenone Muscatel, grape

2242 1328 4-Vinylguaiacol (2-methoxy-4-vinylphenol) Clove, phenolic

2260 1490 Massoialactone Coconut, fruit

2270 1586 γ-Undecalactone Peach, sweet

2272 Decanoic acid Rancid, perspiration

2285 1395 2,6-Dimethoxyphenol Phenolic

2313 Unknown Spiced, phenolic

2319 Tribromoanisole Chlorine

2341 1462 δ-Undecalactone Sweet

2375 2,4,6-Trichlorophenol Medicinal, chlorine

2375 1465 Isoeugenol Spice, mint, confectioner, sweet

2384 1686 γ-Dodecalactone Peach, sweet

2433 2,3,6-Trichlorophenol Medicinal, chlorine

2463 Indole Tarmac, faeces

2465 Benzophenone Boiled apple

2507 Skatole Faeces

2535 2,4,5-Trichlorophenol Medicinal, chlorine

2541 2,3,4- Trichlorophenol Medicinal, chlorine

2570 1249 Phenylacetic acid Honey, sweet

2592 1410 Vanillin Vanilla, custard

2646 Methyl vanillate Burnt, burnt vanilla

2665 1560 Ethyl vanillate Vanilla

2683 Acetovanillone Vanilla

3084 2,3,4,6-Tetrachlorophenol Medicinal, chlorine

The identity of the compound has to be further confirmed by GC-MS. This should be done by
injecting the extract in a GC-MS system equipped with a column similar to that used in the main
GC-O in scan mode, and carefully measuring IRs with alkanes, best bracketing the targeted zones.
The identification will be considered definitive when the pure standard is available and IRs in both GC
columns, odours and mass spectral data coincide with those found experimentally. If the standard is
not available, and the identification has to rely only in data reported in the literature, then the GC-MS
data in the second column will be additionally required, and care will have to be taken regarding
that the literature references that support the identification are truly backed in the use of synthesized
reference compounds. There are several relevant reports with specific guidelines for the unequivocal
identification of compounds in food chemistry [75,76].

In spite of the sensitivity of the most powerful GC-MS systems, some components may not be
in sufficient concentration to generate a detectable mass spectrum in the headspace extracts. In this
case, specific isolation strategies providing higher concentration and isolation levels should be carried
out. Classical fractionation of highly concentrated extracts, such as those obtained in total extraction,
on silica gel by flash chromatography or by semi-preparative HPLC should be considered.

6. Conclusions

This review highlights the different techniques used in the GC-O screening of any product,
with a special emphasis on wine aroma profiling. It is argued that headspace-based GC-O screening
techniques, carried out on orthonasal-like extracts on highly deactivated GC chromatographic systems,
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using trained sensory panels, are the most direct and powerful way to profile and control even subtle
wine aroma changes.
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