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Abstract. Objective: To develop and evaluate an algorithm for the selection of the
best performing QRS detections from multiple algorithms and ECG leads. Approach:
The detections produced by several publicly available single-lead QRS detectors are
segmented in 20 seconds consecutive windows. Then a statistical model is trained to
estimate a quality metric that is used to rank each 20-s segment of detections. The
model describes each heartbeat in terms of 6 features calculated from the RR interval
series, and one feature proportional to the number of heartbeats detected in other
leads in a neighborhood of the current heartbeat. With the highest ranked segments,
we defined several lead selection strategies (LSS) that were evaluated in a set of 1754
ECG recordings, from 14 ECG databases. The LSS proposed were compared with
simple strategies such as selecting lead II or the first lead available in a recording. The
performance was calculated in terms of the average sensitivity, positive predictive value
and the F score. Main results: The best performing LSS, based on wavedet algorithm,
achieved an F score of 98.7, with sensitivity S = 99.2 and positive predictive value
P = 98.3. The F score for the simpler strategy using the same algorithm was 92.7.
The LSS studied in this work have been made available in an open source toolbox to
ease the reproducibility and result comparison. Significance: The results suggest that
the use of LSS is convenient in order to select the best heartbeat locations among those
provided by different detectors in different leads, obtaining better results than any of
the algorithms individually.

Keywords: ECG, QRS detection, lead selection, multilead, multi-algorithm, pattern
recognition.

1. Introduction

The improvement of automatic ECG analysis methods may produce an improvement in
diagnosis of cardiovascular diseases, which are currently the first single cause of death
globally (World Health Organization 2012). In particular, heartbeat detection (or QRS
detection) is of great importance, since it is one of the first steps in any automated ECG
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analysis, and possible errors in it may limit seriously the performance of subsequent
algorithms.

Automatic detection of heartbeats in the ECG has been extensively studied in
the last decades. Several approaches were studied: based on digital filters (Pan &
Tompkins 1985) or the first derivative of the ECG signal (Arzeno et al. 2006). In
(Kohler et al. 2002), several detectors based on digital filters, wavelet transform and
artificial neural networks were compared. Other methods based on Hilbert (Benitez
et al. 2001), curve length (Paoletti & Marchesi 2006) and wavelet transform (Martínez
et al. 2004) were evaluated. As a result, several algorithms were made publicly available
such as (Pan & Tompkins 1985), the three Physionet’s detectors: sqrs, wqrs and
gqrs, (Zong et al. 2003, Goldberger et al. 2000), or the wavedet algorithm (Almeida
et al. 2009) developed in our group, among many others. All of these algorithms and
many others reported sensitivities (S) and positive predictive values (P ) above 90% in
public databases, as is shown in the extensive review of (Elgendi 2013). As discussed in
(Elgendi 2013), most of the algorithms reviewed have been trained and evaluated in a
single database, the MIT-BIH Arrhythmia database (mitdb) (Goldberger et al. 2000),
causing a well-known optimistic bias in the performance estimation due to overfitting.
When the algorithms are applied to ECG signals from other settings, other types of
patients, or from other recording devices, the performance inevitably drops with respect
to the reported results. In the last decade some of the QRS detectors were evaluated in
a different database following a machine learning approach (Mehta & Lingayat 2008),
(Mondelo et al. 2017) and (Ledezma & Altuve 2019) by including other public databases
such as the INCART database (Goldberger et al. 2000). This important methodological
change started to describe the generalization capability of the QRS detectors.

Although multichannel or multilead QRS detection is a well developed methodology
(Almeida et al. 2009), very few approaches for lead selection have been studied, in
contrast with the single-lead counterpart. Moreover, mixing detections from several
single-lead algorithms to improve performance has been scarcely studied and the few
articles found are very recent (Mondelo et al. 2017), (Ledezma & Altuve 2019). Other
approaches that focus on quantifying the signal quality in order to decide if the signal is
too noisy to be processed. A challenge on ECG signal quality estimation was organized
in 2011, as a result several works can be found cited in (Clifford et al. 2012), and more
recently in a review of that subject (Satija et al. 2018).

In a previous work, we showed that QRS detection performance is highly lead-
dependent, and that an important performance improvement can be achieved by
selecting the best performing lead (Llamedo & Martínez 2014). Moreover, we also
presented a quality metric able to select the best lead in 70% of the recordings, and
one of the three best leads in 93% of the cases (Llamedo et al. 2014), resulting in a
promising strategy to perform lead selection. In this work, we extend this strategy by
concatenating detection segments obtained from several QRS detectors and ECG leads.
As a result, a new set of QRS detections is created from parts of the outputs of different
detectors and leads, resulting in a multilead and multi-algorithm series. This study aims
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to analyze the detection improvement achieved by this methodology with respect to the
baseline method consisting on always selecting lead II.

The rest of the article is organized as follows: in the next section we present the
evaluation dataset used, the algorithms for QRS detection, a quality metric and the
lead selection strategies to be evaluated. In the following section the results achieved
are presented. Finally the discussion of the results, together with some final remarks
conclude this article.

2. Materials and Methods

2.1. ECG databases

The evaluation or test set is composed of 14 ECG databases, grouped into 5 categories:
normal sinus rhythm (NSR), arrhythmia (AR), ST and T morphology changes (STT),
stress-test (STR) and long-term (LT). Of the 14 databases used, 12 are publicly available
online at (Goldberger et al. 2000) or (Couderc n.d.), while ahadb is distributed by
ECRI institute (AHA 2010) and biosigna is distributed by Biosigna GmbH (Fischer
et al. 2008). All the databases have expert-reviewed QRS complex annotations, used as
gold-standard for performance evaluation. The most relevant details of the databases
are summarized in Table 1. Overall, the evaluation set includes 1754 recordings
with different SNR, arrhythmias, rhythms and morphology changes, representing an
exhaustive set of evaluation for QRS detectors.

2.2. QRS detectors

The QRS detectors considered are listed in Table 2. They are representative of the state
of the art, and most of them are publicly available (Goldberger et al. 2000, Demski &
Soria 2016), including wavedet (Martínez et al. 2004), developed and used extensively
by our group, and aristotle (Moody & Mark 1982) being the only non-public algorithm
considered. All the algorithms in Table 2 were used with the pre-processing indicated
in their reference publications.

The Pan and Tompkins algorithm (PT) is probably the most popular of the
evaluated detectors. It is based on the use of digital filters to band-limit QRS complex
energy, followed by a squaring nonlinearity and then by a low-pass filter to enhance
the remaining QRS complex energy. The resulting signal is analyzed with several
thresholds and a rule-based algorithm in order to perform the QRS detection (Pan &
Tompkins 1985). In this work we used the open source implementation of PT available
in toolboxes (Sameni 2006, Demski & Soria 2016). The algorithms from EP limited
(EP1/2) are also based on the original PT algorithm, but with some enhancements
described in (Hamilton & Tompkins 1986). The wavedet algorithm (WD) uses the
wavelet transform with the derivative of a smoothing function as prototype wavelet, to
enhance the energy from the QRS complexes in specific locations of the time-scale
plane. The detection is performed by a set of threshold-based rules across several
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Table 1. Databases included in the evaluation set
group name fS (Hz) # rec leads length # beats ref

NSR
nsrdb 128 18 2 1 day 1785791 Physionet
fantasia 250 40 1 2 h 39411 Physionet

AR

ahadb 250 155 2 30 m 348514 AHA
biosigna 500 50 12 1 h 290149 Biosigna
mitdb 360 48 2 30 m 100718 Physionet
svdb 128 78 2 30 m 184502 Physionet

incartdb 257 75 12 30 m 175893 Physionet

STT
edb 250 90 2 2 h 790554 Physionet

ltstdb 250 86 2-3 21-24 h 9201221 Physionet

STR
thew15 1000 909 12 15 m 1653250 THEW
stdb 360 28 2 10-40 m 76175 Physionet

LT

ltdb 128 7 2 14-22 h 691505 Physionet
nsrdb 128 18 2 1 day 1785791 Physionet
ltstdb 250 86 2-3 21-24 h 9201221 Physionet
ltafdb 128 84 2 1 day 9290757 Physionet

Total 1754 24628440
Physionet: (Goldberger et al. 2000), AHA: (AHA 2010)

THEW: (Couderc n.d.), Biosigna: (Fischer et al. 2008)

Table 2. Algorithms description
name evaluated in multilead ref
WD mitdb, edb, CSE, qtdb yes (Martínez et al. 2004)

GQ, SQ, WQ mitdb no (Goldberger et al. 2000)
PT mitdb no (Pan & Tompkins 1985)

EP1/2 mitdb no (Hamilton & Tompkins 1986)
AR mitdb yes (Moody & Mark 1982)

wavelet scales (Martínez et al. 2004). The wqrs detector (WQ) uses a similar threshold
approach, but using a non-linear transform known as the length transform to enhance
QRS complex energy (Zong et al. 2003). The main difference of the gqrs detector (GQ),
unpublished but open source in (Goldberger et al. 2000), is the use of digital filters
(lowpass followed by a matched filter) for QRS complex enhancing. The sqrs (SQ)
and aristotle (AR) detectors were also used for comparative purposes, and described in
(Goldberger et al. 2000, Moody & Mark 1982). Following the recommendation of the
detectors included in the Physionet’s WFDB toolbox, we downsampled ECG recordings
when the sampling rate fS > 260 Hz.
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2.3. Estimation of the QRS detection quality

In this section, we describe the metric proposed to estimate the quality of QRS detection
performed by a given detector at a given lead. Figure 1 can be used to follow the
explanation presented in this section. The algorithm takes as input the QRS locations
produced by the D available detectors at all the L available leads:

Figure 1. Block diagram of the presented algorithm.

Q =
{
r11, r12, · · · , r1L, r

2
1, r22, · · · , r2L, · · · , rDL

}
, (1)

where rdl is the set of detections obtained from detector d = 1, . . . , D at lead
l = 1, . . . , L. Where D is the number of detectors used, in this work we use D = 1

for single-algorithm approaches and D > 1 for multi-algorithm strategies, this will be
explained in the following section. Note that the number of detections in each rdl element
is usually different, and is denoted as Nl,d,

rdl =
{
rdl,1, r

d
l,2, , · · · , rdl,Nl,d

}
, (2)

because each detector operates lead-by-lead, as illustrated in Figure 2 for a single
recording and detector. All the detectors were used with the default parameter
configuration for all the experiments performed in this work.

First, the recording is divided into 20-second segments. A 6-dimensional feature
vector xn is built for each detected beat rdl,n (i.e., the n-th heartbeat detected in l-th
lead for the d-th detector). Five of these features are related to the RR interval series
for that detector and lead, specifically:

1) Rn−1 = rdl,n−1 − rdl,n−2, the previous RR interval,

2) Rn = rdl,n − rdl,n−1, the current RR interval and
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3) Rn+1 = rdl,n+1 − rdl,n, the next RR interval,

as is shown in Figure 2. Note that the lead and detector dependence is intentionally
omitted. The following two features are the RR baseline estimation with:

4) R̄10: the mean RR interval in the past 10 seconds,

5) R̄60: the mean RR interval in the past 60 seconds.

The remaining feature is related the the concordance of a given detector across leads

6) Od
l,n: the number of heartbeats that co-occur in a 150 ms window of rdl,n in all

available leads.

For example, in a multilead ECG signal with L leads, the heartbeat rdl,n has an associated
value of Od

l,n = L− 1 if this heartbeat was also detected in all the other leads, as shown
in Figure 2. We consider a detection mark rdl,n as co-occurrent with respect to rdx,y if they
are closer than 150 ms, following the EC38 standard. Note that erroneously detected
beats are likely to have small values of Od

l,n, as shown in Figure 2. In order to use the
feature On with an arbitrary amount of leads, the range of values [0 : L− 1] should be
mapped to a fixed range [0:c]. This can be done through a sigmoid function, resulting
in

O′n =
c

1 + e−(a·On+b)
, (3)

with parameters a = 18
L−1 , b = − 2a

L−1 and c = 1000 that were pre-
viously set in (Llamedo et al. 2014). The interested reader is referred to
the online implementation for further details: https://github.com/marianux/ecg-
kit/blob/master/common/calc_co_ocurrences.m. With these 6 features we build a
vector

xn = (Rn−1 , Rn , Rn−1 , R̄10 , R̄60 , O ′n,l). (4)

computed for each rdl,n, as can be seen in Figure 1.
The algorithm follows with the computation of a quality metric md

l,s for each 20-
second segment s, as is shown in Figure 3.

In order to compute md
l,s, we used a three-class statistical model to estimate the

probability that each heartbeat is a correctly detected beat or true positive (TP if
distance between annotation and detection mark <150 ms), a false positive detection
(FP), or a detected beat after false negative (FN), as proposed in (Llamedo et al. 2014).
Thus each heartbeat will be adjudicated to the class (TP, FP or FN) with maximum a
posterior probability.

The different rhythms and morphologies present in the data corpus described in
Table 1, make the probability distribution f(x) not likely to be Gaussian. Therefore, we
adopted a model based on the mixture of several Gaussians (van der Heijden et al. 2005)
(MoG) in order to achieve a more adequate fit to the data distribution. In a previous
work (Llamedo et al. 2014), the parameters of the statistical model were estimated
(trained) with the output of the WD algorithm in a small subset of the first 20 (out of
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Figure 2. Example showing some feature values calculated for detector 1 in a 20-
second segment. RR intervals from single lead QRS detections are shown in leads I
and V6. The value of the co-occurrence feature On,l is shown for lead V6 (l = 12).
Note that values of 1 and 8 indicate the presence of a FP and a FN in lead V6.

909) recordings of thew15 database. Those parameters were not changed in this work.
For the training of the model, the detection following a missed heartbeat was labelled
as FN. When the algorithm is operating, a FN label means that the algorithm predicts
that (at least) a beat has been missed between the previous detection and the current
one. In the training phase of the classifier, the parameters of the density function

p(x|πk,µk,Σk) =
K∑
k=1

πk · f(x;µk,Σk), (5)

needs to be estimated where

f(x;µk,Σk) =
1√

(2π)6 |Σk|
e−

1
2
(x−µk)

T Σ−1
k (x−µk) (6)

which models the 6-dimensional feature vector xn as the sum of K Gaussians
with mixing coefficients πk, in order to retain a more realistic structure of the data.
For each class in h = {1, 2, 3} (TP, FP and FN respectively), a MoG parameter set
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Figure 3. Scheme of the generation of the five LSS (bottom panel) from the quality
metrics for different leads and detection algorithms (top). Each algorithm produces a
set of detections rdl,n (Fig. 2) from which a quality metric md

l,s is calculated (Eq. 10)
for each 20 s segment. For example, the LSS W1 selects the 20-s segments from r1l,n
which achieves higher m1

l,s. Note that W1 is a multilead strategy, since always select
from WD algorithm. In contrast, A1 is a multilead and multi-algorithm LSS, while
BM, a multi-algorithm LSS (colour indicates lead as in Fig. 2), selects a whole set of
detections rdl,n which achieves greater m̄d

l (Eq. 11).

Ψh = {πk,h, µk,h, Σk,h|k = 1, . . . , K} is estimated by the maximum likelihood criterion,
maximizing the log likelihood

L(x1, . . . , xNh
‖Ψh) = ln

N∏
n=1

p(xh|Ψn), (7)

for the Nh heartbeats of h class in the training set. The expectation maximization
algorithm was used for this task (Bishop 2006).
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Once the model parameters Ψh are estimated, the classifier assigns one label to
the heartbeat xn which results in the maximum a posteriori probability p(Ψh|xn).
Those labels are then used to estimate the quality of each segment s. The number
of heartbeats adjudicated to classes TP, FP and FN during a segment s are denoted
as NTP , NFP , NFN respectively. Note that we omitted the detector, lead and segment
dependence for simplicity. With the three amount of heartbeats per class, the estimated
sensitivity can be calculated as

ŝdl,s =
NTP

NTP +NFN

(8)

while the estimated positive predictive value is

p̂dl,s =
NTP

NTP +NFP

. (9)

With these two estimates, the detection quality metric is calculated for each segment,
lead and detector

md
l,s = ŝdl,s · w + p̂dl,s · (1− w). (10)

The weight parameter w = 2/3 was previously set for weighting twice ŝ in order to
favor detection of as many heartbeats as possible at the expense of more false positive
detections. With the quality metric already calculated for each segment, the algorithm
continues with the segment selection, as is shown in Figures 1 and 3.

2.4. Lead selection strategies

The proposed lead selection strategies (LSS) start with the detections rdl,s produced by
a set of QRS detection algorithms (see Table 2). Following the methodology described
above, the quality metric md

l,s (Eq. 10) can be computed for each lead l, detector d and
signal segment s, as is shown in the top panel of Figure 3. The following LSS are then
defined:

• W1 selects, for each segment s, the rWl,s corresponding to the lead l with best metric
mW

l,s when applying the WD algorithm. All the selected sets of detections rWl,s are
then concatenated. It is therefore a multilead single-algorithm LSS.
• A1 selects, for each segment s, the rdl,s corresponding to the lead l and the algorithm
d with best metric md

l,s among all detectors in Table 2. All the selected sets of
detections rdl,s are then concatenated. This is therefore a multilead multi-algorithm
LSS.
• Bm selects the rdl,s corresponding to the lead l and the algorithm d with best

detection performance estimated as

m̄d
l = median

s

{
md

l,s

}
. (11)

Note that it is a multi-algorithm multilead LSS, but the same combination of lead
and detector is selected for all segments s. In contrast, A1 may merge detections
from several leads and detectors. This is indicated with the color code in the lower
panel of Figure 3
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To compare the performance of these three strategies, we also evaluated a simpler
lead selection criterion which consists in selecting lead II, or the first available lead
otherwise. This rule was evaluated for the best performing algorithms, WD and GQ
(Llamedo et al. 2014), defining two LSS named WII and GII respectively.

The five LSS are summarized in Table 3. The interested reader is referred to the
ecg-kit (Demski & Soria 2016), specifically to the scripts located in the common folder
wavedetMix.m, mixartif.m and calculateSeriesQuality.m, for implementation details.

Table 3. The LSS evaluated in this work
LSS Description Lead Detector
W1 Concatenation of first ranked segments

from WX (wavedet mix)
multi single

A1 Concatenation of first ranked segments
from AX (all detectors mix)

multi multi

Bm Any algorithm single-lead detections
with the best md,l metric

single multi

WII Wavedet algorithm detections from
lead II or first available

single single

GII gqrs algorithm detections from lead II
or first available

single single

2.5. Reference performance

In order to have a reference performance, an upper-bound was defined for each algorithm
(UBP). It was computed as the performance achieved when selecting the lead with the
best F d

l score. The F score is defined as

F =
2SP

S + P
, (12)

being the harmonic mean between sensitivity

S =
MTP

MTP +MFN

(13)

and the positive predictive value

P =
MTP

MTP +MFP

. (14)

Considering MTP and MFP as the number of correct and incorrect detections, and
MFN the number missed heartbeats, according to the EC38 standard. Note that the
UBP is based on the knowledge of the gold standard annotations, so it can not be an
implementable LSS.

Similarly, with the purpose of evaluating the performance of the metric m by
selecting the best quality segments, we defined two UBP’s for W1 and A1 respectively:

http://marianux.github.io/ecg-kit/
https://github.com/marianux/ecg-kit/blob/master/common/wavedetMix.m
https://github.com/marianux/ecg-kit/blob/master/common/mixartif.m
https://github.com/marianux/ecg-kit/blob/master/common/calculateSeriesQuality.m
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• WX selects among
{
rW1, rW2, rW3

}
the best performing detections in terms of F .

Note that rW1 are the detections generated by LSS W1. The detections produced
by W2 and W3 are defined in a similar fashion, but selecting the second and third
ranked segments s, as explained above for W1.

• AX selects among
{
rA1, rA2, rA3

}
in a similar way as explained above for WX .

Finally, we computed the performance of WX and AX in terms of S, P and F in
the whole evaluation set serving as UBP for W1 and A1.

2.6. Experiment description

The experiment performed in this work pursues the evaluation of the five LSS, presented
in Table 3, in the 14 databases presented in Table 1. The performance for each LSS was
based on the S, P and the F score. Then, each metric is averaged over all databases.
Since each group of databases is represented by different number of recordings or
subjects, the most populated groups have greater influence in the final ranking (e.g.
stress with 937 recordings). Then, two performances were calculated depending on the
aggregation of the results: a) all database together, i.e. each of the 1754 recordings
have the same weight on the final performance, and b) by averaging the results in the
five groups of databases, i.e. each group of databases has the same weight on the global
performance. Finally, in order to study the differences of the detections selected for each
LSS with respect to the reference gold standard, the error was calculated and presented
in terms of the standard deviation.

3. Results

The results obtained from the evaluation of all LSS are summarized in Table 4, grouped
by database type and ranked by the median F score in the whole evaluation set. As
a reference, the best upper-bound performance is also shown in Table 4. It can be
observed that the LSS based on the metric m, i.e. W1, A1 and Bm, achieved the first
ranking in all the evaluated database groups.

Table 5 presents the results for the whole evaluation set using both averaging
methods considered. The performance is shown in terms of the median S, P and F

in the whole evaluation set, using the later as the ranking criterion. The algorithm’s
best-lead performance as well as the best results in WX and AX are also shown for
comparative purposes. Table 5 also shows the error with respect to the annotated
heartbeat locations, in terms of the standard deviation of the error, in milliseconds.

For the final evaluation, W1 was the best performing LSS while AX and WX were
the best performing UBP, as shown in Table 5.
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Table 4. Ranking of the five LSS evaluated in each database group based on the F

score.
Rank Sinus rhythm Arrhythmia Stress ST-T changes Long-term
1 A1 92.0 Bm 99.8 W1 99.8 A1 99.0 A1 96.5
2 GII 91.8 GII 99.8 WII 99.1 Bm 98.3 W1 94.8
3 W1 89.9 W1 99.6 Bm 97.4 W1 98.2 Bm 89.9
4 Bm 89.6 A1 99.5 A1 92.7 GII 0 GII 80.2
5 WII 88.8 WII 99.3 GII 88.6 WII 0 WII 78.8

best∗ GQ 92.6 GQ 99.9 WX 99.8 GQ 99.4 AX 97.2
∗ Upper-bound performance, see 2.5 for details.

Table 5. Final ranking for the algorithm’s best-lead and five LSS in all databases for
both weighting schemes.

Rank per Recording Rank per Group
S P F E S P F E

WX
∗ 99.9 99.5 99.7 3 WX

∗ 99.3 98.3 98.8 3
1 W1 99.9 99.5 99.7 3 1 W1 99.2 98.3 98.7 3

WD∗ 99.9 99.3 99.6 2 WD∗ 99.2 97.9 98.5 2
2 Bm 99.4 98.6 99.0 4 AX

∗ 96.9 99.4 98.1 7
PT∗ 98.1 99.8 98.9 3 PT∗ 96.6 99.6 98.1 3
AX
∗ 98.8 98.9 98.8 7 2 A1 96.6 99 97.8 8

3 WII 99.6 97.7 98.6 2 GQ∗ 96.8 98.9 97.8 6
4 A1 97.9 98 97.9 8 3 Bm 96.7 98.4 97.5 4

GQ∗ 98.5 95.7 97.1 6 EP1∗ 95.5 99.3 97.4 6
5 GII 96.6 86 91.0 7 EP2∗ 96.4 94.2 97.2 6

WQ∗ 99.3 84.3 91.2 7 WQ∗ 93.6 96 95.3 7
AR∗ 3.1 84.6 6.0 7 AR∗ 95.4 99 94.8 7
SQ∗ 0.7 87.7 1.4 5 4 WII 88.1 95.1 92.7 2

EP1∗ 0.4 96.2 0.8 6 SQ∗ 94.3 91.2 91.5 5
EP2∗ 0.3 97.4 0.6 0 5 GII 91.3 89.2 90.2 7

∗ Upper-bound performance. See 2.5 for details.

E is the standard deviation of error in ms. See 2.5 for details.

4. Discussion

In this work we extended a previously presented strategy for selecting the best QRS
detections from a multilead recording (Llamedo et al. 2014) to an LSS capable of
selecting detections from multiple leads and detectors. The working hypothesis is that if
it was possible to select the best performing algorithm and lead, we may also be able to
create new series of heartbeat detections by concatenating the best performing segments
of several series, and eventually outperform the best performing single-lead marks.



Assessment of Automatic Strategies for Combining QRS Detections by Multiple Algorithms in Multiple Leads13

The first novelty with respect to previous works in QRS detection is the multilead
and multi-algorithm extension with A1 LSS, as shown in Figure 3. The second novelty
is the extensive evaluation set used to assess the performance of the proposed LSS.
The performance was compared with respect to the UBP calculated for each algorithm
in Table 2. As shown in Table 1, we used a total of 1754 recordings, grouped into
5 recording types, whose cumulative length is equivalent to a single-lead recording of
more than 10 years of duration. To the best of our knowledge, this represents the most
extensive dataset used to evaluate the QRS detectors performance at the moment of
writing this manuscript. This extensive evaluation can be understood as an analysis
of the generalization ability of each detector, given that none of them was previously
evaluated nor tuned to these databases.

In addition to the performance of the LSS, we also computed the UBP for each
algorithm, and WX and AX . Those performance values were used only as a reference
for comparison, since they can not be implemented.

As shown in Table 4, the LSS based on the proposed quality estimation metric m
(Eq. 10 and 11) were the better ranked for all the analyzed groups. For all recording
types, the performance of W1, A1 and Bm was better or equal than GII and WII, which
are trivial LSS based on gqrs (GQ) and wavedet (WD) algorithms. The best performing
LSS was in all cases very close to the best UBP, with a difference in the F score ranging
from 0.0% in stress test databases to 0.7% in long-term databases. In the same Table
it can also be observed that AX and WX were the best-performing UBP for the stress
and long-term groups, suggesting that the multi-detector/lead composition can perform
better than the best single-lead in those settings. This was also confirmed in Table 5,
where AX and WX were the best-performing UBP for both aggregation schemes. This
results also suggest the usefulness of the quality estimation metric m, which is used to
select the best detections that conform AX and WX .

When we calculated performances of the LSS over the whole evaluation set, it can
be observed in Table 5 that W1 obtained the best ranking for both aggregation methods,
resulting in the most promising LSS. Considering the per Group average performance,
W1 performed equally well as the best UBP AX , with an F score of 98.1, while A1

was slightly below, at 97.5. The fact that W1 outperforms A1 suggests that the metric
m fails to detect the best possible detections, since the locations used by W1 are also
included in A1. However, the metric allowed W1 to outperform all LSS and most UBP’s
on selecting a given lead for detector WD. It is noticeable that the best single-lead
performances of the rest of the algorithms in Table 2 achieved a lower F score than W1.
This result suggests that the metricm is adequate for the ranking and posterior selection
of promising candidates among several heartbeat detections. Similar conclusions can be
obtained from results obtained by aggregating all recordings with the same weight.

Note that the metric m relies in the proper modeling of f(x). In this work, the
parameters were estimated in a quite small dataset (20 recordings of thew15). In
future works it will be analyzed whether adding more data to the training set could
improvement performance of m. With respect to the classes considered in the model,



Assessment of Automatic Strategies for Combining QRS Detections by Multiple Algorithms in Multiple Leads14

note that the missed beats (FN) are detected mainly thanks to the abrupt deceleration
in the RR interval tachogram. This highlights the importance of the features related to
the mean heart rhythm (R̄10, R̄60): an abrupt increase in Rn is likely to occur in the
presence of FN, while a decrease may be related to FP.

Another important aspect of a detector’s performance is how bad it performs when
running in a set of signals recorded in completely different settings. Some of the
evaluated detectors absolutely fail to detect heartbeats in several types of recordings.
This can be seen in the best-lead performance achieved by detectors EP1/2, SQ, WQ and
PT. These detectors failed to detect heartbeats in at least 5% (89) of the recordings.
The case of the PT algorithm is particularly interesting, as its median performance
achieved is as high as F50 = 98.9 %, which contrasts with the 5 th. percentile F5 = 0

%. When analyzing the performance by group of databases, the PT algorithm, as it
was expected, fails more often in stress recordings which are the most frequent in our
evaluation dataset. On the other hand, algorithms such as WD and GQ present quite
balanced performances, achieving higher rankings in Table 5.

One possible drawback of concatenating detections from several leads and/or
algorithms could be an increase in the variance of the time error with respect to the
true location of the heartbeats. This aspect was also studied for all the experiments
performed in this work. We found that WD algorithm had an error with standard
deviation (sd) of 2 ms for its best lead, while the W1 obtained 3 ms, and A1 achieved 8
ms. On the other hand, the algorithms GQ and WQ presented an sd of 6 ms and 7 ms
respectively. As these results suggest, the increased sd due to the segment concatenation
is negligible in those LSS. Finally, the strategy Bm achieved an sd of 4 ms, as can be
noted, it is lower than in A1 since this strategy does not merge QRS detections from
different leads and algorithms. The use of strategies and detectors with small variance
is relevant for applications where stability in QRS locations is needed, as in heart rate
variability analysis. In any case, any series of QRS detections can be refined in a post-
processing step by using cross-correlation methods.

The experimental part of this work was implemented using the ecg-kit toolbox
for Matlab (http://marianux.github.io/ecg-kit/)(Demski & Soria 2016) and public
databases (Goldberger et al. 2000, Couderc n.d.) in order to ensure the reproducibility of
the results presented. Strategies Bm, W1 and A1 are also implemented in the ecg-kit for
comparison with future detectors (See wavedetMix, mixartif and calculateSeriesQuality).

5. Conclusion

The results presented in this work suggest that lead selection strategies W1, A1 and Bm

outperform the simple strategy of always selecting lead II or the first lead available (GII,
WII). Moreover, strategy W1, which selects the lead with best QRS detections using a
wavelet-based QRS detector, outperforms the maximum theoretical performance of all
considered algorithms, and it was only slightly below the UBP defined by AX and WX .

In conclusion, the quality metric m used to select and concatenate the most

https://github.com/marianux/ecg-kit/blob/master/common/wavedetMix.m
https://github.com/marianux/ecg-kit/blob/master/common/mixartif.m
https://github.com/marianux/ecg-kit/blob/master/common/calculateSeriesQuality.m


Assessment of Automatic Strategies for Combining QRS Detections by Multiple Algorithms in Multiple Leads15

convenient segments of QRS detections, resulting in LSS W1, A1 and Bm, outperform all
the best performing single-lead from all algorithms evaluated in this work. This suggest
that the presented method is convenient to improve the performance of automatic QRS
complexes detection in a broad set of settings, as those evaluated in this work.
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