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ABSTRACT 

 Over the past years, efforts have been devoted to the genome-wide analysis of genetic and 

epigenetic profiles to better understand the underlying biological mechanisms of complex 

diseases such as cancer. It is of great importance to unravel the complex dependence structure 

between biological factors, and many conditional dependence tests have been developed to meet 

this need. The traditional partial correlation method can only capture the linear partial 

correlation, but not the nonlinear correlation. To overcome this limitation, we propose to use the 

innovative conditional distance correlation (CDC), which measures the conditional dependence 

between random vectors and detect nonlinear relations. In this thesis, the CDC measure is 

applied to the rich Cancer Genome Atlas (TCGA) ovarian cancer data, and we identify a list of 

interesting genes with nonlinear features. We integrate three important types of molecular 

features including gene expression, DNA methylation and copy number variation, and 

implement the partial correlation test and CDC test to infer the relations between the three 

measurements for each gene. Out of 196 candidate oncogenes and tumor suppressors, we 

identify 19 genes in which two of the molecular features are nonlinearly dependent given the 

third variable. Of these 19 genes, many were reported to be associated with ovarian cancer or 

breast cancer in the literature. Our findings could shed new light on the biological relations 

between the three important molecular aspects. 

This thesis is structured as follows: we begin with a brief introduction to ovarian cancer, 

TCGA data, the three molecular measurements, and two testing methods in Chapter 1. In the 

second chapter, we review different statistical methods including Pearson’s partial correlation 



 

 

and conditional distance correlation. In Chapter 3, we conduct an extensive simulation study to 

compare the empirical performance of different methods. In Chapter 4, we apply the new method 

to the TCGA ovarian data. We conclude the thesis with future directions in Chapter 5. 
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1. INTRODUCTION 

Ovarian cancer, ranking the fifth in cancer death among women, is one of the most common 

cancers in the United States. It is also one of the deadliest gynecologic cancer. Ovarian cancer 

accounts for 2.5 percent of cancers in women and the most common age range at diagnosis is 55-

64 years old and the median age of death from ovarian cancer is 70 [22]. According to the 

American Cancer Society, it is estimated that there will be about 21,750 women receive a new 

diagnosis of ovarian cancer and there will be 13,940 about women die from it in the United 

States in 2020 [32]. 

 Based on the statistics of the American Cancer Society, the majority of the patients are 

diagnosed in high-stage and usually treated with aggressive surgery followed by platinum-taxane 

chemotherapy. About 25% of patients recur platinum-resistant cancer within six months after 

chemotherapy and the overall five-year survival rate is 31%. Over the past years, studies have 

shown that many different factors may contribute to ovarian cancer. There is approximately 13% 

of high-grade serous ovarian cancer that can be attributed to germline mutations in BRCA1 and 

BRCA2, and a smaller percentage of ovarian cancer can be attributed to other germline mutations 

[3].  

 As most previous studies focused on individual genes or single type of data, the analyses 

often fail to provide the accurate prediction of the status of ovarian cancer. Therefore, the ideal 

approach is to combine multiple genetic and epigenetic profiles together and perform an 

integrative analysis associated with ovarian cancer. The Cancer Genome Atlas (TCGA) program 
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has profiled the most comprehensive genomic data resource from more than 30 types of cancers 

[20]. For instance, TCGA has collected and processed more than 500 high-quality samples from 

ovarian cancer and the data contains clinical information, metadata, histopathology slide images, 

and molecular information. The clinical profile derived from samples includes records on 

recurrence, survival, and treatment resistance. The metadata includes the weight of a sample 

portion, etc. The molecular profile derived from samples includes gene expression (microarray), 

genotype (SNP), exon expression, MircoRNA expression (microarray), copy number variation 

(CNV), DNA methylation, etc. Such massive dataset has motivated many studies to reveal the 

complex mechanisms of ovarian cancer by incorporating interactions between different genetic 

and epigenetic factors. In this thesis, we jointly modeled three important types of molecular data 

measurements including gene expression, DNA methylation, and copy number variation (CNV) 

and inferred their relations using Pearson’s Correlation and Conditional Distance Correlation. 

 Gene expression is a fundamental process by which the genetic instructions in gene are 

converted into functional products, which are usually proteins. In a few cases, the genetic 

product is a small nuclear RNA, rather than protein. There are several basic steps in gene 

expression process towards the final product, including transcription, RNA splicing, translation, 

and post-translational modification of a protein. The two main steps involved in this process are 

transcription and translation. Transcription is the process in which DNA in a gene synthesize an 

RNA transcript called messenger RNA (mRNA) under the enzyme RNA polymerase action, 

therefore RNA usually has similar structure and properties with DNA. After carrying the genetic 
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information from DNA, mRNA is read by a molecule called transfer RNA (tRNA). Using 

mRNA as a template and tRNA as a vehicle, the process of assembling activated amino acids on 

a ribosome into a protein polypeptide chain is called translation under the action of enzymes, 

cofactors and energy [37]. However, there may exist perturbations of transcription that affecting 

mRNA expression and protein synthesis, consequently leading to human pathological states, 

such as malignancy. DNA methylation and copy number variation are the two main reasons 

resulting the disruption of gene expression. 

 DNA methylation is a biochemical modifiable process by adding methyl groups to DNA 

molecule. It is an epigenetic mechanism that could change the activity of a DNA segment 

without changing its sequence. Cytosine and adenine are the only two bases in DNA that could 

be methylated, so the most common DNA methylation process occurs by addition of a methyl 

group to the 5 position of cytosine pyrimidine ring or the number 6 nitrogen of the adenine 

purine ring. It is commonly known that certain tumor suppressor genes are inactivated within the 

promotor region that lead to the consequence of abnormal hypermethylation [13]. In addition, a 

large number of studies have shown that there are many different types of genes silenced by 

aberrant DNA methylation are associated with different types of human cancers. 

 Copy number variation (CNV) refers to the variation in the number of repeats of a particular 

genetic region between individuals in human population. It is an important component of 

structural variation, which could be duplication, deletion, insertion or single nucleotide 

polymorphism. Copy number variation occurs during DNA replication and thus change the gene 
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expression level and associated phenotypes. Previous studies have shown that CNV is associated 

with dozens of human diseases, especially on neurological disorders and cancers. Researchers 

have demonstrated that approximately 15% of those neurodevelopmental diseases are caused by 

CNV, such as autism and schizophrenia and a few neurodevelopmental related genes such as 

A2BP1 are reported with mutational CNVs [27]. The reason why CNV and neurodevelopmental 

diseases are associated could be perturbation of genes involving in neurological disorders. Many 

cancers are also associated with copy number variation. Li at al. found that the CNVs of AKT2, 

PIK3CA etc. could result in breast cancer in late age, which is partly because copy number 

changed easily due to cellular stress [16]. Therefore, it is essential to integrate all these important 

aspects in the data analysis. 

 Since both DNA methylation and CNV can affect gene expression, it is necessary to 

illustrate the relationship between the three variables. In this paper, we introduce two methods to 

test conditional dependence including linear conditional relationship and nonlinear conditional 

relationship. Pearson’s partial correlation method measures linear correlations between two 

multivariate variables given a third random variable. On the other hand, we can test nonlinear 

conditional independence through conditional distance correlation method.  

Pearson’s partial correlation is a measure of linear association between two random 

variables while controlling one or more additional variables. The assumptions and properties are 

analogous to Pearson’s correlation. The graphical models based on Pearson’s partial correlation 

is similar to Bayesian Graphical Model. For example, Xu et al. (2014) assume that the variables 
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in graphical model are joint Gaussian. Xu et al. also applied the model along with MCMC 

estimation to the same TCGA data independently to describe the dependence structure of 

specific regulatory relationships [36]. For instance, in the graphical structure of gene ERLIN2, 

there is an edge between gene expression and CNV but no edge between gene expression and 

DNA methylation, indicating that the expression level of gene ERLIN2 is correlated with CNV, 

but not its methylation level [36]. Freudenberg et al. (2009) analyzed the causal relationships 

between four variables in the human genome based on partial correlation method [4]. Poli et al. 

(2014) proposed the functional connectivity studies in neuronal network by partial correlation 

method and other information-based methods [23]. Bühlmann, Kalisch and Maathuis (2010) 

developed the partial correlation based on variable selection method for normal linear regression 

model [2]. Li, Liu and Lou (2017) addressed two significant issues regarding to partial 

correlation based variable selection method, namely the non-robustness to normality and high 

dimensionality [15]. Due to the limitation listed above, this method may not serve as a general 

measurement of conditional dependence test. 

Existing association tests mostly focus on linear conditional correlations, thus not sensitive 

to nonlinear conditional relations especially to non-monotonic relation. Conditional distance 

correlation method is a better way when the relations between the two multivariate random 

variables with arbitrary dimensions conditioning on another random variable is not linear. Some 

examples of such conditional independence tests have been developed based on a weighted 

Hellinger distance [29] between the conditional densities or the difference between the 
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conditional characteristic functions [28]. Huang (2010) used the maximal nonlinear conditional 

correlation to test conditional independence [8]. Gao and Zhao (2013) proposed to test the 

dependence structure of multivariate nonlinear times series based on conditional independence 

graph and applied the statistical mechanics to international financial markets [5]. We propose a 

nonparametric measure of conditional dependence and conditional correlation (covariance) for 

multivariate random variables. Especially, the conditional distance correlation coefficient being 

zero is equivalent to that the two multivariate random variables are conditionally independent 

given a third multivariate random variable [35]. The conditional distance correlation is defined 

by replacing characteristic function used in the correlation definition of Szekely et al. (2007) 

[30]. Concepts and properties of this novel dependence measure are provided in the following 

chapter.  
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2. METHODOLOGY 

 The Cancer Genome Atlas (TCGA) Research Network has provided the most 

comprehensive genomic data resources over more than 20 types of cancers. The TCGA project 

has examined 580 samples and 12,000 genes for ovarian cancer. In this work, we only consider 

three types of molecular data including gene expression, DNA methylation and copy number 

variation to develop the integrative network analysis for ovarian cancer and infer the differences 

between the three variables based on different methods. We denote gene expression as E, DNA 

methylation as M, and DNA copy number variation as C for the ease of notations. Specifically, 

let us use 𝑝𝑙𝑖𝑔 to represent the measurement of conditional p-value for the gene g, on 𝑖-𝑡ℎ 

sample, with the level l. Here, 𝑙 = 1 denotes the level of E and M conditioning on C, 𝑙 = 2 

denotes the level of E and C conditioning on M, 𝑙 = 3 denotes the level of M and C 

conditioning on E respectively, i indexes the 𝑁 = 580 samples, g indexes the 𝐺 = 12,000 

genes. 

 The three methods being considered in this work for integrative analysis are Pearson’s 

partial correlation, conditional mutual information and conditional distance correlation. 

Pearson’s partial correlation is commonly used in assessing two quantitative variable correlations 

while eliminating the effect of one or more variables. Formally, let X, Y be random variables and 

Z be a specific quantitative variable. The formula of the partial correlation coefficient of X, Y 

given Z is defined as 

𝜌𝑋𝑌∙𝑍 =
𝜌𝑋𝑌 − 𝜌𝑋𝑍𝜌𝑌𝑍

√1 − 𝜌𝑋𝑍
2 ∗ √1 − 𝜌𝑌𝑍

2
, 
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where 𝜌( ) denotes Pearson’s correlation coefficient between two variables.  

The key assumptions that partial correlation relies upon are data normality and variable 

linearity, which are the same as Pearson’s correlation. Note that if the joint distribution of the 

variables is bivariate normal then these other assumptions are necessarily met (Tabachnick and 

Fidell 2001,p.72). Like the marginal Pearson’s correlation coefficient, Pearson’s partial 

correlation coefficient, 𝜌, also has a value ranging between -1 and 1, where the larger the 

absolute value of coefficient, the stronger the association between the paired variables. It also 

shows “-1” means perfect negative association, “0” means no linear association, and “1” means 

perfect positive association [34]. The estimate of Pearson’s partial correlation coefficient as well 

as p-value could be implemented using R package “ppcor” (https://cran.r-

project.org/package=ppcor). The general idea behind the algorithm implemented in this package 

is that the derivation of a general matrix formula (inverse variance-covariance matrix) of the 

semi-partial correlation to resolve higher-order coefficient fast [11]. One could use it to 

statistically test linear conditional dependence between gene expression, DNA methylation, and 

CNV. When the p-value is less than the significace level 𝛼, we reject 𝐻0 and accept 𝐻𝛼, i.e., 

two random variables given a third random variable are linearly dependent.  

 Conditional mutual information (CMI) measures conditional dependence between two 

variables given the third random variable. To begin with, we define entropy for a given random 

variable. For a discrete variable X, the entropy H(X) measures average expected uncertainty in 

variable X, and the formula of H(X) is defined as 
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𝐻(𝑋) = −∑𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

, 

where 𝑝(𝑥) represents the probability mass function of each value x in the sampling space. The 

joint entropy H(X,Y) can be defined as  

𝐻(𝑋, 𝑌) = − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔𝑝(𝑥, 𝑦),

𝑥∈𝑋,𝑦𝜖𝑌

 

where 𝑝(𝑥, 𝑦) is the joint probability of X=x and Y=y. 

 Mutual information (MI) is the measure of marginal dependence between two random 

variables. The MI between two discrete variables X, Y can be expressed as  

𝐼(𝑋, 𝑌) = − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
.

𝑥∈𝑋,𝑦𝜖𝑌

 

Similarly, the CMI of variables X and Y given Z can be written as 

𝐼(𝑋, 𝑌|𝑍) = − ∑ 𝑝(𝑥, 𝑦, 𝑧)𝑙𝑜𝑔
𝑝(𝑥, 𝑦|𝑧)

𝑝(𝑥|𝑧)𝑝(𝑦|𝑧)
.

𝑥∈𝑋,𝑦𝜖𝑌,𝑧𝜖𝑍

 

It can be shown that when variables X, Y given Z are conditionally independent, we have 

𝐼(𝑋, 𝑌|𝑍) = 0. On the other hand, the higher value of CMI, the closer relationship between X 

and Y given Z will be. To perform the hypothesis test, Z-statistic was proposed by Kalisch and 

Bühlmann (2007) [10] and Satio et al., (2011) [26] and the CMIs are transformed using Fisher’s 

Z transformation to approach normal distribution. First, the CMIs are normalized by 

𝐼(𝑋, 𝑌|𝑍) =
𝐼(𝑋, 𝑌|𝑍)

𝐻(𝑋, 𝑍) + 𝐻(𝑌, 𝑍)
. 

The Fisher’s Z-score can then be computed as following 

𝑍𝑋,𝑌|𝑍 =
1

2
log (

1 + 𝐼(𝑋, 𝑌|𝑍)

1 − 𝐼(𝑋, 𝑌|𝑍)
). 
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where 𝐼(𝑋, 𝑌|𝑍) represents the normalized CMI, and 𝑍𝑋,𝑌|𝑍 is the z-value of 𝐼(𝑋, 𝑌|𝑍). The p-

value can be well approximated a normal distribution with mean 0 and variance 
1

𝑛−4
, which was 

developed by Zhang et al. (2011) [39].  

We applied the R package “infotheo” to compute the conditional entropy and CMI [17]. The 

obtained CMI is then normalized by the entropy and the p-value can be calculated via Fisher’s z 

transformation. The function “discretize” is used to discretize continuous data. Conditional 

entropy and conditional mutual information in natural logarithm are computed by using functions 

“condentropy” and “condinformation”, and exponential transformation is taken to find the 

conditional entropy and conditional mutual information. Using the significance level of 𝛼, we 

reject the null hypothesis 𝐻0: 𝑍𝑋,𝑌|𝑍 = 0 against the two-sided alternative hypothesis 

𝐻𝛼: 𝑍𝑋,𝑌|𝑍 ≠ 0 if p-value is lower than the significance level 𝛼, otherwise, 𝐻0 will be retained. 

Conditional distance correlation is an innovative measure for conditional dependence, 

defined through weighted distance between ∅𝑋,𝑌|𝑍 and ∅𝑋|𝑍∅𝑌|𝑍, where ∅𝑋,𝑌|𝑍 is the 

conditional joint characteristic function of X, Y given Z and ∅𝑋|𝑍, ∅𝑌|𝑍 are the conditional 

marginal characteristic function of X, Y given Z, respectively. The conditional joint 

characteristic function of X, Y given Z can be denoted as 

∅𝑋,𝑌|𝑍(𝑡, 𝑠) = 𝐸[exp(𝑖〈𝑡, 𝑋〉 + 𝑖〈𝑠, 𝑌〉) |𝑍], 

where 𝐸 is the expectation, 𝑖 is the imaginary unit, and 〈∙,∙〉 is the inner product of the two 

corresponding vectors. The conditional marginal characteristic functions of X, Y given Z are 

defined similarly as, respectively 
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∅𝑋|𝑍(𝑡) = ∅𝑋|𝑍(𝑡, 0), 𝑎𝑛𝑑 ∅𝑌|𝑍(𝑡) = ∅𝑌|𝑍(0, 𝑠). 

Here if X, Y given Z are conditionally independent, we denoted by 𝑋 ⊥ 𝑌|𝑍, and ∅𝑋,𝑌|𝑍 −

∅𝑋|𝑍∅𝑌|𝑍 = 0. Otherwise, the conditional distance correlation (covariance) for random variables 

could be defined by replacing the characteristic functions with conditional characteristic 

functions in the definition of distance correlation (covariance) [30]. The formulation of 

conditional distance covariance (CDCov) 𝒟(𝑋, 𝑌|𝑍) between random vectors X and Y with 

finite moments given Z can be expressed as the square root of 

𝒟2(𝑋, 𝑌|𝑍) =∥ ∅𝑋,𝑌|𝑍(𝑡, 𝑠) − ∅𝑋|𝑍(𝑡)∅𝑌|𝑍(𝑠) ∥
2 

=
1

𝑐𝑝𝑐𝑞
∫
ℝ𝑝+𝑞

|∅𝑋,𝑌|𝑍(𝑡, 𝑠) − ∅𝑋|𝑍(𝑡)∅𝑌|𝑍(𝑠)|
2

|𝑡|𝑝
𝑃+1|𝑠|𝑞

𝑞+1 𝑑𝑡𝑑𝑠, 

where 𝑐𝑝 =
𝜋(𝑝+1)/2

Γ((𝑝+1)/2)
, 𝑐𝑞 =

𝜋(𝑞+1)/2

Γ((𝑞+1)/2)
. 

Similarly, the conditional distance variance is defined as the square root of  

𝒟2(𝑋|𝑍) = 𝒟2(𝑋, 𝑋|𝑍), 

and the conditional distance correlation (CDCor) between random vectors X and Y with finite 

moments given Z is defined as the square root of  

𝜌2(𝑋, 𝑌 | 𝑍) =
𝒟2(𝑋, 𝑌|𝑍)

√ 𝒟2(𝑋|𝑍) 𝒟2(𝑌|𝑍)
. 

if 𝒟2(𝑋|𝑍) 𝒟2(𝑌|𝑍) > 0, or 0 otherwise. Hence, the conditional distance correlation is always 

nonnegative. Although the definitions are straightforward, the values are difficult to calculate by 

hand, so we use the R package “cdcsis”, developed by Hu et al. (2019) to find the conditional 

distance correlation for conditional independence inference [7]. 
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Next, we review several desirable theoretical properties for conditional distance covariance, 

which are analogous to the properties of unconditional distance covariance [35]. On remarkable 

property of DC is that 𝒟2(𝑋, 𝑌|𝑍) ≥ 0, and 𝒟2(𝑋, 𝑌|𝑍) = 0 if and only if X and Y are 

conditionally independent given Z, which means the necessary sufficient condition of conditional 

independence is that conditional distance covariance is nonnegative and that 𝒟2(𝑋, 𝑌|𝑍) = 0. In 

addition, if 𝐸(|𝑋|𝑝 + |𝑌|𝑞|𝑍) < ∞, 𝑡ℎ𝑒𝑛 0 ≤ 𝜌(𝑋, 𝑌|𝑍) ≤ 1. If 𝜌(𝑋, 𝑌|𝑍) = 0 means X is 

conditionally independent of Y given Z, and as long as 𝜌(𝑋, 𝑌|𝑍) = 1, Y is a linear 

transformation of X conditioning on Z, which means 𝑌 = 𝐴𝑋 + 𝑏. They are valuable to do the 

conditional dependence test in the following chapters. 

 In this paper, we use permutation p-value for hypothesis testing as the sampling distribution 

of CDC is impractical to obtain [6]. We randomly shuffle the dataset and obtain the new test 

statistic for shuffled dataset and repeat the procedure for a predetermined number of times under 

null hypothesis. The doubled minimum ranking of old test statistic among the new test statistic 

for the shuffled dataset gives an approximate two-sided p-value. With the null hypothesis 

𝐻0: 𝒟
2(𝑋, 𝑌|𝑍) = 0 and the alternative hypothesis 𝐻𝛼: 𝒟

2(𝑋, 𝑌|𝑍) > 0 under the significance 

level alpha, the classic decision theory follows a rule that the null hypothesis is rejected if p-

value is lower than the significance level, otherwise the alternative hypothesis is rejected but the 

null hypothesis is not rejected. 

 All the three aforementioned methods are model-free, which do not rely on any model 

structure or assumptions, but it may lack power to detect the complex mechanisms of ovarian 
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cancer formation by overlooking the interactions of gene expression, DNA methylation and copy 

number variation. To this end, Xu et al. (2014) applied a Bayesian graphical model to 

incorporate the complex interactions between different variables [36]. Bayesian graphical model 

by Xu et al. assumed a mixture model through Markov Chain Monte Carlo (MCMC) posterior 

distribution and simplified the conjugate priors to obtain the posterior estimates and the 

estimated graphs. For the model-based method, if the model could be found appropriately, the 

conclusion will be more powerful than based on model-free method. However, it is challenging 

to specify an appropriate model structure in real data analysis. 
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3. SIMULATION STUDY 

3.1 Evaluation of Type I Error Rate 

 In this chapter, we conducted an extensive simulation study to evaluate the statistical 

performance of the three methods being compared, namely CDC test, partial correlation test and 

CMI test. The simulation settings are similar to the ones used in Wang et al., 2015 [35]. For each 

simulation, we generated 50 samples and use the significance level of 0.05 for test. Examples 1-3 

considered the settings where X and Y are conditionally independent given Z and we evaluate 

the three models in terms of type I error rate. Type I error rate is the probability that rejection of 

the null hypothesis when the null hypothesis is true. Suppose we repeat the tests for 100 times 

and get 100 p-values, the proportion of the p-values that is less than the significance level is 

summarized as type I error rate.  

Example 1 (X, Y, Z) follows a multivariate normal distribution with mean 𝜇 = (0,0,0) and 

covariance matrix Σ =

(

 
 
1

1

4

1

2
1

4
1

1

2
1

2

1

2
1
)

 
 

. Therefore, the conditional covariance matrix of X and Y 

given Z is Σ(X, Y | 𝑍) = Σ11 − Σ12Σ22
−1Σ21 = (

3

4
0

0
3

4

), where Σ(X, Y | 𝑍) is 2-by-2 diagonal 

matrix, so the element (1,2) and (2,1) are all zero, indicating that X is independent of Y given Z. 

As X, Y, Z follow the multivariate normal distribution, they are linearly associated. In 

addition, X is independent of Y given Z, therefore, X, Y are linearly independent given Z. 
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Example 2 𝑋1, 𝑌1, 𝑍~𝑁(0,1), and we define 

𝑍1 = 0.6 ∗ (
𝑍3

7
+
𝑍

2
) , 𝑍2 =

1

4
∗ (
𝑍3

2
+ 𝑍), 

𝑋2 = 𝑍1 + tanh(𝑋1) , 𝑋 = 𝑋2 +
1

4
(𝑋2)

3, 

𝑌2 = 𝑍2 + 𝑌1, 𝑌 = 𝑌2 + tanh (
𝑌2
4
). 

Since 𝑋1, 𝑌1, 𝑍 follow standard normal distribution independently, X and Y are polynomial 

transformation of 𝑋1, 𝑌1, 𝑍, therefore, X and Y are statistically independent given Z. 

Example 3 𝑋1, 𝑌1, 𝑍1, 𝑍2~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(12,0.4), and we define 

𝑋 = 𝑋1 + 𝑍1 + 𝑍2, 

𝑌 = 𝑌1 + 𝑍1 + 𝑍2, 

𝑍 = (𝑍1, 𝑍2). 

 Here 𝑋1, 𝑌1, 𝑍1, 𝑍2 are independent binomial variables, and 𝑋, 𝑌 are linear transformation 

of 𝑋1, 𝑌1, 𝑍1, 𝑍2, 𝑍 is a vector containing 𝑍1, 𝑍2, therefore X and Y are linearly independent 

given Z.  

Note that all X, Y, Z in examples 1 and 2 are univariate. In example 3, X, Y are univariate, 

and Z is multivariate. Table 1 shows the type I error rate for examples 1-3 based on three 

methods. 
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Table 1. Type I error rate for examples 1-3 with three different methods (n=50). 

Type I Error Example 1 Example 2 Example 3 

Pearson’s Correlation 0.05 0.25 0.02 

Conditional Mutual 

Information 

0 0 0 

Conditional Distance 

Correlation with 

Index=1 

0.04 0.14 0.32 

 

We can see that the empirical type I errors of partial correlation method and CDC method 

are reasonable but CMI method is inconclusive with 50 random samples. With CMI method, all 

type I errors for the three examples are zeros, which means that p-values are consistently greater 

than the significance level, and the CMI test is extremely conservative. In addition, we can see 

the result under partial correlation method is a slightly better than the result under CDC method 

in example 1 because X, Y are linearly independent conditioning on Z. CDC method 

outperforms the other two methods for example 2, because it is a nonlinearly independent case 

and the type I error under CDC test is closer to 0.05 compared with partial correlation test. In 

example 3, partial correlation method is preferred because we already know it is a linearly 

independent case and type I error under partial correlation method is better than its result under 

CDC method.  

As CMI method is conservative in all cases, we increase the sample size from 50 to 300 for 

possible improvement. 
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Figure 1. Sample size versus type I error rate for examples 1-3 with CMI method (nbins= 𝑛
1

3). 

  

From Figure 1, we can see that sample size and type I error are positive correlated and the 

test is more powerful when the sample size is around 100. The type I error increases sharply as 

the sample size increases from 100 to 200. Once the sample size increases to 200, the type I error 

becomes one, which means all p-values are less than the significance level and the test severely 

underestimated p-values. However, type I error is always zero for all sample sizes in example 3. 

The CMI measure is problematic, and one possible reason is that CMI method is not well defined 
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for continuous variables, and discretizing continuous data will more or less cause loss of 

information. 

In the implementation of CMI, the “infotheo” package relies on the choice of bin size 

(argument “nbins” in function “discretize”) in order to discretize continuous data. Here, we 

investigate the effect of nbins on the type I error rate and statistical power. 

 

Figure 2. Sample size versus type I error rate for examples 1-3 with CMI method (nbins=n^1/2). 
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Figure 3. Sample size versus type I error rate for examples 1-3 with CMI method (nbins=n^2/3). 

 

Figure 4. Sample size versus type I error rate for examples 1-3 with CMI method (nbins=n^1/4). 
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Figure 5. Sample size versus type I error rate for examples 1-3 with CMI method (nbins=n^1/5). 

 

As we can see from Figures 2 and 3, the Type I error rates by different number of bins are 

comparable. Type I error rates are close to 1 for example 1 and 2 with increasing sample size, but 

it remains 0 for example 3. From Figure 4 and 5, we decrease the number of bins from the 

default 1/3, and type I error rate inflates to 1 as sample size increase for examples 1 and 2 and 

remains at 1 for example 3. CMI method fails to detect conditional dependency regardless of our 

choice for the number of bins when discretizing the continuous data. CMI may only apply to 

discrete variables because it will lose information when discretizing the continuous variables. 

 In R package “cdcsis”, the argument “index” specifies the exponent on Euclidean distance in 

(0, 2] (default index is 1). We varied the index from 0.25 to 2 in example 1 and summarized 

how the type I error changes. Table 2 and Figure 6 summarized the results. 
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Table 2. Distance index versus type I error rate for example 1 with CDC method. 

 Index 

 0.25 0.5 0.75 1 1.25 1.50 1.75 2.00 2.25 2.50 

Type I 

Error 

Rate 

0.08 0.08 0.04 0.04 0.06 0.16 0.04 0.12 0.06 0.08 

 
Figure 6. Distance index versus type I error for example 1 with CDC method. 

 

 From Table 2 and Figure 6, we can see that the default choice of index=1 performs overall 

better in example 1, thus we use index=1 for all our analyses. 
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3.2 Evaluation of Empirical Statistical Power   

In comparison to examples 1-3, we considered another three examples for conditional 

dependence cases. The empirical power is summarized to compare the three methods. The 

statistical power is defined as the probability of rejecting a false null hypothesis (or equivalently, 

one minus the type II error rate). The simulation was repeated for 100 times and the power is 

computed as the proportion of p-values that are less than the pre-defined significance level. 

Example 4. (X, Y, Z) follows a multivariate normal distribution with mean 𝜇 = (0,0,0) and 

covariance matrix Σ = (
1 0.6 0.5
0.6 1 0.5
0.5 0.5 1

). Therefore, the conditional covariance matrix of X and 

Y given Z is Σ(X, Y | 𝑍) = Σ11 − Σ12Σ22
−1Σ21 = (

0.75 0.35
0.35 0.75

), where the element (1,2) and 

(2,1) of Σ(X, Y | 𝑍) are nonzero, indicating that X is conditionally dependent of Y given Z. 

 As X, Y, Z follow the multivariate normal distribution, X, Y, Z are linearly associated. In 

addition, X is dependent of Y given Z, and X, Y are linearly dependent given Z. 

Example 5. 𝑋1, 𝑌1, 𝑍, 𝜀~𝑁(0,1), and we define 

𝑍1 = 0.6 ∗ (
𝑍3

7
+
𝑍

2
) , 𝑍2 =

1

4
∗ (
𝑍3

2
+ 𝑍), 

𝑋2 = 𝑍1 + tanh(𝑋1) , 𝑋3 = 𝑋2 +
1

4
(𝑋2)

3, 

𝑌2 = 𝑍2 + 𝑌1, 𝑌3 = 𝑌2 + tanh (
𝑌2
4
). 

We standardize 𝑋3, 𝑌3 and define 

𝑋 = 𝑋3 + 𝑐𝑜𝑠ℎ𝜀, 𝑌 = 𝑌3 + 𝑐𝑜𝑠ℎ𝜀
2. 
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Since 𝑋1, 𝑌1, 𝑍, 𝜀 follow normal distribution, X and Y are polynomial transformation of 

𝑋1, 𝑌1, 𝑍, 𝜀, therefore, X and Y are nonlinearly dependent given Z. 

Example 6 𝑋1, 𝑍1, 𝑍2~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(12,0.4), and we define 

𝑋 = 𝑋1 + 𝑍1 + 𝑍2, 

𝑌 = (𝑋1 − 5)
4 + 𝑍1 + 𝑍2, 

𝑍 = (𝑍1, 𝑍2). 

 𝑋1, 𝑍1, 𝑍2 follow binomial distribution. 𝑋 is linear transformation of 𝑋1, 𝑍1, 𝑍2, 𝑌 is 

polynomial transformation of 𝑋1, 𝑍1, 𝑍2, and 𝑍 is multivariate of 𝑍1, 𝑍2, therefore X and Y are 

nonlinearly dependent given Z.  

Note that the variables X, Y, Z in examples 4 and 5 are all univariate variables. In example 

6, X, Y are univariate, and Z is multivariate. Table 3 shows the power for examples 4-6 based on 

three methods. 

 

Table 3. Empirical power for examples 4-6 with three different methods based on cutoff=0.05 

(n=50). 

 Example 4 Example 5 Example 6 

Pearson’s Correlation 0.96 0.94 0.49 

Conditional Mutual 

Information 

0 0 0 

Conditional Distance 

Correlation with 

Index=1 

0.90 0.98 0.82 

 

 From Table 3, it can be seen that the CMI method fails to detect any conditional 

dependence, partially due to the required discretization. All empirical powers are zeros, 
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indicating an extreme conservativeness. Partial correlation method performs the best for example 

4 because the data are generated from a multivariate normal distribution and the three variables 

are linearly correlated. In the nonlinear cases (such as examples 5 and 6), CDC method is more 

powerful than the other two methods as we expected. 

 In examples 4-6, we use the three different significance levels, 0.05, 0.1 and 0.2 in the 

following tables and see how the conclusion changes. 

 

Table 4. Empirical power for examples 4-6 with three different methods based on cutoff=0.1 

(n=50). 

 Example 4 Example 5 Example 6 

Pearson’s Correlation 0.99 0.98 0.56 

Conditional Mutual 

Information 

0.236 0.36 0 

Conditional Distance 

Correlation with 

Index=1 

0.96 1 0.96 

 

Table 5. Empirical power for examples 4-6 with three different methods based on cutoff=0.2 

(n=50). 

 Example 4 Example 5 Example 6 

Pearson’s Correlation 0.99 1 0.65 

Conditional Mutual 

Information 

0.996 0.998 0 

Conditional Distance 

Correlation with 

Index=1 

0.98 1 0.98 

  

From Tables 4 and 5, we can see that the advantage of CDC over other methods persist 

under different significance level. 
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In addition, we investigated the power under a larger sample size. Figure 7 shows the results 

for examples 4-6. 

 

Figure 7. Sample size versus empirical power for examples 4-6 with CMI method. 

 

Figure 7 presents the association between sample size and power for CMI method. In 

examples 4 and 5, the sample size is positively correlated with empirical power and the test is 

more powerful as the sample size increases. It shows all p-values are less than the significance 

level, so the CMI test is greatly underestimated p-values. However, in example 6, the power 

remains zero regardless of the sample size.  

Our simulation studies suggested that the partial correlation test could better capture linear 

dependence while CDC test is more sensitive to nonlinear dependence than the two competitors. 
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In our real data application presented in next chapter, we will apply these two methods. As a 

comparison, we will pay attention to the genes detected by CDC but not by partial correlation. 
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4. RESULTS AND CONCLUSIONS 

In this part, we apply two statistical tests, namely partial correlation test and CDC test, to 

study the conditional dependence between three important measurements in TCGA ovarian 

cancer data. Due to the high-speed development in next-generation sequencing technology, it is 

tremendously possible for us to perform genome-wide analysis of genetic and epigenetic features 

simultaneously. TCGA project characterized over 20,000 tumor and matched normal samples 

over 30 types of cancers (https://www.cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga), which provided the most comprehensive cancer data resource.  

In this analysis, we used the rich TCGA ovarian cancer data with measurements on 12,000 

genes on 580 samples. Each sample was represented by three molecular measures including gene 

expression level, DNA methylation level and copy number variation. The samples consisted of 8 

cancer-free controls, 15 early-stage (stage I) and 559 high-grade cancer samples. Among the 

12,000 genes, there are several genes known to closely associated with the ovarian cancer, for 

instance, TP53 (Zhang et al. (2016)), PIK3CA (Levine et al. (2005)), BRCA1 and BRCA2 

(Ramus and Gayther (2009)) confer to a high life-time risk of ovarian cancer due to germline 

mutations [14, 25,40].  

 We applied CDC method to TCGA data to perform an integrated analysis between gene 

expression, methylation and CNV. Comparing with linear method (i.e., partial correlation 

method), we can infer non-linear relations based on CDC method. In addition, we can detect 

conditional non-linear dependence through hypothesis testing. If the p-value is above the 
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significance level under partial correlation method, the alternative hypothesis is rejected. 

However, for the same gene given the same variable, the null hypothesis is rejected, and non-

linear dependence is maintained if the p-value is lower than the significance level under CDC 

method.  

 We use the 245 oncogenes and tumor suppressors reported by Zhang, Burdette and Wang 

(2014) [38]. Out of 245 genes, there are 196 genes with the complete records of gene expression, 

methylation and CNV. We recorded the running time of one gene as the sample size increases 

from 30 to 150. Figure 8 shows the relation between sample size and the running time in R for 

one gene. To speed up our computation and investigate the performance of CDC under moderate 

sample size, for each gene, we used randomly selected 80 samples in the analysis. These 80 

samples were used as a training set and we will test the robustness of our findings in the whole 

data set.  

 
Figure 8. Sample size versus the running time in R for one gene. (X denotes gene 

expression, Y denotes DNA methylation, and Z denotes CNV) 
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To facilitate comparison, we used the same number of random samples to implement the 

partial correlation test. For every single gene, we obtained two p-values based on the two 

methods, for example, the gene KRAS, we did the conditional dependence test on gene 

expression, methylation given CNV, and found the p-value is 0.174 based on partial correlation 

method and the p-value is 0.002 based on CDC method. Choosing the significance level 𝛼 =

0.05 and comparing the two p-values with the significance level, we can say gene expression 

and methylation are linearly independent conditioning on CNV based on partial correlation 

method, but gene expression and methylation are nonlinearly dependent conditioning on CNV 

based on CDC method.  

 In comparison of two p-values with the same condition by the two methods clearly, I form 

three matrices with 196 genes (rows) and 2 p-values (columns) separately, including gene 

expression and methylation given CNV, gene expression and CNV given methylation, and 

methylation and CNV given gene expression. By choosing different cutoffs of significance level, 

we can detect the difference between the two methods for a few of genes conditioning on the 

same variable. Table 6 lists the names of genes with different decisions by two methods with 

different cutoffs of significance level. 
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Table 6, Gene selected by two methods with different significance level cutoffs. 

 P-value of Pearson’s 

correlation 

method>0.15, p-

pvalue of CDC 

method<0.02 

Pvalue of Pearson’s 

correlation 

method>0.15, pvalue 

of CDC method 

<0.05 

Pvalue of Pearson’s 

correlation 

method>0.10, pvalue 

of CDC method 

<0.05 

X, Y given Z "KRAS" "DIRAS3", "MYC", 

"KRAS", "SNX5", 

"MELK" 

"DIRAS3", "MYC", 

"KRAS", "SNX5", 

"MELK", "KLHL24" 

X, Z given Y "SHKBP1" "MPHOSPH6", 

"SHKBP1" 

"MPHOSPH6", 

"SHKBP1" 

Y, Z given X "PIK3CA", "ALG3", 

"SPEN", "MFN1", 

"CNP", "CROT", 

"MOCS3", "DPM1" 

"PIK3CA", "ALG3", 

"HSF1", "POLR2H", 

"SPEN", "MFN1", 

"ZNF639", "CNP", 

"CROT", "MOCS3", 

"MRPL47", "DPM1" 

"PIK3CA", "ALG3", 

"HSF1", "POLR2H", 

"SPEN", "MFN1", 

"ZNF639", "CNP", 

"PVRL4", "CROT", 

"MOCS3", "BOP1", 

"MRPL47", "DPM1" 

where X denotes gene expression, Y denotes DNA methylation, and Z denotes CNV. 

 

 To show the difference between the two methods, we choose the second column of the table, 

in which the cutoff of significance level for partial correlation method is 0.15, and the cutoff of 

significance level for CDC method is 0.05. We found 19 genes in total that show nonlinear 

conditional dependence by CDC method but not detected by the partial correlation test.  

 In addition, we divide the 580 samples into three groups by sorting the conditioning variable 

in ascending order (first 200 samples with low level condition, the next 200 samples with 

medium level condition, the last 180 samples with high level condition) and use figure 

visualization to observe the relations between two default variables for each gene and 580 

samples. Figure 9 - Figure 14 are the examples showing the sample clusters and variations with 

different levels of conditions. 
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Figure 9. Gene expression level versus DNA methylation level for gene DIRSA3 with 3 

levels of CNV (red for low CNV level, yellow for medium CNV level, and blue high CNV 

level).  

 

For gene DIRSA3, figure 9 shows the relation between gene expression and DNA 

methylation given CNV. For each CNV group, we fit a lowess line using smoothing parameter 

suggested by R. It can be seen that different CNV groups exhibited differential co-expression 

between gene expression and DNA methylation, with different non-linear patterns. 
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Figure 10. Gene expression level versus DNA methylation level for gene KRAS with 3 levels 

of CNV (red for low CNV level, yellow for medium CNV level, and blue for high CNV 

level). 

 

Figure 10 shows the trend variation between gene expression and methylation conditioning 

on increasing level of CNV for gene KRAS. For each CNV group, a lowess line is fitted with 

smoothing parameter chosen by R. It shows different CNV groups displayed similar relations 

between gene expression level and DNA methylation in different non-linear patterns, but the 

trend increases sharply at the end under the medium level of CNV.  
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Figure 11. Gene expression level versus DNA methylation level for gene SNX5 with 3 levels 

of CNV (red for low CNV level, yellow for medium CNV level, and blue for high CNV 

level). 

 

For gene SNX5, figure 11 shows the trend variation between gene expression and 

methylation conditioning on increasing level of CNV. A lowess line is fitted with smoothing 

parameter chosen by R for each CNV group. For the low level and medium level of CNV, the 

trends are similar, and both different from the group with the high level of CNV. 
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Figure 12. Gene expression level versus DNA methylation level for gene MELK with 3 

levels of CNV (red for low CNV level, yellow for medium CNV level, and blue for high 

CNV level). 

 

Figure 12 shows the relation between gene expression and methylation conditioning an 

increasing order of CNV for gene MELK. For each CNV group, a “lowess” function using 

smoothing parameter suggested by R is used to draw the trend variation. With different non-

linear patterns, the trends for the low level of CNV (red line) and high level of CNV (blue line) 

are similar, which decreases slowly and then keeps constant. However, the trend seems like 

increases slowly based on medium CNV level (yellow line). 
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Figure 13, DNA methylation level versus CNV level for gene MFN1 with 3 levels of gene 

expression (red for low gene expression level, yellow for medium gene expression level, and 

blue for high gene expression level). 

 

For gene MFN1, figure 13 shows the relationship between methylation and CNV 

conditioning an increasing level of gene expression. We fit a smoothing lowess line suggested by 

R to draw the trend. In this figure, it shows the completely different co-expressions between 

DNA methylation level and CNV level based on diverse gene expression levels with different 

non-linear patterns. The red line keeps the same and then increases on low gene expression level. 

The yellow line increases and then almost remains the same on medium gene expression level. 

The blue line decreases and keep the same for a while and then decreases again on high gene 

expression level.  
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Figure 14. DNA methylation level versus CNV level for gene MRPL47 with 3 levels of gene 

expression (red for low gene expression level, yellow for medium gene expression level, and 

blue for high gene expression level). 

 

Figure 14 shows the relationship between DNA methylation and CNV given an increasing 

order of gene expression for gene MRPL47. In this figure, a “lowess” line with default setting 

suggested by R is implemented for each gene expression group. It shows different gene 

expression group exhibited differential co-expression between DNA methylation and CNV based 

on different non-linear patterns. The trends of red line and yellow line are similar based on low 

gene expression level and medium gene expression level, which decrease first and then increase. 

The trend of blue line based on high gene expression level is completely opposite to the red line 

and yellow line, which increases first and then decreases. 
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Out of 196 oncogenes or tumor suppressors related to cancers, we detected 19 genes in 

which the two variables are nonlinearly dependent given the third variable by CDC method but 

linearly independent by partial correlation method. In fact, over the past years, many of the 

existing studies have been made to point out these genes are related to multiple types of cancers 

by many researchers. To name a few, gene KRAS is one of the particular genes in these studies. It 

provides the instruction to make protein involving in signaling pathways that control cell growth, 

cell maturation and cell death [19, 9]. DNA mutation of KRAS could be found in non-small cell 

lung cancer, colorectal cancer and pancreatic cancer [19]. Molnár et al. (2018) identified the 

mutation hot-spot areas of frequently mutated gene KRAS showed DNA methylation alterations 

in colorectal cancer [18]. They also proposed the change of promoter DNA methylation could 

affect mRNA expression level in special cases. 

 The gene DIRAS3 is a protein encoding gene that is linked to breast cancer and ovarian 

cancer. Barrow et al. (2015) found DIRAS3 is one of the imprinted tumor suppressor genes that 

its aberrant frequent methylation is associated with negative hormone receptor status in invasive 

breast cancer [1]. Novak et al. (2017) found that for genes DIRAS3 and STAT3, DNA 

methyltransferase inhibitors have effect on gene expression and DNA methylation for gene 

DIRAS3 in ovarian and breast carcinomas [21]. 

 The gene MFN1 is also a protein encoding gene that could result in non-small cell lung 

carcinoma. Two major categories include lung adenocarcinoma and lung squamous cell 

carcinoma. Qiu et al. (2017) analyzed the copy number variation pattern for the two subtypes 
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with 33 signature genes including MFN1 and developed an accurate CNV classifier to 

distinguish lung adenocarcinoma from lung squamous cell carcinoma for non-small cell lung 

carcinoma [24]. 

 Based on the discussion above, we present a novel CDC test for inferring nonlinear 

conditional dependency between gene expression, DNA methylation and CNV for TCGA data in 

contrast with partial correlation method and identify a bunch of genes with nonlinear dependent 

relations that related to cancers. The figures 9-14 show clear relationships between two 

measurements given the third. For instance, the gene expression and DNA methylation of gene 

KRAS are nonlinearly conditional dependent on three levels of CNV. We are still in the process 

of detecting genes with nonlinear relationships between genetic features and expanding to 

multiple types of cancers.  
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5. SUMMARY AND FUTURE WORK 

5.1 Summary 

 In this thesis, we proposed to use a recently developed measure, namely conditional distance 

correlation to detect nonlinear dependence between gene expression, DNA methylation and CNV 

for a set of oncogenes and tumor suppressors related to ovarian cancer using TCGA data as the 

traditional partial correlation may fail to detect nonlinear dependence. To reduce the 

dimensionality and improve the efficiency of CDC test, we only consider 196 genes that have 

been reported in literature to closely related to ovarian cancer and randomly selected 80 samples 

out of 580 samples. We performed hypothesis testing based on partial correlation method and 

CDC method and found a list of 19 genes with conditionally nonlinear dependence among the 

three features. For each of the 19 genes, we divided the 580 samples into 3 groups including low 

expression group, medium expression group and high expression group and illustrated the 

nonlinear difference by some example genes. Some of the identified 19 genes have been reported 

to be associated with multiple cancer procedures (e.g. DNA mutation or protein encoding) and 

they could extend the common function to multiple types of cancers.  

  

5.2 Future Work 

In this part, we discuss some limitations of the CDC test with future perspectives. First, in 

the real data analysis, we used a random sample of size 80 for two considerations: (1) save 

computing time (2) test the robustness of CDC under a moderate sample size. To use hundreds or 
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even thousands of samples in a CDC test, we need rely on parallel computing. Second, although 

we have identified several genes with nonlinear conditional dependency among three variables 

and the results have demonstrated the CDC method is promising, a possible future direction is to 

extend the test for a single gene to a gene set or a biological pathway, in which the member 

genes share similar biological function. Biologically, it would be more interesting to test multiple 

genes together as it may provide functional insights on the underlying mechanism. In the context 

of gene set testing, the variables would be three vectors (gene expression, DNA methylation and 

CNV) for multiple genes, resulting in an integrative dataset. Moreover, CDC method could be 

applied to other problems or areas to study the conditional association between three or more 

random variables. For example, in economics, gross domestic product (GDP) is related to 

population and people’s standard of living in economic aspect. We could test conditional 

dependency for any of two variables given the third variable based on CDC method. In 

epidemiology, Zika virus spreads by mosquito and it is epidemic in Central & South America 

and the Caribbean. Tosepu (2017) have presented ambient humidity is one of the influence 

factors for Zika virus infection [33]. Tesla et al. (2018) have demonstrated the temperature is 

another strong driver leading to Zika virus transmission [31]. For the three variables (Zika virus, 

humidity and temperature), we could use CDC method to analyze whether there exists nonlinear 

conditional dependence between any two variables conditioning on the last variable. 
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