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Abstract  

 

Many maritime structures (e.g., locks, dams, ports) in the US are either reaching or are past their 

design lives, and there are limited funds for the necessary maintenance activities which can lead 

to repairs that requires closures. These structures are not easy to detour and often require 

dewatering before repairs can be made, closures can cause delays and business-related losses 

which can have a large effect on the nation’s economy. Thus, it is advantageous to reduce the 

repair time for maritime structures. BCSA (belitic calcium sulfoaluminate) cement is a promising 

material to perform this type of repair due to its properties. BCSA cement is a fast-setting 

hydraulic cement capable of reaching compressive strengths greater than 4000 psi (27.6 MPa) in 

less than 2 hours. BCSA also has low shrinkage and good long-term strengths. This research 

consisted of developing an optimal rapid-setting underwater mortar mixture design using BCSA 

cement. Properties such as compressive strength and workability were tested to choose the best 

mix design. Additionally, soil cements made with BCSA cement were compared to portland 

cement-based soil cements. These soil cements have applications for rapid repair of levees and 

earthen dams, but also for rapid soil stabilization. The results obtained prove that BCSA cement 

is feasible to rapidly perform underwater repairs and repairs of soil-based waterway structures. 

Keywords: BCSA, underwater, repair, rapid-strength development, soil-cement.  
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Introduction and Document Organization 

The purpose of this study was to examine the feasibility of using belitic calcium sulfoaluminate 

(BCSA) cement to repair waterway transportation structures. These structures are often 

constructed with concrete or soil (often stabilized with cement). Thus, the research was divided 

into two parts; developing a mortar mix design to repair concrete structures, and testing soil-

cement mixtures to perform repairs in earthen structures.  

To develop the mortar mix design certain parameters were considered, workability, self-

consolidation ability, and compressive strength. These parameters were altered by testing 

different variables in the mix designs such as w/c (water to cement ratio), s/c (sand to cement 

ratio), chemical admixture dosage and casting conditions.  

For the soil-cement mixtures, the main property tested was the compressive strength at varying 

ages. The variables that affected the compressive strength at different ages in this study were 

cement type (BCSA vs PC (portland cement)), and moisture content.  

Part 1 of this thesis describes the development of a BCSA cement mortar for underwater 

applications. Part 2 describes the development of BCSA cement and soil mixtures and compares 

their compressive strengths to soil-cement made with portland cement.  
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Part 1: Development of a BCSA Cement Mortar for Underwater Applications 

1.0 Introduction 

Part 1 of this thesis provides background information of the materials used and the existing 

guidelines to make BCSA cement mortar mixtures for underwater applications. The procedures 

used to analyze the performance of this repair material is summarized and results and the 

conclusions were provided to give guidance for future mixtures in these applications. The main 

goal of this study was to produce a self-consolidating mortar that could be placed underwater and 

that could reach 4000 psi (27.6 MPa) compressive strength in around 3 hours. 

1.1 Literature Review 

CSA (calcium sulfoaluminate) cement was first introduced in 1960s, but its use was not 

widespread until the 1970s when its popularity increased in China especially [1, 2]. One initial 

application was for self-stressing concrete pipe due to its expansion during the hydration process 

causing a chemical prestress. Belitic CSA or BCSA cement is a special variety of CSA cement 

containing a large amount of belite, reducing the early age expansion and resulting in a roughly 

neutral volume change during hydration. BCSA cement also has low porosity and permeability 

which increases its resistance to deterioration [1, 3]. All CSA based cements primarily gain 

strength through the formation of ettringite during the hydration process which also influences 

the porosity and permeability of this material [4]. The term CSA cement encompasses a variety 

of products of which BCSA is just one. Based on the composition of different varieties of CSA 

cements different benefits such as rapid strength development, high rate of expansion, fast 

hardening, or shrinkage resistance can be obtained [5, 6]. BCSA cement is a fast-setting cement 

with rapid strength development which can be used as a standalone cement, i.e., not as an 

additive to portland cement (PC). This cement can reach a compressive strength greater than 
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4000 psi within two hours, while PC may take as long as 28 days to reach the same strength. The 

rapid strength gain at the early age of the concrete is mainly attributed to the formation of 

ettringite while the development of later age strength is caused by the slower hydration of belite 

[4]. 

 BCSA cement is a more sustainable alternative to PC. It takes less energy to produce BCSA 

cement, reducing CO2 emissions by 20% to 40% [5, 7]. In addition to that, 50% of CO2 

generated during the manufacturing of PC is due to the calcination of limestone to obtain lime, 

but BCSA cement uses 40% less limestone and can be calcined at a lower temperature than PC 

[5, 7, 8]. BCSA calcination occurs at 2282 °F (1250 ºC) while PC needs a temperature of 2642 

°F (1450 ºC) [4, 8]. BCSA cement also has low alkalinity which causes this material to be less 

susceptible to chemical reactions, such as alkali-silica reaction [1]. BCSA cement has ample 

established benefits, but more research must be done to better understand its mechanical 

properties and to explore further uses of its unique abilities. This material has been underutilized 

in the USA due to a lack of research, technical barriers to its use, lower production volumes, and 

higher cost. Due to the lower demand for this cement and the high price of the raw material 

needed to produce it, BCSA cement costs around four times more than PC cement [1]. While this 

cost disparity is significant, the benefits obtained from BCSA cement may counteract its high 

cost in certain applications [1] [9]. Additionally, due to the increasing cost of energy and new 

environmental regulations it has been predicted that PC will be twice as expensive in 2030 as it 

is today [7].  

Previous research has suggested potential applications for BCSA cement that take advantage of 

its unique properties. It can be used to prevent seepage or improve concrete products such as pre-

stressed concrete members [4, 10]. BCSA cement also allows for construction in lower 
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temperatures than PC because it is a fast-setting cement with high heat of hydration. The 

research presented in this paper proposes another potential application for BCSA cement: rapid-

setting underwater repair grouts.  

 Maritime structures have an imperative role in the economy of a nation, so they must operate 

efficiently. Marine structures are often designed to have a 25-year service life, but some 

structures still in operation are over 100 years old [3]. Proper maintenance and rehabilitation 

measures are necessary to keep these maritime structures operating at their maximum capacity. 

However, structures in the USA have been poorly graded by the American Society of Civil 

Engineers (ASCE) [11]. These structures are not easy to detour, therefore major repairs cause 

delays and create business related losses affecting the national economy. Thus, it is necessary to 

reduce the repair time for these structures. BCSA seems ideal to perform these types of repairs 

due to its fast setting time and early high strength development. 

 There are different types of waterway transportation structures such as locks dams, breakwaters, 

embankments, slope protection structures, and outlet tunnels. Many of these structures are made 

of concrete, which is susceptible to cracking. These structures can crack due to chemical 

reactions, design errors, excessive loading, or weathering. For example, during cold weather, the 

water in concrete can freeze. If this happens, the volume of water increases building up internal 

hydraulic pressure and leading to cracking, spalling, or scaling of concrete which cause serious 

damage to the structure [3]. Concrete cracking can lead to additional problems such as rebar 

corrosion because the cracks expose the rebar to water. Steel corrosion also affects the 

serviceability of the structure because the tensile capacity of the steel is reduced and the bond 

between the concrete and steel is weakened. BCSA cement has a higher resistance to weathering 

problems, which can limit the necessity for future repairs in the structure if this material is used. 
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The purpose of this study is to determine whether BCSA cement can be used to perform 

underwater repairs due to its rapid setting and high early-age strength. As a starting point for 

underwater concrete using BCSA cement, a series of mortars were developed for underwater use. 

1.2 Research Significance 

BCSA cement has the potential to significantly reduce the repair time needed to restore 

waterway transportation structures. Ensuring that waterway transportation structures are well-

functioning has multiple economic and social benefits. This study proposes mixture designs for 

BCSA cement mortars which can set underwater. This study will aid in understanding how to 

proportion BCSA cement mixtures for underwater applications 

1.3 Experimental Procedures  

1.3.1 Materials 

BCSA cement was used to make the rapid setting mortars in this work. This cement is classified 

as very rapid hardening (VRH) conforming to ASTM C1600 [12]. The initial and final set times 

are 15 and 20 minutes respectively as provided by the producer per ASTM C191 [13]. It 

typically exceeds a compressive strength of 4000 psi (27.6 MPa) in less than 2 hours. The typical 

chemical composition of the BCSA cement is given in Table 1.  

Table 1. Chemical composition of BCSA cement [14] . 

Chemical Compounds Name BCSA cement % mass 

C2S Belite 45 

C4AF Ferrite 2 

C4A3Ŝ Ye’elimite 3 
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Table 1. Chemical composition of BCSA cement cont. [14] . 

Chemical Compounds Name BCSA cement % mass 

CŜ Calcium sulfate 15 

 Other 8 

 

Natural river sand with a specific gravity of 2.6 and fineness modulus of 2.5 was used. The sand 

gradation curve has been also provided (see Figure 1). The sand used to make the mortar mixture 

was passed through a No. 4 (4.75 mm) sieve to get rid of fine gravel or any other larger particles 

present in the sand. The sand was also oven dried to ensure consistent moisture content between 

batches.  

 

Figure 1. Sand Gradation Curve. Note: 1 in = 25.4 mm 

The BCSA cement hydration process leads to the rapid formation of ettringite crystals. These 

crystals are the reason BCSA cement gains high strength in a very short time. The rapid 

hydration process also leads to fast setting times which may interfere with the proper placement 
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of fresh mortar. Food grade citric acid has been proven to slow the setting time indefinitely if the 

right dosage and moisture content are available [1, 15, 16]. Thus, citric acid was used in the 

research project as a retarder. The citric acid admixture was made by mixing 5 lb (2.27 kg) of 

powdered citric acid with 1 gallon (3.78 L) of water. Research have previously shown a linear 

relationship between the citric acid dosage and initial setting time [15]. The dosage used also 

affects the difference between the initial and final setting time. As the dosage is increased the 

difference between the initial and final setting time increases. Citric acid also affects other 

properties such as the viscosity of the mix as well as the internal reaction temperature [15]. The 

mortar flow, a measurement of viscosity, can increase if higher citric acid dosages are employed. 

On the contrary, the relationship between the retarder dosage and the temperature is inversely 

proportional caused by the deceleration of the reaction which decreases the internal heat 

produced during hydration. The citric acid dosage also has a minor impact on the compressive 

strength, and this can be related to the change in temperature. High temperatures during curing 

causes higher early-age strength while low temperatures cause higher late strength which is also 

related to the rate of hydration and the formation of the reaction products [1, 16]. Another factor 

that affects the rate of the reaction is the water temperature, for example hot water can work as a 

catalyzer during hydration. Since BCSA cement uses more water than PC to hydrate, enough 

water should be available to avoid self-desiccation for the reaction to occur [5]. A 

polycarboxylate based high range water reducer (HRWR) was used to develop adequate 

workability and mortar flow. A viscosity modifying admixture (VMA) was also used. The use of 

a VMA results in an anti-washout mortar that can be used for underwater applications. The VMA 

improves mortar cohesion, reduces segregation, and allows self-consolidation. VMAs are 

beneficial for environmental reasons in this application because they can reduce water pollution 



8 

 

caused by materials separation (washed-out products) when mortar or concrete is placed 

underwater [17, 18, 19]. 

1.3.2 Mixture Proportions: 

Five different water to cement ratios (w/c) were used to determine the effect on compressive 

strength. Currently, there is little published work showing the relationship between w/c and 

strength for BCSA cement mixtures. Two different casting conditions were compared: dry and 

wet (underwater). Next, the sand to cement ratio (s/c) was changed at the same five water to 

cement ratios to demonstrate the influence of the s/c on the compressive strength and flow. 

Admixture dosages of 20 fl. oz/cwt (1304 mL/100 kg cement) each of HRWR and VMA was 

used, and the citric acid dosage was 7 fl. oz/cwt. (456 mL/100 kg cement). This dosage of citric 

acid was expected to provide approximately 35 minutes of working time. All the ingredients 

were proportioned based on the w/c and the s/c.  These values have been summarized in Table 2. 

The total volume of the mortar mixtures was 0.20 ft3 (5663 cm3). 

              Table 2. Mix designs summary. 
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0.44 

1.00 10.26 10.26 0.1246 0.0436 0.1246 4.35 

1.25 9.42 11.78 0.1145 0.0401 0.1145 4.07 

1.50 8.82 13.24 0.1071 0.0375 0.1071 3.74 

 

0.42 

1.00 10.44 10.44 0.1268 0.0444 0.1268 4.21 

1.25 9.57 11.97 0.1163 0.0407 0.1163 3.95 

1.50 8.96 13.43 0.1088 0.0381 0.1088 3.61 

 

0.40 

1.00 10.63 10.63 0.1291 0.0452 0.1291 4.08 

1.25 9.73 12.16 0.1182 0.0414 0.1182 3.82 

1.50 9.09 13.64 0.1104 0.0386 0.1104 3.49 
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Table 2. Mix designs summary cont. 
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0.36 

1.00 11.03 11.03 0.1340 0.0469 0.1340 3.79 

1.25 10.07 12.57 0.1223 0.0428 0.1223 3.55 

1.50 9.38 14.07 0.1139 0.0399 0.1139 3.22 

 

0.34 

1.00 11.24 11.24 0.1364 0.0478 0.1364 3.64 

1.25 10.24 12.79 0.1244 0.0435 0.1244 3.40 

1.50 9.53 14.3 0.1158 0.0405 0.1158 3.08 

           Note. 1 kg =2.2 lb; 1kg= 1000 g 

1.3.3 Specimen Preparation and Testing 

Once all the materials were weighed, the liquid ingredients were mixed (water, citric acid, 

HRWR, and VMA). According to ASTM C305-14 [20], an electric powered paddle mixer was 

used. The cement was added next and these ingredients were mixed at a low speed for 30 

seconds. The sand was then added gradually over 30 seconds without stopping the mixer. The 

mixer was stopped, and the speed was changed to medium for 30 seconds. After this, the mixer 

was stopped again to scrape any dry material off the sides and the bottom of the mixer. Then, the 

mixer ran for one minute at medium speed until a homogenous mixture was obtained. The mortar 

was left sitting in the mixer for 3 minutes while a mortar flow test was run according to ASTM 

C1437-15 [21]. The flow was later calculated as the percent increase of the original mortar 

diameter. After the flow test was done, 24 mortar cubes [2 in. (50.8 mm)] were made per ASTM 

C109/C109 M16-a [22]. This ASTM requires compaction of the material in two layers using a 

plastic rod, but for this research application self-consolidated mortar was needed, so the ASTM 

C109/C109 M16-a was modified. The self-consolidation of the mix was achieved by using a 

plastic funnel and letting the mortar flow freely into the mold during casting. Twelve mortar 



10 

 

cubes were poured under dry conditions, and the other twelve were poured into molds that were 

entirely submerged underwater (see Figure 2). Once all the specimens were cast, the excess 

material from the top was removed using a plastic rod to create a smooth surface. After that, they 

were moved and stored in an environmental chamber at 70°F (21.1 °C) and 50% relative 

humidity. The underwater samples remained submerged inside the environmental chamber. It 

typically took 2 to 2.5 hours for the mortar cubes to set. Setting time was not measured, the 

demolding time was selected qualitatively by observing the surface condition of the cubes and 

pressing on them gently with a gloved finger. They were then taken out of their molds and placed 

in a water tank in the environmental chamber for curing. A lime bath was not used since lime 

water can degrade the strength of BCSA cement mixtures. The compressive strength of the 

specimens was measured at 3 hours, 1 day, 7 days and 28 days.  Three cubes were tested and 

averaged to obtain the compressive strength at each age.   

 

Figure 2. Fresh mortar specimen casting set-up. 

1.4 Results and Discussion. 

1.4.1 Physical Appearance  

The physical appearance of the specimens was influenced by the w/c and the s/c ratio. Samples 

with a higher w/c showed smooth surfaces in comparison to those with a lower w/c whenever the 

s/c was constant. There was also physical difference between samples cast underwater and those 

cast in a dry surface. The cubes cast underwater showed more voids that those cast in a dry 
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condition. The size of the voids increased as the w/c was decreased (see Figure 3).  When 

samples using different s/c ratios were compared at the same w/c, there was a difference in the 

surface appearance of the samples which can be explained in terms of the flow. Higher flow 

usually leads to smoother surfaces. Thus, samples with higher sand content had a lower flow 

which caused the specimens to have rough surfaces.  

 

Figure 3. Mortar cubes using different w/c and 1.25 s/c. (A) dry sample using a 0.42 w/c; (B) wet 

sample using a 0.42 w/c; (C) dry sample using a 0.36 w/c; (D) wet sample using a 0.36 w/c. 

1.4.2 Mortar Flow  

The flow was measured using five different w/c and three different s/c.  These two parameters 

affect the cement content of the mix design. The VMA and HRWR dosages was influenced by 

the cement content. Lower sand to cement ratios required higher cement content and having 

higher cement content resulted in higher VMA dosages. VMA has been shown to reduce the 

flow. A slightly difference in the mortar flow for the samples using w/c (0.42, 0.40, 0.36, and 

0.34) was observed (see Figure 4). This can be attribute to the viscosity modifier dosage 

counteracting the effect of the lower s/c. On the other hand, the addition of HRWR increases the 

mortar flow.  
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Figure 4. Mortar flow percent using different s/c and w/c. 

High flow was necessary to facilitate self-consolidation of the samples, however higher flows 

may promote washout in underwater applications. VMA was used in all mixtures to prevent 

washout. VMA has been shown to affect flow, so addition or subtraction of VMA from the 

mixture is another variable to be considered when attempting to maximize mortar flow. There 

was a roughly linear relationship between the VMA dosages and the mortar flow. As the VMA 

dosage increased the mortar flow decreased. However, higher s/c required lower VMA dosages 

to reach similar mortar flows as those with lower s/c (see Figure 5). 

 

Figure 5. Relationship between the mortar flow and the VMA dosages. Note: 1kg =2.2 lb;1kg= 

1000 g 
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1.4.3 Compressive strength  

The compressive strength was affected by different factors: w/c, s/c, mortar flow and the casting 

conditions. The research mainly focused on the early age compressive strength rather than the 

28-day compressive strength because it is anticipated that BCSA would only be used if high 

early strengths were desired (Table 3).  

    Table 3. Average compressive strengths in psi measure at 3 hours.  

s/c 1 1.25 1.50 

w/c Dry  Wet  Dry  Wet  Dry  Wet 

0.44 5350 3990 4810 3660 4440 2750 

0.42 5640 2480 5470 4290 5350 3580 

0.40 7030 3020 6470 3670 5930 2130 

0.36 3360 1510 6900 4160 3930 1500 

0.34 4310 2230 6290 2040 4140 1530 

    Note: 1000 psi = 6.89 MPa 

A compressive strength target of 4000 psi (27.6 MPa) at 3 hours after casting was selected since 

this was considered a likely goal for rapid structural repairs. Almost all the dry specimens using 

a 1.0 s/c achieved compressive strengths higher than 4000 psi  (27.6 MPa) within 3 hours, but 

none of the wet specimens did. The highest compressive strength achieved by the wet specimens 

was 3990 (27.5 MPa) psi using a 0.44 w/c. This sample had the highest mortar flow which 

facilitated self-consolidation of the sample and decreased the number and size of voids which 

may have resulted in a higher compressive strength. The dry compressive strength at the 0.44 w/c 

was 5350 psi (36.9 MPa). If the compressive strength for the dry and wet specimens are 

compared, there was a 25% difference between these two values. The highest overall 
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compressive strength for the dry samples was 7030 psi (48.5 MPa) at a 0.40 w/c (see Figure 6, 

Figure 7).  

 

Figure 6. Compressive strength of dry specimens using 1.0 s/c. Note: 1000 psi = 6.89 MPa 

 

 

Figure 7. Compressive strength of wet specimens using 1.00 s/c. Note: 1000 psi = 6.89 MPa 

The compressive strengths for all dry samples were higher than 4000 psi (27.6 MPa) within 3 

hours for specimens using 1.25 s/c (Figure 8). The highest dry compressive strength was 6900 
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psi (47.6 MPa) using 0.36 w/c. The highest compressive strength for the wet specimen was 4290 

psi (29.58 MPa) using a 0.42 w/c (Figure 9). The dry compressive strength using a 0.42 w/c was 

5470 psi (37.7 MPa). If the dry and wet compressive strength using a 0.42 w/c are compared, a 

23% difference was observed. 

 

Figure 8. Compressive strength of dry specimens using 1.25 s/c. Note: 1000 psi = 6.89 MPa 

 

 

Figure 9. Compressive strength of wet specimens using 1.25 s/c. Note: 1000 psi = 6.89 MPa 
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 Samples using a 1.50 s/c also achieved strengths greater than 4000 psi (27.6 MPa) at 3 hours of 

age when samples were cast in a dry condition, but none of the wet specimens reached a 

compressive strength greater than 4000 psi (27.6 MPa).The highest compressive strength was 

5930 psi (40.9 MPa) using a dry cast condition and 0.40 w/c (see Figure 10). Specimens with 

lower w/c (0.34, 0.36) did not achieve the highest dry compressive strengths due to poor flow. 

The highest compressive strength for the wet specimens using was 3580 psi (24.7 MPa) using a 

0.42 w/c (see Figure 11). If the dry and wet specimens are compared using a 0.42 w/c and 1.50 

s/c, there is 33% difference since the compressive strength for the dry sample is 5350 psi (36.9 

MPa). All the values summarized were obtained at 3 hours. For this type of application based on 

the compressive strength, mortar flow and physical appearance, the recommended mix design for 

underwater use was a 0.42 w/c and 1.25 s/c.   

 

Figure 10. Compressive strength of dry specimens using 1.5 s/c. Note: 1000 psi = 6.89 MPa 
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Figure 11. Compressive strength of wet specimens using 1.5 s/c. Note: 1000 psi = 6.89 MPa 

1.5 Conclusions  

The goal of this study was to proportion a mortar mixture using BCSA cement suitable for 

underwater use. The mixture was intended to achieve a compressive strength of 4000 psi (27.6 

MPa) within 3 hours when placed underwater while being self-consolidating. Mortar flow was 

measured as well as compressive strength for “dry” and “wet” specimens (wet being cast 

underwater). Conclusions from the work are as follows: 

1. Mortar flow affected the physical appearance of the specimen. Lower mortar flow created 

a rough surface in the mortar specimens and resulted in more voids and lower strength. 

This could primarily be controlled by using a lower s/c. High mortar flow improved the 

specimen self-consolidation which also affect the compressive strength. 

2. The casting conditions also affected the physical appearance of the samples.  

3. Casting samples underwater reduced the maximum compressive strength by 23% to 33% 

when tested at 3 hours. Compressive strengths were consistently lower for samples cast 
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underwater, but it was possible to reach 4000 psi (27.6 MPa) in 3 hours for many of the 

mixtures tested. 

4. High VMA and HRWR dosages were needed when using low s/c to improve workability 

and consistency.  

5. More research should be conducted to further understand the relationship between s/c and 

compressive strength for this type of application.  

Part 2: Development of a BCSA Soil-Cement Mixture 

2.0 Introduction 

This part of the study consisted of making a soil-cement mixture using two types of binder (PC 

and BCSA). Uniaxial unconfined compressive strength tests were conducted to determine the 

feasibility of this material for soil stabilization and investigate the strength gain potential. 

Existing studies on soil-cement have mostly used PC, but BCSA is a promising alternative to 

replace PC, especially for applications where rapid strength gain is desired. Soil-cement made 

with BCSA can be either used to repair existing structures or allow fast construction of new 

ones. In general, adding cement to soil increases the load-bearing capacity of the soil. Soil-

cement is a durable, economical material with low permeability.  

This study describes the different applications of soil-cement, and highlights the guidelines used 

to cast soil-cement specimens for lab testing. Soil-cements have been used in water resources 

applications, pavement applications and deep soil mixing. This study provides information on the 

early strength gain of BCSA soil-cement that can be applied to all these different applications.  
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The results presented in this part of the thesis include observations on the physical appearance of 

the soil-cement specimens, stress-strain mechanism, failure strain and maximum compressive 

strength.  

2.1 Literature Review  

Soil cement can be defined as a mixture of soil, cementitious materials, water, and other 

pozzolanic admixtures. These materials are compacted and cured to meet specific engineering 

requirements. Soil-cement is considered an economical material since it can be prepared in-situ 

with existing soils.  The cement content, soil type, moisture content, and compaction effort are 

the main factors that affect the soil-cement properties and characteristics [23]. Standardized tests 

are conducted to determine the moisture content needed for compaction of the sample as well as 

to ensure adequate cement hydration.   

The ideal soils for making soil-cement are granular soils since they can be improved using lower 

cement contents. Sandy materials with low fines contents can be also used to make soil-cement, 

but this material will require more cement than granular soils. Clayey and silty soil can also be 

improved by adding cement, but the cement content needed would depend upon the pulverization 

of the soil [23, 24, 25].  

The curing method used for soil-cement will mainly depend on the desirable application of the 

material [23, 24, 25]  

2.1.1 Different applications of Soil-cement.  

Soil-cement has been used for different applications including erosion reduction, pavement 

subgrades, and deep mixing for foundations. Soil-cement is a strong, cost effective, and durable 
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material. The ubiquitous nature of cementitious materials reduces the extra cost tied to long-

distance hauling of stronger soils to a site and soils can easily be improved in-place with cement. 

2.1.2 Erosion Related Applications 

 For erosion related applications, another control alternative includes the use of riprap (i.e., 

boulders, cobbles, and gravels placed along an embankment) which protects shorelines against 

high-impact waves and weathering. However, the type of rock used for riprap can be unavailable 

at locations where slope protection work is needed resulting in higher costs. After War World II, 

many water resources projects were carried out around the US; however, the economic feasibility 

of using riprap as the main slope protection method was debatable. This motivated the U.S. 

Bureau of Reclamation to start researching new sustainable alternatives such as soil-cement. In 

1951 the U. S Bureau of Reclamation started testing soil-cement samples using sandy soils, and 

they concluded that this material was erosion resistant. The initial application of soil-cement was 

slope protection, but it later expanded into streambank stabilization, channel application, and 

pond linings [24].  

Soil-cement for streambank protection is used to prevent lateral or overtopping erosion in places 

where there is a high risk of flooding. A natural disaster such as flooding can result in significant 

property losses. Each year more structures in the US are damaged by flood events. The number 

of extreme precipitation events has increased by 9% from 1958 to 2012 [26]. The definition of 

extreme varies based on location, season, and precipitation historical record. Earthen levees have 

been directly affected by the increase of extreme precipitations events and flooding. In fact, a 

research study conducted on the California levees system suggested that more that 25% of levees 

have failed in the past 155 years due to various conditions including flood events [26]. Certain 

factors causing levee failures include slope stability problems, overtopping erosion, internal 
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erosion, and seepage. A study conducted by the Army Corps of Engineers recommended the 

used of the stair-step method in conjunction with the plating method for levee rehabilitation. The 

combination of both methods was suggested not only to reduce the cost, but also to prevent a 

new failure caused by underseepage or overtopping erosion [27]. Protective armoring of the 

levee surface either through vegetation or another material has been shown to drastically reduce 

the failures due to overtopping erosion. Soil-cement mixtures could be used for this type of 

armoring or as a rapid patch material after a damaging event. 

Soil-cement can be also used for channel coating. This application first started in 1943 when the 

hydraulics laboratory at Oklahoma State University tested an open flume using a soil-cement 

mixture as lining. The soil-cement mix consisted of 60% sand, 40% clay, and 8% cement. This 

flume was tested for 6 days using a constant water rate of 150 ft3/s (4.25 m3/s) with a velocity of 

28 ft/s (8.6 m/s). The use of soil-cement resulted in minimized water losses and erosion 

protection for the flume. Soil-cement has lower permeability reducing the change in water depth 

or water losses due to seepage. This property also allows soil-cement to be used for pond lining 

applications [24].  

The cement content recommended for slope protection is given by AASHTO (American 

Association of State Highway and Transportation Officials) (Table 4). Higher cement contents 

than those used in pavement applications are recommended because the soil-cement used in 

erosion related applications is exposed to more extreme environmental conditions. The U.S 

Bureau of Reclamation recommends the use of soils with a maximum plasticity index (PI) of 8%. 

Additionally, minimum compressive strength requirements should be met based on the desired 

application (Table 5). Before conducting the compressive strength test, the soil-cement specimen 

must be cured at 100% humidity and placed underwater for 4 hours [24]. 
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Table 4. Normal range of cement content for soil-cement slope protection based on AASHTO 

classification [24] . 

AASHTO soil group % by volume of soil % by weight of dry soil 

A-1-a 7-9 5-7 

A-1-b 9-11 7-10 

A-2-4 9-12 7-11 

A-2-5 9-12 7-11 

A-2-6 9-12 7-11 

A-2-7 9-12 7-11 

A-3 10-14 9-13 

 

Table 5. Minimum compressive strength requirements at 7 days for different water resources 

applications [24] .  

Application Compressive strength at 7 days (psi) 

Liners 500 

Soil embankment protection 600 

Grade control 1000 

Spillways 2000 

Note: 1000 psi = 6.89 MPa 

Another superseded application of soil-cement includes the construction of dams using this 

material. Two examples of this are: The Sly Creek Dam and the Barney M. Davis Reservoir 

embankment [28]. 
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2.1.3 Pavement Applications  

For pavement applications, soil-cement can be generated using different types of soil (sand, clay, 

silt, etc), crushed stone, and recycled materials including old roadways. This last method is 

known as full-depth reclamation [23]. This process consists of compacting the pulverized 

recycled roadway, cement, and water to build a strong long-lasting base for the new roadway. 

Soil-cement can be classified as cement-treated base or cement-modified soil. Cement treated 

based improves the pavement subgrade by mixing coarse aggregates or granular soils with 

cement and water. This material should be hardened to be able to resist material loss due freezing 

and thawing cycles and different weather conditions. On the other hand, cement-modified soil 

does not have to harden. It is the result of mixing soil materials with small quantities of cement 

and water to increase its load-bearing capacity and reduce its plasticity [25]. The physical 

properties of soil-cement can be modified by changing the type of soil used, cement content, and 

curing conditions. Soil-cement specimens for cement-treated base applications are cured 

underwater. The 28-day compressive strength of the saturated specimens is usually specified 

between 300 (2.06 MPa) and 800 psi (5.5 MPa)  [23].  Some core samples have been taken from 

roads after being in service for many years. These cores have shown a compressive strength 

increase. Thus, the cement in the mixture continues to hydrate for many years after placement. 

Granular soils are preferred over clay when selecting a soil for the soil-cement mixture. Clay will 

require higher cement content to obtain the degree of improvement desired. AASHTO provides a 

table with normal rage of cement content (as a percentage) required based on the soil 

classification (Table 6). For cement modified soils, the soil classification given by AASHTO is 

limited to A-1, A-2-4, A-2-5, and A-3 [25]. Curing is not required for cement-modified soils but 
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using a water sprayer to add some moisture over the soil surface is recommended. This 

contributes to the hydration of the cement. 

Table 6. Normal range of cement content for soil-cement pavement application based on 

AASHTO classification [23] . 

AASHTO Soil 

Group 

Cement 

percentage by 

weight of soil 

A-1-a 3-5 

A-1-b 5-8 

A-2-4 5-9 

A-2-5 5-9 

A-2-6 5-9 

A-2-7 5-9 

A-3 7-11 

A-4 7-12 

A-5 8-13 

A-6 9-15 

A-7 10-16 

2.1.4 Deep Soil Mixing  

Deep soil mixing is a method used to improve the mechanical and physical characteristics of an 

in-place soil to meet the project site specifications. By adding a binder (i.e., cement) to the native 

soil, the compressive strength is increased, and the permeability reduced. However, to use this 

method for soil improvement, specialized equipment is needed. Deep soil mixing can be carried 

out using a cement slurry and adding this to the soil which is also known as wet mixing or by 

adding the dry cement to the soil directly (known as dry mixing). Factors used to determine the 
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type of deep mixing needed include the soil type and moisture content. Soft soils with higher 

moisture contents allow for the use of dry deep soil mixing [29].  

Current guidelines for the aforementioned soil-cement applications are based on the use of PC 

type I/II as a binder material. Using a different binder material will require changes to the current 

guidelines to meet design specifications such as compressive strength. Another cementitious 

alternative for soil-cement is BCSA cement (belitic calcium sulfoaluminate cement). This 

material has properties that could be beneficial for soil-cement applications. BCSA cement can 

achieve a high compressive strength at early age [4000 psi (27.6 MPa) in less than 2 hours] [4]. 

This material is also fast setting which can shorten the overall duration of a project and allow fast 

structural repairs after natural hazards. Additionally, the production of BCSA cement releases 

less CO2 into the atmosphere, making this material an environmentally friendly alternative [2, 8]. 

Lower shrinkage also makes BCSA a good alternative to PC in many applications. Theoretically, 

BCSA could be utilized in all the same applications as PC soil-cement but would result in faster 

construction times which would be ideal for repairs or time-critical work.  

The purpose of the study was to compare the ultimate compressive strengths of soil-cement using 

two different binders: BCSA, and PC. Specifically, the early strength gain was examined in order 

to explore the potential benefits of BCSA soil-cement mixtures. Cement-modified specimens 

were made at two different moisture content, and their compressive strengths were tested after 

different curing times. Dry soil-cement mixing was used to determine the impact of the soil 

moisture content in the strength development of the sample.  
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2.2 Research Significance  

Current guidelines for proportioning soil-cement are based on PC. BCSA cement is an 

alternative to PC with faster setting times, faster strength gain, and low shrinkage. For these 

reasons it may be an ideal solution for repairing soil-cement structures (especially waterway 

structures) or for use in time-critical projects requiring soil stabilization. This study compared the 

properties of PC and BCSA soil-cement to make recommendations on proportioning soil-

cements using BCSA cement.  

2.3 Experimental Procedures  

2.3.1 Materials 

The soil for the soil-cement specimens was comprised of two types of commercially available 

soils: a lean clay typically used for pottery known as red art clay and basic sand known as play 

sand available at most improvement stores. The gradation curve of the sand is given in Figure 

12. The sand was oven-dried before any material testing was conducted to ensure equal moisture 

content for all the specimens.   

 

Figure 12. Gradation curve of the play sand. Note: 1 in =25.4 mm 
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The mixture consisted of 30% clay and 70% sand which gave a liquid limit (LL) of 22, plastic 

limit (PL) of 12 and plasticity index (PI) of 10. The soil classified as an A-2-4 according to the 

AASHTO classification system and as a clayey sand (SC) according to the Unified soil 

classification system (USCS). In this study, 6% cement by weight of soil was used which is 

within the AASHTO recommended range of 5-9% when A-2-4 soil is used for cement modified 

soil applications (Table 6) [23]. Increasing the cement content can improve the mechanical 

properties of the soil-cement mixture if enough water is available to allow complete hydration of 

cement; otherwise, a lack of water can be detrimental for the mechanical properties. This must be 

balanced against the cost of cement, which is increased for BCSA cement compared to PC [1]. 

The same quantity of cement was used for the soil-cements in this study whether it contained PC 

or BCSA cement. The effects of increased cement content were outside of the scope of this 

study, but it is recommended for future studies where soil erodibility is considered in addition to 

compressive strength. The typical compositions of the cements used in this study are given in 

Table 7. The soil-cement mixtures were tested at water contents of 7.5 % and 10 % to examine 

the effects of added moisture on strength and cement hydration.   

Table 7. Chemical composition of cement by % mass [14] . 

Chemical Compound Name PC BCSA cement 

C3S Alite 59 - 

C2S Belite 17 45 

C3A Aluminate 7 - 

C4AF Ferrite 9 2 

C4A3Ŝ Ye’elimite - 30 

CŜ Calcium Sulfate 2 15 

Other  6 8 
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2.3.2 Procedures 

2.3.2.1 Sample preparation and compaction:  

Preliminary research was carried out to determine the maximum dry density and optimum 

moisture content of the soil. 2.5 lb (1155 g) of sand was mixed with 1.09 lb (495 g) of clay while 

varying the moisture content (MC) to determine the optimum water content. The water weight 

for the soil mixture was calculated by multiplying the total weight of the soil by the MC. An 

electric mixer was used to mix the clay, sand, and water. The dry ingredients were added first 

and mixed at a low speed for 1 minute. Once all the sand and clay were combined, the water was 

added and mixed at a medium speed for another minute. The soil samples were then bagged, 

sealed, labeled, and placed in a seal container where they remained for 24 hours. After 24-hours, 

the specimens were compacted. ASTM D698 [30] guidance was followed to compact the 

sample, but this test was modified by using a smaller proctor mold of 37.2 in3 (610 cm3) instead 

of the standard mold. To ensure that the energy delivered to the sample followed the standard 

laboratory compaction effort prescribed by the test method, the number of blows was 

recalculated and adjusted based on the volume of the mold (Equation 1). 

𝐸 =
(𝐻𝑎𝑚𝑚𝑒𝑟 𝑊𝑒𝑖𝑔ℎ𝑡) × (𝐷𝑟𝑜𝑝 𝐻𝑒𝑖𝑔ℎ𝑡) × (#𝐵𝑙𝑜𝑤𝑠) × (#𝐿𝑎𝑦𝑒𝑟𝑠)

𝑉
    (1)   

Where, E stands for compaction effort and V volume. The value for the standard test compaction 

effort, E, is 12400 lb.* ft/ ft 3(600 kN-m/m3). 

 The soil mixture was placed in three equal layers by volume, and 16 blows per layer were 

delivered to compact the soil specimen. The moisture content of the soil specimen was determine 

following the procedures in ASTM D2216-19 [31]. The compaction curve obtained is given in 

Figure 13. The optimum moisture content of the soil mixture was 8.8%.  
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Figure 13. Compaction curve of the soil mixture. Note: 1 kN/ m3 = 6.3659 lb/ ft 3 

 Two water contents were chosen to perform soil-cement testing. One moisture content was dry 

of optimum (7.5%) and the other one was wet of optimum (10%).   These two water contents 

were used for each cement type. The moisture content for the soil-cement specimen was 

calculated using the weight of the soil plus the weight of the cement as the total dry weight of the 

specimen. This resulted in 3.64 lb (1650 g) of soil for each soil-cement specimen and 6% of 

cement by dry weight of the soil resulted in 0.218 lb (99 g) of cement. 

Once the optimum moisture content of the soil mixture was determined and two target moisture 

contents selected, the soil cement samples were made. The soil portion of the mixtures were 

prepared a day before the specimens were compacted following the same procedures used to 

determine the optimum water content. The  moist soil and the cement (either PC or BCSA) were 

mixed at a medium speed for 50 seconds and then compacted in accordance with ASTM D698 

[30]. All samples were demolded after 30 minutes, and then they were stored in an insulated 

foam cooler with exception of the 30-minute compressive strength samples. The unconfined 

compression test of these samples was performed immediately. The uniaxial unconfined 

compression of all specimens was conducted in accordance with ASTM D1633-17 method B 
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[32]. To cure the samples and promote cement hydration, a plastic container with water was also 

placed inside the cooler to increase ambient moisture in the cooler (see Figure 14).  

 

Figure 14. Curing of the soil-cement specimens 

The soil-cement specimens were tested in unconfined compression to failure at 30 minutes, 1 

hour, 3 hours, 1 day, and 7 days. BCSA cement is anticipated to be used only when very early 

strength is desired, so later age strengths were not examined. Three soil-cement samples were 

used to compute the average maximum axial compressive strength for each condition tested 

resulting in a total of 60 soil-cement specimens. Additionally, two control groups without cement 

were tested for both moisture contents (7.5% and 10%) (six additional samples). The table below 

summarizes the designations and corresponding mix details (Table 8). These groups are: 0% CC 

at 7.5% MC, 0% CC at 10%, 6% BCSA at 7.5% MC, 6% BCSA at 10% MC, 6% PC at 7.5% 

MC and 6% PC at 10% MC, where CC stands for cement content and MC moisture content. 
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           Table 8. Mix design classification for the soil-cement mixtures  

MC 7.5% 7.5% 7.5% 10% 10% 10% 

Cement Content (%) 0 6 6 0 6 6 

Cement Type - BCSA PC - BCSA PC 

 

2.3.2.2 Uniaxial Unconfined Compressive Strength 

Uniaxial unconfined compression (UC) strength testing was performed on all samples to 

determine the ultimate strength of the material and the strain corresponding to the peak stress. 

The UC test was conducted using a universal load frame which was connected to an automated 

testing system (see Figure 15). 

 

Figure 15. Set-up for a uniaxial unconfined compressive strength test. 

The system recorded the load-deformation relationship of the specimen while sheared at a 

constant strain rate of 1.0%/ min. The maximum unconfined compressive strength was defined 

as the peak stress observed for a given specimen. At the peak stress, the corresponding strain 
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value is considered the failure strain. After the failure strain occurred, the stress tended to 

decrease as more strain was applied and exhibited a strain-softening behavior.  

2.4 Results and Discussion 

2.4.1 Visual Description of Specimens  

2.4.1.1 Soil-cement specimens at 7.5% MC 

 The main observed difference at early age was that specimens using PC appeared moister than 

the specimens using BCSA even though the water contents were the same (see Figure 16). This 

difference can likely be attributed to the higher water demand BCSA cement has in comparison 

to PC and the difference in setting time [5] Some color change was observed after one day and  

seven days especially in areas where the cement content was perhaps more concentrated (see 

Figure 17). 

 

Figure 16. Comparison of soil-cement specimen using different binders tested at 1 hour. (A)PC 

soil-cement specimen; (B) BCSA soil-cement specimen 
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Figure 17. Comparison of soil-cement specimen using different binders tested at 7 days. (A) PC 

soil-cement specimen; (B) BCSA soil-cement specimen 

2.4.1.2 Soil-cement specimen at 10% MC 

The specimens using a higher moisture content had a brighter red color due to the high saturation 

of the clay. Visual differences were observed when comparing the BCSA and PC specimens (see 

Figure18). The PC blended with the soil evenly, leaving only small sections of the soil-cement 

with a dark grey color while the white from the BCSA cement was seen more prominently in the 

surfaces of the specimens. This could be due to the original color differences of the binders used 

since BCSA is lighter in color than PC or this could be a sign that PC was being hydrated more 

completely while BCSA cement was not. At one day and seven days the specimen using BCSA 

turned a lighter red color, but the PC specimens kept the bright red color observed when they 

were cast (see Figure 19). Referring to Figure 19, BCSA specimens appeared less moist at later 

ages, perhaps because more of the available moisture was recruited for cement hydration. It is 

possible that higher MC is required when using BCSA since it may require more water to 

hydrate. 
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Figure 18. Visual difference of samples using both binders at 10% MC. (A) PC specimen; (B) 

BCSA specimen. 

 

 

Figure 19. Visual difference between specimens using both binders at 1 day. (A) PC specimen; 

(B) BCSA specimen. 
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2.4.2 Failure Mechanism in UC 

2.4.2.1 Soil-cement 

Most soil-cement samples failed in shear (Figure 20). Generally, cracks started forming at the 

bottom of the specimens, then propagated to the top of the sample. The failure mode of the soil-

cement specimens using a 7.5% MC were more brittle in comparison to those at 10 % MC.  

 

Figure 20. Failure mechanism for soil cement specimens tested at 3 hours. (A) BCSA at 7.5% 

MC; (B) PC at 7.5% MC ;(C) BCSA at 10% MC; (D) PC at 10% MC. 

2.4.2.2 Control Group  

The soil samples using 7.5% MC failed in shear, and no significant change in height was noticed 

after the UC was completed. For the control group using 10% MC, the samples plastically 

deformed before failing in shear (Figure 21).  

 

Figure 21. Failure mechanism of the control group using 10% MC 
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2.4.3 Strain-Stress Relationship 

The strain-stress relationship was dependent on binder type, curing time and moisture content. 

2.4.3.1 Soil-Cement at 7.5% MC, 1 hour 

The early age failure strain of the 7.5% MC sample using BCSA was approximately 0.7%-0.8% 

(see Figure 22). The PC curve had a strain at peak of approximately 1%.The strain-stress curve 

of the specimens using PC appeared flatter (i.e., less strain-softening) than the BCSA curve. The 

higher strain-softening of the BCSA curve could be due to the BCSA beginning to form cement 

reaction products earlier than PC. The peak stress applied to the BCSA soil-cement samples was 

131 psi (0.90 MPa) on average at one hour compared to only 50 psi (0.34 MPa) for the PC 

samples. This illustrates the rapid hardening of BCSA and highlights the potential to reach 

specified strengths very quickly using BCSA. The PC strengths at 1 hour were similar to the 

control group. 

 

Figure 22. Strain-stress relationship measure at 1 hour using BCSA cement at 7.5% MC.  

Note: 1000 psi = 6.89 MPa 
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Figure 23. Strain-stress relationship measure at 1 hour using PC cement at 7.5% MC.  

Note: 1000 psi = 6.89 MPa 

2.4.3.2 Soil-Cement at 10 % MC, 1 hour 

Similarly, the PC curve at 10% MC seemed flatter than the BCSA. The strain at peak was 

approximately 2% for the BCSA specimens while it was approximately 4% for the PC samples 

(see Figures 24-25).The specimens using a BCSA cement underwent low deformations before 

failing at early age (1 hr) in comparison to PC. These values are higher than the strain percent 

obtained at 7.5% MC. However, the percent difference between PC samples is higher than the 

BCSA if the peak values obtained at 10% MC are compared to those at 7.5%. Overall, the soil-

cement specimens using a higher moisture content (10%) had a higher strain at failure in 

comparison to those using 7.5%.The strengths of the 10% MC specimens containing BCSA 

cement was 97 psi (0.67 MPa) on average compared to 33 psi (0.22 MPa) for the PC samples. 
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Figure 24. Strain-stress relationship measure at 1 hour using BCSA cement at 10% MC.  

Note: 1000 psi = 6.89 MPa 

 

Figure 25. Strain-stress relationship measure at 1 hour using PC cement at 10% MC.  

Note: 1000 psi = 6.89 MPa. 

2.4.3.3 Control Group, 1 hour  

The stress-strain relationship for 10% MC control samples resulted in the highest strain at peak 

of all groups tested. This value is about 15% of the specimen height (Figure 26). This curve can 

be also described as a strain hardening curve and is typical for a softer clayey soil. The strain at 

peak  for the control group at 7.5% is about 3% which is higher than the soil-cement specimens 
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tested at the same time using either (PC or BCSA) (see Figure 26). The peak compressive 

strengths of the unmodified samples were 33 psi (0.22 MPa) and 20 psi (0.13 MPa) on average 

for 7.5% and 10%, respectively. At 1 hour, the PC improved the average compressive strength 

by 156% and 165%, for 7.5% MC and 10% MC, respectively, while BCSA improved the soil 

strength by 409% and 485%, for 7.5% MC and 10% MC, respectively. 

 

Figure 26. Strain-stress relationship measure at 1 hour at 7.5% and 10% MC. Note: 1000 psi = 

6.89 MPa. 

2.4.4. Failure Strain  

2.4.4.1 7.5% MC 

The failure strain was higher for the soil-cement samples made with PC at all ages. The strain at 

failure increased for the BCSA specimens until the samples were 1 day old, and then it decreased 

at 7 days old. The PC soil-cement specimens generally kept increasing (see Figure 27).  The 

strain at peak for the control group was 3%. 
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Figure 27. Strain at peak using 7.5% MC. 

2.4.4.2 10 % MC 

The strain had an inverse relationship with time for 10% MC samples. As the time increase the 

strain at failure decreased until 1 day of age. Then the strain seems to remain constant. It is likely 

that at one day sufficient strength is provided by the cement to fundamentally change the failure 

of the specimens whether using PC or BCSA. The overall change in the strain at peak of samples 

made with BCSA is smaller than the samples made with PC. PC samples reached higher strain 

percentages at early ages, most likely because cement hydration had not occurred at a sufficient 

level to provide any soil improvement at this age. There was 42% percent difference between 

samples made with BCSA and PC. However, the gap between both strains values decreased as 

the specimens aged (Figure 28). The strain at peak for the control group was 15%, as it exhibited 

a strain-hardening behavior. 
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Figure 28. Strain at peak using 10% MC. 

2.4.5 Maximum Axial Compressive Strength  

The three maximum stress values obtained from the UC tests were averaged. These values varied 

by 3% to 25%. The variance was within the allowed variance given by the PCA (Portland 

Cement Association) guidelines for erosion control applications [24]. The increase in 

compressive strength can be attributed to cementation and soil suction. However, the soil-suction 

can affect the hydration process, and therefore cementation. The soil-suction reduces the amount 

of water available for the cement hydration process.  

2.4.5.1 7.5 % MC 

The comparison between the control groups’ strengths and the soil-cement specimens’ strengths 

shows the improvement in strength due to the addition of cement to the system. Increases in 

specimen strengths were observed for PC and BCSA specimens compared to soil-only. The 

samples using BCSA developed high early strength faster than the specimens using PC, but 

increases in strength were noticed for PC specimens after one-day of age. The average BCSA 

strength at 30 minutes was 93 psi (0.64 MPa) while the strength for the PC specimens tested at 

the same time was 40 psi (0.28 MPa). The BCSA strength was 56% higher than the PC at 1 day. 
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The 7-day strength for the PC specimens was 256 psi (1.76 MPa) on average while the average 

BCSA strengths were 240 psi (1.65 MPa). At seven days the PC specimen strength was 6% 

greater than the BCSA specimens. The control group strength was 33 psi (0.23 MPa), thus; if the 

7-days strength is compared to the PC and BCSA soil-cement specimens, this leads to an 87% 

and 86% increase in strength, respectively (see Figure 29).  

 

Figure 29. Maximum compressive strengths at 7.5% MC. Note: 1000 psi = 6.89 MPa 

2.4.5.2 10% MC 

The strength obtained from the control group was 20 psi (0.14 MPa) while the 1-hour strengths 

for the soil-cement specimens were 97 psi (0.67 MPa) and 33 psi (0.23 MPa) on average for 

BCSA and PC specimens, respectively. The early age strength was higher for the specimens 

made using BCSA cement. The 1-hour BCSA strength was 66% higher than the PC strength 

obtained at the same time. At 7 days, the strength of the PC specimens was higher than the 

strength of the BCSA specimens. The 7-day strengths for the PC specimens were 279 psi (1.92 

MPa) compared to 270 psi (1.86 MPa) for the BCSA specimens. There was a 3% difference 

between 7-day strengths of the soil-cement specimens. The 7-day strength for the soil-cement 
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samples were higher using 10% MC in comparison to the 7.5% MC (Figure 30). This difference 

in strength at 7 days is mainly attributed to the additional formation of hydration products due to 

a higher moisture content available at 10% MC.  

 

Figure 30. Maximum compressive strengths at 10 % MC. Note: 1000 psi = 6.89 MPa 
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2.5 Conclusions 

The main purpose of this study was determining the moisture-strength-time relationship of soil-

cement mixtures of sand, clay, and BCSA. The guidelines available for soil-cement design are 

mainly based on the use of PC; thus, this study also include soil-cement specimens made from 

PC for comparison. Different moisture contents (7.5% 10%) and curing times were tested. 

Conclusions from the testing performed include: 

1. Samples using BCSA cement developed higher early strengths (up to 3 hours) than those 

using PC. BCSA samples improved the strength of soil at 1 hour of age by 409 % and 485% 

for 7.5% MC and 10% MC respectively.   

2. The PC soil-cement specimens had higher 1-day and 7-day compressive strengths, but 

overall, 7-day strength improvement compared to soil-only samples was relatively similar for 

PC and BCSA.  

3. The soil-cement samples should be made using water contents wet of optimum to provide 

enough water for the hydration of BCSA cement.  

4. Low moisture content does not allow the BCSA soil-cement specimens to fully hydrate 

which is detrimental to the ultimate compressive strength. More research is needed to better 

understand how curing conditions (i.e., submerged specimens) would affect these results.   

5. The soil-cement specimen maximum compressive stress had between 3% and 25% 

variability.  

6. Both PC and BCSA samples seem to have not reached their ultimate strengths within 7 days. 

Higher later-age strengths are expected in both.  
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