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Abstract  

Measuring and testing dependence between random variables is of great importance in many 

scientific fields. In the case of linearly correlated variables, Pearson’s correlation coefficient is a 

commonly used measure of the correlation strength. In the case of nonlinear correlation, several 

innovative measures have been proposed, such as distance-based correlation, rank-based 

correlations, and information theory-based correlation. This thesis focuses on the statistical 

comparison of several important correlations, including Spearman’s correlation, mutual 

information, maximal information coefficient, biweight midcorrelation, distance correlation, and 

copula correlation, under various simulation settings such as correlative patterns and the level of 

random noise. Furthermore, we apply those correlations with the overall best performance to a 

real genomic data set, to study the co-expression between genes in serous ovarian cancer.  

 

Keywords: Pearson’s correlation, copula correlation, distance correlation, maximal information 

coefficient correlation, mutual information, and Spearman’s correlation 
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Chapter 1  

Introduction 

 

In many scientific studies, it is of great importance to measure and test the dependence 

between random variables. Therefore, a powerful statistical dependence measure is essential. 

Accurate quantification of the correlation between two variables can help make predictions, and 

in general, when the correlation (linear or nonlinear) is stronger, a more precise prediction can be 

made. Measuring the dependence between random variables is an effective way to identify their 

directional movement with each other (Wang et al., 2015), e.g., the hourly electricity consumption 

vs the hourly temperature, height vs weight, the time spent on marketing business vs the number 

of new customers, the prices of certain crop products and the available supply of such products. 

Pearson’s correlation coefficient is the most widely used measure of linear dependence, 

because of its simplicity and nice statistical properties. It is defined as the quotient of the 

covariance with the product of their standard deviations. Pearson’s correlation is always between 

-1 and 1, where -1 and 1 indicate a perfect linear relation while 0 indicates no linear relation. 

Mathematically, if two random variables are independent, they must be uncorrelated, and the 

coefficient of correlation must be zero. However, two variables are uncorrelated does not 

necessarily mean they are independent (Wang et al., .2015). In 1895, Karl Pearson proposed the 

product-moment correlation coefficient, which still serves as the basis of many correlative 

analyses. However, the major limitation of Pearson’s correlation is that it can only measure the 

linear relation, i.e., it is not sufficient for statistical independence test due to the existence of 

nonlinear associations. During the past decades, many important measures have been developed 

targeting different types of associations. This thesis aims to compare some of these important 

correlative measures, including Spearman’s correlation, mutual information (MI), maximal 
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information coefficient (MIC), biweight midcorrelation (bicor),  distance correlation (dcor) and 

copula correlation (Ccor), under various simulation settings such as sample size, correlative 

patterns (linear or nonlinear relationship) and the level of random noise. Our simulations show that 

some of these measures such as Spearman’s correlations can detect linear and nonlinear monotonic 

relationships. Some methods, including distance correlation, MIC, and MI, can also identify 

certain non-monotonic relationships.   

1.1 Statistical independence  

 Two random variables are said to be independent if the outcome of one random variable 

does not affect the conditional probability of the other. In other words, if the two random variables 

are independent, one does not affect the distribution of the other. The detection of dependence 

relies on a measure that is sensitive to the true underlying relation (Martínez-Gómez, Richards & 

Richards, 2014). In testing the statistical independence between two random variables, the 

combination of different correlation measures can provide more insights about the underlying 

association (Zhang, Qi & Ma., 2011). 

  Suppose we have two continuous random variables X and Y with probability density 

functions f(x) and f(y) and cumulative distribution functions F(x) and F(y), respectively. Given 

that the combined random variable (X, Y) exists, the two random variables are said to be 

independent if their joint density function is equal to the product of their marginal densities, or 

equivalently the joint cumulative distribution function equals the product of their respective 

cumulative distribution functions, i.e.,  

𝐹(𝑥, 𝑦) = 𝐹(𝑥)𝐹(𝑦), or ƒ(𝑥, 𝑦) = ƒ(𝑥)ƒ(𝑦) 

for any x and y in the sampling space. 
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            For discrete or categorical variables, statistical independence is defined in a similar way, 

but using probability mass function instead of the probability density function.  

1.2 Measure of linear dependence  

 We begin with notations and concepts. Let (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) be a random sample of size 

n from random variables X and Y. The hypothesis testing of dependence between X and Y can be 

formulated as follows: the null hypothesis is that there is no association between two variables, 

against the alternative hypothesis that there is an association between two variables, i.e., 

  H0: X and Y are independent, 

H1: X and Y are dependent. 

By comparing the p-value with the pre-specified significance level α, one may reject or accept the 

null hypothesis. The statistical hypothesis test is formulated as follows: 

  𝐻0 ∶  𝐹(𝑋, 𝑌)  =  𝐹(𝑋)𝐹(𝑌),  

𝐻𝑎 ∶  𝐹(𝑋, 𝑌)  ≠  𝐹(𝑋)𝐹(𝑌), 

where 𝐹(𝑋), 𝐹(𝑌) represents are the cumulative distribution functions of the random variable X 

and Y, and 𝐹(𝑋, 𝑌) is the joint cumulative distribution function of X and Y.  

              Let X and Y be two univariate random variables, with expectations E(X) and E(Y). Let 

Var(X) denote the variance of the random variable X, then   

𝑉𝑎𝑟(𝑋)  =  𝐸(𝑋2)  −  (𝐸(𝑋))
2 

and the covariance between X and Y is  

𝐶𝑜𝑣 (𝑋, 𝑌)  =  𝐸(𝑋𝑌)  −  𝐸(𝑋)𝐸(𝑌). 

Pearson’s correlation coefficient between X and Y is defined as 

𝜌
𝑥𝑦 = 

𝐶𝑜𝑣(𝑋,𝑌)

√𝑉𝑎𝑟(𝑥)√𝑉𝑎𝑟(𝑌)
,
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where it can be easily seen that the Pearson’s correlation is a rescaled version of covariance 

between X and Y (scaled by the product of the standard deviation of X and the standard deviation 

of Y). Let (𝑥1, 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛) be a random sample of size n, then the sample estimate of 

Pearson’s correlation between X and Y is 

∑ (𝑥𝑖
𝑛
𝑖=1 −�̃�)(𝑦𝑖− �̃� )

√∑ (𝑥𝑗
𝑛
𝑖=1 −�̃�)2√∑ (𝑦𝑖

𝑛
𝑖=1 −�̃�)2

, 

where �̃�  =  𝑛−1 ∑ 𝑥𝑖
𝑛
𝑖=1  and �̃�  =  𝑛−1 ∑ 𝑦𝑖

𝑛
𝑖=1  are the respective sample means. 

1.3 Linear and nonlinear relations 

The association between two random variables can be classified into two categories: linear 

and nonlinear. In many applications, the nonlinear relationship is equally important as the linear 

relationship (Ding and Li, 2015). The nonlinear relations can be further classified into monotonic 

nonlinear relations and non-monotonic nonlinear relations. It is well known that for a monotonic 

relationship, Spearman’s correlation coefficient would be an appropriate measure of association. 

For non-monotonic relations, however, the detection and measure can be very challenging, and it 

can be very difficult to decide which method is the most suitable one. Therefore, it is of great 

interest to test these measures under different correlative patterns.  

Figure 1.3.1 gives some examples of correlative patterns, where it can be seen that in 

several nonlinear especially non-monotonic nonlinear settings, the prevailing Pearson’s correlation 

completely fails to measure the association.  

 

 

Figure 1.3.1 A small Pearson’s 

correlation coefficient does not indicate 

independence or weak dependence, as 

the variables may have a nonlinear 

relationship. 

 

 

https://en.wikipedia.org/wiki/File:Correlation_examples2.svg
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In this thesis, we aim to compare the statistical performance (in terms of both correlation 

strength and significance) of six different measures, including Spearman’s correlation, mutual 

information, maximal information coefficient, biweight midcorrelation, distance correlation, and 

copula correlation, under many different simulation settings, such as linear, cube root, quadratic, 

wavelet, circle, and cluster (Figure 1.3.2).  

(a) Low level of noise                 (b) High level of noise 

Figure 1.3.2 Correlative patterns such as linear, cube root, quadratic, wavelet, circle, and 

cluster with different levels of noise. 
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Table 1.3.1 below lists all the six correlative patterns with equations that we used for simulation 

studies. It should be noted that all the noise term follows a normal distribution with mean 0 and 

variance that will be varied in different settings. 

Table 1.3.1 

Simulation settings considered in this work 

 

Setting Equation Domain 

Linear y = 2𝑥 + 𝜀 0 < 𝑥 < 1 

Cube Root y = 20𝑥1/3 + 𝜀 0 < 𝑥 < 1 

Quadratic y = 2𝑥2 + 𝜀 −1 < 𝑥 < 1 

Wavelet y = 2𝑠𝑖𝑛 𝑥 + 𝜀 −2𝜋 < 𝑥 < 2𝜋 

Circle X = (5 + εx) cos θ, 
y = (5 + εy) sin θ 

where εx and εy are independent 

0 < 𝜃 < 2𝜋 

Cluster 𝑥1 = −50 + 𝜀𝑥1
, 𝑦1 = 50 + 𝜀𝑦1

 

𝑥2 = 50 + 𝜀𝑥2
, 𝑦2 = 50 + 𝜀𝑦2

 

𝑥3 = −50 + 𝜀𝑥3
,  𝑦3 = −50 + 𝜀𝑦3

 

𝑥4 = 50 + 𝜀𝑥4
,  𝑦4 = −50 + 𝜀𝑦4

 

where 𝜀𝑥1
, 𝜀𝑥2

, 𝜀𝑥3
 and 𝜀𝑥4

 are independent, 

𝜀𝑦1
, 𝜀y2

, 𝜀y3
 and 𝜀y4

 are independent 
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Chapter 2 

Methodology 

 

In this section, we review the definitions and statistical properties of the six selected measures. 

2.1 Spearman’s rank based correlation 

Spearman’s correlation coefficient is defined as the correlation of ranks. It is designed to 

measure the monotonic relation between two variables. Spearman’s correlation can be used on 

both continuous and ordinal categorical data. Similar to Pearson’s correlation, Spearman’s 

correlation is always between -1 and 1. It is a negative value if one variable increases as the other 

decreases (da Costa, 2015). However, unlike Pearson’s correlation coefficient, Spearman’s 

correlation does not rely on the normal assumption (Bolboaca & Jantschi. 2006). Let 𝑋 =

 (𝑥1, … , 𝑥𝑛) and 𝑌 =  ( у1, … , у𝑛) be a random sample of size n, Spearman’s correlation 𝒓𝒔 is 

defined as follows 

𝑟𝑠(𝑥, 𝑦) = 1 −
6 ∑ 𝑑𝑖

2
𝑖

𝑛(𝑛2−1)
, 

where n is the total number of samples of two variables, and for each random variable, the rank 

difference of the ith element is di. It can be proved that rs(x,y) = 0 indicates monotonic independence.  

2.2 Mutual information  

 Another critical measure of linear and nonlinear dependence is mutual information (MI), 

which is motivated by the amount of information that two-variable are sharing. The concept of 

mutual information was used from the theory of communication by Shannon (1948), who 

defined the entropy of a single random variable. Let 𝑋 be a random variable having probability 

density function 𝑓1(𝑋), then the entropy H(𝑋) = − ∑ 𝑝𝓃
𝒾=1 (𝑥𝑖) log 𝑝(𝑥𝑖) = − 𝐸 log 𝑓1(𝑋). It is 

well known that entropy is a measure of uncertainty. Also, entropy satisfies the property that H 
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(𝑋) ≥ 0 is nonnegative. The above definition of entropy extends to a pair of random variables (X, 

Y) with joint probability density function f (x, y). We define the joint entropy of (X, Y) as H (X, 

Y) = − 𝐸 log 𝑓 (𝑋, 𝑌).   

Let X and Y be the two random variables with marginal probability density functions as 𝑓1(X) 

and 𝑓2(𝑌), respectively. With given Y, the conditional density function of X is  𝑓(𝑥, 𝑦)/𝑓2(𝑦) 

and the conditional entropy is 

H (X|Y) = − 𝐸 log
𝑓(𝑋,𝑌)

𝑓2(𝑌)
 

Mutual information 𝐼(𝑋, 𝑌) calculates the amount of information gained from one random variable 

(Figure 2.2.1). 

𝐼(𝑋,  𝑌) =  𝐻(𝑋) −  𝐻(𝑋|𝑌)  

               =  𝐻(𝑋) +  𝐻(𝑌) −  𝐻(𝑋,  𝑌) 

                =  ∑ 𝑃(𝜒) 𝑙𝑜𝑔 (
1

𝑃(𝜒)
)𝑥  + ∑ 𝑃(𝑦) 𝑙𝑜𝑔 (

1

𝑃(𝑦)
)𝑦  + ∑ 𝑃𝑥,𝑦 (𝑥, 𝑦)𝑙𝑜𝑔𝑃(𝑥, 𝑦) 

                = ∑ 𝑃(𝜒, 𝑦) 𝑙𝑜𝑔 (
1

𝑃(𝜒)
)𝑥,𝑦  + ∑ 𝑃(𝑥, 𝑦) 𝑙𝑜𝑔 (

1

𝑃(𝑦)
)𝑥,𝑦  + ∑ 𝑃𝑥,𝑦 (𝑥, 𝑦)𝑙𝑜𝑔𝑃(𝑥, 𝑦) 

                 = ∑ 𝑃𝑥,𝑦 (𝑥, 𝑦) 𝑙𝑜𝑔(
𝑃(𝑥,𝑦)

𝑃(𝑥)𝑃(𝑦)
)  

Mutual information (MI) measures the amount of information in units (bits). For discrete random 

variables with joint probability mass function P (x, y), the MI is defined as     

Figure 2.2.1 Venn diagram showing the 

relationships between MI and entropies 

(Wikipedia,2019). 
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𝐼(𝑋, 𝑌 ) =  ∑ ∑ 𝑃𝜘∈𝑋𝑦∈𝑌 (𝜒, 𝑦) log(
𝑃(𝜒,𝑦)

𝑃(𝜒)𝑃(𝑦)
).  

For continuous random variables with joint probability density function f (x, y), the MI can be 

defined as  

I (X,Y) = ∫ ∫ ƒ(𝑋, 𝑌) log
ƒ(𝑋,𝑌)

𝑓1(𝑋)𝑓2(𝑦)
𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
. 

 An equivalent way of defining 𝐼(𝑋, 𝑌) between the two variables 𝑋 and  𝑌 is 

𝐼(𝑋, 𝑌)  =  𝐻(𝑋)  +  𝐻(𝑌)  −  𝐻(𝑋, 𝑌), 

where 𝐻(𝑋), 𝐻(𝑌) are the entropies of X and Y, and 𝐻(𝑋, 𝑌) is the joint entropy between 𝑋 and 

𝑌. The term entropy measures the uncertainty of a random variable.  

The entropy and mutual information are related through the following derivation 

𝐼(𝑋, 𝑌)= E𝑙𝑜𝑔 (
1

𝑓1(X)
.

𝑓(𝑋,𝑌)

𝑓2(𝑌)
) 

= E (−𝑙𝑜𝑔𝑓1(𝑋) + 𝑙𝑜𝑔
𝑓(𝑋,𝑌)

𝑓2(𝑌)
) 

= −E𝑙𝑜𝑔 𝑓1(𝑋) + E𝑙𝑜𝑔
𝑓(𝑋,𝑌)

𝑓2(𝑌)
 

= 𝐻(𝑋) + 𝐻(𝑌)  −  𝐻(𝑋, 𝑌). 

Since H (X, Y) is symmetric, it follows that I (X, Y) = I (Y, X). Hence, the difference in 

uncertainty about X given knowledge of Y equals the difference in uncertainty about Y given 

knowledge of X (Kinney & Atwal, 2014). When X and Y are independent, their mutual 

information is zero. In other words,  

𝑃(𝑋, 𝑌) =  𝑃(𝑋)𝑃(𝑌) 𝑜𝑟 log(
𝑃(𝑋,𝑌)

𝑃(𝑋)𝑃(𝑌)
) = log 1 = 0. 

In the case that the two variables are identical, or functionally related, then the information of X 

reveals everything about Y, and the entropy of the random variable become equivalent to the 

mutual information, 𝐼(𝑋, 𝑌 )  =  𝐻(𝑋)  =  𝐻(𝑌 ) 
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2.3 Maximal information coefficient  

Another popular dependence measure is the maximal information coefficient (MIC). 

Reshef et al. (2011) introduced the notion of maximal information coefficient which could 

potentially measure both linear and non-linear relationships between variables. Tang et al. (2014) 

stated the MIC can be useful in the large datasets to measure the associations between the 

thousands of variable pairs. As it takes values between 0 and 1, MIC could not reflect the 

directional movement. There are two fundamental properties of MIC, including equitability and 

generality. Generality indicates that the statistic must capture a wider variety of associations, such 

as periodic, exponential, or linear, with an adequately larger sample size. Equitability shows that 

MIC provides similar scores for similarly noisy relationships, irrespective of what type of the 

relation is. 

As the sample size goes to infinity, MIC almost surely gives score of 1 to every functional 

relationship and gives score of 0 to statistically independent variables. There is not any parametric 

or distributional assumption in the MIC. MIC is defined by Reshef et al. as the maximum taken 

over all x-by-y grids G up to a given grid resolution, {
𝐼 (χ,y)

log2 𝑚𝑖𝑛{𝑛X,𝑛y}
} based on the  empirical 

probability distribution over the boxes of a grid G. For two random variables X and Y having 

sample n ≥ 2, the MIC is defined as follows  

MIC = ⅿax {
𝐼 (𝑥 ,y)

log2 𝑚𝑖𝑛{𝑛𝑥 ,𝑛y}
}  ,  

where 𝐼(𝑥, y )  =  𝐻(𝑥)  +  𝐻(y )  −  𝐻(𝑥, y ), i.e., 

𝐼(χ, y )  =  ∑ 𝒫
𝑛χ

𝑖=1
(χ𝑖) log2

1

𝒫(χ𝑖)
 +  ∑ 𝒫

𝑛y

𝑖=1
(y𝑖) log2

1

𝒫(y𝑖)
 − ∑ ∑ 𝒫

𝑛y

𝑖=1
(χ𝑖, y𝑖) log2

1

𝒫(χ𝑖,y𝑖)

𝑛χ

𝑖=1
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where,  𝑛𝑥  𝑎𝑛𝑑 𝑛y  represents the bins between the partition of the axes. 𝑛𝑥 . 𝑛y <  𝐵(𝑛), 𝐵(𝑛) =

𝑛0.6 . Nguyen et al. (2014) pointed out the maximal correlation does not require assumptions on 

the distribution of data. It appears robust and very efficient, and it can also detect nonlinear 

correlation.   

2.4 Biweight midcorrelation  

 Biweight midcorrelation (bicor) is based on the measure of similarity between variables. 

There are two major advantages for bicor. First, the calculation is straightforward, consisting of 

some simple steps such as the calculation of median. Second, it is more robust to outliers 

comparing to other measures such as Spearman’s correlation (Yuan et al., 2013). 

            To define the biweight midcorrelation (bicor) of two numeric vectors 𝑥 =  (𝑥1, 𝑥2, . . . 𝑥𝑛) 

and 𝑦 =  (𝑦1, 𝑦2, . . . 𝑦𝑛), we must define 𝑎𝑖 , 𝑏𝑖  with 𝑖 = 1,2, . . . , 𝑛, where 𝑚𝑒𝑑(𝑥) is the median 

and 𝑚𝑎𝑑(𝑥) is the absolute median deviation of 𝑥:  

𝑎𝑖 =
𝑥𝑖 − 𝑚𝑒𝑑(𝑥)

9𝑚𝑎𝑑(𝑥)
 

Similarly, we define 𝑏𝑖, where 𝑚𝑒𝑑(𝑦) is the median and 𝑚𝑎𝑑(𝑦) is the absolute median deviation 

of 𝑦: 

𝑏𝑖 =
𝑦𝑖 − 𝑚𝑒𝑑(𝑦)

9𝑚𝑎𝑑(𝑦)
 

where 𝑚𝑒𝑑(𝑥) is the median and 𝑚𝑎𝑑(𝑥) is the absolute median deviation,  

𝑚𝑎𝑑(𝑥)  =  𝑚𝑒𝑑(|𝑥𝑖 − 𝑚𝑒𝑑(𝑥)|) 

 These equations are used to define weight, 𝑚𝑖. For X, the weight is defined as 

𝑚𝑖
(𝑥)

= (1 − 𝑎𝑖
2)2𝐼(1 − |𝑎𝑖|), 
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where I is the identity function. Yuan et al. (2013) mentioned that the indicator is 1 when 𝐼(1 −

|𝑎𝑖|) > 0 and is 0 when 𝐼(1 − |𝑎𝑖|) ≤ 0. Using the definition of weight to normalize so that the 

sum of the weights is 1 

𝑥�̃� =
(𝑥𝑖 − 𝑚𝑒𝑑(𝑥))𝑚𝑖

(𝑥)

√∑ [(𝑥𝑗
𝑛
𝑗=1 − 𝑚𝑒𝑑(𝑥))𝑚𝑗

(𝑥)
]2

, 𝑦�̃� =
(𝑦𝑖 − 𝑚𝑒𝑑(𝑦))𝑚𝑖

(𝑦)

√∑ [(𝑦𝑗
𝑛
𝑗=1 − 𝑚𝑒𝑑(𝑦))𝑚𝑗

(𝑦)
]2

 

𝑏𝑖𝑐𝑜𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖

𝑛
𝑖=1 − 𝑚𝑒𝑑(𝑥))𝑚𝑖

(𝑥)
(𝑦𝑖 − 𝑚𝑒𝑑(𝑦))𝑚𝑖

(𝑦)

√∑ [(𝑥𝑗
𝑛
𝑖=1 − 𝑚𝑒𝑑(𝑥))𝑚𝑗

(𝑥)
]2√∑ [(𝑦𝑘

𝑛
𝑘=1 − 𝑚𝑒𝑑(𝑦))𝑚𝑘

(𝑦)
]2

 

Biweight midcorrelation has many successful applications, for instance, gene co-

expression analysis and gene community (clique) detection(Zeng et al., 2013). To study gene co-

expression, DNA microarray data have been widely used. Genes and their protein products tend 

to work in cooperation rather than in isolation. However, most of the existing studies focused on 

single gene or single type of genetic data and overlooked the interactions between genes and other 

factors. Maxim clique concept was used to further look into the Signaling pathways involving 

multiple genes or biomarkers. The most commonly used correlation is Pearson correlation. Other 

proposed approaches include biweight midcorrelation and half-thresholding strategy. Being more 

robust to outliers, the biweight midcorrelation has a whip hand over Pearson correlation plus 

experiments on simulated datasets have proven it to have better performance (Zeng et al., 2013).  

2.5 Distance correlation 

 Distance correlation is a novel measure of dependence between two sets of random 

variables of arbitrary dimension. The distance correlation between two random vectors X and Y 

(Székely, Rizzo & Bakirov, 2007) is described as a rescaled distance covariance (same as 

Pearson’s correlation in spirit)  

𝑑𝐶𝑜𝑟(𝑋, 𝑌) = 𝑑𝐶𝑜𝑣(𝑋, 𝑌)/√𝑑𝐶𝑜𝑟(𝑋, 𝑋)𝑑𝐶𝑜𝑟(𝑌, 𝑌)  
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where the squared distance covariance is defined as 𝑑𝐶𝑜𝑣2(𝑋, 𝑌) =  𝐶𝑜𝑣(∥ 𝑥1 − 𝑥2 ∥, ∥ 𝑦1 −

𝑦2 ∥)  −  2 𝐶𝑜𝑣(∥ 𝑥1 − 𝑥2 ∥, ∥ 𝑦1 − 𝑦2 ∥), and a natural estimator of 𝑑𝐶𝑜𝑣2(𝑋, 𝑌) 𝑖𝑠 

𝑑𝐶𝑜�̂�2(𝑋, 𝑌)  = ∑ ∑
𝐴𝑖𝑗𝐵𝑖𝑗

𝑛2
𝑛
𝑗=1

𝑛
𝑖=1 ,  

where 𝐴𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎�̅� − 𝑎�̅� + �̅� and 𝐵𝑖𝑗 = 𝑏𝑖𝑗 − 𝑏�̅� − 𝑏�̅� + �̅�, if we let 𝑎𝑖𝑗 = ‖𝑋𝑖 − 𝑋𝑗‖, 

 𝑎�̅� = ∑ ∑
‖𝑋𝑅−𝑋𝑖‖

𝑛

𝑛
𝑙=1

𝑛
𝑘=1 , 𝑎�̅� = ∑

‖𝑋𝑙−𝑋𝑗‖

𝑛

𝑛
𝑙=1 ,  �̅� = ∑

‖𝑋𝑙−𝑋𝑘‖

𝑛2
𝑛
𝑘=1 , let 𝑏𝑖𝑗 = ‖𝑌𝑖 − 𝑌𝑗‖, 

 𝑏�̅� = ∑
‖𝑌𝑅−𝑌𝑖‖

𝑛

𝑛
𝑘=1 , 𝑏�̅� = ∑

‖𝑌𝑙−𝑌𝑗‖

𝑛

𝑛
𝑙=1 ,  �̅� = ∑ ∑

‖𝑌𝑙−𝑌𝑘‖

𝑛2
𝑛
𝑙=1

𝑛
𝑘=1 . The estimate of distance 

correlation 𝑑𝐶𝑜�̂�(𝑋, 𝑌) = 
𝑑𝐶𝑜�̂�(𝑋,𝑌)

√𝑑𝐶𝑜�̂�(𝑋,𝑋)𝑑𝐶𝑜�̂�(𝑌,𝑌)
. 

Two remarkable properties of distance correlation are 

1. 0 ≤  𝑑𝐶𝑜𝑟 (𝑋, 𝑌)  ≤  1: In comparison to negative Pearson’s correlation, this is always 

positive. 

2. 𝑑𝐶𝑜𝑟 (𝑋, 𝑌)  =  0 if and only if X and Y are independent. 

2.6 Copula correlation  

Copula correlation is a dependence measure of the deterministic relationship using hidden 

uniform noise. The copula function for any random vector  Χ1, Χ2, … . . Χ𝑛 is defined as 

𝐹(𝑥1, 𝑥2, … . . 𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … 𝐹𝑛(𝑥𝑛)), 

where 𝐹 stands for the joint cumulative distribution function and 𝐹1(𝑥1), 𝐹2(𝑥2), … 𝐹𝑛(𝑥𝑛) are the 

marginal cumulative distribution function. By Sklar’s theorem (Sklar (1959)), one can decompose 

the joint distribution function into the copula form of its marginals. Moreover, the joint density is 

 𝑓(𝑥1, 𝑥2, … . . 𝑥𝑛) = 𝑓1(𝑥1) ∗ … ∗ 𝑓𝑛(𝑥𝑛)𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)). 

Given that 𝐹𝑖 and 𝐶 are differentiable, 𝐶 =  𝜕𝑛 𝐶

(𝜕𝐹1 .  .  . 𝜕𝐹𝑛)
. Under the limited scenario, the joint 

probability density function is the product of the copula density and the marginal densities. For 
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example, if the i random variables 𝑋𝑖’s are independent, then 𝐶 =  1 and 𝑓(𝑥1, 𝑥2, … . . 𝑥𝑛) =

𝑓1(𝑥1) ∗ … ∗ 𝑓𝑛(𝑥𝑛). Clemen and Reilly (1999) state that the n-dimensional joint distribution 

function F has two components (1) copula function, and (2) marginal distribution function. Let 

𝑋 =  (𝑋1, 𝑋2,· · ·,  𝑋𝑛) be a random vector with distribution function F, and Y be uniformly 

distributed on (0, 1) and independent of X. We know that Ui = Fi (Xi, Y) is uniformly distributed 

on (0, 1), therefore Xi = Fi 
−1 (Ui).  If we let the copula C be the distribution function of U = (U1, 

U2, · · ·, Un), then we have  

F(X) = P (X ≤ x) 

     = P (Fi 
−1 (Ui) ≤ xi, 1 ≤ i ≤ n) 

= P (Ui ≤ Fi(xi), 1 ≤ i ≤ n)  

= C(F1(x1), · · ·, Fn(xn)). 

This implies that C is the copula of F. Conveniently, a joint distribution function F(x,y) can be 

written in terms of the marginal distribution functions FX(x) and FY(y) for the random variable X 

and Y using the relation F(x,y) = C(FX(x), FY(y)). Hence, the copula function C(u, v) can be written 

as  

𝐶(𝑢, 𝑣)  =  𝐹(𝐹𝑋−1(𝑢), 𝐹𝑌−1(𝑣)), 

and immediately it follows that 

𝐶(𝐹𝑥(𝑥), 𝐹𝑦(𝑦)) =  𝐹(𝐹𝑋−1(𝐹𝑥(𝑥)), 𝐹𝑌−1(𝐹𝑦(𝑦))) =  𝐹(𝑥, 𝑦). 

For calculating copula distance between the copula density c (x,y) and the independence copula 

density by using 𝐿𝑝 distance, 𝐶𝐷𝛼 =∬|𝑐(𝑥, 𝑦) − 1|𝛼𝑑𝑥𝑑𝑦, α > 0.  𝐶𝐷2 is the Pearson’s ∅2 with 

its scaled version being ∅cor = √𝐶𝐷/(1 + 𝐶𝐷2). Particularly, the copula correlation is a scale 

version of  𝐶𝐷1 as Ccor = 
1 

2
𝐶𝐷1  = 

1 

2
∬ | 𝑐(𝑥, 𝑦) − 1|𝑑𝑥𝑑𝑦.  
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Chapter 3 

Simulation studies and real data application 

 

 In this section, we compare all the six dependence measures in terms of the statistical power 

using under various simulation settings, including Spearman’s correlation, mutual information, 

maximal information coefficient, biweight midcorrelation, distance correlation, and copula 

correlation. A real genomic application is also provided. For a complete picture about how these 

measures work in different correlative patterns, we considered linear, cube root, quadratic, 

wavelet, circle, and cluster settings. 

3.1 Simulated studies 

 We conducted simulation studies with the inclusion of the noise. The purpose of including 

the additive noise is to increase randomness and to test the robustness of the correlation measures. 

We considered both relatively low and high levels of additive noise. The R-packages for our 

implementation include pspearman, minerva, wgcna, energy, copula, and infotheo. For all settings, 

the sample size is fixed at 80.  

3.1.1 Spearman’s correlation  

 We used Fisher’s method to transform Spearman’s correlation coefficient to a z value 

𝑧 =
1

2
 𝑙𝑛 (

1 +  𝑝

1 −  𝑝
 ), 

 where 𝑝 is the Spearman’s rank correlation coefficient. It can be proved that z asymptotically 

follows a normal distribution with mean 0. 

The two R packages used for this analysis are infotheo and pspearman. Averages of the 

resulting p-values were summarized. Figure 3.1.1 and Figure 3.1.2 illustrate the result for all six 

patterns with different levels of noise. The results were based on 80 samples.    
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Figure 3.1.1 Spearman's rank correlation for linear, cube root, quadratic, wavelet, circle, and 

cluster settings with smaller noise. 
 

   

 
Figure 3.1.2 Spearman's rank correlation for linear, cube root, quadratic, wavelet, circle, and 

cluster settings with larger noise.  ` 
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Table 3.1.1 showed the empirical statistical power and the average p-value.  

Table 3.1.1 

Spearman correlation method 

 

Relationship Smaller Noise Larger Noise 

 
Empirical 

power 

Mean  

p-value 

Empirical 

power 

Mean  

p-value 

Linear 0.825 0.049 0.213 0.333 

Cube Root 0.787 0.093 0.254 0.288 

Quadratic 0.013 0.607 0.038 0.537 

Wavelet 0.788 0.097 0.388 0.141 

Circle 0.0 0.686 0.0 0.610 

Cluster 0.0 0.973 0.0 0.974 

  

3.1.2 Mutual information 

Mutual information (MI) is a measure of information quantity shared between two random 

variables. Figure 3.1.3 and Figure 3.1.4 show the result for linear, cube root, quadratic, wavelet, 

circle, and cluster setting with mutual information under different levels of noise. Similar to the 

Spearman’s correlation, the MI can be converted to z value by Fisher’s z transformation for 

independence test. The continuous data are discretized to compute entropy.  

Figure 3.1.3 shows the distribution of the p-values with smaller noise. It is apparent that the 

variability of an estimate is significantly lower.  
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Figure 3.1.3 Mutual information for linear, cube root, quadratic, wavelet, circle, and cluster 

settings with smaller noise.  

   

  

  
Figure 3.1.4 Mutual information for linear, cube root, quadratic, wavelet, circle, and cluster 

settings with larger noise.  

 

 Figure 3.1.4 shows the simulation results for the same model structure but with larger noise 

level. Table 3.1.2 shows the statistical result of empirical power and the average p-value with 

different number bins (nbins), where it can be seen that the mutual information works well for 

cube root, wavelet and circle settings with nbins=1/3 (see table 3.1.2 (a)). However, the mutual 
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information fails to detect any linear dependence, which is the most common setting with nbins = 

¼ and ½ shown in Table (b) and Table (c) respectively. Mutual information strongly depends on 

the choice of nbins. Therefore, MI method is very unstable for continuous data.  

Table 3.1.2  

(a) Mutual information (nbins=1/3) 

 

Relationship Smaller Noise Larger Noise 

 Empirical 

power 

Mean  

p-value 

Empirical 

power 

Mean  

p-value 

Linear 0.0 0.108 0.0 0.142 

Cube Root 0.790 0.039 0.003 0.111 

Quadratic 0.0 0.134 0.0 0.138 

Wavelet 1.0 0.035 0.005 0.057 

Circle 0.988 0.049 0.0 0.072 

Cluster 0.0 0.136 0.0 0.136 

 

(b) Mutual information (nbins=1/4) 

 

Relationship Smaller Noise Larger Noise 

 Empirical 

power 

Mean  

p-value 

Empirical 

power 

Mean  

p-value 

Linear 0.003 0.110 0.0 0.145 

Cube Root 0.835 0.039 0.003 0.111 

Quadratic 0.008 0.064 0.0 0.069 

Wavelet 1.0 0.0 1.0 0.0 

Circle 1.0 0.0 1.0 0.0 

Cluster 1.0 0.011 1.0 0.011 

 

(c) Mutual information (nbins=1/2) 

 

Relationship Smaller Noise Larger Noise 

 Empirical 

power 

Mean  

p-value 

Empirical 

power 

Mean  

p-value 

Linear 0.0 0.243 0.0 0.255 

Cube Root 0.0 0.197 0.0 0.239 

Quadratic 0.0 0.353 0.0 0.359 

Wavelet 0.0 0.224 0.0 0.277 

Circle 0.0 0.283 0.0 0.340 

Cluster 0.0 0.395 0.0 0.395 
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3.1.3 Maximal information coefficient  

Our next simulation is for maximal information coefficient (MIC). MIC method measures 

the linear and nonlinear relationships between two continuous variables. The simulated random 

samples are produced for different patterns and settings. An R package (Minerva) is used to 

calculate the p-value in six different models with sample size n = 80. For sample size n, the bin 

(alpha) equals 0.6 where B(n) = 𝑛α search-grid size. The “infotheo” package utilized several 

entropy estimators to implement various measures of information theory. The software package 

requires discretization of continuous data, and computes MIC across all grids. The results of MIC's 

correlation for six settings with smaller noise obtained from the first simulation are presented in 

Figure 3.1.5   

  

 
Figure 3.1.5 Maximal information coefficient’s method for linear, cube root, quadratic, wavelet, 

circle, and cluster settings with smaller noise.  
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 The average p-value ranges from 0.012 to 0.690. Observably, most settings did not show a 

good strength of the dependence linear or nonlinear relationship within a noise-free environment.  

Figure 3.1.6 shows MIC's correlation for six settings with a larger noise. The mean of all p- values 

are high, and hence, MIC performs poorly to detect measure dependence for linear and nonlinear 

relationships. 

  

 
Figure 3.1.6 Maximal information coefficient’s method for linear, cube root, quadratic, wavelet, 

circle, and cluster settings with larger noise.  
 

Table 3.1.3 shows the empirical statistical power and the average p-value. 

Table 3.1.3 

Maximal information coefficient 

Relationship Smaller Noise Larger Noise 

 Empirical 

power 

Mean 

p-value 

Empirical 

power 

Mean 

p-value 

Linear 0.548 0.065 0.225 0.209 

Cube Root 0.225 0.279 0.087 0.406 

Quadratic 0.713 0.065 0.20 0.254 

Wavelet 0.875 0.012 0.188 0.322 

Circle 0.0 0.690 0.013 0.707 

Cluster 0.038 0.479 0.025 0.596 
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3.1.4 Biweight midcorrelation 

 Biweight midcorrelation (bicor) is median based, which reduces sensitivity to outliers. 

Consequently, the results of simulations prove that the bicor performs better in identifying the 

uncertainty in the dependent variable when the independent variable is observed. The graphs 

presented using the bicor method demonstrates a measure of the similarity levels. However, the 

statistical method depends on the R-language, which interprets multiple data and variables. The 

package components used for bicor are (BiocManager) and the library (WGCNA).  

The R package WGCNA includes functions corAndPvalue and bicorAndPvalue that 

calculate correlations of matrices and their associated Student p -values efficiently and accurately 

(Langfelder and Horvath 2008).  

 

  
Figure 3.1.7 Biweight midcorrelation’s method for linear, cube root, quadratic, wavelet, circle, 

and cluster settings with smaller noise.  
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The two main parameters considered to generate the average method in the formula are 

median pseudo ranks and weight pseudo ranks. Some distributions in Figure 3.1.7 indicate the 

obtainability of strong association for linear and nonlinear relationship among smaller noise 

models. For example, linear, cube root, and wavelet have mean p- values less than statistical 

significance level, while quadratic, circle, and cluster do not detect measure of dependence since 

the mean p-value is greater than 5%. Whereas the distributions of large noise models do not 

perform good quality in this case as shown in Figure 3.1.8. Circle and cluster represent the 

highest p-value than the other models. 

 

 
Figure 3.1.8 Biweight midcorrelation’s method for linear, cube root, quadratic, wavelet, circle, 

and cluster settings with larger noise.  
 

The summary of p-values is presented in Table 3.1.4, where it can be seen that biweight 

midcorrelation is able to provide quality results for linear cube root and wavelet. 
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Table 3.1.4 

Biweight midcorrelation 

 

Relationship Smaller Noise Larger Noise 

 
Empirical 

power 

Mean  

p-value 

Empirical 

power 

Mean  

p-value 

Linear 0.813 0.029 0.200 0.207 

Cube Root 0.715 0.045 0.150 0.306 

Quadratic 0.006 0.543 0.059 0.514 

Wavelet 0.744 0.039 0.188 0.157 

Circle 0.0 0.607 0.0 0.832 

Cluster 0.0 0.758 0.0 0.917 

 

3.1.5 Distance correlation 

 The following simulation considered is the distance correlation (dcor) measure. It is 

equivalent to product-moment covariance and correlation. The test for dependence relationships is 

considered for different settings with distance correlation and the two different levels of noise. The 

samples were randomly generated from the normal distribution with sample size, n = 80. The result 

was tested for the significance level of 5%. The dcor R-package helps in analyzing the multivariate 

data. The correlation process applies to both the larger noise and the smaller noise data sets, 

depending on the distance. For the dcor package library (energy) was used to derive the codes in 

the R-Program with a distance correlation test. 5000 permutations were considered to get a more 

accurate result.  
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Figure 3.1.9 Distance’s correlation for linear, cube root, quadratic, wavelet, circle, and cluster 

settings with smaller noise.  

 

Figure 3.1.9 summarizes the simulation results for linear, cube root, quadratic, wavelet, 

circle, and cluster setting with distance correlation smaller noise. It appears that the wavelet model 

would get perfect strength of that dependence within the variety of noise, likewise the linear 

function. Figure 3.1.10 illustrates the results of six functions for larger noise. The result 

demonstrates that none of the settings identify the dependence test. 
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Figure 3.1.10 Distance’s correlation for linear, cube root, quadratic, wavelet, circle, and cluster 

settings with larger noise.  
 

 Table 3.1.5. illustrates the empirical statistical power and the average p-value, where it can 

be seen that the distance measure is sensitive to linear cube root, quadratic and wavelet 

dependence. 

Table 3.1.5 

Distance correlation 

 

Relationship Smaller Noise Larger Noise 

 
Empirical 

power 

Mean  

p-value 

Empirical 

power 

Mean  

p-value 

Linear 0.863 0.019 0.213 0.344 

Cube Root 0.740 0.099 0.150 0.443 

Quadratic 0.751 0.037 0.101 0.326 

Wavelet 0.963 0.011 0.550 0.073 

Circle 0.541 0.073 0.0 0.442 

Cluster 0.0 0.414 0.0 0.449 
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3.1.6 Copula correlation  

  The copula cluster is an R-package for the implementation of the clustered algorithm. 

The copula function found data sets for the complex multivariate dependence to produce the 

process. The normal distributed data with sample size n = 80 and a significance level of 5% was 

considered for simulation. The number of permutations considered during the simulation is 1000.   

 

 
Figure 3.1.11 Copula correlation for linear, cube root, quadratic, wavelet, circle, and cluster 

settings with smaller noise.  

 

Figure 3.1.11 illustrates the results for linear, polynomial, quadratic, wavelet, circle, and 

cluster setting with Ccor smaller noise generated from a normal distribution. Monotonic 

relationships are common when interpretation depends on the copula correlation method. The 

quadratic, cluster, and circle setting graphs indicate a variety of parameters that affect the data 

analysis to attain the spectrum range. Copula correlation gives a high p-value of the setting since 
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they are nonlinear relationships. The copula correlation displays the function of both smaller and 

significant noise data types. Ccor analysis depends on the linear bivariate relationship.  

Figure 3.1.12 summarizes the p-values for larger noise.  

  

 
Figure 3.1.12 Copula correlation for linear, cube root, quadratic, wavelet, circle, and cluster 

settings with larger noise. 
 

Table 3.1.6 shows the empirical statistical power and the average p-value, where it can be 

seen that the copula correlation has satisfactory performance only for linear setting. 
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Table 3.1.6 

copula correlation 

 

Relationship Smaller Noise Larger Noise 

 
Empirical 

power 

Mean  

p-value 

 

Empirical 

power  

Mean  

p-value 

Linear 0.789 0.029 0.213 0.306 

Cube Root 0.462 0.082 0.150 0.334 

Quadratic 0.338 0.128 0.075 0.500 

Wavelet 0.138 0.269 0.050 0.532 

Circle 0.175 0.257 0.0 0.625 

Cluster 0.101 0.497 0.060 0.505 

 

Table 3.1.7 summarizes the overall performance of each measure. 

Table 3.1.7 

Simulation performance of different settings  

 

Measures 
Simulation settings with overall satisfactory 

performance 

Spearman’s rank correlation Linear, Cube Root, Wavelet 

Mutual information Cube Root, Wavelet, Circle 

Maximal information coefficient Quadratic, Wavelet  

Biweight midcorrelation Linear, Cube Root, Wavelet 

Distance correlation Linear, Cube Root, Quadratic, Wavelet, Circle 

Copula correlation Linear 

 
 

The above results show that Spearman’s correlation, biweight midcorrelation and distance 

correlation have overall satisfactory performance for linear and nonlinear relationships.  
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3.2 A genomic application  

  In this part, we applied some selected measures to a dataset from the Cancer Genome 

Atlas (TCGA), pre-processed by Zhang et al. (2014). The dataset contained the expression level 

of 245 cancer-related genes from 150 samples. The analysis focuses on the detection of co-

expressed genes using three measures that have overall good performance from simulation 

studies, including Spearman’s rank, distance correlation and biweight midcorrelation. 

 Gene co-expression analysis has been widely applied for molecular biology research, 

especially for the systems-level or pathway-level studies. In general, the functions in isolation of 

genes and their protein products do not perform. The functions perform jointly and in 

cooperation. Tremendous research efforts have been made to clarify the molecular basis of the 

initiation and progression of ovarian cancer. However, most of those studies have concentrated 

on a single gene or a specific type of data, which in return may not identify the complex 

mechanisms of cancer formation by neglecting to detect the interactions of different genetic and 

epigenetic factors (Zhang et al., 2014). In practice, temporal changes in gene expression require 

more complex detection methods than simple correlation measures that may result in complex 

association patterns. For example, the effect of regulation may lead to time-lagged associations 

and interactions local to a subset of samples.  
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Figure 3.2.1 Histogram of TCGA ovarian cancer data using Spearman’s method including the 

correlation measure (left panel), and p-value (right panel), from 5000 replications 

 

Figure 3.2.1 summarized the Spearman’s rank correlation for more than 20,000 pairs of genes 

that are significantly associated (p < 0.05).  

 For dcor, the energy package was used with index =1, which is the exponent on 

Euclidean distance.  Euclidean distance ∥xi−xj∥d, where 0 < d  < 2  to compute distance 

correlation and p-value. Figure 3.2.2 shows the distribution of correlation and p-value by using 

dcor method. We found more than 25,000 pairs of genes having p-value less than 5%. 
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Figure 3.2.2 Histogram of TCGA ovarian cancer data using distance method including the 

correlation measure (left side), and p-value (right side), with 5000 number of replications 

 

 Finally, the co-expression of all gene pairs were measured by biweight midcorrelation 

measure. It concentrates on the media-based analysis, which diminished sensitivity towards the 

outliers. To compute the biweight midcorrelation (bicor) between pairs of genes, the WGCNA 

package was used to compute correlation measure and p-value. In the histogram which are 

demonstrated in Figure 3.2.3, it is noticeable that there is a significant correlation for more than 

20,000 pairs after replication while the correlation measure shows a strong correlation 

considering that the majority of the gene pairs are dependent. 
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Figure 3.2.3 Histogram of TCGA ovarian cancer data using biweight midcorrelation including 

the correlation measure (left panel), and p-value (right panel). 
 

 We then investigated the consistency between the three measures. The figure 3.2.4 below 

show the agreement between each pair of measures: (A) Spearman’s correlation vs biweight 

midcorrelation; (B) Spearman’s correlation vs distance correlation; (C) Biweight midcorrelation 

vs distance correlation. 
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(A)                  (B) 

(C) 

 

 

Figure 3.2.4 Comparison of correlations: (A) Spearman’s correlation coefficient vs. biweight 

midcorrelation, (B) Spearman’s correlation coefficient vs. distance correlation, and (C) 

distance correlation vs. biweight midcorrelation.  
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As can be seen from Figure 3.2.4, for the majority of co-expressed gene pairs, especially those 

with strong co-expression, all three measures are similar. Table 3.2.1 presents in 6 pairs of 

strongly correlated genes as examples. Our findings confirm some recent reports that the 

majority of co-expressed genes are linear or monotonic nonlinear. 

Table 3.2.1 

Examples of co-expressed gene pairs by Spearman’s rank correlation, biweight midcorrelation 

and distance correlation  

 

Gene pairs 

( i, j ) 

Spearman 

correlation 

Biweight 

midcorrelation 

Distance 

correlation 

 (42,188) 0.8083 0.8224 0.7891 

(47,199) 0.7917   0.8119 0.7766 

(88,244) 0.8190   0.8356 0.8282 

(89,244) 0.7735   0.7987 0.7932 

(190,235) 0.8397 0.8585 0.8233 

(196,214) 0.8031   0.8002 0.7753 
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Chapter 4 

Conclusions  

 

 In many scientific domains, it is essential to identify and measure different types of 

associative relations between variables from experimental or observational data. The relationship 

between two variables is often characterized by some type of correlation coefficient, which can 

be utilized for further decision-making and predictions. Pearson’s correlation coefficient is 

popular as a measure of strength of the relationship between two variables. The procedure, 

however, is limited to linear associations and is excessively sensitive to outliers. To measure 

nonlinear-type relations, a number of correlation measures have been recently developed, 

including distance correlation, MIC, mutual information, etc. In this work, we conduct an 

extensive simulation study to systematically compare these measures in various settings. Based 

on our simulation result, Spearman’s correlation, biweight midcorrelation and distance 

correlation have better statistical performance overall. They can be robust alternatives to other 

statistical measures, especially when the underlying relation is nonlinear. The mutual 

information does not work well in linear settings, and the performance depends on discretization 

for continuous data.  

4.1 Discussion  

We would like to point out that all the dependence measures considered in this thesis have 

certain drawbacks. For instance, it is known that MIC depends on a user-defined parameter, 

namely B(n). Also, the computational cost of MIC increases exponentially as the number of data 

points gets larger; therefore, it is not suitable for large-scale datasets. Additionally, as pointed out 

by Simon and Tibshirani (2014), MIC may not work well in the presence of substantial noise. 
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Kinney and Atwal (2014) also noted that MIC is not equitable, and the MIC values might not be 

affected by variable noise for specific relationships.  

Although mutual information is a popular measure of nonlinear or combinatorial 

dependence between two variables, it has been pointed out that the estimate of MI measure could 

be challenging for small datasets due to the discretization and number of bins. In addition, MI does 

not satisfy the criterion of equitability (equitability is a criterion that the statistic should give 

similar scores to equally noisy relationships of different types). Thus, it is not a reliable method 

for continuous data. 

MIC and distance correlation are two promising measures for nonlinear relations. Simon 

and Tibshirani (2014) state that in many cases, distance correlation exhibits more statistical power 

than the MIC. It can also be seen in our analysis that even with a small sample size, the distance 

correlation has satisfactory performance at a different level of noise. Copula correlation could 

potentially capture the complete dependence structure inherent in variables (Xi et al., 2014). 

However, the copula-based methods are analytically complex and difficult to interpret, and fitting 

the parameters of a copula is a challenging statistical problem.  

The distance correlation and biweight midcorrelation have overall satisfactory 

performance for most of the correlative patterns, with affordable computational cost and good 

robustness to outliers. However, there is still a need to find or develop a measure that is 

interpretable and sensitive to both linear and nonlinear, monotonic and non-monotonic relations.  

4.2 Future work  

          There are several directions that we would like to explore in the future. First, we will 

incorporate some additional measures recently developed to measure nonlinear relations, to name 
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a few, the projection correlation (Zhu et al., 2017), and multiscale graph correlation (MGC, Shen, 

Priebe & Vogelstein, 2019).   

           Second, we may extend the evaluation of correlation measures from univariate variables to 

multivariate variables or random vectors of arbitrary dimensions. Compared to model-based 

exploration such as multiple linear regression and principal component analysis, the correlation 

method is model-free and does not rely on any assumption on the model structures. Also, 

categorical variables are commonly seen in many scientific studies. Further analysis can be 

conducted by comparing the correlation measures for the association between categorical variables 

or even the association between a categorical variable (either ordinal or nominal) and a continuous 

variable.  

          Third, we may test all correlation measures on other, real datasets. For instance, it will be 

interesting to apply distance correlation to some genomic datasets to identify nonlinearly 

correlated biomarkers or biological pathways. Such analyses may shed new light to the complex 

relations between many different types of biological factors.  
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