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Abstract 

 Each year, 800,000 new patients are diagnosed with head and neck squamous cell 

carcinoma (HNSCC), a majority of whom are treated with a combination of daily fractions of 

radiation and weekly chemotherapy sessions for up to seven weeks. Current methods to evaluate 

treatment response of individual patients are limited to anatomical measurements of tumor burden 

using CT scan or MRI 4-8 weeks after completion of treatment. However, earlier knowledge of 

radiation-response prior to or at early days after commencement of therapy can aid oncologist 

with escalating and de-escalating treatment plans for exceptionally non-responding and 

responding patients. Such a knowledge can be only be gained if proper understanding of 

radiation-induced physiological and biomolecular changes is established and associated with 

treatment response.   

This dissertation presents two quantitative optical spectroscopic methods that can provide 

snapshots of tumor physiology and biomolecular content which can be used as biomarkers of 

treatment response. Because tumor hypoxia has been linked to poor treatment outcome, we 

employed diffuse reflectance spectroscopy to measure vascular oxygen saturation. In chapter 2, 

we first investigated the sensitivity of diffuse reflectance spectroscopy to tumor hypoxia and 

determined that optical measurement of tumor vascular oxygen saturation is negatively correlated 

with tumor hypoxia. In chapter 3, we utilized this technique to study radiation-induced kinetics of 

tumor oxygenation among radiation-resistant and -sensitive tumors. We established tumor 

xenografts from two human head and neck cancer cell lines in mice which were treated with 4 

doses of 2 Gy twice weekly for two weeks. We observed greater rate of reoxygenation in radiation-

resistant tumors which was accompanied with greater content of hypoxia inducible factor-1α (HIF-

1α). Our results indicate that reduced oxygen consumption rate can potentially play a significant 

role in promoting radiation resistance. In addition, the radiation-induced changes in tumor optical 

properties were used to train a logistic regression model which successfully differentiated local-

control and treatment-failure tumors. 



 
 

In addition to changes in reoxygenation, radiation treatment has also been known to 

induce microenvironmental changes within tumor. Thus in chapter 4, we used Raman 

spectroscopy to investigate early radiation-induced biomolecular changes in tumor 

microenvironment of radiation-resistant and -sensitive tumors. Raman spectra of head and neck 

tumor xenografts 1, 24, and 48 hours after radiation was collected and the spectra were analyzed 

using multivariate curve resolution-alternating least squares (MCR-ALS) and pure spectral 

profiles of biological specimen were extracted. We observed higher contributions to Raman 

spectra from lipid- and collagen-like species respectively in radiation-sensitive and -resistant 

tumors. Our results indicate the sensitivity of Raman spectroscopy to radiation-induced 

microenvironmental changes at early time points after radiation. The association between the 

observed functional and biomolecular changes with the radiosensitivity of the utilized tumors 

motivate further clinical studies to investigate whether such changes can be used as potential 

biomarkers of radiation response. 
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Chapter 1: Introduction 

Introduction to head and neck cancer 

Head and neck cancers encompass cancers of the oral and nasal cavity, pharynx, and 

larynx. Because majority of head and neck cancer originate in epithelial layer of mucosal tissue, 

the malignancy is typically referred to as head and neck squamous cell carcinoma (HNSCC)1. 

Repeated tobacco exposure and alcohol dependence are known to be substantial non-intrinsic 

risk factors for HNSCC2. However, oncogenic viruses, such as human papillomavirus (HPV), also 

play significant role in development of HNSCC3. Regardless, HNSCC is the sixth most common 

cancer type with an annual ~800,000 new cases and ~400,000 deaths worldwide4 with 5th lowest 

5-year survival rate of 65%. Over the past few decades HNSCC incidence has slightly reduced 

primarily due to reduction in tobacco consumption and better patient management5. However, the 

annual economic toll of HNSCC to U.S. economy is $14 billion with a median total cost of $80,000 

per person6,7. Because of the high cost of cancer treatment, prevention, early detection, and 

treatment response identification become more cost-effective, and potentially life-saving 

strategies.  

Cancer staging 

According to American Joint Committee on Cancer (AJCC),  cancer staging is based on 

three factors – Tumor size and location, the extent of lymph Node involvement, and the degree 

of  Metastatic spread (TNM)8. Using TNM criteria, head and neck cancer is usually classified into 

one of four major categories. Stage I cancers refer to primary tumors that are 2 cm or smaller and 

remain in their original location. Stage II cancers are 2-4 cm and have not invaded nearby tissues, 

lymph nodes, or distant sites. Stage III cancer, however, refers to tumors larger than 4 cm or 

tumors smaller than 3 cm that have reached one lymph node. Finally, stage IV cancer can be 

defined as tumors that have invaded the nearby tissue, have spread to one or more lymph nodes, 

or to distant sites.  
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Treatment strategies 

Stage I and II HNSCC patients are usually treated with surgery or radiation therapy. 

Although tumor location can influence the choice of treatment, surgery is preferred at early stages 

because it can avoid the toxic side effects of radiation1. Nevertheless, radiation treatment alone 

can also be used as the sole strategy in combating stage I and II cancers. Using advanced 

intensity-modulated radiation therapy that optimizes delivery of radiation to specific volumes, 

radiation exposure to adjacent tissue can be minimized and toxic side effects on normal tissue 

can be avoided9. Radiation for early stage cancer patients is usually delivered in daily fractions of 

2.5 Gy for 6-7 weeks and has been shown to lead to promising results with no major toxic side 

effects10. These treatment strategies in ~80% of early-stage cancer patients lead to complete 

tumor remission. 

However, locally advanced cancers (III and IV) are concurrently treated with daily fractions 

of 2 Gy radiation combined with weekly doses of chemotherapy11. Cisplatin and Cetuximab are 

widely combined with radiation-therapy for treatment of late stage HNSCC and have been shown 

have similar and promising results in treatment of late stage HNSCC patients12. In patients with 

resectable tumors, concurrent radiation and chemotherapy regimen is administered after surgery. 

Nevertheless about 50% of patients with late stage disease experience locoregional recurrence 

(III and IV)13,14. 

Current clinical standard of care 

Retrospective clinical studies have shown that Human Papilloma Virus (HPV) status is a 

good indicator of prognosis, treatment response, and overall survival in HNSCC patients because 

HPV+ patients show significantly better survival and response to radiation compared with HPV-

negative patients15. Thus, for early stage HNSCC patients, endoscopic guided biopsy is routinely 

performed with the goal of identifying HPV status of tumor, determining its radiosensitivity, and 

deciding best treatment strategies (radiation or surgery). However, for late-stage cancer patients, 
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biopsies are not usually performed. Because in late-stage, cancer has already spread to nearby 

tissue or distant site hence, treatment options become limited and patients undergo aggressive 

treatment plans with the aim of halting tumor growth and spread. Furthermore, despite being 

prognostically important, knowledge about HPV status does not lead to undertaking different 

treatment approaches16. Thus, HPV status is not currently considered in treatment planning of 

late-stage head and neck cancer patients.  

Thus, current response evaluation metrics heavily rely on anatomical measurements of 

tumor burden. In 2000, the National Cancer Institute in collaboration with several other 

international organizations published a set of criteria that are used to evaluate a cancer patient’s 

response to given treatment. Response evaluation criteria in solid tumors (RECIST) classifies 

treatment outcomes to three main categories: complete response (CR) in which entire target 

lesion disappears, partial response (PR) in which the longest diameter of target lesions have 

decreased 30% or more, and progressive diseases (PD) in which the target lesion has 

experienced a 20% or greater increase in the longest diameter of the target lesion17. A fourth 

category, stable disease (SD) also exists in which neither sufficient reduction or increase in the 

longest diameter is observed to qualify for PR or PD. The RECIST guidelines utilize tumor growth 

delay assay to monitor tumor burden regression by radiographic imaging as an important factor 

in response evaluation of individual patients18. In particular, computed tomography (CT) and 

magnetic resonance imaging (MRI) are used to determine tumor response 6-8 weeks after 

completion of treatment19. These findings are usually confirmed with positron emission 

tomography (PET) imaging of [18F]-Fluorodeoxyglucose (FDG) uptake several weeks later to 

avoid high false-positive rate because tracer delivery and uptake can be affected by the post-

radiation tumor microenvironment20. Although radiographic imaging 6-8 weeks after treatment can 

be useful in terms of establishing baseline measurements where future recurrence measurements 

can be compared against, it is a very late-stage measurements in terms of radiation response 
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evaluation and identification of responding and non-responding patients. Thus, no method can 

yet determine radiation response of the individual tumors either during or shortly after 

commencement of treatment. Therefore, patients continue to undergo and complete treatment 

plan without proper knowledge about treatment efficacy. Information about treatment response 

either prior to or shortly after commencement of therapy could potentially help oncologists tailor 

treatment plan for individual patients. However, such a knowledge can be gained by having 

profound understanding about the underlying physiological and biomolecular events that shape 

radioresistant phenotype. 

Consequence of radiation therapy on cancer cells 

Ionizing radiation produces free radicals in cells either directly in the DNA or indirectly in 

other molecules, primarily water (H2O). These radiation-induced free radicals, in the presence of 

O2, can generate peroxy radicals (DNA-OO·) capable of breaking chemical bonds and initiating a 

series of events which lead to DNA modification, and cell death (damage fixation). In contrast, 

lack of O2 leads to the reduction of free radicals in DNA and restoration of the original form of 

DNA (DNA-H) leading to cancer cell survival21–23. Landmark studies in clinical head and neck 

cancer and soft-tissue sarcoma have found that pre-treatment oxygenation levels were predictive 

of treatment response and disease-free survival24–26. This important role of oxygen is the rationale 

for fractionated radiation therapy (2 Gy/day for 6–7 weeks), which is believed to re-oxygenate and 

radio-sensitize former hypoxic cells and hence, cause cell death via damage fixation27–29.  

Hypoxia and its role in radiation resistance 

In 1955, Thomlinson and Gray observed uniform distribution of necrotic cells 100-150 μm 

away from blood vessels in human tumors and determined that this distance was equivalent to 

the diffusion limit of oxygen. They reasoned that these cancer cells had become necrotic because 

of the physical distance between them and nearest blood vessels and virtually no oxygen was 

available for their respiration. Thus, they postulated that viable cells located between the blood 
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vessels and the necrotic region had a gradual falling gradient in oxygen tension that caused them 

to become hypoxic30. The concentration of oxygen dissolved in tissue at the time of radiation has 

previously been shown to play an important factor during radiation because hypoxia protects 

cancer cells from toxic effects of ionizing radiation23. These landmark findings led to initiation of 

multiple clinical trials where patients breathed hyperbaric oxygen while undergoing radiotherapy. 

It was rationalized that hyperbaric oxygen breathing can enhance amount of oxygen dissolved in 

plasma and hence, increase tumor oxygen tension and therefore eliminate the problem of 

hypoxia. However, these clinical trials were not universally successful31 as it later became known 

that in addition to chronic hypoxia, other factors including low vascular density and high oxygen 

consumption rate can also contribute to tumor hypoxia which cannot be eliminated by greater 

oxygen delivery32. For the past few decades, hypoxia has primarily been measured by hypoxia-

visualizing markers such as 2-nitroimidazoles. When partial pressure of oxygen < 10 mmHg, 

these markers are typically metabolized in biological tissue by undergoing electron reduction and 

binding to macromolecules which can then be detected by immunohistochemical antibodies33. 

Another technique that enables quantitative determination of hypoxia is oxygen sensing 

microelectrodes, which if mounted on the tip of a surgical needle and inserted through the tumor, 

can determine partial pressure of oxygen34. Polarographic needles have widely been used in 

preclinical and clinical studies and have provided a wealth of knowledge about hypoxia and its 

relevance to deficient disease-free survival in HNSCC patients26,35–38. In addition to being 

implicated to poor radiation outcome, hypoxia also enhances metastatic potential39. In addition, 

hypoxia leads to stabilization of transcription factor hypoxia inducible factor-1 (HIF-1)40. While 

HIF-1 expression is inhibited under oxygenated conditions via prolyl hydroxylases (PHDs), its 

transcription is significantly upregulated under hypoxic conditions22,41,42. HIF-1 significantly 

contributes to tumor aggression and progression by upregulating angiogenic genes, switching to 

anerobic metabolism, and protecting cancer cells from oxidative stress43. However, both hypoxia 
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markers and pO2 measurements are invasive and not amenable to repeated in vivo 

measurements.  

In contrast, optical spectroscopy can be used as an alternative to traditional methods of 

tumor measurement. Optical spectroscopy is a fiber-based approach using non-ionizing radiation 

to non-destructively and non-invasively examine tissue of interest. Their low cost and small 

footprint make optical spectroscopy methods an excellent tool for conducting pilot studies in 

animal models of cancer and in humans. Since optical measurements using the fiber optic probe 

are non-invasive or minimally invasive (depending on the tissue site), the same subject can be 

monitored multiple times a day or over weeks to evaluate response to treatment. In addition to its 

obvious benefits as a clinical adjunct to existing clinical imaging modalities that cannot be used 

every day on patients, optical spectroscopy obviates the need for sacrificing large numbers of 

animals at several time points in longitudinal studies to evaluate treatment response. 

Optical biopsy of head and neck cancer 

Surgical tumor resection is a standard treatment option for early-stage head and neck 

cancer patients. However, adequate discrimination between tumor and normal adjacent tissue 

remains challenging. Current technologies in clinical environment cannot detect cancer cells and 

hence, inspection is limited to visual appearance and palpation of tumor by the trained surgeon. 

This has led to poor surgical success because cancerous cell residuals are left out due to 

incomplete tumor resection in oral cancer patients44. Thus, several studies have investigated the 

potential of optical biopsy for real-time guidance of surgeons during intraoperative cancer 

resection.  

One such optical biopsy can be collected using in vivo measurements of intrinsic 

fluorescence spectroscopy because it has been shown that compared to normal oral tissue, tumor 

lesions have lower green and higher red fluorescence45. Based on this premise, Muller et al 

compared in vivo intrinsic fluorescence spectra of normal and cancer sites in upper aero-digestive 
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tract of HNSCC patients. They identified biochemical and structural differences between these 

sites that were driven by collagen and nicotinamide adenine nucleotide (NAD)46. In a similar study, 

Roblyer et al utilized autofluorescence imaging coupled with objective image analysis and were 

able to accurately discriminate oral neoplasia from nonneoplastic tissue46. In addition to 

autofluorescence spectroscopy, diffuse reflectance spectroscopy (DRS) has also been utilized 

towards fulfilling this goal. Beumer et al used DRS in differentiating malignant and non-malignant 

head and neck cancer patients and identified significant differences driven by oxygenation of 

these two tumor types47. Hu et al used oxygen saturation, total hemoglobin concentration, and 

reduced scattering coefficient extracted from DRS measurements for comparing properties of 

malignant tumors from contra-lateral normal tissue and observed statistically significant 

differences between two sample types48.  Several studies have also used Raman spectroscopy 

(RS) for such comparisons. On ex vivo tumor samples, Valdez et al identified different indexes of 

protein, phenylamine, and lipid between healthy tissue and oropharyngeal carcinoma49. Krishna 

et al used in vivo Raman spectra collected from lesions of oral cavity to develop multivariate 

statistical algorithm that was able to discriminate normal from abnormal spectra with 94% 

sensitivity and specificity50. Barroso et al studied the changes in concentration of water across the 

tumor border on tumor specimens freshly excised from oral cavity. They observed Raman spectra 

of water had a transition to lower concentrations in healthy surrounding tissue compared with high 

concentrations in tumor51. These studies show the premise of optical spectroscopic methods for 

guiding surgeons during intraoperative surgery with the goal of accurately differentiating 

cancerous lesions from normal surrounding tissue. More simple and inexpensive setups using 

fiber-optic microendoscopic systems have also been shown to lead to promising results. Muldoon 

et al used such a setup for comparing microendoscopic images of subcutaneous tumor model to 

their histopathological assesment52. Using nuclear to cytoplasmic ratio, they presented very 

similar results to histopathological gold-standard measurements. In a more recent study, the 

same group compared images of oral squamous cell carcinoma specimen acquired by high-
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resolution microendoscopy to histopathological classification of neoplastic and non-neoplastic 

tissue and found average sensitivity and specificity of 82 and 84% respectively53.  

Although these studies present the potential of optical measurements in better diagnosis 

of head and neck tumors, translation of these methods to the clinic has been limited due to the 

ability of histopathology of tumor biopsies to provide accurate diagnoses. However, patients 

undergoing chemoradiation therapy rarely have tissue biopsied before or during therapy. 

Therefore, there is a critical and unmet clinical need for technologies to identify treatment 

response early during therapy. Given the established ability of optical spectroscopy for evaluating 

functional and biomolecular status of tissue and the lack of other standard clinical methods, such 

as imaging or biopsy, there is significant potential for successful translation of noninvasive optical 

methods to monitor radiation response in HNSCC. In this dissertation, we present two specific 

techniques - diffuse reflectance and Raman spectroscopy – to gain a better understanding of 

radioresistant phenotype and identify physiological and biomolecular differences among 

radiation-sensitive and -resistant tumors that can be exploited in the clinic. 

Specific aims 

The overall goal of this research is to identify biomarkers that can differentiate late-stage 

radiation-responsive and non-responsive patients prior to, or at early days after commencement 

of radiation-therapy. However, such an insight requires deeper understanding of underlying 

physiological and biomolecular events that shape radioresistant phenotype in a head and neck 

patients. This dissertation used two human head and neck cancer models (UM-SCC-22B and 

UM-SCC-47) with opposing radiosensitivity in studying physiological and biomolecular differences 

between two tumor types. These human-derived cancer cells were used to form murine tumor 

xenografts and were treated with small doses of radiation which mimics the employed dose in 

treatment of real head and neck cancer patients. First, we used diffuse reflectance spectroscopy 

(DRS) in studying physiological changes induced by radiation and whether these changes differed 
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among radiation-resistant and -sensitive tumors. Second, we used Raman spectroscopy (RS) in 

studying radiation-induced biomolecular changes in radiation-resistant and -sensitive tumors.  

Before utilizing DRS measurements in studying radiation-response, we first sought to 

validate the sensitivity of DRS to different levels of oxygenation (Chapter 2). Next, we used DRS 

in studying differential radiation-induced reoxygenation kinetics of radiation-resistant and -

sensitive tumors. Using extracted optical parameters, we trained a logistic regression model which 

accurately differentiated -radiation-resistant and -sensitive tumors (Chapter 3). Finally, we used 

RS to study innate and radiation-induced biomolecular differences in radiation-resistant and -

sensitive tumors (Chapter 4). In addition to optical measurements in chapters 3 and 4, we also 

investigated the biological pathways that contributed to the observed reoxygenation and 

biomolecular changes. Finally, we performed a pilot clinical trial assessing feasibility of diffuse 

reflectance measurements in head and neck cancer patients with diseased tonsils. During the 

next 3 chapters, this dissertation investigates 3 specific aims outlined as below: 

Specific Aim 1: Validate DRS-measured tumor vascular oxygen saturation sO2 using 

immunohistochemically determined tumor hypoxic fraction.  

Publications: 

▪ Dadgar, S., Troncoso, J. R. & Rajaram, N. Optical spectroscopic sensing of tumor hypoxia. 

J. Biomed. Opt. 23, 1–10 (2018), chapter 2 of this dissertation.  

Background: As mentioned previously, tumor hypoxia at the time of irradiation has been 

identified as a hallmark of poor response to radiation as patients with hypoxic tumors survive 

significantly shorter compared to patients with well-oxygenated tumors24,25,35. Thus for the past 

few decades, hypoxia visualizing markers33,37 and tissue oxygen sensing microelectrodes34–36 

have extensively been utilized in measuring tumor hypoxia (or oxygenation) and its association in 

radiation-response of preclinical animal models and clinical human patients. However, histological 

assessment of hypoxia requires administration of hypoxia probes (e.g. pimonidazole 
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hydrochloride). In addition, microscopic visualization techniques are required for evaluation of 

extent of hypoxia which necessitates tumor biopsy or excision. On the other hand, pO2 sensing 

microelectrodes require insertion into tumor thru needles which can distort tumor architecture. 

Thus, both methods preclude tumors from longitudinal studies because repeated and repetitive 

measurements of tumors is not feasible. In contrast, diffuse reflectance spectroscopy can 

measure vascular oxygen saturation in vivo and hence, can be used as a negative indicator of 

hypoxia. However, no study has yet investigated the association between optically determined-

vascular oxygenation with gold standard methods of hypoxia determination, namely hypoxia 

sensing markers.  

Objective: To compare optical measurements of tumor vascular oxygenation against 

immunohistochemical measures of hypoxia from histological slides collected at three different 

depths of tumor including a depth that corresponds to the penetration depth of our optical probe. 

Hypothesis: Optically determined vascular oxygen saturation (sO2) and total hemoglobin 

concentration (THb) will be negatively correlated with immunohistochemically determined tumor 

hypoxia. Specifically, we hypothesize very low values of sO2 and THb to associate with highly 

hypoxic tumors and vice versa.  

Significance: Non-invasive and in vivo measurement of tumor vascular oxygenation that is a 

negative indicator of tumor hypoxia can be an alternative approach for replacing hypoxia 

visualizing markers and tissue oxygen sensing microelectrodes. In addition to providing functional 

information about tumors, DRS is also capable of characterizing structural changes that occur in 

tumor microenvironment as tissue scattering has been shown to be a strong biomarker of cell 

necrosis54. This aim is investigated in chapter 2 of this dissertation. 
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Specific Aim 2: Investigate radiation-induced short and long-term changes in oxygen 

saturation in radiation-resistant and -sensitive head and neck tumor xenografts using 

diffuse reflectance spectroscopy.  

Publications: 

▪ Dadgar, S., Troncoso, J. R., Siegel, E. R., Curry, N. M., Griffin, R. J., Dings, R. P. M. & 

Rajaram, N. Spectroscopic investigation of radiation-induced reoxygenation in radiation-

resistant tumors. Neoplasia 23, 49–57 (2021), chapter 3 of this dissertation. 

Background: 

Head and neck cancer patients diagnosed at late stage are usually treated with 1.8-2 Gy 

of radiation in daily basis for a period of 7 weeks. Dose fractionation is believed to lead to 

reoxygenation of former hypoxic cells and hence, increase in cell killing. Thus, phenomenon of 

reoxygenation can be used as a biomarker of radiation-response. Several studies have used 

diffuse reflectance approach in monitoring radiation-induced reoxygenation kinetic and its 

association with radiation response of preclinical animal models of head and neck cancer55,56. 

Although these studies established the sensitivity of DRS to radiation-induced reoxygenation and 

its association with radiation-response, it remains unclear whether diffuse reflectance 

spectroscopy is sensitive to functional changes that are induced by smaller doses of radiation. 

Objective: To study short- and long-term reoxygenation kinetics induced by small doses of 

radiation and its differences among radiation-sensitive and -resistant tumors. We also sought to 

use the observed fold changes in training a logistic regression model to determine if we can 

accurately differentiate radiation-resistant and -sensitive tumors. Finally, we investigated the 

biological pathways that play important role in causing the observed reoxygenation in radiation-

resistant and -sensitive tumors. 
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Hypothesis: Radiation-sensitive tumors will have a greater rate of reoxygenation in comparison 

to radiation-resistant tumors. 

Significance: This work provides valuable information about differential functional changes within 

radiation-resistant and -sensitive tumor at early time points after treatment with low doses of 

radiation which are representative of utilized doses in treatment of head and neck cancer patients. 

Our findings illustrate the potential of this technique for clinical translation where treatment 

response of patients can be monitored. This aim is investigated in chapter 2 of this dissertation. 

Specific Aim 3: Establish early radiation-induced biomolecular alterations in radiation-

resistant and -sensitive head and neck tumor xenografts using Raman spectroscopy.  

Background: 

In addition to vascular changes, radiation can also induce biomolecular changes in tumor 

microenvironment which can be detected with Raman spectroscopy. Several studies have 

associated such biomolecular changes with radiation sensitivity of utilized cells and tumors57–60. 

However, such studies of radiation-induced biomolecular changes have been limited to in vitro 

cellular studies or excised tumors. No study has yet used in vivo Raman spectroscopy for 

monitoring differential biomolecular changes in radiation-resistant and -sensitive tumors.   

Objective: To study radiation-induced biomolecular alterations in microenvironment of radiation-

resistant and -sensitive tumors in early time points after radiation which can be combined with 

DRS measurements.  

Significance: This work motivates the use of combined diffuse reflectance and Raman 

spectroscopy for longitudinal monitoring of tumor oxygenation and biomolecular content and their 

evolution in response to radiation in radiation-resistant and -sensitive tumors.  
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Chapter 2: Optical spectroscopic sensing of tumor hypoxia 

Introduction 

Low oxygen tension or hypoxia is caused by the imbalance between oxygen delivery and 

consumption1–4. Hypoxia is typically defined at the cellular level as oxygen tension (pO2) < 10 

mmHg. Oxygen-sensing Clark microelectrodes have established a wealth of knowledge related 

to hypoxia and its role in poor disease-free survival5–7. These electrodes provide a direct measure 

of pO2 and hence hypoxia in tissue. To measure oxygen tension in vivo, the electrode is inserted 

into tissue to a certain depth and retracted along tracks to provide pO2 measurements at several 

points along these tracks. Such measurements of hypoxia have been associated with tumor 

aggressiveness, resistance to chemotherapy and radiation therapy4,8–11, and shown to be 

predictive of tumor metastases in soft tissue sarcoma12. It has also been reported that local 

recurrences have a higher hypoxic fraction (HF) than primary tumors13,14. These studies have 

demonstrated that measuring tumor oxygenation either prior to or during therapy could aid in the 

selection of appropriate treatment regimens for patients. However, microelectrode-based pO2 

measurements are always invasive (requiring tumor penetration), limited to only accessible 

organs, can potentially modify the tumor microenvironment, and are not amenable to repeated 

measurements in vivo. A combination of pulsed electron paramagnetic resonance imaging and 

magnetic resonance imaging has been shown to provide quantitative three-dimensional maps of 

tumor pO2 co-registered with anatomical detail in preclinical animal models15. Other than an 

intravenous injection of the triarylmethyl radical (TAM) probe used to sense oxygen, this 

technology would allow noninvasive and repeated imaging of pO2 in vivo. However, the 

instrumentation in its current form presents a challenge to clinical translation. 

Other established methods to measure tumor hypoxia include the use of 

pimonidazole6,7,16,17 and EF518, two widely used markers that provide quantitative measures of 

tumor hypoxia. Both pimonidazole and EF5 accumulate by forming adducts with thiol groups 
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present in proteins in hypoxic cells. Pimonidazole accumulates in cells with pO2 < 10 mmHg and 

has been used extensively to map hypoxic regions in excised tumors in animal models. EF5 has 

been demonstrated in both animal and human studies (using a fluorinated form of EF5) and can 

be calibrated to provide information about both location and level of hypoxia19. Since quantification 

using these markers requires either tumor excision after administration or the use of radioisotopes 

for in vivo labeling, it precludes their use in longitudinal animal and human studies, where tumor 

oxygenation could potentially be used as a biomarker of treatment response or local recurrence. 

For accessible tumors of the skin and oral cavity, optical fiber-based diffuse reflectance 

spectroscopy (DRS) can provide a nondestructive and noninvasive alternative to the 

microelectrode for quantitatively evaluating tumor oxygenation. The tissue of interest is 

illuminated with visible light from a broadband source (400 to 650 nm) and the reflected light is 

used to quantify the underlying scatterers and absorbers, a combination of which is used for 

recognition of tissue pathology. Tumor vascular oxygenation (sO2) can be quantified by measuring 

the individual contributions of oxygenated (HbO2) and deoxygenated (dHb) hemoglobin within the 

blood vessels. Thus, DRS provides an indirect measure of tissue pO2 by quantifying the 

“supply”— oxygenation levels in the vasculature using sO2 and perfusion levels using total 

hemoglobin concentration (HbO2 + dHb). DRS has previously been used to measure tumor 

oxygenation in small animal model studies to determine treatment response. Vishwanath et al 

found that longitudinal changes in dHb, as quantified by DRS, after treatment with doxorubicin 

were concordant with changes in tumor HF20. Palmer et al demonstrated that DRS-based 

measurements of sO2 were more stable compared with microelectrode-based measurements of 

pO2; furthermore, the direction of change of sO2 in response to perturbations in the composition 

of inhaled air in mice was concordant with pO2 measurements21. This study builds upon these 

previous reports to validate DRS measures of sO2 using pimonidazole based quantification of 

tumor HF in two human head and neck cancer cell-based xenografts. In addition to evaluating HF 

at a depth corresponding to the sampling depth of our probe, we also determined the HF at two 
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other depths within excised tissue and compared these measurements to sO2. Our results indicate 

that DRS-based measurements of sO2 can provide reliable estimates and thus enable longitudinal 

tracking of tumor HF in studies, where tumor hypoxia can be a significant biomarker of treatment 

response. 

Materials and Methods 

Cell culture and tumor xenografts 

All studies and protocols were approved by the Institutional Animal Care & Use Committee 

(IACUC) of University of Arkansas. Twenty nude mice were housed at the Central Laboratory 

Animal Facility (CLAF). Mice were maintained under standard 12-h light/dark cycles with ad 

libitum access to food and water. Mice were subcutaneously injected with either UM-SCC-47 (n 

= 10) or UM-SCC-22B (n = 10) human head and neck cancer cells. Cells were cultured in a 

mixture of Dulbecco’s modified Eagle medium, 10% fetal bovine serum, 1% Penicillin–

Streptomycin, 1% nonessential amino acids, and 1% L-glutamine. Head and neck tumor 

xenografts were formed by injecting 1.5 million cells suspended in 1∶1 mixture of Matrigel 

(Corning, New York) and saline into the right flank of these animals. When tumor volumes reached 

1500 mm3, mice received an intraperitoneal injection of pimonidazole (at a dose of 60 mg/kg). An 

hour post injection, the animals were anesthetized by breathing 1.5% isoflurane (mixed with 

oxygen) and diffuse reflectance spectra were acquired from each tumor. Immediately after DRS 

measurements, the tumors were resected (with skin) and snap-frozen for histology. 

Diffuse reflectance spectroscopy 

Figure 1(a) presents our DRS setup. This simple and portable system consists of a 

halogen lamp (HL-2000, Ocean Optics, Dunedin, Florida) for illumination, a USB spectrometer 

(Flame, Ocean Optics) for spectral acquisition, and a bifurcated optical probe for light delivery 

and collection. DRS spectra were acquired in the wavelength range of 475 to 600 nm. The 

common end of the probe is illustrated in Figure 1(b) and consists of four illumination fibers and 
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five detector fibers located at a source–detector separation distance (SDSD) of 2.25 mm. Based 

on previously described methods, we determined the sampling depth of this SDSD to be ∼1.8 

mm22. Reflected light spectra were collected using this system with an integration time of 100 ms. 

Spectral acquisition was simplified with the use of a foot pedal controlled by custom LabVIEW 

(National Instruments, Austin, Texas) software. With the exception of three tumors on which 

multiple spectra were recorded, only one spectrum was measured from each tumor. For tumors 

with multiple spectra, averaged optical properties were used to represent that tumor. Spectra 

acquired from tissues were background-subtracted to correct for dark current and ambient light. 

To calibrate for light throughput, the background-subtracted reflected light intensity from tissue 

was divided by background-subtracted reflected light intensity from an 80% reflectance standard 

(SRS-80-010; Labsphere, North Sutton, New Hampshire). 

Quantification of tissue optical properties 

We used a lookup table (LUT)-based model to fit the acquired DRS spectra and extract 

wavelength-dependent absorption and scattering properties from tissue. The LUT-based model 

has been described in detail previously23 and validated for a range of SDSD22. Briefly, the LUT is 

generated from reflectance spectra acquired from a matrix of tissue-simulating phantoms of 

known absorption (𝜇𝑎) and scattering (𝜇𝑠′) coefficients. These phantoms contained India ink (Salis 

International Inc., Golden, Colorado) and polystyrene microspheres beads (diameter = 1 μm; 

Polysciences, Warrington, Pennsylvania) of known concentrations dissolved in water to create a 

range of absorption and scattering coefficients, respectively. The LUT corresponding to the SDSD 

used in this study was validated using tissue-simulating phantoms and found to have errors of 

9.5% and 1.5%, respectively, for quantifying 𝜇𝑎 and 𝜇𝑠′, respectively. To fit the model to the data, 

we constrained scattering to a power law dependence on wavelength and represented it by the 

equation: 𝜇𝑠
′ (𝜆) =  𝜇𝑠

′ (𝜆0). (
𝜆

𝜆0
)

−𝐵
, where 𝜆0 = 630 nm. The absorption coefficient is computed as 

a linear sum of absorbers based on Beer–Lambert’s law. Assuming the principal absorbers to be 



22 
 

HbO2, dHb, and mouse skin, the absorption coefficient is given by : 𝜇𝑎(𝜆) = [𝐻𝑏][𝛼𝜎𝐻𝑏𝑂2
(𝜆) +

(1 − 𝛼)𝜎𝐻𝑏(𝜆)] + [𝐶]𝑠𝑘𝑖𝑛(𝜆), where α is the vascular oxygenation and σ is the extinction 

coefficient of hemoglobin (oxygenated or deoxygenated). We have previously shown that the 

effects of pigment packaging, which describes the inhomogeneous distribution of hemoglobin 

within tissue, are minimal at wavelengths beyond 500 nm24. Therefore, we did not include a 

correction factor to account for pigment packaging. 

Immunohistochemistry 

All harvested tumors were sectioned using a Cryostat (CM 1860; Leica, Inc., Nussloch, 

Germany) to slices of 10 μm. Care was taken to slice the frozen tumors starting from the skin 

side, where the DRS measurements were initiated. Multiple slices were acquired from each tumor 

at depths corresponding to 0.8, 1.8, and 2.8 mm, with separate, sequential slices utilized for 

immunofluorescence and histology. All the collected samples were immunestained with a direct 

labeling protocol. First, the slides were hydrated in phosphate-buffered saline (PBS) and 

permeabilized with 0.1% Triton-X. Next, the slides were incubated with blocking solution (95% 

PBS, 4% goat serum, and 1% sodium azide) in room temperature for an hour and stained with 

mouse monoclonal antibody conjugated to Dylight™ 549 fluorophore (Hypoxyprobe Red549 kit; 

HPI, Inc., Burlington, Massachusetts) for an hour in a dark room. Finally, slides were rinsed with 

PBS, covered with fluoromount, and coverslipped with nail polish. Slides were dried for 24 h prior 

to imaging. All images were acquired using a 4× objective on a Nikon fluorescence microscope 

with same settings (binning, exposure time, and gain). 

Quantification of hypoxic fraction and image analysis algorithm 

Pimonidazole accumulates in tissue, where the intracellular oxygen level drops below 10 

mmHg25. We analyzed all of the acquired immunofluorescence images using MATLAB 

(Mathworks; Natick, Massachusetts). At each depth within the tumor—0.8, 1.8, and 2.8 mm 

[Figure 2(a)]—immunofluorescence and histology (H&E-stained) images were acquired from 
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multiple fields of view from each tumor slice. For representative purposes alone, a fully stitched 

image of pimonidazole immunofluorescence is presented in Figure 2(b) along with its 

corresponding H&E image from an adjacent tumor slice. Each tumor slice consisted of an average 

of 15 fields of view (1.5 mm × 1.1 mm). We converted each individual image to its gray-scaled 

and normalized version and calculated a threshold using Otsu’s method to segment out the 

pimonidazole- positive pixels26. Next, we averaged all thresholds to compute a global threshold. 

This global threshold was used to segment all of the images, and HF of each image was quantified 

as the ratio of hypoxic (segmented) pixels to the total number of tissue pixels. Figure 2(c) presents 

a flowchart of the image processing algorithm employed for this analysis. The average HF 

corresponding to each depth within a tumor is reported here. 

Results and Discussion 

Figure 3(a) presents DRS spectra and their corresponding LUT fits (red lines) for two 

different tumors that were excised at similar tumor volumes. Quantification of optical properties 

using the LUT fits identified different values of sO2 for each tumor. This is evident in the 

wavelength-dependent absorption coefficients for each tumor, which demonstrate the classic 

double peaks of HbO2 (542 and 577 nm) for the tumor with recovered sO2 of 58%. On the other 

hand, the 𝜇𝑎 spectrum for the tumor with sO2 of 15% indicates poor oxygenation with a single 

peak corresponding to dHb [Figure 3(b)]. IHC images of HF corresponding to both tumors 

illustrate that the tumor with higher sO2 has a lower percentage of hypoxic tissue compared with 

the low-sO2 tumor [Figure 3(c)]. 

We determined the association between the HF and the scattering and absorption 

properties of the UM-SCC-22B and UM-SCC-47 tumors. We found a statistically significant 

negative correlation (r = −0.50; p = 0.02) between the HF and sO2 [Figure 4(a)]. We also observed 

similar statistically significant correlations of the HF with THb [Figure 4(b); r = −0.45; p = 0.04] and 

HbO2 [Figure 4(c); r = −0.59; p = 0.006]. Taken together, these results indicate that measurements 
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of vascular sO2 and THb can provide reliable estimates of the hypoxic state of tissue. Specifically, 

very low values of sO2 and THb can point to highly hypoxic and poorly perfused tumor. 

In addition to evaluating hemoglobin-based parameters, we determined the relationship 

between HF and the mean reduced scattering coefficient [Figure 4(d)]. We found a statistically 

significant positive correlation between the two parameters (r = 0.60; p = 0.005). Since all our 

tumors were excised at similar tumor volumes, this correlation is unlikely due to tumor volume. A 

previous study using optical spectroscopy by Vishwanath et al found a highly significant positive 

correlation between mean reduced scattering coefficient and tumor necrotic fraction20. Although 

we do not completely understand the relationship between HF and scattering in our study, it is 

possible that the highly hypoxic tumors also contained larger necrotic areas—the cellular and 

structural changes associated with tumor necrosis could potentially contribute to the increased 

scattering seen here27,28. Our future studies include plans to transiently modify tumor hypoxia 

levels6 and measure the association between HF and tissue scattering and absorption. These 

studies could potentially shed further light on the basis for these interactions. 

We also investigated the HF as a function of depth within each tumor. HF was calculated 

at additional depths of 0.8 and 2.8 mm from the surface of the tumor. For each tumor, the fold-

change in HF at 1.8 and 2.8 mm was calculated with respect to the HF at 0.8 mm. Although we 

observed a trend toward increasing HF with depth, this was not statistically significant (Figure 5). 

These results are similar to a recent study using multispectral optoacoustic tomography on 

prostate cancer xenografts that found a well-oxygenated rim and a large decrease in oxygenation 

toward the tumor core29. Furthermore, we did not find statistically significant correlations between 

optical properties and HFs at depths of 0.8 and 2.8 mm (data not shown). Although tumor 

xenografts are typically considered to be homogeneous, it is interesting to note a lack of 

correlation at depths that do not lie within the range of sampling depths of the probe. 

In summary, we have demonstrated that the vascular oxygenation and total hemoglobin 

concentration measured using DRS are concordant with measurements of HF and can provide 
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reliable indirect measures of tumor oxygenation. Monitoring changes in tumor oxygenation during 

therapy—radiation or chemo—can provide clinicians with a complementary aid to identify 

treatment response and provide opportunities to investigate hitherto unknown reoxygenation 

kinetics in preclinical animal models in response to clinically relevant treatment regimens. 
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Tables and figures 

 

 

Figure 1. (a) Experimental DRS setup and (b) bifurcated fiber optic probe illustrating the common 
tissue end, the source end that is connected to the light source, and the detector end that is 
connected to the USB spectrometer. 
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Figure 2. (a) Schematic of optical probe placed on tissue indicating the three depths at which 
tumor slices were extracted for immunohistochemistry. (b) Stitched H&E and pimonidazole 
immunofluorescence images of a tumor slice from a depth of 1.8 mm. Scale bar corresponds to 
1.8 mm. (c) Flowchart describing the image analysis to calculate HF. Scale bar in these images 
corresponds to 600 μm. 
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Figure 3. (a) Representative in vivo DRS spectra and their LUT fits from UM-SCC-22B tumors 
with different levels of sO2. (b) Corresponding wavelength-dependent absorption coefficients 
determined from LUT fits to the spectra. (c) Processed pimonidazole immunofluorescence images 
from the same tumors. The calculated HF and vascular oxygenation are shown for each image. 
Scale bar corresponds to 600 μm. 
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Figure 4. Scatter plots representing the relationship between HF measured at a depth of 1.8 mm 
and DRS-based measures of (a) sO2, (b) THb, (c) HbO2, and (d) mean 𝜇𝑠′ from UM-SCC-22B 
(red stars) and UM-SCC-47 (blue asterisks). Black solid line indicates the regression line. 
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Figure 5. Fold-change in tumor hypoxia levels with depth relative to the HF measured at 0.8 mm. 
Error bars represent standard deviation of the mean. 
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Chapter 3: Spectroscopic investigation of radiation-induced reoxygenation in radiation-

resistant tumors 

Introduction 

The majority of patients diagnosed with head and neck squamous cell carcinoma 

(HNSCC) present with locally advanced disease (Stage III or IV)1 and are treated with a 

combination of surgery, radiation, and chemotherapy2. The treatment regimen can last several 

weeks and typically takes the form of daily radiation therapy - 2 Gy/day; 5 days/week for 7 weeks 

– and weekly chemotherapy sessions. The delivery of radiation therapy in multiple fractions is 

hypothesized to cause cell death of oxygenated cells and leads to reoxygenation and 

radiosensitization of previously hypoxic cells3–5. Fractionated radiation therapy is believed to 

overcome the challenge of hypoxic tumors, which have been shown to be associated with poor 

long-term outcome6–9. Studies in patients and animal models using oxygen-sensing 

microelectrodes have offered evidence that an increase in tumor oxygenation or reoxygenation 

between dose fractions is associated with positive treatment response10,11. Despite providing 

absolute measures of oxygenation in tissue, these microelectrodes could disrupt the 

microenvironment when inserted into the tumor and are therefore not amenable to repeated 

measurements. 

In contrast to microelectrodes, diffuse reflectance spectroscopy is an optical fiber-based 

technique that can non-invasively quantify hemoglobin oxygen saturation within a sampled tissue 

volume. DRS is sensitive to light absorption by hemoglobin, the primary oxygen carrier in blood, 

and can determine the concentrations of oxygenated and deoxygenated hemoglobin present and 

hence allow calculation of hemoglobin oxygen saturation12,13. Measurements of hemoglobin 

oxygen saturation from tumors with DRS have been shown to be concordant with simultaneous 

pO2 measurements using oxygen-sensing microelectrodes14,15. In addition, we have found a 

significant negative correlation between vascular oxygenation and immunohistochemical 

assessment of tumor hypoxic fraction16. Leveraging the noninvasive capabilities of DRS and its 
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sensitivity to tumor hemoglobin oxygen saturation, Hu et al found that early reoxygenation during 

the treatment regimen was associated with treatment failure whereas late reoxygenation about 

10 days after treatment was associated with local control in head and neck tumor xenografts17. 

These studies utilized a hypofractionated dosing schedule of 7.5-13.5 Gy/day for 5 consecutive 

days. Interestingly, previous work from our lab has also uncovered radiation-induced 

reoxygenation in radiation-resistant lung tumor xenografts in the first 24-48 hours after radiation. 

These studies were conducted in a matched model of radiation resistance treated with 

conventional fractionation of four 2 Gy doses over two consecutive weeks18. However, this work 

did not explore the mechanism of reoxygenation in the treatment-resistant tumors or relate 

reoxygenation to treatment outcome.   

The primary goal of the current study was to determine radiation-induced changes in tumor 

oxygenation in head and neck tumor xenografts and investigate the association of this 

reoxygenation with tumor local control or recurrence. We used two previously characterized 

patient-derived HNSCC cell lines - UM-SCC-22B and UM-SCC-47 – to represent radiation 

sensitivity and resistance, respectively19,20, and treated tumor xenografts with four 2 Gy fractions 

over 2 consecutive weeks (total dose of 8 Gy). We acquired optical spectra and quantified tumor 

oxygenation every day for 14 days, including immediately before and an hour after radiation on 

treatment days. Our results suggest that while reoxygenation patterns can be observed in both 

radiation-resistant and -sensitive tumors, the kinetics and source of this reoxygenation can be 

very different, depending on the radiation sensitivity. Given the importance of oxygen supply and 

consumption within a tumor and their roles in modulating response to radiation, these results shed 

light on the importance of longitudinal, real-time measurements of tumor oxygenation during 

radiation therapy to differentiate radiation responders from non-responders and hence improve 

response rates. 
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Materials and Methods 

Cell culture 

Cell culture conditions have been reported in detail in chapter 2. Oxygen consumption rate 

(OCR) of UM-SCC-22B and UM-SCC-47 cells were determined using a Seahorse metabolic flux 

assay as described previously21. Head and neck tumor xenografts were formed by injecting 1.5 

million cells suspended in 1∶1 mixture of Matrigel (Corning, New York) and saline into the right 

(treated group) or both (control group) flanks of nude mice (see tumor distribution in Table 1). 

Tumor xenografts and fractionated radiation treatment 

Animals in the treated (XT) groups underwent radiation treatment with four doses of 2 Gy 

over two consecutive weeks (8 Gy in total)20 using an X-rad 320 biological cabinet (Precision X-

Ray, North Branford, CT) (see treatment schedule in Figure 1A), while animals in the NT groups 

served as controls. Animals were placed in the center of a 20 x 20 cm X-ray radiation field. During 

radiation treatment, mice were kept under anesthesia using a mixture of isoflurane (1.5% v/v) and 

oxygen while the entire animal body was covered under lead blocks except the tumor. Greening 

et al have shown this combination and dose to closely mimic no anesthesia conditions22. Mice 

were monitored daily, and tumors were excised if: 1) tumor volume reached 1500 mm3 2) tumor 

necrosis was observed 3) other health related issues occurred. A subset of mice from each of the 

4 groups were euthanized and tumors were excised at baseline, 24, and 48 hours after a single 

2 Gy dose of radiation (see Table 2). 

Diffuse reflectance spectroscopy 

Our portable spectroscopic system consists of a tungsten halogen lamp (HL-2000, Ocean 

Optics, Dunedin, Florida) as light source, a USB fiber optic spectrometer (Flame, Ocean Optics) 

for spectral light acquisition, and a bifurcated optical probe (dia.= 200 µm, NA=0.22; FiberTech 

Optica, Kitchener, ON, Canada) for light delivery and collection. The probe tip was used for light 

delivery and collection and is equipped with four illumination and five detector fibers located at a 
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source-detector separation distance (SDSD) of 2.25 mm with a sampling depth of approximately 

1.8 mm13. We used a foot pedal controlled with custom LabVIEW software (National Instruments, 

Austin, Texas) for data acquisition. About 2-5 spectra in the wavelength range of 475 to 600 nm 

were collected and averaged optical properties were used to represent that tumor in temporal 

analysis. Because the surface area of our probe (32 mm2) is always smaller than the surface area 

of typical tumor under investigation (average ~ 200 mm2), we were able to collect multiple spectra 

from various parts of the tumor. Prior to any optical measurement from animals, reflected light 

intensity from an 80% reflectance standard (SRS-80-010; Labsphere, North Sutton, New 

Hampshire) was acquired to calibrate for daily variations in light throughput. Optical spectra from 

each tumor were recorded daily for a period of 14 days (see optical measurements schedule in 

Figure 1A) while animals were under anesthesia (1.5% v/v isoflurane mixed with 100% oxygen). 

Analysis of acquired optical spectra was performed using an experimental model. See chapter 2 

for details. 

Logistic regression and leave-one-out cross-validation 

To construct an artificial intelligence-based classification algorithm, we employed a logistic 

regression (LR) model because of its simplicity. Five extracted optical properties from each tumor 

normalized to its pre-treatment value were used as input parameters while the model output 

discriminates two classes (local-control: 0, treatment-failure: 1). In order to train our LR model, 

we used the spectra from 27 treatment-failure and 16 local-control tumors. We labeled our tumors 

to be treatment-failure if two weeks after initiation of therapy, the volume had increased ≥ 25% of 

the initial volume of 200 mm3. Weights of the LR model were fine-tuned using gradient decent 

optimization algorithm with a learning rate of 0.0001. The training weights were iteratively adjusted 

for 50 epochs. Model accuracy was assessed using a leave-one-out cross-validation algorithm. 

All optical properties of individual tumors and their corresponding binary label were sequentially 

excluded, and the remaining data set were used to train the model and the accuracy of the model 
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was evaluated on the left-out tumor. Logistic regression analysis was conducted by scripts written 

in MATLAB (Mathworks, Natick, Massachusetts). 

Immunohistochemistry 

An hour prior to euthanasia, mice were injected (i.p.) with Pimonidazole (60 mg/kg – 

Hypoxyprobe, Burlington, MA). After tumor resection and euthanasia, the flash-frozen tumors 

were sliced into sections of 10 μm using a cryostat (CM 1860; Lecia, Inc., Nussloch, Germany). 

We followed a direct labeling protocol in immunostaining of harvested samples23: After 

acclimatization to room temperature, slides were hydrated in PBS and a hydrophobic barrier was 

formed around each tissue section using a pap pen (Vector Laboratories, Burlingame, CA). Slides 

were fixed with 4% PFA, permeabilized using 0.5% Triton-X 100, and non-specific binding was 

blocked at room temperature using an in-house blocking solution (95% PBS + 4% goat serum + 

1% sodium azide) for an hour. Slides were then stained with mouse monoclonal antibody 

conjugated to DylightTM 549 fluorophore (Hypoxyprobe Red 549 kit; HPI, Inc, Burlington, MA). 

Serial slides were also incubated with primary HIF-1α rabbit (NB100449 – NOVUS Biologicals, 

Littleton, CO) and VEGF-R2 rabbit (9698S – Cell Signaling Dancers, MA) antibodies for 3 hours 

at room temperature. The slides were next tagged with Alexa Fluor 488 goat anti-Rabbit (A-11008, 

Thermo Fisher Scientific, Waltham, MA; for HIF-1α) and (4412S-Cell Signaling; for VEGF-R2). 

The entire tumor section on each slide was imaged using a confocal microscope (Fluoview FV10i, 

Olympus) using a 10X objective (UPLSAPO10X, NA = 0.4, Olympus). Images acquired from 

individual regions of interest (ROI) were stitched using the microscope software. Stitched images 

were binarized using a fixed threshold to separate pixels containing true signal from the 

background. This fixed threshold was identified from representative histograms where the signal 

of non-specific background differed from the true signal. Four tumor sections were treated without 

Pimonidazole-specific, HIF-1α-specific, and VEGF-R2-specific antibodies to determine 

endogenous tissue autofluorescence, which was found to be negligible. Two tumor tissue sections 
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were also incubated with secondary AF488 antibody without HIF-1α and VEGF-R2 specific 

antibodies to determine the presence of any non-specific binding tissue section, which was found 

to be absent. Finally, percentage of Pimonidazole positive, HIF-1α positive, and VEGF-R2 positive 

pixels within each tissue section was calculated by dividing segmented pixels by the total number 

of tumor tissue pixels.  

It is worth mentioning that HIF-1α from Santa Cruz biotechnology (13515) had strong non-

specific binding and did NOT provide reliable results. This was determined by treating 3 

specimens on the same slide with primary and secondary, secondary alone, and no antibodies 

which helped us in determining the presence non-specific binding and tissue autofluorescence.  

Statistical analysis 

Overall survival in each mouse was measured as the length of time in days from when the 

mouse’s tumor reached 200 mm3 to when the mouse was euthanized for excessive tumor size 

(defined as a tumor volume of ≥1500 mm3). Since the animals from control groups were inoculated 

with tumors on both flanks, overall survival in a control-group mouse was marked as starting on 

the day when its first tumor reached the volume of 200 mm3. Any animal that died for a reason 

other than excessive tumor size had its overall survival right-censored on the day of its death. 

The differences in overall survival between groups were compared statistically using the 2-sided 

log-rank test with p<0.05 significance level, while the survival benefit with radiation therapy was 

quantified as the inverse of the Cox-regression hazard ratio comparing treated to control animals. 

Prior to statistical analysis, the raw volume data were logarithmically transformed with the 

aim of minimizing the correlation of group means with group standard errors. The transformed 

data then were analyzed using repeated-measures analysis of variance (ANOVA) using the 

MIXED procedure in SAS v9.4 (The SAS Institute, Cary, NC, USA). The analysis model for log-

volumes employed an ante-dependence structure to model the covariance over time among the 

longitudinally collected data and utilized the Kenward-Roger method to determine test-statistic 
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degrees of freedom. Within each cell line, the right flanks from control-group mice were compared 

to the right flanks from XT-group mice. Within each combination of cell line and treatment, mean 

log-volumes on subsequent days of growth were compared to their Day 1 value. All comparisons 

employed an unadjusted p<0.05 significance level (2-sided) despite the multiple comparisons, in 

order not to inflate Type II (false-negative) error.   

Raw optical properties from day 1 through 14 from right flanks were normalized by 

treatment group to the group mean of the value it had on day 1. This way, values on day 1 have 

mean of 1 but individual values different from 1 (i.e. they show variability), and thus can be 

included in the analysis. The normalized data were then subjected as before to repeated-

measures ANOVA using the MIXED procedure in SAS v9.4 software. For each normalized optical 

property, the analysis model employed an unstructured autocovariance matrix to model the 

covariance between different measurements performed on the same tumor over time and utilized 

the Kenward-Roger method to determine test-statistic degrees of freedom. All comparisons 

between treatment groups or time points were conducted as previously described and employed 

an unadjusted p<0.05 significance level (2-sided) despite the multiple comparisons, in order not 

to inflate Type II error. 

We used the Wilcoxon rank sum test for statistical analysis of immunohistochemical data. 

All tests employed a 2-sided p<0.05 significance level. 

Results 

Figures 1B-C present the Kaplan-Meier curves for the UM-SCC-22B and UM-SCC-47 

tumors, respectively. Animals growing UM-SCC-22B tumors that were irradiated (XT) survived 

significantly longer compared with non-irradiated controls (NT), with a mean survival of 56.4 vs. 

21.9 days (log-rank p<0.0001); the associated survival benefit with radiation treatment was 44.7 

(indicating 44.7-fold higher survival for irradiated tumors) with a 95% confidence interval [CI] of 

9.34–214. Although the heavy censoring in irradiated UM-SCC-47 tumors (Figure 1C) prevented 
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us from seeing appreciable delay in mean survival compared with non-irradiated controls (mean 

survivals of 28.5 vs. 25.5 days), we still observed a significant difference in survival of the NT and 

XT groups (log-rank p=0.0052) with an associated survival benefit of 5.51 (95% CI: 1.48-20.5) for 

XT groups. Figure 1D-E presents measurements of tumor volume during and after radiation 

therapy of the UM-SCC-22B and UM-SCC-47 tumors. As early as day 2, fractionated radiation 

therapy resulted in significant differences between the volume of NT and XT groups of UM-SCC-

22B tumors (p < 0.0001; illustrated in Figure 1D by black asterisk for day 2 and black forward 

arrow for following days). In contrast, there were no significant differences between the UM-SCC-

47-NT and -XT groups, and mean tumor volumes in both groups were nearly identical for the first 

7 days (Figure 1E). Importantly, tumor volumes in the UM-SCC-22B-XT group were significantly 

higher than baseline only after Day 21 (p = 0.001); for all other groups, the increase in tumor 

volume was significant beginning Day 2. 

To determine radiation-induced changes in tumor oxygenation, we quantified the optical 

properties from the measured DRS spectra (Figure 2) and computed the fold-change in the 

measured parameters over time with respect to their pre-radiation baseline measures. Figure 3A-

D illustrates the fold-change in hemoglobin oxygen saturation (sO2) and total hemoglobin 

concentration (cHb). Radiation therapy did not cause significant changes in sO2 or cHb in the UM-

SCC-22B tumors (Figure 3A&C). There was a significant increase in sO2 in the irradiated UM-

SCC-47 tumors compared with pre-radiation baseline sO2 (p < 0.05) and this significant 

reoxygenation trend was evident on several days over the 14-day period when these tumors were 

monitored (Figure 3B). The irradiated UM-SCC-47 tumors also showed a significant decrease in 

cHb compared with pre-radiation baseline (Days 6, 7, 10, 13 and 14) and the non-irradiated group 

(Days 6, 8, and 14) (p < 0.05; Figure 3D). Analysis of oxygenated (HbO2) and deoxygenated 

hemoglobin (dHb) concentrations showed that the temporal decay in cHb and the increase in sO2 

in the UM-SCC-47 tumors could be attributed almost entirely to a decrease in dHb while there 

was no significant change in HbO2 (Figure 3E-H). Finally, we also extracted the mean reduced 
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scattering coefficient (µs’) of our tumors in all groups. We observed temporally significant increase 

in µs’ among both NT and XT groups of UM-SCC-22B tumors after second dose of radiation (red 

& blue pounds – Figure 3I) while no significant changes were reported for UM-SCC-47 tumors 

(Figure 3J). 

While there was an overall increase in tumor oxygenation in the UM-SCC-47 tumors over 

the 14-day period, we found that reoxygenation trend was cyclical, consisting of several rapid 

increases followed by decreases in tumor oxygenation. To investigate this cyclical nature of 

reoxygenation, we studied the short-term effects of radiation therapy on tumor sO2 over the 48 

hours following each dose of radiation. Figure 4 presents data from 1, 24, and 48 hours post-

therapy for each of the 4 doses. In response to each dose of radiation, there was an increase in 

sO2 in the UM-SCC-22B and UM-SCC-47 tumors 1 hour after radiation; this reoxygenation was 

statistically significant after the first, third, and fourth doses in the UM-SCC-22B (p<0.01). After 

each dose, this increase in sO2 was followed by a decrease to baseline levels over the next 48 

hours. Similarly, UM-SCC-47 tumors displayed an increase in mean sO2 immediately after 

radiation that was followed by a large decrease at the 24-hour time point. However, at the 48-

hour time point, the mean sO2 was greater than the pre-radiation baseline for that dose (Figure 

4B). Within these cell lines, the radiation-induced changes in sO2 appear to be driven by different 

factors in the UM-SCC-22B and the UM-SCC-47 tumors. The large increase in sO2 in the UM-

SCC-22B tumors immediately after radiation is due to a statistically significant increase in HbO2. 

On the other hand, the increase in sO2 in the UM-SCC-47 tumors is due to a decrease in dHb 

over time (Figure 4C-F).   

Reoxygenation following radiation has been shown to upregulate HIF-1α in tumors24. 

Therefore, we examined the extent of tumor hypoxia and HIF-1α expression in the UM-SCC-22B 

and UM-SCC-47 tumors over the first 48 hours following radiation therapy (Table 2, Figure 5, 

Figure 6A). Figure 6B-D presents the results of immunohistochemical assessment from tumor 

sections collected at baseline, 24h, and 48h after a single 2 Gy dose of radiation in the NT and 
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XT groups. Our results indicate that in comparison to UM-SCC-22B tumors, UM-SCC-47 tumors 

have slightly higher hypoxic fraction and a significantly higher HIF-1α expression at baseline (p= 

0.02). Radiation therapy had different effects on the hypoxic fraction and HIF-1 expression in the 

two tumor groups. We observed an increase in hypoxic fraction in the UM-SCC-22B tumors 24- 

and 48-hours (p=0.03) following radiation therapy and a trend towards decreasing hypoxic fraction 

in the UM-SCC-47 tumors. While we found no changes in HIF-1α expression in the UM-SCC-22B 

tumors following radiation, there was a trend towards a decrease in HIF-1α expression in the UM-

SCC-47 tumors at the 48-hour time point. 

Tumor hypoxia and increased HIF-1 expression has been known to promote angiogenesis 

via increased expression of vascular endothelial growth factor (VEGF)25,26. Thus, we investigated 

the presence and extend of VEGF-R2 in our tumor sections. Figure 8A presents representative 

images of immunostaining of VEGF-R2 at baseline and 1 hour after radiation in radiation-sensitive 

and -resistant tumors. Quantitative assessment of histological slides identified significant increase 

in expression of VEGF-R2 1 hour after radiation in UM-SCC-22B radiation-sensitive tumors. 

However, UM-SCC-22B responsive tumors had relatively lower levels of VEGF-R2 both at 

baseline and in 1, 24, and 48 hours after radiation.  

In addition to using optical spectroscopy in understanding differential reoxygenation 

patterns among radiation-resistant and -sensitive tumors, we also sought to investigate whether 

these measurements can provide a diagnostic scheme in classifying local-control and treatment 

failure tumors. Although UM-SCC-22B tumors are sensitive to radiation as demonstrated by this 

study and others20, 8 out of 24 UM-SCC-22B tumor bearing animals were treatment-failures. 

Using logistic regression algorithm, we conducted leave-one-out cross-validation based on the 

changes in optical properties of days 2 through 14 with respect to day 1. The leave-one-out cross-

validated area under the curve (AUC) computed from a logistic regression model based on 

changes in optical properties in 4 representative days are 0.62 (day 2), 0.58 (day 5), 0.59 (day 9), 

and 0.59 (day 11). The corresponding daily receiver operating characteristic (ROC) curves are 
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shown in Figure 9 A-D. We finally confirmed the robustness of our LR analysis by randomly 

assigning class labels to same dataset and observed that the overall accuracy of the model 

decreased to the accuracy of random classifier (0.49, 0.44, 0.47, and 0.49 in days 2, 5, 9, and 11, 

respectively). Taken together, the results of the LR and leave-one-out classifier model 

demonstrate the capability of changes in optical properties in determining radiation response. 

Discussion 

Reoxygenation following radiation therapy has long been postulated to be an important 

mechanism in the radiosensitization of previously hypoxic cells within a tumor and has been 

shown to be an indicator of tumor response to radiotherapy. However, there is also evidence that 

reoxygenation following radiation is a double-edged sword because it can lead to radiation 

resistance. Temporal investigations of tumor reoxygenation are challenging because the 

technologies utilized are either invasive (oxygen-sensing microelectrodes or tissue removal) or 

expensive (magnetic resonance imaging, positron emission tomography), and are not amenable 

to repeated measurements. Diffuse reflectance spectroscopy (DRS) has been used in animal 

studies to identify differences between partial and complete responders based on differences in 

sO2 in response to high doses of radiation/fraction (7-39 Gy)17,27. Our long-term clinical goal is to 

investigate whether using DRS to measure tumor functional changes in HNSCC patients, who 

are typically treated with dose fractions of 2 Gy, can be validated as a predictor of treatment 

response. Here, we used DRS to monitor the reoxygenation kinetics of HNSCC tumors with 

known radiation sensitivity. 

Previous work has shown that the UM-SCC-22B tumors are sensitive to radiation therapy 

while the UM-SCC-47 tumors do not respond to therapy when treated with four doses of 2 Gy 

over two consecutive weeks20. While the outcomes for both cell lines in our study were largely 

consistent with this report, there was a significant difference in tumor growth delay in the UM-

SCC-22B beginning the day after treatment, while the report by Stein et al found significant 



44 
 

differences only beginning Day 15. In fact, the mean tumor volume in the irradiated tumors 

remained unchanged during and up to 1 week after four 2 Gy fractions were administered over 2 

weeks. This corresponded to no significant change in tumor hemoglobin oxygen saturation over 

the 14 days of treatment monitoring, indicating that therapy had likely arrested cell proliferation 

within these tumors. It is important to note that while there were no long-term changes in sO2 or 

cHb in the UM-SCC-22B tumors, there were immediate radiation-induced increases in 

oxygenation 1-hour post-treatment (Fig. 3) that are largely consistent with previous studies that 

utilize DRS to monitor radiation response18,27. Moreover, the control UM-SCC-22B and UM-SCC-

47 tumor that grow at the same rate as the irradiated UM-SCC-47 tumors also show nearly no 

change in oxygenation with respect to baseline. A lack of reoxygenation has been observed in 

head and neck cancer patients about two weeks into daily treatment with fractionated radiation 

therapy (2 Gy/day)8. Stadler et al reported a statistically significant reduction in pO2 and increase 

in hypoxic fraction in locally advanced HNSCC patients who were evaluated 3 weeks after 

commencing fractionated therapy at 2Gy/day. This decrease in pO2 was observed in both 

complete and partial responders28. They attributed the observed reduction in pO2 to reduction of 

blood flow in response to radiation. Conversely, increases in tumor oxygenation have also been 

reported in response to 5 doses of 2 Gy in head and neck tumor xenografts although the observed 

changes did not correlate with response/failure11. 

In contrast to the UM-SCC-22B tumors, we noted a significant increase in sO2 in the UM-

SCC-47 tumors which are relatively non-responsive to radiation. Other studies using DRS to 

investigate radiation-induced increase in oxygenation have attributed these changes to increased 

perfusion17,27, which typically manifests as an increase in oxygenated hemoglobin (HbO2). When 

we investigated the changes in hemoglobin concentration, we found that the increased sO2 was 

not due to increased HbO2 but rather due to a decrease in deoxygenated hemoglobin 

concentration (dHb). By Day 14, the dHb concentration in the UM-SCC-47 tumors had declined 

to about 79% of its baseline value while HbO2 remained unchanged compared with pre-radiation 
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baseline. A reduction in deoxygenated hemoglobin concentration in the vasculature points to a 

decrease in oxygen consumption in the surrounding tumor tissue. This would be congruent with 

a number of studies in the literature, such as one where SCCVII murine tumors treated with 10 

Gy of radiation exhibited a reduction in hypoxia found to be caused by a combination of decreased 

oxygen consumption and increased perfusion29. In HNSCC patients treated with daily fractions of 

2 Gy (total of 70 Gy), Lyng and colleagues have shown changes in oxygenation, determined by 

polarographic needles, to coincide with changes in biopsy-determined cell density30. Lack of 

simultaneous changes in vascular density led them to conclude that the observed changes in 

hypoxia were caused by changes in OCR rather than changes in delivery.  Notably, in patients 

with advanced HNSCC treated with hyper-fractionated radiation therapy, Dietz et al found that 

complete or partial responders show minimal change in reoxygenation in comparison to a strong 

reoxygenation among non-responding patients31. 

Although reoxygenation has been considered to lead to cell kill, reoxygenation following 

radiation can also lead to the generation of reactive oxygen species (ROS) following hypoxia-

reoxygenation injury and hence, the stabilization of HIF-132. This is supported by an elegant study 

by Moeller et al where mice with 4T1 mammary adenocarcinoma tumors showed HIF-1 activation 

following radiation that coincided with reoxygenation24. We have previously shown that radiation-

resistant human lung cancer cells have lower oxygen-consumption rate (OCR) and higher HIF-1 

content both at baseline and 24 hours after a single dose of 2 Gy compared with their radiation-

sensitive counterparts21. In addition, we have also shown that increased HIF-1 content leads to 

increased glucose uptake and hence an increased in reduced glutathione which led to a reduction 

in mitochondrial ROS production. Treatment with a HIF-1 inhibitor led to a decrease in HIF-1, 

glucose uptake and reduced glutathione and led to increased cell death in the radiation-resistant 

cells in comparison with the radiation-sensitive cells33. Our observation of a decrease in dHb, a 

corresponding increase in sO2, coupled with greater HIF-1α expression both prior to and after 

radiation therapy in the UM-SCC-47 tumors compared with the UM-SCC-22B tumors strongly 
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suggests that these changes are due to a decrease in oxygen consumption rate and that the 

reduction in OCR plays a role in radiation resistance. In fact, in vitro measurements of oxygen 

consumption rate revealed lower OCR in UM-SCC-47 cells in comparison to UM-SCC-22B cells 

(see figure 7). 

However, significant research has demonstrated the clinical value of reducing OCR to 

improve treatment response by increasing the available oxygen for radiosensitization. Secomb 

and colleagues showed, using theoretical simulations that utilized experimental observations, that 

a reduction in oxygen consumption by only 30% was sufficient to completely abolish hypoxia 

whereas a 4-fold increase in flow rate or a 11-fold increase in arterial pO2 was required to achieve 

the same effect34. A comprehensive study that measured radiation-induced changes in the tumor 

microenvironment in the first 24 hours proposed that early reoxygenation within tumors was likely 

due to a combination of increased oxygen supply and a decrease in oxygen consumption35. The 

same group showed that inhibiting mitochondrial respiration using glucocorticoids leads to a 

reduction in OCR and delayed tumor growth36. A more recent study has shown that Arsenic 

trioxide (As2O3) treatment leads to enhanced oxygenation through reduced oxygen consumption 

in mouse transplantable liver tumors, and its combination with 10 Gy leads to significant delay in 

tumor growth and extended survival37. In addition, Benej et al determined that reducing OCR 

using Papaverine, a muscle relaxant and mitochondrial complex I inhibitor, significantly decreases 

hypoxia, improves tumor pO2, and delays radiation-induced tumor growth38. These studies 

present an interesting juxtaposition – while a reduction in oxygen consumption is clearly beneficial 

in decreasing hypoxia and hence improving response rates, our work demonstrates that the 

growing, relatively non-responsive UM-SCC-47 tumors are likely developing a reduced oxygen 

consumption rate which is being manifested as a decrease in deoxygenated hemoglobin and 

hence increased oxygenation. As discussed earlier, our previous work in a matched model of 

radiation resistance showed that inhibition of HIF-1α led to a reduction in pyruvate dehydrogenase 

kinase (PDK-1) content33. PDK-1 is a negative regulator of pyruvate entry into the mitochondria. 
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Thus, inhibiting PDK-1 increased mitochondrial oxygen consumption and hence cell death in 

radiation-resistant cells. It will be important to investigate the effects of HIF-1 inhibition in vivo to 

determine if the same phenomenon can be recapitulated in tumors. 

HIF-1 also plays an important role in regulating vascular radiosensitivity. Gorski et al 

showed that radiation caused a large cell line-dependent increase in vascular endothelial growth 

factor (VEGF) over the first 72 hours following treatment and that increased VEGF expression 

promoted endothelial cell radioresistance39,40. Treatment of mice with anti-VEGF prior to radiation 

therapy led to a significant reduction in tumor growth that was greater than the expected additive 

effect of the two treatments. Moeller et al found that VEGF expression overlapped completely with 

HIF-1 in irradiated tumors, strongly implicating HIF-1 as a major regulator of endothelial cell 

radiation resistance due its regulation of VEGF24. However, our observation of increased VEGF-

R2 in UM-SCC-22B tumors which expressed lower levels of HIF-1α may indicate that VEGF could 

have different upstream sources independent from HIF-1. 

Although we did not observe any statistically significant differences in tissue scattering 

between the NT and XT groups of either cell line, we did observed a significant temporal increase 

in UM-SCC-22B tumors (both NT and XT) over the 14-day period. The increased scattering in the 

NT group could be attributed to either increased tumor volume, which would increase cell density 

and hence light scattering from cells, or an increase in tumor hypoxia. We have previously 

demonstrated a strong association between tumor hypoxic fraction and tissue scattering16. 

However, the temporal changes in scattering in the XT group are intriguing given the lack of 

change in tumor volume or tumor oxygenation over the 14-day period and seem worthy of further 

investigation. 

Although diffuse reflectance spectroscopic measurements present a promising avenue for 

studying radiation response in superficial tumors of skin, cervix, and oral cavity, it has limited 

penetration depth and is not ideal for deep-seated tumors. Sampling depth can be improved by 

using larger separations between source and detector fibers as well as by extending spectral 
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boundaries to near-infrared (NIR). For example, Sunar et al have demonstrated the utility of NIRS 

in monitoring chemo-radiation induced physiological changes in patients of head and neck 

cancer41. In addition to greater penetration depth, NIR spectroscopy provides more quantitative 

parameters because of the light absorption by lipid and water at higher wavelengths. A study by 

Ohmae et al in breast cancer patients, has shown such optical measurements of lipids and water 

to be highly concordant with computed tomographic measurements42. Tromberg et al have used 

a combination of hemoglobin and lipid absorption as well as scattering to determine a ‘Tissue 

optical index’ for predicting treatment response in breast cancer patients undergoing neoadjuvant 

chemotherapy43. Multispectral optoacoustic tomography (MSOT)44–46 and photoacoustic 

imaging47,48 is another technique that can provide information about hemoglobin concentration 

and saturation at depths of up to 7 cm. However, despite its repeated and non-invasive 

measurements of tissue physiology, MSOT-based systems are currently more expensive than 

diffuse optical systems.  

We also used radiation induced changes in optical properties (sO2, HbO2, dHb, cHb, µs’) 

for constructing our logistic regression and leave-one-out based classifier and we are able to 

differentiate local-control and treatment-failure tumors with AUC value of 0.6. Although we show 

acceptable results, our accuracy in classification of responding and non-responding tumors is far 

from ideal. It should be noted that similar accuracy for identification of radiation-response using 

only changes in sO2 has been reported17. However, that study have used the changes in oxygen 

saturation in response to larger doses of radiation in constructing their logistic regression model. 

Since larger doses of radiation can cause greater reoxygenation in tumors17, changes in 

oxygenation alone in their model had a similar performance to ours. Since the goal of this study 

is to investigate whether optical spectroscopy combined with LR can identify tumor response while 

treated with lower doses of radiation, increasing sample size in training the LR model may 

increase the overall accuracy in classification of local-control and treatment-failure tumors. In 

addition, we have used only hemoglobin-related parameters and scattering in training our LR 
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model. However, oxygenation and structural changes may not provide a fully holistic 

representation of functional differences among radio-resistant and radio-responsive tumors and 

adding other biomarkers could enhance the performance of LR in classification of radio-

responsive and radio-resistant tumors. While our work here and elsewhere has explored the 

important role for HIF-1 in the context of oxygen consumption and metabolism in radiation 

resistance, HIF-1 also affects other aspects of the tumor microenvironment, such as extracellular 

matrix remodeling. We have previously used Raman spectroscopy on excised tumor xenografts 

to demonstrate differences in biomolecular composition, specifically lipids and collagen, in 

irradiated and non-irradiated UM-SCC-22B and UM-SCC-47 tumors49. Based on these 

differences, we were able to accurately distinguish radiation-sensitive from responsive tumors. 

Thus, combining diffuse reflectance and Raman spectroscopy for simultaneous monitoring of 

radiation-induced functional and biomolecular changes within the tumor could improve our 

understanding of microenvironmental changes related to treatment resistance. This combination 

can also improve the overall accuracy in classification of radiation-resistant and -sensitive tumors. 

Other studies have also shown that compared to a single optical modality, combination of optical 

modalities is more accurate in discriminating healthy and diseased lesions in neoplasms of 

breast50 and cervix51,52.  

In summary, we have used diffuse reflectance spectroscopy to monitor tumor hemoglobin 

oxygen saturation during the course of radiation therapy and found that radiation-resistant tumor 

xenografts show an increase in tumor vascular oxygenation following radiation therapy, a 

phenomenon not observed in radiation-sensitive HNSCC tumor xenografts. Our analysis of 

oxygenated and deoxygenated hemoglobin concentrations following radiation therapy point to 

decreased oxygen consumption as a likely factor in the increased reoxygenation observed in the 

UM-SCC-47 tumors. In addition to providing valuable information about functional changes within 

the tumor at early time points, our study also illustrates that optically determined reoxygenation 
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can be translated into clinical setting and used as a biomarker for distinguishing radio-responsive 

and non-responsive head and neck cancer patients.  
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Tables and figures 

 

Table 1. Tumor distribution in different groups in radiation-response study. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell line Treatment No. of 

mice 

No. of 

tumors 

UM-SCC-22B NT 13 24 

XT 24 24 

UM-SCC-47 NT 12 22 

XT 19 19 

Total 
 

68 89 
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Table 2. Tumor distribution in different groups for immunohistochemistry  

Cell line Treatment Baseline 24h 48h 

UM-SCC-22B NT 7 5 5 

XT 
 

5 5 

UM-SCC-47 NT 4 3 3 

XT 
 

4 4 
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Figure 1. Study design for radiation-resistant and -sensitive tumors. A, Timeline for the schedule 
of fractionated radiation and spectroscopic measurement. The lightning bolt signs indicate days 
of each fractions of radiation. Yellow sun signs indicate acquisition of optical spectra from the 
animals. On days of radiation, DRS spectra were collected immediately before and one hour after 
radiation. Comparison of the survival rate for control (NT) and irradiated (XT) animals bearing 
UM-SCC-22B (B) and UM-SCC-47 (C) tumors. P values based on log-rank test. Censored data 
points illustrated by x sign. Tumor growth kinetics (D&E) are observed to identify radiation 
response of NT and XT groups among UM-SCC-22B and UM-SCC-47 tumors. Data are 
presented as group mean (line) ± SEM (semitransparent shadow). Significant differences among 
NT and XT treatments in specific days are illustrated with black asterisks (*) while significant 
differences of specific days with respect to their own value in day 1 are illustrated using pounds 
(#). Arrows adjacent to the significance signs are indication of presence of significance until the 
end of study. * and # indicate statistical significance at p<0.05. 
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Figure 2. Representative DRS spectra, residuals, and extracted absorption and scattering 
coefficients. DRS spectra of UM-SCC-22B (A) and UM-SCC-47 (B) tumors on day1 (red circles), 
day5 (yellow squares), day10 (blue diamonds), day14 (green triangles), and their corresponding 
LUT fit (black solid line). Representative spectra collected from animals in XT groups. The perfect 
agreement between the measured data and their fits is also illustrated. Extracted absorption and 
scattering coefficients are illustrated in figure D-F. 
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Figure 3. Fold change in hemoglobin oxygen saturation sO2 (A&B), total hemoglobin 
concentration cHb (C&D), oxygenated hemoglobin HbO2 (E&F), deoxygenated hemoglobin dHb 
(G&H), and reduced scattering coefficient μs’ (I&J) are observed over time to identify biomarkers 
of radiation-resistance. Data are presented as group mean (line) ± SEM (semitransparent 
shadow). Significant differences among NT and XT treatments in specific days are illustrated with 
black asterisks (*) while significant differences of specific days with respect to their own value in 
day 1 are illustrated using pounds (#). * and # indicate statistical significance at p<0.05. 
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Figure 4. Temporal changes in optical properties in response to 4 doses of radiation. Fold-
changes in sO2 (A, B), HbO2 (C, D), and dHb (E, F) in response to 4 doses of radiation are 
illustrated at 4 time points: before (gray), 1h (red), 24h (green), and 48h (blue) after radiation. 
Data are presented as group mean + SEM. * and ** respectively indicate p<0.05 and p<0.01. 
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Figure 5. Double-staining of Pimonidazole and HIF-1α from a representative UM-SCC-47 tumor 
excised 24 hours after radiation. The acquired images were binarized using a fixed threshold.   
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Figure 6. Immunohistochemical assessment of tumor hypoxia and HIF-1α in tumor tissue 
sections. A, Representative images from UM-SCC-22B and UM-SCC-47 tumors excised at 
baseline, 24, and 48 hours after radiation. The false-colored red and green signals respectively 
represent Pimonidazole positive and HIF-1α positive pixels. The scale bar represents 250 μm. 
Quantification of percentage of Pimonidazole positive and HIF-1α positive pixels in UM-SCC-22B 
and UM-SCC-47 tumors at baseline (B) and following time points (C&D). 
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Figure 7. Basal oxygen consumption rate measured by Seahorse metabolic flux assay according 
to manufacturer’s protocol. * indicate statistically significant difference according to Wilcoxon rank 
sum test. Error bars represent standard deviation from the mean of 3 plate value. 
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Figure 8. Immunohistochemical assessment of VEGF-R2 in tumor tissue sections. A, 
Representative images from UM-SCC-22B and UM-SCC-47 tumors excised at baseline and 1 
hours after radiation. The false-colored red signal represents VEGF-R2 positive pixels. The scale 
bar represents 250 μm. Quantification of percentage of VEGF-R2 positive pixels in UM-SCC-22B 
and UM-SCC-47 tumors (B). 
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Figure 9. Accuracy of local-control and treatment-failure classification performed by logistic 
regression is presented. Daily ROC curved are generated from leave-one-out analysis.  
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Chapter 4: Raman spectroscopic investigation of radiation-induced biochemical changes 

in tumor microenvironment of head and neck tumor xenografts 

Introduction 

Tumor hypoxia and hence changes in oxygenation have been extensively studied in the 

context of radiation therapy due to the role of oxygen in mediating radiation-induced cell death. 

Several preclinical and clinical studies have explored the utility of using oxygen-sensing 

microelectrodes1 or noninvasive diffuse optical spectroscopy2–5 (as already extensively discussed 

in Chapters 1 and 2) to measure tumor hypoxia as well as radiation-induced changes in 

oxygenation and hence, predict treatment outcome.  However, in addition to tumor oxygenation, 

radiation therapy can also induce biomolecular alterations in tumor microenvironment that might 

be associated with treatment response or resistance. Such biomolecular alterations can be 

measured with Raman spectroscopy (RS).  

 RS is an optical technique that can provide quantitative and chemically-specific 

information about biomolecular changes of the host cells and tissues. RS is based on in-elastic 

scattering of photon after its interaction with a vibrating molecule6. The energy difference among 

the incident photon on the sample and its in-elastically scattered version is equal to the required 

energy to excite the specific vibration of a specific molecule. Thus, biological molecules with 

unique chemical features can be identified without exogenous dyes and changes in their content 

can provide pathological information7. RS has primarily been studied within the sphere of cancer 

detection and margin analysis. For example, Haka et al have used in vivo RS measurements for 

intra operative margin assessment during partial mastectomy of breast cancer patients and have 

shown perfect sensitivity and specificity in stratification of tumor lesions healthy normal tissue8. 

Similar results have also been shown for cancers of oral cavity, cervix, and brain6,9,10. More recent 

studies have utilized RS in studying radiation-induced spectral alterations in in vivo cell cultures 

and ex vivo tumor samples. Yasser et al have identified spectral differences associated with 
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proteins, lipid, and nucleic acids between parental and radio-resistant sublines of oral cancer cell 

lines11. Matthews et al have investigated radiation-induced biomolecular changes of glycogen 

accumulation in radio-resistant cancer cells and have shown that such accumulation can be 

inhibited via glycogen synthesis inhibitor, metformin12. In addition, RS application in detection of 

biomolecular changes in excised radiated tumor xenografts have also been shown13,14.  

In a very recent study, we investigated the utility of RS in identifying radiation-induced  

changes in excised lung and head & neck tumor xenografts and observed consistent differences 

in lipid and collagen content between radiation-resistant and -sensitive tumors15. Although our 

results featured RS as a powerful tool in studying radiation-induced changes in tumor 

microenvironment, the tumor xenografts used in our previous study were excised 35-50 days after 

tumor inoculation and radiation. Here, we sought to investigate whether in vivo Raman 

spectroscopy is sensitive to early radiation-induced microenvironmental alterations. To this end, 

we used head and neck UM-SCC-22B and UM-SCC-47 cell lines, with known radiosensitivity16 in 

formation of our tumors and treated tumor xenografts with a single dose of 2 Gy5. We performed 

in vivo Raman spectroscopy on tumors and analyzed collected Raman spectra using multivariate 

curve resolution-alternating least squares (MCR-ALS) to uncover biomolecular changes within 

the tumor microenvironment. We observed radiation-induced increase in lipids and collagen 

respectively in radiation-sensitive and -resistant tumors. Our results underline the sensitivity of 

Raman spectroscopy to early radiation-induced microenvironmental changes. Longitudinal RS 

measurements that associate these changes with treatment response of individual tumors could 

shed further light in microenvironmental characteristics of radiation-resistant tumors and can 

potentially serve as biomarkers of radiation-response.   
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Materials and Methods 

Aqueous solutions 

Three solutions of metabolites containing lactate, glucose, and combination of lactate and 

glucose were prepared in distilled water as following. Glucose-only solution was prepared by 

dissolving 500 mg of D-(+)-Glucose (G8270 – Sigma Aldrich) in 10 mL of distilled water to achieve 

a concentration of 50 g/L. This concentration was chosen to represent 5% of the maximum 

solubility of D-glucose in distilled water. Lactate-only solution on the other hand, was prepared by 

mixing 0.414 mL (equivalent of 500 mg at density of 1.206 g/mL) of Lactic acid solution (L1875 – 

Sigma Aldrich) with 10 mL of distilled water. This was performed to ensure equal concentrations 

for lactate-only and glucose only solutions. Finally, to create the solution consisting of both D-

Glucose and Lactate, 500 mg of D-Glucose was dissolved in 10 mL of Lactic acid solution. 

Cells, tumors, and radiation treatment 

Cell culture conditions and tumor xenografts formation have previously been described in 

chapter 2 in detail. Tumor growth of all mice were monitored daily and animals were randomly 

distributed to one of the treatment (control or a single dose of 2 Gy of radiation) and time points 

(Baseline, 1, 24, and 48 hours after radiation) once their volume reached 200 mm2 (See tumor 

distribution in Table 1). Treatment of 2 Gy was delivered using an X-rad 320 biological cabinet 

(Precision X-Ray, North Branford, CT) while the entire animal body was covered under lead 

blocks except the tumor. During radiation, mice were kept under anesthesia using a mixture of 

isoflurane (1.5% v/v) and 100% oxygen. This study was approved by the Institutional Animal Care 

& Use Committee (IACUC) at University of Arkansas (Protocol number: 18061). 

Raman spectroscopy 

Prior to in vivo Raman spectroscopic measurements, tumor bearing animals were 

anesthetized and the skin tissue covering the tumor was surgically removed. Great care was 

taken to prevent damaging tumor microenvironment and cause unintended bleeding. The bare 
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tumor was brought into contact with a fiber-optic-probe to perform Raman spectroscopic 

measurement. After acquisition of Raman spectra, tumors were excised, and animals were 

euthanized. Our Raman system has been described previously15. Briefly, this system included a 

diode laser emitting at 830 nm (500 mW maximum power, Process Instruments, Salt Lake City, 

UT) for excitation and an imaging spectrograph (Holospec f/1.8i, Kaiser Optical Systems, Ann 

Arbor, MI) with a thermoelectrically cooled CCD camera (LS 785, Princeton Acton) for spectral 

acquisition. A 2 mm flexible custom-made fiber probe (EmVision LLC - Loxahatchee, FL) was 

used for light delivery through an excitation fiber located at the center of the probe. The excitation 

fiber was terminated with a short-pass filter which transmits laser light and attenuates longer 

wavelengths. This fiber is surrounded with 15 collection fibers annularly located at approximately 

800 μm away from the central excitation fiber. The collection fiber is also preceded with a long-

wavelength pass filter transmitting tissue’s Raman spectrum and blocking backscattered light. 

Finally, a sapphire ball lens was placed after the short- and long-pass filters creating a distance 

of 1 mm between the optical fibers and the ball lens to ensure collimation of the excitation light 

(for reducing the incident energy and preventing tissue damage) and maximal coupling of the in-

elastically scattered light into the collection fibers17. The estimated sampling volume achieved by 

this probe is 1 mm3. We used this setup to collect 50 Raman spectra with acquisition time of 1 

second from spatially distinct locations on the tumor to account for tissue heterogeneity. For 

measurements from aqueous solutions, the fiber probe was placed within the aqueous solution. 

2350 spectra from 47 tumors and 2400 spectra from 3 aqueous solutions were acquired. 

Data analysis 

Saturated spectra and spectra contaminated with cosmic rays were visually identified and 

removed from the dataset. Prior to any further processing, the wavenumber axis of the acquired 

Raman spectra were shifted according to spectral peaks of 4-acetamidophenol. Further data pre- 

and post-processing was limited to only fingerprint region (600-1800 cm-1). Next, tissue 
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fluorescence was removed by subjecting the recorded Raman spectra to a fifth-order polynomial 

algorithm. To neutralize potential variations in laser power, baseline-corrected spectra were then 

normalized such that their sum of squares is set to unity. Next, the normalized spectra were 

subjected to median-filtering to remove random spikes induced by cosmic rays to avoid overlaying 

of cosmic rays with biological signal. We decomposed the spectral data and recovered the 

spectral profiles (loadings) and the abundance (scores) of the biochemical constituent of 

biological specimen using multivariate curve resolution-alternating least squares (MCR-ALS) 

without prior knowledge of the content of the specimen18. Loadings and scores were limited to 

nonnegative values in decomposition of the normalized spectra through an iterative optimization 

routine until convergence was achieved. All data pre-processing and analysis was conducted 

using MATLAB (Mathworks, Natick, MA). 

Immunohistochemistry and histology 

We sliced flash-frozen tumors into sections of 10 μm using a cryostat (CM 1860; Lecia, 

Inc., Nussloch, Germany). Immunofluorescence procedure has been described recently5. Briefly, 

tumor sections were hydrated in PBS, fixed with 4% PFA, permeabilized using 0.5% Triton-X 100, 

and incubated using an in-house blocking solution (95% PBS + 4% goat serum + 1% sodium 

azide) for an hour. Next, slides were incubated with Fatty acid synthase (3180S – Cell Signaling, 

Danvers, MA) antibody for 3 hours at room temperature. The slides were next tagged with Alexa 

Fluor 488 goat anti-Rabbit (4412S – Cell Signaling). Immunostained tumor sections of all the 

slides were imaged using a confocal microscope (Fluoview FV10i, Olympus) using a 10X 

objective (UPLSAPO10X, NA = 0.4, Olympus). The microscope software enabled stitching 

individual images acquired from different regions of interest (ROI) into one single image which 

encompassed entire tissue section. Signal of acquired images were compared to background 

intensity using histogram, and a fixed threshold was used in separating pixels containing true 

signal from the background. Possible presence of non-specific binding and endogenous tissue 
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autofluorescence were respectively investigated by imaging slides incubated with no antibodies 

and slides incubated with secondary antibody only. Both were found to be absent. Finally, 

percentage of FASN positive pixels within each tissue section was calculated by dividing 

segmented pixels by the total number of tumor tissue pixels. 

In addition to immunohistochemical assessment of FASN, we also performed Masson’s 

trichrome staining for collagen on serial slides of same tumors. Slides were imaged using a 10X 

objective on a Nikon fluorescence microscope and images acquired from different regions of 

interest were stitched using Fiji – ImageJ.  

Statistical analysis 

We performed Shapiro-Wilk W test to identify whether MCR and immunohistochemical 

data were normally distributed. The null hypothesis was rejected for both data sets. Thus, 

statistically significant differences between medians of various groups were assessed based on 

a Wilcoxon rank sum test. All tests employed a 2-sided p<0.05 significance level. In addition to 

performing statistical analysis on MCR-scores of lipid and collagen, we used Wendt formula to 

calculate the effect size of comparisons among various treatments and time points19. All statistical 

analyses were performed using JMP (The SAS Institute, Cary, NC). 

Results 

We first sought to investigate the accuracy of MCR-ALS model in decomposition and 

extraction of MCR-coefficients and -scores from Raman spectra of aqueous solutions with known 

content. We made three different solutions containing Lactate (L), Glucose (G), and combination 

of Lactate and Glucose (G+L, Figure 1A). Pre-processed Raman spectra of three different 

solutions are illustrated in Figure 1B where each spectrum is average of 800 spectral 

measurement from specific solution. Spectral averaging was performed for visualization purposes 

only. Entire Raman spectral dataset were decomposed using MCR-ALS without any mathematical 

manipulation (e.g. group averaging) and MCR-scores containing “pure” spectral components 
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were extracted (Figure 2C). As expected, we identified only two “pure” components that strongly 

resembled the characteristics of Raman spectra of Lactate and Glucose (spectral variance = 

99.998%). The extracted “pure” components closely resembled Raman spectra of pure lactate 

and glucose20,21. Finally, we investigated the quantitative scores of glucose and lactate from 

individual measurements of L, G, and L+G solutions (Figure 2D). We observed high, low, and 

intermediate lactate-related MCR-scores respectively from L, G, and L+G solutions. Furthermore, 

we observed low, high, and intermediate glucose-related MCR-scores respectively from L, G, and 

L+G solutions. These results indicate that based on lactate- and glucose-related MCR scores, L, 

G, and L+G solutions can be accurately differentiated with MCR-ALS algorithm. 

Having confirmed the accuracy of MCR-ALS algorithm in identifying the content of 

solutions with no a priori information provided, we next sought to decompose spectral data 

acquired from in vivo animal measurements. Raw Raman spectra of different tumor types and 

treatments are shown in Figure 2A. The autofluorescence of the spectra shown here were 

removed via background subtraction in pre-processing steps. Each spectral map contained > 350 

spectra. Regardless of tumor type and treatment, all tumor classes show prominent peaks at 1301 

cm-1 (CH vibration of lipids), 1448 cm-1 (CH2 bending modes in lipids and collagen) and 1656 cm-

1 (C = C stretching in lipids). Although we observed no visually identifiable spectral variations 

among the four groups, we hypothesized that a subset of pixels representing specific molecular 

moieties have predictive power but is lost in averaged Raman spectra among different groups of 

each cell line. We next decomposed the animal Raman spectra using MCR-ALS algorithm and 

obtained three ‘pure’ coefficients. Figure 2B illustrates the three MCR-coefficients that represent 

key tumor constituents of control (NT) and radiated (XT) UM-SCC-22B and UM-SCC-47 tumors. 

As seen in Figure 2B, MCR-coefficient B1 contains prominent peaks at 1078 cm-1, 1266 cm-1, 

1301 cm-1, 1442 cm-1, and 1654 cm-1 all of which are characteristics of lipids22. MCR-coefficient 

B2 contains spectral peaks at 928 cm-1, 1040 cm-1, 1251 cm-1, 1315 cm-1, 1453 cm-1, and 1661 
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cm-1 which closely resemble characteristics of collagen23,24. In addition, the spectra pattern B3 

contains spectral peaks belonging to combination of collagen and nucleic acid. In addition to 

recovering MCR-coefficients of contributing biological moieties, we also extracted the scores 

matrix (MCR-scores) that contained the weight (abundance) of each of the MCR-coefficients for 

all the acquired Raman spectra. Using these scores, we then quantitatively compared the lipid- 

and collagen-related MCR-scores of NT and XT tumors from UM-SCC-22B and UM-SCC-47 

groups. We observed higher values of lipid-related MCR scores in radiated group (XT) of UM-

SCC-22B tumors. Although statistically significant differences were not detected, we identified an 

effect size of 0.52 among these two groups indicating that 52% of XT tumors had higher lipid-

related MCR scores in comparison to NT tumors. In contrast, control and radiated UM-SCC-47 

tumors had similar MCR-scores of lipid with smaller effect size (r=0.07). Similar results were 

observed for collagen scores of UM-SCC-22B tumors (r=0.08). However, radiated UM-SCC-47 

tumors exhibited greater collagen-related MCR scores in comparison to control tumors (r=0.37) 

although no statistical significance was observed (figure 2C).  

Having identified the generic differences in lipid- and collagen -related MCR scores in NT 

and XT groups of different tumor types, we next sought to identify the kinetics of these changes 

over the next 48 hours after radiation (Figure 3). Tumors undergoing a single dose of 2 Gy (XT – 

red boxes) and control tumors (NT – gray boxes) were subjected to Raman spectral 

measurements at baseline, 1, 24, and 48 hours after treatment. We observed an increase in lipid-

related MCR scores in UM-SCC-22B tumors. NT and XT groups at 1- and 24-hours post-radiation 

had higher values of lipid-related MCR scores with respect to the baseline. In addition, we 

observed higher lipid-related MCR scores between NT and XT groups at 1 hour and 24 hours 

after radiation time points. In contrast, radiation-resistant UM-SCC-47 tumors did not exhibit 

temporal changes in lipid-related MCR score although we observed larger MCR-score in XT 

groups at 1 and 24 hours after radiation time points. In addition to lipids, we observed higher 

levels of collagen-related MCR scores at 1 and 24 hours after radiation time points in UM-SCC-
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47 tumors. However, it must be noted that we did not observe any statistically significant 

differences in anytime points. In addition, due to small sample size associated with each group, 

we did not perform analysis on effect size because any result can be driven by very limited number 

of animals distributed to each group.  

Fatty acid synthase (FASN) is a key lipogenic enzyme that is responsible for endogenous 

synthesis of fatty acids25 and has been linked to radiation resistance26,27. Thus, we investigated 

the presence and extent of FASN expression in our tumors in the first 48 hours after radiation. 

Figure 4 presents representative images of immunohistochemical staining of FASN at baseline 

and 1h after radiation in UM-SCC-22B and UM-SCC-47 tumors (A). Figure 4B illustrates the 

quantification of immunohistochemical assessment of NT and XT tumors collected at baseline, 1, 

24, and 48 h after a single 2 Gy dose of radiation. We noted a significant increase in expression 

of FASN 1 hour after radiation in radiation-sensitive UM-SCC-22B tumors. In contrast to UM-SCC-

22B tumors, we observed no significant changes in expression of FASN in UM-SCC-47 tumors.  

Finally, to confirm the accuracy of multivariate analysis of Raman spectra, we compared 

collagen-related MCR-scores to histologically determined collagen area fraction. Figure 5A 

presents a representative UM-SCC-22B tumor section stained with Masson’s trichrome and its 

corresponding binarized mask. We identified a non-significant correlation between MCR-scores 

of collagen with collagen area fraction (r=0.21). Both UM-SCC-22B and UM-SC-47 tumors 

presented with a wide range of collagen area fraction and collagen-related MCR scores.   

Discussion 

Better understanding of metabolic alterations that lead to radiation-resistance is crucial for 

personalization of treatment and identification of radiation-resistant tumors at early time points 

after treatment commencement. Radiation resistant cancer cells exhibit altered metabolic shift 

towards glycolytic28,29 and anabolic pathways26,27 to produce energy and synthesis of lipids in 

order to ensure rapid tumor growth and avoid cell death. One significant driving factor for this 
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glycolytic shift is hypoxia and its transcription factor, hypoxia-inducible factor-1α (HIF-1α), a 

phenotype associated with higher mortality30–32 and a predictive/prognostic biomarker of radiation 

response33,34. Stabilization of HIF-1 also promotes glycolytic activity35. As discussed in previous 

chapter, greater HIF-1 expression as well as lower optical redox ratio (ORR) have been identified 

in radiation-resistant lung cancer cell line28, a results which were reversed by chemical inhibition 

of HIF-129. In addition to inducing glycolytic changes in tumors, radiation can also alter tumor 

microenvironmental content. we recently used Raman spectroscopy to study radiation-induced 

biochemical changes in tumor microenvironment of lung and head and neck tumor xenografts. 

On ex vivo tumors excised 35-50 days after radiation, we have identified HIF-1 targets, lipid and 

collagen, to be significantly higher in radiation-sensitive tumors compared with radiation-resistant 

tumors15. Our long-term clinical goal is to investigate whether Raman spectroscopy can 

differentiate radiation-responder and non-responder patients during the first days of treatment. 

Here, we sought to test the sensitivity of label-free Raman spectroscopy to early radiation-induced 

biomolecular alterations in radiation-resistant and -sensitive tumors.  

We observed higher contents of lipid-related MCR-score in 1, 24, and 48 hours after 

radiation in comparison to baseline in radiation-sensitive tumors. These results are supported by 

a study by Deng et al, where increased lipid content was observed in radiation sensitive LNCaP 

cell line compared to relatively resistant H460 and MCF7 cell lines36. In radiation-sensitive UM-

SCC-22B tumors, we additionally observed an increase in FASN one hour after radiation which 

could be the reason for the observed major increase in lipid-related MCR scores. However, 

numerous studies have shown lipogenesis inhibition via pharmacological inhibitors or RNA-

inhibitor mediated silencing of lipogenic enzymes, FASN and Acetyl-CoA Carboxylase-α, arrests 

cell proliferation and hence, leads to cell death37–42. Rysman et al have shown that de novo 

lipogenesis protects cancer cells from insults by free radicals and chemotherapeutics which can 

be reversed by inhibition of lipogeness43. Furdui and colleagues have identified higher expression 
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of FASN in radiation resistant rSCC-61 cells, inhibition of which results in increased cytotoxicity 

and sensitivity to radiation26,27. Rae and colleagues have shown that inhibition of FASN sensitizes 

prostate cancer cells to 2 Gy of radiation44. Additionally, immunohistochemically determined 

FASN expression have been associated with tumor progression and survival in neoplasms of 

ovary45, melanoma46, and nephroblastoma47. Bensaad et al have shown lipid droplet 

accumulation in hypoxic condition to be HIF-1α dependent and its inhibition profoundly increases 

ROS toxicity, delays tumor growth, and reduces cell survival48. These studies have implied that 

accumulation of glycolytic intermediates is vital for cell proliferation and survival. Although our 

findings are in contrast with the mentioned studies, one particular study in neoplastic lesions of 

oral tongue by Krontiras et al noted that FASN expressing tumors had better survival compared 

to weaker FASN expressing tumors49 which implies that the relationship between FASN 

expression and radiation-response is not well-understood and deserves further investigation. 

Radiation injury is known to incite an acute response by overexpressing growth factors 

through macrophages that lead to recruitment and development of fibroblast and myofibroblasts 

which leads to collagen secretion50,51. In addition to collagen deposition induced by radiation, 

collagen has been identified to protect cancer cells against radiation. In vitro studies of renal cell 

carcinoma have shown that adherence to collagen I protects cancer cells from radiation-induced 

apoptosis during both normoxic and hypoxic conditions52. Collagen deposition has also been 

known to be driven by hypoxia inducible factors (HIFs). In vitro studies of MDA-MB-231 breast 

cancer cells have shown hypoxia to stimulate prominent collagen cross linking through HIFs, 

knock downs of which abolished collagen cross linking53. These studies are consistent with our 

findings because as shown in previous chapter, UM-SCC-47 non-responsive tumors have higher 

content of HIF-1α5.  

Because of the lack of normal distribution of MCR-scores and the fact that some of the 

investigated time point were assigned with very small number of samples (i.e. n=2), we did not 
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investigate radiation-induced significant differences between various time points. However, 

comparison of lipid-related MCR-scores among control and radiated UM-SCC-22B tumors yielded 

a p value very close to significance (p=0.052). Using Raman spectroscopy at early time points 

after radiation, several studies have shown significant biomolecular differences in radiation-

resistant and -sensitive cells12,36. Thus, we hypothesize that increasing sample size in future 

studies can identify significant biomolecular differences in vivo as well. 

Although MCR-ALS has widely been used in multivariate analysis in various disciplines, 

the extracted MCR-scores do not measure the content of actual species of specimen under 

investigation. Thus, it is important to confirm the accuracy of these findings with controlled 

experiments. To this end, we performed Raman spectroscopic measurements on aqueous 

solutions with known content and identified very close agreement between a priori known 

concentrations with MCR-identified contributors. To validate our in vivo MCR-findings, we 

compared collagen-scores of MCR against gold-standard methods of collagen determined from 

the same tumors. However, we failed to show significant and strong correlations between two 

factors. In chapter 2 of this dissertation, we performed a similar study where optical findings of 

tumor oxygenation were confirmed with immunohistochemical measures of hypoxia. Hypoxia on 

those tumors were specifically investigated in depth of the tumor that corresponded to penetration 

depth of diffuse reflectance probe. However, for tumors that were used in current study, we failed 

to track the tumor depth in which histological slides were obtained and hence, there is a very 

strong possibility that the collected slides were harvested from deeper layers of tumor. This could 

explain the lack of strong correlation between the two parameters. Thus, any future studies that 

aim to compare optical findings with tumor histology must ensure to collect slides exactly from the 

depths that associate with penetration depth of utilized probe. 

Other forms of imaging modalities namely, coherent anti-stokes Raman scattering (CARS) 

and stimulated Raman scattering (SRS) have been used in study of lipid droplets and their role in 
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cancer progression and metastasis54,55. We are particularly intrigued by a study by Zhang et al in 

which SRS was been used to investigate the role of lipid droplets in different metabolic events i.e. 

lipogenesis vs. lipolysis56. However, Raman spectroscopic measurements are sensitive to 

vibrational modes of numerous other molecules which may contain pathological information about 

radioresistant phenotype. For example, Matthews et al have shown radiation resistant cancer 

cells to have higher content of glycogen which its pharmacological inhibition results in increased 

radiosensitivity12. Other studies have also suggested that the synthesis of glycogen to be induced 

in hypoxic conditions through HIF-1 and the accumulation of the glycogen promotes cancer cell 

survival when exposed to glucose-free medium57. 

In summary, we have used Raman spectroscopy to observe radiation-induced 

biomolecular alterations in the first 48 hours after a single dose of 2 Gy and identified. Multivariate 

analysis of acquired Raman spectra revealed increase in lipid and collagen content respectively 

in radiation-sensitive and -resistant tumors. In a recent study, we have identified higher content 

of HIF-1α in UM-SCC-47 tumors with respect to UM-SCC-22B tumors in 1 hour after radiation5. 

We reason that the higher content of HIF-1α and FASN in these tumors could be responsible for 

the observed increase in lipid content. Our future studies include genetic alteration of the 

pathways that contribute to fatty acid synthesis and collagen breakdown to determine if 

modification of these pathways lead to corresponding changes in MCR-derived spectral 

components. Longitudinal confirmatory studies with promising results can open the path for 

clinical translation of Raman spectroscopy where specific biomolecular-changes can be used as 

a biomarker of radiation-resistance. 
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Tables and figures 

Table 1. Tumor distribution in different groups. NT and XT respectively represent control and 
radiated animals. 
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Figure 1. MCR-ALS analysis of aqueous solutions with known content. A, 800 Raman spectra 
from Lactate-only, Glucose-only, and combined Lactate and Glucose solutions. B, Average 
Raman spectra from three different solutions. Standard deviations from group average were 
smaller than the lines and hence, are not visible. C, MCR-coefficients extracted from the MCR-
ALS algorithm. D, MCR-scores of lactate and glucose of individual Raman spectra from 2400 
spectral measurements.  
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Figure 2. Spectral decomposition of Raman spectra using MCR-ALS algorithm. A, Average 
Raman spectra ± 1 standard deviations from group mean (transparent shadow) collected from 
NT and XT treated radiation-resistant (UM-SCC-47) and radiation-sensitive (UM-SCC-22B) head 
and neck tumor xenografts. B, MCR-coefficients derived from raw Raman spectra. B1 and B2 
respectively represent lipid-rich and collagen-rich loadings. B3 represents a loading that contains 
spectral features from combination of weak collagen and nucleic acid. C, Boxplots illustrating the 
scores of lipid-rich and collagen-rich coefficients in UM-SCC-22B (left panel) and UM-SCC-47 
tumors (right panel). Outliers are <10% data from each group. No significant differences were 
observed using Wilcoxon rank sum test. The effect size (r) also provided. 
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Figure 3. MCR scores of UM-SCC-22B and UM-SCC-47 tumors at different time points after 
radiation. Boxplots illustrating the scores of lipid-rich and collagen-rich coefficients in UM-SCC-
22B (left panel) and UM-SCC-47 tumors (right panel). Outliers in each group illustrated using 
asterisks with highest percentage of outliers (15%) observed in 1H-NT group. Effect sizes are 
provided for each comparison. Statistical analysis not performed because of presence of n=2 
samples in some of time points. 
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Figure 4. Immunohistochemical assessment of FASN in tumor tissue sections. A, Representative 
images from UM-SCC-22B and UM-SCC-47 tumors excised at baseline and 1 hours after 
radiation. The false-colored green signal represents FASN positive pixels. The scale bar 
represents 250 μm. B, Quantification of percentage of FASN positive pixels in UM-SCC-22B and 
UM-SCC-47 tumors. 
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Figure 5. A, Representative UM-SCC-22B tumor stained with Masson’s Trichrome and its 
corresponding binarized version. White pixels indicate collagen-positive regions. The scale bar 
represents 1 mm. B, Scatter plot representing the association between histologically-determined 
collagen fraction and collagen-related MCR scores in UM-SCC-22B (red stars) and UM-SCC-47 
(blue inverse triangle) tumors. Symbols include tumors excised before, 1h, 24, and 48 hours after 
radiation. Black solid line indicates the regression line. 
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Chapter 5: Conclusion 

Summary 

This dissertation used diffuse reflectance and Raman spectroscopy to investigate the 

association between radiation-induced physiological and biomolecular changes with 

radiosensitivity of the employed tumors. These studies were carried out on tumor xenografts that 

were inoculated with two human head and neck cancer cell lines, UM-SCC-22B (isolated from 

radiation-sensitive sensitive tumor) and UM-SCC-47 (isolated from a radiation-resistant tumor), 

to represent various radiosensitivity of head and neck tumors that is observed in head and neck 

oncology.  

Because tumor hypoxia has long been linked to poor radiation-response, we first 

investigated the association between diffuse reflectance spectroscopic measurements of oxygen 

saturation with tumor hypoxia. We showed optically determined oxygenation is negatively 

correlated with tumor hypoxic fraction and hence can serve as a negative indicator of tumor 

hypoxia. Next, we investigated whether physiology of radiation-resistant and -sensitive tumors 

are altered differently in response to radiation and identified measurable differences in 

reoxygenation kinetics of radiation-resistant and -sensitive tumor xenografts in pre-clinical animal 

models. Based on radiation-induced changes in optical properties, we trained a logistic regression 

model that is capable of classifying treatment failure and local control tumors. Although the 

observed accuracy and the area under the curve associated with the model is not ideal, we believe 

that the addition of Raman spectroscopy can greatly improve the overall accuracy of the model 

by providing quantitative measures of both functional and biomolecular changes in the tumor 

microenvironment. Thus, investigating additional features (e.g. radiation-induced biomolecular 

changes) can improve our understanding of radioresistant-phenotype and improve our ability to 

identify responding and non-responding tumors.  
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Raman spectroscopy has previously been shown to identify different biomolecular 

composition, specifically lipids and collagen, in radiation-resistant and -sensitive tumors that were 

excised 25-30 days after radiation1. However, it is not clear whether in vivo measurements at 

early time points after radiation can identify different biomolecular changes among radiation-

resistant and -sensitive tumors. Thus, to study radiation-induced biomolecular changes in tumor 

microenvironment and the association of these changes with tumor radiosensitivity, we performed 

in vivo Raman spectroscopy on radiation-resistant and -sensitive tumors in the first 48 hours after 

radiation. We observed difference in the spectral scores of lipid and collagen respectively in 

radiation-sensitive and -resistant tumors. These results indicate that Raman spectroscopy can 

detect biomolecular changes between radiation-resistant and -sensitive tumors as early as 48 

hours after radiation and can potentially serve as biomarkers for identification of radiation-

resistant and -sensitive tumors.   

Future studies include simultaneous measurements of diffuse reflectance and Raman 

spectra with the goal of characterizing radiation-induced reoxygenation and biomolecular 

changes in head and neck cancer patients. These two modalities will be combined by engineering 

novel spatially-offset probe that can be used to access tumors of oral cavity or delivered to tumors 

of pharynx and larynx thru the working channel of flexible laryngoscopes (Figure 1). Prior to 

initiation of treatment on these patients, baseline RS and DRS spectra will be acquired. 

Subsequent optical measurements will be performed on following days after each dose of 

radiation and kinetics of oxygenation and biomolecular contents will be associated with radiation 

response. We envision that performing combined diffuse reflectance and Raman spectroscopic 

measurements on numerous responding and non-responding patients can help us develop 

artificial intelligence-based-model that based on only baseline measurement, can identify 

radiation-responsive and non-responsive HNSCC patients.  

However, prior to initiation of clinical trials, feasibility studies for measurements of diffuse 

reflectance, Raman spectra, and their combination can help us optimize measurement protocols, 
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and modify software and hardware of these systems. One such feasibility study has already been 

initiated in otolaryngology department of University of Arkansas for Medical Science Winthrop P. 

Rockefeller Cancer Institute. The objective of this single-arm observational study is to investigate 

the feasibility of using diffuse reflectance spectroscopy for measuring optical properties of 10 

patient tumors that are located inside the oral cavity. Three optical spectra will be collected from 

the diseased tonsil, the contralateral healthy tonsil, and a normal tissue site on the buccal mucosa. 

The acquisition of control spectra from normal tissue will allow normalization of each tumor 

spectrum to the patient’s normal tissue, and significantly reduce inter- and intra-patient variability. 

The acquisition of spectra from contralateral healthy tonsil will serve as a control measurement 

that represents functional properties of healthy tonsil. Patients with tumors on both tonsils and 

patients who have undergone any form of treatment or surgery will be excluded from this study. 

Success metrics defined for this study includes the acquisition of optical spectra with a high signal 

to noise ratio (of at least 100) that can be fit to our data analysis models to extract meaningful 

endpoints, such as total hemoglobin, vascular oxygenation, and tissue scattering in at least 80% 

of the patients enrolled in the study. So far, we have recruited 6 Caucasian male tonsil cancer 

patients with average age of 50. However, the employed LUT model was able to fit only half of 

the acquired spectra. Table 1 presents the distribution of successful fits across different patients 

and measurements sites. Figure 2A illustrates representative diffuse reflectance spectra collected 

from diseased tonsil (black solid), contralateral healthy tonsil (black dashed line), normal buccal 

mucosa (black dashed-dot line), their corresponding LUT fits (red solid line), and their 

corresponding chi-squared values. As seen in the figure, the LUT failed to successfully fit the 

spectra collected from normal buccal mucosa. Quantification of accepted fits from all three sites 

among 6 patients yielded high values of vascular oxygenation for spectra collected from tissue 

sites (figure 2B). However, as mentioned earlier, the LUT was not able to fit half of the collected 

spectra. We strongly believe this is driven by the lack of proper contact between optical probe 

and the tissue at the time of data acquisition. We continue to work with our physician collaborators 
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in optimizing our data acquisition protocol that guarantees data acquisition when probe is in 

complete contact with the tissue. However, such success may never be achieved due to lack of 

visibility of the probe-tumor interface inside upper aero-digestive tract. An alternative solution can 

be the use of optical probe equipped with pressure or proximity sensors that automatically triggers 

acquisition of spectra as soon as the probe comes into contact with the tumor2. Such measures 

can eliminate the uncertainties of data acquisition and pave the way for initiation of large-scale 

clinical trials where combined diffuse reflectance and Raman spectroscopy can be used for 

monitoring radiation-response of head and neck cancer patients.   

Future work 

Diffuse optical spectroscopy is a powerful technique that is capable of non-invasive 

monitoring of tumor physiology and thanks to its short integration time, is ideal for accessible 

tumors of oral cavity. Our pre-clinical study on tumor xenografts identified reoxygenation 

phenomena in radiation-resistant tumors, which combined with other immunohistochemical 

proofs, suggested that OCR reduction in response to radiation is the driving factor for 

radioresistant phenotype. However, numerous studies have identified reducing OCR as a strategy 

in improving treatment response3–7. Thus, several important questions remain unanswered: Does 

the sequence of HIF-1 inhibition and OCR reduction carries significance? How do they affect 

reoxygenation kinetics and how do they differ in radiation-resistant and -sensitive tumors? To 

answer such questions, kinetics of reoxygenation, OCR, and HIF-1 content (respectively using 

DRS, seahorse assay, and western blot or immunohistochemistry) induced by radiation alone, 

combined with HIF-1 inhibitor, combined with OCR reducing agents, and combined with both 

treatments in various sequences should be monitored to shed additional light about the relevance 

of these pathways to radiation-resistance. Acquired optical properties can also be used for 

classification purposes. Thus, gathering larger dataset can also be beneficial in terms of training 
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of various machine learning algorithms for accurate classification of local-control and treatment-

failure tumors.  

We and others have extensively utilized diffuse reflectance spectroscopy in pre-clinical 

and clinical in vivo studies and hence, have a solid understanding of the setup, models used for 

simulating light-tissue interaction, and the association between probe geometry, wavelength, and 

penetration depth. In contrast, Raman spectroscopy has been investigated to a lesser extent in 

biological tissue and deserves detailed studies before its clinical translation. For example, 

multilayer tissue stimulating phantoms with known content and concentrations can provide a 

better understanding in terms of whether Raman spectroscopic measurements provide a depth 

averaged reading of sample. Accurate measurement of penetration depth can also be helpful in 

designing spatially-offset probes that can later be used for longitudinal in vivo studies where 

treatment response of individual animals can be monitored. In addition to depth penetration, such 

experiments can uncover the accuracy of MCR-ALS algorithm in determining sample 

constituents. Alternatively, tumors with known specific microenvironmental characteristics can be 

utilized to pursue such studies. For example, using B16.BL6 murine melanoma cell line which 

presents increased MMP9 expression, we can expect to observe lower collagen content 

determined by Raman spectroscopy combined with MCR-ALS algorithm. This can provide a 

controlled method to validate the sensitivity of the Raman spectroscopy and MCR-ALS algorithm 

to specific biomolecular constituents of tissue. 

Although our in vivo Raman spectroscopic studies uncovered early radiation-induced 

changes in lipids and collagens, additional studies can shed light on biological pathways that lead 

to observed biomolecular changes. For example, pharmacological and/or RNA mediated 

inhibition of HIF-1 and FASN can provide valuable information on differential pathways that 

radiation-resistant and -sensitive tumors take. One intriguing way to study the effect of modulating 

these pathways is window chamber model of cancer because it enables gathering additional 

information such as tumor oxygenation using hyperspectral imaging and tumor redox state using 
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nonlinear two photon microscopy. Alternatively, these studies can be pursued at the cellular level 

since they lack the complexity of dynamic tumor microenvironment and hence, result 

interpretation become less challenging.  

Finally, longitudinal and simultaneous monitoring of animals using combination of in vivo 

DRS and Raman spectroscopy will enable us to correlate the observed radiation-induced 

physiological and biomolecular changes with treatment outcome and hence, will provide better 

understanding with possible pathways involved in radiation-resistance. In addition, combination 

of these modalities will enable us with identifying the earliest time point at which diffuse reflectance 

spectroscopy, Raman spectroscopy, or their combination can accurately classify treatment 

responders and non-responders. 
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Tables and figures 

Table 1. Tumor distribution in different groups. NT and XT respectively represent control and 
radiated animals. 
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Figure 1. Delivery of combined Diffuse reflectance and Raman spectroscopic probe to tumor. For 
tumors located in upper aero-digestive tract (i.e. larynx, pharynx, etc.) the probe will be inserted 
into working channel of an NET laryngoscope.  
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Figure 2. A. Representative DRS spectra acquired from diseased tonsil, contralateral healthy 
tonsil, normal buccal mucosa, and their corresponding LUT fits. B. Quantification of oxygen 
saturation from different tissue sites. Bars and error bars respectively represent mean and 
standard deviation of the mean. 
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