
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Theses and Dissertations 

12-2020 

The Surveillance of Gastrointestinal Parasitic Nematodes of The Surveillance of Gastrointestinal Parasitic Nematodes of 

Northwest Arkansas Dairy Cattle Using Traditional and Genetic Northwest Arkansas Dairy Cattle Using Traditional and Genetic 

Parasitological Identification Procedures Parasitological Identification Procedures 

Eva M. Wray 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Agriculture Commons, Animal Sciences Commons, Large or Food Animal and Equine 

Medicine Commons, and the Parasitology Commons 

Citation Citation 
Wray, E. M. (2020). The Surveillance of Gastrointestinal Parasitic Nematodes of Northwest Arkansas Dairy 
Cattle Using Traditional and Genetic Parasitological Identification Procedures. Theses and Dissertations 
Retrieved from https://scholarworks.uark.edu/etd/3880 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact ccmiddle@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=scholarworks.uark.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/76?utm_source=scholarworks.uark.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/766?utm_source=scholarworks.uark.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/766?utm_source=scholarworks.uark.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/39?utm_source=scholarworks.uark.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3880?utm_source=scholarworks.uark.edu%2Fetd%2F3880&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ccmiddle@uark.edu


 

The Surveillance of Gastrointestinal Parasitic Nematodes of Northwest Arkansas Dairy Cattle 

Using Traditional and Genetic Parasitological Identification Procedures 

 

A dissertation submitted in partial fulfillment  

of the requirements for the degree of  

Doctor of Philosophy in Animal Science 

 

 

by 

 

Eva M. Wray 

University of Arkansas 

Bachelor of Science in Animal Science, 2011 

University of Arkansas 

Master of Science in Animal Science, Parasitology, 2015 

 

 

December 2020 

University of Arkansas 

 

 

This dissertation is approved for recommendation to the Graduate Council. 

 

 

_____________________________ 

Tom Yazwinski, Ph. D. 

Dissertation Director 

 

 

_____________________________  ____________________________ 

Jiangchao Zhao, Ph.D.    Jeremy Powell, DVM, Ph. D. 

Committee Member    Committee Member 

 

 

 

_____________________________  ____________________________ 

Douglas Rhoads, Ph. D.   Michael Looper, Ph. D. 

Committee Member    Committee Member 

 

 

 

 

 

 



 

ABSTRACT  

Traditional and genetic parasitological identification procedures were compared using natural 

and artificial nematode parasite infections in Holstein steer calves. The traditional parasitological 

procedures measured fecal egg counts, coprocultures with subsequent larval collection and adult 

nematodes collected at necropsy. The genetic identification procedures measured ITS-2 

sequences extracted from different stages of nematode development:  raw feces, concentrated 

nematode eggs, third stage larvae and adults. The primary nematodes observed were Cooperia 

oncophora, Cooperia punctata and Ostertagia ostertagi. The traditional techniques were not 

significantly different from one another, while the genetic sequencing showed variation amongst 

the different procedures. The raw feces sequences showed the most variation, displaying a wide 

array of sequences from nematode species that were not necessarily found in the other genetic 

procedures. There was good correlation between the traditional and genetic procedures as a 

whole, leading to the conclusion that traditional parasitological identification techniques are 

sufficient for the identification of parasitic nematodes of cattle.  
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Chapter 1. Diagnostic Methods in Veterinary Parasitology 

1.1. Introduction  

Evaluation of gastrointestinal parasitisms in cattle is an important factor in the production of 

healthy animals. Cattle with untreated internal parasitisms demonstrate reduce grazing time, 

forage intake and weight gain (Forbes et al., 2000), making surveillance of parasite burdens a 

vital aspect of the livestock industry.  It has been established that co-infection of a singular host 

animal by multiple parasite genera and species is a common occurrence with natural infections 

(Viney & Graham, 2013). The parasitological techniques used to determine the presence and 

magnitude of parasite burdens have remained relatively unchanged for nearly a century, though 

genetic identification methods have only recently begun to emerge. Though this emergence of 

genetic identification has a promising future, the data acquired are limited to only being able to 

detect the presence of parasites, not the actual magnitude of the burden or burdens. These 

techniques also are somewhat unavailable to livestock producers, especially those who do not 

have a large operation. The techniques are costly and laborious, reinforcing the conjecture that 

traditional parasite surveillance techniques are still relevant. In this investigation, the two 

parasitological evaluation techniques (traditional vs. genetic) are compared and contrasted in 

order to determine the validity and practicality of traditional methods.  

1.2. Traditional Parasitological Identification/Quantification Methods for Gastrointestinal 

Nematodes 

Though human knowledge of parasites can be traced to ancient civilizations, the assessment of 

gastrointestinal nematode parasitisms in live animals has remained relatively unchanged since 

the standardization of the process in the early 20th century, though modifications to the procedure 

have been incorporated (Verocai & Chaudhry, 2020). Prior to this standardization, there were 
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many varying methods that parasitologists used to evaluate internal parasitisms in live animals. 

One popular method used by many scientists, that is still used today, was a simple fecal smear to 

determine the abundance of gastrointestinal parasite eggs in fecal samples (Stoll, 1923). 

Brazilian physician and epidemiologist, Adolfo Lutz (“Father of Tropical Medicine”) was 

interested in making contributions to medical geography and published studies on Ancylostoma 

duodenale (“Old World Hookworm”) and other important parasites that caused disease in 

humans, including Strongyloides (Benchimol, 2004). In 1885, Lutz developed a method of 

homogenizing 1-part feces with 3-parts water and counting 3 drops on a microscope slide 

(Looss, 1911). This method was deemed to be flawed due to the homogenate being too 

concentrated for accurate pipetting and counting (Stoll, 1923). German researcher Otto 

Leichtenstern, who contributed to the research on Ancylostoma duadenale, expanded on Lutz’s 

method and developed a more accurate fecal evaluation method for assessing an internal parasite 

infection in the late 19th century. He came close to an answer in his attempt to standardize his 

method by weighing the feces (3-5 grams, weighed to the third decimal place) and measuring the 

amount of water (100-150 mL) that went into his homogenate. From this homogenate, 4-8 drops 

were placed on a microscope slide and the nematode eggs were counted (Looss, 1911). This 

method was deemed inaccurate due to the variation of feces measured from each fecal sample 

and the variation in the amount of water used (Stoll, 1923). A key piece of the puzzle came in the 

early 1900s, when American pathologist and bacteriologist, Samuel Taylor Darling replaced the 

water with brine in the homogenized sample. This introduction of a brine created a medium with 

a higher specific gravity than the helminth eggs, allowing for the separation of the eggs and the 

debris in the fecal sample, and thus, uniformity upon replication (Darling, 1922).  
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In 1923, the American parasitologist, Norman Stoll published the first paper using quantitative 

data on fecal egg counts from work he was conducting on human hookworms (Stoll, 1923). Stoll 

was a professor of medical research at Rockefeller University and conducted extensive research 

on the effects that parasites such as Trichinella spp. and Necator americanus had on people. 

Stoll’s fecal flotation method, dubbed “Stoll Dilution Egg-Counting Technique”, brought 

standardization to the estimation of gastrointestinal parasite infections using fecal samples. The 

method was adopted worldwide and is the basis for the current methods of fecal egg counting in 

parasitology. Stoll’s 1930 complementary publication on the estimation of sheep nematodes was 

paramount in bringing this new quantitative diagnostic technique for internal parasites into the 

world of veterinary medicine (Stoll, 1930).  

A significant modification was made in 1939 to Stoll’s fecal egg counting technique by an 

Australian parasitology lab that processed a high volume of sheep fecal samples daily in order to 

assess parasite infections. Researchers H. V. Whitlock and Hugh Gordon were looking to 

streamline the fecal egg counting process by building on past methods, and, accordingly, 

developed a special microscope slide that did just this (Whitlock and Gordon, 1939). With some 

modifications that would arise by 1948, Whitlock eventually developed the Modified McMaster 

fecal egg counting technique and microscope slide that is the foundation for the varying 

techniques that are still used today (Whitlock, 1948). The Modified McMaster method is 

currently one of the most widely-used fecal egg counting techniques, regardless of the lack of 

sensitivity when detecting lower numbers of nematode eggs (Mes, 2003). It is advocated by the 

World Association for the Advancement of Veterinary Parasitology (WAAVP) for evaluating the 

efficacy of anthelmintic drugs in ruminants (Wood et al., 1995). 
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Since the standardization of fecal analysis for nematode eggs, researchers have made 

modifications to the Stoll’s fecal egg counting technique, namely the Wisconsin flotation method 

(Cox & Todd, 1962). The Wisconsin flotation method can be achieved by using either a passive 

or a centrifugation technique. Passive flotation is the simplest of the procedures, and involves 

mixing a small amount of feces with flotation media, homogenization, straining and placing the 

filtrate into a container, typically a centrifuge tube. The container is brought to full volume using 

flotation media to form a slight positive meniscus and topped with a cover slip. The homogenate 

is allowed to sit for a certain amount of time to passively allow the buoyant nematode eggs to 

float to the top of the tube, after which the nematode eggs adhered to the slip are examined and 

enumerated. Passive flotation is essentially Stoll’s method with modern flotation media. Direct 

flotations using centrifugation is the same technique as a passive flotation, only using an 

enhanced separation of nematode eggs from the fecal debris using high specific gravity coupled-

with the centrifugation. The introduction of centrifugation added increased accuracy to the fecal 

egg counts (Dryden et al., 2005). The FLOTAC method is another modification to Stoll’s 

method that has been recently utilized in veterinary parasitology. This flotation method uses 

centrifugation, as well as a specialized, chambered apparatus, called the FLOTAC, in order to 

determine the number of parasite eggs and oocysts present in a fecal sample. The FLOTAC 

protocol is somewhat complex and involves several centrifugation steps before analysis can 

occur (Cringoli, 2006). 

Researchers also have made modifications to the McMaster method since its introduction to the 

field. These modifications include using different starting weights of feces, different volumes of 

flotation media, presence or absence of centrifugation, different centrifugation times and speeds, 

different flotation media, flotation length and total number of “sections” of the slide counted 
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(Pereckiene et al., 2007). Regardless of method used to extract the nematode eggs, centrifugated 

samples result in a higher sensitivity than the non-centrifugated samples. However, in the 

absence of a centrifuge, which is a costly apparatus, McMaster fecal egg counting without 

centrifugation is a comparable substitution for the determination of internal helminthic 

parasitisms when compared to the Wisconsin Flotation Method (Pereckiene et al., 2007).  

It should be noted that many inherent factors can influence the results of a fecal egg count, i.e. 

worm biology (species, prepatent period, fecundity, helminth populations), host physiology and 

immune status/competence, the time of the year, partial effect of anthelmintic use, etc. (Lyndal-

Murphy, 1993). All of these are factors that must be considered when any fecal egg count is 

obtained. Additionally, fecal egg counts must be done with a competent, precise technique; a 

factor that may vary person to person.   

Building on the brine introduced in the Stoll method, researchers also have exploited different 

media to utilize the buoyancy of nematode eggs. A few common flotation solutions include 

magnesium sulfate, zinc sulfate, sodium nitrate solution and Sheather’s sucrose solution. All of 

the listed solutions are effective, easy to use, readily available and relatively inexpensive. 

However, failure to ensure the flotation media has the proper specific gravity for the type of 

parasite eggs under surveillance can result in flawed recovery of the target eggs (Dryden et al., 

2005).  

1.3. The Rise of Genetic Sequencing 

The molecular structure of deoxyribose nucleic acid (DNA) was completed in 1953 by James 

Watson, Francis Crick and Rosalind Franklin, and has since been likened to the invention of the 

internet in its importance to the progression of the human race (Watson & Crick, 1953). This 
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discovery, though monumental, was limited to the molecular framework. Sequencing DNA was 

difficult, as known sequencing strategies used for proteins did not apply. Initial focus on 

sequencing nucleic acids was directed at relatively pure RNA (ribonucleic acid) preparation, 

such as the genomes from single-stranded RNA bacteriophages or microbial transfer RNA 

(Holley et al., 1961). These nucleic acids were advantageous to start with due to the ability to 

mass-produce them via culture, the lack of a complementary strand and their considerably 

shorter length than eukaryotic DNA. Another advantage to starting with RNA was RNase 

enzymes were already available and could be utilized; progress, however, was still slow (Holley 

et al., 1961).  

In 1965, Fred Sanger and his colleagues developed a radiolabeled, two-dimensional fractionation 

method that allowed for the development of a pool of ribosomal and transfer RNA sequences 

that were available to researchers (Sanger et al., 1965). In 1972, using this method, the Walter 

Fiers’ laboratory produced the first complete protein-coding gene sequence; the protein coat of a 

bacteriophage (Min-Jou et al., 1972). This same lab sequenced the complete genome of the 

bacteriophage in 1976 (Fiers et al., 1976). 

In 1977, Sanger and his colleagues at Cambridge University, and their competitor, Allan Maxam 

and Walter Gilbert at Harvard, developed the first generation of DNA sequencing technologies 

(Sanger et al., 1977; Maxam & Gilbert, 1977). The Sanger sequencing method (“chain 

termination method, dideoxynucleotide”) uses one strand of double-helix DNA as a template to 

be sequenced and elongated using chemically modified nucleotides called dideoxy-nucleotides. 

Once the elongation process is completed, the DNA fragments are sorted using gel 

electrophoresis (Kchouck et al., 2017). Maxam-Gilbert sequencing (“chemical degradation 

method”) involves chemically cleaving nucleotides via chemicals creating marked fragments that 
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can be separated; a technique that has the most success when working with small nucleotide 

polymers (Kchouck et al., 2017). These sequencing techniques have low-throughputs, relatively 

short read-lengths of only 1000 base pairs (bp), and high costs of operation.  

Despite the limitations, given the accuracy of sequencing (99.999%), the Sanger method 

sequencing technologies were utilized by researchers and biologists until 2005, when Second 

Generation Sequencing (SGS), or Next Generation Sequencing (NGS) technologies became 

available (Qiang-long et al., 2014). These technologies have a high-throughput capability of 

sequencing millions to billions of parallel reads from multiple samples in a single run, a reduced 

run-time (hours as opposed to days) and a reduced overall cost of operation (Kchouck et al., 

2017). Next Generation techniques are divided into two approaches:  sequencing by ligation 

(SBL) and sequencing by synthesis (SBS). Sequencing by ligation is a sequencing method that 

uses DNA ligase, an enzyme that joins together ends of DNA molecules by catalyzing the 

formation of a phosphodiester bond; that determines the nucleotide present at a given location in 

a DNA sequence. Sequencing by synthesis is a sequencing method that uses DNA polymerase, 

an enzyme that synthesizes DNA molecules from deoxyribonucleotides, and constructs DNA 

fragments after the amplification of a target fragment.  

Next Generation sequencing technologies were further subdivided into five major sequencing 

platforms:  Roche 454 pyrosequencing, Illumina (Solexa) HiSeq and MiSeq sequencing, SOLiD 

sequencing, DNA nanoball sequencing and Ion Torrent sequencing. Roche 454 is a platform that 

utilized pyrosequencing to generate sequence reads, a SBS approach developed by Pal Nyren and 

Mostafa Ronaghi at the Royal Institute of Technology in Stockholm (Ronaghi et al., 1996). This 

technology became available in 2005 and was the first commercially successful NGS. As of 

2016, however, Roche has discontinued supply and service for this methodology. 
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Illumina (Solexa) HiSeq and MiSeq sequencing is an SBS sequencing platform, introduced in 

2006, that is based on reversible dye-terminators technology and engineered polymerases 

(Bentley et al., 2008). Today, it is one of the most successful sequencing systems, particularly 

with the HiSeq and MiSeq platforms (Kulski, 2016). Roger Tsien, Pepi Ross Margaret 

Fahnestock and Allan Johnston developed the base-by-base, or stepwise, DNA sequencing with a 

removable 3’ blockers protocol (Tsien et al., 1991); Eric Kawashima, Pascal Mayer and Laurent 

Farinelli developed DNA colony sample preparation and random surface-polymerase chain 

reaction (PCR) arraying methods (Kawashima et al., 2005). 

 Applied Biosystems Instruments’ Sequencing by Oligonucleotide Ligation and Detection (ABI 

SOLiD) is a sequencing procedure (SBL), available in 2006, that involves sequential annealing 

(joining two complementary strands of nucleic acid via hydrogen bond) of DNA probes to the 

nucleotide template and their subsequent ligation. This protocol has many disadvantages 

including 50-75 bp read lengths, run times of weeks and the need for costly computational 

infrastructure and personnel expertise for analysis of data (Kulski, 2016). SOLiD is currently 

unavailable, as this technology has been discontinued.  

DNA nanoball sequencing (Beijing Genomics Institute Retrovolocity) is an SBL procedure that 

creates DNA nanoballs of small fragments of genomic DNA from circular templates by rolling-

circle replication (Kulski, 2016). Beijing Genomic Institute affirms that in a five-year span, to 

have sequenced over 20,000 whole human genomes using the DNA nanoball sequencing 

platform, and provide public access to human genomes and cancer data on their website (Kulski, 

2016). 
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Ion Torrent (Ion semiconductor sequencing) technology, available since 2010, is an SBS 

sequencing method where a complementary DNA strand is constructed based on the sequence of 

a template strand. It is based on a revised version of the 454 pyrosequencing, with methodical 

changes to the nucleotide detection and the implementation of a microchip in which the 

sequencing reactions occur (Kulski, 2016). This sequencing method is different than other SBS 

technologies, in that completion does not require modified nucleotides or optics. Though this 

platform has low costs and fast runs, it has a high rate of sequencing errors with homopolymer 

stretches and repeats (Kulski, 2016).  

Third generation single molecule sequencing (TGS, “long-read sequencing”) is a class of DNA 

sequencing that is still undergoing development (Bleidorn, 2015). This method of sequencing 

can be done without the need to create a DNA library (Thompson & Milos, 2011), thereby 

leading to easy sample preparation and lower operational costs. Third Generation sequencing can 

be divided into two main categories:  1. single molecule real time sequencing approach (SMRT) 

and 2. the synthetic approach. The SMRT sequencing is a technology that utilizes a zero-mode 

waveguide (Levene et al., 2003) and has many applications to medicine (Arduri et al., 2018). 

Pacific Biosciences developed a SMRT sequencing method by using the same fluorescent 

labeling from established technologies, but detects the signals as they are emitted in real time. 

The second category of TGS sequencing, the synthetic approach, determines the order of 

nucleotides in a nucleic acid sequence. Oxford Nanopore technology (ONT) is a synthetic 

sequencing technology and is one of the most widely used TGS method. Nanopore technology is 

a mobile sequencing technology that can sequence a single molecule of DNA/RNA in absence of 

PCR amplification or chemical labeling of the sample. This system has yet to become 

commercial, but great strides are being made in its development (Kulski, 2016).  
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Fourth-Generation Sequencing is an in-situ sequencing method that uses NGS technologies to 

read nucleic acid composition directly from tissues and fixed cells. Though in its infancy, this in-

situ sequencing technique was demonstrated on mRNA for the first time for breast cancer tissues 

(Lee et al., 2014). 

1.4. Genomic Diagnosis of Gastrointestinal Parasites in Veterinary Medicine 

Helminth infections affect almost 1/2 of humanity, with some infections categorized as 

‘neglected tropical diseases’ (eight of 13 pathogens are on this list are helminth parasites). With 

this known disregard for these types of infections in humans, one can rationally assume that 

helminths of veterinary importance have not received a great deal of attention either. The first 

nematode to have its genome sequences was Caenorhabditis elegans in 1998, by the C. elegans 

Sequencing Consortium. C. elegans is a free-living nematode that has been used as a ‘model’ for 

many biological investigations due to the ease of mass production and its utility for genetic 

analysis (Clare et al., 2000; Schafer, 2005; Kosinksi & Zaremba, 2007; Alcantar-Fernandez et 

al., 2018). Interest in this nematode and its biological processes opened a door for veterinary 

helminth research (Burglin et al., 1997; Geary & Thompson, 2001; Gilleard, 2004). The 

investigations into C. elegans led to the investigations of parasitic nematodes of veterinary 

importance. One of these nematodes was Haemonchus contortus, a hematophagic nematode has 

become a significant problem for the small ruminant industry (Vlassoff & Mckenna, 1994; 

Waller & Chandrawathani, 2005). H. contortus developed resistance to multiple anthelmintic 

classes ubiquitously on a global scale (Echevarria et al., 1996; van Wyk et al., 1997; Terrill et 

al., 2001). Genetic research conducted on H. contortus has been implemental in vaccine research 

(Roberts et al., 2013; Laing et al., 2013), new drug development (Laing et al., 2013) and 

identifying genetic changes that confer anthelmintic resistance (Gilleard, 2013). Due to the 
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intensive investigations into Haemonchus, other parasitic nematodes of veterinary importance 

that have similar lifecycles, biological processes and hosts have received attention. Two 

important parasitic nematode genera of cattle have received this interest, and which are central to 

this paper, are Cooperia and Ostertagia. These parasites affect cattle on a global scale and have 

been the subjects of genomic research. Studies to differentiate species (Newton et al., 1998), 

investigations into anthelmintic resistance (Njue & Prichard, 2004; de Graef et al., 2013) and 

genome mapping (van der Veer & de Vries, 2004; Amarante et al., 2014) have been conducted 

on Cooperia. Ostertagia, the more pathogenic of the two genera, got less attention from the 

molecular researchers than its counterpart. This could be due to Cooperia spp. having had the 

most attention due to its singularly high degree of anthelmintic resistance (Stromberg et al., 

2012).The genome of Ostertagia ostertagi, the species that commonly affects cattle, has not been 

fully sequenced, and research with this nematode, for the most part, has been focused more in 

anthelmintic (Edmonds et al., 2010; Waghorn et al., 2016) and immunological (Claerbout et al., 

2005; Bakshi et al., 2019) areas than in the genomic (Harmon et al., 2006).  

The rise of genetic sequencing has allowed parasitologists to explore different techniques for 

diagnosis of gastrointestinal helminthiasis. Although new strides have been made to use genetic 

sequencing to diagnose gastrointestinal helminth infections in both humans (Pilotte et al., 2016) 

and food animals (Hoglund et al., 2013), the typical approach to diagnosis and survey livestock 

helminthiasis involves conducting a fecal egg count (FEC) to get an estimation of the intensity of 

intestinal helminthiasis. Egg counts are occasionally accompanied by a coproculture for larval 

speciation based on morphological features or conventional/real-time PCR (Durette-Desset et al., 

1999; van Wyk, 2013; Roeber & Kahn, 2014). These methods of identification are time-

consuming, prone to error and require specialized training (van Wyk, 2013; Valentini et al., 
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2009). Russell Avramenko at the University of Calgary, supported by his colleagues, developed 

a next-generation deep amplicon sequencing (metabarcoding) method to explore the parasitic 

communities of nine common gastrointestinal nematodes of cattle (Avramenko et al., 2015) that 

typically exist, to varying degrees, as co-infections (Lello et al., 2004; Gasbarre, 2014; Serrano 

& Miller, 2014). This system introduced the concept of the ‘nemabiome’, which can be defined 

as the parasitic nematode “equivalent” to the bacterial microbiome. The development of this 

method was initiated by the researchers who explored the diagnostic use of the microbiome using 

next generation sequencing (Gloor et al., 2010; Rogers & Bruce, 2010), and revamped the 

procedure to eukaryotic organisms. This system has opened the door for mapping common 

nematode community compositions and intensities. Also, investigations into how parasite species 

are developing resistance to drug classes, and how the drugs affect the parasites and vice versa, 

are expanding. 

Though this technology is very accurate and is becoming more available to researchers 

(Avramenko et al., 2017), it is not very accessible to the producers for diagnostics of livestock 

parasitisms. Producers shifting from simply using drugs to control the parasitisms of their 

livestock to conducting actual diagnostics to monitor the parasitisms long-term and implement 

strategic targeted treatments, has been a relatively recent occurrence, especially in cattle 

production (van Wyk et al., 2006; Kaplan & Vidyashankar, 2012). The uptick in the 

implementation of management protocols is directly related to the rise of anthelmintic resistance 

displayed by livestock helminth parasites on a global scale (Waller 1997; Sutherland & 

Leathwick, 2011; Kaplan & Vidyashankar, 2012). The push to educate producers on the parasites 

that affect their animals and different management strategies to control said parasites is a slow-

moving giant. Traditionally, livestock producers have been somewhat resistant to changes in 
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husbandry practices, though the visualization of the economic impact of internal parasitisms has 

made it clear that change is the ideal path (Qamar et al., 2013; Grisi et al., 2014; Rodriquez-

Vivasa et al., 2017).  

1.5. Study Objective 

The purpose of this investigation is to compare and evaluate the accuracy both within and 

between traditional parasitological surveillance techniques (microscopic) and molecular 

identification techniques (ITS-2 metabarcoding genetic sequencing). The investigation was 

designed to compare and contrast the labor input, accuracy and applicability of the two 

identification/quantification methods.  

Chapter 2. Materials and Methodology 

2.1. Study Overview 

Five calves were selected from a dairy farm based on qualifying criteria, detailed below and 

placed on concrete (day -1). Upon reception, a mass collection of feces from individual animals 

was conducted in order to cultivate artificial infections for inoculation on day 36 of the study. 

Fecal samples (200 grams) collected from the naturally-parasitized calves were obtained on days 

0 and 7. The feces collected was divided into two 60 gram subsamples for traditional 

parasitological identification methods (fecal egg counts, coprocultures/L3) and molecular 

parasitological identification methods (raw feces, floated/isolated nematode eggs, 

coproculture/L3). All animals were given three anthelmintics of different classes on day 14. Fecal 

samples were collected to ensure negative fecal egg counts. The calves were given artificial 

infections using nematodes collected from their mass-coprocultures on days 36, 39 and 42. Fecal 

egg counts were conducted on days 52 and 57 in order to confirm successful artificial infections. 
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Fecal samples (200 grams) from the artificially-infected calves were obtained on day 64 and 

again at necropsy of the animals (days 76-79), samples that were divided into two 60 grams 

subsamples for traditional and molecular parasitological identification methods (listed above). 

Additionally, at necropsy, the contents of the abomasums and small intestines were collected and 

aliquots were designated to traditional (10%, 300 mL) and molecular (17%, 500 mL) 

identification methods each in order to collect and identify the adult parasites (Table 1). 

2.2. Animals and Reception 

Five, 6 to 8 months old Holstein calves, ranging in weight from 150-200 kg, were obtained from 

a local dairy farm in Washington County, Arkansas on 24 May 2018 (IACUC protocol # 18087). 

The calves were selected from a group of yearling Holstein calves based on preliminary fecal 

egg counts. Criteria for selection were fecal egg counts of at least 15 strongyle eggs per gram of 

feces (to ensure calves held parasitisms), as well as overall health and appearance. Beginning at 

arrival, the calves were housed individually on concrete and given ad libitum mixed-grass hay, 

minerals and water. Each calf also was given 0.5 kg of 16% protein grain daily. 

2.3. Treatments and Inoculations 

Animals were each administered oral anthelmintics from three different chemical classes, 

simultaneously, on day 14 of the investigation:  moxidectin (Cydectin, 0.2 mg/kg BW), 

levamisole (Prohibit, 8 mg/kg BW) and oxfendazole (Synanthic, 4.5 mg/kg BW). Anthelmintics 

were administered at the 680 kg dosage. Fecal egg counts were conducted periodically 

throughout the next 20 days to ensure negative egg counts.  

Feces was collected from individual animals for coprocultures (procedure detailed below) and 

harvest of L3 for reinfections on day 36 of the investigation. Each animal was inoculated with its 
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“own” nematodes. Samples were carefully collected en masse rectally and from the cleaned 

concrete pad multiple times a day, continuing until a sufficient number of nematode larvae 

(~100,000 larvae for each animal) were collected. Animals were administered ~10,000 infective 

larvae on days 36, 39 and again on day 42 of the investigation (~30,000 total L3 per animal). 

Fecal egg counts were conducted on days 52 and 57 to ensure that the artificial infections were 

successful. 

2.4. Fecal Collection  

Fecal samples were collected rectally from the animals throughout the investigation in order to 

conduct the required coprology (fecal egg counts, coprocultures and egg harvest). Fecal samples 

were collected at four different time points for usage in traditional and molecular parasitological 

identification methods (days 0, 7, 64 and at necropsy [days 76, 77, 78, 79]). Fecal samples also 

were conducted on days 52 and 57 for assessment of treatment efficacy. Methodologies for both 

parasitological identification methods are described later in the text.  

2.5. Traditional Parasitological Procedures 

2.5.1. Fecal Egg Counts  

Strongyle egg counts were obtained via direct centrifugation fecal flotations. For each fecal 

sample, one gram of feces was weighed and thoroughly homogenized with 10 mL of saturated 

MgSO4 (flotation media). The homogenate was passed through a 1 mm aperture sieve and the 

filtrate was placed in a 15 mL centrifuge tube and each tube was brought up to volume with 

additional MgSO4, creating a slight positive meniscus. The tubes were topped with a cover slip 

and then centrifuged at 2000 rpm for 3 minutes. The cover slip was placed on a microscope slide 

and examined at 40X magnification for egg quantification (Yazwinski et al., 2009). 
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2.5.2. Coprocultures  

Coprocultures were conducted using 30 grams of feces homogenized with 2 grams of 

vermiculite, and supplemented to suitable consistency with water (procedure used was similar to 

Roberts and O’Sullivan [1959]). The covered coproculture cups were allowed to sit in a warm, 

dark room (23 C) for 14 days. Each coproculture cup was then flooded with water and inverted 

onto an inclined petri plate for 4 hours to allow the larvae to migrate from the culture into the 

lowest edge of the partially-floated plate. Collected larvae from one coproculture cup were 

siphoned into a 15 mL Pyrex centrifuge tube, killed with 10% formalin and stretched by transient 

boil. The samples were allowed to sit overnight in order to pellet the larvae at the bottom of the 

tube. The supernatant fluid was decanted and the precipitated L3 were pipetted onto a microscope 

slide for identification and enumeration (Van Wyk et al., 2013). Larvae were identified at 40-

100X magnification based on morphological features without the use of staining.  

2.5.3. Aliquot and Digest Preparation 

The calves were killed via captive bolt and exsanguination at the University of Arkansas 

parasitology farm in Fayetteville, AR. The intestinal contents were removed immediately 

following death and were processed for parasite collection. The abomasum and small intestine of 

each animal were ligated and separated for content collection. The individual organs were 

opened lengthwise, their contents emptied into a container and brought up to 3 L using water. 

Two aliquots were removed at this point: one 10% aliquot preserved with 10% formalin used for 

subsequent stereoscopic (10-70X magnification) identification and a 17% aliquot preserved by 

refrigeration used for molecular identification. The emptied abomasums were soaked overnight 

in water and the emptied small intestines sat in water for four hours. After soaking, the organs 
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were removed, washed, and the total wash/soak residue washed over a #200 sieve, with the total 

residue preserved with 10% formalin for subsequent traditional identification (Woods, et al., 

1995).   

Note:  The large intestines and ceca of the calves were also processed using the methods detailed 

above, however no parasites were recovered.  

2.5.4. Parasite Isolation and Quantification Procedures  

The abomasal contents aliquot: 

For each sample, the content aliquot was washed over a #120 (125 µm) sieve and all residue and 

filtrate were collected separately. The residue was collected via backwash and made up to 1 L 

(Residue 1). The filtrate was washed over a #200 (74 µm) sieve and the residue was backwashed, 

collected and made up to 1 L with water (Residue 2). 

With homogenization, Residue 1 was stereoscopically viewed in 10-20 mL subsamples until the 

total volume was viewed. The same exact percentage analyzed was applied to Residue 2. All 

nematodes were collected, identified, quantified and recorded.  

(Note:  If the contents were too concentrated, then a lower aliquot was processed.) 

The abomasal digest: 

The collected digest fluid was made up to 4 L, and a 10% (400 mL) was removed during 

constant homogenization and washed over a #400 sieve (37 µm) sieve. The residue was collected 

via backwash and made up to 1000 mL. With homogenization, 10-20 mL subsamples were 

removed and viewed stereoscopically. This was continued until the total residue was viewed. All 

nematodes were collected, identified, quantified and recorded.  
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(Note:  If the contents were too concentrated, then a lower aliquot was processed.) 

The small intestine contents aliquot:  

The same procedure used for abomasal contents aliquot was used for the small intestine contents 

aliquot.  

(Note:  If the contents were too concentrated, then a lower aliquot was processed.) 

The small intestine digest: 

The same procedure used for the abomasal digest detailed above was used to collect, identify, 

quantify and record the nematodes found in the small intestine digest.  

(Note:  If the contents were too concentrated, then a lower aliquot was processed.) 

2.6. Molecular Parasitological Procedures 

All samples below were collected for DNA identification.  

2.6.1. Raw Feces  

One subsample (~2 g) of each fresh feces (<30 minutes old) sample was placed in a 1.5 mL 

Eppendorf tube and immediately stored at -17°C until DNA extraction was carried out.  

2.6.2. Fecal Strongyle Eggs  

Six direct fecal flotations were carried out (detailed above) for each fecal sample collected from 

each animal, with 1-2.5 grams of feces used for the floatations, dependent on the fecal egg count 

conducted prior to flotations. The samples were spun at 2000 rpm for ten minutes. The cover slip 

was removed and washed into a 15 mL beaker. Next, 5 mL of centrifuged homogenate was 
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carefully siphoned from the surface of the centrifuge tube and placed into said beaker. The 

entirety of the beaker content was then placed into two clean centrifuge tubes and brought to full 

volume using water. Tubes were placed back into the centrifuge and spun at 2000 rpm for ten 

minutes in order to pellet the strongyle eggs at the base of the tube. After centrifugation, about 

12 mL of water was siphoned off and the sedimented eggs were combined into one centrifuge 

tube, resuspended in water, and spun for another ten minutes at 2000 rpm. This washing process 

was repeated two more times. After the final spin, about 14 mL of water was siphoned off and 

the strongyle egg residue was placed into a 1.5 mL Eppendorf tube and frozen at -17°C until 

DNA extraction was carried out.  

2.6.3. Third Stage Larvae Collection 

Infective third stage larvae were collected from the coprocultures (detailed above). The live 

larval suspension was placed into a centrifuge tube. The larvae were pelleted using centrifugation 

at 2000 rpm. The excess water was siphoned and the larval pellet was placed into a 1.5 mL 

Eppendorf tube and frozen at -17°C until DNA extraction was carried out.  

2.6.4. Adult Nematode Collections 

At necropsy, ~500 mL of abomasum and small intestine contents were collected and washed 

through a 35 mm sieve (500µm) and put into a 1 L Nalgene container. All nematodes were 

collected, identified and enumerated, and then placed into a 1.5 mL Eppendorf tube, suspended 

in water, and frozen at -17°C until DNA extraction was carried out. 
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2.6.5. DNA Extractions 

The DNA from samples that were collected for molecular work were extracted using the DNeasy 

PowerLyzer PowerSoil Kit (Qiagen) with the addition of Proteinase K. The raw feces samples 

and floated egg samples were extracted following the protocol provided in the kit, with 40µl of 

Proteinase K added before the bead beater step.  The floated eggs samples were washed and 

pelleted via centrifugation twice prior to extraction. The infective larvae samples were also 

extracted using the kit-provided protocol, with the addition of 50 µL of Proteinase K; however, 

instead of using the bead beater machine, the samples underwent an “Alternate Bead Beater” 

step. In short, this method provided a gentler approach to disrupting the sheath of the nematode 

larvae, with alternation of heating and vortexing the samples. The adult nematodes were 

processed using the kit-provided protocol, with the addition of 50 µL of Proteinase K. Like the 

infective larvae, adult nematodes were processed using the “Alternate Bead Beater” step, in 

addition to being gently crushed using a pestle prior to the initiation of protocol. The nematodes 

were washed twice before being pelleted and crushed. In order to pellet the nematodes, the 

Eppendorf tubes were centrifuged and excess water siphoned off.  

All extracted DNA samples were sent for sequencing to the Gilleard Lab at the Faculty of 

Veterinary Medicine, University of Calgary, TRW 2D10, 3280 Hospital Drive NW, Calgary, 

Alberta, T2N4Z6, Canada.  

2.7. DNA Sequencing (University of Calgary) 

2.7.1. PCR Amplification of ITS-2 Regions 

The first step of sequencing the DNA target region for each sample was the amplification of the 

ITS-2 regions via PCR using the NC1 and NC2 primers (311-331 bp fragment) described by 
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Gasser et al. (1993) and Illumina adapters. Amplifications were carried out using the NEB Q5® 

High-Fidelity DNA Polymerase cat# M0491L using a 5 µl DNA template. The PCR conditions 

were 5 µL of Kapa HiFi reaction buffer, 0.75 µL of dNTPs (10 µM), 0.5 µL of Kapa HiFi 

polymerase, 12.24 µL dH20, 0.75 µL of NC1 primer (10 µM), 0.75 µL of NC2 primer (10 µM), 

0.1 µL of BSA (20 mg/mL) and 5 µL of diluted (1:10) lysate. The thermocycling parameters 

were 95ºC for 3 minutes, followed by 35 cycles of 98ºC for 20 seconds, 62ºC for 15 seconds, 

72ºC for 15 seconds, followed by a final extension of 72ºC for 2 minutes.   

2.7.2. PCR Product Purification 

The PCR products were purified after the initial amplification (see above) and after the addition 

of barcoded regions (see below) using Agencourt AMPure XP magnetic Bead Based Purification 

Protocol. The protocol is as follows: 

Bring AMPure XP beads to room temperature; prepare fresh 80% ethanol from absolute ethanol; 

centrifuge second amplification plate to collect condensation (290 x g for 1 minute at 20ºC); 

transfer 25 µL of the PCR product to a new 96 well MIDI plate; vortex AMPure XP beads for 30 

seconds to evenly disperse the beads; add 25 µL of beads to each well of MIDI plate; mix up and 

down 10 times; incubate at room temperature for 5 minutes; place plate on magnetic stand for 2 

minutes or until supernatant has cleared; remove and discard supernatant; while plate is still on 

magnetic stand, wash beads with 200 µL of fresh 80% ethanol (do not resuspend beads); 

incubate for 30 seconds or until clear; remove and discard supernatant; repeat 80% ethanol wash 

and 30 second incubation; remove and discard supernatant; allow beads to air-dry for 15 

minutes; remove plate from magnetic stand; add 32.5 µL of pure water to each well; mix by 

pipetting up and down 10 times; incubate at room temperature for 2 minutes; place plate on 
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magnetic stand for 2 minutes or until supernatant has cleared; transfer 30 µL of the supernatant 

to new 96 well Nextera Library Plate.  

2.7.3. Addition of Illumina Barcoded Regions 

Step 3 of the sequencing protocol is the addition of Illumina barcoded regions and P5/P7 regions 

with pre-dispensed primer plates. This was carried out via low-cycle PCR using Kapa HiFi 

polymerase. The PCR conditions were 8.75 µL of dH2O, 5 µL of Kapa HiFi buffer, 0.75 µL of 

dNTPs (10mM) and 5 µL of first round PCR product. The thermocycling parameters were 98ºC 

for 45 seconds, 7 cycles of 98ºC for 20 seconds, 63ºC for 20 seconds, 72ºC for 2 minutes, 

followed by an infinite hold at 10ºC.   

2.7.4. Quantification of Individual PCR Products and Pooling 

After another round of purification (see 3.5.2.), PCR products were quantified using a Nanodrop 

spectrophotometer. The individual samples were then pooled into a single tube in equal 

concentrations (50 ng/sample) in order to create a normalized library. The pooled library was 

quantified using a Nanodrop spectrophotometer, then diluted with molecular grade water until a 

concentration/volume of 8-10 ng/µL was achieved.  

2.7.5. Library Quantification (qPCR) 

Real-time PCR (qPCR) was performed to determine the final concentration of the library in order 

to amplify the ITS-2 regions using the KAPA Library Quantification Kit. The qPCR protocol 

was: 

Dilute library (1:1000) with 10 mM Tris-HCl, pH 8 with 0.05% Tween-20 triplicate; using 

1:1000 dilutions, set up 1:2 serial dilutions to achieve 1:2000, 1:4000 and 1:8000 dilutions; prior 
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to using Illumina library quantification kit for the first time, add 1 mL of primer premix (x10) to 

the 5 mL bottle of Sybr fast qPCR master mix (2x) and mix well; place all plasticware and water 

under UV light for 15 minutes; prepare qPCR plate (12 µL of Sybr fast qPCR master mix with 

added primers, 4 µL of molecular grade water and either 4 µL of diluted library, one of supplied 

standard for positive control or molecular grade water for negative control); place microseal over 

reactions; run qPCR. The qPCR thermocycling parameters were 95ºC for 5 minutes, then 35 

cycles of 95ºC for 30 seconds, 60ºC for 45 seconds. Once the amplification was achieved, the 

data was confirmed to have a 90-100% reaction efficiency for samples and for standards. The 

library quantification was calculated using absolute quantifications against the 425 bp DNA 

standard. The qPCR products were purified with the MicroElute Cycle Pure Kit (OMEGA Bio-

Tek, D6293-02). Sequences were aligned and trimmed using Geneious version 7.1.5 created by 

Biomatters. Available from http://www.geneious.com/. 

2.7.6. Library Preparation and MiSeq Sequencing  

The library was prepared for MiSeq sequencing using MiSeq Reagent Kit v2 (cat# MS-102-

2002). Briefly, the preparation protocol was: 

The library was diluted to 4 nM using molecular grade water (1 mL fresh 0.2M NaOH); the 

library was denatured by combining 5 µL of 4 nM library with 5 µL of 0.2 NaOH, briefly 

vortexing, centrifuging at 300 x g  for 1 minute, incubating at room temperature for 5 minutes, 

then adding 990 µL of chilled hybridization buffer to produce 20 pM denatured library; the 20 

pm library was diluted to 12 pM by combining 720 µL of 20 pM library with 480 µL of chilled 

hybridization buffer and inverted several times.  
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After the library was prepared, the sequencing control was prepared (PhiX library). The protocol 

was: 

A 4 nM PhiX library was created by combining 2 uL of 10 nM PhiX library with 3 µL of 10 mM 

Tris-Cl, pH 8.5 with 0.1% Tween 20; the PhiX library was then denatured by combining 5 µL of 

4 nM PhiX library with 5 µL of 0.2 M NaOH, briefly vortexing, centrifuging at 300 x g for 1 

minute, incubating at room temperature for 5 minutes, then adding 990 µL of chilled 

hybridization buffer to produce a 20 pM denatured PhiX library; the library was then diluted 

from 20 pM to 12 pM by combining 180 µL of the PhiX library with 120 µL of chilled 

hybridization buffer and inverted several times.  

The qPCR library (12 pM) and PhiX library (12 pM) were combined and loaded (600 uL) into 

the MiSeq cartridge. Products were directly sequenced on both strands using Sanger sequencing 

with the NC1 and NC2 primers. 

2.8. Statistical Analysis 

Weighted percent was calculated for each variable and were analyzed using the GLIMMIX 

procedures of SAS (SAS Inst. Inc., Cary, NC 2016). Animal served as the experimental unit for 

all dependent variables. The model included the laboratory method; means of infection, protocol, 

method by infection interaction, method by protocol interaction, infection by protocol 

interaction, or method by infection by protocol interaction. Means were separated using the F-

protected t-test. When significant, the LINES option in the LSMEANS statement was used to 

display pairwise LS-means differences. All data are reported as weighted percentages, and for all 

analyses, significance was declared at P ≤ 0.05. 
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Chapter 3. Results and Discussion 

3.1. Traditional Parasitological Procedures 

3.1.1. Fecal Egg Counts 

Fecal egg counts (FEC) were conducted at four different intervals throughout the investigation 

for data collection. The results are expressed in nematode eggs per gram (epg) of feces. 

Strongyle counts are displayed in Table 2a, and Nematodirus spp. counts are displayed in Table 

2b. From day 0 to day 7, with the exception of animal 4, the strongyle FEC for natural infections 

increased or remained relatively the same. Throughout the beginning of the investigation, animal 

4 was affected by severe diarrhea, potentially due to a high burden of Nematodirus spp. A similar 

trend was seen with the artificial infections for animal 4, though Nematodirus spp was not found. 

From day 64 to necropsy, the strongyle FEC for all animals increased, indicating that the female 

nematodes were reaching fecundity at an increasing rate. This is to be expected at the parasite 

burdens matured. The exception to this was animal 5, whose FEC decreased to 1 epg on day 79. 

Upon necropsy, fecund female strongyle nematodes were recovered from all animals, so the low 

strongyle egg count of animal 5 reinforces the estimative nature of traditional fecal egg counts.  

The FEC for Nematodirus spp can be found in Table 3. On day 0, only animals 4 and 5 had a 

positive count. Animal 4 had 89 epg, a count that represents a significant Nematodirus spp 

burden, and likely led to the loose fecal consistency throughout the investigation. On day 7, four 

of five animals held a positive Nematodirus spp FEC, with the epg ranging from 1-20. Animal 2 

held the highest count on day 7.  
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Fecal egg counts were conducted after the animals were administered anthelmintic treatments on 

day 14. Counts were conducted on days 21, 28 and 30 to ensure that the animals had negative 

fecal egg counts (0 epg) and that the treatments were successful.  

Post-infection fecal egg counts were conducted on days 52 and 57 to ensure that the artificial 

infections (administered on days 36, 39 and 42) were successful (Table 2a).  There were no 

Nematodirus spp eggs found in the post-treatment fecal samples.  

3.1.2. Coprocultures 

Coprocultures were conducted from fecal samples collected in order to collect the L3 and 

determine the larval compositions (Table 4a-e). The data are expresses in percentages of the total 

coproculture harvests. For animal 1 (Table 4a), the proportions of nematode species distribution 

were relatively similar for both natural and artificial infections, though there was a higher 

percentage Ostertagia spp. found on day 64 when compared to day 76. This could be due to a 

difference in overall Ostertagia eggs collected for the coproculture, as egg distribution in feces is 

not uniform (Michel, 1969). For animal 1, only three species of nematode were identified during 

natural and artificial infections.  

The larvae recovered and identified for animal 2 is displayed in Table 4b. During the natural 

infections, the proportions of nematode species remained relatively the same. The artificial 

infection data showed that there was a flip-flop in the primary nematode identified. On day 64 

and 77, the primary nematodes found were Ostertagia spp and Cooperia punctata, respectively. 

Trichostrongylus spp. was identified in the day 0 coproculture but was not found on any of the 

other collection dates.  
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The results for the larval proportions for animal 3 are displayed in Table 4c. Only three 

nematode species were identified across both natural and artificial infections. The natural 

infection proportions were similar from day 0 to 7. The artificial infection results were different 

when comparing day 64 to 78. On day 64, C. punctata was identified the most at 68%, and on 

day 78, only consisted of 28% of the sample. The proportions of species identified in the day 78 

sample were fairly evenly distributed.  

Animal 4 larval results are shown in Table 4d. Three species of nematodes were found in all 4 

coprocultures, though on day 0, two additional species were recovered (Haemonchus placei and 

Trichostrongylus spp.) that were not found in the latter 3 collection dates. The natural infection 

proportions for C. punctata and Ostertagia spp. were reversed from day 0 to 7. The artificial 

infection results were similar for days 64 and 79, with Ostertagia spp and C. punctata holding 

the high and low proportions, respectively.  

The results for animal 5 are displayed in Table 4e. The proportions for Cooperia oncophora were 

dissimilar from day 0 to 7, reversing from the top proportion to the bottom. The results for the 

artificial infection cannot be compared from day 64 to 79, due to the FEC at necropsy being 1 

epg. The results for day 79 are expressed in absolute numbers of nematode larvae, rather than the 

proportions due to only 7 total larvae recovered from the entire coproculture. No C. punctata L3 

were observed in day 79 coproculture, though these results are dubious due to the miniscule 

number of recovered larvae. Images of the different species of nematode larvae are shown in 

Figures 1-4.  
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3.1.3. Abomasums 

Adults collected from the abomasum of each animal at necropsy were quantified and are listed in 

Table 5. The data are expressed in both total calculated populations, as well as percentages. O. 

ostertagi was the prevalent species found in all of the animals, with a small population of 

Ostertagi lyrata present, as well. The two dimorphs were differentiated by the male’s copulatory 

bursa. The female nematodes could not be individually differentiated, as the distinguishing 

features are less documented than that of the males. Ostertagia spp was the only gastrointestinal 

parasite genus recovered from the abomasum at necropsy from all of the animals. Images of the 

nematodes recovered from the abomasum are shown in Figure 5. 

3.1.4. Small Intestines 

Adults collected from the small intestines of each animal at necropsy were quantified and are 

listed in Table 6. The data are expressed in both total calculated proportions, as well as 

percentages. C. oncophora was the nematode species that was recovered in the highest 

proportion at necropsy for all animals. C. punctata was recovered the least (2 of the animals), 

and Cooperia surnabada was found in small numbers in 3 animals. The only gastrointestinal 

parasites recovered from the small intestines were in the genus Cooperia. The three species were 

determined based on morphological features of the male’s copulatory bursa. The female 

nematodes had fewer distinguishing features and could not be individually differentiated. Images 

of the male nematodes recovered from the small intestines are shown in Figure 6.  
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3.2. Molecular Parasitological Procedures 

3.2.1. Raw Feces  

Extracted DNA from the raw feces samples was sequenced and are displayed in Tables 7a-e. The 

data are expressed in MiSeq reads, as well as percentages. For animal 1 (Table 7a), C. oncophora 

was the primary nematode species found across all study dates, followed by O. ostertagi.  H. 

placei was sequenced from the feces collected on day 7, however the proportions were minute. 

The nematode species found in the lowest proportions on days 0 and 7 was Unclassified 

Cooperia (indicates that the ITS-2 sequences could not be specifically determined to the species 

level, rather grouped as “Cooperia punctata/spatulata”), followed by C. punctata. On days 64 

and 76, C. punctata was found the least, followed by Unclassified Cooperia.  

The sequencing data for animal 2, displayed in Table 7b. C. oncophora was the primary 

nematode sequenced on day 0, but O. ostertagi moved into the top spot for days 7 and 64. On 

day 77, the nematode species found in highest proportion was Haemonchus contortus, which was 

not recovered from the abomasum at necropsy. H. contortus and Trichostrongylus colubriformis 

were sequenced in minute numbers on day 7, holding the spots for the least amount of sequences 

recovered. The species sequenced the least on days 0 and 64 was Unclassified Cooperia; C. 

punctata was slightly higher. On day 77, eight total nematode species were sequenced, three of 

which being unique to this fecal collection when compared to previous dates. The species 

recovered in the lowest proportions were Oesophagostomum asperum, followed by H. placei. 

Neither of these nematodes were recovered at necropsy.  

The results for animal 3 showed that sequences from a number of nematode species were found 

(Table 7c). Day 64 had the fewest nematode species sequences found (C. oncophora, C. 
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punctata, Unclassified Cooperia and O. ostertagi). The primary nematode species sequenced on 

days 0 and 64 was O. ostertagi and C. oncophora, respectively. On days 7 and 78, the primary 

nematode sequence found was T. colubriformis, followed by H. contortus, neither of which were 

recovered at necropsy. The nematodes that were recovered at necropsy (Cooperia spp. and O. 

ostertagi) were sequenced on day 78, but in low numbers. On day 0, Cooperia spatulata was the 

species found the least, followed by H. contortus. On day 7, the species found in the lowest 

quantity was H. placei, followed by Unclassified Haemonchus (indicates the genus 

Haemonchus). On day 64 and 78, the nematodes species found least were O. ostertagi and 

Unclassified Haemonchus, respectively. T. colubriformis and Haemonchus spp. were both found 

in 3 of the 4 fecal samples collected from animal 3, but none of these worms were recovered 

from the small intestine or abomasum at necropsy.  

The sequencing results for animal 4 are displayed in Table 7d. On days 0 and 7, the primary 

nematode species found was C. oncophora and O. ostertagi, respectively. Nematodirus 

helventianus was found on both days 0 and 7 (the lowest proportion of species recovered for 

these days), which is to be expected as a good amount of eggs were found in the FEC 

corresponding to these days. As with animal 3, a variety of nematode sequences were recovered 

from animal 4 samples on days 64 and 79; only about half of these parasite species were 

recovered at necropsy. On day 64, T. colubriformis had the most sequences found, followed by 

H. contortus. On day 79, the nematode sequences recovered in the highest proportions were O. 

ostertagi, followed by H. contortus. Unclassified Cooperia was the species recovered the least 

on day 64, and C. punctata held this position for day 79. 

The results for animal 5 are displayed in Table 7e. C. oncophora was the primary species 

sequenced on days 0, 7 and 64. On day 79, the nematode species found in the highest proportion 
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was H. contortus, followed by O. ostertagi; the third highest proportion belonged to that of T. 

colubriformis. Neither H. contortus nor T. colubriformis was recovered at necropsy. On days 0 

and 7, the nematode species found in the lowest proportion was H. placei and O. ostertagi, 

respectively. On days 64 and 79, C. punctata was found the least. 

The DNA sequenced from the raw feces samples, overall, had more variation when compared to 

the DNA sequenced from the floated eggs and larvae collected from the same fecal sample. 

3.2.2. Floated Strongyle Eggs  

Extracted DNA from the floated, isolated nematode eggs was sequenced and the resulting 

proportions are displayed in Tables 8a-e. The data are expressed in MiSeq reads and percentages. 

The sequencing data for animal 1 is displayed in Table 8a. Day 64 had no sequencing data. C. 

oncophora had the highest proportions of DNA sequenced for days 0, 7 and 76. H. contortus was 

found only in the day 0 sample, however, it was a minute amount. The nematode species 

sequenced are similar across all sample dates. The nematode species that had the fewest 

sequences recovered on day 0 was H. contortus, with higher reads for Unclassified Cooperia and 

O. ostertagi. On days 7 and 76, the species recovered least was Unclassified Cooperia, followed 

by C. punctata.  

The sequencing data for animal 2 is shown in Table 8b. O. ostertagi had the highest proportions 

recovered for days 0 and 64, while C. oncophora had the highest for days 7 and 77. The species 

distribution had a somewhat similar trend across all sample dates, with the exception of H. 

contortus detected on day 64. The lowest proportion of sequences found were C. punctata on 

days 0 and 7. On day 64, the lowest proportion of sequences found were H. contortus, followed 
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by Unclassified Cooperia. O. ostertagi held the spot for the lowest proportions recovered on day 

77.  

The isolated nematode egg sequencing data for animal 3 is shown in Table 8c. On all collection 

dates, C. oncophora was the primary species sequenced. On day 0, the species that was 

recovered least was H. placei, and on day 7 was O. radiatum; both species were followed by 

Unclassified Cooperia. On day 64, C. punctata and Unclassified Cooperia were sequenced the 

least. O. ostertagi was the species sequenced the least on day 78.  

The data for animal 4 is shown in Table 8d. On all sample dates, O. ostertagi was the nematode 

species sequenced the most. On day 0, Nematodirus helventianus had the lowest proportion of 

sequences, followed by Unclassified Cooperia. On days 7, 64 and 79, the nematode species 

recovered in the lowest proportion was Unclassified Cooperia, followed closely by C. punctata.  

The sequencing data for animal 5 is shown in Table 8e. O. ostertagi was the nematode species 

that was sequenced most on all collection dates. N. helventianus was recovered least on day 0, 

followed by Unclassified Cooperia. On days 7, 64 and 79, Unclassified Cooperia was found in 

the lowest amount, followed closely by C. punctata.  

3.2.3. Third Stage Nematode Larvae  

Extracted DNA from the infective L3 collected from coprocultures was sequenced and are 

displayed in Tables 9a-e. The data are expressed in MiSeq reads and percentages. The 

sequencing data from extracted larval DNA for animal 1 is displayed in Table 9a. The same four 

nematode species were found in all data collections. On day 0, the primary nematode species 

sequenced was Unclassified Cooperia. On day 7, C. punctata and C. oncophora were almost 

equally the primary nematodes found. For the artificial infection collection dates, C. oncophora 
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was the primary species sequenced; Unclassified Cooperia was sequenced the least. C. 

oncophora and O. ostertagi was sequenced in the least amount on days 0 and 7, respectively.  

The sequencing data for animal 2 is shown in Table 9b. On day 0, the sequenced recovered were 

overwhelmingly O. ostertagi, and C. oncophora was sequenced the least. Day 7 had the highest 

range of nematode species (n=7) and the species sequenced the most on was C. oncophora. On 

days 64 and 77, O. ostertagi was the primary nematode sequenced.  C. oncophora was 

sequenced the least on days 0 and 64. On days 7 and 77, the species found in the lowest 

proportion was Unclassified Cooperia. 

The sequencing data for animal 3 is displayed in Table 9c. On day 0, the nematode species found 

in the highest proportion was C. punctata. Day 7 had the highest range of nematodes (n=5), with 

C. oncophora sequenced the most. The primary nematode species sequenced from the artificial 

infection collections was C. punctata.  On days 0 and 7, the species least sequenced was C. 

oncophora and Unclassified Cooperia, respectively. O. ostertagi was the nematode found in the 

lowest proportion on day 64; C. oncophora held this spot for day 78.  

Table 9d displays the ITS-2 sequencing data from larvae harvested from the feces of animal 4. 

The sequences from five species of nematodes were found, though not all 5 were found in any 

one sample. On all collection days, the species found in the highest proportion was O. ostertagi. 

On days 0 and 7, the nematode sequenced the least was C. punctata and Cooperia spatulata, 

respectively; C. spatulata was unique to day 7. On days 64 and 79, the nematode sequenced the 

least was Unclassified Cooperia, followed closely by C. punctata. The artificial infection data is 

more uniform than the natural infections data, as the same species are found in the same ranking 

order across both days.  
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The sequencing data for animal 5 is displayed in Table 9e. On days 0 and 7, the nematode 

species found in the greatest proportion was C. oncophora and O. ostertagi, respectively; 

Unclassified Cooperia was sequenced the least for both days.  On day 64, C. oncophora was 

sequenced the most, and O. ostertagi the least. On day 79, two of the top three species sequenced 

were nematodes that were not recovered at necropsy (H. contortus, T. colubriformis). The 

species sequenced the least on day 79 was C. punctata.  

3.2.4. Adult Nematodes 

Extracted DNA from the adult nematodes collected from the abomasums and small intestines at 

necropsy were sequenced and displayed in Tables 10a-e. The data are expressed in MiSeq reads 

and percentages.  The data is divided by organ from which the parasites were recovered and the 

percentage denotes what percentage of parasites were found per organ; all parasites collected 

from individual organs were combined prior to DNA extractions. With exception of animal 3, the 

primary nematode recovered from the small intestine was C. oncophora for all animals. C. 

punctata was the small intestine nematode sequenced the most from animal 3. All sequences 

obtained from abomasal nematodes were that of O. ostertagi.  

3.3. Comparison of Methodologies  

For procedure comparisons, nematodes that were found in few overall samples (n=6) were 

excluded in order to simplify the results. Traditional identification methods were able to 

determine that there were two different species of Ostertagia (O. ostertagi and O. lyrata), a 

distinction that genetic identification methods were unable to make. There is some disagreement 

as to whether the two species are, in fact, separate species or simply polymorphs (Zarlenga et al., 

1998; Soll et al., 2013). O. ostertagi and O. lyrata adult nematode data identified by traditional 
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procedures were combined and compared to genetic procedures. Traditional adult identification 

was also able to determine that a third species of Cooperia was present (C. surnabada); genetic 

identification was unable to make this distinction, but was able to determine that an ‘Unclassified 

Cooperia” species was present in these samples. This label indicates that the ITS-2 regions that 

were sequenced and categorized as such were either C. punctata or C. spatulata, though 

specificity ended there. 

Within-Procedure comparisons 

Larval and adult nematode identifications conducted using traditional parasitology are compared 

in Table 11. The proportions of C. oncophora (p=0.3878) and C. punctata (p=0.7656) found at 

the larval stage and the adult stage were not significantly different. The proportion of O. 

ostertagi larvae were significantly different from the proportion found at the adult stage 

(p<0.00001). 

The within-method comparisons using genetic parasitology are shown in Table 12. The ‘Raw 

Feces’ samples showed the most overall variation; 11% of the sample was identified as 

something other than Ostertagia or Cooperia. For natural infections, the proportions of C. 

oncophora, C. punctata and O. ostertagi were not different across all genetic procedures (raw 

feces, floated eggs and infective larvae). The proportions of Unclassified Cooperia in the 

infective larvae samples were significantly different than the proportions found in the raw feces 

(p=0.0193) and floated eggs (p=0.0256) samples. For the artificial infections (Table 13), the 

proportions of C. oncophora was not significantly different across all genetic procedures (raw 

feces, floated eggs, infective larvae and adult nematodes). The proportions of C. punctata the in 

the raw feces was significantly different from the infective larvae (p=0.0134) and adults 

(p=0.0384). The proportions for Unclassified Cooperia found in the floated egg samples were 
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significantly different from proportions found in the raw feces (p=0.0517), larvae (p=0.0190) and 

adult nematode (p=0.0355) samples. These variations are likely due to this category of nematode 

sequences not being a definitive category; i.e. lumping two different species of Cooperia into 

one group that cannot be distinguished from one another. The proportion of O. ostertagi found in 

the raw feces samples were significantly different from the adult nematodes (p<0.0001), and all 

other comparisons not different. The raw feces samples showed the most variation, with 34% of 

the sample identified as something other than Cooperia or Ostertagia.  

Across-Procedure Comparisons 

The straight comparison of traditional and genetic parasitological identification methods proved 

difficult due to the variation of nematode species identified with each. There were only three 

nematode species that were comparable across methods:  C. oncophora, C. punctata and O. 

ostertagi.  

Comparing traditionally-identified larvae with genetically-identified raw feces are displayed in 

Table 14. The proportions of C. punctata data were significantly different for both natural 

(p<0.0001) and artificial (p=0.0003) infections. All other proportions compared were 

significantly not different.  

Table 15 displays the data comparing proportions of nematodes found in traditionally-identified 

larvae with genetically-identified floated eggs. C. punctata was the only nematode whose 

proportions were significantly different for both natural (p<0.0001) and artificial (p=0.0177) 

infections. All other data were significantly not different.  

The across-procedure comparisons of proportions of nematodes from infective larvae identified 

with both traditional and genetic procedures is shown in Table 16. All proportions of nematodes 
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for both natural and artificial infections are significantly not different, with the exception of C. 

punctata in the natural infection (p=0.0002). 

The across-procedure comparisons showing proportions of nematodes found in adult samples are 

shown in Table 17, and all of the data are significantly not different. 

Chapter 4. Conclusion 

Observations of Procedures 

Each parasitological identification method, traditional and genetic, has both advantages and 

drawbacks. The traditional procedures are tried-and-true methods that have been used by 

parasitologists for decades, though somewhat limited as to the information that can be 

ascertained. Fecal egg counts are, at best, an estimate of the overall parasite burdens, as 

speciation of the eggs cannot be done (strongyle nematodes cannot be morphologically 

distinguished). In addition, different species of nematodes display distinct egg laying tendencies, 

such as egg output per day, making it impossible to measure the exact level of parasite burden by 

conducting fecal egg counts (Michel, 1969). Morphologically distinguishing the subtle nuances 

of the larval features can be arduous and requires a trained eye. The enumeration method of L3 

can prove difficult, as a collection can have thousands of larvae with only a percentage 

identified, therefore, is an estimate of overall nematode burdens. Also, certain species of 

nematodes, have to be coprocultured using differing conditions than those used to culture 

strongyle nematodes. The collection of adult nematodes for identification and quantification 

requires a deceased animal, which can be a limitation with healthy animals that are not destined 

for slaughter. Though traditional parasitology had limitations, the capabilities used are readily 

accessible to the producer at an affordable cost. Fecal egg counts can be conducted for as little at 
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$18 per sample, and larval identifications can be conducted for $20 per sample (Oklahoma State 

University School of Veterinary Medicine). Genetic sequencing is much more costly (~$50-

$75/sample), though, again, is not currently available at the diagnostic level to livestock 

producers. Even with the drawbacks of traditional parasitology, the affordability and reliability 

keep it a viable option for producers.  

Genetic parasitology has made great headway in identifying gastrointestinal parasites via PCR, 

although not yet commercially available to producers. The sample collections for genetic 

parasitology relies on traditional methods to gather samples, (eggs, L3 or adult nematodes). For 

the genetic portion of this investigation, fecal flotations had to be carried out in order to collect 

the floated eggs, coprocultures had to be conducted in order to collect the L3 and necropsies had 

to be conducted in order to collect the adults. And though the DNA extraction protocols used in 

this investigation have not been verified, there was variation in the ITS-2 sequences extracted 

from different parasitic stages taken/cultured from the same fecal sample. Genetic sequencing is 

also limited in what parasites can be sequenced; if a particular species of nematode has not had 

its genome sequenced, then specific identification can prove problematic. For example, in this 

investigation, there were two species of nematodes, C. surnabada and O. lyrata, that were 

identified using traditional parasitology, but these sequences were not detected during the genetic 

identification. This is likely due to the fact that these are parasitic nematode of relatively minor 

importance and their ITS-2 genetic regions have not been sequenced; it should also be noted that 

O. lyrata is not considered a “true” species.  

This project was designed to compare the techniques of traditional and genetic parasitology to 

identify parasitic cattle nematodes. Genetic identification procedures were able to detect 

nematode ITS-2 sequences in raw feces; a capacity not available with traditional procedures. 
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However, these sequences were not necessarily found in downstream genetic procedures (i.e. 

floated eggs, larvae and adults) using the same fecal sample, leaving room for identification 

errors. Genetic procedures were also unable to differentiate between species that were detected at 

the adult stage when using traditional procedures based on morphological features. This could be 

due to a number of reasons, with the most important factor being that accurate genetic 

identifications can only be conducted once the genome of an organism has been sequenced. 

Conducting genetic identifications of cattle nematodes is laborious and expensive, far greater 

than that of traditional methods. Though the technology is not yet available for commercial use, 

my own costs for these methods totaled to about $80 per sample. In order to collect the samples 

needed for genetic sequencing, traditional methods had to be conducted, doubling the labor 

input. The price-point for these two methods is almost incomparable, making traditional 

parasitology far more affordable and feasible for the average producer. It should also be noted 

that genetic sequencing is mostly unavailable to the average producer, giving traditional 

parasitology further advantage for routine parasitological monitoring. Based on the collected and 

analyzed data, it can be concluded that traditional parasitology is currently sufficient and 

practical for the identification of parasitic nematodes in cattle.  
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Tables 

Table 1. Schedule of events and distribution of collected samples for the comparison of 

traditional and genetic parasitology nematode identification methods. 

  

Date 
Trial 

Day 
Event Samples Sample Distribution 

25/May/18 -1 

Reception 

Mass-

coprocultures 

Feces 
+Collections for Artificial 

Infections 

29/May/18 0 Fecal Collection 1 Feces 
+Traditional Parasitology 

+Genetic Parasitology 

05/June/18 7 Fecal Collection 2 Feces 
+Traditional Parasitology 

+Genetic Parasitology 

12/June/18 14 
Anthelmintic 

Treatments 
  

04/July/18 36 Inoculation #1  10,000 L3 

07/July/18 39 Inoculation #2  10,000 L3 

10/July/18 42 Inoculation #3  10,000 L3 

20/July/18 52 FEC   

25/July/18 57 FEC   

01/August/18 64 Fecal Collection 3  

Feces 

Abomasum 

Small 

Intestines 

+Traditional Parasitology 

+Genetic Parasitology 

13/August/18 76 
Fecal Collection 4 

Necropsy Animal 1 

Feces 

Abomasum 

Small 

Intestines 

+Traditional Parasitology 

+Genetic Parasitology 

14/August/18 77 
Fecal Collection 4 

Necropsy Animal 2  

Feces 

Abomasum 

Small 

Intestines 

+Traditional Parasitology 

+Genetic Parasitology 

15/August/18 78 
Fecal Collection 4 

Necropsy Animal 3 

Feces 

Abomasum 

Small 

Intestines 

+Traditional Parasitology 

+Genetic Parasitology 

16/August/18 79 

Fecal Collection 4 

Necropsy Animals 

4, 5 

Feces 

Abomasum 

Small 

Intestines 

+Traditional Parasitology 

+Genetic Parasitology 
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Table 2. Strongyle eggs per gram fecal counts conducted on calves during the investigation. 

 

 

Table 3. Nematodirus spp. eggs per gram fecal counts conducted on the calves during the 

investigation. 

 Fecal Egg Counts 

Animal Day 0 Day 7 

1 0 1 

2 0 20 

3 0 2 

4 89 11 

5 3 0 

 

 

  

 Natural Infections Artificial Infections 

Animal Day 0 Day 7 Day 52 Day 57 Day 64 Days 76-79 

1 258 320 6 34 231 260 

2 204 449 13 26 109 130 

3 51 160 14 47 88 302 

4 141 21 0 8 176 342 

5 59 54 0 8 94 1 
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Table 4a. Percent of parasitic cattle nematode larvae recovered from coprocultures from fecal 

samples taken from animal 1 throughout the investigation. 

Note:  Larval results expressed in percentages of total larvae recovered. 

 

Table 4b. Percent of parasitic cattle nematode larvae recovered from coprocultures from fecal 

samples taken from animal 2 throughout the investigation. 

Note:  Larval results expressed in percentages of total larvae recovered. 

 

Table 4c. Percent of parasitic cattle nematode larvae recovered from coprocultures from fecal 

samples taken from animal 3 throughout the investigation. 

Note:  Larval results expressed in percentages of total larvae recovered. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 76 

Cooperia oncophora 44 40 52 60 

Cooperia punctata 36 36 16 24 

Ostertagia spp 20 24 32 16 

 Natural Infections  Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 77 

Cooperia oncophora 8 20 20 20 

Cooperia punctata 30 30 20 52 

Ostertagia spp 60 50 60 28 

Trichostrongylus 

spp. 
2 0 0 0 

 Natural Infections  Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 78 

Cooperia oncophora 50 42 12 32 

Cooperia punctata 30 34 68 28 

Ostertagia spp 20 24 20 40 
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Table 4d. Percent of parasitic cattle nematode larvae recovered from coprocultures from fecal 

samples taken from animal 4 throughout the investigation. 

Note:  Larval results expressed in percentages of total larvae recovered. 

 

Table 4e. Percent of parasitic cattle nematode larvae recovered from coprocultures from fecal 

samples taken from animal 5 throughout the investigation. 

Note:  Larval results expressed in percentages of total larvae recovered. 

Note: An (*) indicates that the coproculture counts corresponding to the fecal egg count are 

absolute numbers, not percentages.  

 

 

 

  

 Natural Infections  Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 2 8 32 28 

Cooperia punctata 60 24 24 16 

Ostertagia spp 32 68 44 56 

Haemonchus placei 2 0 0 0 

Trichostrongylus spp. 4 0 0 0 

 Natural Infections  Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 40 16 68 1* 

Cooperia punctata 36 52 24 0 

Ostertagia spp 24 32 8 6* 
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Table 5. Calculated total number of adult nematode species collected from the combined 

abomasum contents and organ digests at necropsy. 

Note:  Totals include mature female, mature male and early adult stages of the parasites. 

 

 

Table 6. Calculated total number of adult nematodes collected from the combined small 

intestine contents and organ digests at necropsy. 

Note:  Totals include mature female, mature male and early adult stages of the parasites. 

 

 

 

 

 

 

 

  

Nematode Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 

Ostertagia ostertagi 
2866 

(92%) 

4403 

(97%) 

4480 

(97%) 

16803 

(93%) 

532 

(92%) 

Ostertagia lyrata 
264 

(8%) 

147 

(3%) 

130 

(3%) 

1367 

(7%) 

48 

(8%) 

Nematode Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 

Cooperia oncophora  
4971 

(63%) 

1331 

(48%) 

1415 

(41%) 

1758 

(40%) 

2915 

(50%) 

Cooperia punctata  
1006 

(13%) 

915 

(32%) 

1388 

(40%) 

1648 

(38%) 

1237 

(21%) 

Cooperia surnabada  
1952 

(24%) 

554 

(20%) 

667 

(19%) 

934 

(22%) 

1678 

(29%) 
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Table 7a. Nematode ITS-2 sequences identified from raw feces samples collected from 

animal 1 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 76 

Cooperia oncophora 
18152 

(46%) 

11543 

(56%) 

31133 

(94%) 

25092 

(64%) 

Cooperia punctata 
2773 

(7%) 

1717 

(8%) 

348 

(1%) 

1803 

(4%) 

Unclassified 

Cooperia  

173 

(4%) 

748 

(4%) 

609 

(2%) 

1426 

(4%) 

Ostertagia ostertagi 
16942 

(43%) 

6551 

(32%) 

1029 

(3%) 

10955 

(28%) 

Haemonchus placei 0 
65 

(<1%) 
0 0 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata. 

 

Table 7b. Nematode ITS-2 sequences identified from raw feces samples collected from 

animal 2 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 77 

Cooperia oncophora 
5030 

(13%) 

33360 

(76%) 

7442 

(37%) 

3356 

(13%) 

Cooperia punctata 
1189 

(3%) 

1418 

(3%) 

1673 

(8%) 

2134 

(8%) 

Unclassified 

Cooperia  

498 

(1%) 

324 

(1%) 

357 

(2%) 

1835 

(7%) 

Ostertagia ostertagi 
33845 

(83%) 

7763 

(18%) 

10389 

(52%) 

3814 

(14%) 

Haemonchus 

contortus 
0 

57 

(<1%) 
0 

6994 

(26%) 

Haemonchus placei 0 0 0 
78 

(<1%) 

Unclassified 

Haemonchus 
0 0 0 

1304 

(5%) 

Oesophagostomum 

asperum 
0 0 0 

219 

(1%) 

Trichostrongylus 

colubriformis 
0 

81 

(<1%) 
0 

6913 

(26%) 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

Note: “Unclassified Haemonchus” indicates the genus Haemonchus.  
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Table 7c. Nematode ITS-2 sequences identified from raw feces samples collected from animal 

3 throughout the investigation. 

 Natural Infections Artificial Infections 

   

Nematode Day 0 Day 7 Day 64 Day 78 

Cooperia oncophora 16252 (30%) 
3379 

(19%) 

33980 

(86%) 

681 

(3%) 

Cooperia punctata 
3646 

(7%) 

929 

(5%) 

2964 

(8%) 

1536 

(7%) 

Cooperia spatulata 
123 

(<1%) 
0 0 0 

Unclassified 

Cooperia 

1864 

(3%) 

561 

(3%) 

2229 

(6%) 

655 

(3%) 

Ostertagia ostertagi 22346 (41%) 
1446 

(8%) 

164 

(<1%) 

846 

(4%) 

Haemonchus 

contortus 

223 

(<1%) 

4159 

(24%) 
0 

8702 

(39%) 

Haemonchus placei 
4066 

(7%) 

306 

(2%) 
0 0 

Unclassified 

Haemonchus 

3631 

(7%) 

486 

(3%) 
0 

203 

(1%) 

Oesophagostomum 

radiatum  

894 

(2%) 
0 0 0 

Oesophagostomum 

asperum 
0 0 0 

291 

(1%) 

Trichostrongylus 

colubriformis 

1364 

(3%) 

6303 

(36%) 
0 

9196 

(42%) 

Note:  Results are expressed in total MiSeq reads. 

Note:  “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

Note:  “Unclassified Haemonchus” indicates the genus Haemonchus. 
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Table 7d. Nematode ITS-2 sequences identified from raw feces samples collected from animal 

4 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 
26558 

(82%) 
0 

477 

(1%) 

7574 

(12%) 

Cooperia punctata 0 
470 

(2%) 

1115 

(3%) 

840 

(1%) 

Unclassified 

Cooperia 
0 

164 

(1%) 

300 

(1%) 

981 

(2%) 

Ostertagia ostertagi 
3677 

(11%) 

18875 

(95%) 

981 

(2%) 

29406 

(46%) 

Haemonchus 

contortus 
0 0 

14477 

(35%) 

12632 

(20%) 

Haemonchus placei 
1558 

(5%) 
0 0 

1365 

(2%) 

Unclassified 

Haemonchus 
0 0 

653 

(2%) 

1394 

(2%) 

Oesophagostomum 

asperum 
0 0 

709 

(2%) 
0 

Trichostrongylus 

colubriformis 
0 0 

22907 

(55%) 

9580 

(15%) 

Nematodirus 

helventianus 

602 

(2%) 

404 

(2%) 
0 0 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

Note: “Unclassified Haemonchus” indicates the genus Haemonchus. 
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Table 7e. Nematode ITS-2 sequences identified from raw feces samples collected from animal 

5 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 
17326 

(52%) 

43827 

(95%) 

68227 

(95%) 

5049 

(16%) 

Cooperia punctata 0 0 
1456 

(2%) 

812 

(3%) 

Unclassified 

Cooperia  
0 0 

2039 

(3%) 

2194 

(7%) 

Ostertagia ostertagi 
15497 

(46%) 

650 

(1%) 
0 

6883 

(22%) 

Haemonchus 

contortus 
0 0 0 

11924 

(39%) 

Haemonchus placei 
504 

(2%) 
0 0 0 

Oesophagostomum 

radiatum  
0 

1828 

(4%) 
0 0 

Trichostrongylus 

colubriformis 
0 0 0 

3998 

(13%) 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

Note: “Unclassified Haemonchus” indicates the genus Haemonchus. 

  



 

57 

Table 8a. Nematode ITS-2 sequences identified from isolated nematode eggs collected from the 

feces of animal 1 throughout the investigation.  

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata. 

Note:  Day 64 has no data to display. 

 

 

Table 8b. Nematode ITS-2 sequences identified from isolated nematode eggs collected from 

the feces of animal 2 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 77 

Cooperia oncophora 
2258 

(4%) 

22629 

(56%) 

11194 

(19%) 

15721 

(42%) 

Cooperia punctata 
948 

(2%) 

2375 

(6%) 

7680 

(13%) 

8487 

(23%) 

Unclassified Cooperia  
832 

(2%) 

2070 

(5%) 

4613 

(8%) 

6619 

(18%) 

Ostertagia ostertagi 
47457 

(92%) 

13617 

(33%) 

31996 

(55%) 

6332 

(17%) 

Haemonchus contortus 0 0 
2463 

(4%) 
0 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

 

 

 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 76 

Cooperia oncophora 
13895 

(39%) 

44906 

(59%) 
. 

18519 

(78%) 

Cooperia punctata 
1763 

(5%) 

5428 

(7%) 
. 

774 

(3%) 

Unclassified Cooperia  
1717 

(5%) 

4276 

(6%) 
. 

762 

(3%) 

Ostertagia ostertagi 
18512 

(52%) 

21505 

(28%) 
. 

3816 

(16%) 

Haemonchus contortus 
1 

(<1%) 
0 . 0 
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Table 8c. Nematode ITS-2 sequences identified from isolated nematode eggs collected from 

the feces of animal 3 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 78 

Cooperia oncophora 
12123 

(64%) 

32419 

(74%) 

54394 

(98%) 

13269 

(34%) 

Cooperia punctata 
1026 

(5%) 

3182 

(7%) 

592 

(1%) 

9081 

(23%) 

Unclassified Cooperia  
751 

(4%) 

2478 

(6%) 

703 

(1%) 

13544 

(35%) 

Ostertagia ostertagi 
5037 

(27%) 

5720 

(13%) 
0 

3165 

(8%) 

Haemonchus placei 
31 

(<1%) 
0 0 0 

Oesophagostomum 

radiatum  
0 

24 

(<1%) 
0 0 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

 

 

Table 8d. Nematode ITS-2 sequences identified from isolated nematode eggs collected from 

the feces of animal 4 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 
4311 

(10%) 

6203 

(15%) 

9158 

(26%) 

12895 

(41%) 

Cooperia punctata 
4851 

(11%) 

419 

(1%) 

417 

(1%) 

719 

(2%) 

Unclassified Cooperia  
2280 

(5%) 

94 

(<1%) 

257 

(1%) 

602 

(2%) 

Ostertagia ostertagi 
32465 

(74%) 

34646 

(84%) 

25395 

(72%) 

17532 

(55%) 

Nematodirus 

helventianus 

247 

(1%) 
0 0 0 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 
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Table 8e. Nematode ITS-2 sequences identified from isolated nematode eggs collected from 

the feces of animal 5 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 
32590 

(67%) 

17641 

(42%) 

6827 

(27%) 
. 

Cooperia punctata 
1769 

(4%) 

2411 

(6%) 

7280 

(28%) 
. 

Unclassified Cooperia  
1031 

(2%) 

1587 

(4%) 

7790 

(30%) 
. 

Ostertagia ostertagi 
13288 

(27%) 

19930 

(48%) 

3800 

(15%) 
. 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

Note:  Day 79 has no data to display. 
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Table 9a. Nematode ITS-2 sequences identified from infective nematode larvae collected from 

coprocultures comprised of feces from animal 1 throughout the investigation. 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata. 

 

 

Table 9b. Nematode ITS-2 sequences identified from infective nematode larvae collected from 

coprocultures comprised of feces from animal 2 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 77 

Cooperia oncophora 
20 

(<1%) 

44749 

(57%) 

5245 

(14%) 

5168 

(23%) 

Cooperia punctata 
1937 

(5%) 

3815 

(5%) 

11418 

(30%) 

5229 

(23% 

Unclassified Cooperia  
449 

(1%) 

1750 

(2%) 

7204 

(19%) 

2520 

(11%) 

Ostertagia ostertagi 
34923 

(94%) 

23904 

(30%) 

14394 

(38%) 

9759 

(43%) 

Haemonchus contortus 0 
2345 

(3%) 
0 0 

Unclassified 

Haemonchus 
0 

367 

(<1%) 
0 0 

Trichostrongylus 

colubriformis 
0 

1937 

(2%) 
0 0 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

Note: “Unclassified Haemonchus” indicates the genus Haemonchus. 

 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 76 

Cooperia oncophora 
4437 

(12%) 

11020 

(33%) 

23117 

(61%) 

19077 

(66%) 

Cooperia punctata 
9144 

(25%) 

11043 

(33%) 

5065 

(13%) 

596 

(2%) 

Unclassified Cooperia  
13422 

(36%) 

7080 

(21%) 

3950 

(10%) 

510 

(2%) 

Ostertagia ostertagi 
10211 

(27%) 

4318 

(13%) 

5745 

(15%) 

8629 

(30%) 
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Table 9c. Nematode ITS-2 sequences identified from infective nematode larvae collected from 

coprocultures comprised of feces from animal 3 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 78 

Cooperia oncophora 
1064 

(3%) 

7664 

(75%) 

5116 

(13%) 

1438 

(4%) 

Cooperia punctata 
17637 

(44%) 

485 

(5%) 

21095 

(54%) 

17218 

(47%) 

Unclassified Cooperia  
11798 

(29%) 

338 

(3%) 

10126 

(26%) 

9170 

(25%) 

Ostertagia ostertagi 
9551 

(24%) 

387 

(4%) 

2512 

(6%) 

9062 

(25%) 

Oesophagostomum 

radiatum  
0 

1315 

(13%) 
0 0 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 

 

 

Table 9d. Nematode ITS-2 sequences identified from infective nematode larvae collected from 

coprocultures comprised of feces from animal 4 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 
2364 

(13%) 
0 

5681 

(16%) 

8293 

(18%) 

Cooperia punctata 
792 

(4%) 

5537 

(14%) 

3401 

(10%) 

930 

(2%) 

Cooperia spatulata 0 
779 

(2%) 
0 0 

Unclassified Cooperia  
4241 

(24%) 

4934 

(13%) 

3255 

(9%) 

651 

(1%) 

Ostertagia ostertagi 
10228 

(58%) 

27927 

(71%) 

22997 

(65%) 

35830 

(78%) 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 
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Table 9e. Nematode ITS-2 sequences identified from infective nematode larvae collected from 

coprocultures comprised of feces from animal 5 throughout the investigation. 

 Natural Infections Artificial Infections 

Nematode Day 0 Day 7 Day 64 Day 79 

Cooperia oncophora 
22949 

(67%) 

8105 

(17%) 

31684 

(84%) 

2916 

(13%) 

Cooperia punctata 
1401 

(4%) 

565 

(1%) 

2374 

(6%) 

2364 

(10%) 

Unclassified Cooperia  
789 

(2%) 

397 

(1%) 

3025 

(8%) 
0 

Ostertagia ostertagi 
9361 

(27%) 

38336 

(81%) 

474 

(1%) 

5447 

(24%) 

Haemonchus contortus 0 0 0 
7094 

(31%) 

Trichostrongylus 

colubriformis 
0 0 0 

5293 

(23%) 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unclassified Cooperia” indicates Cooperia punctata/spatulata. 
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Table 10a. Nematode ITS-2 sequences identified from adult nematodes collected from the 

organ contents from animal 1 at necropsy. 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata. 

 

 

Table 10b. Nematode ITS-2 sequences identified from adult nematodes collected from the 

organ contents from animal 2 at necropsy. 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata. 

 

 

  

Nematode Organ Day 76 

Cooperia oncophora Small Intestine 
28140 

(97%) 

Cooperia punctata Small Intestine 
303 

(1%) 

Unclassified Cooperia  Small Intestine 
610 

(2%) 

Ostertagia ostertagi Abomasum 
25054 

(100%) 

Nematode Organ Day 77 

Cooperia oncophora Small Intestine 
13534 

(51%) 

Cooperia punctata Small Intestine 
6793 

(26%) 

Unclassified Cooperia spp Small Intestine 
6096 

(23%) 

Ostertagia ostertagi Abomasum 
28315 

(100%) 
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Table 10c. Nematode ITS-2 sequences identified from adult nematodes collected from the 

organ contents from animal 3 at necropsy. 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata. 

 

Table 10d. Nematode ITS-2 sequences identified from adult nematodes collected from the 

organ contents from animal 4 at necropsy. 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata. 

 

Table 10e. Nematode ITS-2 sequences identified from adult nematodes collected from the 

organ contents from animal 5 at necropsy. 

Note:  Results are expressed in total MiSeq reads. 

Note: “Unspecified Cooperia” indicates Cooperia punctata/spatulata.  

Nematode Organ Day 78 

Cooperia oncophora Small Intestine 
4648 

(12%) 

Cooperia punctata Small Intestine 
22081 

(58%) 

Unclassified Cooperia spp Small Intestine 
11210 

(30%) 

Ostertagia ostertagi Abomasum 
3708 

(100%) 

Nematode Organ Day 79 

Cooperia oncophora Small Intestine 
27552 

(83%) 

Cooperia punctata Small Intestine 
2598 

(8%) 

Unclassified Cooperia spp Small Intestine 
3104 

(9%) 

Ostertagia ostertagi Abomasum 
30215 

(100%) 

Nematode Organ Day 79 

Cooperia oncophora Small Intestine 
26944 

(85%) 

Cooperia punctata Small Intestine 
2204 

(7%) 

Unclassified Cooperia spp Small Intestine 
2435 

(8%) 

Ostertagia ostertagi Abomasum 
38683 

(100%) 
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Table 11. Within-procedure comparisons of nematode species found in using traditional 

parasitological procedures during artificial infections.  

Note:  Different superscripts between columns indicates a significant difference (p<0.05). 

Note: “Other genera/species” indicates percentage of nematode genera/species recovered but not 

comparable. 

 

 

Table 12. Within-procedure comparisons of nematode species found during natural infections 

using genetic parasitological procedures.  

Note:  Different superscripts between columns indicates a significant difference (p<0.05). Note: 

“Other genera/species” indicates percentage of nematode genera/species recovered but not 

comparable. 

 

 

 

  

Nematode Infective L3 Adults 

Cooperia oncophora 34%a 27% a 

Cooperia punctata 27% a 13% a 

Ostertagia ostertagi 39% a 45% b 

Other genera/species 0 15% 

Nematode Raw Feces Floated Eggs Infective L3 

Cooperia oncophora 47%a 42% a 27% a 

Cooperia punctata 4% a 5% a 14% a 

Unclassified Cooperia 8% a 3% a 14% b 

Ostertagia ostertagi 30% a 48% a 43% a 

Other genera/species 11% 2% 2% 
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Table 13. Within-procedure comparisons of nematode species found during artificial infections 

using genetic parasitological procedures.  

Note:  Different superscripts between columns indicates a significant difference (p<0.05).  

Note: “Other genera/species” indicates percentage of nematode genera/species recovered but not 

comparable. 

 

Table 14. Comparisons of nematode species of infective larvae identified using traditional 

parasitological procedures with raw feces using genetic parasitological procedures. 

Note:  Different superscripts between columns indicates a significant difference (p<0.05). 

Note: “Other genera/species” indicates percentage of nematode genera/species recovered but not 

comparable. 

 

  

Nematode Raw Feces Floated Eggs Infective L3 Adults 

Cooperia oncophora 41%a 47% a 31% a 34% a 

Cooperia punctata 5% a 12% ab 20% b 14% b 

Unclassified Cooperia 6% a 13% b 11% b 10% b 

Ostertagia ostertagi 14% a 27% ac 33% ac 42% bc 

Other genera/species 34% 1% 5% 0 

 Natural Infections Artificial Infections 

Nematode 
Traditional 

(L3) 

Genetic  

(Raw Feces) 

Traditional  

(L3) 

Genetic  

(Raw Feces) 

Cooperia oncophora 27%a 47% a 34% a 41% a 

Cooperia punctata 37% a 4% b 27% a 5% b 

Ostertagia ostertagi 35% a 30% a 39% a 14% a 

Other genera/species 1% 19% 0 40% 
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Table 15. Comparisons of nematode species of infective larvae identified using traditional 

parasitological procedures with floated eggs using genetic parasitological procedures. 

Note:  Different superscripts between columns indicates a significant difference (p<0.05). 

Note: “Other genera/species” indicates percentage of nematode genera/species recovered but not 

comparable. 

 

 

Table 16. Comparisons of nematode species of infective larvae identified using traditional 

parasitological procedures with infective larvae identified using genetic parasitological 

procedures. 

Note:  Different superscripts between columns indicates a significant difference (p<0.05). 

Note: “Other genera/species” indicates percentage of nematode genera/species recovered but not 

comparable. 

 

  

 Natural Infections Artificial Infections 

Nematode 
Traditional  

(L3) 

Genetic  

(Eggs) 

Traditional  

(L3) 

Genetic  

(Eggs) 

Cooperia oncophora 27%a 42% a 34% a 47% a 

Cooperia punctata 37% a 5% b 27% a 12% b 

Ostertagia ostertagi 35% a 48% a 39% a 27% a 

Other genera/species 1% 5% 0 14% 

 Natural Infections Artificial Infections 

Nematode 
Traditional  

(L3) 

Genetic  

(L3) 

Traditional  

(L3) 

Genetic  

(L3) 

Cooperia oncophora 27%a 27% a 34% a 31% a 

Cooperia punctata 37% a 14% b 27% a 20% a 

Ostertagia ostertagi 35% a 43% a 39% a 33% a 

Other genera/species 1% 16% 0 16% 
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Table 17. Species comparisons of adult nematodes identified using traditional parasitological 

procedures with adult nematodes identified using genetic parasitological procedures. 

Note:  Different superscripts between columns indicates a significant difference (p<0.05). 

Note: “Other genera/species” indicates percentage of nematode genera/species recovered but not 

comparable. 

  

Nematode Traditional  Genetic  

Cooperia oncophora 27%a 34% a 

Cooperia punctata 13% a 14% a 

Ostertagia ostertagi 45% a 42% a 

Other genera/species 15% 10% 
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Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 400X magnification of Cooperia spp third stage infective larvae.  

Top to bottom:  Cooperia spp head, Cooperia punctata tail, Cooperia oncophora tail. 
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Figure 2. 400X magnification of Ostertagia spp third stage larvae.  
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Figure 3. 400X magnification of Haemonchus placei third stage larvae.  
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Figure 4. 400X magnification of Trichostrongylus axei third stage larvae. 
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Figure 5. 100X magnification of adult Ostertagia spp.  

Left to right:  Ostertagia spp female, Ostertagia ostertagi male, Ostertagia lyrata male. 
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Figure 6. 100X magnification of adult male Cooperia spp. 

Top to bottom:  Cooperia oncophora, C. surnabada, C. punctata. 
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