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ABSTRACT 

Genomic selection (GS) is an important tool for increasing genetic gain for economically 

important traits in breeding programs. Genomic selection uses molecular markers across the 

entire genome in order to predict the performance of breeding lines for a trait of interest prior to 

phenotyping. A training population (TP) of elite germplasm, representative of the University of 

Arkansas wheat breeding program, was developed in order to predict important agronomic and 

Fusarium head blight (FHB) resistance traits within the University of Arkansas wheat breeding 

program through cross-validation and forward prediction. 

 A genome-wide association study (GWAS) was performed on the TP to identify novel 

FHB resistance loci for deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), 

incidence (INC), and severity (SEV). Significantly loci were used as fixed effects in a GS model 

(GS+GWAS) and compared to a naïve GS (NGS) model, where the NGS models had 

significantly higher prediction accuracies (PA) than the GS+GWAS models for all four FHB 

traits. The GWAS identified novel loci for all four FHB traits, most notably on chromosomes 

3BL and 4BL. Multivariate GS (MVGS) models using correlated traits as covariates were also 

compared to NGS models and the MVGS models significantly outperformed the NGS models 

for all four traits. 

 The same TP was also evaluated for five agronomic traits, including grain yield (GY), 

heading date (HD), maturity date (MD), plant height (PH), and test weight (TW), where MVGS 

models were compared to NGS models. Again, MVGS models significantly outperformed NGS 

models for all five agronomic traits, especially when there were strong genetic correlations 

between predicted traits and covariates. Additionally, MVGS models were tested using GY data 

for genotypes only grown in some environments to predict said genotypes in missing 



environments. This method significantly improved PA for GY between 6% and 21% for four of 

six tested environments. 

 The abovementioned TP was then used for forward prediction to predict GY for untested 

F4:6 breeding lines and DON, FDK, and SEV for F4:7 breeding lines. The MVGS models were 

comparable to phenotypic selection and had higher selection accuracies for two of three breeding 

cycles for GY, both cycles for DON, and at least one cycle for FDK and SEV. The MVGS model 

also had higher PAs for all four traits compared with the NGS models. 

 These results show that GS, and MVGS, can be successfully implemented in a wheat 

breeding program over multiple breeding cycles and can be effective alongside phenotypic 

selection for economically important traits. The MVGS models are particularly effective when 

predicted traits share strong genetic correlations with covariate traits, and covariate traits have a 

higher heritability than the predicted traits.  
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OVERALL INTRODUCTION 

Genomic selection (GS) has rapidly become one of the more valuable tools within the plant 

breeder’s toolbox. As a result, many plant breeding programs throughout the world, in a diverse 

number of crops, have worked to find the best way to implement GS into their own breeding 

programs. Likewise, this has been the goal for the University of Arkansas soft red winter wheat 

(SRWW) (Triticum aestivum L.) breeding program.  

Genomic selection is a modified form of marker assisted selection; however instead of 

using only a few select markers that are significantly associated with a trait, GS takes all 

summed marker and locus effects across the entire genome into consideration to calculate 

genome estimated breeding values (GEBV). At least some of the markers are assumed to be in 

linkage disequilibrium (LD) with quantitative trait loci (QTL) associated with a trait of interest. 

Genomic selection can be beneficial for a breeding program because it can accelerate genetic 

gain by reducing the amount of time within a breeding cycle, allowing for two generations of 

selection compared to one generation with traditional phenotypic selection. Additionally, GS can 

help to reduce the amount of time and resources needed for phenotyping, as well as reducing the 

impact of genotype by environment interactions for traits that are difficult to phenotype. Previous 

research has shown that GS mixed models using individual markers as fixed effects, as 

determined through genome-wide association studies (GWAS) (GS+GWAS) could significantly 

improve prediction accuracies for a trait of interest if the markers accounted for a large amount 

of variation in the trait of interest. Multivariate GS (MVGS) models using secondary traits as 

covariates could also significantly improve prediction accuracies for a trait of interest, especially 

when the secondary traits shared strong genetic correlations with the trait of interest. 
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The goal for this research was to determine if the abovementioned GS models could be 

effectively used to predict the performance of SRWW germplasm within the University of 

Arkansas wheat breeding program for economically important traits, such as grain yield (GY), 

agronomic performance, and disease resistance related to Fusarium head blight (FHB). In order 

to test this, a training population of elite germplasm, used as parental materials for the University 

of Arkansas wheat breeding program, was developed and grown over multiple environments, and 

then phenotyped for GY and test weight (TW), in addition to three agronomic traits- heading 

date (HD), maturity date (MD), and plant height (PH). The same population was also phenotyped 

for four traits related to FHB resistance- deoxynivalenol (DON) accumulation, Fusarium 

damaged kernels (FDK), incidence (INC), and severity (SEV). Cross-validation analyses were 

then performed for each trait between a naïve GS model without fixed effects or covariates 

(NGS) and the GS+GWAS and MVGS models in order to compare the mean prediction 

accuracies between each model. The study describing the cross-validation analyses for the FHB 

resistance traits was in Chapter II, while the study describing the cross-validation analyses for 

GY, TW, and agronomic traits was in Chapter III.  

While cross-validation is effective for evaluating model performance within a training 

population, it is also important to test model performance for forward prediction of new breeding 

materials. Once the best models for each trait were identified in the previous two chapters, the 

training population and best models were used to compare the performance of GS over multiple 

generations of selection compared with phenotypic selection in Chapter IV. The training 

population from Chapters II and III was used to train NGS models and the best MVGS models 

for GY, DON, FDK, and SEV. The GEBVs from the NGS and MVGS models were then 

compared with phenotypic data collected from F4:6 breeding lines for GY and F4:7 breeding lines 
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for FHB resistance traits based on prediction accuracy, selection accuracy, and response to 

selection in the F4:8 generation. These comparisons were performed over three breeding cycles 

for GY and two cycles for the FHB resistance traits. 

The results from the three research chapters in this dissertation will serve as the 

foundation for the GS program within the University of Arkansas wheat breeding program based 

on the procedures and methodology developed for each experiment. The primary takeaways 

from this research are that GS can be used to effectively predict the performance of breeding 

lines for economically important traits of interest, from GY to FHB resistance traits. This 

research also shows that MVGS models have higher prediction accuracies and can have stronger 

selection accuracies than NGS models for both agronomic and FHB resistance traits. Finally, GS 

using both NGS and MVGS models can be comparable, if not better, than phenotypic selection 

when using forward prediction, based on prediction accuracy, selection accuracy, and response 

to selection. 
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LITERATURE REVIEW 
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LITERATURE REVIEW 

Wheat 

Wheat (Triticum aestivum L.) has a rich history as one of the first cultivated grain crops, 

domesticated nearly 10,000 years ago in the Fertile Crescent of central Asia (Eckardt, 2010). 

Today it is one of the most widely grown crops in the world, grown in a wide range of soils and 

climates (Curtis & Halford, 2014). Wheat also serves as an important and nutritious food source 

for much of the world, contributing nearly 20% of calories to the Western diet (Shewry & Hey, 

2015).  

 Bread wheat (Triticum aestivum L., 2n = 6x = 42, genomes AABBDD) is a self-

pollinated allohexaploid cereal crop in the family Poaceae (Shewry, 2009). The wheat genome is 

approximately 17 Gb and it consists of three closely related genomes, A, B, and D, that came 

together through natural hybridization events (Marcussen et al., 2014). The A genome originated 

from a species related to Triticum urartu Thumanjan ex Gandilyan (2n = 2x = 14, AA) and 

hybridized with a species related to Aegilops speltoides Tausch (2n = 2x = 14, SS), to form the 

allotetraploid Triticum turgidum Desf. (2n = 4x = 28, AABB) (Dvorak, Akhunov, Akhunov, 

Deal, & Luo, 2006; Dvorak, Diterlizzi, Zhang, & Resta, 1993; Dvorak, McGuire, & Cassidy, 

1988). T. turgidum then hybridized with the D genome donor, Aegilops tauschii Coss. (2n = 2x = 

14, DD), to form modern hexaploid wheat (Dubcovsky & Dvorak, 2007; Kihara, 1944; 

McFadden & Sears, 1946).  

Approximately 765 million metric tons (MMT) of wheat was produced globally in 2020. 

Global wheat production has increased by nearly 60% over the past decade due to rising 

demands from Southeast Asia, Sub-Saharan Africa, and the Middle East. This is largely due to 
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growing populations and changing consumer preferences. In 2020, the five largest wheat 

producing countries were the collective European Union (155 MMT), China (134 MMT), India 

(104 MMT), Russia (74 MMT), and the United States (53 MMT) (USDA Foreign Agricultural 

Service, 2020). Wheat is the second most produced grain crop in the world behind coarse grains, 

which include any grain crop that is not wheat or rice (Oryza sativa L.) (1,411 MMT), and above 

milled rice  (496 MMT) (USDA Foreign Agricultural Service, 2020).  

Wheat is the fourth most widely produced crop in the United States at 14.9 million ha 

harvested (mha) in 2020, behind maize for grain (Zea mays L.) (33.4 mha) and soybean (Glycine 

max (L.) Merr.) (33.3 mha) (USDA National Agricultural Statistics Service, 2020a). In 2020, 

North Dakota produced the largest area of wheat (2.7 mha), followed by Kansas (2.5 mha) and 

Montana (2.2 mha) (USDA National Agricultural Statistics Service, 2020b). 

There are six main market classes in the U.S. wheat market, which include hard red 

winter wheat, hard red spring wheat, soft red winter wheat, soft white wheat, hard white wheat 

and durum wheat (Triticum durum Desf.) (Bond, 2020; Chao, Zhang, Dubcovsky, & Sorrells, 

2007). Winter wheat requires a vernalization period in order to flower and produce seed, whereas 

spring wheat does not. Approximately 40% of the total U.S. wheat crop is hard red winter wheat, 

which is primarily grown in the Great Plains, extending from northern Texas to Montana. Hard 

red winter wheat is used to produce bread flour. The second most common market class, hard red 

spring wheat, contributes to roughly 20% of the U.S. wheat market. It is mostly grown in the 

Northern Plains states, which include Montana, Minnesota, North Dakota, and South Dakota. 

Hard red spring wheat is known for its high protein content, ideal for specialty bread flower and 

blending with lower protein wheat. Soft red winter wheat contributes to between 15% and 20% 

of U.S. wheat production. It is mostly grown along the Mississippi River and the South Atlantic 



 

8 

 

coast of the Eastern U.S. Soft red winter wheat flour is mostly used for cakes, cookies, and 

crackers. Between 10% and 15% of U.S. wheat production is from white wheat. Soft white 

wheat consists of three classes of wheat, soft white winter, soft white spring, and club wheat. It is 

mostly grown in Washington, Oregon, Idaho, Michigan, and New York. Its flour is mostly used 

for noodles, crackers, cereals, and pastries. Hard white wheat is the newest class of wheat, it is 

mostly grown in the drier climates of Eastern Colorado, Western Kansas, Western Oklahoma, 

and the Northern Plain states. Hard white wheat flour is used for the production of noodles, flat 

breads, and leavened bread (Bond, 2020). 

Wheat is the sixth largest crop in Arkansas, based on area harvested at 50,000 ha. It falls 

behind soybean (1,056,229 ha), hay (507,071 ha), rice (455,676 ha), maize (297,444 ha), and 

cotton (Gossypium hirsutum L.) (246,858 ha). Approximately 71 million kg of wheat was 

produced in Arkansas in 2019 for a crop value of 12.6 million USD (USDA National 

Agricultural Statistics Service, 2019). Most Arkansas wheat production occurs in the Eastern 

portion of the state along the Mississippi River delta. The most common wheat market class 

grown in Arkansas is soft red winter wheat (Bond, 2020).  

Increasing Wheat Yield for a Growing Population 

According to the United Nations Department of Economic and Social Affairs, the global 

population is currently expected to grow from 7.6 to approximately 9.8 billion people by 2050 

and 11.2 billion by 2100 (United Nations Department of Economic and Social Affairs: 

Population Division, 2019). This rapid population growth is expected to exceed the rate of global 

food production, posing the risk of a potential food crisis in the next few decades. While wheat 

yield has increased rapidly since the 1950s, largely due to improved breeding practices, the 

introduction of improved pesticides, and synthetic fertilizers, the current rate is insufficient in 
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meeting future caloric demands. In fact, the rate of yield increase has been stagnant since the 

1980s (Graybosch & Peterson, 2010). It has been estimated that an approximate yield 

improvement of 2.4% per year is needed in order to double production in wheat by 2050, 

however the current rate of increase is merely .9% (Ray, Mueller, West, & Foley, 2013). 

 Many factors limit gains in wheat grain yield (GY), including biotic and abiotic stressors. 

The selection of pesticide-resistant weeds, insects, and pathogens can be devastating for crop 

production and they have become a greater concern due to over-application in crop production 

systems (Ray et al., 2013). Recently, the reduction in arable land, due to urban expansion and 

soil degradation, have also reduced opportunities for increased production and have even 

reduced crop production in certain regions (d'Amour et al., 2017). The growing threat of climate 

change is also a major concern for wheat production, largely due to more extreme temperatures 

and increased water stress (Jaggard, Qi, & Ober, 2010; Parry et al., 2011; Tilman et al., 2001). 

  In order to meet the goal of doubling wheat yield by 2050, breeders must work to 

improve the efficiency of their breeding programs while also implementing new and improved 

technologies in order to increase genetic gain. Many have done this with new technologies, such 

as marker-assisted selection (MAS), phenomics, trans and cisgenic approaches, and the 

implementation of genomic selection (GS) (Heffner, Sorrells, & Jannink, 2009; Houle, 

Govindaraju, & Omholt, 2010; Larkin, Lozada, & Mason, 2019). 

The Breeder’s Equation and Genetic Gain 

The breeder’s equation (R = irσA) has long been used to show how genetic response (R) changes 

in response to selection intensity (i), the square root of the additive genetic variance (σA), and 

selection accuracy, which is equivalent to narrow sense heritability in phenotypic selection (r). If 



 

10 

 

plant breeders want to increase the genetic gain of their breeding program, they must increase at 

least one of the three components of the breeder’s equation within a given the amount of time (t) 

in a breeding cycle or year (R = irσA/t) (Falconer & MacKay, 1996; Y. B. Xu et al., 2017). 

 It can be difficult to maximize genetic gains using phenotypic selection. While 

phenotypic selection can be effective for traits with high heritability, selection for low 

heritability traits are often relegated to the later stages of a breeding cycle, particularly with 

inbred crops (Collard & Mackill, 2008). Another problem with phenotypic selection is that 

environmental interactions can mask the expression of certain traits making selection difficult. 

The time between generations can also be long as some traits require a full season in order to be 

expressed. The limitations of phenotypic selection can hamper the increase in genetic gain in a 

breeding program (Y. B. Xu et al., 2017). One of the ways to maximize genetic gain within a 

given breeding cycle is to optimize selection accuracy through the use of molecular genetics, 

through approaches such as MAS or GS (Collard & Mackill, 2008; Heffner et al., 2009; 

Meuwissen, Hayes, & Goddard, 2001). 

Marker Assisted Selection 

One of the technologies breeders have used to increase genetic gain is MAS. In a MAS program, 

molecular markers closely linked or co-segregating with a desired trait can be used to 

differentiate breeding lines based on the allelic variation underlying a trait (Collard & Mackill, 

2008; Mohan et al., 1997). Practitioners of MAS have been able to report genetic gains twice that 

of phenotypic selection (Collard, Jahufer, Brouwer, & Pang, 2005; Knapp, 1998; Lande & 

Thompson, 1990). MAS has several advantages compared to phenotypic selection, some of 

which include; (1) the ability to select for traits that are difficult to phenotype, especially if they 

are expensive or time consuming to phenotype, (2) the ability to select for traits that have low 
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heritability and low expression and are therefore difficult to phenotype, (3) the ability to select 

for traits where phenotyping is dependent on specific environmental conditions or growth stages 

(Y. B. Xu & Crouch, 2008), and (4) MAS is most effective when selecting for monogenic or 

qualitative traits, making it an ideal selection strategy for introgression and backcrossing of 

single genes into germplasm along with pyramiding of disease resistance genes (Y. B. Xu & 

Crouch, 2008). Strategies have also been developed so that multiple traits can be selected 

simultaneously via MAS (Ragot, Gay, Muller, & Durovray, 2000; Y. B. Xu & Crouch, 2008).  

 While MAS has helped to revolutionize plant breeding while also providing a source for 

increasing genetic gain, there are also downsides. One of the primary downsides to MAS is that 

it is less effective when screening for more complex or multi-genic quantitative traits (R. 

Bernardo & Yu, 2007; Heffner et al., 2009; Hospital, 2009). In order to discover new 

quantitative trait loci (QTL) associated with a trait of interest, biparental mapping populations 

must be developed. The problem with biparental mapping populations is that they rarely account 

for the allelic diversity and genetic background of a full breeding program and their effects tend 

to vary across environments, particularly for quantitative traits. Therefore, multiple mapping 

populations must be developed for specific environments and breeding programs in order to 

validate the position and allelic effects of new QTL which is both expensive and time consuming 

(Heffner et al., 2009; Y. B. Xu & Crouch, 2008). If a breeder attempts to adapt small effect QTL 

into their breeding program through MAS prior to validating said QTL using local germplasm, 

they could achieve genetic gains that are lower than conventional phenotypic selection (Rex 

Bernardo, 2001). Cost can especially limit the wide-spread use of MAS in a breeding program, 

especially when considering a genome as complex as wheat (William, Trethowan, & Crosby-

Galvan, 2007). 
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Introduction to Genomic Selection 

In response to the limitations of traditional MAS, GS was proposed as an alternative. Genomic 

selection is a modified form of MAS, however instead of using only a few select markers that are 

significantly associated with a trait, GS takes all summed marker and locus effects across the 

entire genome into consideration to calculate genome estimated breeding values (GEBV) 

(Heffner et al., 2009; Meuwissen et al., 2001). The assumption is that at least some of the single 

nucleotide polymorphism (SNP) markers are in linkage disequilibrium (LD) with QTL 

associated with a trait of interest. The use of genome-wide markers and loci allows for more 

efficient and effective selection of complex quantitative traits compared to MAS (Meuwissen et 

al., 2001). The GS process begins with a panel of genotypes, referred to as a training population, 

that have been genotyped and phenotyped. The training population is then used to train a model 

to calculate GEBVs for a panel of genotypes, the validation population, that have only been 

genotyped. The breeder can then use the calculated GEBVs to make selections from the 

validation population without the need for phenotyping (Heffner et al., 2009; Meuwissen et al., 

2001). While some have proposed making selections based on genotypes with the best GEBVs, 

others have proposed using GS in order to eliminate poor performing genotypes from the 

breeding program in order to maintain genetic diversity and larger population sizes (J. Spindel et 

al., 2015). 

 The implementation of molecular markers linked to known QTL in order to predict 

estimated breeding values for quantitative traits was first described for animal breeding 

(Fernando & Grossman, 1989). This early use of GS was also described in plants by using 

restriction fragment length polymorphism (RFLP) markers to predict the hybrid performance in 

maize (R. Bernardo, 1994). The seminal introduction of GS in its modern form came with the 
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introduction of high-density SNP genotyping where several prediction models for GS were 

introduced for animal breeding (Meuwissen et al., 2001). 

Impact of Genomic Selection on the Breeder’s Equation 

When considering the breeder’s equation, GS greatly reduces the length of a breeding cycle, 

allowing for greater genetic gain in one cycle of GS compared with one cycle of phenotypic 

selection. Two rounds of GS were performed in the time it took to perform one round of 

phenotypic selection when selecting for resistance to stem rust in wheat (J. Rutkoski et al., 

2015). When GS was compared with MAS in maize, genetic response was between 18% and 

43% greater in the GS population compared to the MAS population (R. Bernardo & Yu, 2007). 

Differences in response to selection per cycle between GS, MAS, and phenotypic selection were 

minimal in oats (Avena sativa L.), however the ability for GS to make two generations of 

selection in the time it took to make one generation of selections for phenotypic and MAS made 

it favorable for maximizing genetic gain (Asoro et al., 2013). 

 There are many ways to maximize genetic gain through GS; some of these methods 

include prediction model selection, marker density, heritability of training and validation sets, 

LD, the relationships between training and validation sets, population structure, and training set 

optimization methods (Table 1). The best way to determine prediction accuracy is by performing 

a Pearson correlation between the GEBVs and true breeding values or phenotypic values of the 

training population. In the context of the breeder’s equation, the prediction accuracy is 

proportional to genetic gain (R), where the prediction accuracy is equivalent to the selection 

accuracy (r) (Falconer & MacKay, 1996). 
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Different Factors Affecting the Accuracy of Genomic Selection 

Marker Density 

Since GS requires dense marker coverage across the entire genome, a proper genotyping 

platform must be considered (Meuwissen et al., 2001). Several genome-wide platforms have 

been implemented in wheat. The first of these were RFLP markers (J. M. Chen & Gustafson, 

1995), followed by amplified fragment length polymorphism (AFLP) markers (Barrett & 

Kidwell, 1998), simple sequence repeat (SSR) or microsatellite markers (Roder et al., 1998), 

diversity arrays technology (DArT) (Akbari et al., 2006), and SNP maker arrays, such as the 9K 

and 90K Infinium arrays (Chao et al., 2010; S. C. Wang et al., 2014). Most recently genotyping 

has been performed using SNP markers within genotyping by sequencing (GBS) platforms 

(Elshire et al., 2011; Poland et al., 2012). In the case of GS, GBS has become the dominant 

genotyping platform in use for wheat, particularly due to its low cost, high coverage, and reduced 

sampling bias compared to SNP arrays (Heslot, Rutkoski, Poland, Jannink, & Sorrells, 2013; 

Poland et al., 2012). 

 There is evidence that marker density only marginally impacts GS prediction accuracy 

and that the use of low to medium density marker datasets could be more cost-effective for GS 

for Fusarium head blight (FHB) resistance in wheat (Y. Jiang et al., 2015). Large numbers of 

markers can also result in model overfitting, resulting in lower prediction accuracies when 

predicting independent datasets (Jannink, Lorenz, & Iwata, 2010). 

 Higher marker density can also be favorable for GS, as a larger amount of markers can 

increase the probability that markers will be in LD with QTL (Heffner et al., 2009). Higher 

marker density can also result in lower LD, significantly improving prediction accuracies 
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(Norman, Taylor, Edwards, & Kuchel, 2018). In most cases lower LD can result in higher 

recombination frequency and more accurate estimates of QTL effects (B. E. Huang et al., 2012). 

Low LD combined with higher marker densities and larger training population sizes can strongly 

improve prediction accuracy as well (Combs & Bernardo, 2013).  

In a study predicting performance of agronomic traits in biparental maize and barley 

(Hordeum vulgare L.) populations, increasing the number of markers improved prediction 

accuracy. However, once the genome was sufficiently saturated with one marker for every 12.5 

cM, the gain in prediction accuracy plateaued. This was also observed in mixed wheat and barley 

populations, where prediction accuracy plateaued after reaching a moderate marker density (2.0 

cM in barley and 4.5 cM in wheat) (Combs & Bernardo, 2013). While lower marker density 

might be adequate for GS, the cost of genotyping and phenotyping large training populations is 

not always sustainable for breeding programs. As a result, smaller training populations with 

higher marker densities are appropriate, especially in the case of biparental populations (Heffner, 

Jannink, Iwata, Souza, & Sorrells, 2011). 

Genomic Prediction Models 

One of the key parts of GS is the use of a prediction model that can appropriately incorporate 

genotypic data in order to produce GEBVs (Broman & Speed, 2002; de los Campos et al., 2009). 

An appropriate model must be able to estimate a large number of marker effects from the small 

number of phenotyped individuals of a training population, otherwise known as the ‘large p, 

small n’ dilemma. This situation results in a lack of degrees of freedom and low statistical power, 

so a model that can account for this dilemma is very important (Heffner et al., 2009; Jannink et 

al., 2010; Meuwissen et al., 2001). A summary of the genomic prediction models is shown in 
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Table 2, while a summary of programs that can be used to run the aforementioned models is 

shown in Table 3. 

Stepwise Regression 

A model that has been traditionally used for MAS is the stepwise regression model. Marker 

effects are considered fixed, requiring a stepwise approach where markers are selected 

individually or in groups in order to avoid a lack of degrees of freedom. Markers are added or 

removed from the model based on a significance threshold, where insignificant markers are 

given an effect of zero, while significant marker effects are simultaneously tested in order to 

determine their effects (Lande & Thompson, 1990). Since only significant marker effects are 

retained in the model, the model only accounts for a small amount of the total variance and 

model effects can be overestimated (Heffner et al., 2009). When a GS simulation was performed 

using stepwise regression, the model had a low prediction accuracy as the model was unable to 

detect enough of the QTL effects (Meuwissen et al., 2001). The general stepwise model is as 

follows: 

� = �1� + ��	
 + � 

where y is the vector of outputs; μ is the population mean; Xi is the design matrix for the ith 

marker; gi represents the genetic effects of haplotypes at the ith marker; and ε is the residual error. 

The log likelihood is calculated as: 

−0.5�� ln����� + �′� ���⁄ � 
where n is the number of records; and ε and ��� denote the estimates of error deviations and error 

variance, where ��� = �′� �� − ������1����� ⁄ . A log-likelihood is calculated for every marker 
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using this function. The log-likelihood of each marker is then plotted against the marker position 

and peaks exceeding a log odds difference (LOD) score of 6.0 are identified, implying the 

presence of a segregating QTL. Haplotype effects at the respective QTL positions are calculated 

simultaneously using the model: 

� = �1� + ! ��	

 + � 

where the summation is over all QTL positions that correspond to a likelihood peak, while gi was 

calculated at the peak. All haplotype effects that fall below the 6.0 LOD score threshold are 

given a marker effect of zero (Lande & Thompson, 1990; Meuwissen et al., 2001). 

Ridge Regression Best Linear Unbiased Predictor 

Ridge regression, sometimes referred to as random regression (Heslot, Yang, Sorrells, & 

Jannink, 2012), best linear unbiased predictor (RR-BLUP) allows for the simultaneous 

estimation of all marker effects for GS instead of a select few (Heffner et al., 2009; Meuwissen 

et al., 2001). The RR-BLUP model also assumes that all markers have a common variance and a 

normal distribution of marker effects that are shrunken towards zero (Whittaker, Thompson, & 

Denham, 2000). The downside of RR-BLUP is that its assumption of a common variance 

between all markers is incorrect, since it could underestimate large-effect QTL (R. Bernardo & 

Yu, 2007). Even so, RR-BLUP is superior to the antiquated stepwise regression model (Habier, 

Fernando, & Dekkers, 2007; Meuwissen et al., 2001). The standard form for the RR-BLUP 

model is as follows: 

� = �" + #$ + �
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where $~&�0, (�)�� is the vector of marker effects, which is assumed to have a normal 

distribution, where I is the identity matrix and �)� is the variance of the individual marker effects; 

β is the vector of fixed effects; X is the design matrix of fixed effects; Z is the design matrix 

relating genotypes to phenotypic observations (y), with m markers in columns and n phenotypes 

in rows; and �
~&�0, (���� is the residual error at the ith locus, which is assumed to have a 

normal distribution. The GEBV is the sum of all allele effects of a line (Endelman, 2011). 

 When compared with ten other genomic selection models in wheat, maize, and barley, the 

RR-BLUP model was identified as the best for use in an applied breeding program as its 

performance was comparable to more complex Bayesian and machine learning models, largely 

due to its lower computational demand (Heslot et al., 2012). 

Genomic Best Linear Unbiased Predictor 

Genomic best linear unbiased predictor (GBLUP) is essentially equivalent to the RR-BLUP 

model, however while RR-BLUP calculates marker effects that must be summed to obtain 

GEBVs, GBLUP uses a genome relationship matrix (G-Matrix) instead of an identity matrix (I-

Matrix) allowing for direct calculations of GEBVs (Legarra, Christensen, Aguilar, & Misztal, 

2014; VanRaden, 2008; X. Wang, Xu, Hu, & Xu, 2018). The GBLUP model runs into the same 

problems as RR-BLUP in that its assumption of equal marker variance across all markers is still 

inaccurate (R. Bernardo & Yu, 2007). The standard form for the GBLUP model is as follows: 

� = �" + #$ + �
 
where $~&�0, +�)�� is the vector of additive genetic values for all individuals in the model, 

where G is the genome relationship matrix and �)� is the additive genetic variance, which is 

assumed to have a normal distribution; β is the vector of fixed effects; X is the design matrix of 
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fixed effects; Z is the design matrix relating genotypes to phenotypic observations (y), with m 

markers in columns and n phenotypes in rows; and �
~&�0, (���� is the residual error at the ith 

locus, which is assumed to have a normal distribution (Zhang et al., 2015). The G-Matrix is 

calculated based on the method proposed by Van Raden (2008) as follows:  

+ = ##′2 ∑ .
�1 − .
�/
01  

where Z is the adjusted design matrix, with m markers in columns and n phenotypes in rows and 

pi is the allele frequency of the second allele at the ith locus in the base population (VanRaden, 

2008). 

Extended Genomic Best Linear Unbiased Predictor 

The extended genomic BLUP (EGBLUP) model is an extension of the GBLUP model, only 

epistasis is accounted for through the addition of marker-based epistatic relationship matrices. 

The goal of EGBLUP is to outperform GBLUP by accounting for epistatic effects while also 

being more computationally efficient than Bayesian epistatic models, which will be covered 

below. The downside with the EGBLUP model is that, much like RR-BLUP and GBLUP, it 

assumes equal variances for all markers. The standard form for the EGBLUP model is as follows 

(He et al., 2016; Y. Jiang & Reif, 2015): 

� = �" + #$1 + #$� + �
 
where $1~&�0, +�1�� is the vector of additive genetic values for all individuals in the model, 

where G is the genome relationship matrix and �1� is the additive genetic variance, which is 

assumed to have a normal distribution; $�~&�0, 2���� is the vector of additive by additive 

epistatic genotypic values, where H is the epistatic relationship matrix obtained from the 
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Hadamard product of the genome relationship matrix by itself (H=G#G); β is the vector of fixed 

effects; X is the design matrix of fixed effects; Z is the design matrix relating genotypes to 

phenotypic observations (y), with m markers in columns and n phenotypes in rows; and 

�
~&�0, (���� is the residual error at the ith locus, which is assumed to have a normal distribution. 

The G-matrix is calculated using the same method as in the GBLUP model (VanRaden, 2008). 

Bayes-A 

The Bayesian models help to reduce the over-shrinking of large marker effects, as seen in RR-

BLUP and GBLUP, by better accounting for marker effects of different sizes. In the case of 

Bayesian models, separate variances are estimated for each marker and are assumed to follow a 

specific prior distribution (Meuwissen et al., 2001). The Bayes-A method, originally described 

by Meuwissen et al. (2001), uses an inverted chi-square distribution and a hierarchal three-stage 

model. Model degrees of freedom and scale parameters are chosen so that the mean and variance 

of the distribution match the expected mean and variance of marker variances (Heffner et al., 

2009; Meuwissen et al., 2001). The Bayes-A model operates on three stages- stage one is a 

normal regression: 

� = �" + �
 
where X is a matrix of marker codes, in which case, the rows are the number of phenotypes and 

columns are the number of markers; β is the vector of allelic substitution for each marker; and εi 

is the vector of residuals with a normal distribution �
~&�0, (����. In stage two a normal 

conditional prior to each marker effect with a specific variance for each marker (�3�) is assigned 

whereas in stage three, the same scaled inverse chi-square distribution �3�~ X-2(v, 45�) with a 
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known scale (45�) and degrees of freedom (v) to each marker variance is designated (Gianola, 

2013; Karkkainen & Sillanpaa, 2012; Meuwissen et al., 2001; X. Wang et al., 2018). 

The downside of Bayes-A is that it uses Markov chain Monte Carlo (MCMC) estimation, 

which can be very computationally cumbersome limiting its use for common breeding programs. 

Also, while Bayes-A is more flexible than RR-BLUP, the additional parameters could adversely 

impact the inference of marker effects (Gianola, 2013; Karkkainen & Sillanpaa, 2012). 

Bayes-B 

Bayes-B is different from Bayes-A, in that it uses a mixture distribution of marker effects that 

peaks around zero, which would make sense, since there are many loci that do not segregate and 

would therefore have no genetic variance. Bayes-A does not allow for marker variances to 

actually equal zero. Therefore, Bayes-B is more realistic in that some marker variances are 

actually allowed to be equal to zero (Heffner et al., 2009). The priors for the Bayes-B hierarchal 

model are: 

�
|", ���~&���", ���� and 

"3|45�, 7, 8~99: ; 0 <=>ℎ .@AB�B=C=>� 8>�0, 45�, 7  <=>ℎ .@AB�B=C=>� �1 − 8� 

In this case, the prior is a mixture of the point mass at zero with a t-distribution with the mixing 

probabilities being π (portion of markers that have no effect) and (1-π), where π is assumed to be 

known and arbitrarily specified (Meuwissen et al., 2001). When π = 0, Bayes-B is equivalent to 

Bayes-A (Heffner, Jannink, & Sorrells, 2011). While some have identified that Bayes-B has 

higher predictive ability compared to RR-BLUP and GBLUP, others have found a lack of 

significant differences between the BLUP and Bayes-B models, in spite of different genetic 
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architectures and traits. This means that Bayes-B is only effective in learning about genetic 

architecture when the number of genotypes (n) is less than the number of markers (p) when the 

number of true nonzero marker effects is also less than n (Gianola, 2013). 

Bayesian Ridge Regression 

Bayesian Ridge Regression (BRR) is similar to RR-BLUP in that they both assume that all 

markers have a common variance and shrink equally for each marker effect. However, BRR 

estimates the level of shrinkage through the use of a Bayesian hierarchal model (Heslot et al., 

2012; Perez, de los Campos, Crossa, & Gianola, 2010). In simulation studies, marker-specific 

shrinkage models like Bayes-A, Bayes-B, or Bayesian Least Absolute Shrinkage and Selection 

Operator (LASSO) (described below) do a better job at capturing LD between markers and QTLs 

compared to BRR (Habier et al., 2007; Perez et al., 2010). The standard model for BRR is as 

follows: 

� = � + �" + � 

where y is the response vector; μ is the population mean or intercept; X is the marker design 

matrix; β is the vector of marker effects, expressed as: 

arg G=�" H‖J − �"‖��2�� + K‖"‖��L 

where the notation ‖. ‖� represents the Euclidian norm of ‖"‖� = �∑ "
��
 1/�
; the notation 

NOP /
�5  

refers to the determination of coefficients β minimizing the expression within the brackets; the 

symbol λ represents the shrinkage parameter; and J represents the response term. The error term 

ε is assumed to have a normal distribution with a mean equal to zero and a variance equal to σ2 

(Heslot et al., 2012). 
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Bayesian Least Absolute Shrinkage and Selection Operator 

Bayesian LASSO (BL) pulls weaker marker effects closer to zero much faster than in the case of 

RR-BLUP as the BL model uses a Laplace or double-exponential distribution as a prior instead 

of the Gaussian, normal distribution prior used for the Bayes-A, Bayes-B, and BRR models. 

However, it shrinks large effect markers less than that of RR-BLUP. In this case, all marker 

effects are assumed to be independently and identically distributed as Laplace, with the prior 

density as: 

.�"|K� = K2 exp �−K|"|� 

where T�"|K� = 0 is the mean prior of the Laplace distribution and U�@�"|K� = 2/K� is the 

variance for all markers. As the shrinkage parameter (λ) increases, the variance of the Laplace 

distribution decreases and gains a sharper density. β represents the individual marker effects 

(Gianola, 2013; Heslot et al., 2012; Park & Casella, 2008). 

Weighted Bayesian Shrinkage Regression 

Weighted Bayesian Shrinkage Regression (wBSR) is a variation of Bayes-B where an 

expectation maximization (EM) algorithm is used instead of an MCMC algorithm for model 

construction, as the MCMC algorithm can be very time-consuming when used with datasets with 

large sample sizes and marker sets. The EM algorithm is much faster than MCMC in that it uses 

the analytic form of posterior means of marker effects in order to identify the posterior mode of 

each marker effect instead of a posterior expectation, like in MCMC (Hayashi & Iwata, 2010). 

The standard equation for wBSR is essentially the same as the Bayes-A however, it also includes 

a parameter (γl) that accounts for the inclusion (γl = 1) or exclusion (γl = 0) of the lth marker from 
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the model with prior probabilities of p and 1-p respectively, essentially making the model similar 

to Bayes-B: 

� = �" + J$# + � 

where y is the numeric vector of phenotypic values for a trait; β is the vector of fixed, non-

genetic effects; γ is the marker inclusion effect, the priors for marker effects (gl) and the variance 

of marker effects (�VW� ) are not impacted by the presence or absence of a marker in the model; Z 

is the marker matrix assigning marker genotypes to phenotypes; and ε is the residual error.  

The EM algorithm used for wBSR consists of two primary steps, the E-step and the M-

step. Both steps are repeated until the values of the model parameters reach convergence. The E-

step is where the marker effect variance for each individual (�VW� ) marker is estimated as (�XVW� ) 

using the following formula:  

�XVW� = 	Y� + 47 + 1 �C = 1,2, … , &� 

where gl is the marker effect of the lth marker; S is the scale parameter; and v is the degrees of 

freedom. This equation serves as a conditional expectation given a current value of a maker �	Y� 

effect which is the estimated marker effect �	XY� for l = 1, 2, …, N. In the M-step, values for 

individual marker effects, fixed non-genetic effects, and residual error variances that maximize 

the log posterior distribution of the estimates of the three aforementioned parameters are given, , 

where the value for each parameter is updated by replacing the other parameters with their 

current values. The E and M steps are repeated until the parameter values converge. The final 

parameter values are then used for the final model (Hayashi & Iwata, 2010). The main problem 
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with this method of parameter selection is that it is sometimes inadequate for certain datasets, 

resulting in poor results, therefore parameters set by the user are necessary (Heslot et al., 2012). 

The wBSR model was compared with the GBLUP, Bayesian LASSO, Bayes-C, 

reproducing kernel Hilbert space (RKHS), and Random Forest models for predicting soluble 

solids content and total fruit weight of F1 tomato (Solanum lycopersicum L.) plants, based on the 

parental combination that resulted in the best progeny and phenotypes of the F1 progeny. A ten-

fold cross-validation of the training population, consisting of 96 genotypes, found that the wBSR 

model had a significantly lower prediction accuracy than the GBLUP and Bayesian LASSO 

models, but was not significantly different from the Bayes-C and RKHS models, while 

significantly out-performing the Random Forest model for soluble solids content. The same 

cross-validation study for total fruit weight, with lower overall prediction accuracies than soluble 

solids content, found that the wBSR model had a significant lower prediction accuracy than the 

Random Forest, RKHS, GBLUP, and Bayes-C models, while the wBSR model had a 

significantly higher prediction accuracy than the Bayesian LASSO model. When looking at the 

overall prediction accuracies of parental combinations, the wBSR model had the second highest 

prediction accuracy for soluble solids content (r = .68), below the Bayes C model (r = .69). For 

total fruit size, all models had low prediction accuracies below .30, however, the wBSR model 

still had the second highest prediction accuracy (r = .27), below the Random Forest model (r = 

.28) (Yamamoto et al., 2017). 

Bayes-Cπ 

The Bayes-Cπ model was constructed in order to account for the lack of Bayesian learning in the 

Bayes-A and Bayes-B models, as they assume marker-specific variances and their priors will 

have too much influence on the marker variances (Gianola, de los Campos, Hill, Manfredi, & 
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Fernando, 2009; Habier, Fernando, Kizilkaya, & Garrick, 2011). Bayes-Cπ assumes that there is 

a common marker effect variance for all markers with a nonzero effect and estimates the 

probability of marker absence (π) or presence (1-π) instead of using a fixed value for π. The 

MCMC algorithm is used to calculate the posterior parameters for the model. The model for 

Bayes-Cπ is as follows: 

� = � + ! #[�3\] + �^
_301`  

where y is the vector of individual phenotypes; μ is the population mean; K is the total number of 

markers; Z is the incidence matrix linking marker j genotypes to individuals; a is the effect of 

marker j; δ is the indicator variable indicating the absence or presence of marker j in the model; 

and ε represents the model residual error. It is assumed that marker j has an effect of zero and a 

probability of π when a3 = 0. When a3 = 1, marker j has an effect of �3~&�0, �b�� with a 

probability of 1-π. In the case of Bayes-Cπ, the value of π is unknown and is estimated from the 

training data (Habier et al., 2011; Heslot et al., 2012; Sallam, Endelman, Jannink, & Smith, 

2015). When Bayes-Cπ was compared with ten other models using wheat, maize, and barley 

datasets, Bayes-Cπ performed very similarly to RR-BLUP. As a result, it was recommended that 

plant breeders use RR-BLUP instead, since Bayes-Cπ had an increased computing time in 

comparison (Heslot et al., 2012). When compared with RR-BLUP and the Gaussian and 

Exponential kernels, Bayes-Cπ was not significantly different in prediction accuracy from the 

other models when applied in a barley breeding program (Sallam et al., 2015). 
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Bayes-Dπ 

The Bayes-Dπ model was originally described in the same publication that initially described the 

Bayes-Cπ model, however it has rarely been used for empirical studies compared to the latter 

(Habier et al., 2011). The Bayes-Dπ model, much like the Bayes-Cπ model, treats the probability 

of marker presence or absence as unknown instead of using a fixed value for π. The other main 

difference between Bayes-Dπ and Bayes-Cπ is that Bayes-Dπ assumes that each marker has its 

own separate variance, much like the Bayes-A and Bayes-B models, instead of a common 

marker effect variance for all markers. The general statistical model for Bayes-Dπ is the same as 

the statistical model for Bayes-Cπ, as discussed above. Since each marker has its own separate 

variance, the single marker effect prior is calculated as (aj) with a distribution of ~&�0, �b]� �, 

where �b]�  denotes an individual marker effect variance as opposed to �b�, where a common 

marker effect variance is assumed for all markers. Each marker variance has an inverse chi-

square prior with degrees of freedom of va and a scale of 4b�. When the probability for the 

presence of a marker is (1-π) the marginal prior of aj|va, 4b� is a univariate students-t distribution 

of t(0, va, 4b�). The degrees of freedom for the inverse chi-squared prior for locus specific 

variances are known while the scale parameter is treated as unknown with a gamma(1,1) prior in 

Bayes Dπ. If a marker is fitted with a probability of 1-π, its effect will come from a uniform 

student-t distribution. Therefore, the mixture is due to treating 4b� as unknown with a gamma 

prior (Habier et al., 2011). 

Bayes-Dπ has a significantly longer computing time compared to Bayes-Cπ, however it is 

still less computationally intensive than Bayes-A or Bayes-B. The primary reason the three latter 

models have longer computing times is due to the multiple sampling iterations required to 

improve mixing, while Bayes-Cπ only requires one iteration. The estimate for π in Bayes-Cπ is 
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more sensitive to training population size and marker density, providing more information about 

the genetic architecture of quantitative traits. The prediction accuracies of Bayes-Dπ and the 

other three Bayesian models were not significantly different from each other when used in a 

simulation study (Habier et al., 2011). 

Empirical Bayes 

The Empirical Bayes (E-Bayes) model was developed in order to estimate epistatic effects in an 

oversaturated model. The prior for each individual marker effect follows a normal distribution 

with a mean of zero and a marker effect variance of �3�, which is assumed to have an inverse chi-

squared distribution with a degree of freedom τ and a scale parameter ω. The E-Bayes model 

also does not use MCMC sampling in order to estimate variance parameters for �3�, instead using 

an EM algorithm to reduce computation time (Heslot et al., 2012; Lorenzana & Bernardo, 2009; 

S. Z. Xu, 2007). The E-Bayes model is as follows: 

� = ! ��
c


01 "
 + ! d3
e

301 J3 + � 

where Xi is the design matrix of individuals (i); βi is the vector of fixed effects of individuals (i); 

Zj is the vector of genotype indicators for loci (j); γj is the main effect vector for loci (j); and ε is 

the residual error (S. Z. Xu, 2007).  

When predicting the performance of biparental maize populations, the E-Bayes model did 

not show any significant advantages by including pairwise epistatic effects and prediction 

accuracies were no better than those calculated using RR-BLUP (Lorenzana & Bernardo, 2009). 

When comparing E-Bayes with ten other genomic selection models, overfitting was consistently 

observed with E-Bayes due to marker collinearity (Heslot et al., 2012). 
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Elastic Network 

The elastic net is a penalized method that was designed to use the best features of both ridge 

regression and LASSO. The resulting model consists of a penalty that is a weighted average of 

the L1 and L2 norms. The L1 norm was derived from LASSO while the L2 norm was derived 

from ridge regression. In this case, the L1 norm has a penalty weight of α=1, while the L2 norm 

has a penalty weight of α=0. The L1 norm generates a sparse model while the L2 norm removes 

the limitation on the number of selected variables The elastic net model performs much like 

LASSO in that it simultaneously does automatic marker selection along with continuous 

shrinkage while also selecting groups of correlated variables, therefore selecting large effect 

markers (Heslot et al., 2012; Zou & Hastie, 2005). The elastic net model starts as a standard 

linear model: 

� = � + �" + � 

where y is the trait value, μ is the population mean, X is the marker design matrix, β is the vector 

of marker effects, and ε is the residual error. The elastic net uses an estimator formula to 

calculate β: 

f�"� = �1 + K�� arg G=�" H‖J − �"‖��2�� + K�‖"‖�� + K1‖"‖1L 

where λ1 and λ2 are shrinkage parameters, the arg min notation refers to the determination of 

coefficients β minimizing the expression inside the brackets, while the notation ‖. ‖� represents 

the Euclidian norm of ‖"‖� = �∑ "
��
 1/�
 (Friedman, Hastie, & Tibshirani, 2010; Heslot et al., 

2012; Zou & Hastie, 2005). 
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When the elastic net was compared to ten other models in predicting wheat, maize, and 

barley traits, it was significantly less accurate than the wBSR and RKHS models. The elastic net 

was also slightly less than RR-BLUP and the Bayesian LASSO models. Even so, the elastic net 

performed well overall, however it produced an extremely sparse model. This is not ideal since 

plant breeders generally want models with more markers present (Heslot et al., 2012). When 

tested on 12 different malting quality traits in barley against RR-BLUP and Bayesian LASSO, 

the elastic net did not perform any differently from the other models with regards to GEBVs or 

prediction accuracy (Schmidt et al., 2016). 

Semi-parametric and Kernel Methods 

Kernel methods, such as the Gaussian and exponential kernel, are not supposed to partition the 

total genetic variance into additive and non-additive variances, instead they are supposed to 

capture the additive and non-additive effects (Endelman, 2011; Sallam et al., 2015). The primary 

kernel model is as follows: 

� = 1� + #	 + � 

where μ is the population mean; Z is the incidence matrix linking markers to individuals; g is the 

vector of genotypic values with a distribution of 	~&�0, g�V��, where K is the kernel similarity 

matrix; and ε is the residual error (Endelman, 2011; Sallam et al., 2015). 

 The Gaussian kernel model is calculated as: 

h
3 = exp i−�:
3 j⁄  �k 
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where θ represents the scale parameter influencing how quickly genetic covariance decays with 

distance and Dij represents the Euclidian distance between genotypes i and j, normalized to the 

interval [0,1] which is calculated as: :
3 = l�1 4⁄ n� ∑ �+
o − +3o po01 q1/�
. 

where G represents the genotypic matrix for genotypes i and j, respectively; k represents the kth 

locus; and M represents the total number of markers (Endelman, 2011; Gianola & van Kaam, 

2008). 

 The exponential kernel model is calculated as: 

h
3 = rs.�−:
3 j⁄   

where Dij represents the Euclidian distance between genotypes i and j, normalized to the interval 

[0,1], which is calculated the same as above; and θ represents the scale parameter influencing 

how quickly genetic covariance decays with distance (Endelman, 2011; Piepho, 2009). 

 When comparing the Gaussian and exponential kernel methods with each other, there 

was little evidence that either result in significantly better prediction accuracies than the other 

(Endelman, 2011; Piepho, 2009). However, when compared to models such as RR-BLUP, the 

Gaussian kernel was between 6% and 7% more accurate when predicting wheat GY, possibly 

due to overfitting (Crossa et al., 2010; Endelman, 2011; Piepho, 2009). 

Reproducing Kernel Hilbert Space 

 The RKHS model is a semi-parametric model that can capture both additive and non-additive 

interactions among loci by creating a kernel matrix that includes interactions among marker 

covariates (Gianola & van Kaam, 2008). The RKHS model essentially converts the marker 

dataset into a set of distances between pairs of observations resulting in a square matrix that can 
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be used in a linear model. RKHS does not assume linearity, therefore it can capture non-additive 

effects (Heslot et al., 2012). The standard model for RKHS is essentially a mixed linear model 

and is presented as follows: 

� = t� + guv + � 

where μ represents the vector of fixed effects; W is the design matrix for fixed effects; ε is the 

vector of random residuals with the independent prior distribution �~&�0, (����; α is the 

unknown coefficients with the independent prior distribution v~&�0, gu, �w��; Kh is the matrix 

that depends on the reproducing kernel function with the smoothing parameter h, measuring 

genomic distance between genotypes; and h is the smoothing parameter, which controls the rate 

of decay of the correlations between genotypes. The Kh kernel matrix uses a Gaussian kernel 

function, expressed as: 

gu�x
, x3 = exp�−ℎ:
3 = rs.�−j:
3 �⁄   

where Dij is the squared Euclidian or Manhattan distance between individuals i and j; h, the 

smoothing parameter, is calculated as ℎ = 2 :∗⁄ , where D* is the mean of Dij (Gianola, 

Fernando, & Stella, 2006; Gianola & van Kaam, 2008; Heslot et al., 2012).  

When compared with ten other Bayesian and BLUP genomic selection models using 

wheat, maize, and barley datasets, the RKHS often had much higher accuracy than other models 

and it performed significantly better than E-Bayes, elastic net, and the neural network. However, 

in the same analysis, RKHS overfitted more than other models; nevertheless the model was still 

highly accurate (Heslot et al., 2012). Another study in maize showed that RKHS outperformed 

Bayesian LASSO for traits where epistasis was more relevant, whereas it was outperformed for 

more additive traits (Crossa et al., 2010). In another study, the RKHS model performed similarly 
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to the EGBLUP model, but had a 5% higher prediction accuracy than the Bayes-Cπ and RR-

BLUP models while also have a 17% lower standard deviation of prediction accuracies 

compared to the latter two models (He et al., 2016). 

Random Forest 

The random forest model is a machine learning method that uses a collection of regression trees 

that are grown on bootstrap samples of observations using a random subset of predictors. The 

random subset of predictors is then used to define the best split at each node. Different variables 

are used at each split in different trees. The random forest prediction for a given observations is 

computed from the average predictions over trees, where the given observation is not used to 

build the tree (Breiman, 2001; X. Chen & Ishwaran, 2012; Heslot et al., 2012). 

 Random forest consistently had the lowest prediction accuracies when compared with 

ridge regression, LASSO, elastic net, Bayes-A, Bayes-B, and RKHS models for seven drought 

tolerance traits in maize (Shikha et al., 2017). In another study, the random forest model was 

compared with ten other models for wheat, maize, and barley predictions and was observed to 

perform fairly well with higher prediction accuracies and low computing time (Heslot et al., 

2012). The random forest model was also compared with Bayesian LASSO, Bayes-B, Bayes-Cπ, 

and RR-BLUP while predicting the performance of four agronomic traits in chickpea (Cicer 

arietinum L.). The model was observed to be the best fitting model across three location-years 

but was not significantly different from the others in terms of prediction accuracies (Roorkiwal et 

al., 2016). 
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Artificial Neural Networks 

Artificial neural networks (NNET) are another form of machine learning model inspired by 

biological neural networks. NNETs are constructed of a multilayer perceptron, which is a system 

of simple interconnected nodes. The NNET can be trained to approximate nearly any smooth, 

measurable function. The general NNET formula is as follows: 

Jo = zo {vo + ! <3oz3 |v3 + ! <
3s

}

 ~�

3 � 

where wij is the weights linking the i and j nodes; αj is the bias of a node specific constant; fi is 

either a linear or nonlinear activation function that produces an output; xi is an input variable for 

each marker (N), the input layer is defined as one neuron per input, data is then sent to hidden 

intermediate layers, and through an output layer made of one neuron per output variable; γk is the 

output variable in the form of a GEBV that receives output from the hidden intermediate layers; 

k is the output variable index; and U is the number of nodes within the hidden layers (Heslot et 

al., 2012). 

 The fitting of a NNET model is defined by the number of hidden intermediate layers, the 

number of neurons per layer, the type of activation function, and the connection weights. The 

best fitting model is determined by identifying the model with the lowest error from a 

multidimensional surface (Heslot et al., 2012; Hornik, 1993). When compared with ten other 

models in wheat, maize, and barley, the NNET had prediction accuracies close to the best 

models; however, it also had one of the highest average mean squared errors, likely attributed to 

the higher variance of its cross-validation GEBVs. The NNET was also one of the most over 

fitted models (Heslot et al., 2012). 
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Training Population Size 

One of the important factors for implementing GS in a breeding program is determining the 

appropriate size of a training population. The goal for a breeding program would be to develop a 

training population that can maximize prediction accuracy while limiting population size as 

much as possible, largely due the expense of genotyping and phenotyping a large number of 

genotypes for the training population (Jannink et al., 2010). 

When training population size was tested for four different yield traits in wheat, 

prediction accuracy increased as the number of genotypes increased from 250 to 2000; 

glaucousness increased from .78 to .92, GY increased from .72 to .85, thousand-kernel weight 

increased from .66 to .86, and relative maturity increased from .59 to .82. Even though prediction 

accuracy increased as the training population size increased, the gain in accuracy plateaued after 

2000 genotypes (Norman et al., 2018). When evaluating prediction accuracies for nine different 

end-use quality traits in biparental wheat populations, increasing population size from 24 to 96 

genotypes increased prediction accuracies as well (Heffner, Jannink, Iwata, et al., 2011). It has 

also been observed that deviations between prediction accuracies for different traits are larger 

under smaller training population sizes, likely due to the effect of relatedness between the 

training population and validation set (Poland et al., 2012). Smaller training populations also run 

the risk of overestimating the genotypic effect when predicting larger validation sets (Jannink et 

al., 2010). Training population sizes between 25 and 300 were evaluated for both wheat and rice 

for five and four agronomic traits, respectively. In wheat, prediction accuracies were highest at 

300 genotypes for all five traits; however, there was evidence of a plateau after 300. In rice, 

prediction accuracies plateaued after 175 genotypes for florets per panicle and protein content, 

while there was actually a decrease in prediction accuracy for plant height and flowering time 
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after 150 genotypes (Isidro et al., 2015). More diverse training populations usually need to be 

larger in order to account for the larger genetic diversity, particularly with low heritability traits 

(Mujibi et al., 2011). 

Trait Heritability 

Generally, as heritability increases for a trait, so does the predictive ability for the trait (Jannink 

et al., 2010). The impact of heritability on prediction accuracy for training and validation sets 

was evaluated for 30 agronomic, quality, and stress tolerance traits in rice and three quality traits 

in maize. Overall, prediction accuracy improved as heritability increased in both the training and 

validations sets, with a greater impact in training sets (Z. G. Guo et al., 2014). Heritability was 

also evaluated for mixed populations of barley and wheat, along with biparental populations of 

maize and barley. In all cases, prediction accuracy increased as heritability in the training 

populations increased (Combs & Bernardo, 2013). A strong correlation between high heritability 

and stronger prediction accuracies was also observed when predicting quality traits in biparental 

wheat populations (Heffner, Jannink, Iwata, et al., 2011). Even with higher heritability, certain 

traits may have lower prediction accuracies as the trait could be controlled by a larger number of 

small-effect genes, such as grain yield, as opposed to a small number of large-effect genes, such 

as grain dry weight, as evidenced when evaluating a maize test-cross population (Albrecht et al., 

2011). 

Genetic Relationship between Training and Validation Sets 

The genetic similarity between training populations and their validation sets can significantly 

influence prediction accuracy (Clark, Hickey, Daetwyler, & van der Werf, 2012; Jannink et al., 

2010). More closely related individuals will often share a common ancestor in a relatively small 
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number of generations prior, allowing for less recombination events, preserving QTL and marker 

linkage-phases. Closely related individuals are also more likely to share polymorphic loci that 

generate genetic variation, leaving fewer opportunities for genetic drift or mutations (A. J. 

Lorenz & Smith, 2015). There are also interactions that can occur between QTL and genetic 

backgrounds, as closely related individuals are more likely to share a portion of their genetic 

backgrounds compared to distant individuals (A. J. Lorenz & Smith, 2015; K. Lorenz & Cohen, 

2012; Mohammadi et al., 2015). When evaluating training populations for FHB resistance in 

barley, it was observed that prediction accuracy is lower when a training population is predicting 

the performance of barley genotypes from outside breeding programs (A. J. Lorenz, Smith, & 

Jannink, 2012). The same has also been observed when predicting across different full-sib 

families in biparental maize populations (Riedelsheimer et al., 2013). Training populations do 

not need to be as large when they are predicting the performance of closely related genotypes in 

the validation population. Along with that, genotypes in the training population do not need to 

have as large of a marker density when predicting the performance of closely related genotypes 

(Meuwissen, 2009). 

Population Structure 

Population structure is the composition of a population that are divided by genetic background, 

geography, or natural selection. As a result, it plays an important role in the estimation of 

GEBVs. Changes in allele frequencies between sub-populations can result in erroneous 

associations between markers and traits, leading to biased prediction accuracies for GS. A 

common indicator of population structure interference is when small training populations have 

high prediction accuracies (Windhausen et al., 2012). Several methods can be used to reduce the 

influence of population structure. These include the separation of breeding lines based on their 
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origins or traits, inclusion of kinship or genotype matrices, inclusion of marker fixed effects, or 

including principle components in an analysis based on subpopulations (Clark et al., 2012; Z. G. 

Guo et al., 2014; A. J. Lorenz et al., 2012). Another way to control for population structure is 

with epistatic genomic prediction models that can account for both additive and non-additive 

effects, such as the RKHS, Gaussian kernel, or exponential kernel models (Sallam et al., 2015). 

Another method for population structure partitioning is the K-means algorithm, where 

partitioning is based on genetic similarity (Norman et al., 2018). In the case of large training 

populations, another common source of population structure is LD. Particularly when two loci 

with differences in allele frequencies are in LD across subpopulations. This can result in spurious 

associations with multiple QTL (Pritchard, Stephens, Rosenberg, & Donnelly, 2000). When the 

effects of population structure were evaluated in a historic winter wheat nursery, two major 

subpopulations emerged based on the presence or absence of the t2BS:2GS·2GL:2BL 

translocation derived from Triticum timopheevii. However, when this translocation was used to 

design an optimal training population, it did not have significantly higher predictive ability than 

a randomly selected training population (Sarinelli et al., 2019). 

Retraining and Training Population Optimization 

Retraining of the training population is important because as multiple generations of selections 

are made, the generational difference between the training population and the validation set 

grows larger. Since the training population and the validation set become more genetically 

distant, the prediction accuracy is reduced. Therefore, it is important to add new genotypes to the 

training population in order to maintain a genetic relationship to the validation set as new 

germplasm is introduced to the breeding program and more recombination events occur (A. J. 

Lorenz & Smith, 2015). New germplasm must be added to breeding programs implementing GS 
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because the increased selection intensity from GS reduces the effective population size in a 

breeding program and thusly leading to a loss in genetic variability (Heffner et al., 2009). 

 Several different methods are used to optimize training populations in order to maximize 

prediction accuracy while also minimizing training population size, allowing breeders to better 

allocate resources. Among these are the PEVmean, CDmean, Gmean, Stratified Sampling (SS), 

and Selection of Training Populations by Genetic Algorithm (STPGA) algorithms which are 

based on genetic relations to the validation set and along with other candidates within the 

training population (Tiede & Smith, 2018). 

 The PEVmean algorithm identifies the optimal subset of n individuals from a total of N 

candidates for a training population by minimizing the predictive error variance (PEV) of 

contrasts between each of the entries in a training population subsample and the subsample mean 

(Tiede & Smith, 2018). The expected PEV for each individual is expressed as: 

i�′� �′##′� #�# + K��1k�1 = ��11 �1���1 ���� 

where �TU�$X� = U�@�$X − $� = �=�	����� × ���. The PEV of any contrast c of the predicted 

performances is calculated as: 

�TU = �=�	 ��′�#�n# + K��1��1��′� � × ��� 

where Z is the design matrix; c is the matrix of contrasts comparing each column to the mean of 

all training population candidates; M is the orthogonal projector of the subspace spanned by the 

columns of X, which is the design matrix of fixed effects: n = ( − ��������′ (Rincent et al., 

2012). The PEVmean is calculated using a genomic relationship matrix + = ����  where �
o =
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x
o − 2.o is the mean centered marker k for individual i, pk is the frequency of the one allele at 

marker k for the entire population and Xik denotes the number of minor alleles for the ith 

individual at marker k. The mean of the diagonal elements is 1+f using the normalization 

constant z = 2 ∑ .o�1 − .o�o  (Isidro et al., 2015). 

The other algorithm proposed by Rincent et al. (2012) was the CDmean algorithm, where 

the coefficient of determination (CD) is maximized, resulting in more reliable predictions than 

the PEVmean algorithm (Isidro et al., 2015; Rincent et al., 2012; Tiede & Smith, 2018). CDmean 

looks to maximize the variance explained by the training population while only using phenotypic 

and genotypic information from the training population candidates while identifying the ideal 

training population subset. A random subset of n lines is selected from the training population 

and the algorithm exchanges existing genotypes in the subset with candidates not currently in the 

subset. If the exchange between the subset and the training population increases the trace of the 

following equation: 

�:��� = �=�	 ��′�� − K�#�n# + K��1��1���′�� � 

The new candidate is then retained in the subset and the other genotype will remain in the un-

sampled training population. In the above equation, Z is the design matrix; c is the matrix of 

contrasts comparing each column to the mean of all training population candidates; M is an 

orthogonal projector on the subspace spanned by the columns of X, which is the design matrix of 

fixed effects: n = ( − ��������′; A is calculated as � = ��∗��� ��/ , where � = n�� − �, in 

which MTP is the training population genotype matrix and P is the ��� × G matrix, � = .�1 −
.�, in which p is a vector of length m (Isidro et al., 2015; Rincent et al., 2012; Tiede & Smith, 

2018). 
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 The SS algorithm randomly samples proportional to a subpopulation’s size within the 

training population. Stratified sampling seeks to maximize variance explained by the training 

population, requiring genotypic and phenotypic data, much like CDmean (Isidro et al., 2015; 

Tiede & Smith, 2018). Training population candidates are assigned to one of three 

subpopulations defined by passing a Euclidean distance matrix calculated from marker 

genotypes of training population candidates to a hierarchal clustering algorithm. The training 

populations are actually built by combining individuals (nc) from each of the aforementioned 

clusters (c) where ��v ������� , where nTPc is the number of genotypes from the training population 

assigned to the cluster in which � = ∑ ���1  (Tiede & Smith, 2018). 

 The Gmean algorithm uses only genotypic data in order to identify an ideal training 

population subset. The goal is to select n individuals from the training population that have the 

highest average genetic relationship and add them to the pool of selection candidates. More 

candidates are then added, starting with the most related candidates where @�,�� increased with 

each addition of a new, less-related, candidate. Eventually, the addition of new candidates 

becomes detrimental and the process stops (A. J. Lorenz et al., 2012; Tiede & Smith, 2018). 

 The STPGA method is a more predictive training subset of size n in that it minimizes 

ridge regression PEV among the selection candidates by using phenotypic and genotypic data 

from the training population. The formula for STPGA is as follows: 

�TU�
 V��¡¢�� = ¡¢��¡′£�¡£� + K¤���¥9��1¡′¢� 

where MTP is the genotype matrix of the training population; MVP is the genotype matrix of the 

validation population; and λ=1/m which is roughly equal to a trait heritability of .50. The MTP 
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and MVP matrices can also be replaced with principle component matrices in order to reduce 

computing time (Akdemir, Sanchez, & Jannink, 2015; Tiede & Smith, 2018). 

 Previous studies have compared these different training population optimization 

algorithms across different traits and crops. When the CDmean, SS, Gmean, and STPGA 

algorithms were tested on a barley training population in order to compare prediction accuracies 

for GY and deoxynivalenol (DON) accumulation, all four significantly improved prediction 

accuracy for both traits compared to a randomly selected training set. The Gmean algorithm 

outperformed the other algorithms while predicting grain yield, while the SS algorithm was the 

top performing algorithm for predicting DON accumulation (Tiede & Smith, 2018). PEVmean 

and CDmean were also compared with each other in two empirical studies using two different 

maize diversity panels. CDmean was the more reliable algorithm as it considered the reduction 

of variance due to relatedness between individuals (Rincent et al., 2012). In a recent study in 

winter wheat, an overall increase in prediction accuracy was observed for evaluated traits under 

small population sizes (between 50 and 150 individuals) when a PEVmean algorithm was 

implemented for selection, compared to random and clustering selection approaches (Sarinelli et 

al., 2019). 

Genomic Selection in Multiple Environments 

A vast majority of the applications for GS is in single environments and most genomic prediction 

models do not have the predictive power to make selections across multiple environments or take 

genotype by environment interactions into consideration (Burgueno, de los Campos, Weigel, & 

Crossa, 2012). Even so, genotype by environment interactions play a large role in plant breeding 

(Burgueno, Crossa, Cotes, San Vicente, & Das, 2011). The first multiple environment models 

incorporated a factor analytic structure in order to model for genotype by environment 



 

43 

 

interactions. Multiple environment models with pedigree and marker information performed 

better than models without pedigree or with only one of the components when making 

predictions for multiple environments in wheat (Burgueno et al., 2012). Incorporation of weather 

data and weather covariates has also been beneficial for multiple environment GS as well, 

improving prediction accuracy by nearly 11% in winter wheat (Heslot, Akdemir, Sorrells, & 

Jannink, 2014). The problem with incorporating marker and environmental covariate interactions 

in a multiple environment model is that the number of interactions becomes so large that the 

ability to model such interactions is impossible, especially when using a large number of markers 

and environmental covariates. The use of variance components can help to reduce the 

computational demand of modeling marker and environmental component interactions (Jarquin 

et al., 2014). When comparing marker by environment GBLUP models with models that ignored 

a genotype by environment interaction, the marker by environment GBLUP model significantly 

outperformed the naïve model over three wheat datasets in seven different irrigated and dryland 

environments (Lopez-Cruz et al., 2015). In another study, a genotype by environment (GxE) 

GBLUP model and a standard GBLUP model were tested over 35 location years. The standard 

GBLUP model outperformed the GxE model when predicting the performance of new 

environments, however modeling for genotype by environment interactions improved the overall 

predictive ability (Lado, Barrios, Quincke, Silva, & Gutierrez, 2016). 

Multivariate Genomic Selection  

Most GS models only predict for single traits, however predicting for multiple traits can be 

advantageous, especially when looking at multiple yield components, quality traits, disease 

resistance traits, and abiotic stress tolerance traits. In the past, multivariate methods have been 

developed for QTL mapping (Banerjee, Yandell, & Yi, 2008; C. J. Jiang & Zeng, 1995; C. W. 
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Xu, Wang, Li, & Xu, 2009). Genomic prediction models have also been developed to predict 

multiple traits in dairy bulls. The three models are variations on the GBLUP, Bayes SVSS, and 

Bayes-Cπ models, where the Bayes SVSS outperformed the Bayes-Cπ and GBLUP models 

(Calus & Veerkamp, 2011). When comparing predictive ability of GBLUP, Bayes-A, and Bayes-

Cπ multivariate models on a pine (Pinus L.) breeding dataset, the Bayesian models outperformed 

GBLUP under a major QTL structure and the multivariate models strongly outperformed the 

single trait models. Under a polygenic genetic architecture, the three multi-trait models 

performed roughly the same and barely outperformed the single trait models. Multivariate 

models tend to work better when predicting traits that are genetically correlated with each other 

(Jia & Jannink, 2012). When predicting cassava (Manihot esculenta Crantz) performance, 

multiple-trait models outperformed single trait models by nearly 40% in prediction accuracy 

(Okeke, Akdemir, Rabbi, Kulakow, & Jannink, 2017). In American cranberry (Vaccinium 

macrocarpon Ait), a multivariate GBLUP model outperformed a standard, single trait GBLUP 

model in scenarios with medium to high genetic correlation between traits, however there was 

little difference between models when genetic correlation between traits was low (Covarrubias-

Pazaran et al., 2018). A training population of 557 wheat genotypes were evaluated for GY and 

three proximal or remote sensing traits and genomic prediction models were tested using a 

univariate model for only grain yield and a multivariate model using all four traits. Multivariate 

model prediction accuracies for grain yield outperformed univariate models by 70%, on average. 

This indicated that the use of proximal and remote sensing data as secondary traits in genomic 

prediction models could improve prediction accuracy for GY (J. Rutkoski et al., 2016). 
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Use of Markers as Fixed Effects for Genomic Selection 

Traditionally, QTL mapping was performed using QTL studies, which consisted of biparental 

mapping populations consisting of recombinant inbred lines, F2 lines, or backcrosses. All of the 

individuals within the mapping population were then genotyped and phenotyped for a trait of 

interest, where the resulting data would be analyzed using linkage mapping in order to identify 

QTL associated with the trait of interest. The problem with QTL mapping is that the resolution is 

often low, due to low recombination within the population and small population sizes. Then, 

when QTL have successfully been identified within a single biparental mapping population, 

markers within LD of the QTL could be used to select for the trait of interest. The problem is that 

it is difficult to validate QTL across mapping populations, often making it nearly impossible to 

implement MAS using markers developed for another breeding program (Flint-Garcia et al., 

2005; Heffner et al., 2009). 

 An alternative to QTL mapping is the genome-wide association study (GWAS), which 

can be used to identify significant marker trait associations (MTA) between genome wide SNP 

markers and individual traits. This method relies on LD and ancestral recombination events in 

natural populations (Myles et al., 2009; Rafalski, 2002). Genome-wide association studies can be 

performed on a wide array of diverse genotypes already existing in a population (Breseghello & 

Sorrells, 2006; Flint-Garcia et al., 2005). The problem with some GWAS models is that they can 

often fail to account for false positives due to population structure and relationships between 

individuals in the association mapping panel (Finno, Aleman, Higgins, Madigan, & Bannasch, 

2014). Using population structure and other relationship parameters as covariates can reduce 

these false positives; however, this can result in more false negatives and longer computational 

times (M. Huang, Liu, Zhou, Summers, & Zhang, 2019). In that regard, many GWAS models 
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that can help control for false positives or negatives when identifying MTAs have been 

implemented. Some of these models include the general linear model (GLM), mixed linear 

model (MLM), efficient mixed-model association (EMMA), compressed mixed linear model 

(CMLM), multiple locus mixed linear model (MLMM), fixed and random model circulating 

probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium 

iteratively nested keyway (BLINK) models (M. Huang et al., 2019; Lipka et al., 2012; Liu, 

Huang, Fan, Buckler, & Zhang, 2016). 

 Most QTL discovered through QTL mapping and GWAS related to quantitative traits, 

such as GY, disease resistance, and quality, have not been successful for traditional MAS. This is 

largely due the fact that many small-effect genes are controlling variation in these traits (R. 

Bernardo, 2008). While significant MTAs identified through GWAS for these traits may not be 

helpful regarding MAS, they can still be applied for GS (Bian & Holland, 2017; Cericola et al., 

2017; J. E. Spindel et al., 2016). Most simple genomic prediction models, such as RR-BLUP or 

GBLUP, assume that most markers have small genetic effects; as opposed to GWAS, which 

assumes there are multiple markers contributing to a larger amount of genetic variation. Both 

methods are incorrect in their assumptions (Bian & Holland, 2017; Gianola & van Kaam, 2008). 

As discussed above, more complex Bayesian and non-parametric models were developed in 

order to account for major-effect QTL using shrinkage algorithms, and variable selection using 

multiple distributions for marker effects and tuning parameters (Habier et al., 2011; Meuwissen 

et al., 2001). The problem with more complex models is that they are often more 

computationally intensive and do not work well with larger marker datasets. Parameter estimates 

can also be overly sensitive to priors and often do not translate to other studies (Gianola et al., 

2009). 
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 An alternative is to use markers linked to major genes associated with traits of interest as 

fixed effects, particularly when the marker controls for greater than 10% of the genetic variation 

for the trait of interest (R. Bernardo, 2014). Several GS experiments have shown that this 

strategy can improve prediction accuracies in wheat and maize (R. Bernardo, 2014; Mason et al., 

2018; Owens et al., 2014; Rice & Lipka, 2019; J. E. Rutkoski et al., 2014; Sarinelli et al., 2019). 

Another proposed method is using only GWAS data from previously published GWAS studies 

as marker covariates, where the inclusion of GWAS data with a GBLUP model improved 

prediction accuracies for two out of three traits in cattle and nine out of 11 traits in rice over a 

Bayes-B model (Zhang et al., 2014). Other studies have included GWAS data from the training 

populations themselves, otherwise referred to as GS + de novo GWAS (GS+GWAS) (J. E. 

Spindel et al., 2016). 

 A GS+GWAS analysis was performed in a tropical rice breeding program using the RR-

BLUP model with significant markers from a GWAS as fixed effects. The GS+GWAS model 

outperformed the RR-BLUP with historic GWAS data, RR-BLUP, Bayesian LASSO, RKHS, 

Random Forest, and multiple linear regression models for all three traits; however, the 

GS+GWAS model had a significantly higher prediction accuracy for plant height (J. E. Spindel 

et al., 2016). A GS+GWAS model was used on a maize nested association mapping (NAM) 

population, making predictions for three traits; one was a highly polygenic trait, plant height, 

whereas the other two were moderately polygenic disease resistance traits. The GS+GWAS 

model performed significantly better for the moderately polygenic disease resistance traits, 

whereas there was no significant difference in prediction accuracy between the GS+GWAS 

models and the standard models for plant height (Bian & Holland, 2017). When predicting 

powdery mildew resistance in winter wheat, seven different training populations were developed 
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ranging in size from 50 to 350 genotypes, A GWAS was performed on each training population 

and only the most significant MTA was selected as a fixed effect for the RR-BLUP model. The 

GS+GWAS model significantly outperformed the standard RR-BLUP model for prediction 

accuracy at each training population size (Sarinelli et al., 2019). The inclusion of significant 

markers in a model, however, does not always result to improved predictions. In a recent 

simulation study in maize and sorghum (Sorghum bicolor (L.) Moench), for instance, no 

significant increase or a decrease in prediction accuracy was observed for a majority of the traits 

evaluated when GWAS-derived SNPs were included as fixed effects in the GS model. Model 

performance should therefore be explored on a trait-by-trait basis before its implementation in 

the breeding program (Rice & Lipka, 2019). 

Genomic Selection for Wheat Grain Yield 

Improving GY is a major goal for any wheat breeder, as it is an economic trait directly affecting 

farmers while also contributing to global food security. As genetic gains in wheat GY have 

stagnated recently, wheat breeders have looked at GS in order to increase genetic gain (Ray et 

al., 2013). Previously, GS was implemented on 2325 European winter wheat genotypes wherein 

four genomic prediction models, RR-BLUP, Bayes Cπ, RKHS, and EGBLUP were compared for 

prediction accuracy. The epistatic models (RKHS) outperformed the additive models, indicating 

that accounting for epistasis improved prediction accuracy, particularly in larger populations. 

Forward selection was also successfully implemented with limited decrease in prediction 

accuracy from one year to the next (He et al., 2016). In another study, prediction accuracy was 

evaluated for grain yield using RR-BLUP over five independent breeding cycles in a winter 

wheat breeding program using 659 inbred lines. Over the five cycles, GY prediction accuracy 

was r = .38, however after outlier cycles were removed, accuracy improved to r = .41. Removal 
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of outlier environments did not have a significant impact on prediction accuracy (Michel et al., 

2016). Genomic selection was also implemented into the preliminary yield trial (PYT) stage of a 

wheat breeding program and compared with traditional phenotypic selection and genomic 

assisted selection (GAS), where breeding values from the PYT stage were combined with 

GEBVs using a heritability index. The resulting prediction accuracies for all three methods for 

GY were .39, .33, and .48 respectively. This indicated that the use of heritability indices in order 

to supplement GS can increase prediction accuracy for GY in wheat (Michel et al., 2017). 

Different training population sizes were evaluated for the prediction of GY in winter wheat. It 

was observed that there was a high predictive ability using RR-BLUP when a training population 

was selected using PEVmean for GY. There was no significant improvement in prediction 

accuracy as training population size increased above 50 genotypes, with the exception of a 

reduction in prediction accuracy at 100 genotypes. Prediction accuracies for GY averaged .64 

with a training population size of 350 genotypes, selected using PEVmean (Sarinelli et al., 2019). 

Genomic Selection for Fusarium Head Blight Resistance 

Fusarium head blight is a destructive fungal disease that negatively affects wheat production 

worldwide, resulting in heavy losses in GY and quality. In the United States, the most common 

causal pathogen is Fusarium graminearum, which is part of the phylum Ascomycota (Milus & 

Parsons, 1994; X. M. Xu & Nicholson, 2009). Symptoms on infected wheat plants include 

premature bleaching of individual spikelets shortly after flowering, eventually progressing 

through the entire spike, resulting in a fully bleached spike. Signs of F. graminearum are usually 

present during warm and moist conditions; they appear as salmon colored sporodochia on the 

rachis and glumes of the spikelets. Blue-black spherical perithecia, which serve as sexual 

structures for the pathogen, will often appear later in the growing season. As symptoms progress, 
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the fungal mycelium will colonize the wheat kernels as they develop, resulting in shriveled grain 

with a pink to light-pink coloration. These damaged kernels are often referred to as tombstone-

kernels or Fusarium damaged kernels (FDK) (Goswami & Kistler, 2004; Wegulo, Baenziger, 

Nopsa, Bockus, & Hallen-Adams, 2015). 

 The F. graminearum pathogen produces the mycotoxin, DON, in order to disable natural 

plant defenses. Deoxynivalenol is considered a vomitoxin because it disrupts the digestive 

function of humans and animals that consume infected grain, resulting in nausea, headaches, 

vomiting, and in extreme cases, death. Levels of DON in human food should not exceed 1 ppm, 

however grain infected with FHB can exceed 20 ppm (Pestka, 2010). Any grain that does not 

meet the meet the DON limits set by either the USDA or individual buyers can have the value of 

their grain docked or rejected entirely, causing significant economic damages for farmers (Dahl 

& Wilson, 2018). 

 Wheat breeders have worked to develop varieties that have genetic resistance to FHB. 

Fusarium head blight resistance is a quantitative trait that is significantly influenced by genotype 

by environment interactions (Steiner et al., 2017). There are generally two major sources for 

FHB resistance in the United States, either through ‘exotic’ or ‘native’ germplasm. One of the 

most influential exotic genotypes, ‘Sumai-3’ was identified in China (Buerstmayr, Ban, & 

Anderson, 2009). There are several major effect QTL that have been validated for FHB 

resistance. The first three identified include Fhb1, Fhb2, and Qfhs.ifa-5A, found in Sumai-3 

(Anderson et al., 2001; Buerstmayr et al., 2002; Buerstmayr et al., 2003; Waldron, Moreno-

Sevilla, Anderson, Stack, & Frohberg, 1999). The next two major QTL, Fhb4 and Fhb5 were 

found in the genotype ‘Wangshiubai’ (S. Xue et al., 2010; S. L. Xue et al., 2011). The QTL 

Qfhs.nau-2DL was then found in the breeding line CJ9306 (G. L. Jiang, Dong, Shi, & Ward, 
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2007; G. L. Jiang, Shi, & Ward, 2007). The most recently discovered QTL was Fhb7 found in 

Thinopyrum ponticum (Podp.) Z.-W.Liu & R.-C.Wang (J. Guo et al., 2015; H. Wang et al., 

2020). The two primary forms of FHB resistance exist in field conditions are Type I resistance, 

also known as incidence (INC), the resistance to initial infection by F. graminearum, and Type II 

resistance, the resistance to fungal spread within the infected spike, also known as severity 

(SEV) (Steiner et al., 2017). The Fhb1 and Qfhs.nau-2DL QTL primarily confer Type II 

resistance while also reducing DON accumulation. Whereas Qfhs.ifa-5A primarily confers Type 

I resistance and reduces DON accumulation (Ban, 2000; Buerstmayr & Lemmens, 2015; 

Mesterhazy, 1995; Schroeder & Christensen, 1963). 

 As FHB resistance in wheat is a complex, quantitative trait, it is an ideal candidate for 

GS. A wheat panel of 322 genotypes was used to predict the performance of six traits associated 

with FHB resistance. Four separate genomic prediction models were compared, including RR-

BLUP, Bayesian LASSO, RKHS, and Random Forest. Two different marker sets were also 

compared, the whole genome marker set and a marker set targeted to markers associated with 

FHB resistance. The random forest and RKHS models had the highest prediction accuracies for 

most of the traits. In the case of DON, the random forest model plus the targeted and whole-

genome markers had the highest prediction accuracy (J. Rutkoski et al., 2012). A training 

population of 470 winter wheat genotypes were assessed for FHB resistance prediction accuracy. 

The study compared the use of a full marker dataset compared to a subset of markers associated 

with FHB resistance. The use of marker subsets significantly improved accuracy, as did the use 

of training population subsets (Hoffstetter, Cabrera, Huang, & Sneller, 2016). Another study for 

predicting FHB resistance using six traits in wheat tested three models: RR-BLUP, elastic net, 

and LASSO. Marker densities were also tested between 500 and 4500 SNPs along with training 
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population sizes between 96 and 2018 genotypes. Overall, there was a high prediction accuracy 

for FHB resistance. The top performing model was RR-BLUP, while the top marker sets ranged 

between 1500 and 3000 SNPs, while the optimum training population was less than 192 

genotypes, depending on the trait (Arruda et al., 2015). Another study on spring wheat genotypes 

in the Pacific Northwest United States used a population of 170 genotypes. It was discovered that 

INC had the highest prediction accuracies and genotypes that were similarly related to the initial 

training population had a prediction accuracy of 60%. The prediction accuracy was fairly high 

for FHB resistance overall, suggesting that genomic selection could work well for FHB 

resistance (Dong et al., 2018). 

APPROACH TO THE CURRENT STUDY 

The overall objective for this study was to successfully develop and implement a GS strategy for 

the University of Arkansas wheat breeding program for FHB resistance, agronomic traits, and 

GY. In order to fulfill this objective, a population was developed to be used as a training 

population for GS and as a mapping panel for GWAS. A GWAS was performed on the training 

population to determine significant MTAs for four FHB resistance traits. Cross-validation 

analyses were also performed to compare naïve GBLUP models (NGS) with GS+GWAS and 

multivariate GS (MVGS) models for FHB resistance and MVGS models for agronomic traits. 

Grain yield data from correlated environments were also used as covariates in GS models in 

order to predict GY for missing environments using a sparse testing approach. Genomic 

prediction accuracy was determined by calculating GEBVs and comparing them to phenotypic 

values for each genotype for each trait. The training population was then retrained and used to 

predict the performance of three generations of breeding lines in the University of Arkansas 

wheat breeding program. Genome-estimated breeding values calculated from the prediction 
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model were then compared to the actual phenotypic performance of each breeding line. The 

specific objectives are as follows: 

Objective 1: Identify significant MTAs for four FHB resistance traits using a GWAS, and 

perform GS cross validation analyses to determine prediction accuracies for each trait 

using NGS, GS+GWAS, and MVGS models. This was accomplished using a FarmCPU 

GWAS to identify significant MTAs. The hypothesis was that significant loci controlling for 

variation in FHB resistance were distributed across multiple chromosomes. The GS+GWAS 

analyses were performed by randomly generating ten training populations and performing 

GWAS on them to identify markers significantly associated with each FHB resistance trait. The 

training populations were then used to train a GBLUP model with significant markers as fixed 

effects in order to calculate GEBVs for the genotypes in the validation population. The 

hypothesis was that the GS+GWAS models would have higher mean prediction accuracies than 

the NGS models for each trait of interest. The MVGS analyses were performed using a five-fold 

cross validation analysis over 100 iterations while using genetically correlated traits as covariates 

to predict the FHB resistance traits of interest. The hypothesis was that the MVGS models would 

have higher mean prediction accuracies than the NGS models for each trait of interest.  

Objective 2: Predict GY and four agronomic traits through cross validation between NGS 

and MVGS models. Predict GY in missing environments through sparse testing using GY 

data from similar environments as covariates in MVGS models through cross validation. 

This was accomplished by using GBLUP models to predict a trait of interest while including data 

for traits sharing strong genetic correlations with the trait of interest as covariates in the MVGS 

model. Mean prediction accuracies were determined by performing five-fold cross validation 

analyses over 100 iterations. The hypothesis was that the MVGS models would have higher 



 

54 

 

mean prediction accuracies than the NGS models for each trait of interest. In order to compare 

sparse testing models with NGS models, GY data from six environments were clustered based on 

similarity and used as covariates to predict GY for genotypes not grown in a missing 

environment. Mean prediction accuracies were calculated using a five-fold cross validation 

approach over 100 iterations. The hypothesis was that the sparse testing models would have 

higher mean prediction accuracies for GY at each environment compared to NGS models. 

Objective 3:  Validate MVGS model performance by predicting GEBVs of three 

generations of breeding lines for GY and three FHB resistance traits using the same 

training population from objectives one and two for the first generation, then retraining in 

subsequent years by adding new genotypes. The GEBVs were then compared to phenotypic 

results for each genotype based on prediction accuracy, response to selection, and selection 

accuracy. The same training population used in objectives one and two will be used to predict 

the performance of breeding lines in the University of Arkansas wheat breeding program over 

the F4:6, F4:7, and F4:8 generations. The GEBVs for GY and three FHB resistance traits listed in 

objectives one and two will be calculated for each F4:6 breeding line using a NGS BLUP model 

and MVGS model using optimal trait-covariate combinations determined from the first two 

objectives. The effects of retraining the training population will also be observed. The training 

population will be retrained at each generation by adding new genotypes from the previous year 

to the training population. Phenotypic selection at the F4:6 generation will be compared with NGS 

and MVGS by evaluating prediction accuracy, selection accuracy, and response to selection over 

three years. 
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Table 1. Modifications to genomic selection and impact on the breeder’s equation and accuracy. 

Factor Factor on Breeder's 

Equation Impacted 

Effect on selection accuracy (r) Consideration for breeding 

Marker density Selection accuracy Varies When LD is high a small number of markers are needed 

Choice of prediction 
model 

 
Varies Models vary in their ability to account for larger effect 

QTL and epistatic interactions 

Training population 
size 

Genetic variance Increased r for increase in training 
population size 

Greater diversity requires a larger training population 
size 

Trait heritability Selection accuracy Varies In the absence of large effect QTL, accuracy generally 
increases with trait heritability 

Genetic relationship 
between training and 
validation 

Selection accuracy Increased r as more genetically 
related populations or families are 
used 

Should use genetically related training and validation 
populations 

Population structure Selection accuracy Varies Sub-populations can lead to erroneous predictions 

Training population 
composition 

Selection accuracy Varies Should use a training population that captures genetic 
relationships with the validation population 

Genotype by 
environment interaction 

Additive genetic 
variance 

Increased r when GxE effects fitted 
in the model 

GxE together with pedigree and marker information 
could help improve accuracy 

Multiple traits Additive genetic 
variance 

Increased r when multiple traits are 
fitted in the model 

Accounts for additional genetic variance 

Use of GWAS results Additive genetic 
variance 

Increased r for incorporation of 
GWAS results in the model (for 
most empirical studies) 

Accounts for large effect QTL 

Multiple generations 
per year 

Breeding cycle time Varies; r affected by one or a 
combination of factors above 

Increases gain per time by reducing cycle time 

Early generation parent 
selection 

Breeding cycle time, 
selection intensity 

Varies; r affected by one or a 
combination of factors above 

Increases gain per time by expediting the recombination 
of favorable alleles 
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Table 1 (Cont.) 

Factor Factor on Breeder's 

Equation Impacted 
Effect on selection accuracy (r) Consideration for breeding 

Selection intensity Selection accuracy Varies; r affected by one or a 
combination of factors above 

Genomic selection allows more lines to be characterized 
and thus increased in selection intensity 

Additive genetic 
variance 

Selection accuracy Varies; r affected by one or a 
combination of factors above 

High additive genetic variance for increased gains 
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Table 2. Summary of models used for genomic selection in plant breeding. 

Model Prior Estimation Marker Variances Parametric/ 

Nonparametric 

Type Reference 

RR-BLUP Normal 
 

Equal Parametric BLUP Meuwissen 
et al. 
(2001) 

GBLUP Normal 
 

Equal Parametric BLUP Zhang et 
al. (2015) 

EGBLUP Normal 
 

Equal Parametric BLUP (Epistatic) Jiang & 
Reif (2015) 

Bayes A Normal MCMC Independent (Inverse Chi-square) Parametric Bayesian Meuwissen 
et al. 
(2001) 

Bayes B Normal MCMC Independent (Some = 0) Parametric Bayesian Meuwissen 
et al. 
(2001) 

Bayesian RR Normal MCMC Equal Parametric Bayesian Perez et al. 
(2010) 

Bayesian 
LASSO 

Laplace MCMC Independent (Inverse Chi-square) Parametric Bayesian de los 
Campos et 
al. (2009) 

wBSR Normal EM Independent (Some = 0) Parametric Bayesian Hayashi & 
Iwata 
(2010) 

Bayes Cπ Normal MCMC Equal (Some = 0) Parametric Bayesian Habier et 
al. (2011) 

Bayes Dπ Normal MCMC Independent (Inverse Chi-square) Parametric Bayesian Habier et 
al. (2011) 

E-Bayes Normal EM Independent (Inverse Chi-square) Parametric Bayesian (Epistatic) Xu (2007) 

Elastic Network Normal/Laplac
e 

MCMC 
 

Parametric Sparse Model Zou & 
Hastie 
(2005) 

Exponential 
Kernel 

Normal 
 

Equal Semi-parametric Kernel (Epistatic) Endelman 
(2011) 
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Table 2 (Cont.) 

Model Prior Estimation Marker Variances Parametric/ 

Nonparametric 
Type Reference 

Gaussian Kernel Normal 
 

Equal Semi-parametric Kernel (Epistatic) Endelman 
(2011) 

RKHS Normal 
  

Semi-parametric Kernel (Epistatic) Gianola & 
van Kaam 
(2008) 

Random Forest 
   

Non-parametric Machine Learning Breiman 
(2001) 

Neural Networks 
   

Non-parametric Machine Learning Hornik 
(1993) 
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Table 3. Some programs and the models used for genomic selection. 

Program Software Model(s) Reference 

AlphaBayes Command Line Bayes A Hickey & Tier (2009) 

Bayes B 

Bayes Cπ 

Bayesian LASSO 

ASreml Command Line | R GBLUP Butler et al. (2009) 

BayZ Command Line | R GBLUP Janss (2010) 

Bayesian LASSO 

Bayes Cπ 

BGLR R GBLUP Perez & de los Campos (2014) 

Bayes A 

Bayes B 

Bayes Cπ 

Bayesian RR 

Bayesian LASSO 

RKHS 

BLR R Bayesian RR Perez et al. (2010) 

Bayesian LASSO 

bWGR R GBLUP Xavier et al. (2017) 

Bayes A 

Bayes B 

Bayes Cπ 

Bayes Dπ 

Bayesian LASSO 

glmnet R Elastic Network Hastie & Qian (2016) 

GenSel Command Line Bayes A Fernando & Garrick (2008) 

Bayes B 

Bayes Cπ 

GS3 Command Line GBLUP Legarra et al. (2012) 

Bayes Cπ 

Bayesian LASSO 

MXNET Python Neural Network Chen et al. (2015) 

randomForest R Random Forest Liaw & Wiener (2002) 

rrBLUP R GBLUP Endelman (2011) 

RR-BLUP 

Exponential Kernel 

Gaussian Kernel 

PROC IML SAS/IML Software E-Bayes Xu (2007) 

VIGoR Command Line | R Bayes B Onogi & Iwata (2016) 

Bayes Cπ 

Bayesian LASSO 

wBSR 
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CHAPTER II 

GENOME-WIDE ANALYSIS OF FUSARIUM HEAD BLIGHT RESISTANCE IN SOFT 

RED WINTER WHEAT 
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ABSTRACT 

Fusarium head blight (FHB) is a disease in wheat (Triticum aestivum L.) caused by the fungal 

pathogen Fusarium graminearum Schwabe. Fusarium head blight poses potential economic 

losses and health risks due to the accumulation of the mycotoxin deoxynivalenol (DON) on 

infected seed heads. The objectives of this study were to identify novel FHB resistance loci using 

a genome-wide association (GWAS) approach and evaluate two genomic selection (GS) 

approaches to improve prediction accuracies for FHB traits in a population of 354 soft red winter 

wheat (SRWW) genotypes. The GS approaches included GS+GWAS, where markers associated 

with a trait were used as fixed effects, and multivariate GS (MVGS), where correlated traits were 

used as fixed effects. The population was evaluated in FHB nurseries in Fayetteville and 

Newport, AR and Winnsboro, LA from 2014-2017. Genotypes were phenotyped for DON, 

Fusarium damaged kernels (FDK), incidence (INC), and severity (SEV). Forty-two single 

nucleotide polymorphism (SNP) markers were significantly (false discovery rate, q [FDRq] ≤ 

.10) associated with resistance traits across 17 chromosomes. Ten significant SNPs were 

identified for DON, notably on chromosomes 2BL and 3BL. Eleven were identified for FDK, 

notably on chromosomes 4BL, 3AL, 1BL, 5BL, and 5DL. Nine were identified for INC, notably 

on chromosomes 2BS, 2BL, 7BL, 5DL, 6AS, and 5DS. Twelve were identified for SEV, notably 

on chromosomes 3BL, 4AL, and 4BL. The naïve GS models significantly outperformed the 

GS+GWAS model for all traits, while MVGS models significantly outperformed the naïve GS 

models for all traits. Results from this study will facilitate the development of SRWW cultivars 

with improved FHB resistance. 
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INTRODUCTION 

Fusarium head blight (FHB) is a disease of small grains caused by fungal pathogens of the 

Fusarium genus. Fusarium graminearum is the main causal organism in the United States. 

Wheat (Triticum aestivum L.) producers in the United States incurred an estimated economic loss 

of nearly US$4.2 billion during the 2015-2016 growing season due to FHB (Wilson, McKee, 

Nganje, Dahl, & Bangsund, 2017). Economic losses may be due to losses in grain yield, 

mycotoxin accumulation, loss of grain quality, or failed preventative efforts such as late 

fungicide application. The F. graminearum pathogen also produces the mycotoxin 

deoxynivalenol (DON) in order to disable natural plant defenses. Consumption of grain high in 

DON has several adverse effects on the health of both humans and animals, resulting in 

symptoms such as diarrhea, nausea, vomiting, and weight loss (FDA, 2010; Sobrova et al., 

2010). 

Four primary forms of FHB resistance (Type I – IV) exist in wheat. Type I is resistance 

to initial infection by F. graminearum, otherwise known as resistance to incidence (INC). Type 

II, also known as severity (SEV), is the resistance to fungal spread within the infected head 

(Steiner et al., 2017). Type III is resistance to Fusarium damaged kernels (FDK), whereas Type 

IV resistance is resistance to the accumulation of DON.  

As FHB resistance in wheat is a complex, quantitative trait, it is an ideal candidate for 

genomic selection (GS) (H. Buerstmayr & Lemmens, 2015; Hoffstetter, Cabrera, & Sneller, 

2016; Larkin, Lozada, & Mason, 2019; Mirdita et al., 2015; Steiner et al., 2017). Genomic 

selection is a modified form of marker assisted selection (MAS) where all summed marker and 

locus effects across the entire genome are taken into consideration to calculate genome estimated 

breeding values (GEBVs) (Meuwissen, Hayes, & Goddard, 2001). The assumption is that at least 
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some of the markers are in linkage disequilibrium (LD) with quantitative trait loci (QTL) 

associated with a trait of interest. This allows for more efficient and effective selection of 

complex quantitative traits compared with MAS (Meuwissen et al., 2001). Two cycles of GS can 

be performed in the time it takes to perform one round of phenotypic selection, allowing for 

greater genetic gain per cycle of GS compared with phenotypic selection (Asoro et al., 2013; 

Bernardo & Yu, 2007; Heffner, Sorrells, & Jannink, 2009; J. Rutkoski et al., 2015).  

In wheat, a panel of 322 genotypes adapted to the eastern United States, was used to 

predict the performance of FHB traits, where prediction accuracies ranged between .11 and .64 

for SEV, .01 and .56 for INC, .01 and .46 for FDK, and .16 and .58 for DON (J. Rutkoski et al., 

2012). Another study was conducted using soft red winter wheat (SRWW) genotypes adapted to 

the midwestern United States, where prediction accuracies for INC ranged between .51 and .63, 

.35 and .48 for SEV, .67 and .82 for FDK, and .48 and .64 for DON (Arruda et al., 2015). A 

study on 170 soft white spring wheat genotypes in the U.S. Pacific Northwest found that INC 

had the highest prediction accuracy (.87), followed by SEV (.43) and DON (.42) (Dong et al., 

2018). 

Genome-wide association studies (GWAS) rely on LD and natural ancestral 

recombination events in diverse populations to identify significant QTL between genome-wide 

markers and individual traits (Breseghello & Sorrells, 2006; Flint-Garcia et al., 2005; Myles et 

al., 2009; Rafalski, 2002). Several GWAS were performed in wheat to identify resistance to 

FHB. A panel of 455 European SRWW genotypes were evaluated for FHB resistance and nine 

significant QTL were identified with two unique genomic regions on chromosomes 1D and 3A 

(Miedaner et al., 2011). Another study identified significant QTL on all chromosomes except for 

6B for INC and SEV, which also coincided with QTL highlighted by Buerstmayr, Ban, and 
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Anderson (2009) (H. Buerstmayr, Ban, & Anderson, 2009; Kollers et al., 2013). Arruda et al. 

(2016) identified significant QTL on chromosomes 1D, 3B, 4A, 4D, 6A, 7A, and 7D. Several of 

the single nucleotide polymorphisms (SNP) found on chromosome 3B were associated with the 

FHB resistance QTL Fhb1 (Arruda, Brown, et al., 2016). 

One of the methods used for improving GS prediction accuracies uses markers identified 

through GWAS, linked to major genes associated with traits of interest, as model fixed effects. 

This method is referred to as GS + de novo GWAS (GS+GWAS) (Bian & Holland, 2017; Rice & 

Lipka, 2019; Spindel et al., 2016). Several GS experiments have shown that this strategy can 

improve prediction accuracies of agronomic traits in wheat, rice (Oryza sativa L.) and maize 

(Zea mays L.) (Bernardo, 2014; Mason et al., 2018; Owens et al., 2014; J. E. Rutkoski et al., 

2014; Sarinelli et al., 2019; Spindel et al., 2016). The GS+GWAS method has also improved 

prediction accuracy for disease resistance traits in wheat, such as for powdery mildew [Blumeria 

graminis (DC) Speer f. sp. tritici emend. E.J. Marchal] and FHB (Arruda, Lipka, et al., 2016; 

Sarinelli et al., 2019). Arruda et al. (2016) found that GS+GWAS models had 32% higher 

prediction accuracies than a naïve GS (NGS) model when averaged across six FHB traits, 

including SEV, INC, FDK, and DON. The inclusion of markers as fixed effects significantly 

improved prediction accuracy for all traits except for DON (Arruda, Lipka, et al., 2016). 

Another method used to improve GS prediction accuracies is multivariate GS (MVGS), 

which uses secondary traits, phenotyped in both the training and validation populations, that are 

genetically correlated with a trait of interest as a covariate in the GS model. Multivariate GS 

models using high-heritability traits as covariates have the ability to improve prediction 

accuracies of traits that have low heritability (Covarrubias-Pazaran et al., 2018; Y. Jia & Jannink, 

2012). A MVGS model was compared with a univariate GS model for SEV in a hybrid wheat 
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population. Three MVGS models were compared, two with one covariate, including plant height 

(PH) and heading date (HD), and one with two covariates, HD and PH. The MVGS models with 

PH as a covariate had significantly higher prediction accuracies than a NGS model or a MVGS 

model with HD as a covariate (Schulthess, Zhao, Longin, & Reif, 2018). Another study with elite 

durum wheat (Triticum durum Desf.) found that prediction accuracies for SEV improved from 

.39 to .41 when PH was used as a covariate (Steiner et al., 2019). A kernel quality index (ISK), 

incorporating INC, SEV, and FDK, was used as a covariate to predict DON in a panel of 322 

winter wheat genotypes where prediction accuracy between the NGS model and the MVGS 

model increased from .44 to .53 (J. Rutkoski et al., 2012). However, in another elite durum 

wheat population, a MVGS model where HD and PH were used as covariates did not 

significantly improve prediction accuracy for SEV (Moreno-Amores, Michel, Miedaner, Longin, 

& Buerstmayr, 2020). Based on previous literature, MVGS has not been performed on any FHB 

traits outside of SEV or DON, and traits outside of HD and PH have not been used as covariates 

for MVGS models used to predict FHB resistance, outside of the ISK index used by Rutkoski et 

al. (2012). 

Although there are many studies that focus on breeding for resistance to FHB in wheat 

using GS, few focus on the implementation of GWAS results or multiple traits as fixed effects in 

GS models for the southeastern United States. This study accomplishes four objectives: (a) to 

evaluate SRWW genotypes for resistance to FHB in terms of resistance to initial infection (INC); 

resistance to spread within the head (SEV); resistance to DON; and resistance to FDK, (b) to 

identify novel resistance loci using a GWAS approach, (c) to perform a cross-validation analysis 

to compare prediction accuracies between a NGS model and a GS model with fixed effects 

obtained from a GS+GWAS analysis of the training population for all four FHB traits; and (d) to 
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perform a cross-validation analysis to compare prediction accuracies between a NGS model and 

MVGS models for all four FHB traits. 

MATERIALS AND METHODS 

Germplasm 

An association mapping panel (AMP) of 354 SRWW genotypes was used for this study, 

consisting of 238 genotypes from the University of Arkansas, 40 from the University of Georgia, 

and 38 each from Louisiana State University and North Carolina State University. This panel 

represents the majority of source germplasm in the University of Arkansas wheat breeding 

program. Two checks were grown alongside the AMP, ‘Bess’ (PI 642794) was FHB resistant 

and ‘Coker 9835’ (PI 584846) was FHB susceptible. Bess shows native resistance to FHB in the 

form of Type II resistance (McKendry, Tague, Wright, & Tremain, 2007). Coker 9835 shows 

susceptibility in terms of INC and SEV, but to a lesser extent for DON (Horevaj, Gale, & Milus, 

2011). 

Experimental Design and Trait Measurements 

Winter wheat is planted in the fall and harvested during the late spring in the southern region of 

the United States; therefore, each growing season spans 2 yr. The AMP was grown for a total of 

nine location-years over four growing seasons spanning from 2013 to 2017. During the 2013-

2014 growing season, the first 120 genotypes of the full AMP, exclusively from the University 

of Arkansas, were grown at two locations, the Milo J. Shult Agricultural Research and Extension 

Center in Fayetteville, AR (FAY14) and the Newport Extension Center in Newport, AR 

(NPT14). During the 2014-2015 growing season, the remaining 118 genotypes, exclusively from 

the University of Arkansas, were grown at both locations (FAY15, NPT15). All 354 genotypes 



 

82 
 

from the AMP were then grown at both locations during the 2015-2016 (FAY16, NPT16) and 

2016-2017 (FAY17, NPT17) growing seasons, with the addition of data from the Macon Ridge 

Research Station near Winnsboro, LA in 2016-2017 (LSU17).  

 Genotypes were drill-seeded at a rate of 6.0 g m-2 for a seeding rate of 65 kg ha-1 with 38 

cm row spacing in two-row plots in a randomized complete block design with two replications. 

Plots were managed according to the recommendations for wheat in Arkansas (Kelley, 2018). 

The plots in FAY received 100 kg ha-1 of urea, whereas plots in NPT received 77 kg ha-1 of urea 

and were also supplemented with 24 kg ha-1 of ammonium sulfate. A combination of herbicides 

including Axial XL (Syngenta AG), Harmony Extra (DuPont de Nemours), and Osprey (Bayer 

AG) were used each year to control weeds. 

 The FHB disease nurseries in FAY and NPT were inoculated with maize kernels infected 

with F. graminearum. The inoculum consisted of seven different F. graminearum isolates 

collected at several research stations in Arkansas and grown each year on sterilized maize 

kernels. The maize inoculum was prepared based on the methods described in Horevaj, Milus, 

and Bluhm (2011) (Horevaj, Milus, & Bluhm, 2011). The LSU17 location was inoculated with 

maize kernels infected with a F. graminearum isolate derived from Fusarium damaged seed from 

the same location from the previous season. When the wheat reached a growth stage between 6 

and 8 on the Feekes scale, inoculum was spread by hand in the field at a rate of ~65 kernels m-2, 

allowing for colonization of maize kernels in the field and production of black perithecia before 

the wheat began to head at Feekes 10.1 (Gilbert & Woods, 2006).  

After the spread of inoculum, mist irrigation was set up every sixth plot throughout the 

disease nursery to provide complete coverage. Mist irrigation commenced at the time perithecia 

were observed on the maize inoculum to provide optimal conditions for FHB infection and 
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spread throughout the months of April and May. Duration of misting was adjusted for each 

location based on the available precipitation and dew point. In order for the fungus to spread, it 

was important for the young wheat heads to remain moist. Timing of misting, as well as 

duration, varied between locations and years. During a particularly dry spring, plots may be 

misted longer or more often in comparison to a wet spring. In general, FAY required less total 

misting time than NPT. In the 2014-2015 season, FAY received a total of 720 min of misting 

while NPT received 784 min. Fayetteville received 480 min for both the 2014-2015 and 2015-

2016 seasons. During those same seasons, NPT received 720 and 520 min, respectively. During 

the 2016-2017 season, FAY required 544 min of misting while NPT totaled 704 min of misting. 

The LSU17 location was misted nightly for 15 min, every 2 h, from 12:00 AM through 6:00 AM.  

 Data was collected for four FHB traits: INC, SEV, FDK, and DON. Data was also 

collected for HD and PH. Ratings for FHB resistance were recorded beginning at 1 wk after the 

mean HD (Feekes 10.5), allowing time for infection and spread of the disease. At each location, 

INC and SEV ratings were collected on the same day, first for INC and then SEV. The first set of 

field ratings were generally collected beginning in mid-May at the NPT location with the second 

set of ratings collected ~10 d later than the first. In comparison, field ratings in FAY typically 

began in late May. Incidence was recorded as a percentage of the total number of heads in a plot 

that showed any sign of infection regardless of how severe or contained the infection was. 

Severity was estimated as a percentage of total infected spikelets within each head within the 

plot. Both INC and SEV were recorded on a scale of 0-9% in 1% increments in plots with <10% 

infection and on a scale of 10-100% with increments of 5% in plots with >10% infection. In 

FAY, two sets of SEV and INC ratings were recorded during all 4 yr. In NPT one set of INC and 

SEV ratings were recorded for each plot with a second, incomplete, rating recorded between 10 d 
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to 2 wk later. Generally, the second set of ratings were used for further analysis, excluding cases 

when the first produced a higher disease rating. At LSU17, INC and SEV were recorded on a 

scale of 0-100% with increments of 5% on 2 May and 8 May 2017.   

 At maturity, each genotype was hand harvested and threshed using a Vogel Thresher 

(Bill’s Welding). In order to retain as many damaged and shrunken kernels as possible, the 

thresher was set to a very low speed as seeds were collected. Seeds were stored in labeled 

envelopes at room temperature before being evaluated for DON and FDK.   

The total FDK percentage was evaluated after harvest. Samples from each genotype were 

compared to a set of standards to determine the percentage of kernels damaged by FHB. The 

standards ranged from 0 to 75% in 10% increments. Standards were created by counting and 

combining damaged kernels with healthy kernels (total=300) for each FDK increment. 

Analysis of DON was conducted by the Mycotoxin Diagnostic Laboratory in the 

Department of Plant Pathology at the University of Minnesota (St. Paul, MN). Postharvest, 50 g 

samples of grain from each of the 354 genotypes and both checks were sent to the University of 

Minnesota where DON analysis was conducted by gas chromatography-mass spectrometry. 

Heading date was recorded in Julian days after 1 January, when 50% of the heads were 

50% emerged from the flag leaf. As there was variation in HD between genotypes in the AMP, 

heading notes were recorded every other day from the onset of heading and continuing until all 

plots in the nursery were headed. At maturity, PH was recorded in inches from the surface of the 

soil to the tip of the head. 
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Phenotypic Data Analysis 

Data was analyzed using procedures in SAS 9.4 (SAS Institute). Best linear unbiased predictions 

(BLUPs) were calculated for all four FHB traits using the following model in PROC MIXED 

with all effects and interaction treated as random: 

¦
3o = � + r�7
 + @r.�r�7�
3 + 	r�A>�.ro + �r�7 s 	r�A>�.r�
o + �
3o 

where Yijk is the observed phenotype, μ is the overall mean, env is the random effect of ith 

location-year; rep(env)ij is the random effect of jth replication nested within the ith location-year; 

genotypek is the random effect of the kth genotype; (env x genotype)ik is the interaction between 

genotype and environment; and εijk is the residual error term, where εijk~N(0, Iσ2
ε), where I is an 

identity matrix and σ2
ε is the residual error variance. 

Phenotypic correlations were determined between all four FHB traits, as well as HD and 

PH using the multivariate function in JMP Pro 14.1.0 software (SAS Institute). The plot mean-

based broad-sense heritability (H2) was calculated for each trait across location-years using 

variance components estimated from the following equation:  

§V��¨©ªc�� = �V��¨©ªc��
�V��¨©ªc�� + �V��¨©ªc� « ��¬� ���¬ + ��¨����¬ s ��c

 

where �V��¨©ªc��  is the genotypic variance, �V��¨©ªc� « ��¬�  is the variance of the interaction 

between genotype and environment, ���¬ is the number of environments where the trait was 

evaluated, ��¨�  is the residual error variance, and ��c is the number of replications within 

each environment. Variance components and BLUPs for each genotype for each trait were 

obtained from the PROC MIXED procedure in SAS 9.4 (SAS Institute). 
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Genotyping by Sequencing 

All 354 genotypes in the AMP were genotyped using genotyping by sequencing (GBS). DNA 

was extracted using the Mag-Bind Plant DNA Plus kit (Omega Bio-tek), following the 

manufacturer’s instructions. Genomic DNA was quantified using the Quant-iT PicoGreen 

dsDNA Assay Kit and normalized to 20 ng µL-1 (ThermoFisher Scientific). Genotyping by 

sequencing libraries were created using Pst1-Msp1 and/or the Pst1-Mse1 restriction enzyme 

combinations (Poland, Brown, Sorrells, & Jannink, 2012). The samples were pooled together at 

192-plex and each pooled library was sequenced on a single lane of an Illumina Hi-Seq 2500 

system (Illumina). Single nucleotide polymorphism calling was performed using the TASSEL 

5.0 GBSv2 pipeline using 64 base kmer length and a minimum kmer count of five. Reads were 

aligned to the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 

‘Chinese Spring’ wheat reference sequence using the alignment method of Burrows-Wheeler 

aligner (BWA) version 0.7.10 (Appels et al., 2018; H. Li & Durbin, 2009). Raw SNP data 

generated from the TASSEL pipeline were filtered to remove taxa with >85% missing data and 

heterozygosity >30%. Genotypic data were then filtered to select for biallelic SNPs with minor 

allelic frequency of >5%, < 50% missing data, and heterozygosity of ≤10%. Missing data were 

imputed using the linkage disequilibrium - kth nearest neighbor imputation (LD-kNNi) function 

in TASSEL 5.0 in order to create a final SNP panel consisting of 72,634 SNPs across the entire 

genome (Bradbury et al., 2007; Money et al., 2015). 

Genome-Wide Association Study 

A GWAS was performed using the 354 genotypes from the AMP and 72,634 GBS SNPs in order 

to obtain associations between SNP markers and all four disease resistance traits using a Fixed 

and random model Circulating Probability Unification (FarmCPU) model (X. L. Liu, Huang, 
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Fan, Buckler, & Zhang, 2016). The FarmCPU model is a multi-locus mixed linear model divided 

into a fixed effect model and a random effect model. The fixed effect model performs single 

marker tests where multiple associated markers were used as covariates to control for false 

positives. The random effect model estimated associated markers, which were used to define 

kinship in order to prevent model overfitting. Both models were run until there was no change in 

associated markers. P values were calculated for each marker and associated marker at each 

iteration (X. L. Liu et al., 2016). 

The FarmCPU model was implemented using the Genomic Association and Prediction 

Integrated Tool (GAPIT) Version 3.0 in R version 3.6.3 software (Lipka et al., 2012; X. L. Liu et 

al., 2016; Tang et al., 2016). Population structure was controlled by selecting the optimal number 

of principal components for each trait and evaluating the respective quantile-quantile (QQ) plot. 

The model with the best fitting QQ plot was used for analysis. The principal component analysis 

(PCA) was performed in GAPIT. The ideal number of principal components for INC and DON 

was one, whereas the ideal number for FDK was three, and four for SEV. The GAPIT tool was 

also used to calculate a kinship matrix, using the method described by VanRaden (2008) in order 

to control for relationships between genotypes. Significant QTL were identified using an 

adjusted p-value (q) based on the Benjamini-Hochberg false discovery rate (FDR) method, 

where QTL with q ≤ .10 were considered significant (Benjamini & Hochberg, 1995). Significant 

QTL occurring on the same chromosomes across all six traits were tested for LD using a 

pairwise analysis in TASSEL 5.0. Any pairwise combination with an R2 > .2 were considered to 

be in significant LD. 
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GWAS Assisted Genomic Selection 

A GS cross-validation analysis was performed using the rrBLUP package within the Intelligent 

Prediction and Association Tool (iPat), using source code from R version 3.6.2 in order to 

determine the prediction accuracies for all four FHB traits using a genomic BLUP model 

(GBLUP), which is described as follows: 

� = �" + #$ + �
 
where u is the vector of marker effects, which is assumed to have a normal distribution 

$~&�0, +�)��, where G is the genomic relationship matrix and �)� is the variance of the 

individual marker effects; β is the vector of fixed effects; X is the design matrix of fixed effects, 

equal to one; Z is the design matrix relating genotypes to phenotypic observations (y), with m 

markers in columns and n phenotypes in rows; and εi is the residual error at the ith locus, which is 

assumed to have a normal distribution �
~&�0, (����, where I is the identity matrix and σ2
ε is the 

residual error variance. The GEBV is the sum of all allele effects of a genotype (Chen & Zhang, 

2018; Endelman, 2011; VanRaden, 2008).  

Four separate models were compared: a naïve model with no fixed effects (NGS), a 

model using significant QTL for HD, from a GWAS of the training population, as fixed effects 

to predict the four FHB traits (GS+HD), a model using significant QTL for PH, from a GWAS of 

the training population, to predict the four FHB traits (GS+PH), and a model using significant 

QTL for each FHB resistance trait of interest, from the GWAS of the training population, as 

fixed effects (GS+GWAS) (Bernardo, 2014; Rice & Lipka, 2019; Spindel et al., 2016; Zhang et 

al., 2014). Significant QTL for all four FHB traits, HD, and PH used for the GS+HD, GS+PH, 

and GS+GWAS models were identified using a FarmCPU model, where the top three QTL with 
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a FDR of <.10 were used as fixed effects (Benjamini & Hochberg, 1995; Chen & Zhang, 2018; 

X. L. Liu et al., 2016; Spindel et al., 2016). 

The cross-validation analysis for both models was repeated over 10 iterations, where the 

354 genotypes were randomly divided into a training population of 283 genotypes and a 

validation population of 71 genotypes. New training and validation populations were randomly 

created for each iteration. A GWAS was then performed on each training population in order to 

obtain significant QTL that were used as fixed effects in the GS+HD, GS+PH, and GS+GWAS 

models. The calculated GEBVs were then compared with the phenotypic BLUPs in order to 

determine prediction accuracy, using a Pearson correlation from the multivariate function in JMP 

Pro 14.1.0 software (SAS Institute). A mean prediction accuracy was obtained from the 10 

iterations for all four traits. In order to determine if one model had higher prediction accuracies 

compared to the other for all four FHB traits, mean prediction accuracies were compared 

between the four models using a generalized linear mixed linear model (GLMM) and Fisher’s 

LSD with an α of .05, implemented in PROC GLIMMIX in SAS 9.4 (SAS Institute). 

Multivariate Genomic Selection 

Genetic correlations between the six traits were obtained using a genetic analysis algorithm 

incorporating genome-wide SNPs in a mixed linear model framework within the sommer 

package in R software version 3.6.3 (Covarrubias-Pazaran, 2016; Lee & van der Werf, 2016). In 

order to determine if a MVGS GBLUP model significantly improved prediction accuracy 

compared with a NGS model, a cross-validation analysis was performed using the rrBLUP 

package within iPat, using source code from R version 3.6.2 for all four FHB traits. For each 

FHB trait of interest, phenotypic data from each of the other FHB traits, as well as HD and PH, 

were used as covariates. Each covariate trait was first tested individually in a single-covariate 
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model using a five-fold cross-validation approach, where the population was randomly divided 

into five groups of 71 genotypes. Four of the five groups were then used as the training 

population to predict the fifth group, serving as the validation population, where the phenotype 

was set as missing, while the phenotypic data for the covariate trait were used as a fixed effect in 

the model. The GEBVs for the validation population were compared to the actual phenotypic 

values using a Pearson correlation. The process was performed over 100 iterations for a total of 

five single-covariate trait combinations for each FHB resistance trait of interest. 

The mean prediction accuracies from the five single-covariate MVGS models were 

compared with a NGS model to determine if any of the covariate traits significantly improved 

prediction accuracies using a GLMM and Fisher’s LSD with an α of .05, implemented in PROC 

GLIMMIX in SAS 9.4 (SAS Institute). 

Covariates that produced significantly higher prediction accuracies than the NGS models 

were then included as covariates for multiple-covariate models to predict each FHB resistance 

trait. If an individual covariate did not significantly increase the prediction accuracy of the FHB 

resistance trait of interest in the single-covariate MVGS model, it was not included in the 

multiple-covariate MVGS models. Significant covariates were tested in all possible 

combinations in multiple-covariate MVGS models using the cross-validation method described 

above. In total, the mean prediction accuracies from 17 models- including the NGS, single-

covariate, and multiple-covariate models- were compared for each FHB resistance trait of 

interest using a GLMM and Fisher’s LSD with an α of .05, implemented in PROC GLIMMIX in 

SAS 9.4 (SAS Institute). 
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RESULTS 

Variation in Fusarium Head Blight Traits 

All four FHB traits had significant variation within the AMP with a range between 0 and 100% 

for INC and SEV at the FAY16 and NPT17 location-years and for FDK at the FAY16 and 

NPT16 location-years. The largest range in DON of .38-26.90 μg g-1 occurred in FAY16. The 

highest mean value for DON was found in FAY15 at 29.5 μg g-1. Significant (p ≤ .0001) 

genotypic, environmental, and genotype x environment effects were observed in an ANOVA for 

all four FHB traits, as well as for HD and PH (Table 1).  

Significant phenotypic correlations (p ≤ .0001) were observed between all four FHB 

traits. Severity and DON, were significantly correlated with HD, whereas all FHB traits but 

DON were significantly correlated with PH. Traits that had strong phenotypic correlations also 

had strong genetic correlations (Table 2). The highest heritability among the four FHB traits was 

for FDK (H2 = .82), followed by DON (H2 = .79), SEV (H2 = .78), and INC (H2 = .38) (Table 1). 

Evaluating the AMP across nine location-years allowed for moderately high heritability values, 

while also limiting the significant interaction between genotype and environment (Table 1). 

Population Structure 

Genotyping by sequencing identified 72,634 SNPs across the entire wheat genome after filtering. 

There was an uneven distribution of SNPs between the three genomes, with the B genome 

having the largest number of SNPs (34,268), followed by the A (27,078) and D genomes (9,513), 

with 1,775 SNPs that were unaffiliated with any chromosome, which was consistent with other 

studies using GBS SNPs (Arruda, Brown, et al., 2016). Chromosome 2B had the largest number 

of SNPs with 7,502 whereas chromosome 4D had the smallest number with 653. The percentage 
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heterozygosity of the dataset was 3.5%, whereas the average minor allele frequency was 19.6%. 

The allelic distributions were 25.7%, 25.2%, 23.0%, and 22.5% for the C, G, A, and T alleles, 

respectively.  

 A PCA found two primary clusters within the AMP, where genotypes from all four 

breeding programs appeared in both clusters. Although some sub-clustering between individual 

breeding programs was also observed within the two primary clusters, it is hypothesized that the 

main effect was due to the presence or absence of stem rust (Puccinia graminis f. sp. tritici) and 

powdery mildew resistance genes, Sr36/Pm6, located on the translocation from Triticum 

timopheevii Zhuk. (Benson, Brown-Guedira, Murphy, & Sneller, 2012; Nyquist, 1962; Sarinelli 

et al., 2019). When the region associated with the Sr36/Pm6 translocation on chromosome 2B 

was removed from the dataset, the deviation between clusters disappeared, indicating that the 

translocation was contributing to population structure. Overall, the population structure for the 

AMP was low, with the first three principal components accounting for only 5.9, 5.0, and 3.5% 

of the total genetic variation, respectively (Figure 1). For the purpose of the GWAS, the optimal 

number of principal components used for each individual trait, was determined based on the 

deviation of expected p values from observed p values based on a QQ plot for each individual 

trait. The ideal number of principal components for INC and DON was one, whereas the ideal 

number for was three for FDK and four for SEV. 

Quantitative Trait Loci 

The multi-locus FarmCPU model identified 42 significant (q ≤ .10) QTL for all four FHB traits, 

with 10 significant QTL for DON, 11 for FDK, nine for INC, and 12 for SEV across 17 of the 21 

wheat chromosomes (Appendix 1). The GWAS for DON was performed with a limited set of 

location-years (FAY15, NPT15, NPT16, and LSU17) because of low accumulation in the other 
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location-years. The summary of significant QTL showing the chromosome name, physical 

position, allelic variation, minor allele frequency, and allelic effect is shown in Table 3. Based on 

the pairwise LD test, none of the significant QTL had a pairwise LD R2 > .2. One significant 

marker, S4B_577008759 was identified for the traits FDK and SEV on the long arm of 

chromosome 4B at 577.0 Mb (Table 3, Appendices 1b and 1d). 

GWAS-Assisted Genomic Selection 

The top three significant QTL exceeding the FDR (q ≤.10) threshold were selected using the 

FarmCPU model to use as fixed effects for the 10 randomly selected training population subsets 

for all four FHB traits for the GS+GWAS analysis with the GBLUP model. The top three 

significant QTL exceeding the FDR (q ≤.10) threshold for HD and PH, from each of the training 

population subsets, were also selected to use as fixed effects to predict the four FHB traits for the 

GS+HD and GS+PH GBLUP models (Appendix 2). 

 The NGS model had the highest prediction accuracies for all four FHB traits. When 

comparing the GS+GWAS model with the NGS model, the NGS model had significantly higher 

mean prediction accuracies for all FHB traits. The NGS models also had higher prediction 

accuracies than the GS+HD and GS+PH models; however, these differences were not significant 

(Figure 2). The GS+PH model had the second highest prediction accuracy for all FHB traits 

except for SEV (Figure 2). 

Multivariate Genomic Selection 

Naïve GS models were compared with 16 single-covariate and multiple-covariate MVGS models 

using a five-fold cross-validation approach over 500 iterations to predict four FHB traits. Traits 

were selected as covariates for the multiple-covariate models if their use in single-covariate 
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models significantly improved prediction accuracy compared to the NGS models. The MVGS 

models significantly improved prediction accuracies for all four FHB traits (Figure 3).  

Incidence saw the largest increase in prediction accuracy with a 69.0% improvement 

between the NGS model (r = .40) and the seven-best performing MVGS models (r = .67). All of 

the single-covariate models significantly improved prediction accuracy compared to the NGS 

model except for HD. Incidence was also the only trait where a single-covariate MVGS model 

had the highest prediction accuracy, although it was statistically equal to the multiple-covariate 

MVGS models (Figure 3c).  

The trait with the next largest improvement in prediction accuracy was SEV, where the 

top four MVGS models (r = .81) improved prediction accuracy by 40.5% compared to the NGS 

model (r = .58). All of the single covariate models except for HD significantly improved 

prediction accuracy for SEV compared with the NGS model; therefore, HD was not included as a 

covariate in the multiple-covariate models. The PH+INC+FDK, PH+DON+INC+FDK, 

INC+FDK, and DON+INC+FDK MVGS models each had the highest prediction accuracy for 

SEV (Figure 3d).  

Fusarium damaged kernels had the third largest increase in prediction accuracy, where 

the MVGS model with PH, DON, and SEV covariates (r = .73) had a 37.5% improvement over 

the NGS model (r = .53). All single-covariate models except for HD significantly improved 

prediction accuracy for FDK compared with the NGS model; therefore, HD was not included as 

a covariate in the multiple-covariate models. The PH+INC+FDK MVGS model did not have a 

significantly higher prediction accuracy than the PH+DON+INC+SEV, DON+SEV, or 

DON+INC+SEV MVGS models (Figure 3b). 
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 The trait with the smallest percent improvement in prediction accuracy was DON, where 

the HD+FDK MVGS model (r = .74) improved prediction accuracy by 23.7% compared to the 

NGS model (r = .60). Single-covariate models with all four FHB traits and HD significantly 

improved prediction accuracy for DON. The single-covariate model with PH was the only model 

that did not significantly improve prediction accuracy, therefore PH was not included in the 

multiple-covariate MVGS models for DON. DON was the only trait that did not have a 

significant improvement in prediction accuracy from PH, and it was the only trait that had a 

significant improvement in prediction accuracy from HD. The prediction accuracy for the 

HD+FDK MVGS model was not significantly higher than the HD+FDK+SEV, HD+INC+FDK, 

or HD+INC+SEV+FDK MVGS models (Figure 3a). 

DISCUSSION 

Fusarium head blight is a major fungal disease that causes significant yield losses for farmers, 

largely due to shrunken FDK, as well as economic losses due to the accumulation of the 

mycotoxin DON. Since the use of fungicides and cultural control practices provide only marginal 

control of FHB in susceptible cultivars, it is important to breed for genetic resistance. This can 

often prove difficult, as genetic resistance to FHB is highly quantitative. The quantitative nature 

of FHB resistance provides breeders an opportunity to include all possible SNPs using GS (Ban, 

2000; H. Buerstmayr & Lemmens, 2015; Hoffstetter et al., 2016; Larkin et al., 2019; Mirdita et 

al., 2015; Steiner et al., 2017). 

Genome-Wide Association Study 

Numerous QTL mapping and GWAS analyses have been performed on multiple FHB traits in 

wheat over the last couple decades (H. Buerstmayr et al., 2009; M. Buerstmayr, Steiner, & 



 

96 
 

Buerstmayr, 2019). Applications for QTL identified through GWAS include validation of QTL 

identified through other GWAS and QTL mapping studies (M. Buerstmayr et al., 2019). Another 

application for QTL identified in this study could be as targets for fine mapping and positional 

cloning. As of now, positional cloning for FHB resistance genes have been dedicated to exotic 

germplasm (H. Y. Jia et al., 2018; G. Q. Li et al., 2019; Rawat et al., 2016; Su, Jin, Zhang, & 

Bai, 2018; Wang et al., 2020). 

Deoxynivalenol Accumulation 

For DON, the GWAS identified 10 significant QTL across eight different chromosomes. The 

most notable of these occurred on chromosome arms 2BL and 3BL. The resistance QTL 

Qfhs.don-3BL was identified in the SRWW cultivar ‘Ernie’, which led to a reduction in DON 

concentration in three different QTL mapping studies (Abate, Liu, & McKendry, 2008; S. Liu et 

al., 2007; S. Y. Liu et al., 2013). A QTL on chromosome 2B was identified in the mapping 

population Ernie/’MO 94-317’ related to DON reduction in the SRWW cultivar Ernie, although 

it could only be identified in one of the 2 yr of the study (Abate et al., 2008; S. Liu et al., 2007). 

A QTL on 2BL was also identified using an FHB index in the SRWW mapping population 

‘Becker’/’Massey’ (S. Y. Liu et al., 2013). 

Fusarium Damaged Kernels 

Eleven QTL were significantly associated with FDK across seven chromosomes, most notably 

on chromosome arms 4BL, 3AL, 1BL, 5BL and 5DL. The SNP associated with the QTL on 

chromosome 4BL was at the same physical location as a SNP associated with SEV in the AMP. 

The QTL also occurred in the same 1.5 logarithm of the odds (LOD) region identified in two 
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other studies in hard red winter wheat, even though the region was associated with SEV, as 

discussed below (Clinesmith et al., 2019; da Silva et al., 2019).  

Fusarium head blight resistance has been identified on the long arm of chromosome 3A 

primarily for SEV in two spring wheat QTL mapping populations from North Dakota 

(‘ND2603’/’Butte’) and South America (‘Frontana’/’SeriM82’) (Anderson et al., 2001; Mardi et 

al., 2006). It had also been identified in the European winter wheat mapping population 

‘Arina’/’Forno’ (Paillard et al., 2004). The QTL had also been identified in an Italian hexaploid 

by tetraploid mapping population (‘02-5B-318’/’Saragolla’) (Giancaspro, Giove, Zito, Blanco, & 

Gadaleta, 2016). However, it appears that FDK resistance has not been identified on 3AL until 

this study. 

The FHB resistance QTL Qfhb.nc‐1B was identified in the SRWW mapping population, 

‘NC-Neuse’/’AGS2000’. This QTL was associated with NC-Neuse and the resistant allele 

significantly reduced INC, FDK, and DON (Petersen et al., 2016). Another QTL, Qfhs.vt‐1BL, 

for FHB index was identified in the SRWW line, ‘VA00W‐38’ based on the mapping 

population (VA00W‐38/’Pioneer 26R46’) (S. Y. Liu et al., 2012). 

A QTL associated with FDK resistance on chromosome 5B was identified in an AMP of 

256 SRWW breeding lines across 2 yr of data, reducing FDK by .64% of the population mean 

(Tessmann, Dong, & Van Sanford, 2019). A QTL associated with the reduction of INC and 

DON was identified on the long arm of chromosome 5B, in the NC-Neuse/AGS2000 mapping 

population, where AGS2000 contributed the resistance allele, however the QTL region also 

contained the vrn-B1 vernalization locus (Petersen et al., 2016).  
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According to a meta-analysis of sources of FHB resistance, the only QTL associated with 

FHB resistance on chromosome 5D occurred in Asian germplasm, however the chromosome was 

associated with INC, SEV, and FDK. The QTL was identified in the mapping population 

‘Wangshuibai’/’Wheaton’ (S. Y. Liu, Hall, Griffey, & McKendry, 2009; Yu, Bai, Zhou, Dong, 

& Kolb, 2008). Another QTL on 5DL, associated with SEV, was identified in a diverse AMP 

containing germplasm from China, Italy, Japan, and Mexico, where the QTL occurred in the 

546.1 to 547.3 Mb region, whereas the QTL we identified occurred at 548.3 Mb. The QTL 

identified in the study was also associated with resistance to Soil-borne wheat mosaic virus in 

wheat (Hu et al., 2020). 

Incidence 

Nine significant QTL were identified for INC across seven chromosomes, most notably on 

chromosome arms 2BS, 7BL, 6AS, and 5DS. Resistance QTL on 2BS for INC had been 

discovered in the SRWW mapping populations ‘Patterson’/’Goldfield’ and Ernie/MO 94-317 

(Gilsinger, Kong, Shen, & Ohm, 2005; S. Liu et al., 2007). 

FHB resistance QTL have been identified on the long arm of chromosome 7B in the 

doubled haploid (DH) spring wheat mapping population, ‘DH181’/’AC Foremost’, as well as a 

tetraploid wheat AMP (Ghavami et al., 2011; Yang, Gilbert, Fedak, & Somers, 2005). A 

significant QTL associated with INC and SEV on 7BL was also identified in a European AMP of 

winter and spring wheat genotypes (Kollers et al., 2013). 

A QTL for INC on the short arm of chromosome 6A was identified in the SRWW 

mapping population NC-Neuse/Bess, where Bess was the source of resistance (Petersen et al., 
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2017). The QTL identified in Petersen et al. (2017) overlapped a QTL that was identified in the 

NC-Neuse/AGS2000 mapping population as well (Petersen et al., 2016).  

 Most QTL identified for FHB resistance on chromosome 5B were identified on the long 

arm, particularly for INC (Hu et al., 2020; S. Y. Liu et al., 2009; Yu et al., 2008). The only novel 

QTL for FHB resistance on 5BS was identified in an AMP of Chinese and Japanese landraces, 

and it was associated with SEV (T. Li et al., 2016). 

Severity 

The GWAS identified 12 QTL associated with SEV across 12 chromosomes. The most notable 

of these occurred on chromosome arms 3BL, 4AL, and 4BL. Several other QTL mapping and 

GWAS studies have also identified FHB resistance in the form of SEV on 3BL. Native resistance 

QTL on 3BL associated with SEV have been found in several SRWW cultivars, such as Massey 

and Ernie, as identified in two mapping populations, Becker/Massey and Ernie/MO 94-317 (S. 

Y. Liu et al., 2013). The QTL, Qfhb.nc-3B.2, in Bess was identified in the NC-Neuse/Bess 

mapping population (Petersen et al., 2017). A similar QTL was also identified in ‘Truman’ from 

the Truman/NC-Neuse DH population (Islam et al., 2016). The long arm of chromosome 3B has 

also been associated with SEV in European winter wheat germplasm, particularly in the Swiss 

cultivar Arina, as found in the mapping populations Arina/Forno and ‘Capo’/Arina, and the 

French cultivar, ‘Apache’ (M. Buerstmayr & Buerstmayr, 2015; Holzapfel et al., 2008; Paillard 

et al., 2004).  

Fusarium head blight resistance QTL related to SEV have also been found on the long 

arm of chromosome 4B. In SRWW, the QTL Qfhs.umc-4BL was identified in Ernie in the 

Ernie/MO 94-317 mapping population (S. Liu et al., 2007). In the hard red winter wheat 
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population, ‘Art’/’Everest’, Clinesmith et al. found the QTL Qfhb-4B.1 on 4BL for SEV, where 

S4B_577008759 occurs within the 1.5 LOD interval. It was suggested that Qfhb-4B.1 was 

associated with the major resistance QTL Fhb4, which was found in the Chinese landrace 

Wangshuibai (Clinesmith et al., 2019; da Silva et al., 2019). This indicates that further research 

should be performed on Arkansas SRWW germplasm in order to further map the QTL on 4BL, 

particularly since a QTL for FDK also appeared in the same region. 

The QTL QFhs.fal-4AL was identified in the Swiss mapping population Arina/Forno, 

conferring FHB resistance through SEV (Paillard et al., 2004). Another QTL on the long arm of 

chromosome 4A was also described in the spring wheat mapping population, DH181/AC 

Foremost, which was also for SEV (Yang et al., 2005). Two meta-studies of FHB resistance 

QTL have also shown QTL identified on 4AL conferring resistance to FHB through SEV (H. 

Buerstmayr et al., 2009; S. Y. Liu et al., 2009). 

GWAS-Assisted Genomic Selection for Fusarium Head Blight Traits 

The general assumption of the GBLUP model is that all SNP effects have an equal variance 

(Endelman, 2011). In reality, most traits have at least some genes that have larger effects on a 

trait than others do. Theoretically, if large-effect markers were used as fixed effects in the 

GBLUP model, prediction accuracies would improve. In the case of FHB traits, Arruda et al. 

(2016) found that a ridge regression BLUP (RR-BLUP) model with marker fixed effects 

significantly improved prediction accuracies for SEV, INC, an FHB index, FDK, and an INC-

SEV-kernel index, but there was not a significant difference for DON (Arruda, Lipka, et al., 

2016).  
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We observed that the use of significant markers identified through GWAS actually 

significantly decreased mean prediction accuracy for all four traits. One of the possibilities could 

be that the significant markers implemented for GS did not account for enough variation in the 

four FHB traits. It has been noted that using individual markers as fixed effects in a GS model 

was never disadvantageous, except when the amount of variance explained by the marker was 

<10% (Bernardo, 2014). In our case, none of the markers used for our GWAS exceeded 5% of 

the variation for any of the traits tested. Whereas at least one of the SNPs used by Arruda et al. 

(2016) accounted for >10% of the variation in FHB resistance (Arruda, Lipka, et al., 2016; 

Bernardo, 2014). Approximately 5.5% of the 273 genotypes in their population also contained 

resistance alleles for the major FHB resistance QTL, Fhb1, whereas our population did not have 

any genotypes containing resistance alleles for Fhb1 (Arruda, Lipka, et al., 2016). As a result, 

nearly all of the resistance in our population came in the form of small-effect QTL, which 

contribute a lower level of resistance compared with sources of resistance, such as Fhb1 (Steiner 

et al., 2017). Bernardo also stated that the use of marker fixed effects in a GS model generally 

did not improve prediction accuracy if the trait heritability exceeded 50%, which was the case for 

all of our FHB traits, with the exception of INC (Table 1) (Bernardo, 2014).  

Another study found that the use of marker fixed effects with multiple GS models did not 

significantly improve prediction accuracies for FHB traits. Prediction accuracies were actually 

lower for FDK, INC, and SEV when marker fixed effects were implemented, aligning with what 

we observed in our study (J. Rutkoski et al., 2012). 

Multivariate Genomic Selection for Fusarium Head Blight Traits 

Multivariate GS uses secondary traits that are genetically correlated with a trait of interest as 

covariates in a GS model, which can increase prediction accuracy, especially when the trait of 
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interest has a low heritability and the covariate trait has a high heritability (Calus & Veerkamp, 

2011; Guo et al., 2014; Y. Jia & Jannink, 2012). Multiple studies have evaluated the use of 

MVGS for FHB resistance in wheat, however they have primarily focused on SEV as a trait of 

interest and only used HD and PH as covariates (Moreno-Amores et al., 2020; Schulthess et al., 

2018; Steiner et al., 2019). An MVGS model was also used to predict DON using an INC, SEV, 

and FDK index (J. Rutkoski et al., 2012).  

The use of HD and PH as covariates in MVGS models are ideal as both traits are 

associated with FHB resistance and are easy to phenotype (Moreno-Amores et al., 2020). Wheat 

genotypes with earlier HD often have higher FHB infections compared to later heading 

genotypes (Gervais et al., 2003; Paillard et al., 2004; Schmolke et al., 2005). A negative 

correlation is also typically observed between FHB resistance and PH, where taller genotypes are 

more likely to escape infection compared to shorter genotypes (Gervais et al., 2003; Jenkinson & 

Parry, 1994). We found that HD had no significant impact on prediction accuracy as a covariate 

for all traits except for DON. The low impact from HD on MVGS for FHB resistance was also 

observed in other studies when predicting SEV (Moreno-Amores et al., 2020; Schulthess et al., 

2018; Steiner et al., 2019). The inclusion of PH as a covariate significantly increased prediction 

accuracies for all traits except for DON, as observed with SEV in other studies (Schulthess et al., 

2018; Steiner et al., 2019) 

Our experiment is unique in that it uses multiple FHB traits as covariates to predict 

multiple forms of FHB resistance. This can be particularly helpful for predicting traits that are 

evaluated post-harvest, such as DON or FDK, while using traits collected during the season, such 

as SEV or INC, as covariates (J. Rutkoski et al., 2012; Steiner et al., 2019).  
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In our population, we found that MVGS significantly improved prediction accuracies for 

all four FHB traits. Increases in prediction accuracy were especially evident when the covariate 

traits were strongly correlated with the trait of interest (Table 2, Figure 3). The largest 

improvements between single-covariate MVGS models and NGS models were observed when 

SEV was used as a covariate to predict FDK, SEV was used to predict INC, and vice-versa, 

where strong correlations between the abovementioned traits were present (Figure 3). Previous 

studies using MVGS have showed similar results between traits with strong genetic correlations, 

especially when they exceeded .5 (Calus & Veerkamp, 2011). However, we observed significant 

increases in prediction accuracy for genetic correlations as low as .24. 

The heritability of all evaluated traits was relatively high, with the exception of INC 

(Table 1). Previous research has shown that the prediction accuracy of low-heritability traits can 

significantly increase with the use of high heritability covariates (Calus & Veerkamp, 2011; Guo 

et al., 2014; Y. Jia & Jannink, 2012). We also observed this when using INC as the trait of 

interest, where the inclusion of other high-heritability traits as covariates (DON, FDK, PH, and 

SEV) resulted in significant increases in prediction accuracy, even when there was a lower 

genetic correlation between the traits. 

CONCLUSIONS 

As FHB resistance is a quantitative trait in wheat, breeding for resistance has been a complicated 

task for wheat breeders. In this study, QTL for FHB resistance were identified for four different 

traits, including DON, FDK, INC, and SEV in regions previously reported in QTL mapping and 

GWAS studies, particularly on the long arms of chromosomes 3B and 4B. The identification of 

QTLs in our panel of 354 SRWW breeding genotypes adapted to the southeastern United States 
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indicates that previously identified QTL are contributing to genetic resistance in this population. 

The SNPs identified in this study can be implemented for MAS in wheat breeding programs.  

 This study also found that the use of a NGS model and a GS+GWAS model could 

provide high prediction accuracies for all four FHB traits. However, the use of a GS+GWAS 

model did not improve prediction accuracies for any of the four FHB traits compared to the NGS 

model. This is likely due to the small amount of variance covered by each of the markers and the 

high heritability of the training population for each of the traits. However, MVGS models did 

significantly improve prediction accuracy for FHB traits compared to NGS models, especially 

when there was a strong correlation between the covariate traits and the predicted trait. This 

indicates that MVGS could be successfully used when breeding for FHB resistance. Plant 

breeders must consider these factors before using GS for FHB resistance in their wheat breeding 

programs, as results can vary across populations. 
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Table 1. Descriptive statistics and analysis of variance of four Fusarium head blight (FHB) resistance traits, including 

deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), incidence (INC), and severity (SEV), as well as 

heading date (HD) and plant height (PH) for 354 soft red winter wheat genotypes. 

Trait Mean Minimum Maximum 
Standard 

Deviation H2a 

Mean Squares 

Genotype Environment GxEb 

DONc 10.1 1.7 27.6 11.4 .79 13.05*** 8.81*** 3.90*** 

FDK 31.5 3.2 83.0 29.7 .82 15.93*** 11.37*** 4.18*** 

INC 28.9 .8 80.0 35.4 .38 4.26*** 106.21*** 3.19*** 

SEV 24.8 0.0 70.0 24.8 .78 8.38*** 26.76*** 2.90*** 

HDd 105.6 78.7 129.0 13.7 .92 27,194.00*** 9,546.40*** 3.36*** 

PHe 90.3 56.5 121.9 10.0 .89 27.24*** 1,128.85*** 4.57*** 
a Broad sense heritability (H2) values calculated on an entry-mean basis for each of the four FHB traits. 
b The interaction between genotype and environment. 

c DON was measured in μg g-1, whereas the other three traits were measured in percentage. 
d Heading date (HD) was recorded in Julian days after 1 January, when 50% of the heads were 50% emerged 
from the flag leaf. 

e Plant height (PH) was recorded in inches from the surface of the soil to the tip of the awn, but reported in 
centimeters here. 

*** Significant at the .001 probability level. 
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Table 2. Correlation coefficients between heading date (HD), plant height (PH), and four Fusarium head blight (FHB) traits: 

deoxynivalenol (DON) accumulation, percent Fusarium damaged kernels (FDK), percent incidence (INC), and percent 

severity (SEV). Genetic correlations are in the top half, while phenotypic correlations are in the bottom half of the table. 
Trait INC SEV FDK DON HD PH 

INC - .80*** .73*** .25*** -.11* -.24*** 

SEV .65*** - .80*** .41*** -.26*** -.35*** 

FDK .48*** .66*** - .42*** .08 -.30*** 

DON .19*** .32*** .40*** - .28*** .00 

HD -.06 -.23*** -.02 .28*** - .28*** 

PH -.27*** -.41*** -.28*** .00 .35*** - 

* Significant at the 0.05 probability level. 

*** Significant at the 0.001 probability level. 
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Table 3. List of significant quantitative trait loci (QTL) associated with four Fusarium head 

blight (FHB) traits, including deoxynivalenol (DON) accumulation, percent Fusarium 

damaged kernels (FDK), percent incidence (INC), and percent severity (SEV) across nine 

location-years using a fixed and random model circulating probability unification 

(FarmCPU) model with a false discovery rate (FDR) threshold of q ≤ .10. 

Traita Chr.b Position Allele -log10(p)  MAFc Allelic Effectd 

bp 

DON 2B 574,225,916 A/G 8.80 0.240 -0.73 

3B 741,517,608 T/G 7.02 0.079 1.07 

3B 749,054,930 C/T 6.80 0.418 0.50 

3D 498,442,075 A/C 6.01 0.058 0.93 

3D 521,400,798 G/T 5.99 0.127 0.65 

4A 39,713,449 T/C 5.90 0.343 0.46 

5B 590,614,717 G/A 5.47 0.203 -0.53 

7B 230,436,017 C/T 5.34 0.199 0.53 

7D 457,776,058 A/T 5.13 0.059 0.87 

7A 50,110,754 T/C 4.99 0.404 -0.39 

FDK 4B 577,008,759 C/G 14.35 0.417 4.16 

3A 714,306,573 A/G 11.65 0.225 -3.17 

1B 298,191,278 G/T 9.02 0.081 -5.27 

5B 673,624,297 G/A 8.31 0.051 -5.98 

5D 548,345,563 C/T 8.09 0.395 -2.19 

5D 424,046,598 C/A 6.08 0.379 -1.77 

2D 61,772,585 C/G 5.80 0.097 -2.87 

3B 378,832,973 C/T 5.70 0.112 -3.08 

3B 212,432,145 A/T 5.49 0.093 -2.93 

6A 11,159,506 G/T 5.18 0.106 2.64 

3B 51,321,489 T/A 4.87 0.202 -2.13 

INC 2B 35,068,159 G/A 10.02 0.116 0.64 

2B 189,749,199 A/G 9.07 0.175 -1.22 

7B 716,844,038 C/A 8.19 0.064 -0.80 

5D 133,059,272 C/T 8.07 0.184 -0.45 

6A 5,113,561 T/A 6.79 0.203 -0.44 

5D 74,734,312 T/G 6.48 0.081 -0.76 

4B 21,368,968 A/G 6.00 0.264 -0.34 

7A 709,861,127 C/A 5.24 0.182 0.34 

1A 263,596,817 T/A 5.19 0.121 -0.43 

SEV 3B 783,125,543 T/A 11.68 0.381 -1.83 

4A 562,577,189 T/C 7.87 0.366 -1.38 

4B 577,008,759 C/G 7.74 0.417 1.55 

5A 365,630,402 A/C 6.69 0.370 1.40 

2B 653,352,399 A/G 6.49 0.059 2.19 

7A 325,554,142 G/A 6.36 0.066 -2.38 
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Table 3 (Cont.) 

Traita Chr.b Position Allele -log10(p)  MAFc Allelic Effectd 

SEV 2D 11,171,031 T/C 6.02 0.222 -1.62 

5B 548,333,940 G/A 5.94 0.338 -1.17 

3A 347,926,467 C/G 5.85 0.123 -1.85 

7B 103,622,350 C/A 5.56 0.110 2.38 

6B 18,241,620 G/A 5.42 0.052 -3.02 

1B 77,853,663 G/A 5.13 0.048 -2.90 
a DON, deoxynivalenol accumulation; FDK, Fusarium damaged kernels; INC, 
incidence; SEV, severity. 
b Chr, Wheat (Triticum aestivum L.) chromosome number. 
c MAF, minor allele frequency. 
d Allelic effect was calculated in FarmCPU and reported as the difference 
between the mean best linear unbiased prediction (BLUP) between genotypes 
with the major and minor allele for each FHB resistance. A positive sign means 
that the minor allele causes a percent increase in the trait of interest, a negative 
sign means that the minor allele causes a percent decrease in the trait of interest. 
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Figure 1. Population structure of 354 soft red winter wheat genotypes using 72,634 single 
nucleotide polymorphisms (SNPs). Colors represent the origin of the genotypes. AR, developed 
at the University of Arkansas, Fayetteville, AR; GA, developed at the University of Georgia, 
Athens, GA; LA, developed at Louisiana State University, Baton Rouge, LA; NC, developed at 
North Carolina State University, Raleigh, NC; PC, principal component.  
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Figure 2. Bar charts comparing the mean genomic prediction accuracies (y axes) between four 
genomic selection (GS) models used to predict four Fusarium head blight (FHB) resistance traits: 
(a) deoxynivalenol accumulation (DON), (b) Fusarium damaged kernels (FDK), (c) incidence 
(INC), and (d) severity (SEV). The x axis represents the four models being compared: a naïve 
genomic best linear unbiased prediction (GBLUP) GS model with no fixed effects (NGS), and 
three denovo genome-wide association study (GWAS) assisted GBLUP models with significant 
marker fixed effects for heading date (GS+HD), plant height (GS+PH), and the respective FHB 
traits (GS+GWAS). The y axis represents the mean prediction accuracy across 10 iterations of 
cross-validation in the form of a Pearson correlation coefficient (r) between the predicted 
genome estimated breeding value (GEBV) and the actual phenotypic value for the validation 
populations. Mean prediction accuracies of each model not sharing any letter above each bar are 
significantly different based on Fisher’s LSD separation at the 5% level of significance. 
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Figure 3. Bar charts comparing the mean prediction accuracies between 16 multivariate genomic 
selection (MVGS) models with a naïve genomic selection (NGS) model for four different 
Fusarium head blight (FHB) resistance traits: (a) deoxynivalenol accumulation (DON), (b) 
Fusarium damaged kernels (FDK), (c) incidence (INC), and (d) severity (SEV). The x axis 
represents the combination of covariates used for each model, including the abovementioned 
FHB traits, as well as heading date (HD) and plant height (PH). The y axis represents the mean 
prediction accuracy across 100 iterations of five-fold cross-validation in the form of a Pearson 
correlation coefficient (r) between the predicted genome estimated breeding value (GEBV) and 
the actual phenotypic value for the validation populations. Mean prediction accuracies of each 
model not sharing any letter above each bar are significantly different based on Fisher’s LSD 
separation at the 5% level of significance. 



 

121 
 

 

 

 

 

 

 

 

 

CHAPTER III 

IMPLEMENTATION OF MULTIVARIATE GENOMIC SELECTION METHODS FOR 

AGRONOMIC TRAITS IN SOFT RED WINTER WHEAT 
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ABSTRACT 

Genomic selection (GS) is an important tool for increasing genetic gain and multivariate GS 

(MVGS) can improve prediction accuracy for a trait using correlated secondary traits as 

covariates. Likewise, data for breeding lines from other environments can be used as covariates 

to predict performance in untested environments using sparse-testing (CV2). The objectives for 

this study were to evaluate the abovementioned GS approaches to improve prediction accuracy 

for five agronomic traits in a population of 351 soft red winter wheat genotypes, evaluated over 

six site-years in Arkansas from 2014 to 2017. Genotypes were phenotyped for grain yield (GY), 

heading date, maturity date (MD), plant height, and test weight. The MVGS models significantly 

improved prediction accuracy for all five traits compared to a naïve GS model without covariates 

by between 10 and 30%, where the lowest heritability trait, MD (H2 = .67), saw the greatest 

increase in prediction accuracy. Genetic correlations exceeding r = .30, between predicted traits 

and covariates, also resulted in significantly higher prediction accuracies (p < .05). The CV2 

method significantly improved prediction accuracy (p < .05) for GY between 6% and 21% in 

four of six tested environments, especially when covariate environments and predicted 

environments were highly correlated and closely related. Overall, MVGS models improved 

prediction accuracies when there was a strong genetic correlation between the predicted trait and 

covariates. The CV2 method was also effective for predicting traits for genotypes in new 

environments, when covariate environments were correlated with the predicted environment of 

interest. 
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INTRODUCTION 

The global population is expected to increase from 7.7 to approximately 9.7 billion by 2050, 

according to the United Nations Department of Economic and Global Affairs (United Nations, 

2019). While the global capacity for food production has rapidly expanded over the last 70 years, 

largely due to improved agronomic practices and genetic improvements in crop species, this 

rapid population growth is still expected to surpass the rate of global food production in the 

coming decades (Graybosch & Peterson, 2010). This trend can also be observed in wheat 

(Triticum aestivum L.), which contributes to over 20% of caloric and protein intake for humans. 

The current genetic gain in grain yield (GY) is .9%, far below the 2.4% needed to double wheat 

production by 2050 (Ray, Mueller, West, & Foley, 2013). 

 To meet these future demands, wheat breeders have looked toward new technologies to 

improve the efficiency of their breeding programs by implementing new and improved 

technologies to increase genetic gain. These technologies include methods such as marker-

assisted selection (MAS), phenomics, and genomic selection (GS) (Heffner, Sorrells, & Jannink, 

2009; Larkin, Lozada, & Mason, 2019). Genomic selection is a modified form of MAS; however 

instead of using only a few select markers that are significantly associated with a trait, GS takes 

all summed marker and locus effects across the entire genome into consideration to calculate 

genome estimated breeding values (GEBV) (Heffner et al., 2009; Meuwissen, Hayes, & 

Goddard, 2001). At least some of the markers are assumed to be in linkage disequilibrium (LD) 

with quantitative trait loci (QTL) associated with a trait of interest (Meuwissen et al., 2001). One 

of the primary advantages of GS is more genetic gain per cycle of GS compared to phenotypic 

selection (Asoro et al., 2013; Bernardo & Yu, 2007; Heffner et al., 2009; Rutkoski et al., 2015). 
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 There are many methods used to improve the predictive ability of GS models (Jannink, 

Lorenz, & Iwata, 2010; Larkin et al., 2019). These methods largely focus on training population 

(TP) optimization, based on size, population structure, composition, and genetic relationships 

between the TP and validation population (VP) (Akdemir, Sanchez, & Jannink, 2015; Combs & 

Bernardo, 2013; Habier, Fernando, & Dekkers, 2007; Isidro et al., 2015; Jannink et al., 2010). 

The type of prediction model also plays a valuable role in improving prediction accuracy, 

whether it is through the use of ridge-regression or Bayesian parametric models, or through the 

use of semi- or non-parametric models (N. Heslot, Yang, Sorrells, & Jannink, 2012). An 

alternative to this is multivariate GS (MVGS), which uses mixed models with secondary traits, 

genetically correlated with a trait of interest, as covariates (Calus & Veerkamp, 2011; 

Covarrubias-Pazaran et al., 2018; Jia & Jannink, 2012). Prediction accuracies for low-heritability 

traits of interest can also be improved when high-heritability secondary traits are used as 

covariates (Calus & Veerkamp, 2011; Guo et al., 2014; Jia & Jannink, 2012). In studies using 

MVGS models focused on agronomic traits of interest in wheat, GY has been the primary trait of 

interest, while high-throughput phenotyping traits, such as normalized difference vegetative 

index (NDVI) and canopy temperature, were used as secondary traits (Crain, Mondal, Rutkoski, 

Singh, & Poland, 2018; Lozada & Carter, 2019; Rutkoski et al., 2016; Sun et al., 2017). 

However, wheat breeders collect data on multiple important agronomic traits of interest 

throughout the growing season including heading date (HD), maturity date (MD), plant height 

(PH), and test weight (TW) that can impact GY (X. J. Chen, Min, Yasir, & Hu, 2012; Liu, 

Searle, Mather, Able, & Able, 2015; Tshikunde, Mashilo, Shimelis, & Odindo, 2019). Therefore, 

these traits, along with GY can reasonably be incorporated as covariates in MVGS models to 

improve prediction accuracies for each of these important agronomic traits of interest.  



 

125 
 

 Another application for MVGS can be for predicting the performance of genotypes in 

environments (ENVs) where they have not been tested while data from other ENVs, where the 

genotype was tested, are used as covariates in the MVGS model. Plant breeders often grow 

genotypes in multiple-environment trials (METs) in order to evaluate their performance under 

diverse environmental conditions at multiple locations over multiple years (Basford & Cooper, 

1998). The estimation of the genotype-by-environment interaction (GEI) is valuable so that the 

breeder can determine that a genotype’s phenotypic performance is stable in multiple ENVs over 

time (Allard & Bradshaw, 1964; de Leon, Jannink, Edwards, & Kaeppler, 2016; Eberhart & 

Russell, 1966; Lin, Binns, & Lefkovitch, 1986; Rosielle & Hamblin, 1981). Ideally, each 

genotype would be evaluated in every testing ENV; however, due to limitations of field space, 

seed availability, time, or cost this is not always possible. These limitations are especially 

evident during early generations of the breeding cycle (Jarquin et al., 2020). In terms of GS, this 

scenario fits into the cross-validation 2 (CV2) sparse testing cross-validation design, where the 

performance of a genotype is predicted in a specific ENV using phenotypic data of the same 

genotype from a different ENV in the TP (Burgueno, de los Campos, Weigel, & Crossa, 2012).  

The CV2 scheme was compared with a cross-validation scheme where the genotypes 

were untested in any ENVs (CV1) while using pedigree, markers, and pedigree + marker data in 

a wheat population of 599 genotypes in order to predict GY. The CV2 scheme had higher 

prediction accuracies across all three model types (Burgueno et al., 2012). This was also 

observed in a diverse wheat panel grown across five ENVs when comparing the CV1 and CV2 

schemes using seven different GS models, where the CV2 scheme had higher prediction 

accuracies than the CV1 scheme across all ENVs and models (Saint Pierre et al., 2016). The 

CV2 scheme was again the highest performing scheme when using a panel of 320 chickpea 
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(Cicer arietinum L.) genotypes evaluated for eight traits across six ENVs using 13 different GS 

models and two different genotyping platforms (Roorkiwal et al., 2018).  

While the abovementioned sparse cross-validation studies used phenotypic data from 

correlated ENVs in the TP, we wanted to take a MVGS approach to the CV2 scheme and use 

phenotypic data for missing genotypes grown in ENVs correlated with an ENV of interest as a 

covariate, while only using data from the ENV of interest in the TP, in order to see if the CV2 

scheme could improve prediction accuracy compared to a CV1 scheme. This study accomplishes 

three main objectives: (a) to evaluate soft red winter wheat (SRWW) genotypes for five 

agronomically important traits, including GY, HD, MD, PH, and TW; (b) to perform a cross-

validation analysis to compare prediction accuracies between a naïve GS (NGS) model and 

MVGS models for all five agronomic traits; and (c) to perform a CV2 analysis in order to predict 

GY for genotypes that were grown in some ENVs but not others using GY data from correlated 

ENVs as model covariates in a MVGS approach. 

MATERIALS AND METHODS 

Germplasm 

A population of 351 SRWW genotypes was used for this study, consisting of 237 genotypes 

from the University of Arkansas, 39 from the University of Georgia, 38 from North Carolina 

State University, and 37 from Louisiana State University. This population represents the majority 

of source germplasm in the University of Arkansas wheat breeding program. 

Experimental Design and Trait Measurements 

Winter wheat is planted in the fall and harvested during the late spring in the southern region of 

the U.S., therefore each growing season spans two years. The first 175 entries of the population 
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were evaluated at the Lon Mann Cotton Research Center near Marianna, AR, USA (MAR) and 

the Northeast Research and Extension Center near Keiser, AR, USA (KSR) during the 2013-

2014 growing season (M14 and K14), while the remaining 176 entries were evaluated at MAR 

during the 2014-2015 growing season (M15). All 351 entries of the population were only 

evaluated at MAR during the 2015-2016 growing season (M16) and at both locations during the 

2016-2017 growing season (M17 and K17) (Table 1). 

Genotypes were drill seeded at a rate of 118 kg ha-1 to establish seven row plots that were 

6 m long and 1 m wide with 18 cm between rows. The plots were then end-trimmed in the 

spring. Plots were managed according to the recommendations for wheat in Arkansas (Kelley, 

2018). Each year, plots in MAR received two applications of urea fertilizer of 101 kg ha-1 and 67 

kg ha-1, along with 27 kg ha-1 of ammonium sulfate fertilizer. Plots in KSR received two 

applications of 78 kg ha-1 of urea fertilizer per year. A combination of herbicides, including 

Axial XL (Syngenta AG), Finesse (DuPont de Nemours), Harmony Extra (DuPont de Nemours, 

Inc.), Osprey (Bayer AG), and Prowl H2O (BASF SE), were used each year for weed control. 

The M14 and M15 ENVs were planted in an unbalanced randomized complete block 

design (RCBD) with two replications with repeated checks. In M14, the first replication 

consisted of 175 genotypes, while the second replication consisted of the first 117 genotypes 

from the first replication, while in M15, the first replication consisted of 177 genotypes, while 

the second replication consisted of the first 120 genotypes from the first replication. The K14, 

M16, M17, and M17 ENVs were planted in an unreplicated augmented design with repeated 

checks. During the 2013-2014 growing season, the repeated checks were ‘Branson’ (PI 639227), 

‘Croplan Genetics 514W’, ‘Jamestown’ (PI 653751), ‘Pioneer 26R20’ (PI 658150), ‘Armor 

Ricochet’, ‘Shirley’ (PI 656753), ‘SS 8461’, and ‘UniSouth Genetics 3120’ (PI 672163). The 
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2014-2015 growing season used the same eight checks, with the addition of ‘SY Harrison’ (PI 

664946), ‘Pioneer 26R41’, and ‘Pat’ (PI 631466). Only four checks, Branson, Jamestown, 

Pioneer 26R41, and SS 8641, were used during the 2015-2016 and 2016-2017 growing seasons.  

Phenotypic data were collected for five agronomic traits, including GY, TW, HD, MD, 

and PH. Individual plots were harvested with a 1994 Hege 140 plot combine (Hege Maschinen 

GmbH) and GY was calculated at all six ENVs from the weight of seed from each plot as 

measured by the HarvestMaster Pro 4100 (Juniper Systems) and was expressed in t ha-1 and 

adjusted for 13% moisture content. Test weight was sampled from each plot for all six ENVs 

using a HarvestMaster Pro 4100 (Juniper Systems), and was expressed in kg hl-1 then adjusted 

for 13% moisture content. Heading dates for each genotype were collected during all four 

growing seasons from MAR. Heading date was recorded in Julian days after 1 January, when 

50% of the heads were 50% emerged from the flag leaf. As there was variation in HD between 

genotypes in the population, heading notes were recorded every other day from the onset of 

heading and continuing until all plots in the nursery were headed. Maturity date was evaluated 

for all genotypes at M14, K14, and M15. Maturity date was reported as the Julian days after 1 

January, when an estimated 90% of culms in an individual plot were senesced or yellow. At 

maturity, PH was recorded in cm from the surface of the soil to the tip of the head at all ENVs, 

except for K17. 

Phenotypic Data Analysis 

Data was analyzed using procedures in SAS 9.4 software (SAS Institute), using a two-stage MET 

analysis (Mohring & Piepho, 2009; Piepho, Mohring, Melchinger, & Buchse, 2008). Adjusted 

means were obtained for all five traits from each ENV for the first stage of the analysis using the 

following model in PROC MIXED: 
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where yij is the observed phenotype; μ is the overall mean; τi is the fixed effect of the ith 

genotype; βj is the random effect of replication for the RCBD or incomplete block for the 

augmented design; and εij is the residual error term, where εij~N(0, Iσ2
ε), where I is an identity 

matrix and σ2
ε is the residual error variance. 

Adjusted means from each ENV for each trait were then compiled into a single dataset 

for the second stage of the analysis, where best linear unbiased predictions (BLUPs) were 

calculated for each trait using the following model in PROC MIXED with all effects and 

interaction treated as random: 

�
3 = � + ®
 + a3 + �® × a�
3 + �
3 

where yij is the observed phenotype; μ is the overall mean; τi is the random effect of the ith 

genotype; δj is the random effect of ENV; �® × a�
3 is the interaction between genotype and 

ENV; and εij is the residual error term, where εij~N(0, Iσ2
ε), where I is an identity matrix and σ2

ε 

is the residual error variance.  

Phenotypic correlations were determined between all five traits using the multivariate 

function in JMP Pro 15.1.0 software (SAS Institute). Due to the unbalanced nature of the design 

for each of the five traits, broad-sense heritability §̄�� for each of the five traits was calculated 

using the following formula proposed by Cullis et al. (2006), which is ideal for unbalanced 

METs: 

§̄�� = 1 − 7̅±²��2���  
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where 7̅±²�� is the mean variance between two BLUPs and ��� is the genotypic variance of the 

trait of interest, obtained from the second stage of the MET model (Cullis, Smith, & Coombes, 

2006; Piepho & Mohring, 2007). 

Genotyping by Sequencing 

All 351 genotypes in the population were genotyped using genotyping by sequencing (GBS). 

DNA was extracted using the Mag-Bind Plant DNA Plus kit (Omega Bio-tek), following the 

manufacturer’s instructions. Genomic DNA was quantified using the Quant-iT PicoGreen 

dsDNA Assay Kit and normalized to 20 ng µL-1 (ThermoFisher Scientific). Genotyping by 

sequencing libraries were created using Pst1-Msp1 and/or the Pst1-Mse1 restriction enzyme 

combinations (Poland, Brown, Sorrells, & Jannink, 2012). The samples were pooled together at 

192-plex and each pooled library was sequenced on a single lane of an Illumina Hi-Seq 2500 

system (Illumina). Single nucleotide polymorphism calling was performed using the TASSEL 

5.0 GBSv2 pipeline using 64 base kmer length and a minimum kmer count of five (Bradbury et 

al., 2007). Reads were aligned to the International Wheat Genome Sequencing Consortium 

(IWGSC) RefSeq v1.0 ‘Chinese Spring’ wheat reference sequence using the alignment method 

of Burrows-Wheeler aligner version 0.7.10 (Appels et al., 2018; Li & Durbin, 2009). Raw single 

nucleotide polymorphism (SNP) data generated from the TASSEL pipeline were filtered to 

remove taxa with more than 85% missing data and heterozygosity greater than 30%. Genotypic 

data were then filtered to select for biallelic SNPs with minor allelic frequency of greater than 

five percent, less than 50% missing data, and heterozygosity of less than or equal to 10%. 

Missing data were imputed using the linkage disequilibrium - kth nearest neighbor imputation 

(LD-kNNi) function in TASSEL 5.0 in order to create a final SNP panel consisting of 73,618 

SNPs across the entire genome (Bradbury et al., 2007; Money et al., 2015). A principal 
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component analysis (PCA) was performed using TASSEL 5.0 using the PCA function and 

abovementioned genotypic dataset in order to identify the population structure within the 

population (Bradbury et al., 2007). 

Multivariate Genomic Selection 

Genotypic correlations between the five traits were obtained using a genetic analysis algorithm 

incorporating genome-wide SNPs in a mixed linear model framework within the sommer 

package in R v3.6.3 software (Covarrubias-Pazaran, 2016; Lee & van der Werf, 2016; R, 2020). 

In order to determine if a MVGS genomic BLUP (GBLUP) model significantly improved 

prediction accuracy compared to a NGS model, a cross-validation analysis was performed using 

the rrBLUP package within the Intelligent Prediction and Association Tool (iPat), using source 

code from R version 3.6.3 for all five agronomic traits (C. P. J. Chen & Zhang, 2018; Endelman, 

2011; R, 2020). The GBLUP model used for the analysis is described as follows: 

� = �" + #$ + �
 
where u is the vector of marker effects, which is assumed to have a normal distribution 

$~&�0, +�)��, where G is the genomic relationship matrix and �)� is the variance of the 

individual marker effects; β is the vector of fixed effects; X is the design matrix of fixed effects; 

Z is the design matrix relating genotypes to phenotypic observations (y), with m markers in 

columns and n phenotypes in rows; and εi is the residual error at the ith locus, which is assumed 

to have a normal distribution �
~&�0, (����, where I is the identity matrix and σ2
ε is the residual 

error variance. The GEBV is the sum of all allele effects of a genotype (C. P. J. Chen & Zhang, 

2018; Endelman, 2011; VanRaden, 2008).  
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Phenotypic data from each of the other four traits were used as covariates. Each covariate 

trait was first tested individually in a single-covariate model using a five-fold cross-validation 

approach, where the population was randomly divided into five groups of 71 genotypes. Four of 

the five groups were then used as the TP to predict the fifth group, serving as the validation 

population (VP), where the phenotype was set as missing, while the phenotypic data for the 

covariate trait were used as a fixed effect in the model. The GEBVs for the VP were compared to 

the actual phenotypic values using a Pearson correlation. The process was performed over 100 

iterations for a total of four single-covariate trait combinations for each agronomic trait of 

interest (Larkin et al., 2020). The mean prediction accuracies from the five single-covariate, 

MVGS models were compared with a NGS model to determine if any of the covariate traits 

significantly improved prediction accuracies using a generalized linear mixed model (GLMM) 

and Fisher’s LSD with an α of .05, implemented in PROC GLIMMIX in SAS 9.4 (SAS 

Institute). 

Covariates that produced significantly higher prediction accuracies than the NGS models 

were then included as covariates for multiple-covariate models to predict each agronomic trait. If 

an individual covariate did not significantly increase the prediction accuracy of the agronomic 

trait of interest in the single-covariate MVGS model, it was not included in the multiple-

covariate MVGS models. Significant covariates were tested in all possible combinations in 

multiple-covariate MVGS models using the cross-validation method described above. Mean 

prediction accuracies from the NGS, single-covariate, and multiple-covariate models were 

compared for each agronomic trait of interest using a GLMM and Fisher’s LSD with an α of .05, 

implemented in PROC GLIMMIX in SAS 9.4 (SAS Institute). A total of nine models were tested 

for TW, while six were tested for HD, MD, and PH, and five were tested for GY. Figures 
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comparing mean prediction accuracies between models were created using the yarrr package in 

R version 4.0.2 (Phillips, 2017; R, 2020). 

Sparse Testing Genomic Selection 

A PCA was performed for mean GY between all six ENVs in order to identify the relationship 

between ENVs using the Principal Components tool in JMP Pro 15.1.0 software (SAS Institute). 

Pearson correlation coefficients were also obtained between the mean GY of each ENV using the 

Multivariate Methods tool in JMP Pro 15.1.0 software (SAS Institute).  

The Cluster Variables procedure within the Principal Components tool was then used to 

identify the optimal clustering between ENVs by using a variable clustering algorithm in JMP 

Pro 15.1.0 software (SAS Institute). The algorithm started with all six ENVs in a single cluster, 

then they were split into separate clusters, based on their principal components, until new splits 

were no longer possible. At each iteration, the cluster with the second largest eigenvalue was 

chosen to be split into two new clusters. Member ENVs were assigned to new clusters based on 

the first two orthoblique rotated principal components of the cluster being split. After splitting, 

the other ENVs were examined and re-assigned to another cluster if it had a higher correlation 

with a different cluster. The clustering process was terminated once the second eigenvalue of all 

clusters was less than one (Anderberg, 2014; Sarle, 1990). After the analysis, two distinct 

clusters, each containing three ENVs, were identified. The first cluster, named Mega-

environment 1 (ME1), consisted of M17, K17, and M15, while the second cluster, named Mega-

environment 2 (ME2), consisted of K14, M14, and M16. 

Best linear unbiased predictions for GY were obtained for each Mega-environment using 

the two-stage model described above using PROC MIXED in SAS 9.4 software (SAS Institute). 
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Pearson correlation coefficients were then obtained between the GY BLUPs of each mega-

environment and the GY BLUPs calculated across all ENVs using the Multivariate Methods tool 

in JMP Pro 15.1.0 software (SAS Institute). Broad-sense heritability was also calculated for each 

mega-environment using the formula proposed by Cullis et al. (2006), as described above. 

A five-fold NGS cross-validation analysis was performed for GY in each individual ENV 

using the rrBLUP package within iPat, using source code from R v3.6.3 (C. P. J. Chen & Zhang, 

2018; Endelman, 2011; R, 2020). An NGS model and five different single-covariate sparse-

testing GS (CV2) models were compared for each ENV. The first and second models used 

adjusted means for GY from the other two ENVs from the same mega-environment as 

covariates. The third model used BLUPs for GY from the associated mega-environment, minus 

the ENV being tested, as a covariate. The fourth model used BLUPs for GY from all ENVs, 

minus the ENV being tested, as a covariate. The fifth model used BLUPs for GY from the 

opposing mega-environment as a covariate; for example, if the ENV of interest is in ME1, the 

covariate will be the BLUPs from ME2. The TP and VP sampling methods used for the five-fold 

cross-validation analysis was the same as the methods for the MVGS models. The GEBVs for 

the VP were compared to the actual phenotypic values for GY from the same ENV using a 

Pearson correlation in order to obtain a prediction accuracy. 

The mean prediction accuracies from the NGS model and five CV2 models were 

compared to determine if the STGS models significantly improved prediction accuracies 

compared to an NGS model for each ENV using a GLMM and Fisher’s LSD with an α of .05, 

implemented in PROC GLIMMIX in SAS 9.4 (SAS Institute Inc.). Figures comparing mean 

prediction accuracies between models were created using the yarrr package in R v4.0.2 (Phillips, 

2017; R, 2020). 
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RESULTS 

Genotypic Data 

The population used for this study was also used for Larkin et al. (2020). The primary 

differences were that fewer genotypes were included in the population and more SNP markers 

were used (Larkin et al., 2020). Genotyping by sequencing identified 73,618 bi-allelic SNP 

markers across the entire wheat genome after filtering. Between the three genomes, there was an 

uneven distribution, where the B genome had the largest number of SNP markers (38,086), 

followed by the A (27,382) and D (9,682) genomes, which was consistent with other studies of 

similar populations using GBS marker data (Arruda et al., 2016; Larkin et al., 2020). Out of the 

total genotypic dataset, 1,795 SNP markers were unaffiliated with any genome. The chromosome 

with the largest number of SNP markers was chromosome 2B (7,669), whereas chromosome 4D 

had the smallest number (665). The percentage heterozygosity for the dataset was 3.5%, whereas 

the average minor allele frequency was 19.6%. The allelic distributions were 25.8% for C, 25.2% 

for G, 23.0% for A, and 22.5% for T. 

 The PCA of the population identified two distinct clusters within the population. 

Genotypes between all four breeding programs appeared in both clusters, although there 

appeared to be some sub-clustering between individual breeding programs within the clusters. 

Such clustering has also been observed in other studies using SRWW populations adapted to the 

Southeastern US and it is hypothesized that this is due to the presence or absence of a stem rust 

(Puccinia graminis f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) resistance 

genes, Sr36/Pm6, located on a translocation from Triticum timopheevii Zhuk. (Benson, Brown-

Guedira, Murphy, & Sneller, 2012; Larkin et al., 2020; Nyquist, 1962; Sarinelli et al., 2019). The 
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population structure was generally low, where the first three principal components only 

accounted for 5.9, 5.0, and 3.5% of the total genetic variation (Figure 1). 

Multivariate Genomic Selection 

Phenotypic Data 

All five agronomic traits had significant variation within the population. Grain yield had a range 

between .10 and 9.54 t ha-1 across all six ENVs. Data for HD was collected all four years from 

MAR for a total of four ENVs, where there was a range between 79 and 129 Julian days after 1 

Jan. Data for MD was only collected during the 2014 (K14 and M14) and 2015 (M15) seasons 

for a total of three ENVs, where there was a range between 138 and 159 Julian days after 1 Jan. 

Data for PH was collected at all ENVs, excluding K17, where there was a range in PH between 

56.46 and 121.74 cm. The only trait, outside of GY, that was collected in all six ENVs was TW, 

where there was a range between 45.57 and 85.20 kg hl-1 (Table 1). 

 Significant phenotypic and genetic correlations were observed between all agronomic 

traits except for the correlations between HD and TW. Traits that had strong phenotypic 

correlations also had strong genetic correlations (Table 1). The highest heritability among the 

five agronomic traits was for HD (.94), followed by PH (.91), GY (.85), TW (.84), and MD (.67) 

(Table 1). Evaluating the population between three and six ENVs, depending on the trait, 

allowed for high heritability values. 

Model Comparisons 

Multiple MVGS models were compared with an NGS model using a five-fold cross-validation 

approach over 100 cycles to predict five agronomic traits. If a trait significantly improved 

predication accuracy compared to a NGS in a single-covariate model, the trait was further tested 
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in multiple-covariate models. The MVGS models significantly improved prediction accuracies 

for all five traits (Table 2, Figure 2). 

Maturity date saw the largest increase in prediction accuracy compared to the NGS model 

(r = .44) at 29.6%, where the single-covariate model using HD as a covariate, and the multiple-

covariate models using HD and TW as covariates were the top performing models (r = .73). Only 

two single-covariate models, HD and TW, significantly improved prediction accuracy, therefore 

there was only one multiple-covariate model containing HD and TW as covariates. Maturity date 

was also one of two traits of interest that had a single-covariate model as the top performing 

model, however it was not significantly better than the multiple-covariate model (Table 2, Figure 

2c). 

 The trait with the second largest increase in prediction accuracy with an MVGS model 

was TW, where there was a 25.0% increase between the NGS model (r = .36) and the multiple-

trait MVGS model containing GY, MD, and PH as covariates (r = .61). All single-covariate 

models, except for HD, had significantly higher prediction accuracies compared to the NGS 

model, therefore it was not included as a covariate in the multiple-covariate models. The top 

performing GY+MD+PH model performed significantly better than all other MVGS models as 

well. Test weight was the only trait of interest that had a MVGS model with more than two 

covariates (Table 2, Figure 2e). 

 Heading date had the third largest increase in prediction accuracy where there was a 

20.3% increase between the multiple-covariate MD+PH model (r = .80) and the NGS model (r = 

.60). The single-covariate models with GY and TW did not significantly improve prediction 

accuracy compared to the NGS model, therefore they were not included in the multiple-covariate 
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models. The only multiple-covariate model, MD+PH, was also significantly the top performing 

model (Table 2, Figure 2b). 

 Grain yield had the second lowest level of improvement in prediction accuracy between 

the single-covariate MVGS model, with TW as a covariate (r = .63), and the NGS model (r = 

.53) with a 10.2% increase. No single-covariate models significantly improved prediction 

accuracy for GY outside of the model with TW, therefore no multiple-covariate models were 

tested. Grain yield was the only trait of interest where a single-covariate model was significantly 

the top performing model (Table 2, Figure 2a). 

 The trait with the smallest level of improvement in prediction accuracy was PH, where 

the top performing model HD+TW (r = .80) had an 8.4% increase in prediction accuracy 

compared to the NGS model (r = .56). The single-covariate models with GY and MD did not 

significantly improve prediction accuracy compared to the NGS model, therefore they were not 

included as covariates in the multiple-covariate MVGS models. The only multiple-covariate 

model, HD+TW, was also significantly the top performing model (Table 2, Figure 2d). 

Sparse Testing Genomic Selection 

Environmental Clustering 

A PCA was performed for mean GY between all six ENVs in order to identify the relationship 

between ENVs. The analysis found that the six ENVs could be divided into two mega-

environments, each containing three ENVs (Appendix 3). The first mega-environment, ME1, 

consisted of K17, M15, and M17, while the second mega-environment, ME2, consisted of K14, 

M14, and M16. The first principal component in the analysis accounted for 38.5% of phenotypic 

variation in the population, while the second principal component accounted for 20.7% of 
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phenotypic variation. The first mega-environment accounted for 34.9% of the phenotypic 

variation, while ME2 accounted for 22.7% of the phenotypic variation. Overall, 57.7% of the 

phenotypic variation was explained by the clustering analysis. The most representative ENV for 

ME1 was M17, while the most representative ENV for ME2 was K14.  

Phenotypic Data 

Adjusted means of GY were obtained for all six individual ENVs to use as covariates for the 

CV2 GS models. These adjusted means were also used to obtain BLUPs for GY for three other 

types of covariate datasets. The first of these consisted of BLUPs calculated across five ENVs 

per covariate, including all ENVs except for the ENV of interest (All-ENV), for a total of six 

covariates. The second type of covariate dataset consisted of BLUPs for GY across the two other 

ENVs within the mega-environment from which the ENV of interest is associated (MEn-ENV), 

for a total of six covariates. The third type of covariate dataset contained BLUPs for GY 

obtained across all three ENVs for each mega-environment. These full mega-environment 

datasets were intended to be used as covariates for the opposite mega-environment. In total, 20 

different datasets were created for each type of covariate (Table 3). The covariate dataset with 

the highest mean GY was the individual ENV of M14 (4.88 t ha-1), while the covariate dataset 

with the lowest mean GY was the individual ENV of K14 (2.57 t ha-1). Between the two mega-

environments, ME2 had the highest mean GY (4.08 t ha-1) compared to ME1 (3.68 t ha-1). 

However, ME1 (H2 = .88) had a higher broad-sense heritability than ME2 (H2 = .66). The 

covariate dataset with the highest broad-sense heritability was the individual ENV of M17 (H2 = 

.89) while the dataset with the lowest broad-sense heritability was the individual ENV of M14 

(H2 = .42) (Table 3). 
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 Phenotypic correlations were also obtained between all six individual ENVs of interest 

and their respective covariate datasets (Table 4). Generally, individual ENVs from ME1 had 

stronger correlations with the other ENVs from ME1 as well as the covariate datasets containing 

all ENVs except for themselves. The three individual ENVs within ME1 even had significant 

correlations with the ME2 covariate dataset. The correlations between the individual ENVs in 

ME2 were not as strong as those from ME1. Keiser 2014 only shared a significant correlation 

with the ME2-K14 dataset, but did not have significant correlations between the other two ENVs 

individually. Marianna 2014 had significant correlations with M16, ME2-M14, and All-M14 

datasets. Marianna 2016 had the strongest correlations, where it was significantly correlated with 

all datasets affiliated with ME2, All-M16, and the ME1 dataset. There was also a significant 

correlation between ME1 and ME2 (r = .25). 

Model Comparisons  

Sparse testing GS (CV2) models, using GY data from other ENVs as covariates and GY data 

from only the ENV of interest in the TP, were compared to NGS models using GY from only the 

ENV of interest in the TP and no covariates using a five-fold cross-validation approach over 100 

cycles for six different ENVs.  

Between the three ME1 individual ENVs, CV2 models had significantly higher 

prediction accuracies than the NGS models. When ME2 was used as a covariate for all three 

ENVs, prediction accuracy was significantly decreased (Table 4, Figure 3). 

The ENV with the greatest increase in prediction accuracy with a CV2 model compared 

to an NGS model (r = .43) was K17, where the model using M17 as a covariate (r = .64) 

significantly improved prediction accuracy by 21%. All other CV2 models also significantly 
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improve prediction accuracy except for the model using ME2 as a covariate. The M17 covariate 

model was not significantly different than the model using ME1-K17 as a covariate (r = .63) 

(Table 4, Figure 3a). 

 The ENV from ME1 with the second largest increase in prediction accuracy was M15, 

where two models, M17 (r = .50) and ME1-M15 (r = .50), significantly improved prediction 

accuracy compared to the NGS model (r = .30) with a 20% increase. The two top performing 

models were not significantly better than the All-M15 model (r = .49) (Table 4, Fig. 3b). 

 Marianna 2017 had the smallest improvement in prediction accuracy compared to the 

NGS model (r = .55), where the top performing model ME1-M17 (r = .66) significantly 

improved prediction accuracy by 11%. Unlike the other two ENVs within ME1, not all ME1 

covariates significantly improved prediction accuracy for M17, where there was no change in 

prediction accuracy when M15 (r = .55) was used as a covariate (Table 4, Figure 3c). 

 The three ENVs in ME2 had far less improvement in prediction accuracy compared to the 

ENVs of ME1, where CV2 models only significantly improved prediction accuracy for K14 

(Table 4, Figure 3). The top performing CV2 model for K14 was the model using ME2-K14 as a 

covariate, where the model significantly improved prediction accuracy by 6% compared to the 

NGS model (Table 4, Figure 3d). The CV2 models actually reduced prediction accuracy for the 

other two ENVs in ME2 (Table 4, Figures 3e and 3f). 

DISCUSSION 

Genomic selection has proven to be a valuable tool within the wheat breeder’s toolbox, as shown 

in multiple studies throughout the past decade, for many different economically important traits 

(Heffner et al., 2009; Nicolas Heslot, Jannink, & Sorrells, 2015; Larkin et al., 2019; Sorrells, 
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2015). One of the primary goals of GS is to increase genetic gain for economically important 

traits within the breeding program by reducing the time within a breeding cycle and by 

increasing the accuracy of selection (Asoro et al., 2013; Bernardo & Yu, 2007; Heffner et al., 

2009; Rutkoski et al., 2015; Schaeffer, 2006). There are many methods that can be used to 

improve the prediction accuracy of GS models, among these is the type of GS model used 

(Heffner et al., 2009; N. Heslot et al., 2012). We chose to focus on how we could use MVGS 

models to improve prediction accuracy for agronomic traits in SRWW by including secondary 

traits or ENVs correlated with our traits or ENVs of interest as covariates, much like a selection 

index (Calus & Veerkamp, 2011; Jia & Jannink, 2012). 

Multivariate Genomic Selection for Agronomic Traits 

Our study found that the MVGS models significantly increased prediction accuracies for all five 

agronomic traits, suggesting that the use of highly correlated secondary traits as covariates can 

be effective for increasing selection accuracy in a wheat breeding program. Previous studies with 

MVGS models have also observed that, in general, stronger genetic correlations between the trait 

of interest and the secondary trait increased prediction accuracy (Jia & Jannink, 2012; Lozada & 

Carter, 2019; Schulthess et al., 2016; Ward et al., 2019). A simulation study found that when 

predicting a low heritability trait, stronger genetic correlations with a secondary trait increased 

prediction accuracy. However, when the predicted trait had a high heritability, there was not a 

significant change in prediction accuracy as the genetic correlation with the secondary trait 

increased (Jia & Jannink, 2012). A study of four resistance traits to sudden death syndrome in 

soybean [Glycine max (L.) Merr.] found that MVGS models did not significantly improve 

prediction accuracy for the four traits, due to the fact that the four traits were weakly correlated 

with each other, which we also observed between weakly correlated traits (Bao, Kurle, 
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Anderson, & Young, 2015). This was also a common observation with all five of our agronomic 

traits. In fact, we observed an increase in prediction accuracy for any genetic correlation 

exceeding .30, regardless if it was positive or negative. This is far less conservative than a 

simulation study that found that prediction accuracies increased only if genetic correlations 

exceeded .50 (Calus & Veerkamp, 2011).  

As with several different studies, we also found that the prediction accuracies for lower 

heritability traits could be improved through the use of higher heritability traits as covariates, and 

that the level of improvement in prediction accuracy increased as the heritability of the trait of 

interest decreased (Calus & Veerkamp, 2011; Guo et al., 2014; Jia & Jannink, 2012). However, 

unlike the results observed by Jia & Jannink (2012), we observed significant increases in 

prediction accuracy even when the predicted trait had a high heritability, particularly for GY, 

HD, PH, and TW. Regardless, our lowest heritability trait, MD, saw the largest gain in prediction 

accuracy compared to the other four traits. 

Prior MVGS studies related to agronomic traits in wheat have primarily focused on GY 

as the trait of interest, while they have used high-throughput phenotyping traits, such as NDVI 

and canopy temperature as model covariates (Crain et al., 2018; Lozada & Carter, 2019; 

Rutkoski et al., 2016; Sun et al., 2017). These studies observed similar results to ours, in that the 

inclusion of these high-throughput phenotyping traits significantly improved prediction accuracy 

for GY compared to NGS models, especially when strong genetic correlations were observed 

between the secondary traits and GY. Two studies actually observed increases in prediction 

accuracy of up to 70% through the use of MVGS models compared to NGS models for GY 

(Rutkoski et al., 2016; Sun et al., 2017). Another study found increases in prediction accuracy for 

GY in low heritability datasets by 43 to 64% by including NDVI and normalized water index as 
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covariates. These were also conditional on a strong genetic correlation between the secondary 

traits and GY (Lozada & Carter, 2019). These large improvements were not always observed, 

however, as another study did not see as large of an improvement in prediction accuracy between 

NGS models and MVGS models when using NDVI and canopy temperature as covariates, where 

MVGS models improved prediction accuracy by only 7% at most and in some cases reduced 

prediction accuracy by as much as 33%, with an average increase in prediction accuracy of r = 

.14 compared to the NGS model (Crain et al., 2018). 

Our study was unique in that, in addition to GY, we also focused on four other 

economically important traits that are typically collected throughout the growing season within a 

wheat breeding program. Since these traits can influence GY, it was worth investigating their 

influence on prediction accuracy for GY, as well as the other traits of interest, as covariates in 

MVGS models (X. J. Chen et al., 2012; Liu et al., 2015; Tshikunde et al., 2019). 

Sparse Testing Genomic Selection for Grain Yield 

Our study found that four out of our six ENVs of interest had significantly higher prediction 

accuracies for GY with models using GY data from correlated ENVs as covariates compared to 

NGS models without covariates. The cross-validation method using data from correlated ENVs 

in order to predict the performance of genotypes from a missing ENV is known as the CV2 

method (Burgueno et al., 2012). Our procedure assumed that our TP had been grown in the ENV 

of interest, so unlike the traditional CV2 method, we only used data from the ENV of interest as 

phenotypic data for the TP, then we used phenotypic data from a closely related ENV, mega-

ENV, or all other ENVs as a model covariate.  
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 Much like the abovementioned MVGS models, we found that there was a greater increase 

in prediction accuracy when the covariate ENV dataset had a stronger correlation with the ENV 

of interest, as reflected in other MVGS studies (Calus & Veerkamp, 2011; Jia & Jannink, 2012). 

This was consistently evident in all three ENVs within ME1, where the top CV2 models also had 

the strongest correlations.  

Unlike ME1, ME2 had results that were less consistent. There were significant 

correlations between M16 and all of its associated covariates, however, none of the CV2 models 

significantly improved prediction accuracies compared to the NGS model. There were also no 

CV2 models that significantly improved prediction accuracy for GY in M14 either, in fact they 

actually reduced prediction accuracy. The only ENV in ME2 that saw a significant increase in 

prediction accuracy due to the use of CV2 models was K14, where the models with M14, M16, 

and ME2-K14 covariates significantly improved prediction accuracy, this was in spite of the low 

correlations between the ENV of interest and the covariates. One explanation for the 

inconsistency in ME2 could come from the clustering algorithm itself. The ENVs in ME1 were 

strongly associated with each other, whereas the ENVs in ME2 were more loosely associated, 

where there was a smaller proportion of variation explained by the cluster compared to that of 

ME1. It is also notable that K14 was the most representative ENV for ME2, which could explain 

why K14 benefitted the most from the CV2 models compared to the other two ENVs in ME2. 

Overall, our results are comparable to other studies where multi-environment models 

using the CV2 method outperformed the CV1 method, where the performance of newly 

developed lines is predicted with no prior testing data. The CV1 method was otherwise referred 

to as the NGS model in our study. One study found that models using the CV2 method 

outperformed models using the CV1 method when using pedigree information (.42 vs. .56), 
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marker data (.47 vs. .56), or both (.49 vs. .59) (Burgueno et al., 2012). Maximum prediction 

accuracies were also observed with the CV2 method in chickpea when compared with the CV1 

method and CV0 method, where all lines are predicted for one ENV between nine ENVs and 13 

models (Roorkiwal et al., 2018). Prediction accuracies were also higher for models using the 

CV2 method compared to the CV1 method when comparing seven models across five ENVs in 

Mexico (Saint Pierre et al., 2016). 

CONCLUSIONS 

Since plant breeders phenotype for many traits throughout the growing season, it makes sense 

that some of these traits would be genetically correlated with each other. Therefore, some of 

these traits that are collected earlier in the growing season could be used to improve the 

prediction accuracy of later season traits as part of MVGS models. Our study found that MVGS 

models significantly improved the prediction accuracy of five different agronomic traits of 

interest when the secondary traits used as covariates had strong genetic correlations with the 

predicted trait of interest. We also found that the percent increase in prediction accuracy between 

an NGS model and the top performing MVGS model increase as the heritability of the trait of 

interest decreased. This indicates that MVGS can be successfully used when breeding for 

agronomic traits. Before implementing MVGS in their breeding programs, breeders must 

consider the genetic correlations between their traits as well as the heritability of their traits as 

results can vary across populations. Breeders must also be careful not to unintentionally select 

for undesirable traits if they have strong genetic correlations with a trait of interest. An example 

would be unintentionally selecting for taller plants while using PH as a covariate to predict TW, 

as both traits are positively correlated. 
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 This study also found that the use of MVGS models for a CV2 cross-validation scheme 

significantly improved the prediction accuracy of GY for individual ENVs when the GY data 

from a covariate ENV was strongly correlated with the individual ENV of interest. This can 

especially be helpful when predicting the performance of breeding lines in new ENVs, especially 

when those breeding lines have been grown in similar ENVs. When implementing this form of 

CV2 cross-validation, breeders must still consider the genetic relationships between the TP and 

VP while also considering the similarity between ENVs within their breeding program.  
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Table 1. Descriptive statistics, Pearson phenotypic correlations (bottom half), genetic correlations (top half), and broad-sense 

heritabilities (H2) for adjusted means for 351 soft red winter wheat genotypes for five agronomic traits. 

Trait 

 

Environmentsa Descriptive Statistics H2b Correlations 

Mean Min. Max. Range SD GYc HDd MDe PHf TWg 

GY K14, K17, M14, M15, 

M16, M17 

3.4 .1 9.5 9.4 1.1 .85 - -.08ns† -.16** -.12* .63*** 

HD M14, M15, M16, M17 105.8 79.1 129.0 49.9 13.7 .94 -.17*** - .80*** .30*** -.14** 

MD K14, M14, M15 149.7 138.2 159.0 20.8 4.2 .67 -.11* .69*** - .15** -

.33*** 

PH K14, M14, M15, M16, 

M17 

90.4 56.5 121.7 65.3 10.0 .91 -.14** .35*** .19*** - .31*** 

TW K14, K17, M14, M15, 

M16, M17 

73.1 45.6 85.2 39.8 4.0 .84 .43*** -.10ns† -.20*** .22*** - 

a Environments where data for each trait were collected: K14, Keiser 2014; K17, Keiser 2017; M14, Marianna 2014; M15, Marianna 

2015; M16, Marianna 2016; M17, Marianna 2017. 
b Broad-sense heritability (H2) for unbalanced, multi-environmental experimental designs calculated using the formula proposed 

in Cullis et al. (2006) for each of the five agronomic traits. 
c Grain yield (GY) was recorded in t ha-1. 
d Heading date (HD) was recorded in Julian days after 1 Jan, when 50% of the heads were 50% emerged from the flag leaf. 
e Maturity date (MD) was recorded in Julian days after 1 Jan, when an estimated 90% of culms in an individual plot were senesced 

or yellow. 
f Plant height (PH) was recorded in cm from the surface of the soil to the tip of the head. 
g Test weight (TW) was recorded in kg hl-1. 

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level. †ns, 

nonsignificant at the .05 probability level. 
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Table 2. A comparison of mean prediction accuracies between multivariate genomic 

selection (MVGS) models and naïve genomic selection (NGS) for five agronomic traits in 

soft red winter wheat, including grain yield (GY), heading date (HD), maturity date (MD), 

plant height (PH), and test weight (TW). 

Trait Covariate(s)a PA 

GY TW .63ab 

NGS .53b 

HD .53b 

PH .53b 

MD .53b 

HD MD+PH .80a 

MD .79b 

PH .63c 

TW .61d 

GY .60d 

NGS .60d 

PH HD+TW .65a 

HD .60b 

TW .60b 

MD .57c 

NGS .56cd 

GY .56d 

TW GY+PH+MD .61a 

GY+PH .58b 

GY+MD .54c 

GY .52d 

PH+MD .47e 

PH .44f 

MD .38g 

HD .36h 

NGS .36h 

MD HD+TW .73a 

HD .73a 

TW .45b 

PH .44c 

NGS .44cd 

GY .43d 
a Covariates used as fixed effects in the MVGS models. Covariates listed with (+) indicate a 
model with more than one covariate. 
b Mean prediction accuracies of each model not sharing any letter are significantly different 
based on Fisher’s LSD separation at the 5% level of significance. 
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Table 3. Descriptive Statistics and broad-sense heritabilities (H2) for grain yield (GY) of 

covariates used in multivariate, sparse-testing genomic selection (GS) models. 

Covariatea Environmentsb Descriptive Statistics H2c 

Mean Min. Max. Range SD 

All-K17 M15, M17, K14, M14, M16 4.17 .65 9.54 8.89 1.02 .77 

All-M15 K17, M17, K14, M14, M16 3.81 .10 9.54 9.44 1.16 .79 

All-M17 K17, M15, K14, M14, M16 3.73 .10 9.54 9.44 1.20 .74 

All-K14 K17, M15, M17, M14, M16 4.03 .10 9.54 9.44 1.09 .82 

All-M14 K17, M15, M17, K14, M16 3.72 .10 9.54 9.44 1.12 .82 

All-M16 K17, M15, M17, K14, M14 3.70 .10 7.33 7.23 1.15 .83 

ME1 K17, M15, M17 3.68 .10 6.11 6.01 1.09 .88 

ME1-K17 M15, M17  4.30 .84 6.11 5.26 .78 .80 

ME1-M15 K17, M17  3.54 .10 6.11 6.01 1.09 .88 

ME1-M17 K17, M15 3.25 .10 5.62 5.52 1.08 .75 

ME2 K14, M14, M16 4.08 .65 9.54 8.89 1.17 .66 

ME2-K14 M14, M16 4.60 .86 9.54 8.68 .83 .62 

ME2-M14 K14, M16 3.78 .65 9.54 8.89 1.18 .62 

ME2-M16 K14, M14 3.75 .65 7.33 6.68 1.29 .65 

K17 - 2.72 .10 4.33 4.23 .74 .80 

M15 - 4.23 .84 5.62 4.77 .90 .58 

M17 - 4.33 1.25 6.11 4.86 .71 .89 

K14 - 2.57 .65 4.01 3.36 .47 .73 

M14 - 4.88 3.58 7.33 3.75 .55 .42 

M16 - 4.42 .86 9.54 8.68 .90 .43 
a Covariates used for multivariate, sparse-testing GS models. The first six covariates 
consist of adjusted means for GY (t ha-1) across all environments, except for the 
environment of interest. The next eight covariates consist of adjusted means from two 
mega-environments (ME1 and ME2), ME1 and ME2 include all three environments 
within each mega-environment (ME) and they are followed by each ME minus the 
environment of interest. The last six covariates are individual environments. 
b Environments within each covariate: K14, Keiser 2014; K17, Keiser 2017; M14, 
Marianna 2014; M15, Marianna 2015; M16, Marianna 2016; M17, Marianna 2017. 
c Broad-sense heritability (H2) for unbalanced, multi-environmental experimental 
designs calculated using the formula proposed in Cullis et al. (2006) for each covariate 
consisting of multiple environments. Broad-sense heritabilities for individual 
environments were calculated on a plot-mean basis. 
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Table 4. Mean prediction accuracies obtained from multivariate, sparse testing (CV2) 

genomic selection (GS) models. An environment (ENV) of interest provides grain yield 

(GY) data from the training population and adjusted means for GY from all ENVs, a 

mega-environment (ME), or individual ENV, excluding the ENV of interest are used as 

covariates. Pearson correlations between GY for the ENV of interest and covariates were 

also obtained. 

Environmenta Covariateb PAc Correlationsd 

All - .54 - 

ME1 ME2 .53ae .25*** 

- .53a - 

ME2 ME1 .34a .25** 

- .33a - 

K17 M17 .64a .63*** 

ME1-K17 .63a .62*** 

All-K17 .55b .48*** 

M15 .45c .42*** 

- .43d - 

ME2  .15e .19*** 

M15 M17 .50a .52*** 

ME1-M15 .50a .52*** 

All-M15 .49a .51*** 

K17 .40b .42*** 

- .30c - 

ME2 .24d .24*** 

M17 ME1-M17 .66a .66*** 

K17 .62b .63*** 

All-M17 .59c .55*** 

- .55d - 

M15 .55d .52*** 

ME2 .18e .24*** 

K14 ME2-K14 .20a .20** 

M14 .18b .14ns† 

M16 .16b .17ns 

- .14c - 

All-K14 .13c .11ns 

ME1 .02d -.02ns 

M14 - .43a - 

ME2-M14 .27b .19* 

All-M14 .26b .18* 

M16 .21c .16* 

K14 .20c .14ns 

ME1 -.10d .10ns 

M16 - .30a - 
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Table 4 (Cont.) 

  

Environmenta Covariateb PAc Correlationsd 

M16 All-M16 .30a .30*** 

ME2-M16 .28b .21** 

ME1 .27bc .28*** 

M14 .26c .17* 

K14 .18d .20* 
a The ENV of interest is the source of GY data for the training population. The CV2 GS 
models predicted genome-estimated breeding values (GEBVs) for GY for both mega-
environments and all six ENVs of interest:  All, consists of all ENVs; ME1, mega-
environment 1; mega-environment 2; K14, Keiser 2014; K17, Keiser 2017; M14, Marianna 
2014; M15, Marianna 2015; M16, Marianna 2016; M17, Marianna 2017. 
b The covariate used for the CV2 GS models. 
c Prediction accuracy calculated as the Pearson correlation (r) between the GY and GEBVs 
calculated for the genotypes in the validation population using the CV2 GS models. 
d Pearson correlations between the GY of the ENVs of interest and the covariates used for the 
CV2 GS models. 
e Mean prediction accuracies of each model not sharing any letter are significantly different 
based on Fisher’s LSD separation at the 5% level of significance. 

*Significant at the .05 probability level. **Significant at the .01 probability level. 
***Significant at the .001 probability level. †ns, nonsignificant at the .05 probability level. 
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Figure 1. Population structure of 351 soft red winter wheat genotypes using 73,618 single 
nucleotide polymorphisms (SNPs). Colors represent the origin of the genotypes. AR, developed 
at the University of Arkansas, Fayetteville; GA, developed at the University of Georgia, Athens; 
LA, developed at Louisiana State University, Baton Rouge; NC, developed at North Carolina 
State University, Raleigh; PC, principal component.  
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Figure 2. Pirate plots comparing the mean prediction accuracies between multivariate genomic 
selection (MVGS) models with a naïve genomic selection model (NGS) for five agronomic traits 
in soft red winter wheat: (A) grain yield (GY), (B) heading date (HD), (C) maturity date (MD), 
(D) plant height (PH), (E) and test weight (TW). The x axis represents the combination of 
covariates used for each model, including each of the agronomic traits. The y axis represents the 
mean prediction accuracy across 100 iterations of fivefold cross-validation in the form of a 
Pearson correlation coefficient (r) between the predicted genome estimated breeding value 
(GEBV) and the actual phenotypic value for the validation populations. Individual points 
represent the Pearson correlation from each fold of each iteration of cross-validation for a total of 
500 datapoints. The lines within each plot represent the mean and 95% confidence intervals for 
prediction accuracy. The curves represent the smoothed densities of the data.  
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Figure 3. Pirate plots comparing the mean prediction accuracies between multivariate, sparse 
testing (CV2) genomic selection (GS) models, using grain yield (GY) data from other 
environments as covariates, with a naïve genomic selection model (NGS) to predict GY for six 
environments (ENVs) of interest within two mega-environments. Mega-environment 1 (ME1) 
consists of: (A) Keiser 2017 (K17), (B) Marianna 2015 (M15), and (C) Marianna 2017 (M17). 
Mega-environment 2 (ME2) consists of: (D) Keiser 2014 (K14), Marianna 2014 (M14), and 
Marianna 2016 (M16). The adjusted means for GY from the ENV of interest is used as data for 
the training population. The x axis represents the ENV covariates used in each model. The y axis 
represents the mean prediction accuracy across 100 iterations of fivefold cross-validation in the 
form of a Pearson correlation coefficient (r) between the predicted genome estimated breeding 
value (GEBV) and the actual phenotypic value for the validation populations. Individual points 
represent the Pearson correlation from each fold of each iteration of cross-validation for a total of 
500 datapoints. The lines within each plot represent the mean and 95% confidence intervals for 
prediction accuracy. The curves represent the smoothed densities of the data. 
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CHAPTER IV 

PREDICTING THE PERFORMANCE OF OBSERVATION TRIALS IN A SOFT RED 

WINTER WHEAT BREEDING PROGRAM WITH GENOMIC SELECTION 

  



 

164 

 

ABSTRACT 

Many studies have evaluated the effectiveness of genomic selection (GS) using cross-validation 

within training populations (TPs), however few have looked at its implementation and 

performance over multiple generations within a breeding program. The objectives for this study 

were to compare the performance of naïve GS (NGS) and multivariate GS (MVGS) models by 

predicting the performance of three years of F4:6 breeding lines for grain yield (GY) in soft red 

winter wheat and comparing the predictions with actual phenotypic performance over three years 

of selection. We also compared the performance of NGS and MVGS models when predicting 

three Fusarium head blight resistance traits, deoxynivalenol (DON) accumulation, Fusarium 

damaged kernels (FDK), and severity (SEV) for two years of F4:7 breeding lines and comparing 

predictions with phenotypic results across two years of selection. For GY, the MVGS model was 

comparable to phenotypic selection in terms of response to selection (t = 2.14, p = .058). The 

MVGS model also had a higher selection accuracy for elite breeding lines during two of the three 

breeding cycles for GY and both cycles for DON and at least one cycle for FDK and SEV, 

compared to phenotypic selection. On average, the MVGS model also had higher prediction 

accuracies for GY, DON, FDK, and SEV across breeding cycles compared to the NGS model. 

This shows that MVGS can be successfully implemented in a wheat breeding program over 

multiple breeding cycles and can be effective alongside phenotypic selection for economically 

important traits.  
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INTRODUCTION 

Wheat (Triticum aestivum L.) is one of the most important cereal crops in the world accounting 

for over 20% of caloric and protein intake for humans, globally (Ray, Mueller, West, & Foley, 

2013) With a global population that is expected to increase to over 9.7 billion people by 2050, it 

is increasingly important that both public and private wheat breeders increase the genetic gain for 

grain yield (GY) and other economically important traits within their breeding programs. In 

addition to GY, resistance to the disease Fusarium head blight (FHB) is incredibly important, 

particularly in the Southeastern US. Fusarium head blight is a fungal disease caused by the 

Fusarium graminearum pathogen and incurs nearly US$4.2 in losses annually (Wilson, McKee, 

Nganje, Dahl, & Bangsund, 2017). The F. graminearum pathogen produces the mycotoxin 

deoxynivalenol (DON), which is harmful for humans and animals that consume infected grain 

(Safety & Compliance, 2010; Sobrova et al., 2010). 

Traditionally, wheat breeders have primarily relied on phenotypic selection within their 

breeding programs in order to advance breeding material. However, phenotypic selection has its 

limitations, especially with low-heritability traits of interest that are difficult to phenotype. 

Difficulties with phenotyping are also compounded by genotype x environment interactions that 

can complicate phenotyping by masking the expression of certain traits, reducing the accuracy of 

selections. Alternatives to phenotypic selection include marker assisted selection (MAS) and 

genomic selection (GS). Marker assisted selection can be effective for qualitative traits 

controlled by one or two genes or quantitative traits that are controlled by large-effect 

quantitative trait loci (QTL) (Xu & Crouch, 2008). However, MAS is less effective for complex 

quantitative traits controlled by many small effect QTL (Bernardo & Yu, 2007; Heffner, Sorrells, 

& Jannink, 2009). Genomic selection is an effective alternative to both phenotypic selection and 
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MAS, in that it incorporates allelic effects across the entire genome, making it ideal for highly 

quantitative traits. Genomic selection can also reduce the time within a breeding selection, where 

two rounds of GS can be performed compared to one cycle of phenotypic selection allowing for 

greater genetic gain over time (Asoro et al., 2013; Bernardo & Yu, 2007; Heffner et al., 2009; 

Rutkoski et al., 2015).  

Genomic selection was first applied to animal breeding, particularly in the dairy industry, 

but it has since been adapted by plant breeders over the last decade (Heffner et al., 2009; 

Meuwissen, Hayes, & Goddard, 2001). Genomic selection uses a training population (TP), which 

is a panel of genotypes that have been phenotyped for a trait of interest and also genotyped using 

whole-genome sequencing, in order to train a genomic prediction model. The genomic prediction 

model is then used to assign allelic effects to markers throughout the genome in order to 

calculate genome-estimated breeding values (GEBVs) for breeding lines, otherwise known as the 

validation population (VP), that have only been genotyped. The breeder can then make selections 

based on the GEBVs for a trait of interest (Meuwissen et al., 2001). 

Most studies involving GS have focused on increasing prediction accuracy by 

manipulation and cross-validation of the TP (Akdemir, Sanchez, & Jannink, 2015; Combs & 

Bernardo, 2013; Habier, Fernando, & Dekkers, 2007; Heffner et al., 2009; Isidro et al., 2015; 

Jannink, Lorenz, & Iwata, 2010; Larkin, Lozada, & Mason, 2019). Many have also investigated 

the genomic prediction model used for GS analysis (Heslot, Yang, Sorrells, & Jannink, 2012). 

While these methods are valuable, few have researched the effectiveness of applying GS in 

breeding programs for forward prediction of breeding lines (Bernardo, 2016). However, when 

investigated, many have seen mixed results regarding prediction accuracy of forward prediction, 

compared to the prediction accuracy of TPs (Asoro et al., 2013; Belamkar et al., 2018; Calvert, 
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Evers, Wang, Fritz, & Poland, 2020; Combs & Bernardo, 2013; Massman, Jung, & Bernardo, 

2013; Michel et al., 2017).  

In an evaluation of GS in the Kansas State University wheat breeding program, GS was 

used to predict GY in a TP where the prediction accuracy was between r = .31 and r = .47. 

However, when the TP was used for forward prediction, the highest prediction accuracy between 

the GEBVs for GY in the preliminary yield trials (PYTs) and the actual phenotypic results for 

GY was r = -.16 (Calvert et al., 2020). This trend was also observed in an evaluation of the 

University of Nebraska wheat breeding program, where GY data from PYTs from three years 

were used to predict the performance of a fourth year. When no lines for the fourth year were 

included in the TP, prediction accuracies for GY were between r = .22 and r = .26. However, as 

more lines from the fourth year were included in the TP, the prediction accuracy of GY for the 

fourth year increased to between r = .37 and r = .52, when 90% of the lines from the fourth year 

were included in the TP (Belamkar et al., 2018). Phenotypic selection and GS were also 

compared in terms of selection accuracy between the PYT and advanced yield trial generations. 

Genomic selection outperformed phenotypic selection during the 2012 and 2015 seasons, where 

Nebraska experienced severe drought and disease stress. Even still, prediction accuracies were 

low, indicating that prediction accuracy is not the best indicator of GS success for forward 

prediction (Belamkar et al., 2018). Another study using forward prediction for GY in wheat 

adapted to central Europe found that the use of GS (r = .39) to select high performing lines for 

multiple-environment trials was far better than phenotypic selection (r = .21) (Michel et al., 

2017).  

 In addition to traditional GS, some have started to research the efficacy of multivariate 

GS (MVGS). Multivariate GS uses mixed models that incorporate secondary traits that are 
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genetically correlated with a trait of interest as covariates in order to improve the prediction 

accuracy for the trait of interest (Calus & Veerkamp, 2011; Covarrubias-Pazaran et al., 2018; Y. 

Jia & Jannink, 2012). Additionally, MVGS can improve prediction accuracies for low-

heritability traits when, high-heritability secondary traits are used as covariates (Calus & 

Veerkamp, 2011; Guo et al., 2014; H. Y. Jia et al., 2018). Many studies have evaluated MVGS 

models for cross-validation, particularly for GY in wheat using high-throughput phenotyping 

traits (Crain, Mondal, Rutkoski, Singh, & Poland, 2018; Dennis N. Lozada & Carter, 2019; 

Rutkoski et al., 2016; Sun et al., 2017). Others have evaluated resistance traits related to FHB in 

wheat using traits such as heading date (HD), plant height (PH), or other FHB resistance traits 

(Larkin et al., 2020; Moreno-Amores, Michel, Miedaner, Longin, & Buerstmayr, 2020; Rutkoski 

et al., 2012; Schulthess, Zhao, Longin, & Reif, 2018; Steiner et al., 2019). Few have evaluated 

the use of multivariate GS (MVGS) for forward prediction. However, one study used high-

throughput phenotyping traits as a covariate in a MVGS model for forward prediction of GY in 

wheat, however the prediction accuracy was unfavorable unless a large TP was used  (Calvert et 

al., 2020). Therefore, our aim is to validate the use of MVGS models compared to naïve GS 

(NGS) without covariates using secondary traits regularly collected throughout the season within 

a breeding program. 

 The University of Arkansas soft red winter wheat (SRWW) breeding program makes 

over 800 unique crosses per year. Progeny are then tested over the following 10 seasons in order 

to release a cultivar (Mason et al., 2018). The F1 progeny are grown in headrows, bulk harvested, 

and planted into F2 plots, where 50 heads are selected based on disease resistance, PH, HD, and 

agronomic performance. The 50 F2 heads are then bulked and planted into F3 plots where they 

are again evaluated for the aforementioned traits. Fifty heads are again selected per bulk and 
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planted into individual F3:4 headrows where rows were selected based on agronomic 

performance, HD, PH, and disease resistance. Eight heads are then collected from selected 

headrows and four heads from each selected F3:4 headrow are planted as F4:5 headrows at two 

locations. The F4:5 headrows are then evaluated and selected based on agronomic performance, 

HD, PH, and disease resistance and whole rows are bulk harvested and planted into F4:6 yield 

plots in the Wheat Observation nursery (WO) in one location in an unreplicated augmented 

design with replicated check cultivars. Breeding lines in the WO nursery are genotyped using 

genotyping by sequencing (GBS) and Kompetitive allele specific polymerase chain reaction 

(PCR) (KASP) markers associated with major genes associated with PH, vernalization, 

photoperiod, and disease resistance. The WO nursery is also evaluated for the abovementioned 

traits and harvested for GY and test weight (TW). The Arkansas Advanced yield trial (ADV; 

F4:7) is the first multiple environment yield trial, planted into yield plots at five locations and 

replicated twice per location in a randomized complete block design (RCBD) with replicated 

check cultivars. Breeding lines selected from the ADV yield trials are then advanced to the 

Arkansas Elite yield trials (ARE; F4:8-F4:11) where they are grown at five locations in a RCBD 

with four replications per location over three years. Few elite lines are also grown in regional 

statewide variety testing trials, as well as the USDA-ARS Uniform Eastern (UE) and Southern 

nurseries (US), Southeastern University Grains (Sungrains) cooperative nurseries, and 

foundation seed increases. The UE and US nurseries include approximately 36 elite breeding 

lines from public and private SRWW breeding programs in the Southern and Eastern US, grown 

between 22 and 36 locations with between one and three replications per location annually 

(Boyles, Marshall, & Bockelman, 2019). The Sungrains cooperative consists of Southeastern US 

SRWW breeding programs that performs regional testing within the Southeastern US (Boyles et 
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al., 2019; Harrison et al., 2017; Johnson et al., 2017; Mason et al., 2018). Select breeding lines 

from the WO, ADV, and ARE are grown in these regional Sungrains nurseries. The F2, F3:4, WO, 

ADV, and ARE breeding lines are also tested in an inoculated stripe rust nursery at one location, 

unreplicated for the F2, F3:4, and WO breeding lines and in a RCBD with two replications at a 

single location for the ADV and ARE breeding lines. The F4:5, WO, ADV, and ARE breeding 

lines are also tested in an inoculated FHB nursery, unreplicated at one location for the F4:5 and 

WO breeding lines and two replications at two locations for the ADV and ARE breeding lines. 

 The ADV and ARE allow for more accurate phenotypic selections for GY due to the 

greater number of locations and replication. However, selection at the WO generation is less 

accurate as it is unreplicated and only grown at one environment. In theory, GS can help to 

improve selection accuracy in the early generations of the breeding program for GY and FHB 

resistance traits. In this study, we wanted to evaluate the selection accuracy of GS from the WO 

through ARE generations compared to phenotypic selection through forward prediction using 

NGS and MVGS models. The three goals for this study were to: (1) compare NGS and MVGS 

with phenotypic selection for GY and three FHB resistance traits, including DON accumulation, 

Fusarium damaged kernels (FDK), and severity (SEV) for new breeding lines that have not been 

phenotyped at the WO and ADV generations; (2) compare the selection accuracy between NGS, 

MVGS, and phenotypic selection between the ADV and ARE generations of the University of 

Arkansas SRWW breeding program; and (3) compare the response to selection between NGS, 

MVGS, and phenotypic selection between the ADV and ARE generations of the University of 

Arkansas SRWW breeding program. 

 

 



 

171 

 

MATERIALS AND METHODS 

Plant Materials 

Breeding Materials 

In order to predict GY, three generations of the WO nurseries, from the 2016-2017 through 

2018-2019 growing seasons, were used as VPs for this study, consisting of F4:6 breeding lines 

from the University of Arkansas wheat breeding program and affiliated breeding programs 

within the Sungrains cooperative and doubled haploid (DH) lines developed through the 

Sungrains cooperative. A doubled haploid WO population was also grown during the 2018-2019 

season (DHWO19). Whereas, two generations of the ADV trials, 2017-2018 and 2018-2019, 

consisting of F4:7 breeding lines from the University of Arkansas wheat breeding program and 

DH lines developed through the Sungrains cooperative, were used as VPs to predict three FHB 

traits, DON, FDK, and SEV since FHB data were not collected for the WO populations. 

Approximately 75% of the WO17 and WO18 breeding lines were advanced to the ADV yield 

trials in the following 2017-2018 (ADV18) and 2018-2019 (ADV19) growing seasons, while 

approximately 33% of the WO19 breeding lines were advanced to the ADV20 yield trial. 

Subsequently, 20% of breeding lines from the ADV18 and ADV19 yield trials were selected and 

advanced to the ARE19 and ARE20 yield trials for the 2018-2019 and 2019-2020 growing 

seasons, respectively. Genotypes were advance based on both GS and phenotypic selection 

(Table 1). 

Training Populations 

A population of 355 SRWW genotypes were used as the initial 2017 TP (TP17) for this study in 

order to predict GEBVs for GY in the WO17 nursery and GEBVs for DON, FDK, and SEV in 
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the ADV18 trial (TP18_FHB). The population consisted 187 genotypes from the University of 

Arkansas, 87 from Louisiana State University, 40 from North Carolina State University, 38 from 

the University of Georgia, and one genotype each from Syngenta AG, Pioneer Hi-Bred 

International, Inc., and Virginia Polytechnic Institute and State University (Larkin et al., 2020). 

 The 2018 TP (TP18) for GY consisted of the 355 genotypes from TP17 as well as the 140 

breeding lines from WO17 nursery. The 2019 TP (TP19) for GY also consisted of the 355 

genotypes from TP17 as well as the 140 genotypes from WO17, data from the 104 genotypes 

advanced to the ADV18 yield trial, and the 160 genotypes from WO18. The 2019 TP 

(TP19_FHB) for the three FHB traits consisted of the 355 genotypes from TP18_FHB, as well as 

the 104 genotypes from the ADV18 trial (Table 2).  

Experimental Design and Trait Measurements 

Winter wheat is planted during the fall and harvested during the late spring in the southern U.S., 

therefore the growing season spans two years. The TP18_FHB genotypes were evaluated for 

three FHB resistance traits, including DON, FDK, and SEV, over four seasons between 2014 and 

2017 at two locations, at the Milo J. Shult Agricultural Research and Extension Center in 

Fayetteville, AR, USA (FAY) and the Newport Research and Extension Center near Newport, 

AR, USA (NPT). The data collection and experimental design methods were outlined in Larkin 

et al. (2020), as TP18_FHB was the same population used in their study. 

 Data were also collected for three agronomic traits including GY, TW, and HD in the 

TP17 population. The first 175 entries of the population were evaluated at the Lon Cotton 

Research Station near Marianna, AR, USA (MAR) and the Northeast Research and Extension 

Center near Keiser, AR, USA (KSR) during the 2013-2014 growing season (M14 and K14), 
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while the remaining 180 entries were evaluated at MAR during the 2014-2015 growing season 

(M15). All entries of TP17 were evaluated at MAR during 2015-2016 growing season (M16) and 

at both locations during the 2016-2017 growing season (M17 and K17). 

Genotypes were drill seeded at a rate of 118 kg ha-1 to establish seven row plots that were 

6 m long and 1 m wide with 18 cm between rows. The plots were then end-trimmed in the 

spring. Plots were managed according to the recommendations for wheat in Arkansas (Kelley, 

2018). Each year, plots in MAR received two applications of urea fertilizer of 101 kg ha-1 and 67 

kg ha-1, along with 27 kg ha-1 of ammonium sulfate fertilizer. Plots in KSR received two 

applications of 78 kg ha-1 of urea fertilizer per year. A combination of herbicides, including 

Axial XL (Syngenta AG), Finesse (DuPont de Nemours), Harmony Extra (DuPont de Nemours, 

Inc.), Osprey (Bayer AG), and Prowl H2O (BASF SE), were used each year for weed control. 

The M14 and M15 ENVs were planted in an unbalanced randomized complete block 

design (RCBD) with two replications with repeated checks. In M14, the first replication 

consisted of 175 genotypes, while the second replication consisted of the first 117 genotypes 

from the first replication, while in M15, the first replication consisted of 177 genotypes, while 

the second replication consisted of the first 120 genotypes from the first replication. The K14, 

M16, M17, and M17 ENVs were planted in an unreplicated augmented design with repeated 

checks. During the 2013-2014 growing season, the repeated checks were ‘Branson’ (PI 639227), 

‘Croplan Genetics 514W’, ‘Jamestown’ (PI 653751), ‘Pioneer 26R20’ (PI 658150), ‘Armor 

Ricochet’, ‘Shirley’ (PI 656753), ‘SS 8461’, and ‘UniSouth Genetics 3120’ (PI 672163). The 

2014-2015 growing season used the same eight checks, with the addition of ‘SY Harrison’ (PI 

664946), ‘Pioneer 26R41’, and ‘Pat’ (PI 631466). Only four checks, Branson, Jamestown, 

Pioneer 26R41, and SS 8641, were used during the 2015-2016 and 2016-2017 growing seasons. 
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  Individual plots were harvested with a 1994 Hege 140 plot combine (Hege Maschinen 

GmbH) and GY was calculated at all six ENVs from the weight of seed from each plot as 

measured by the HarvestMaster Pro 4100 (Juniper Systems, Inc.) and was expressed in t ha-1 and 

adjusted for 13% moisture content. Test weight was sampled from each plot for all six ENVs 

using a HarvestMaster Pro 4100 (Juniper Systems, Inc.), and was expressed in kg hl-1 then 

adjusted for 13% moisture content. Heading dates for each genotype were collected during all 

four growing seasons from MAR. Heading date was recorded in Julian days after 1 Jan., when 

50% of the heads were 50% emerged from the flag leaf. As there was variation in HD between 

genotypes in the population, heading notes were recorded every other day from the onset of 

heading and continuing until all plots in the nursery were headed. 

 Breeding trials were planted and grown using the same methods described for the TP17. 

Data for GY, HD, and TW were also collected for the WO, ADV, and ARE trials using the same 

methods described for the TP17. The WO nurseries were grown over three growing seasons, 

between 2016-2017 and 2018-2019 in MAR using an unreplicated augmented design with two 

repeated checks, Jamestown and Pioneer 26R41. Two additional repeated checks were used with 

the DH population in the WO19 nursery, ‘AGS 2055’ (PI 678970) and AR06146E-1-4.  

The ADV yield trials were grown over three years, between the 2017-2018 and 2019-

2020 growing seasons with anywhere between two and four locations. The ADV18 location was 

planted in KSR, NPT, MAR, and the Rohwer Research Station near Rohwer, AR, USA (RWR). 

The ADV yield trial grown during the 2018-2019 (ADV19) growing season only had data 

collected from MAR and NPT as the other locations were not planted due to late rainfall. 

Therefore, the ADV19 genotypes were replanted at KSR, MAR, and NPT during the 2019-2020 

growing season (ADV19R). Data for the ADV yield trial grown during the 2019-2020 growing 
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season was collected from KSR, MAR, and RWR. The ADV yield trials were planted in a 

RCBD with two replications, with the exception of ADV19R, which was planted in an 

unreplicated augmented design. Each ADV yield trial had four repeated checks, AGS 2055, 

‘Hilliard’ (PI 676271), Jamestown, and Pioneer 26R41. The ADV19R yield trial only used 

Jamestown and Pioneer 26R41 as repeated checks. 

The ARE yield trials were grown over two years between the 2018-2019 and 2019-2020 

growing seasons (ARE19 and ARE20). The ARE19 yield trial was grown at two locations, MAR 

and NPT, while the ARE20 yield trial was grown at KSR, MAR, NPT, and RWR. Each ARE 

yield trial was grown in a RCBD with four replications, with the exception of RWR which only 

had three replications. The ARE yield trials used the same four repeated checks as the ADV 

yield trials. 

The AVD18, ADV19, and ARE19 FHB nurseries for the 2017-2018 and 2018-2019 

growing seasons were grown at two locations, FAY and NPT, in a RCBD with two replications 

using the same methods described with the TP18_FHB and TP19_FHB populations and Larkin 

et al. (2020). This was also the case for the ARE20 FHB nursery, however it was only grown in 

NPT during the 2019-2020 season due to poor growing conditions in FAY. Data were also 

collected for HD, PH, DON, FDK, and SEV for the FHB nurseries using methods described in 

Larkin et al. (2020). 

Phenotypic Data Analyses 

Phenotypic data were analyzed using two different mixed linear models within the PROC 

MIXED procedure in SAS 9.4 (SAS Institute). The first model was a single-stage model that was 

used to obtain adjusted means for GY, TW, DON, FDK, and SEV for the TP18_FHB, ADV18, 
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ADV19, ADV20, ARE19, and ARE20 trials, which was described in Larkin et al. (2020) as 

follows: 

�
3o = � + 	r�A>�.r
 + @r.�r�7�3o + r�7o + �	r�A>�.r × r�7�
o + �
3o 

where yijk was the observed phenotype, μ was the population mean, genotypei was the fixed effect 

of the ith genotype, rep(env)jk was the random effect of the jth replication nested within the kth 

location-year (or location) (env), envk was the random effect of the kth location-year (or location), 

(genotype × env)ik was the random effect of the interaction between genotype and location-year 

(or location), and εijk was the residual error term, where εijk ~ N(0,Iσ2
ε), where I was an identity 

matrix and σ2
ε was the residual error variance. 

 The second mixed linear model obtained adjusted means for the five agronomic and FHB 

traits for TP17, TP18, TP19, ADV19R, and TP19_FHB using a two-stage multiple-environment 

trial (MET) approach for unbalanced METs with mixed experimental designs, such as between 

augmented and RCBDs (Mohring & Piepho, 2009). The first stage obtained adjusted means for 

traits within each individual location-year using the following mixed linear model: 

�
3 = � + 	r�A>�.r
 + BCA³�3 + �
3 

where yij was the observed phenotype, μ was the population mean, genotypei was the fixed effect 

of the ith genotype, blockj was the random effect of the jth replication for the RCBD design or the 

jth incomplete block for the augmented design, and εij was the residual error term, where εij~N(0, 

Iσ2
ε), where I was an identity matrix and σ2

ε was the residual error variance. 

Adjusted means from each location-year for each trait were then compiled into a single 

dataset for the second stage of the analysis, where adjusted means were calculated for each trait 

using the following mixed linear model: 
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where yij was the observed phenotype, μ was the population mean, genotypei was the fixed effect 

of the ith genotype, envj was the random effect of the jth location-year, (genotype × env)ij was the 

random interaction term between genotype and location-year, and εij was the residual error term, 

where εij~N(0, Iσ2
ε), where I was an identity matrix and σ2

ε was the residual error variance. 

 Phenotypic Pearson correlations were determined between GY, HD, and TW within 

TP17, TP18, TP19, the WO nurseries, ADV yield trials, and ARE yield trials using the 

multivariate function in JMP Pro 15.2.0 software (SAS Institute Inc.). Heading notes were not 

obtained for the WO19 nursery, therefore HD was not included in TP19. Phenotypic Pearson 

correlations were also determined between DON, FDK, HD, PH, and SEV within TP18_FHB 

and TP19_FHB as well as the ADV and ARE FHB nurseries using the multivariate function in 

JMP Pro 15.2.0 software (SAS Institute Inc.). 

 Plot mean-based broad-sense heritability (H2) was calculated for each trait in trials 

evaluated using the single-stage mixed linear model approach using the following equation: 

§� = �V��¨©ªc��
�V��¨©ªc�� + �V��¨©ªc� ×��¬� ���¬ + ������¬ × ��c

 

where σ2
genotype was the genotypic variance, σ2

genotype × env was the variance of the interaction 

between genotype and location-year, nenv was the number of location-years where the trait was 

evaluated, σ2
ε was the residual error variance, and nrep was the number of replications within each 

location-year. Variance components were obtained from the single-stage mixed linear model 

described above using the PROC MIXED procedure in SAS 9.4 (SAS Institute). 
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 Broad-sense heritability �§̄��� for traits from trials evaluated using the two-stage mixed 

linear model used a formula proposed by Cullis et al. (2006) for unbalanced METs: 

§�� = 1 − 7±²��2�V��¨©ªc��  

where 7̅±²�� was the mean variance between two best linear unbiased predictions (BLUPs), 

obtained from the second stage of the MET model, where genotype was set as a random effect, 

and �V��¨©ªc��  was the genotypic variance of the trait of interest, obtained from the second stage 

of the MET model (Cullis, Smith, & Coombes, 2006; Piepho & Mohring, 2007). 

Genotyping by Sequencing 

All genotypes were genotyped using genotyping by sequencing (GBS) using methods described 

in Larkin et al. (2020). Single nucleotide polymorphism calling was performed using the 

TASSEL 5.0 GBSv2 pipeline using 64 base kmer length and a minimum kmer count of five 

(Bradbury et al., 2007). Reads were aligned to the International Wheat Genome Sequencing 

Consortium (IWGSC) RefSeq v1.0 ‘Chinese Spring’ wheat reference sequence using the 

alignment method of Burrows-Wheeler aligner version 0.7.10 (Appels et al., 2018; Li & Durbin, 

2009). 

Raw single nucleotide polymorphism (SNP) data generated from the TASSEL pipeline 

were filtered using PLINK software to remove taxa with more than 85% missing data and 

heterozygosity greater than 30%. Genotypic data were then filtered to select for biallelic SNPs 

with minor allelic frequency of greater than five percent, less than 20% missing data, and 

heterozygosity of less than or equal to 10% (Purcell et al., 2007). Missing marker data were then 

imputed using BEAGLE software, based on a sliding window length encompassing the entire 
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chromosome (Browning, Zhou, & Browning, 2018). Markers were again filtered after imputation 

to remove SNP markers with minor allele frequency greater than five percent and heterozygosity 

of less than equal to 10% using PLINK software. Markers unaffiliated with any chromosome 

within the wheat genome were also removed for a final genotypic dataset of 5,202 SNP markers. 

 Principal component analyses were performed within each of the TPs to evaluate the 

genetic relationships between subpopulations within each TP using the PCA function in 

TASSEL 5.0 (Bradbury et al., 2007). These relationships between the first three principal 

components were visualized for each TP using the scatterplot3d package in R v4.0.3 software 

(Ligges, Maechler, Schnackenberg, & Ligges, 2018; R, 2020).  

Genomic Selection 

Two different models were tested for all five TPs in order to obtain GEBVs for GY in the 

WO17, WO18, and WO19 nurseries and DON, FDK, and SEV for the ADV18 and ADV19 

trials. The first model was a naïve genomic BLUP (GBLUP) model with no covariates (NGS). 

The second model was a MVGS GBLUP model using TW as a covariate for predicting GY, 

while DON was predicted using FDK and HD as covariates, FDK was predicted using DON and 

SEV as covariates, and SEV was predicted using FDK and PH as covariates. The optimal 

covariate combinations for the MVGS models were determined in Larkin et al. (2020) for the 

FHB traits, while the optimal covariate of TW was determined by comparing the mean 

prediction accuracy of GY for TP17 by using TW, HD, PH, and maturity date (MD) as 

covariates (Larkin et al., Chapter III).  
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Cross Validation 

Mean prediction accuracies between the NGS and MVGS models for each TP were obtained 

using a five-fold cross-validation analysis performed using the Genomic Selection function in 

TASSEL 5.0 (Bradbury et al., 2007). The GBLUP model used for the analyses is described as 

follows: 

� = �" + #$ + �
 
where u is the vector of marker effects, which is assumed to have a normal distribution 

$~&�0, +�)��, where G is the genomic relationship matrix, obtained using the Kinship function 

within TASSEL 5.0, and �)� is the variance of the individual marker effects; β is the vector of 

fixed effects; X is the design matrix of fixed effects; Z is the design matrix relating genotypes to 

phenotypic observations (y), with m markers in columns and n phenotypes in rows; and εi is the 

residual error at the ith locus, which is assumed to have a normal distribution �
~&�0, (����, 

where I is the identity matrix and σ2
ε is the residual error variance. The GEBV is the sum of all 

allele effects of a genotype (Endelman, 2011; VanRaden, 2008). 

 The five-fold cross-validation approach randomly divided the TP into five equal sized 

groups. Four of the five groups were then used as the TP to train the GBLUP model to calculate 

GEBVs for the fifth group, serving as the VP, where the phenotypic values were set as missing. 

In the case of the MVGS models, the phenotypic data for the covariate traits were used as a fixed 

effect in the model. The GEBVs calculated for the VP were compared to the actual phenotypic 

values using a Pearson correlation. The process was repeated over 100 iterations. The mean 

prediction accuracies between the NGS and MVGS models were compared between all five TPs 

using a generalized linear mixed model (GLMM) and Fisher’s LSD with an α of .05, 
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implemented in PROC GLIMMIX in SAS 9.4 (SAS Institute Inc.). Mean prediction accuracy 

comparisons between the NGS and MVGS models for each TP were visualized using the yarrr 

package in R v4.0.3 (Phillips, 2017; R, 2020). 

Forward Prediction 

Each of the five TPs were then used to obtain predictions for their respective VPs using the NGS 

and MVGS GBLUP models associated with each trait. For example, TP17 was used to calculate 

GEBVs for GY for the WO17 nursery using the NGS and MVGS models, and TP18_FHB was 

used to calculate GEBVs for DON, FDK, and SEV for the ADV18 trial using the NGS and 

MVGS models (Table 2). 

 Once GEBVs for each trait for each model were obtained, GEBVs were compared to the 

adjusted mean of the trait of interest for each genotype in the following generation using a 

Pearson correlation using the multivariate function in JMP 15.2.0 software (SAS Institute Inc.). 

For example, GEBVs for GY obtained for WO17 were compared to the adjusted mean GY for 

each genotype across the WO17, ADV18, and ARE19 generations using a Pearson correlation. 

This serves as a form of prediction accuracy for the respective model and TP. A scatterplot 

visualizing the comparison between GEBVs and adjusted means across years for each genotype, 

as well as individual genotypes advanced to the next generation, was created using the ggplot2 

package in R v4.0.3 for each model for each TP (R, 2020; Wickham, Chang, & Wickham, 2016). 

Selection accuracy was also determined as the percentage of genotypes advanced to the ARE 

generation that were in the top 50% of GEBVs from the NGS or MVGS models as well as the 

top 50% based on phenotypic values. 
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 Response to selection was also compared between the NGS and MVGS models and 

phenotypic selection, based on the adjusted means from the WO for GY or ADV generations for 

FHB traits, using a selection pressure of 50%. The response to selection formula is as follows: 

� = §�4 

where H2 was the broad-sense heritability calculated as above, and S is the selection differential, 

calculated as 4 = �¤�Y��©�  − �����Y��©�  where μSelected  is the mean of the phenotypic data for 

the top 50% of genotypes selected for genotypes in both the ADV and ARE generations using 

either phenotypic selection, NGS, or MVGS, and μUnselected is the mean of the full unselected 

population of the genotypes in both the ADV and ARE generations of the breeding cycle 

(Arruda, Lipka, et al., 2016; Falconer & McKay, 1996; D. N. Lozada, Ward, & Carter, 2020). 

RESULTS 

Variation in Agronomic and Disease Traits 

Each TP, WO, ADV, and ARE trial saw significant variation in GY, TW, and HD (Table 3). 

Mean GY varied between trials and across years, where WO17 had the highest mean GY at 5.29 

t ha-1 while WO19 had the lowest mean GY at 3.10 t ha-1. The trial with the highest mean TW 

was ADV20 at 77.88 kg hl-1 while the trial with the lowest mean TW was WO19 at 63.88 kg hl-1. 

Both the WO19 and DHWO19 trials had the lowest mean GY and TW numbers between 2017 

and 2020. This is likely due to the fact that there was a late rainfall event that occurred during 

harvest, resulting in severe lodging across both trials. Heritability for GY, TW, and HD was high 

throughout nearly all trials, however WO19 had very low heritabilities for GY and TW, this can 

also be attributed to severe lodging (Table 3).  

Significant positive phenotypic correlations were consistently observed between GY and 

TW in all trials except for TP18, this was likely due to the weaker positive correlation between 
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GY and TW in the WO17 trial (Table 3). Notably strong positive correlations between GY and 

HD were observed in the WO18 and ADV18 trials during the 2017-2018 growing season due to 

a late freeze event that occurred when earlier heading genotypes were flowering, resulting in 

lower GY for early genotypes. Typically, earlier heading genotypes have higher GY than later 

heading genotypes, which was observed during more normal years where there were negative or 

weak positive correlations between GY and HD (Table 3). 

 Both FHB TPs as well as the ADV and ARE FHB trials had significant variation for all 

three FHB traits as well as HD and PH. The ADV18 FHB trial had the highest mean DON and 

FDK, but it also had the lowest mean SEV. The ARE20 FHB trial had the lowest mean DON and 

FDK, likely due to stronger genetic resistance (Table 4). All trials also had significant 

correlations between the three FHB traits. Correlations between DON and HD were consistently 

positive, however the correlations were not significant with smaller population sizes, while DON 

was significantly correlated with PH only in ADV19. There were generally negative correlations 

between FDK and PH with the exception of ADV19, however the significance of the correlations 

between FDK and PH were not significant with smaller population sizes. There were strong 

negative correlations between SEV and HD and PH for nearly all trials, however they were not 

significant for smaller populations. High heritability was also observed for all three FHB traits in 

addition to HD and PH (Table 4). 

Population Structure 

Genotyping by sequencing identified 5,202 SNPs across the entire wheat genome after filtering 

and imputation. The number of SNP markers were unevenly distributed between genomes, where 

the B genome had the largest number of markers (2,315), followed by the A (2,210) and D (677) 

genomes, which was consistent with other studies using GBS SNPs (Arruda, Brown, et al., 2016; 
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Larkin et al., 2020). The chromosome with the largest number of SNPs was 3B at 477, while the 

chromosome with the smallest number was 4D (38). The proportion of heterozygosity within the 

dataset was 2.5% and the average minor allele frequency was 21.6%. 

 The PCA of the initial TP17 or TP18_FHB population showed two primary clusters 

within the population. Genotypes from all breeding programs appeared in both clusters, although 

there was evidence of sub-clustering by breeding program within the two main clusters. This 

clustering has also been observed in other studies using SRWW populations adapted to the 

Southeastern US and it is hypothesized that this is due to the presence or absence of a stem rust 

(Puccinia graminis f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) resistance 

genes, Sr36/Pm6, located on a translocation from Triticum timopheevii Zhuk. (Benson, Brown-

Guedira, Murphy, & Sneller, 2012; Larkin et al., 2020; Nyquist, 1962; Sarinelli et al., 2019). The 

population structure was generally low, where the first three principal components only 

accounted for 5.23%, 3.99%, and 3.42% of the total genetic variation (Figure 1). 

When evaluating the PCAs of the TP17 and TP18 populations with their respective VPs, 

there did not appear to be a strong deviation between TP and VP (Appendices 4a and 4b). 

However, there was a deviation between TP19 and WO19 and DHWO19, where a majority of 

genotypes in the WO19 and DHWO19 contained the FHB resistance alleles for the gene Fhb1, 

whereas a majority of the genotypes in TP19 did not (Rawat et al., 2016) (Figure 2). There was 

also no noticeable deviation between the TP18_FHB population and ADV18 and the TP19_FHB 

population and ADV19 (Appendices 4c and 4d). 

Cross Validation 

Between all three TPs for GY, the MVGS models using TW as a covariate had significantly 

higher prediction accuracies compared to the NGS models (Figure 3). This reflected the strong 
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and significant phenotypic correlations between GY and TW within TP17 and TP19. The 

primary exception to this was TP18, where there was not a significant correlation between GY 

and TW (r = .05) (Table 3). As a result, the MVGS model had a smaller, albeit significant, 

increase in prediction accuracy compared to the NGS model. As new genotypes were added to 

the TP for each year, the prediction accuracy of the TP also increased (Figure 3). The TP19 

population had the highest mean prediction accuracy for both NGS (r = .64) and MVGS (r = .69) 

models. This was followed by TP18, which had the second highest prediction accuracy between 

NGS models (r = .59) and it was tied for second among the MVGS models (r = .60). The 

population with the population with the lowest mean prediction accuracy among NGS models 

was TP17 (r = .49), whereas the mean prediction accuracy of the MVGS model was equal to the 

MVGS model from TP18 (r = .60) (Figure 3).   

This trend was also observed for both FHB TPs, where MVGS models had significantly 

higher prediction accuracies compared to NGS models for DON, FDK, and SEV (Figure 4). 

Contrary to the TPs for GY, prediction accuracies between TP18_FHB and TP19_FHB 

decreased for all three traits and both models. This is likely a result of background population 

structure within TP19_FHB between genotypes from the TP18_FHB population, which does not 

contain genotypes with Fhb1, and ADV18 which does contain genotypes with Fhb1 (Appendix 

4c). The trait with the highest mean prediction accuracies among the NGS models for both TPs 

was DON, the mean prediction accuracy for TP18_FHB was .61 and .32 for TP19_FHB. The 

trait with the second highest mean prediction accuracy among the NGS models was SEV, where 

TP18_FHB was .54 and TP19_FHB was .17. Fusarium damaged kernels had the lowest mean 

prediction accuracy among the NGS models where TP18_FHB (r = .45) was more accurate than 

TP19_FHB (r = .14). The ranking of traits between the MVGS models was not consistent with 
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the NGS models or between TPs. Severity had the highest prediction accuracy in TP18_FHB (r 

= .76), followed by FDK (r = .74) and DON (r = .72). With TP19_FHB, DON also had the 

MVGS model with the lowest mean prediction accuracy (r = .56), while SEV still had the second 

highest mean prediction accuracy (r = .68), like the NGS model. However, FDK had the highest 

mean prediction accuracy (r = .68) (Figure 4). 

Forward Prediction 

When TP17 was used to calculate GEBVs of GY for WO17, there was a significant correlation 

between the GEBVs for GY from the NGS model and with the actual GY data from WO17 (r = 

.38, p < .001), however there was a smaller yet significant correlation between the GEBVs for 

GY from the MVGS model and actual GY data from WO17 (r = .26, p = .002) (Table 5). The 

strength of the Pearson correlations for both models decreased when GEBVs were compared 

with the adjusted mean GY across ADV18 and ARE19, where the correlations for all three 

methods were no longer significant and the MVGS model was the only method that remained 

positive (r = .14) (Table 5). However, when comparing the accuracy of selecting genotypes 

advanced to ARE19 that were above average for both GEBVs and adjusted mean GY, both 

models correctly selected 36.4% of the genotypes in the ARE19, but phenotypic selection based 

on GY from WO17 had a 50.0% selection accuracy (Table 5, Figures 5a and 5b). In terms of 

response to selection (R), when the top 50% of genotypes were selected from ARE19 based on 

phenotypic GY results from WO17, GEBVs from NGS, and GEBVs from MVGS, the genotypes 

selected based on phenotypic selection had the lowest response in GY (R = -31.71 kg ha-1), 

followed by NGS (R = 26.13 kg ha-1) and MVGS (R = 61.99 kg ha-1) (Table 5). 

 Unlike WO17, there was a stronger correlation between the GY data from WO18 and the 

GEBVs for GY from the MVGS model (r = .35, p < .001) and there was not a significant 
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correlation between WO18 and the NGS GEBVs (r = .12, p = .131) (Table 5). Correlations were 

weaker when GEBVs for both models were compared to adjusted means for GY across ADV19, 

ADV19R, and ARE20, where the correlation with MVGS decreased to r = .11 and NGS 

decreased to r = .11 (Table 5). The MVGS model had the greatest selection accuracy at 69.6%, 

based on selecting genotypes that were advanced to ARE20 based on above average GEBVs and 

above average mean GY across generations, while the NGS model had a selection accuracy of 

60.8% and phenotypic selection based on GY from WO18 was the lowest at 52.2% (Table 5, 

Figures 5c and 5d). Response to selection based on phenotypic selection with GY from WO18 

was again the weakest with R = -14.33 kg ha-1 followed by the MVGS model (R = -1.49 kg ha-1) 

and NGS model (R = 4.71 kg ha-1) (Table 5). 

 The TP19 GEBVs for GY from the NGS (r = .10, p = .037) and MVGS (r = .29, p < 

.001) models were significantly correlated with the WO19 GY adjusted means (Table 5). The 

genotypes from WO19 had only been grown in the ADV20 trial, therefore GEBVs could only be 

compared with the adjusted means from ADV20. Correlations between the GEBVs from the 

NGS and MVGS models and adjusted means for GY from ADV20 were both negative and not 

significant (Table 5). Much like TP18, the MVGS model had a better selection accuracy, 

correctly selecting 71.2% of genotypes advanced to ADV20 based on above average GEBVs and 

adjusted means for GY, while the NGS model correctly selected 55.5%. The MVGS model also 

had a higher selection accuracy than phenotypic selection (67.8%) (Table 5, Figures 5e and 5f). 

The NGS (R = .06 kg ha-1) model had a greater response to selection than the MVGS (R = -4.98 

kg ha-1) model, however both were far less than phenotypic selection based on GY from WO19 

(R = 11.80 kg ha-1) (Table 5).  
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 When TP18_FHB was used to predict DON, FDK, and SEV for ADV18, there were 

significant correlations between the NGS and MVGS models for all FHB resistance traits. The 

strength of both correlations decreased for all methods when compared with phenotypic data 

from ARE19, with the exception for the MVGS model for SEV, where the correlation increased 

to r =.60 compared with r = .57 (Table 6). Both NGS and MVGS models had higher selection 

accuracies compared to phenotypic selection from ADV18 DON data (52.9%), where the NGS 

model correctly selected 82.4% of genotypes in ARE19, while the MVGS model correctly 

selected 70.6% (Table 6, Figures 6a and 6b). The NGS (R = -.37 μg g-1) model had the highest 

response to selection for DON compared to the NGS model (R = -.23 μg g-1) and phenotypic 

selection (R = .20 μg g-1) (Table 6). 

When predicting FDK for ADV18, the MVGS model had the strongest correlations with 

the ADV18 FDK data as well as the FDK adjusted means from ARE19. The NGS (R = -4.09%) 

model again had the highest response to selection than the MVGS (R = -2.83%) model and 

phenotypic selection (R = -1.59%) for FDK (Table 6). The MVGS and NGS models had the 

same selection accuracy for FDK (70.6%) where both models outperformed phenotypic selection 

based on adjusted means for FDK from ADV18 (58.8%) (Table 6, Figures 6c and 6d). 

The MVGS model had stronger correlations between GEBVs for SEV and adjusted 

means for SEV from ADV18 and ARE19 than the NGS model (Table 6). The MVGS model also 

had the strongest response to selection (R = -2.29%) and selection accuracy (47.1%) compared 

with the NGS model, where R = -.82% and selection accuracy was 41.2%. The NGS model 

underperformed phenotypic selection for both response to selection (R = -1.49%) and selection 

accuracy (52.9%), with the MVGS model only underperformed phenotypic selection for 

selection accuracy (Table 6, Figures 6e and 6f). 



 

189 

 

When using TP19_FHB to predict FHB resistance traits for ADV19, the correlations 

between GEBVs from the MVGS models and phenotypic results from AVD19 were stronger 

than TP18_FHB for all three traits. Correlations between GEBVs from the MVGS models were 

stronger than TP18_FHB when compared with adjusted means from ARE20 for DON and FDK 

(Table 6). Response to selection for TP19_FHB was different from TP18_FHB in that 

phenotypic selection outperformed the GS models for DON and SEV, whereas the MVGS model 

had a stronger response to selection than the NGS model and phenotypic selection for FDK 

(Table 6). Selection accuracies did change between TPs, as the MVGS model (69.6%) 

outperformed both phenotypic selection (13.0%) and the NGS model (56.5%) for DON for 

TP19_FHB (Table 6, Figures 7a and 7b). Unlike the results for TP18_FHB, both GS models had 

far lower selection accuracies than phenotypic selection (91.3%), although the MVGS model 

(60.9%) was better than the NGS model (34.8%) (Table 6; Figures 7c and 7d). Selection 

accuracy for SEV also changed, where the MVGS model had the same selection accuracy as 

phenotypic selection (82.6%) while also outperforming the NGS model (60.9%) (Table 6, 

Figures 7e and 7f). 

DISCUSSION 

Genomic selection is a valuable tool for plant breeders, and many studies have shown the vast 

realm of possibilities for its application (Heffner et al., 2009; Larkin et al., 2019; Sorrells, 2015). 

The primary goal for GS is to increase genetic gain for a trait of interest within a breeding 

program through the reduction of time within a breeding cycle and by improving selection 

accuracy (Asoro et al., 2013; Bernardo & Yu, 2007; Heffner et al., 2009; Rutkoski et al., 2015; 

Schaeffer, 2006). While most research in GS has focused on improving the accuracy of TPs, less 

have focused on the implementation of GS into breeding programs in the form of forward 
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selection (Bernardo, 2016). In our study, we chose to focus on forward prediction through the 

use of NGS and MVGS models and compared their performance, based on selection accuracy 

and response to selection, to phenotypic selection for economically important traits, such as GY 

and FHB resistance traits. 

Prediction Accuracy of Training Populations 

In our study, we saw that MVGS models consistently had significantly higher prediction 

accuracies for GY, DON, FDK, and SEV in every TP compared to NGS. These results were 

consistent with previous studies involving MVGS for GY and FHB resistance traits (Crain et al., 

2018; Larkin et al., 2020; Dennis N. Lozada & Carter, 2019; Moreno-Amores et al., 2020; 

Rutkoski et al., 2016; Schulthess et al., 2018; Sun et al., 2017). While previous studies predicting 

GY using MVGS have primarily focused on high-throughput phenotyping traits as covariates, 

we used TW as a covariate due to its strong correlation with GY (Crain et al., 2018; Dennis N. 

Lozada & Carter, 2019; Rutkoski et al., 2016; Sun et al., 2017). This follows the general trend 

for MVGS, where covariate traits sharing a strong correlation with a trait of interest can improve 

prediction accuracies for said trait of interest (Calus & Veerkamp, 2011; Y. Jia & Jannink, 2012; 

Dennis N. Lozada & Carter, 2019; Schulthess et al., 2016; Ward et al., 2019).  

We also updated our TPs for each generation by adding phenotypic data for genotypes 

from the previous generation into the following year’s TP. Other studies have found that 

updating TPs helped to prevent the deviation in genetic relationships between the TP and VP as 

new germplasm was added and advanced through the breeding program (Clark, Hickey, 

Daetwyler, & van der Werf, 2012; Lorenz & Smith, 2015; Lorenz, Smith, & Jannink, 2012; 

Meuwissen, 2009; Neyhart, Tiede, Lorenz, & Smith, 2017). Studies have also shown that larger 

TP sizes can have higher prediction accuracies as well, particularly when working with more 
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diverse populations where new germplasm is continually added to the breeding program 

(Heffner, Jannink, Iwata, Souza, & Sorrells, 2011; Heslot et al., 2012; Isidro et al., 2015; Mujibi 

et al., 2011; Norman, Taylor, Edwards, & Kuchel, 2018; Poland et al., 2012).  

We found that prediction accuracy increased alongside TP size, where TP17 was the 

smallest with 355 genotypes while also having the lowest prediction accuracy for GY, followed 

by TP18 with 495 genotypes, and finally TP19 with 655 genotypes and also the highest 

prediction accuracy. This trend was also observed for GY in wheat where prediction accuracy 

increased from r = .72 to r = .85 as the number of genotypes in the TP increased from 250 to 

2,000 (Norman et al., 2018). Another study found that increasing the TP size from 50 to 350 

genotypes increased prediction accuracy for GY in SRWW from r = .40 to r = .64 (Sarinelli et 

al., 2019). It is difficult to say if the increased TP size reduced the impact of genetic variation 

between the initial genotypes and genotypes that were newly added to each TP, as there was little 

genetic variation within the TPs based on their respective PCAs.  

We did not observe this trend between TP18_FHB and TP19_FHB, where prediction 

accuracy actually decreased for all three FHB resistance traits when additional genotypes were 

added from ADV18. This can likely be attributed to less variation in DON, FDK, and SEV 

within ADV18 as well as lower heritabilities for each trait. Genotypes within ADV18 also had 

the FHB resistance alleles for Fhb1, which could have increased background population 

structure within TP19_FHB. 

Forward Prediction 

Much like the results from the cross-validation analyses of the TPs, the MVGS models had 

stronger correlations between their calculated GEBVs and phenotypic results from their 

respective VPs for GY and FHB resistance traits, aligning with other studies involving MVGS 
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models (Y. Jia & Jannink, 2012; Larkin et al., 2020; Dennis N. Lozada & Carter, 2019; 

Schulthess et al., 2016; Ward et al., 2019). The only instance where this did not occur was for 

TP17 when it was used to predict GY for WO17. While there was a strong correlation between 

GY and TW in TP17, there was a very weak correlation between GY and TW in WO17, 

therefore it is reasonable to suspect that the weak correlation between the two traits in the VP 

negated the benefit of using a MVGS model, as other studies have noted the lack of benefit of 

using covariates that were weakly correlated with a trait of interest (Calus & Veerkamp, 2011; Y. 

Jia & Jannink, 2012). Inversely, while there was little benefit to using MVGS for cross-

validation in TP18 since there was a weak correlation between GY and TW, there was a strong 

correlation between GY and TW in the WO18 VP, therefore the MVGS model performed better 

than the NGS model for forward prediction even when there was a weak correlation in the TP. 

An additional caveat for WO18 was that there was a late freeze event during the spring of 

2018 that killed most early-heading plots during flowering, resulting in an abnormally positive 

correlation between HD and GY, as HD and GY are typically negatively correlated (Whittal, 

Kaviani, Graf, Humphreys, & Navabi, 2018; Worland et al., 1998). Therefore, we used HD as a 

covariate in an MVGS model for forward prediction. However, the strong negative correlation 

between GY and HD in TP18 masked the effect of the strong positive correlation in WO18, 

resulting in a weak correlation between the GEBVs from the MVGS model and the phenotypic 

data for GY compared to the MVGS model using TW as a covariate. 

Our range in prediction accuracy for NGS models was between r = .09 and r = .29 while 

the range of our MVGS models were between r = .01 and r = .45. In an evaluation of forward 

prediction in the Kansas State University wheat breeding program, the highest prediction 

accuracy between the GEBVs for GY in the preliminary yield trials (PYTs) and the actual 
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phenotypic results for GY was r = -.16 (Calvert et al., 2020). The same study also used high-

throughput phenotyping traits as covariates in a MVGS model for forward prediction of GY in 

wheat, however the prediction accuracy was unfavorable unless a large TP was used (Calvert et 

al., 2020). This contrasts with our results where the use of another agronomic trait such as GY 

significantly improved prediction accuracy for every training population but TP17. It is notable 

that TP17 was the smallest TP in this case, but the lack of effectiveness in the MVGS model 

could be attributed more to the weak correlation between GY and TW in the VP than to TP size. 

In another forward prediction study for GY at the University of Nebraska, there was a range in 

prediction accuracy between r = .22 and r = .26 (Belamkar et al., 2018). While our best 

performing NGS model was better than their top performing model, we still had a wider range in 

prediction accuracies and there was certainly a weaker prediction accuracy when using the NGS 

model for TP19.  

 Response to selection was measured as the top 50% of breeding lines in the ARE 

generation, selected based on GEBVs and adjusted means of GY for the WO population. Other 

studies have shown that GS could not have as high of a response to selection as phenotypic 

selection; however, our method of excluding phenotypic data from the WO genotypes from the 

selection dataset allowed for greater independence from bias towards the phenotypic selection 

method (D. N. Lozada, Mason, Sarinelli, & Brown-Guedira, 2019). In our study, our best 

performing model compared to phenotypic selection was the MVGS model with TP17, where the 

MVGS model had the highest genetic gain compared to phenotypic selection and the NGS 

model. Our responses to selection using NGS and MVGS models for GY were also higher than 

another study that used NGS models and genome-wide association study (GWAS) assisted GS 

models (D. N. Lozada et al., 2020). It was notable that when there was a stronger correlation 



 

194 

 

between the GEBVS or WO phenotypic data and the phenotypic data for the ADV and ARE 

generations there was also a stronger gain in response to selection. As of yet, there have been no 

extensive forward prediction studies for FHB resistance traits in wheat. Relative to studies 

related to GY, we found that the percent change relative to phenotypic selection from the MVGS 

models for all three FHB resistance traits in both years, were higher than those for GY, where the 

best performing model was the NGS model for FDK, using TP18_FHB. It is also notable that 

phenotypic selection did not significantly outperform the MVGS model across years or traits, 

indicating that MVGS could be a good supplement, if not substitute, for phenotypic selection 

particularly during years when it is difficult to phenotype.  

 In terms of selection accuracy, our MVGS models outperformed phenotypic selection 

based on WO GY data for two out of our three TPs. However, when comparing GS models with 

phenotypic selection for FHB resistance traits, the NGS and MVGS models had higher selection 

accuracies for DON using TP18_FHB, and the MVGS model was equal to phenotypic selection 

using TP19_FHB. Both the MVGS and NGS models were equally more accurate than 

phenotypic selection for FDK with TP18_FHB. Additionally, the MVGS model was equal in 

performance with phenotypic selection for SEV in TP19_FHB. It has been mentioned that 

prediction accuracy does not necessarily correlate with selection accuracy for forward prediction 

(Belamkar et al., 2018). In our case, phenotypic selection always had the greatest prediction 

accuracy by default. However, when it came to accurately selecting genotypes that were 

advanced to the elite generation, GS outperformed, or was equal to, phenotypic selection 67% of 

the time.  
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CONCLUSIONS 

This study showed that both NGS and MVGS could be successfully implemented into a SRWW 

breeding program, while using other agronomic and disease traits as covariates with reasonable 

accuracy compared to phenotypic selection while again showing its value as a tool for plant 

breeders. We also found that MVGS models performed significantly better than NGS models in 

terms of both cross-validation within TPs as well as forward prediction of untested genotypes for 

economically important traits, such as GY or FHB resistance traits. This was particularly evident 

when there was a strong correlation between the trait of interest and the covariate trait. This is 

one of the first studies to show that MVGS could be effectively implemented for forward 

prediction within a wheat breeding program. This is also the first study to extensively investigate 

the use of forward prediction when breeding for FHB resistance in wheat. We found that GS 

could serve as a suitable, albeit imperfect, alternative to phenotypic selection when implemented 

during years where environmental conditions prohibit accurate phenotypic selection, particularly 

when experiencing late freezing events or extensive lodging. 

 Prior to implementing GS into their own breeding programs, breeders must consider the 

genetic relationships between their prospective TPs and the breeding lines they hope to use as 

their VP. In the case of MVGS, breeders must also consider the correlations between their traits 

of interest and secondary traits used as covariates, as these correlations can differ between the TP 

and VP. For example, there could be a strong correlation between GY and TW in the TP but 

there could be a weak correlation between the two traits in the VP, therefore the MVGS model 

might not be more accurate than a NGS model. Inversely, there could be a strong correlation 

between traits in the VP while there is a weak correlation between traits in the TP, therefore 

MVGS could be more accurate than expected when forward prediction is implemented. 
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Table 1. Description of the number of genotypes, composition, and experimental design of three generations of F4:6 

observation nurseries (WO), F4:7 advanced nurseries (ADV), and F4:8 elite nurseries (ARE), as well as the initial training 

population (TP17/TP18_FHB) used to predict grain yield and three Fusarium head blight resistance traits. 

Triala Generationb Conventional 

Lines 

DH Lines Total Location(s) Rep(s) Designc 

TP17 - 355 - 355 6 1-2 AUG/RCBD 

TP18_FHB - 355 - 355 9 2 RCBD 

WO17 F4:6/DH 95 45 140 1 1 AUG 

WO18 F4:6/DH 73 87 160 1 1 AUG 

WO19 F4:6/DH 76 357 433 1 1 AUG 

ADV18 F4:7/DH 64 40 104 4 2 RCBD 

ADV18_FHB F4:7/DH 64 40 104 2 2 RCBD 

ADV19 F4:7/DH 50 70 120 2 2 RCBD 

ADV19_FHB F4:7/DH 50 70 120 2 2 RCBD 

ADV19R F4:7/DH 50 70 120 3 2 RCBD 

ADV20 F4:7/DH 56 90 146 3 2 RCBD 

ARE19 F4:8/DH 16 6 22 2 3-4 RCBD 

ARE19_FHB F4:8/DH 16 6 22 2 2 RCBD 

ARE20 F4:8/DH 12 11 23 4 3-4 RCBD 

ARE20_FHB F4:8/DH 12 11 23 1 2 RCBD 
a Trial types and the years each were grow. TP17/TP18_FHB was grown over four years between 2013-2014 
and 2016-2017; 17, 2016-2017; 18, 2017-2018; 19, 2018-2019; 20, 2019-2020. FHB, grown in a Fusarium 
head blight nursery. 
b Breeding trials consisted of conventionally bred genotypes as well as doubled haploid (DH) genotypes. 
c AUG, augmented design; RCBD, randomized complete block design. 
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Table 2. Description of five training populations (TP), including the subpopulations within them, the number of genotypes 

within them, the validation populations (VP) they are predicting for, and the validation populations genome estimated 

breeding values (GEBVs) will be compared with. 

Training 

Population 

Subpopulationsa TP 

Genotypes 

Validation Populationa VP 

Genotypes 

Comparisonsa,b 

TP17 - 355 WO17 140 ADV18, ARE19 

TP18 TP17, WO17 495 WO18 160 ADV19, ADV19R, 
ARE20 

TP19 TP17, WO17, ADV18, WO18 655 WO19, DHWO19 433 ADV20 

TP18_FHB - 355 ADV18 104 ARE19 

TP19_FHB TP18_FHB, ADV18 459 ADV19 120 ARE20 
a WO, F4:6 observation breeding nursery; ADV, F4:7 advanced breeding nursery; ARE, F4:8 elite breeding nursery. 
b GEBVs were compared with phenotypic results from following generations. 
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Table 3. Descriptive statistics, Pearson phenotypic correlations, and broad-sense 

heritabilites (H2) for adjusted means for three training populations (TP), four F4:6 

observation nurseries (WO), four advanced F4:7 nurseries (ADV), and three elite F4:8 

nurseries (ARE) for three agronomic traits including grain yield (GY), heading date (HD), 

and test weight (TW). 

Trial Trait Summary Statistics Correlations 

Mean Min Max Range SD H2a GYb HDc 

TP17 
  

GY 3.86 .13 9.54 9.41 1.14 .82 - 
 

HD 105.66 78.74 129.00 50.25 13.66 .94 -.17*** - 

TWd 74.35 47.27 86.94 41.08 5.33 .82 .44*** -.07ns 

TP18 
  

GY 4.27 1.92 6.92 5.00 .84 .82 - 
 

HD 103.21 82.00 118.38 36.38 10.68 .92 -.73*** - 

TW 74.69 55.24 83.23 29.40 4.65 .94 .05ns† .10* 

TP19 
  

GY 4.04 .01 6.92 6.91 .95 .84 - 
 

TW 74.53 29.40 83.23 55.26 5.44 .81 .37*** - 

WO17 
  

GY 5.29 3.46 6.92 3.46 .71 .37 - 
 

HD 86.91 82.00 96.00 14.00 3.37 .71 -.08ns - 

TW 74.86 55.89 84.60 30.13 6.56 .47 .16* -.25*** 

WO18 
  

GY 3.55 .20 5.36 5.17 1.15 .86 - 
 

HD 106.26 102.00 116.00 14.00 3.51 1.00 .56*** - 

TW 72.32 29.40 78.07 50.09 6.77 .95 .48*** .21** 

WO19 
  

GY 3.10 .32 5.47 5.14 1.09 .26 - 
 

TW 63.77 51.68 71.38 21.12 5.11 .00 .54*** - 

DHWO19 
  

GY 3.10 .38 5.43 5.05 .96 .69 - 
 

HD 108.17 101.00 129.00 28.00 7.42 .78 -.28*** - 

TW 65.94 6.15 80.94 76.20 11.12 .96 .31*** -.69*** 

ADV18 
  

GY 3.57 1.07 6.78 5.70 1.02 .41 - 
 

HD 103.11 97.00 110.00 13.00 3.13 .88 .86*** - 

TW 77.29 47.12 105.68 59.99 6.87 .36 .13*** .03ns 

ADV19 
  

GY 3.68 1.16 5.39 4.23 .72 .56 - 
 

HD 102.38 97.00 109.00 12.00 2.35 .81 .28** - 

TW 70.11 53.78 82.61 30.26 6.70 .85 .56*** .18* 

ADV19R 
  

GY 4.30 1.47 7.50 6.03 1.02 .44 - 
 

HD 109.92 94.00 121.00 27.00 6.85 .95 -.43*** - 

TWd 76.19 45.22 82.21 38.40 5.32 .54 .33*** -.28*** 

ADV20 
  

GY 3.92 .30 7.61 7.30 1.10 .43 - 
 

HD 107.20 91.00 124.00 33.00 8.39 .58 .15** - 

TW 77.88 16.90 95.21 79.73 10.06 .39 .16*** .20*** 

ARE19 
  

GY 3.91 1.77 5.59 3.82 .79 .81 - 
 

HD 102.20 98.00 108.00 10.00 2.27 .84 .09ns† - 

TW 72.00 50.98 82.66 33.10 6.77 .85 .66*** .18ns 

ARE20 
  

GY 3.89 0.39 6.41 6.02 .90 .32 - 
 

HD 99.49 94.00 111.00 17.00 3.39 .76 -.22** - 
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Table 3 (Cont.) 

Trial Trait Summary Statistics Correlations 

Mean Min Max Range SD H2a GYb HDc 

ARE20 TW 75.39 20.70 94.47 75.19 11.74 .38 .58*** -.59*** 
a Broad-sense heritability (H2) for unbalanced multi-environmental experimental 
designs calculated using the formula proposed by Cullis et al. (2006) for TP17, TP18, 
TP19, ADV19R, and TP19_FHB. Broad-sense heritability for all over populations was 
calculated using plot-mean based broad-sense heritability. 
b Grain yield was recorded in t ha-1. 
c Heading date was recorded in Julian days after 1 Jan, when 50% of the heads were 
50% emerged from the flag leaf. 
d Test weight was recorded in kg hl-1. 

*Significant at the .05 probability level. **Significant at the .01 probability level. 
***Significant at the .001 probability level. †ns, nonsignificant at the .05 probability 
level. 
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Table 4. Descriptive statistics, Pearson phenotypic correlations, and broad-sense heritabilities (H2) for adjusted means for two 

training populations, two advanced F4:7 nurseries, and two elite F4:8 nurseries for three Fusarium head blight (FHB) resistance 

traits, including deoxynivalenol (DON), Fusarium damaged kernels (FDK), and severity (SEV) as well as heading date (HD) 

and plant height (PH). 

Triala Trait Summary Statistics Correlations 

Mean Min Max Range SD H2b DONc FDK SEV HDd 

FHB_TP18 
  

DON 10.53 .08 92.80 92.72 11.35 .74 - 
   

FDK 32.49 .00 100.00 100.00 29.93 .79 .40*** - 
  

SEV 27.88 .00 100.00 100.00 25.78 .82 .32*** .73*** - 
 

HD 94.69 74.00 118.00 44.00 10.19 .90 .25*** -.05ns† -.10* - 

PHe 35.54 22.23 47.98 25.75 3.96 .91 .01ns -.29*** -.36*** .34*** 

FHB_TP19 
  

DON 14.26 6.15 37.50 31.35 4.59 .98 - 
   

FDK 38.22 6.00 92.12 86.12 14.86 1.00 .45*** - 
  

SEV 28.67 3.75 91.71 87.96 12.97 1.00 .12* .55*** - 
 

HD 97.91 86.76 116.50 29.74 8.30 .94 .31*** .02ns -.54*** - 

PH 35.59 28.00 44.50 16.50 2.74 .94 .00ns -.29*** -.31*** .16*** 

ADV18 
  

DON 16.64 3.60 51.50 47.90 7.60 .62 - 
   

FDK 39.32 2.00 75.00 73.00 16.29 .77 .62*** - 
  

SEV 15.44 .00 85.00 85.00 14.88 .38 .27** .54*** - 
 

HD 112.22 108.00 117.00 9.00 2.16 .90 .28** -.10ns -.34*** - 

PH 35.22 27.00 47.00 20.00 3.36 .71 -.05ns -.22* -.18* .25*** 

ADV19 
  

DON 10.09 .12 74.50 74.38 10.08 .61 - 
   

FDK 31.01 .00 98.00 98.00 23.94 .83 .86*** - 
  

SEV 25.60 .00 95.00 95.00 25.54 .45 .76*** .86*** - 
 

HD 102.38 97.00 109.00 12.00 2.35 .81 .10ns -.04ns -.17ns - 

PH 31.97 25.00 40.00 15.00 2.82 .74 .29*** .09ns .01ns .35*** 

ARE19 
  

DON 8.51 .59 64.10 63.51 8.32 .50 - 
   

FDK 27.04 1.00 95.00 94.00 21.06 .71 .84*** - 
  

SEV 23.55 .00 90.00 90.00 22.87 .43 .74*** .86*** - 
 

HD 102.20 98.00 108.00 10.00 2.27 .84 .01ns -.28ns -.28ns - 

PH 31.52 21.00 37.00 16.00 2.81 .76 .21ns -.12ns -.18ns .41* 
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Table 4 (Cont.) 

Triala Trait Summary Statistics Correlations 

Mean Min Max Range SD H2b DONc FDK SEV HDd 

ARE20 
  

DON 7.30 .99 19.30 18.31 3.95 .78 - 
   

FDK 15.21 2.00 60.00 58.00 12.49 .84 .78*** - 
  

SEV 16.83 .00 60.00 60.00 13.11 .76 .65*** .82*** - 
 

HD 99.49 94.00 111.00 17.00 3.39 .76 .09ns† .09ns -.08ns - 

PHe 89.69 76.20 101.60 25.40 6.20 .87 .01ns -.05ns -.11ns .48** 
a TP, training population; ADV, F4:7 advanced FHB trial; ARE, F4:8 elite FHB trial.  
b Broad-sense heritability (H2) for unbalanced, multi-environmental designs calculated using the formula proposed in 
Cullis et al. (2006) for TP19_FHB. Broad-sense heritability for all other trials calculated using plot-mean based 
heritability. 
c DON was recorded in μg g-1, whereas FDK and SEV were recorded in percentage. 
d Heading date was recorded in Julian days after 1 Jan, when 50% of the heads were 50% emerged from the flag leaf. 
e Plant height was recorded in inches from the surface of the soil to the tip of the head, but reported in centimeters here. 

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability 
level. †ns, nonsignificant at the .05 probability level. 
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Table 5. Comparison of three selection methods, phenotypic selection (PS) based on grain yield (GY) data from the 

observation nursery (WO), naïve genomic selection (NGS), and multivariate genomic selection (MVGS), based on correlations 

between genome estimated breeding values (GEBVs) and the adjusted means from following generations, response to 

selection, and selection accuracy of genotypes in the final generation. 

TPa Method r WOb r ADV+AREc 

Selection 

Differentiald 

Response to 

Selectione 
Selection Accuracyf  

kg ha-1 kg ha-1 % 

TP17 

PS - -.02ns† -36.87 -31.71 50 

NGS .38*** -.01ns 30.38 26.13 36.4 

MVGS .26** .14ns 72.08 61.99 36.4 

TP18 

PS - -.01ns -21.77 -14.33 52.2 

NGS .12ns .11ns 7.15 4.71 60.8 

MVGS .35*** .11ns -2.26 -1.49 69.6 

TP19 

PS - .09ns 27.43 11.80 67.8 

NGS .10* -.05ns .13 .06 55.5 

MVGS .29*** -.05ns -11.57 -4.98 71.2 

a TP, training population used to calculate GEBVs. 
b Pearson correlation coefficient between GEBVs and phenotypic data from the WO population used as a validation population 
(VP). 
c Pearson correlations coefficient between GEBVs and adjusted means for phenotypic data across the advanced (ADV) and elite 
(ARE) generations.  
d Calculated as S = μselected – μunselected; μselected, the mean of the top 50% of genotypes in the ARE (or ADV) selected using the given 
selection strategy; μunselected, the mean of the full population without any selection. 
e Calculated as R = H2S where H2 is the heritability for GY based on the adjusted means across ADV and ARE generations.  
f Percent of lines correctly selected in the ARE generation based using genotypes with above average GEBVs and also above 
average phenotypic values for GY; ADV generation for TP19.  

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level. †ns, 
nonsignificant at the .05 probability level. 
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Table 6. Comparison of three selection methods, phenotypic selection based on three FHB resistance traits using two training 

populations (TP), deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity (SEV) from the 

advanced trials (ADV), naïve genomic selection (NGS), and multivariate genomic selection (MVGS), based on correlations 

between genome estimated breeding values and the adjusted means from following generations, response to selection, and 

selection accuracy of genotypes in the final generation. 

TP Trait Method r ADVa r AREb 
Selection 

Differentialc 

Response to 

Selectiond 
Selection Accuracye  

TP18_FHB 

DON 

PS - -.01ns† .40 .20 52.9 

NGS .22* .19ns -.73 -.37 82.4 

MVGS .53*** .10ns -.46 -.23 70.6 

FDK 

PS - .14ns -2.24 -1.59 58.8 

NGS .41*** .38ns -5.77 -4.09 70.6 

MVGS .70*** .42ns -3.99 -2.83 70.6 

SEV 

PS - .54* -3.46 -1.49 52.9 

NGS .29** .16ns -1.90 -.82 41.2 

MVGS .57*** .60* -5.33 -2.29 47.1 

TP19_FHB 

DON 

PS - .51* -1.32 -1.03 13.0 

NGS .17ns .37ns -.67 -.53 56.5 

MVGS .71*** .45* -.96 -.75 69.6 

FDK 

PS - .67*** -4.07 -3.42 91.3 

NGS .18* .45* -3.21 -2.70 34.8 

MVGS .83*** .64** -4.57 -3.84 60.9 

SEV 

PS - .78*** -5.86 -4.45 82.6 

NGS .25** .08ns .50 .38 60.9 

MVGS .67*** .12ns -.18 -.13 82.6 
a Pearson correlation coefficient between GEBVs and phenotypic data from the ADV population used as a validation population 
(VP). 
b Pearson correlations coefficient between GEBVs and adjusted means for phenotypic data from the elite (ARE) generation.  
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Table 6 (Cont.) 
c Calculated as S = μselected – μunselected; μselected, the mean of the top 50% of genotypes selected using the given selection strategy; 
μunselected, the mean of the full population without any selection. DON is presented as μg g-1 and FDK and SEV are presented as 
percentages. 

d Calculated as R = H2S where H2 is the heritability for a given trait based on the adjusted means across ADV and ARE 
generations. DON is presented as μg g-1 and FDK and SEV are presented as percentages. 
e Percent of lines correctly selected in the ARE generation based using genotypes with above average GEBVs and also above 
average phenotypic values for a given trait.  

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level. †ns, 
nonsignificant at the .05 probability level. 
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Figure 1.  Population structure of 355 soft red winter wheat genotypes using 5,202 single 
nucleotide polymorphism (SNP) markers. This population represents the 2017 training 
population (TP17) used to predict grain yield for the 2017 F4:6 observation nursery (WO17) and 
the training population used to predict three Fusarium head blight (FHB) resistance traits 
including deoxynivalenol (DON) concentration, Fusarium damaged kernels (FDK), and severity 
(SEV) (TP18_FHB) for the 2018 advanced Fusarium head blight trial (ADV18). Colors 
represent the origin of the genotypes. AR, developed at the University of Arkansas, Fayetteville; 
GA, developed at the University of Georgia, Athens; LA, developed at Louisiana State 
University, Baton Rouge; NC, developed at North Carolina State University, Raleigh; Pioneer, 
developed by Pioneer Hi-Bred International; Syngenta, developed by Syngenta and AgriPro; and 
VA, developed by Virginia Polytechnic Institute and State University, Blacksburg; PC, principal 
component.
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Figure 2. Population structure between the 2019 training population (TP19) used to predict grain 
yield for the 2019 F4:6 observation nursery (WO19) using 5,202 single nucleotide polymorphism 
(SNP) markers. Colors represent the population type. TP, TP19 population consisting of 
genotypes from the 2017 training population (TP17), WO17 and WO18 nurseries, and 2018 
advanced F4:7 nursery (ADV18); VP, validation population consisting of genotypes from the 
WO19 nursery; PC, principal component.
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Figure 3. Pirate plot comparing the mean prediction accuracies between multivariate genomic 
selection (MVGS) models with naïve genomic selection (NGS) models for grain yield (GY) in soft 
red winter wheat across three different training populations (TP). The x axis represents the 
combination of TP and GS model used to predict GY. The y axis represents the mean prediction 
accuracy across 100 iterations of fivefold cross-validation in the form of a Pearson correlation 
coefficient (r) between the predicted genome estimated breeding value (GEBV) and the actual 
phenotypic value for the validation populations. Individual points represent the Pearson correlation 
from each fold of each iteration of cross-validation for a total of 500 datapoints. The lines within 
each plot represent the mean and 95% confidence intervals for prediction accuracy. The curves 
represent the smoothed densities of the data.  
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Figure 4. Pirate plots comparing the mean prediction accuracies between multivariate genomic 
selection (MVGS) models with naïve genomic selection (NGS) models for three Fusarium head 
blight resistance traits (FHB), deoxynivalenol (DON) concentration, Fusarium damaged kernels 
(FDK), and severity (SEV) in soft red winter wheat across two training populations (TPs): (a) 
TP18_FHB, TP used to predict three FHB resistance traits for the 2018 advanced F4:7 generation 
(ADV18); (b) TP19_FHB, TP used to predict three FHB resistance traits for the 2019 advanced 
F4:7 generation (ADV19), consisting of all genotypes from TP18_FHB and ADV18. The x axis 
represents the combination of FHB resistance traits and GS model used to predict each trait. The 
y axis represents the mean prediction accuracy across 100 iterations of fivefold cross-validation 
in the form of a Pearson correlation coefficient (r) between the predicted genome estimated 
breeding value (GEBV) and the actual phenotypic value for the validation populations. 
Individual points represent the Pearson correlation from each fold of each iteration of cross-
validation for a total of 500 datapoints. The lines within each plot represent the mean and 95% 
confidence intervals for prediction accuracy. The curves represent the smoothed densities of the 
data. 
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Figure 5. Scatter plots between genome estimated breeding values (GEBVs) for grain yield (GY) 
in soft red winter wheat from two different genomic selection models (GS), including naïve 
models without covariates (NGS) and multivariate GS models with test weight as a covariate 
(MVGS), and adjusted means for GY across multiple generations of selection, starting with the 
2016-2017 growing season through the 2018-2019 growing season: (a) predictions for F4:6 
observation genotypes from the 2016-2017 growing season (WO17) using a NGS model, (b) 
predictions for WO17 using a MVGS model, (c) predictions for F4:6 observation genotypes from 
the 2017-2018 growing season (WO18) using a NGS model, (d) predictions for WO18 using a 
MVGS model, (e) predictions for F4:6 observation genotypes from the 2018-2018 growing season 
(WO18) using a NGS model, (f) predictions for WO18 using a MVGS model. The x-axis 
represents adjusted mean for GY across the WO, F4:7 advanced (ADV), and F4:8 elite (ARE) 
generations. Adjusted means for GY were only calculated across WO19 and ADV20 for (e) and 
(f). The y-axis represents the GEBVs calculated for GY from the NGS or MVGS models. 
Different colored datapoints represent genotypes that were advanced to the next generation. The 
solid vertical line represents the mean of the adjusted means for GY from the WO generation, 
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while the vertical dashed line represents the mean of the adjusted means for GY from the ADV 
generations, and the vertical dot-dash line represents the mean of the adjusted means for GY 
from the ARE generation. The solid horizontal line represents the mean of GEBVs for GY 
calculated from the NGS or MVGS models. The r label represents the Pearson correlation 
between GEBVs and adjusted means.   
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Figure 6. Scatter plots between genome estimated breeding values (GEBVs) for three Fusarium 
head blight (FHB) resistance traits in soft red winter wheat from two different genomic selection 
models (GS), including naïve models without covariates (NGS) and multivariate GS models with 
covariates (MVGS), and adjusted means for deoxynivalenol (DON) concentration, Fusarium 
damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2017-
2018 (ADV18) and F4:8 elite from 2018-2019 (ARE19): (a) predictions for DON in ADV18 
using a NGS model, (b) predictions for DON using a MVGS model, (c) predictions for FDK 
from ADV18 using a NGS model, (d) predictions for FDK using a MVGS model, (e) predictions 
for SEV in ADV18 using a NGS model, (f) predictions for SEV using a MVGS model. The x-
axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. 
The y-axis represents the GEBVs calculated for DON, FDK, or SEV from the NGS or MVGS 
models. Different colored datapoints represent genotypes that were advanced to the next 
generation. The solid vertical line represents the mean of the adjusted means for the respective 
FHB resistance trait from the ADV generation, while the vertical dashed line represents the mean 
of the adjusted means for the respective FHB resistance trait from the ARE generations. The 
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solid horizontal line represents the mean of GEBVs for the respective FHB resistance trait 
calculated from the NGS or MVGS models. The r label represents the Pearson correlation 
between GEBVs and adjusted means.   
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Figure 7. Scatter plots between genome estimated breeding values (GEBVs) for three Fusarium 
head blight (FHB) resistance traits in soft red winter wheat from two different genomic selection 
models (GS), including naïve models without covariates (NGS) and multivariate GS models with 
covariates (MVGS), and adjusted means for deoxynivalenol (DON) concentration, Fusarium 
damaged kernels (FDK), and severity (SEV) across two generations, F4:7 advanced from 2018-
2019 (ADV19) and F4:8 elite from 2019-2020 (ARE20): (a) predictions for DON in ADV19 
using a NGS model, (b) predictions for DON using a MVGS model, (c) predictions for FDK 
from ADV19 using a NGS model, (d) predictions for FDK using a MVGS model, (e) predictions 
for SEV in ADV18 using a NGS model, (f) predictions for SEV using a MVGS model. The x-
axis represents adjusted mean for DON, FDK, or SEV across the ADV and ARE generations. 
The y-axis represents the GEBVs calculated for DON, FDK, or SEV from the NGS or MVGS 
models. Different colored datapoints represent genotypes that were advanced to the next 
generation. The solid vertical line represents the mean of the adjusted means for the respective 
FHB resistance trait from the ADV generation, while the vertical dashed line represents the mean 
of the adjusted means for the respective FHB resistance trait from the ARE generations. The 
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solid horizontal line represents the mean of GEBVs for the respective FHB resistance trait 
calculated from the NGS or MVGS models. The r label represents the Pearson correlation 
between GEBVs and adjusted means. 
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OVERALL CONCLUSIONS 

Multiple genomic selection (GS) analyses were conducted for five agronomic traits, including 

grain yield (GY), heading date (HD), maturity date (MD), test weight (TW), and plant height 

(PH), as well as four Fusarium head blight (FHB) resistance traits, including deoxynivalenol 

accumulation (DON), Fusarium damaged kernels (FDK), incidence (INC), and severity (SEV) 

using a training population of soft red winter wheat (SRWW) genotypes. The training population 

was also used for forward prediction in order to predict the performance of untested F4:6 breeding 

lines for GY and F4:7 breeding lines for FHB resistance traits.  

Additionally, a genome-wide association study (GWAS) was performed on the training 

population to identify novel loci associated with the four abovementioned FHB resistance traits. 

The GWAS identified QTL in regions previously reported in QTL mapping and GWAS studies, 

particularly on the long arms of chromosomes 3B and 4B. The identification of QTLs in our 

panel of 354 SRWW breeding genotypes adapted to the southeastern United States indicates that 

previously identified QTL are contributing to genetic resistance in this population. The SNPs 

identified could be implemented for MAS in wheat breeding programs.  

The GS analyses for FHB resistance traits also found that naïve GS (NGS) models 

significantly outperformed GS models using significant markers identified through GWAS as 

fixed effects. However, multivariate GS (MVGS) models using secondary traits, correlated with 

the primary trait of interest, as covariates significantly improved prediction accuracies for all 

FHB and agronomic traits. This was particularly evident when there was a stronger genetic 

correlation between the trait of interest and covariates and the covariate had a higher heritability 

than the trait of interest. This indicated that MVGS could be successfully used when breeding for 

FHB resistance and agronomic traits. This study also found that using GY data from 
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environments closely related to a missing environment as covariates in a MVGS model to predict 

GY in the missing environment significantly improved prediction accuracy. Before 

implementing MVGS in their breeding programs, breeders must consider the genetic correlations 

between their traits as well as the heritability of their traits as results can vary across populations. 

Breeders must also be careful not to unintentionally select for undesirable traits if they have 

strong genetic correlations with a trait of interest. An example would be unintentionally selecting 

for taller plants while using PH as a covariate to predict TW, as both traits are positively 

correlated.  

We also found that MVGS models performed significantly better than NGS models in 

terms forward prediction of untested genotypes for economically important traits, such as GY or 

FHB resistance traits. This is one of the first studies to show that MVGS could be effectively 

implemented for forward prediction within a wheat breeding program. This is also the first study 

to extensively investigate the use of forward prediction when breeding for FHB resistance in 

wheat. We found that GS could serve as a suitable, albeit imperfect, alternative to phenotypic 

selection when implemented during years where environmental conditions prohibit accurate 

phenotypic selection, particularly when experiencing late freezing events or extensive lodging. 
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Appendix 1. Manhattan plots for four phenotypic traits associated with Fusarium head blight 
resistance: (a) deoxynivalenol (DON) accumulation, (b) Fusarium damaged kernels (FDK), (c) 
incidence (INC), (d) severity (SEV), (e) heading date (HD), and (f) plant height (PH). The x-axis 
represents the 21 wheat chromosomes. The y-axis represents the –log10(p-value) of the 
association between a single nucleotide polymorphism (SNP) marker and the trait of interest. 
The red horizontal lines represent the threshold for declaring a SNP marker as significant, using 
a Bonjamini-Hochberg false discovery rate of 0.10 (DON: -log10(p) = 4.82, FDK: -log10(p) = 
4.75, INC: -log10(p) = 4.86, SEV: -log10(p) = 4.75, HD: -log10(p) = 4.72, PH: -log10(p) = 4.78). 
The blue horizontal line represents the threshold calculated in FarmCPU using a permutation test 
for each individual trait (DON: -log10(p) = 6.18, FDK: -log10(p) = 6.31, INC: -log10(p) = 6.30, 
SEV: -log10(p) = 7.08, HD: -log10(p) = 5.42, PH: -log10(p) = 5.63). 
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Appendix 2. The top three significant single-nucleotide polymorphisms (SNP) from a fixed and random model circulating 

probability unification (FarmCPU) model, with a Benjamini-Hochberg false discovery rate threshold of q ≤ 0.10, used as fixed 

effects in a genotype best linear unbiased prediction (GBLUP) genomic selection model for four Fusarium head blight (FHB) 

traits, including deoxynivalenol (DON) accumulation, Fusarium damaged kernels, incidence (INC), and severity (SEV), as well 

as two phenological traits, heading date (HD) and plant height (PH) over 10 randomly selected training subsets of 283 

genotypes. 

Subsetb 

Traitsa 

DON FDK INC SEV HD PH 

TP1 S7A_15248425 S3A_36924697 S7A_706438978 S3B_51321489 S4B_526725227 S5B_21403762 

S7A_14282369 S6B_175593693 S4A_597028557 S3B_20446350 S1B_561386646 S5A_31207940 

S3D_498442075 S4B_534404586 S2B_35068139 S7D_615435411 S7A_82582815 S3B_518277482 

TP2 S3A_642133424 S2D_175925167 S2B_57283068 S4B_21368968 S7A_81885452 S3B_752173863 

S6A_5482360 S6A_561979919 S2B_31271227 S1D_222230632 S3A_737441262 S7B_126611056 

S7A_263474297 S2B_789393547 S1D_484428278 S1B_655834997 S7B_590232747 S5B_21403762 

TP3 S2A_54864749 S4B_577008759 S7B_633023455 S4A_647100355 S2D_161255383 S7B_189318561 

S7A_263474297 S5D_548469050 S3D_181251255 S3B_783125543 S3B_741065919 S7D_203060 

S3B_779116067 S5D_424046598 S2B_642399809 S5D_548469057 S3A_713731888 S5A_30400811 

TP4 S2B_574225916 S4B_577008759 S4B_543165477 S3B_555867387 S4B_526725227 S2B_618048921 

S6B_687241289 S6D_425897815 S1B_525464530 S2B_775018873 S6B_687101754 S3B_752173863 

S3B_225212457 S1B_671293704 S4B_522382631 S6B_94286753 S1A_6496631 S5D_363846822 

TP5 S2B_574225916 S4A_718920432 S2A_546944252 S4B_575810081 S2D_40925400 S2A_694862057 

S7A_263474297 S5D_548463464 S7A_606560075 S5D_548930259 S7B_709513949 S2D_561935999 

S3B_749054930 S3B_689868478 S2B_774330791 S7B_706708847 S1B_139627751 S4D_469909453 

TP6 S3B_749054930 S7B_712097406 S2B_744317223 S5B_459147174 S3A_739309750 S5B_21403762 

S7A_263474297 S3B_51321534 S1B_331007886 S3B_818987684 S2D_40925400 S5A_31207940 

S6B_346977040 S7A_4580957 S1D_18351199 S6B_687085031 S1A_6496631 S7A_580136731 

TP7 S3B_749054930 S5B_270368480 S2B_23375290 S6B_687085031 S4B_526725227 S5B_21403762 

S6A_145739256 S3B_785489583 S4A_148243841 S1B_676778147 S6A_617200734 S1A_6496613 

S2B_18265867 S3B_51321489 S6A_23793725 S5B_548333940 S7A_82582815 S3D_556878443 

TP8 S6D_25812397 S4B_534404586 S2D_13433473 S5D_358143404 S1A_6496631 S3B_752173863 

S2A_605208569 S7B_456959818 S5B_548689817 S4A_168927580 S1B_561386646 S3B_49364658 
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Appendix 2 (Cont.) 

Subsetb 

Traitsa 

DON FDK INC SEV HD PH 

TP8 NAc S4B_538715342 S4A_148243841 S6B_643642305 S4B_656452095 S5B_21403762 

TP9 S4A_39713449 S5D_377751712 S4A_597058951 S7B_494497635 S4B_656452095 S5B_21403762 

S3B_749054930 S5D_424046598 S2B_197586765 S3B_818987707 S3B_141635343 S1B_446198866 

S4B_634284495 S4B_577008759 S4B_534795951 S4B_554987684 S1B_165428415 S5B_629129312 

TP10 S7A_263474297 S4B_577008759 S5D_109218483 S3B_818987707 S1A_346637882 S4D_23740304 

S2B_574225916 S3A_714306573 S2D_481950465 S7D_169051163 S2D_40925400 S2D_14629280 

S5B_584753871 S1B_298191278 S4A_713631416 S3B_786072341 S7A_83786115 S5A_317247327 
a DON, deoxynivalenol accumulation; FDK, Fusarium damaged kernels; INC, incidence; SEV, severity; HD, heading date; PH, 
plant height. 
b TP, training population subsets were created by randomly selecting 283 genotypes from the full population of 354 genotypes. 
c Only two markers exceeded the false discovery rate threshold from the FarmCPU model for the TP8 subset, therefore two 
markers were used as fixed effects in the G-BLUP model for DON for TP8. 
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Appendix 3. A biplot of six environments tested for grain yield and their respective clusters 
based on a principal component analysis-based clustering algorithm. The first cluster, mega-
environment 1 (ME1), consisted of three environments, including Marianna 2017 (M17), Keiser 
2017 (K17), and Marianna 2015 (M15). The second cluster, mega-environment 2 (ME2), 
consisted of three environments, including Keiser 2014 (K14), Marianna 2016 (M16), and 
Marianna 2014 (M14).  
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Appendix 4. Population structure between training populations (TP) used to predict grain yield or 

FHB resistance traits for validation populations (VP) using 5,202 single nucleotide 

polymorphism (SNP) markers. Colors represent the population type. (a) TP, training population 

consisting of genotypes from the 2017 training population (TP17); VP, validation population 

consisting of genotypes from the F4:6 2017 wheat observation nursery (WO17); PC, principal 

component. (b) TP, TP18 population consisting of genotypes from TP17 and WO17; VP, 

validation population consisting of genotypes from the F4:6 2018 wheat observation nursery 

(WO18); PC, principal component. (c) TP, training population consising of the same genotypes 

from TP17 to predict FHB resistance traits (TP18_FHB); VP, validation population consisting of 

genotypes from the F4:7 2018 advanced nursery (ADV18); PC, principal component. (d) TP, 

training population consising of the same genotypes from TP18_FHB and ADV18 to predict 

FHB resistance traits (TP19_FHB); VP, validation population consisting of genotypes from the 

F4:7 2019 advanced nursery (ADV19); PC, principal component. 
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