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ABSTRACT 

The increasing use of renewable energy has resulted in the need for improved a dc-dc 

converters. This type of electronic-based equipment is needed to interface the dc voltages normally 

encountered with solar arrays and battery systems to voltage levels suitable for connecting three 

phase inverters to distribution level networks. As grid-connected solar power levels continue to 

increase, there is a corresponding need for improved modeling and control of power electronic 

converters. In particular, higher levels of boost ratios are needed to connect low voltage circuits 

(less than 1000 V) to medium voltage levels in the range of 13 kV to 34 kV. With boost ratios now 

exceeding a factor of 10, the inherent nonlinearities of boost converter circuits become more 

prominent and thereby lead to stability concerns under variable load conditions. This dissertation 

presents a new method for analyzing dc-dc converters using fractional order calculus. This 

provides control systems designers the ability to analyze converter frequency response with Bode 

plots that have pole-zero contributions other than +/- 20 dB/decade. This dissertation details a 

systematic method of deriving the optimal frequency-domain fit of nonlinear dc-dc converter 

operation by use of a modified describing function technique. Results are presented by comparing 

a conventional linearization technique (i.e., integer-order transfer functions) to the describing-

function derived equivalent fractional-order model. The benefits of this approach in achieving 

improved stability margins with high-ratio dc-dc converters are presented. 
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1 Introduction 

1.1 Overview 

Methods for identifying the dynamic behavior of systems have long been a topic of 

research. Traditional methods are based on sets of differential equations the model the behavior of 

engineered systems. This involves the use of relationships derived from well-established analysis 

techniques such as Kirchhoff’s current and voltage laws for electrical circuits and Newton’s laws 

for mechanical elements. These are typically applied using conventional integer-order calculus. 

However, these are based on idealized mechanical and electrical components, whereas actual 

physical devices have been observer to behave in a manner that is more accurately described by 

fractional-order derivatives [1]. A number of researchers have documented the fractional order 

behavior of many physical systems  [2] and has led to ongoing efforts to establish the theoretical 

foundations for fractional-order modeling techniques [3]. These methods are often extensions from 

standard integer-order calculus, such as state-space representations, Laplace transforms of linear 

differential equations and discrete-time equivalents. However, there is a tradeoff between the 

accuracy versus complexity in the mathematical modeling of a physical system. Most physical 

system exhibit varying degrees of nonlinear behavior. Given the rich theoretical and design 

capabilities associated with linear systems, then there is a preference for performing a linearization 

of the system dynamics to provide a model that is reasonably accurate for a least a limited range 

near its nominal operating condition.   Switched-mode power electronics that are employed in dc-

dc boost converters exhibit nonlinear behavior that becomes more acute as the boost ratios are 

increased. Consequently, conventional linearization methods result in progressively degraded 

accuracy under conditions where an accurate dynamic model is most needed. . In particular, dc-dc 

boost converters exhibit non-minimum phase effects in the linearized equivalent models associated 
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with emergent right-half plane (RHP) zeros. This research proposes a novel method the modeling 

dc-dc converters based on a fractional-order representation of the system dynamics.  

1.2 Motivation and Contribution of the Dissertation 

The principal aim of the dissertation is the development of a new modeling method that 

more accurately represents the actual behavior of dc-dc converter systems. The identification of 

dc-dc converters from data that includes nonlinear behavior is analyzed in the context of fractional-

order system theory. The modeling method begins with discrete-time (sampled) input-output data. 

By utilizing fractional-order calculus, the input-out data is processed to derive a Laplace-domain 

non-integer order transfer function. This provides systems designers the ability to analyze 

converter frequency response with Bode plots that have asymptotic pole-zero contributions other 

than +/- 20 dB/decade. The details of the proposed method derives an optimal fit of the actual dc-

dc converter data through a novel describing function technique. The benefits of this approach in 

achieving improved stability margins with high ratio dc-dc boost converters are presented: First, 

the proposed methods are applied to data from a detailed circuit simulation of a switched-mode 

dc-dc boost converter. Secondly, the system modeling method is applied to a laboratory prototype 

dc-dc boost converter to further verify the effectiveness of the proposed methods.  

1.3 Dissertation Outline 

This dissertation has seven chapters: Chapter 2 discusses the mathematical tools that will 

be needed for understanding fractional-order calculus. Chapter 3 explains the identification of 

fractional-order systems based on input-output data collected from open-loop measurements and 

the derivation of a fractional order transfer function for a dc-dc converter. 
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Chapter 4 describes a novel describing function method that can be used to quantify the 

nonlinear effects of dc-dc converter operation.  Chapter 5 discusses system stability and robustness 

when a fractional-order controller is used.  

Chapter 6 provides step-by-step procedures on how to identify the nonlinear behavior of a 

dc-dc converter using detailed simulations and experimental results from a laboratory prototype. 

A conclusion is provided in Chapter 7 for the results of the proposed new method and potential 

future research directions.   
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2 Preliminary Mathematical Knowledge 

This chapter reviews the necessary background knowledge needed for developing 

fractional-order methods of system modeling and identification. Details in applying identification 

methods to dc-dc converters from input-output operational data is provided as a foundation for 

subsequent chapters.  

2.1 Introduction for Fractional Calculus 

The source of fractional-order behavior in electrical components is associated with the 

distributed internal losses present in all physical devices [4] [5]. The history of fractional calculus 

is well known and dates back to the original work by Newton and Leibniz [6]. Leibniz postulated 

derivatives and integrals of fractional order  and the potential implications [7].  In recent times, 

there has been renewed interest in fractional-order calculus in order to meet challenges in systems 

analysis and engineering [8] [9]. Formal methods have been developed which encompasses and 

extends the concepts normally taken in conventional integer-order systems analysis [10]. 

2.1.1 Gamma Function 

The gamma function is widely used in defining fractional-order integration. The gamma 

function integral is expressed as 

Γ(𝑥) = ∫ 𝑒−𝑛𝑢𝑥−1𝑑𝑢, 𝑅𝑒(𝑥) > 0                                                 (2.1)

∞

0

 

which has properties  

Γ(𝑥) = 1,                                                                               (2.2) 

Γ(𝑚 + 1) = 𝑚! , 𝑤ℎ𝑒𝑟𝑒 𝑖𝑠 (𝑚 = 0,1,2… ),                                              (2.3) 
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Γ (
1

2
) = √𝜋,                                                                             (2.4) 

Γ(𝑥 + 1) = 𝑥Γ(𝑥).                                                                        (2.5) 

Integer-order and the fractional-order derivatives of a single variable defined as 

𝑑𝛼

𝑑𝑥𝛼
𝑥𝛼 =

Γ(𝛼 + 1)

Γ(𝛼 − 𝛼 + 1)
𝑥𝛼−𝛼 = Γ(𝛼 + 1).                                   (2.6) 

 

Figure 2.1: Graph of Gamma function. 

Γ(x) and 1/Γ(x) is defined over the complex plane for positive and negative values of x is shown 

in Figure 2.1. 

2.1.2 Mittag-Leffler Function  

The Mittag-Leffler function is a generalization of the exponential function. That is needed 

in the resolution of fractional-order differential equations. There are several commonly used forms 

[11] [12], however this research relies upon the following version [13] for one parameter as 

𝐸𝛼(𝑡) = ∑
𝑡𝑛

Γ(𝛼𝑘 + 1)
,

∞

𝑘=0

                                                             (2.7) 
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and for two parameters as represented by 

𝐸𝛼,𝛽(𝑡) = ∑
𝑡𝑛

Γ(𝛼𝑘 + 𝛽)
,                                                          (2.8)

∞

𝑘=0

 

where is  ℜ(𝛼) > 0,ℜ(𝛽) > 0. The Mittag-Leffler function E( . )  is defined as 

𝐸1,1(𝑡) = 𝑒𝑘,                                                                             (2.9) 

𝐸1,2(𝑡) =
𝑒𝑘 − 1

𝑡
.                                                                       (2.10) 

For example, 

𝛼 = 1                                                                                   (2.11) 

𝐸𝛼(𝑡) = ∑
𝑡𝑛

Γ(𝛼𝑘 + 1)
= 𝑒𝑘

∞

𝑘=0

.                                                (2.12) 

With 𝛼 = 1 and 𝛽 = 2,                                                                                                            (2.13) 

𝐸𝛼,𝛽(𝑡) = ∑
𝑡𝑛

Γ(𝛼𝑘 + 𝛽)
=
𝑒𝑘 − 1

𝑡

∞

𝑘=0

                                        (2.14) 



7 

 

Figure 2.2: Mittag-Leffler function for Eα, 1(x) for α= 0.5, 1, 1.5. 

 

Figure 2.3: Mittag-Leffler function for E1, β(x) for β= 0.5, 1, 1.5. 
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2.2 Fractional Order Calculus 

Fractional calculus is a general form of integral and derivative terms for non-integer order 

operators. It is an improvement for dynamic systems that are described by integration and 

differentiation operators 𝐷𝑡 and 𝒟𝑡
𝛼

𝑎
 : 

𝒟𝑡
𝛼

𝑎
 =

{
 
 

 
 

  

𝑑𝛼

𝑑𝑡𝛼
                 ℜ(𝛼) > 0,

1                      ℜ(𝛼) = 0,

∫ (𝑑𝑡)−𝛼
𝑡

𝑎

      ℜ(𝛼) < 0,

                                                (2.15) 

where the operator 𝐷 and the parameter  𝛼 and variable 𝑡 express the limits of  the operations and 

signifies the fractional-order operator, where 𝛼 ∈ ℝ [14]. 

2.2.1 System Definitions 

There are several definitions commonly applied for a fractional-order derivative of a 

function: Riemann Liouville's definition; Caputo's definition; and Grunwald-Letnikov's definition. 

The Riemann Liouville’s definition is often chosen be to be applied for Laplace transform analysis. 

It is a method that begins with a generalization of Cauchy's theorems for integration with extension 

to non-integer order conditions. The fractional-order integral becomes 

𝐼𝑐
𝛼𝑓(𝑡) = 𝒟𝑡

−𝛼
 
 (𝑡) =

1

𝛤(𝛼)
∫(𝑡 − 𝜏)𝛼−1∫(𝜏) 𝑑𝜏,

𝑡

𝑐

       𝑡 > 𝑐, 𝛼 ∈ 𝑅+           (2.16) 

where 𝛤(𝛼), is the gamma function represented with the following definition  

Γ(𝛼) = ∫ 𝑒−𝑛 𝑢𝛼−1𝑑𝑢
∞

0

.                                                        (2.17) 

If 𝛼 is a natural numbers then Eq. (2.17) then  
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Γ(𝑛) = (𝑛 − 1)! ,       𝑛 ∈ 𝑁.                                                 (2.18) 

The fractional derivative as derived by the Rieman-Liouville definition for a fractional 

order derivative 𝛼 ∈ 𝑅+ , 𝛼 > 0 is  

𝐷𝑡
𝛼

𝑐
𝑅  

𝑓(𝑡) ≜ 𝐷𝑘
 

 
𝐼𝑘−𝛼𝑓(𝑡) ,                                                

=
𝑑𝑘

𝑑𝑡𝑘
[

1

𝛤(𝑘 − 𝛼)
∫

𝑓(𝜏)

(𝑡 − 𝜏)𝛼−𝑘−1
𝑑𝜏

𝑡

0

],                                  (2.19) 

where 𝑘 − 1 <  𝛼 ≤  𝑘, 𝑘 = 0, 𝑎𝑛𝑑  𝑘 ∈ 𝑁. The representation of the Rieman-Liouville 

definition is  𝑅 [15]. Caputo's definition with fractional derivative is shown as  

𝐷𝛼𝑓(𝑡) ≜𝑐
 𝐼𝑘−𝛼𝐷𝑘𝑓(𝑡) =

1

𝛤(𝑘−𝛼)
∫

𝑓𝑘(𝜏)

(𝑡−𝜏)𝛼−𝑘+1
𝑑𝜏

𝑡

0
.                        (2.20) 

This form applies to integer-order conditions if using a Laplace transform to solve fractional order 

differential equations, where 𝑘 − 1 <  𝛼 <  𝑘, 𝑘 ∈ 𝑁 and C represents the Caputo definition.  

Grünwald determines a discrete time definition of fractional-order differentiation as [16] 

𝒟𝑡
𝛼

𝑐
 𝑓(𝑡) = lim

𝑚→0

1

ℎ𝛼
 ∑ (−1)𝜏 (

𝛼
𝜏
)

[
𝑡−𝑐
𝑚
]

𝜏=0

𝑓(𝑡 − 𝜏𝑚),                                (2.21) 

where 𝑚 is a sampling period and  (
𝛼
𝜏
) is Newton’s binomial function. 

2.3 Laplace Transform of Fractional Operator  

The Laplace transform is one of the fundamental tools in dynamical systems and controls 

engineering. It is not only applied for functions of integer order operators; it can be applied for 

non-integer order functions as [17] 
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𝐹(𝐾) = ℒ(𝑓(𝑡)) = ∫ 𝑒−𝑁𝑡
∞

0

𝑓(𝑡)𝑑𝑡,                                              (2.22) 

where the function 𝑓(𝑠) is obtained as the Laplace transform 𝐹(𝐾) by using the inverse Laplace 

transform represented as 

𝑓(𝑠) = ℒ−1[𝐹(𝑁)] =
1

𝑗2𝜋
∫ 𝑒𝑠𝑡
𝑐+𝑗∞

𝑐−𝑗∞

𝐹(𝑁)𝑑𝑠                                (2.23) 

where 𝑐 is large  and all the poles of function 𝐹(𝑧) are real valued [18]. The Laplace transform for 

fractional order versions of the Grünwald-Letnikov definition is 

ℒ[ 𝐷𝛼𝑓(𝑠) 
 ] = 𝑠𝛼𝐹(𝑧).                                                        (2.24) 

Laplace transform is defined of the Riemann-Liouville fractional operator definition for 𝑓 − 1 ≤

𝛼 < 𝑓 as: 

ℒ[ 𝐷𝛼𝑓(𝑡)𝑐
 ] = 𝑠𝛼𝐹(𝑠) −∑𝑠𝑘 × [𝐷𝛼−𝑘−1𝑓(𝑢)]𝑢=0,

𝑓−1

𝑘=0

                               (2.25) 

and it is defined  with the Caputo fractional operator definition as  

ℒ[ 𝐷𝛼𝑓(𝑢)𝑐
 ] = 𝑠𝛼𝐹(𝑠) −∑ 𝑠𝛼−𝑘−1𝑓(𝑘)(0)

𝑛−1

𝑘=0

.                                       (2.26) 

Example 2.1  

Calculating the inverse Laplace transform for the following example [18]: 

𝐹(𝑠) = {
1

𝑠√𝑠+𝑛𝑚
} where 𝑐 is a real-valued constant                               (2.27) 

ℒ−1[𝐹(𝑠)]                                                                     (2.28) 

By applying the shift ℒ  [𝑒𝑎𝜏𝑓(𝜏)] = 𝐹(𝑠 − 𝑛𝑚) 
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ℒ−1 [
1

𝑠√𝑠 + 𝑛𝑚
] =

𝑒−𝑎𝜏

√𝜋𝑡
                                                           (2.29) 

Laplace transform integral  

ℒ−1 [
1

𝑠√𝑠 + 𝑛𝑚
] = ∫  

𝜏

0

𝑒−𝑎𝜏

√𝜋𝜏
𝑑𝜏                                                (2.30) 

That is represented as for 𝑢2 = 𝑛𝑚𝜏  

ℒ−1 [
1

𝑠√𝑠 + 𝑐
] =

1

√𝑐
erf(√𝑛𝑚𝜏).                                             (2.31) 

2.4 The Fractional Fourier Transform 

The fractional-order integral and derivative is applied to the as well to the Fourier 

transform. The fractional Fourier transform is [19]: 

𝑋𝛼(𝑢) = ℱ𝛼(𝑥(𝜏)) = ∫ 𝑥(𝜏)𝐾𝛼(𝜏, 𝑢)𝑑𝜏,
∞

−∞

                           (2.32) 

where 𝐾𝛼(𝜏, 𝑢) is the kernel function determinate: 

𝐾𝛼(𝜏, 𝑢) =

{
 
 

 
 
√
1 − 𝑗 cot 𝛼

2
 × 𝑒

𝑗(
𝑢2

2
)cot𝛼

𝑒
𝑗(
𝜏2

2
)cot𝛼−𝑗𝑢𝜏 cos(𝑒𝑐𝛼) 

𝐹𝑜𝑟 𝛼 ≠ 2𝜋

𝛿(𝜏 − 𝑢) 𝐹𝑜𝑟 𝛼 = 2𝜋
𝛿(𝜏 + 𝑢𝑡) 𝐹𝑜𝑟 𝛼 = (2𝑛−)𝜋

      (2.33) 

This becomes the conventional Fourier transform when 𝛼 = 2𝜋, and 
𝜋

2
 multiples of 𝛼. 

Properties of the fractional Fourier transform are detailed in [20]. 
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2.5 Fractional-Order Differential Equation 

The Fractional-order differential equation is fundamental for expressing the fractional-

order dynamical behavior of electrical systems. This section describes the needed background for 

applying and solving fractional-order differential equations. 

2.5.1 Linear Fractional Order Differential Equation 

Fractional-order differential equations in this research will typically be in the form: 

𝑎𝑐𝒟
𝛼𝑐𝑦(𝑡) + 𝑎𝑐−1𝒟

𝛼𝑐−1𝑦(𝑡) + ⋯+ 𝑎0𝒟
𝛼0𝑦(𝑡) 

= 𝑏𝑛𝒟
𝛽𝑛𝑢(𝑡) + 𝑏𝑛−1𝒟

𝛽𝑛−1𝑢(𝑡) + ⋯+ 𝑏0𝒟
𝛽0𝑢(𝑡)                       (2.34) 

where is , 𝑎𝑖, 𝑏𝑗 ∈ ℝ, and  𝑦(𝑡) and 𝑢(𝑡) represent the input and output of the system. The form 

given by (2.34) is defined as commensurate-order when the orders of the system derivatives are 

integer multiples of a common factor, q such as 𝛼𝑘, 𝛽𝑘 = 𝑘𝑞, 𝑞 ∈ ℝ
+. The system is represented 

as follows [21]: 

∑𝑎𝑐

𝑛

𝑐=0

𝒟𝑐𝑞𝑦(𝑡) =∑𝑏𝑐𝒟
𝑐𝑞𝛾(𝑡),

𝑚

𝑐=0

                                        (2.35) 

where is 𝑞 =
1

𝑙
, 𝑎𝑛𝑑 𝑙 ∈ ℤ+. 

The relationships among the various forms for linear time-invariant (LTI) systems analysis are 

summarized in Figure 2.4. 
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(LTI) Systems

Non-integer (fractional) Integer

Commensurate Non-commensurate 

Rational Irrational 
 

Figure 2.4: Classification of LTI system. 

2.5.2 Nonlinear Fractional-Order Differential Equations 

Pereira et al. [22] examined the  fractional derivative for the Van der Pol equations by 

considering  capacitance with a fractional order in a nonlinear electrical circuit design, 

𝐷𝛼𝑥 + 𝛾(𝑥2 − 1)�̇� + 𝑥 = 0,         1 < 𝛼 < 2.                                  (2.36) 

Barbosa et al. [23] presented fractional order Van der Pol equations by two part derivatives 

in fractional form as, 

𝐷1+𝛼𝑥 + 𝛾(𝑥2 − 1)𝐷𝛼𝑥 + 𝑥 = 0,        0 < 𝛼 < 1.                           (2.37) 

2.6 State-Space Representation 

The state-space description is often the most useful form for designing feedback control 

systems. When the Fractional-order differential equations have commensurate order then  the state-

space equations can be represented as: 

𝐷𝑡
𝛼𝑥(𝜏) = 𝑓(𝑥, 𝑢, 𝜏)0

 ,                                                        (2.38) 
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𝑦(𝜏) = 𝑔(𝜏),                                                                 (2.39) 

where is 0 < 𝛼 < 2, and 𝑥 ∈ 𝑅𝑛state vector of n dimension. For linear fractional-order differential 

equations as in (2.34) can then be expressed in matrix form as  

𝐷𝑡
𝛼𝑥(𝜏) = 𝐴𝑥(𝜏) + 𝐵𝑢(𝜏)0

 ,                                               (2.40) 

𝑦(𝜏) = 𝐶𝑥(𝜏),                                                                (2.41) 

where are A, B and C real-values system matrices of appropriate dimensions. 

2.7 Stability of Fractional Differential Equations 

Understanding and ensuring the stability of feedback control systems is essential for 

developing power electronic dc-dc converters. Stability analysis is carried out using a modified 

Mittag-Letter form [24]. Analyzing the stability of nonlinear fractional differential equations is 

considerably more complicated than the linear case. Stability in general is determined from a 

fractional-order description for a state vector x, 

𝐷𝛼𝑥 = 𝑓(𝑥),                                                                 (2.42) 

where is 𝑥 ∈ ℝ𝑛 and 0 < 𝛼 < 1. For the 𝑓(𝑥) = 0 defines an equilibrium point of the system. It 

is asymptotically stable when the eigenvalues of a Jacobian matrix meets the condition [25] 

|∠(𝑒𝑖𝑔(𝐉))| = |∠(𝜆𝑗)| > 𝛼
𝜋

2
,  
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Figure 2.5: Stability region for all position. 

where is 𝜆𝑗 the eigenvalues and 𝐉|𝑥=𝑥0 = 𝜕𝑓/𝜕𝑥, and  𝐽 = 1,2, … , 𝑛. 

2.8 Fractional Order Transfer Functions 

A fractional order transfer function represents the input-output relationship for a linear 

time-invariant continuous time dynamical system. Using the Laplace transform based on zero 

initial conditions, the input-output description of a fractional-order system is expressed as: 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=
𝑏𝑚𝑠

𝛽𝑚 + 𝑏𝑚−1𝑠
𝛽𝑚−1 +⋯+ 𝑏0𝑠

𝛽0

𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 +⋯+ 𝑎0𝑠𝛼0
                             (2.43) 

where the Laplace transform is given for the input-output signals 𝑌(𝑠), 𝑈(𝑠), 𝑓𝑜𝑟 𝑚, 𝑛 ∈ ℕ+. It is 

considered the zero initial condition of 𝑦(𝑠) = 0 and 𝑢(𝑠) = 0. The continuous-time transfer 

function for the case of a commensurate-order system is : 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=
∑ 𝑏𝑘(𝑠

𝛼)𝑘𝑚
𝑘=0

∑ 𝑎𝑘(𝑠𝛼)𝑘
𝑛
𝑘=0

.                                                (2.44) 
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Example 2.2  

 For the fractional-order system [25]: 

𝐺(𝑠) =
1

(𝑇𝑠)𝛼
                                                               (2.45) 

The associated transfer function with 𝑠 = 𝑗𝜔 is the following: 

𝐺(𝑠) =
1

(𝑇𝑗𝜔)𝛼
=

1

𝑇𝜔𝛼(cos
𝜋
2 𝛼 + 𝑗 sin

𝜋
2 𝛼)

                                  (2.46) 

The magnitude is: 

𝐴(𝜔) = √
(cos2 

𝜋
2 𝛼 + 𝑗 sin

2 𝜋
2 𝛼)

(𝑇𝜔)2𝛼
=

1

(𝑇𝜔)𝛼
,                                   (2.47) 

𝑀(𝜔) = 20 log 𝐴(𝜔) = −𝛼20 log(𝑇) − 𝛼20 log(𝜔)                      (2.48) 

The phase of the transfer function is defined as: 

∅(𝜔) = arg [
1

(𝑇𝜔)𝛼
𝑗−𝛼] = −𝛼

𝜋

2
,                                          (2.49) 

The information is provided from the amplitude and phase can be used to create a Bode diagram 

of the fractional-order frequency response for various values 𝛼 = 0.5, .08,1,1.2,1.5 as shown in 

Figure. 2.6. 
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Figure 2.6: Bode diagrams of (s) =1/ (Tsα) systems for α= 0.5, 0.8, 1, 1.2, 1.5. 

The fractional order state-space representation by a fractional-order transfer function 

expression as [26] 

𝑠𝛼𝑋(𝑠) = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠) 
 ,                                                   (2.50) 

𝑌(𝑠) = 𝐶𝑋(𝑠),                                                                     (2.51) 

with assumed zero initial conditions. The system transfer function is determined by 

𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
= 𝑁(𝑠𝛼𝐼 − 𝐴)−1𝐵.                                             (2.52) 

The obtained G(s) of fractional order transfer function is a matrix when 𝐵 is multi-input 

(multiple columns) and output 𝐶 matrix has multiple rows (multi-output). The numerator and 

denominator of fractional order polynomials are of the general form  

𝑁(𝑠) = 𝑎𝑛𝑠
𝛼𝑛 + 𝑎𝑛−1𝑠

𝛼𝑛−1 +⋯+ 𝑎0𝑠
𝛼0 ,                           (2.53) 

where is 𝛼𝑖 ∈ ℕ0
+ and 𝛼𝑖 ∈ ℝ. The corresponding commensurate fractional degree polynomial is  

𝑁(𝑠) = 𝑎𝑛𝑠
𝜆𝑛
𝜆 + 𝑎𝑛−1𝑠

𝜆𝑛−1
𝜆 +⋯+ 𝑎0𝑠

𝜆0
𝜆       𝜆𝑖 ∈ ℝ.               (2.54) 
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2.8.1 Fractional-Order Transfer Function Stability 

The stability of a fractional-order system can be determined by extending root locus 

methods or the Nyquist theorem [27] concepts. The root locus method approach analyzes the  pole 

locations of a linear input-output feedback system with respect a variation of a parameter in terms 

of the corresponding loop gain. Stability in the time-domain for an LTI system is ensured when it 

satisfies the condition of its impulse response of ℎ(𝑡) [28] as 

∫ ‖ℎ(𝜏)‖𝑑𝜏 < ∞
∞

0

.                                                          (2.55) 

The s-domain fractional-order transfer function is stable when there are no poles located in the  

right-half complex plane [29]. A simplified Nyquist principle for fractional-order transfer function 

that is presented by Trigeassou et. When G(s) operated in a unity-gain closed-loop, the input-

output transfer function bacomes 

𝐺𝑛�̃�(𝑠) =
𝐺𝑛𝑚(𝑠)

𝐺𝑛𝑚(𝑠) + 1
 ,                                                            (2.56) 

𝐺𝑛𝑚(𝑠) =
1

𝑎𝑛𝑚𝑠𝛼𝑛𝑚 + 𝑎𝑛𝑚−1𝑠𝛼𝑛𝑚−1 +⋯+ 𝑎0𝑠𝛼0
  .                                  (2.57) 

By factoring,  

𝐺𝑛𝑚(𝑠) =
1

𝑎1𝑠𝛼1

1
𝑎𝑛𝑚
𝑎1

𝑠𝛼𝑛𝑚−𝑎1 +
𝑎𝑛𝑚−1
𝑎1

𝑠𝛼𝑛𝑚−1−𝑎1 +⋯+ 1
                              (2.58) 

=
1

𝑎1𝑠𝛼1
𝐺𝑛𝑚−1̃ (𝑠).                                                                                         (2.59) 

𝐺𝑛𝑚−1̃ (𝑠) is then written as a closed-loop system: 
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𝐺𝑛𝑚−1̃ (𝑠) =
𝐺𝑛𝑚−1(𝑠)

𝐺𝑛𝑚−1(𝑠) + 1
 ,                                                         (2.60) 

with the following  

𝐺𝑛𝑚−1(𝑠) =
1

𝑎2
𝑎1
𝑠𝑎2−𝛼1

1
𝑎𝑛𝑚
𝑎2

𝑠𝛼𝑛𝑚−𝑎2 +
𝑎𝑛𝑚−1
𝑎2

𝑠𝛼𝑛𝑚−1−𝑎2 +⋯+ 1
,                       (2.61) 

=
1

𝑎2
𝑎1
𝑠𝑎2−𝛼1

𝐺𝑛𝑚−2̃ (𝑠) ,                                                                                 (2.62) 

where the stability is determined by utilizing the Nyquist principle for the system loop gain. 

2.8.2 Discrete Fractional-Order Systems  

A brief summary of discrete-time fractional-order systems is given in the following. This 

definition is the generalization of the conventional definition for the fractional-order systems. 

Grünwald-Letnikov extended the definition for the fixed time-step of ℎ for the first and second 

order increments as 

∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 ,                                                             (2.63) 

∆2𝑥𝑘 = 𝑥𝑘 − 2𝑥𝑘−1 + 𝑥𝑘−2.                                                   (2.64) 

For generalization form of order 𝑛 this becomes: 

∆𝑛𝑥𝑘 =∑(−1)𝑎 (
𝑛
𝑟
) 𝑥𝑘−𝑎.

𝑛

𝑎=0

                                                  (2.65) 

The fractional-order difference equation can be determined for the 𝛼 fractional order as 

∆𝛼𝑥𝑘 =∑(−1)𝑙 (
𝛼
𝑙
) 𝑥𝑘−𝑙,

𝑘

𝑙=0

                                                 (2.67) 
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where is 𝛼 ∈ ℝ and 𝑘 ∈ ℕ number of sampling. 

2.8.3 Discrete-Time Fractional-Order State-Space Models 

Dzieliński and Sierociuk have introduced fractional-order state-space models [30] [31]. 

The state-space description of the fractional-order system in discrete-time is represented as 

∆𝛼𝑥𝑘+1 = 𝐴𝑎𝑥𝑘 + 𝐵𝑢𝑘 ,                                                           (2.68) 

𝑥𝑘+1 = ∆
𝛼𝑥𝑘+1 −∑(−1)𝑙 (

𝛼
𝑙
) 𝑥𝑘−𝑙+1,

𝑘+1

𝑙=1

                       (2.69) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 ,                                                             (2.70) 

where 𝑥𝑘 ∈ ℝ
𝑁 , 𝐴𝑎 ∈ ℝ

𝑁×𝑁 , 𝐵 ∈ ℝ𝑁×𝑚, 𝐶 ∈ ℝ𝑝×𝑁, 𝐷 ∈ ℝ𝑝×𝑚, 𝑚 = 𝑖𝑛𝑝𝑢𝑡 and 𝑝 = 𝑜𝑢𝑡𝑝𝑢𝑡. 

The nonlinear discrete-time model of a fractional-order system for the state-space description is 

represented as 

∆𝛼𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘),                                                         (2.71) 

𝑥𝑘+1 = ∆
𝛼𝑥𝑘+1 −∑(−1)𝑙 (

𝛼
𝑙
) 𝑥𝑘−𝑙+1,

𝑘+1

𝑙=1

                         (2.72) 

𝑦𝑘 = ℎ(𝑥𝑘),                                                                          (2.73) 

where 𝛼 ∈ ℝ and 𝑓(𝑥), ℎ(𝑥) are nonlinear functions. 
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3 Identification of Fractional-Order Models 

The research now proceeds with developing methods for identification of transfer functions 

for unknown systems. This is needed in order to develop dynamic models for dc-dc boost 

converters that encompasses their complex behavior in manner such that closed-loop feedback 

controllers can be developed.   

3.1 System Identification 

The objective of system identification is to find a suitable dynamical system model by 

using either experimental or simulation-based data to determine input-output behavior. This is 

accomplished by injecting a known set of input signals with corresponding observations of the  

system output response. These observations are repeated over a range of possible input frequencies 

in order to map the system behavior over a complete operational range.  Most typically, sinusoidal 

input signals are applied with a set of specified magnitudes 𝑢0  and frequencies ω [rad/s] [11].  

𝑢(t) = 𝑢0 sin(ωt + α),                                                         (3.1) 

Fourier analysis of the output is performed and the component that corresponds to the same 

fundamental frequency of the input is identified [12]: 

y(t) = y0 sin(ωt + β)                                                           (3.2) 

where 𝑢0 and 𝑦0 denote magnitudes and are phase angle both are non-negative. It is noted that the 

output sinusoid has different amplitude 𝑦0 and is shifted in phase from the input: 

∅ =≜ β − α.                                                                 (3.2) 

In general, the output will contain harmonic components that are created due to 

nonlinearities and fractional order effects: 
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𝑦(𝑡) = 𝛼 ∑ 𝑔(𝑧) Im (𝑒𝑗𝜔(𝑡−𝑧)) = 𝛼 Im ∑ 𝑔(𝑧)𝑒−𝑗𝜔(𝑡−𝑧)
∞

𝑧=−∞

∞

𝑧=−∞

.            (3.3) 

𝑦(𝑡) = 𝛼 Im {𝑒𝑗𝜔𝑡 ∑ 𝑔(𝑧)𝑒−𝑗𝜔𝑧
∞

𝑧=−∞

} = 𝛼 𝐼𝑚{𝑒𝑗𝜔𝑡𝐺(𝑒𝑗𝜔)}                 (3.4) 

= 𝛼|𝐺(𝑒𝑗𝜔)| sin(𝜔𝑡 + ∅)                                               (3.5) 

3.2 Identification Concepts  

The identification of a linear dynamical system has been established  in manner that 

provides this capability in various software and laboratory instruments ([32] - [38]). Nonlinear 

system identification is applied when linear system identification is unsuccessful in proving a 

suitable model ([39] - [42]). In this research, an approach is developed based on extracting a 

fractional order derived from either detailed simulation results or experimentally collected data. In 

either case, this approach uses a sinusoidal varying signal applied to the input [43]: 

𝑢(t) = 𝑢0 sin(ωt + α).                                                          (3.6) 

A frequency dependent function 𝐺(𝑒𝜔𝑘) is defined from the discrete Fourier transform of 𝑢(𝑘): 

𝐺(𝑒𝜔𝑘) = ∑ 𝑔(𝑘)𝑒−𝑗𝜔𝑘
∞

𝑘=−∞

                                                  (3.7) 

For this research, the input signal  is the duty-cycle applied to a dc-dc converter and the 

output is a voltage with a conceptual relationship provided in Figure 3.1. 
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SYSTEM

u y
 

Figure 3.1: A system with input and output signal. 

3.2.1 Open Loop Identification 

The open loop Identification method is extracted from experimental or simulation data 

obtained from what is generally a nonlinear system. The frequency range of the input is smaller 

than the cut-off frequency of the system state variables [44][45]. The output is analyzed using a 

fast Fourier transform (FFT) method to obtain the magnitude and phase angles of all of the output 

signal components. The FFT component for the fundamental frequency associated with the 

sinusoidal input is retained. The method repeats for series of input frequencies. The result of this 

method is identify the general response for a particular dc-dc converter configuration. This method 

is automated using MATLAB [46] [47]. 
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Figure 3.2: The system identification procedure. 

Algorithm for the proposed method: 

Step 1: Choose the frequency limit of concern where f is an array of frequencies. 

Step 2: Assign a variable PWM corresponding to a desired nominal offset (boost gain) for the 

injected sinusoidal modulation such that the converter operates in continues conduction mode. 

Step 3: Implement a simulation or experiment (time-domain) and record the Vin, and Vout signals. 

Resample y on a uniform grid tt = min(t) : dt : max(t). The y may have n columns but 

should have length (t) rows. This calls Matlab interp1 (with 'linear' as METHOD), and 

preprocess t (and y) so that tt is monotonically increasing. The dtol is a threshold such that  

t(j+1)-t(j) < dtol, then t(j+1) and y(j+1,:) is removed. NN is the number of new sample 
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points (defaults to length(t)), given dt above as dt =(max(t)-min(t))/(NN-1), (refer to 

MATLAB code in the Appendix A). 

 

Figure 3.3: Example of signal input-output signals. 

Step 4: Select the injected sinusoidal signal cycle (t are sampled points of each signal) of input 

signal and out signal in sampled points (t).  Sort y and t for increasing t and remove duplicate 

entries in t (assuming y = y (t)).  Duplicates are defined by t (j+1)-t (j) < dtol. The p is a  

permutation into 1: length (t), so that yy = y (p,:) and tt = t(p). If y is a (2d) matrix, then one of its 

dimensions must be length (t). If number of rows(y) is ~= length (t), then it is transposed.  The 

output number of rows (yy) = length (tt), and tt is a column vector (refer to MATLAB code in 

Appendix B). 

 

Figure 3.4: Example of sinusoidal wave input and output. 
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Step 5: Compute the respective FFT for (Vin and Vout), ft_i=fft(y_i or y_o) where y_i or y_o  are 

one of the time-domain samples, in evaluating the series of input amplitudes and the series of  

output amplitudes with the phase angle for input and output suitably correlated. The  fi_i(2) or if_o 

are the complex value of the fundamental frequency in Vin and Vout, where the gain and phase 

angles form the FFT are coded that in Matlab as: 

Gain = abs(value of ft_i or ft_o) 

Phase = tan (imaginary of of ft_i or ft_o, real value of ft_i or ft_o)) 

ReѲ
 

Im

 

Figure 3.5: Example of signal input-output phase angle shift. 

Step 6: Record the gain and phase angle of input signal and output signal. Generate a Bode plot 

by graphing the gain and phase shift of the open-loop transfer function using Matlab as: 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  20 ∗ 𝐿𝑜𝑔 [
𝐺𝑎𝑖𝑛(𝑓𝑡𝑖(2))

𝐺𝑎𝑖𝑛(𝑓𝑡𝑜(2))
] 𝑑𝐵,  
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 𝜃 =  (𝑃ℎ𝑎𝑠𝑒(𝑓𝑡_𝑖(2))  −  𝑃ℎ𝑎𝑠𝑒(𝑓𝑡_𝑜(2))) ∗ 180/𝜋𝑑𝑒𝑔𝑟𝑒𝑒𝑠.   

Step 7: Plot the collected data as a Bode plot.  

Step 8: From the Bode plot defined the fractional order system by using an approximation of the 

fractional order representation.  
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3.3 System Identification Procedure 

Start

Select DC-DC Converter

Defined fractional Transfer Function 

from Frequency Response Data 

(Bode Plot)

Defining the Input and Output of 

Converter

Select one period of signal (input-

output)

Collecting Data(Magnitude, phase 

angle) Drawing Bode Plot

Input:

Duty Cycle

Create variable duty cycle (SPWM) 

End 

Select Frequency range(nin-max)  

Find maximum amplitude of sin 

signal   

Is the system

In continuous 

mode  

Analysis the signal by fast Fourier 

transform (FFT) 

Output: 

Output Voltage

Yes

No

=Max selected 

frequency 

Yes

No

 

Figure 3.6: The system identification flowchart. 
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The general method of system identification is shown in Figure 3. 6. The analytical process 

is described in the following: 

Step 1: Design the simulation or hardware prototype with methods for collecting the output FFT 

(magnitude and phase angle).  

Step 2: Select a range of frequencies based on the type of power electronic converter.  

Step 3: Determine the largest allowable amplitude for the injected control signal (duty cycle) to 

operate the system in continues conduction mode. 

Step 4: Select a one period input switching sinusoidal signal function and determine the number 

of sample per period the will be used for the FFT. 

Step 5: Determine and record the amplitude and phase shift using Fast Fourier Transform (FFT).   

Step 6: Record the data of the amplitude and phase shift. The data is collected is used as one point 

of a Bode plot.  

Step 7: Repeat this process for a frequencies defined from Step 2. 

Step 7: Compile the tabulate date to determine the corresponding fractional-order transferfunction. 

3.4 Sine-Wave Response 

The fractional order system identification begins with the Bode plot derived from the 

fundamental component of the FFT that was obtained in Section 3.3. The Bode plot representation 

analogous to a describing function method that would produce a discrete set of points. Each 

particular input frequency has a corresponding fundamental component that is observed at the 

output. The relationship is shown at one particular case in Fig. 3.7. This process is repeated for all 

frequencies within the range of interest determined in Section 3.3.  The resulting response 𝐻(𝑗𝜔) 

has a magnitude and its phase angle: 
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𝐻(𝑠)|𝑠=𝑗𝜔 = 𝐻(𝑗𝜔) = |𝐻(𝑗𝜔)|𝑒
𝑗∠𝐻(𝑗𝜔)                                     (3.8) 

where is |𝐻(𝑗𝜔)| the amplitude and ∠𝐻(𝑗𝜔) is the phase angle. 

Vo (Output voltage)Vin (duty cycle) 

Phase difference

A
m

p
li

tu
d
e 

A
m

p
li

tu
d
e 

 

Figure 3.7: One signal responses the gain and phase angle of input-output. 

3.5 Time-Domain Identification 

The identification of fractional-order models in the time-domain is now described. 

Analyzing input-output frequency response achieves the fractional-order transfer function for a set 

of collected data. The  general form of the transfer function [48]: 

𝐺(𝑠) =
𝑏𝑚𝑠

𝛽𝑚 + 𝑏𝑚−1𝑠
𝛽𝑚−1 +⋯+ 𝑏0𝑠

𝛽0

𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 +⋯+ 𝑎0𝑠𝛼0
                                       (3.9) 

where is 𝑎𝑘 and 𝑏𝑘 indicate to poles and zeros of polynomial differential operator coefficients. By 

optimizing: 

𝑏𝑧 = [𝑏𝑚 𝑏𝑚−1 ⋯ 𝑏0],                                                  (3.10) 

𝛽𝑧 = [𝛽𝑛 𝛽𝑛−1 ⋯ 𝛽0],                                                   (3.11) 
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𝑎𝑝 = [𝑎𝑛 𝑎𝑛−1 ⋯ 𝑎0],                                                   (3.12) 

𝛼𝑝 = [𝛼𝑛 𝛼𝑛−1 ⋯ 𝛼0],                                                  (3.13) 

where  𝑎𝑝 and 𝑏𝑧  are pole and zero polynomial and 𝛼𝑝, 𝛽𝑧 the orders of differentiation. 

3.6 Frequency-domain Identification 

Hartley and Lorenzo provide an approach to achieve a fractional-order model by 

substitution of 𝑠 =  𝑗𝜔 as all zeros [49]: 

𝐺(𝑠) = 𝑐𝑛𝑠
𝑛𝛾 + 𝑐𝑛−1𝑠

(𝑛−1)𝛾 +⋯+ 𝑐1𝑠
𝛾 + 𝑐0.                              (3.14) 

The all-pole form is given by: 

𝐺(𝑠) =
1

𝑐𝑛𝑠𝑛𝛾 + 𝑐𝑛−1𝑠(𝑛−1)𝛾 +⋯+ 𝑐1𝑠𝛾 + 𝑐0
.                                    (3.15) 

where 𝑛 is the integer order of the system and 𝛾 is the commensurate operator. Duarte Valério and 

Levy propose the frequency-domain identification approach. The complex term of a frequency 

𝜔 ∈ (0:∞) and 𝑗 is the imaginary part as the following: 

𝐺(𝑗𝜔) =
1

𝑐𝑛(𝑗𝜔)𝑛𝛾+𝑐𝑛−1(𝑗𝜔)
(𝑛−1)𝛾+⋯+𝑐1(𝑗𝜔)𝛾+𝑐0

,                                 (3.16)  

Or more generally as  

𝐺(𝑗𝜔) =
𝑃(𝑗𝜔)

𝑄(𝑗𝜔)
=

𝑏𝑚(𝑗𝜔)
𝑚𝛾+𝑏𝑚−1(𝑗𝜔)

(𝑚−1)𝛾+⋯+𝑏1(𝑗𝜔)
𝛾+𝑏0

𝑎(𝑗𝜔)𝑛𝛾+𝑎𝑛−1(𝑗𝜔)(𝑛−1)𝛾+⋯+𝑎1(𝑗𝜔)𝛾+1
,                  (3.17)  

minimizing the square norm as: 

휀 = 𝐺(𝑗𝜔)[𝑎𝑛(𝑗𝜔)
𝑛𝛾 + 𝑎𝑛−1(𝑗𝜔)

(𝑛−1)𝛾 +⋯+ 𝑎1(𝑗𝜔)
𝛾 + 1]                                             

− [𝑏𝑚(𝑗𝜔)
𝑚𝛾 + 𝑏𝑚−1(𝑗𝜔)

(𝑚−1)𝛾 +⋯+ 𝑏1(𝑗𝜔)
𝛾 + 𝑏0]                                  (3.18) 

with a resulting matrix form expressed as: 
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[
 
 
 
 
 

1

𝐺(𝑗𝜔1)

1

𝐺(𝑗𝜔2)

⋮
1

𝐺(𝑗𝜔𝑚)]
 
 
 
 
 

=

[
 
 
 
1 (𝑗𝜔1)

𝛾 (𝑗𝜔1)
2𝛾 ⋯ (𝑗𝜔1)

𝑛𝛾

1 (𝑗𝜔2)
𝛾 (𝑗𝜔2)

2𝛾 ⋯ (𝑗𝜔2)
𝑛𝛾

⋮ ⋮ ⋮ ⋱ ⋮
1 (𝑗𝜔𝑚)

𝛾 (𝑗𝜔𝑚)
2𝛾 ⋯ (𝑗𝜔𝑚)

𝑛𝛾]
 
 
 
 

[
 
 
 
 
𝑐0
𝑐1
𝑐2
⋮
𝑐𝑛]
 
 
 
 

,                    (3.19)  

where 𝜔1, 𝜔2, . . . , 𝜔𝑛 indicates the frequencies that have been selected. When using this 

form the operator must satisfy the order n and commensurate order γ. This method  determines 

parameters from an experiment or simulated response of  𝐺(𝑗𝜔) = ℜ(𝜔) + 𝑗𝔉(𝜔) [49]: 

[
𝐴 𝐵
𝐶 𝐷

]

[
 
 
 
 
 
𝑏0
⋮
𝑏𝑚
𝑎1
⋮
𝑎𝑛 ]
 
 
 
 
 

= [
𝑒
𝑔],                                                           (3.20) 

where are A, B, C, D are the following: 

𝐴𝑘,𝑙 =∑(−ℜ[(𝑗𝜔𝑐)
𝑘𝛾]ℜ[(𝑗𝜔𝑐)

𝑙𝛾] − ℑ[(𝑗𝜔𝑐)
𝑘𝛾]ℑ[(𝑗𝜔𝑐)

𝑙𝛾])

𝑓

𝑐=1

, 

 𝑘 = 0,… ,𝑚 , 𝑙 = 1,… ,𝑚.                                               (3.21) 

𝐵𝑘,𝑙 =∑(ℜ[(𝑗𝜔𝑐)
𝑘𝛾]ℜ [(𝑗𝜔𝑝)

𝑙𝛾
] 𝑅𝑝 + ℑ[(𝑗𝜔𝑐)

𝑘𝛾]ℜ[(𝑗𝜔𝑐)
𝑙𝛾]𝐼𝑐 −ℜ[(𝑗𝜔𝑐)

𝑘𝛾]ℑ[(𝑗𝜔𝑐)
𝑙𝛾]𝐼𝑐

𝑓

𝑐=1

+ ℑ[(𝑗𝜔𝑐)
𝑘𝛾]ℑ[(𝑗𝜔𝑐)

𝑙𝛾]𝑅𝑐) , 𝑘 = 0,… ,𝑚 and 𝑙 = 1, … , 𝑛.                              (3.22) 

𝐶𝑘,𝑙 =∑({ℑ[(𝑗𝜔𝑐)
𝑘𝛾]𝐼𝑐 −ℜ[(𝑗𝜔𝑐)

𝑘𝛾]𝑅𝑐}ℜ[(𝑗𝜔𝑐)
𝑙𝛾]

𝑓

𝑐=1

+ {−ℜ[(𝑗𝜔𝑐)
𝑘𝛾]𝐼𝑐 − ℑ[(𝑗𝜔𝑐)

𝑘𝛾]𝑅𝑐}ℑ[(𝑗𝜔𝑐)
𝑙𝛾]), 𝑘 = 1,… , 𝑛. 𝑙 = 0,… ,𝑚. (3.23) 
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𝐷𝑘,𝑙 =∑[(𝑅𝑐
2 + 𝐼𝑐

2){ℜ[(𝑗𝜔𝑐)
𝑘𝛾]ℜ[(𝑗𝜔𝑐)

𝑙𝛾] + ℑ[(𝑗𝜔𝑐)
𝑘𝛾]ℑ[(𝑗𝜔𝑐)

𝑙𝛾]}], 𝑘 = 1, … , 𝑛 , 𝑙

𝑓

𝑐=1

= 1,… ,𝑚.                                                                                                                     (3.24) 

𝑒𝑘,𝑙 =∑{−ℜ[(𝑗𝜔𝑐)
𝑘𝛾]𝑅𝑐 − ℑ[(𝑗𝜔𝑐)

𝑘𝛾]𝐼𝑐}, 𝑘 = 0,… ,𝑚 ,

𝑓

𝑐=1

                     (3.25) 

𝑔𝑘,𝑙 =∑{−ℜ[(𝑗𝜔𝑐)
𝑘𝛾](𝑅𝑐

2 + 𝐼𝑐
2)}, 𝑘 = 1,… , 𝑛.

𝑓

𝑐=1

                           (3.26) 

3.7 Nonlinear Fractional-Order System Identification 

Nonlinear effects are accounted for with a new method of extending the describing function 

approach. This goes beyond the existing methods as in [50] to utilize fractional-order dynamical 

characteristics 

�̂�(𝑡) = ℒ− [
𝑏𝑚𝑠

𝛽𝑚 + 𝑏𝑚−1𝑠
𝛽𝑚−1 +⋯+ 𝑏0𝑠

𝛽0

𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 +⋯+ 𝑎0𝑠𝛼0
] ∗∑𝛼𝑘𝑢

𝑘(𝑡)

𝑀

𝑘=1

             (3.27) 

considering that the nonlinearity produces a polynomial model 𝜑(𝑢) = ∑ 𝛽𝑖𝑢
𝑖𝑛

𝑖=0  , and the linear 

term from the commensurate fractional-order described as: 

𝐺(𝑝) =
𝐵(𝑝)

𝐴(𝑝)
=

∑ 𝑏𝑖𝑝
𝑖𝛼𝑚

𝑖=0

1 + ∑ 𝑎𝑗𝑝𝑗𝛼
𝑛
𝑗=0

                                            (3.28) 

The proposed approach of system identification is to identify parameters associated with the 

nonlinear parts for a best fit equivalent fractional-order transfer functions. 

3.7.1 Linearization of nonlinear fractional order systems 

Conventional linearization techniques are commonly applied to achieve a linear 

approximation of a nonlinear system. This is ordinarily valid for a small region near the nominal 
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operating point. The proposed new nonlinear fractional-order approach provides a wider region of 

valid operating conditions from the nominal operating point. This is a new extension to fractional-

order models. In the following, recall that the fractional differential equation in the Caputo function 

are given by 

𝐷𝑡
𝛼𝑥(𝑡) = 𝑓(𝑥(𝑡)),0

𝑐                                                          (3.29) 

𝐷𝑓(𝑥)|𝑥=𝑥𝜔  .                                                                 (3.30) 

Linearization is with respect to the point 𝑥𝜔. The following are defined: 

Definition 1: 

𝐸 ∈ ℝ𝑛𝑎×𝑛𝑝 , 𝐹 ∈ ℝ1×𝑛𝑝 

𝑛
𝑝=(

𝑛𝑎+1+𝑑
𝑑

)−𝑛𝑎−2
                                                        (3.31) 

𝑛𝜃 = (𝑛𝑎 + 1)𝑛𝑝                                                           (3.32) 

𝑟(𝜃) ≜ �̃�(𝜃) − 𝑦 ∈ ℝ𝑚                                                   (3.33) 

where is 𝑚 > 𝑛𝜃. 

𝑓(𝜃) ≜
1

2
‖𝑟(𝜃)‖2 , ∈ ℝ                                                 (3.34) 

Definition 2: 

Jacobian of residual vector r: 

𝐽(𝜃) ≜
𝜕𝑟

𝜕𝜃
∈ ℝ𝑛𝜃×𝑚                                                        (3.35) 

Definition 3: 

Gradient of function (f): 



35 

∇𝑓(𝜃) ≜
𝜕𝑟

𝜕𝜃
= (

𝜕𝑟

𝜕𝜃

𝑇

)𝑟 = 𝐽𝑇𝑟 ∈ ℝ𝑛𝜃×𝑚                              (3.36) 

Definition 4: 

Hessian of function (f): 

𝐻(𝜃) ≜
𝜕2𝑓

𝜕𝜃2
≈ 𝐽𝑇𝐽 ∈ ℝ𝑛𝜃×𝑚.                                                (3.37) 

3.8 Discrete-Time Delta Operator 

Discretization is needed for the implementation of feedback controllers. The discrete-time 

techniques is extended to fractional-order systems. The discrete-time approximation for the 

continuous-time of transfer functions can be based on an Oustaloup filter [50]: 

𝑑𝑦

𝑑𝑧
≈
𝑦(𝑧 + 1) − 𝑦(𝑧)

𝑇
  

=
(𝑞 − 1)

𝑇
𝑦(𝑧) 

= 𝛿𝑦(𝑡)                                                                           (3.38) 

where 𝛿 is an operator that provides an equivalence of continuous and discrete-time systems [49]. 
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4 Sinusoidal Pulse Width Modulation 

This research is based on pulse width modulation (PWM) for switched-mode dc-dc converters 

. The switching state is obtained by comparing the desired reference wave with a carrier triangular 

waveform. When the reference signal is higher or lower than the carrier waveform, the active 

power transistor goes to the corresponding high (on) or low (off) state. Hard-switching (power 

transistors that change from on-state to off-state during a period of electrical conduction) tend to 

further increase the harmonic content of the associated state variables (inductor currents and 

capacitor voltages). Harmonic elements that are artifacts of PWM operation are filtered based on 

the inductance and capacitance of the overall systems [51]. 

 

Figure 4.1: Principal of Sinusoidal Pulse Width Modulation. 

As an example, the reference modulation signal is 𝑉(𝑡) and 𝑉𝑚 is an amplitude of the 

carrier triangular function as is shown in Fig. 4.1.   
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4.1 Sinusoids 

For this research, the following notation is used for a reference sinusoidal modulating 

function: 

𝑥(𝑡) = 𝐴 sin(𝜔0𝑡 + ∅)                                                            (4.1) 

where A represents the amplitude, 𝜔0 = 2𝜋𝑓0 denotes the frequency(radian frequency), and ∅ 

represents the phase angle [52]. 

𝑥(𝑡) = 𝐴 sin(𝜔0𝑡 + ∅) = 𝐴 cos(𝜔0𝑡 + ∅
′ − 𝜋/2)                              (4.2) 

where is ∅ = ∅′ − 𝜋/2. Trigonometric relationships to describe sin and cos functions are 

represented as follows: 

x

y

r

Ø 

 

Figure 4.2: Sine and cosine functions. 

 

sin ∅ =
𝑦

𝑟
                                                                      (4.3) 

𝑦 = 𝑟 sin∅.                                                                  (4.4) 
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For cosine 

cos ∅ =
𝑥

𝑟
                                                                       (4.5) 

𝑥 = 𝑟 cos∅.                                                                    (4.6) 

 The triangle appeared of the first quadrant of length 𝑥 and 𝑦, and hypotenuse of length 𝑟. 

The angle of sine described as 𝑦/𝑟 and cosine described as 𝑥/𝑟. A complex number is an obtained 

couple from real numbers expressed as: 

𝐷 = (𝑥, 𝑦)                                                                          (4.7) 

where is D the real part and 𝑦 the imaginary part. Algebraically the following is noted: 

(𝐷, 𝑦) = 𝐷 + 𝑖𝑦 = 𝐷 + 𝑖𝑦,    which is  𝑖 = 𝑗 = √−1.                            (4.8) 

 Recall that  𝑗2 = (√−1)2 = −1. The rectangular model of a complex number is determined [53]: 

𝑥 = (𝐷, 𝑦) = 𝐷 + 𝑗𝑦 = 𝐷 + 𝑖𝑦                                                      (4.9) 

The polar form is given as: 

𝑥 = 𝑟𝑒𝑗∅ = 𝑟∠∅ = |𝑥|𝑒𝑗 arg𝐷                                                    (4.10) 

Real Axis
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ar

y
 A

x
is

Ø=Direction 

Head

x=D+jy

Im(x)

Re(x)
Tail

0
 

Figure 4.3: complex number as a vector. 
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Example 4.1 

For complex numbers as, 1- 𝐷 = 2 + 𝑗5. 2- 𝐷 = 4 − 𝑗3. 3- 𝐷 = −5 + 𝑗0. 4- 𝐷 = −3 − 𝑗3. 

Im
ag

in
ar
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 A

x
is

Real Axis Re(D)

Im(D)

D= 2 + j5

D= 4 - j3D = - 3 -j3

D= - 5 + j0

D=j

 

Figure 4.4: complex number of z=2+j5, =4-j3, z=-5+j0, and z=-3-j3. 

Example 4.2 

For complex numbers as 1- 𝑥 = 2∠45°, 2 -  𝑥 = 3∠150°, 3 - 𝑥 = 3∠−80°. 

Im
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x=3 -80°

x=2 45°x=3 150°

 

Figure 4.5: Complex number of x=2∠45°, x=3∠150°, and x=3∠-80°. 
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4.2 Describing Function (DF) 

Nikolay Bogoliubov  developed the describing function approach in 1930s [54] - [56]. It is 

a standard method for investigating limit cycle instabilities in a nonlinear system. The DF of a 

nonlinear component is comparable to the transfer function of a linear component. However, the 

DF leads to simplistic analyses and synthesis methods for nonlinear systems. Therefore this 

research developed an improved method of the input-output characteristics that encompass 

nonlinear dc-dc converters. The PWM duty-cycle command is considered as the input: 

𝑥(𝑡) = 𝐴 sin(𝜔𝑡)                                                             (4.11) 

and the output signal (converter output voltage under load) is given by its Fourier decomposition: 

𝑦(𝑡) =  
𝑎0
2
 +∑(𝑎𝑛 cos(𝑛𝜔𝑡𝑡) + 𝑏𝑛 sin(𝑛𝜔𝑡𝑡))

∞

𝑛=1

                                 (4.12) 

The Fourier description includes the dc offset 𝑎0 = 0 which corresponds to a nominal dc boost 

gain for a dc-dc converters considered in this research. Using the first harmonic 𝑛 = 1 of the 

Fourier series of the signal is: 

𝑦(𝑡)

𝑥(𝑡)
=
𝑎1 cos(𝜔𝑡𝑡) + 𝑏𝑛 sin(𝜔𝑡𝑡)

𝐴 sin(𝜔𝑡)
 .                                            (4.13) 

Applying the trigonometric identity: 

𝑎1 cos(𝜔𝑡𝑡) + 𝑏𝑛 sin(𝜔𝑡𝑡) = √𝑎1
2 + 𝑏1

2 sin(𝜔𝑡𝑡 + ∅)                      (4.14) 

where is ∅ = tan−1
𝑎1

𝑏1
 

𝑦(𝑡)

𝑥(𝑡)
=
√𝑎1

2 + 𝑏1
2 sin(𝜔𝑡𝑡 + ∅)

𝐴 sin(𝜔𝑡)
  .                                     (4.15) 

https://en.wikipedia.org/wiki/Nikolay_Bogoliubov
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The conventional describing function 𝑁(𝐴,𝜔) is determined the ratio of the phasor description of 

input element and output element by frequency 𝜔 [57]. 

𝑁(𝐴,𝜔) =
(√𝑎1

2 + 𝑏1
2) 𝑒𝑗(𝜔𝑡+∅)

𝐴𝑒𝑗𝜔𝑡
=
1

𝐴
(𝑏1 + 𝑗𝑎1)                              (4.16) 

where 𝑎1 and 𝑏1 are coefficients  from the first harmonic of Fourier description provided as [58]: 

𝑎1 =
𝜔

𝜋
∫ 𝑦(𝜏) cos(𝜔 𝜏) 𝑑𝜏,
2𝜋 𝜔⁄

0

                                                  (4.17) 

𝑏1 =
𝜔

𝜋
∫ 𝑦(𝜏) sin(𝜔 𝜏) 𝑑𝜏                                                   (4.18)
2𝜋 𝜔⁄

0

 

By substitution for 𝑎1 and 𝑏1 

𝑁(𝐴,𝜔) =
𝜔

𝜋𝐴
∫ 𝑦(𝜏) sin(𝜔 𝜏) 𝑑𝜏
2𝜋 𝜔⁄

0

+
𝑗𝜔

𝜋𝐴
∫ 𝑦(𝜏) cos(𝜔 𝜏) 𝑑𝜏
2𝜋 𝜔⁄

0

.                  (4.19) 

4.2.1 PWM Effects 

The effects of PWM harmonics challenging in order to achieve a good overall accounting 

for the nonlinear behavior of the overall system.  

Example: PWM harmonic elements with fundamental of peak magnitude as: 

ℎ1 = (4
𝐸

𝜋
) [1 − 2 cos 𝛼1 + 2 cos𝛼2 − 2 cos 𝛼3⋯2cos𝛼𝑛]                            (4.20) 

ℎ2 = (4
𝐸

2𝜋
) [1 − 2 cos 2𝛼1 + 2 cos 2𝛼2 − 2 cos 2𝛼3⋯2 cos 2𝛼𝑛]                (4.21) 

⋮ 

ℎ𝑚 = (4
𝐸

𝑚𝜋
) [1 − 2 cos𝑚𝛼1 + 2 cos𝑚𝛼2 − 2 cos𝑚𝛼3⋯2cos𝑚𝛼𝑛]         (4.22) 
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where 𝐸 is the dc bus voltage, ℎ𝑚 represents the magnitude of 𝑚 , and 𝛼𝑛 switching angles. The 

period of 2𝜋 Fourier coefficients are represented as: 

𝑎0 =
1

2𝜋
∫ 𝑓(
2𝜋

0

𝜃)𝑑𝜃,                                                      (4.23) 

𝑎𝑘 =
1

𝜋
∫ 𝑓(
2𝜋

0

𝑘𝜃) cos(𝑘𝜃) 𝑑𝜃,                                                 (4.24) 

𝑏𝑘 =
1

𝜋
∫ 𝑓(
2𝜋

0

𝑘𝜃) sin(𝑘𝜃) 𝑑𝜃.                                                  (4.25) 

Based on symmetry, a quarter-cycle is determined by the Fourier coefficients as fowling [59]: 

𝑏𝑘 =
4

𝜋
∫ 𝑓(
2𝜋

0

𝑘𝜃) sin(𝑘𝜃) 𝑑𝜃,                                                  (4.26) 

𝑏𝑛 = (4
𝐸

𝜋
) [∫ sin(𝑘𝜃) 𝑑𝜃 − ∫ sin(𝑘𝜃) 𝑑𝜃 + ∫ sin(𝑛𝑘) 𝑑𝜃⋯∫ sin(𝑘𝜃) 𝑑𝜃

𝜋
2

𝛼𝑛

𝛼3

𝛼2

𝛼2

𝛼1

𝛼1

0

] 

= (4
𝐸

𝜋
) [− cos 𝑘𝜃|0

𝛼1 + cos 𝑘𝜃|𝛼1
𝛼2 − cos 𝑘𝜃|𝛼2 ⋯

𝛼3 ]                                                     

= (4
𝐸

𝑚𝜋
) [1 − 2 cos𝑚𝛼1 + 2 cos 𝑛𝛼2 − 2 cos 𝑛𝛼3⋯2cos 𝑛𝛼𝑚].                        (4.127) 

4.2.2 DC-DC Converter Nonlinear Modeling with New Describing Function 

The following is a new type of describing function technique compared to traditional 

methods as in [60]. Considering the input of the nonlinear behavior is 𝑥𝑖𝑛 and the output is 𝑦𝑜𝑢𝑡. 

The input-output behavior of a nonlinear model for the converter is assumed by replacing the 

describing function definition for the nonlinearty of the converter as shown in Figurer 4.6. 
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Figure 4.6: Boost curve and sine input-output. 

The modified describing function method defines the model based on the input of the 

switching of the dc-dc converter output voltage. The input contains a low frequency sinusoidal 

signal (PWM duty cycle ) as 𝑣𝑐 = 𝑉𝑐+𝑣𝑐𝑖 sin(𝜔𝑐𝑡) is compared with a high frequency carrier (saw 

tooth or triangular waveform).  This produces a switching a waveform of 𝑣𝑐(𝑡) with the amplitude 

of 𝑉𝑐. The output voltage signal of the converter is  𝑣𝑜(𝑡) = 𝑣𝑚 sin(𝜔𝑐𝑡 + 𝜃). The modified 

describing function is defined as (𝑗𝜔) =
𝑣𝑚𝑒

𝑗𝜃

𝑣𝑐𝑖
, which is defined as a Fourier series: 

𝑣𝑜(𝑡) =  𝑎0  +∑(𝑎𝑛 cos𝜔𝑡𝑡 + 𝑏𝑛 sin𝜔𝑡𝑡),

∞

𝑛=1

                             (4.28) 

𝑎𝑛 =
2

𝑇𝑥
∫ 𝑣𝑜(𝜏) cos𝜔 𝜏 𝑑𝜏,
𝑇𝑥

0

                                                    (4.29) 

𝑏𝑛 =
2

𝑇𝑥
∫ 𝑣𝑜(𝜏) sin𝜔 𝜏 𝑑𝜏,                                                     (4.30)
𝑇𝑥

0

 

It is found that 
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𝑣𝑚𝑒
−𝑖𝜃 =

2

𝑇𝑥
∫ 𝑣𝑜(𝜏)𝑒

−𝑖𝜔𝜏𝑑𝜏,
𝑇𝑥

0

                                                     (4.31) 

where 𝑇𝑥 is the one period. 

4.2.3 Property of Modified Describe Function  

The modified DF (MDF) in this research accounts for the nonlinear boost characteristics 

of the converter. It is defined as linearization and minimization of the mean-squared approximation 

error, which results from the analysis. 

𝑒2̅̅ ̅ =
𝜔

2𝜋
∫ 𝑒2(𝑡)𝑑𝑡
2𝜋 𝜔⁄

0

                                                        (4.32) 

where   

𝑒 = 𝑦 (𝑥, �̇�) − 𝑦𝑎𝑝𝑝𝑟𝑜𝑥(𝐴, 𝜔)                                                 (4.33) 

= 𝑦 (𝐴 sin∅, 𝐴𝜔 cos ∅) − 𝐴𝑝𝑁 sin(𝜔𝑡 + 𝜗𝑁),              (4.34) 

where 𝑃𝑁 is gain and 𝜗𝑁, for stationary point as: 

𝜕𝑒2̅̅ ̅

𝜕𝑃𝑁
=
𝜕𝑒2̅̅ ̅

𝜕𝜗𝑁
= 0.                                                              (4.35) 

By differentiation respect to PN: 

𝑃𝑁 =
𝜔

𝐴𝜋
∫  
2𝜋 𝜔⁄

0

𝑦(𝐴 sin∅, 𝐴𝜔 cos ∅) sin(𝜔𝑡 + 𝜗𝑁) 𝑑𝑡 ,                           (4.36) 

and by differentiation respect to 𝜗𝑁: 

𝜔

𝐴𝜋
∫  
2𝜋 𝜔⁄

0

𝑦(𝐴 sin∅, 𝐴𝜔 cos∅) cos(𝜔𝑡 + 𝜗𝑁) 𝑑𝑡 = 0                         (4.37) 

and combining results in 
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𝑃𝑁 =
𝜔

𝐴𝜋
∫  
2𝜋 𝜔⁄

0

𝑦(𝐴 sin ∅, 𝐴𝜔 cos ∅) [sin(𝜔𝑡 + 𝜗𝑁) + 𝑗 cos(𝜔𝑡 + 𝜗𝑁)] 𝑑𝑡                (4.38) 

𝑗
𝜔

𝐴𝜋
𝑒−𝑗𝜗𝑁∫  

2𝜋 𝜔⁄

0

𝑦(𝐴 sin∅, 𝐴𝜔 cos ∅)𝑒−𝑖𝜔𝑡𝑑𝑡 .                                 (4.39) 

4.2.4 Harmonic of Nonlinearity 

The MDF represents the fundamental harmonic gain with inclusion on nonlinearities. The 

input-output gain due to nonlinearities from a sinusoid input with dc offset has been analyzed as 

an average of the effects of Fourier components. Therefore, when the input sinusoid represents the 

fundamental harmonic gain of the real nonlinearities as 𝑣𝑐 = 𝑉𝑐+𝑣𝑐𝑖 sin(𝜔𝑐𝑡). The MDF for 

harmonic nonlinearities is represented by [62]: 

𝑁(𝐴) =
4

𝐴𝜋
∫  
𝜋 2⁄

0

𝑦(𝐴 sin∅) sin ∅ 𝑑∅                                                       

=
4(𝑉𝑐+𝑣𝑐𝑖)

𝐴𝜋
∫  
𝜋 2⁄

0

sin(𝜔𝑐 sin ∅) sin ∅ 𝑑∅                                     

=
2(𝑉𝑐+𝑣𝑐𝑖)𝑗(𝜔𝑐)

𝐴
                                                                  (4.40) 

where (𝑉𝑐+𝑣𝑐𝑖)𝑗 is the Bessel functions. 

4.2.5 Accuracy 

Accuracy in the modeling of dynamical systems is an essential part in designing control 

systems. However, system analysis and identification utilizing conventional integer order 

differential equations has limitations ([63] - [68]) in systems that exhibit fractional order behavior 

[65].  
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4.3  Harmonic-Based Fractional Oder Modelling   

The previous analysis assumed the availability of the fast Fourier transform (FFT) as a 

method to quickly analyze large amounts of input-output data. Another use of the FFT is to 

improve the accuracy of multiplication of high-degree order polynomials. This can be leverage to 

improve the ability to derive an equivalent fractional order transfer function realization that can be 

used in control system design. Transfer function polynomials coefficients, p and q are [69]: 

r(x) = p(x)q(x) = (∑ fmx
m

N−1

m=0

)(∑ gnx
n)

N−1

n=0

                                                              

= ( fo + f1x + f2x
2 +⋯)(go + g1x + g2x

2 +⋯)                

= fogo + (fogo + f1go)x + (fog2 + f1g1 + f2go)x
2 +⋯    

= ∑ hmx
m

2N−2

m=0

                                                                    (4.41) 

Whereas, ∑ 𝑓𝑖𝑔𝑛−𝑖
𝑁−1
𝑖=0  and ℎ = 𝑓 ⊛ 𝑔 . Therefore, calculating the production of polynomials 

includes the convolution of the coefficient sequence. 
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Figure 4.7: Fast Fourier Transform for input. 

 

Figure 4.8: Fast Fourier Transform for output. 

The amplitude for the input switching sinusoidal signal and output voltage across the load is 

utilizing by an FFT as shown in the Figs. 4.7 - 4. 8.  
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4.4 The Bode Plot 

The Bode plot is description of the frequency response behavior of the system. A general 

example of the magnitude and phase plots are shown as in Fig. 4.9: 

Slope= - m20 dB/decFo

|F
(i

ω
)|

d
B

1/To=fo

 
F

(i
ω

)

0

-mπ/4

-mπ/2

- m(arctan(ωTo)

Log ω or Log f
 

Figure 4.9: The magnitude in dB and phase angle in degree. 

The first plot shows the magnitude  in decibels (dB) [70] and the second plot is r the phase 

shift in radians. The construction of Bode plots for integer order transfer functions is explained in 

[71], with dB log scale 

𝐿𝑚(𝐾) = 20 log|𝐾|                                                         (4.42) 

where 𝐿𝑚 is magnitude, and K is constant. For log of the magnitude and the phase shift. 

𝐿𝑚(𝑗𝜔)∓𝑘 = ∓20𝑘 log𝜔,                                                  (4.43) 

∠(𝑗𝜔)∓ = ∓
𝑘𝜋

2
 ,                                                               (4.44) 

where the slope is ∓20𝑘 dB/decade and the phase shift ∓
𝑘𝜋

2
  is constant. For complex numbers 𝑧 =

𝑎 + 𝑏𝑗 ∈ ℂ and 𝑎, 𝑏 ∈ ℝ, |𝑧| = √𝑎2 + 𝑏2and ∠ 𝑧 = tan−1
Im 𝑧

Re 𝑧
= tan−1

𝑏

𝑎
 . 
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𝐿𝑚(1 + 𝑗𝜔𝑇)−1 = [20] ∗ log |
1

1 + 𝑗𝜔𝑇
| ,                                            (4.45) 

= [20] ∗ log |
1 − 𝑗𝜔𝑇

1 + 𝑗𝜔𝑇
| ,                                           (4.46) 

= [20] ∗ log√
1

(1 + 𝜔2𝑇2)2
+

𝜔2𝑇2

(1 + 𝜔2𝑇2)2
 ,    (4.47) 

= [20] ∗ log√
1

(1 + 𝜔2𝑇2) 
 ,                                   (4.48) 

= [−20] ∗ log√1 + 𝜔2𝑇2                                       (4.49) 

∠(1 + 𝑖𝜔𝑇)−1 = tan−1
−𝜔𝑇

1
= − tan−1𝜔𝑇.                                                     (4.50) 

For log magnitude and phase shift by 𝑒∓𝑗𝜔𝑡 

𝐿𝑚𝑒∓𝑖𝜔𝑡 = [20] ∗ log|𝑒∓𝑗𝜔𝑡|                                                                 

= [20] ∗ log|cos(∓𝜔𝑡) + 𝑗 sin(∓𝜔𝑡)|                               

= [20] ∗ log 1 = 0                                                     (4.51) 

∠𝑒∓𝑖𝜔𝑡 = tan−1
sin∓𝜔𝑡

cos∓𝜔𝑡
= ∓𝜔𝑡.                                  (4.52) 

At 0 dB the magnitude is equal to one, which is the magnitude plotted of a horizontal line and the 

phase shift is corresponded to the frequency ω. 

4.5 Approximation of Fractional Order Systems  

The rational approximation of the higher order transfer functions is employed in order to 

increase the modeling accuracy. The approximation of fractional order transfer functions can be 
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applied on continuous-time and discrete-time systems. The fractional-order approximation method 

is detailed in [72], [73]. 

4.5.1 Oustaloup’s Method  

Oustaloup’s recursive filter is provides a band-limited version of fractional-order (FO) 

elements. The frequency range is (𝜔𝑏 , 𝜔ℎ), with operation as 𝑠𝛾, 0 < 𝛾 < 1 and order N as: 

𝐺𝑓(𝑠) = 𝐾 ∏
𝑠 + 𝜔𝑚

′

𝑠 + 𝜔𝑚 

𝑁

𝑚=−𝑁

,                                                      (4.53) 

where 

𝜔𝑚
′ = 𝜔𝑏 (

𝜔ℎ
𝜔𝑏
)

𝑚+𝑁+
1
2
(1−𝛾)

2𝑁+1
,                                             (4.54) 

and  

𝜔𝑚
 = 𝜔𝑏 (

𝜔ℎ
𝜔𝑏
)

𝑚+𝑁+
1
2
(1+𝛾)

2𝑁+1
,    𝐾 = 𝜔ℎ

𝛾
.                                       (4.55) 

When the output is considered as an approximation of the fractional differentiated or integrated 

signal, the Oustaloup filter is purposed as [74] [75]: 

𝑠𝛼 ≈ (
𝑑𝜔ℎ
𝑏
)
𝛼

(
𝑑𝑠2 + 𝑏𝜔ℎ𝑠

𝑑(1 − 𝛼)𝑠2 + 𝑏𝜔𝑠𝑠 + 𝑑𝛼
) ∏

𝑠 + 𝜔𝑚
′

𝑠 + 𝜔𝑚 
,

𝑁

𝑚=−𝑁

                     (4.56) 

where  

𝜔𝑚
′ = (

𝑑𝜔𝑏
𝑏
)

𝛼−2𝑚
2𝑁+1

, 𝜔𝑚
 = (

𝑏𝜔𝑏
𝑑
)

𝛼+2𝑚
2𝑁+1

.                                         (4.57) 
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Applying the Oustaloup filter is often recommended to obtain a good results with b = 10 

and d = 9.  For fractional orders 𝛼 ≥ 1: 

𝑠𝛼 = 𝑠𝑚𝑠𝛾,                                                            (4.58) 

where 𝑚 = 𝛼 − 𝛾 indicates the integer term of 𝛼 and the Oustaloup Approximation is represented 

by  𝑠𝛾. 

4.5.2 Levy’s method 

Levy’s method of least-squares fitting of data can be extended to fractional-order functions.  

This includes transfer function approximations applying the input and output as in [76]: 

∅𝑗 = |𝑒𝑗| sin(𝜔𝑡 + 𝜗𝑗)                                                     (4.59) 

and  

∅0 = |𝑒0| sin(𝜔𝑡 + 𝜗0)                                                    (4.60) 

where 
𝐸0(𝜔)

𝐸𝑗(𝜔)
 amplitude ratio and 𝜃0(𝜔) − 𝜃𝑗(𝜔) = ∆𝜃 (𝜔) for frequencies within the range of 

modeling concerns. 

4.6 Commensurate Fractional-Order Transfer Functions 

The Levy identification approach is applied for identifying the fractional-order model 

represented in (4.60). It calculates the parameters of data frequency response by  𝐺(𝑗𝜔) = ℜ(𝜔) +

𝑗𝔉(𝜔) as in [77]: 

[
𝐴 𝐵
𝐶 𝐷

]

[
 
 
 
 
 
𝑏0
⋮
𝑏𝑚
𝑎1
⋮
𝑎𝑛 ]
 
 
 
 
 

= [
𝑒
𝑔],                                                          (4.61) 
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where 𝑏0, . . . 𝑏𝑚 and 𝑎1, . . . 𝑎𝑛 represents the identified parameters defined as A, B, C, D, e and g 

to obtained from the collected data [78]. The identification of fractional-order versions of the 

transfer function by using Levy’s technique results in 

ϵ = G(jω)[an(jω)
nγ +⋯+ a1(jω)

γ + 1] − [bm(jω)
mγ +⋯+ b1(jω)

γ + b0].       (4.62) 

 The Vinagre technique supplements weights for the norm of approximation at any frequency  ϵ′ =

𝓌 ∙ ϵ , whereas weight 𝓌 is based on a frequency, frequencies ωi, i =  1, … , f   are defined as 

[79]. 

𝓌 =

{
  
 

  
 
𝜔2 − 𝜔1

2𝜔1
2         , 𝑖 = 1,

𝜔𝑖+1 − 𝜔𝑖−1

2𝜔𝑖
2          ,1 < 𝑖 < 𝑓

𝜔𝑓 − 𝜔𝑓−1

2𝜔𝑓
2    , 𝑖 = 𝑓.

,                                            (4.63) 

The operator must provides the commensurate order and fractional polynomial orders of n 

with m for an additional optimization of parameters 𝜃 = [𝛾  𝑛  𝑚 ]. The function for minimization 

is of the form: 

𝐽 =
1

𝑛𝜔
∑|𝐺(𝑖𝜔) − �̂�(𝑖𝜔)|

2

𝑛𝜔

𝑖=1

,                                                  (4.64) 

whereas 𝑛𝜔 signify the number of frequencies in ω, �̂� denotes the identified plant G. The error 

index is utilized to calculate the identification accuracy [78] [79]. The time-domain identification 

is labelled as a data structure using a MATLAB (ffidata) command as follows: 

id1 = ffidata(mag, ph, w), the 𝑚𝑎𝑔  characterizes to determine magnitude in dB, 𝑝ℎ represents the 

phase angle by degree and w in rad/s. 
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5 Fractional PI Controller 

There is increasing attention in using fractional calculus to control dynamical systems. 

After applying identification techniques to achieve the plant transfer function, the feedback control 

system for a non-integer order can be designed ([80], [81]). The use of a feedback controller 

requires measuring a performance error. This is typically determined as difference between the 

various outputs of the system and the desired value. The controller parameters are adjusted based 

on the system performance objectives such as settling time, steady-state tracking and percent 

overshoot ([82], [83]). The fractional-order proportional-integral (PI𝜆) and lead-lag compensators 

have potential advantages compared to classical integer-order controllers ([84], [85]). Podlubny 

([86]) introduced a form of the PI controller using fractional order operator as  PI𝜆 (FO-PI) 

controller, for which an integral term of order λ is provided by assuming real-values non-integer 

numbers. Consideration of the general dynamical system as in [86]: 

�̇�(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡)],                                                            (5.1) 

𝑦 = ℎ[𝑥(𝑡)] ,                                                                     (5.2) 

where 𝑥(𝑡) ∈ ℝ𝑚, 𝑢(𝑡) ∈ ℝ, 𝑓(𝑥, 𝑢) ∈ ℝ𝑚 × ℝ → ℝ𝑚 𝑎𝑛𝑑 ℎ:ℝ𝑚 → ℝ . The control operation of 

the PI𝜆 controller express as following: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖𝒟
−𝜆𝑒(𝑡),                                                    (5.3) 

where 𝑒(𝑡) = −𝑦(𝑡) + 𝑠(𝑡) is an error signal and 𝑠(𝑡) is the desired control reference value. The 

Laplace transform is applied with zero initial conditions. The fractional order (FO) order controller 

has shown advantages compared to conventional integer order controllers [87].  
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Action

Integral 

Action  

  

Figure 5.1: Fractional-order proportional and integrator controller model. 

The transfer function of the FO PI𝜆  controller general expression is 

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠𝜆
                                                              (5.4) 

where 𝐾𝑝, and 𝐾𝑖  are the proportional and integral gains, respectively, of the PI𝜆controller. 

The PI𝜆 controller retains the general properties of the integer order PI controller. The advantages 

of additional parameter 𝜆 is that it provides additional freedom in designing the controller. The 

fractional PI controller is particularly advantageous to for nonlinear systems. However, the tuning 

of the controller of the FO controller is more complicated compared to a conventional PI element. 

The representation of fractional-order proportional-integral-derivative (FO-PID) controller 

𝐺𝑐(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠𝜆
+ 𝐾𝑑𝑠

𝜇,                                                                (5.5) 

 can similarly be defined. For the PI𝜆 controller, the effect of  
1

𝑠𝜆
  is to produce an integral effect to 

guarantee there is no residual error in the closed-loop system [83]. 
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Figure 5.2: The PIλDμ controller plane. 

It is noted that selecting 𝜆 =  𝜇 =  1 resulting that is classic integer-order PID controller. 

The FO-PI controller has more freedom of tuning the controller, duo to the additional parameter 

such 𝜆 and  𝜇. The PID controller plane of the four-point PID diagram as showing in Figure 5.2. 

However, the derivative term 𝜇 will not be considered in this research due to noise present in 

switched-mode power converters that results in poor results for PID controllers. 

5.1 Fractional Order Robust Control 

The robustness of the fractional order controllers is particularly effective when there are 

uncertainties and the toleration of error. Research in the advances of fractional controllers is 

demonstrated in the robustness of tuning FO-PI controller and the H∞ controller in [88]. Tavazoei 

proposed designs for robust control with constant phase margin using FO models [89]: 

𝐺(𝑠) = (ℎ𝑠𝛼 + 𝐿)�̂�−1(𝑠),                                                    (5.6) 

with feedback for the resulting FO system: 

𝐺(𝑠) =
1

𝑇𝑠𝛽 + 1
�̂�(𝑠),                                                            (5.7) 
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where 𝛽 ∈ (0,2) and 𝑇 > 0, is the relationship between the gain (0 dB) crossover frequencies and 

phase margins. Extending integration and derivative control operations is used in the fractional 

operation is given in [90] as 

𝐶(𝑠) = 𝐾𝑠𝛾,                                                                    (5.8) 

where 𝛾 ∈ [−1: 1] the fractional integrator. 

Example 5.1 

Consider an integer-order system with given transfer function as the following: 

𝐺(𝑠) =
1

(𝑠 + 1)3
,                                                              (5.9) 

with a FO-PI controller as: 

𝐶(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑗𝑠𝜆
)                                                 (5.10) 

 

Figure 5.3: Step responses FOPI with variant integral of Tj. 
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Figure 5.4: Step responses FO PI controller with variant integration order λ. 

To demonstrate the characteristics of integration part with fractional order is shown in 

Figure 5.3 and Figure 5.4, which presents unit step response for the closed-loop of the system. 

Selecting proportional gain is 𝐾𝑝  =  1 as a fixed value but the integral time of 𝑇𝑗 are varied 

independently (Fig. 5.3 - 5.4). The integer case of 𝜆 =  1 are considered in Figure 5.3, with a 

steady-state error approaching zero. Furthermore, when 𝑇𝑗 small there is a faster response with 

larger oscillatory overshoots. In Figure 5.4, 𝑇𝑗 is constant with varied  𝜆  showing that the 

parameter does not affect oscillations. Overall, the FO-PI controller shows improved capability for 

tuning the systems response. 

5.2 Optimization Controller Design 

There are many perspectives that make designing a FO-PI controller difficult. 

Nevertheless, several approaches for tuning techniques have been developed ([91] – [92]). The 

most common optimization criteria is to minimize the integral squared error: 

𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡
𝑡

0

.                                                         (5.13) 
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Also considered are the integral absolute error, 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡

0

,                                                        (5.14) 

the integral time-square error as,  

𝐼𝑇𝑆𝐸 = ∫ 𝑡𝑒(𝑡)2𝑑𝑡
𝑡

0

,                                                       (5.15) 

And the integral time-absolute error as: 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡) |𝑑𝑡
𝑡

0

.                                                    (5.16) 

The frequency domain specifications provide accuracy and stability for the control system. 

However, specifications can be commanded of open-loop frequency response 𝐹(𝑗𝜔)  =

 𝐶(𝑗𝜔)𝐺𝑝(𝑗𝜔), where is 𝐶(𝑗𝜔) a FO-PI controller [93], with gain margin 𝐴𝑚: 

𝐴𝑚 = 1 − |𝐹(𝑗𝜔𝑔)|,                                                        (5.17) 

arg ( 𝐹(𝑗𝜔𝑔)) = −𝜋.                                                      (5.18) 

Phase margin 𝜑𝑚 and critical frequency 𝜔𝑐 are given by 

arg(𝐹(𝑗𝜔𝑐)) = −𝜋 + 𝜑𝑚 ,                                                  (5.19) 

|𝐹(𝑗𝜔𝑐)| = 1.                                                                  (5.20) 

Gain variation for a plant robustness is defined by 

𝑑 arg(𝐹(𝑗𝜔))

𝑑𝜔
|
𝜔=𝜔𝑐

= 0.                                                       (5.21) 

Noise rejection at high frequency is specified by 
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|𝑇(𝑗𝜔) =
𝐹 (𝑗𝜔)

1 + 𝐹 (𝑗𝜔)
|
dB

≤ 𝑁 dB,                                        (5.22) 

where frequencies 𝜔 ≥ 𝜔𝑡 rad/s, and 𝑁 dB is noise attenuation. 

Disturbance rejection is defined as  

|𝐶(𝑗𝜔) =
𝐹 (𝑗𝜔)

1 + 𝐹 (𝑗𝜔)
|
dB

≤ 𝐾 dB,                                        (5.23) 

where 𝐾 dB is a constraint on the sensitivity function. 

Example 5.6  

A dc-dc converter fractional order transfer function is modeled by a fractional-order differential 

equation. The fractional transfer function and controller is determined to be 

𝐺(𝑠)𝐹𝑂 =
−0.323𝑠0.78 − 15.58𝑠0.52 − 96.03𝑠0.26 + 340.9

0.00156𝑠1.3 − 0.02𝑠1.04 − 0.1002𝑠0.78 + 0.295𝑠0.52 − 0.67𝑠0.26 + 1
,      (5.24) 

𝐶𝐹𝑂(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠𝜆
.                                                  (5.25) 

Applying the Ziegler-Nichols PI tuning method, PI parameters are determined as Kp = 

476.7 and Ki = 0.011 where  𝜆 is the parameter for optimizing the performance. 
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Figure 5.5: Closed loop step responses for GFO(s) under various λ. 

 

5.3 FO-PI Tuning Formulation 

The transfer function of the open-loop is represented by its Bode plot. Designing the 

feedback FO-PI controller as [80]: 

𝐺𝑟𝑒𝑓(𝑠) =
𝐾𝑟
𝑠𝜆
 ,             (1 < 𝜆 < 2)                                  (5.26) 

Achieving the best performance of the feedback loop controller is investigated. With 

respect to the Bode plot: 

Magnitude curve is constant slope of −20𝜆 dB/dec, the critical pint of 𝜔𝑐 = (𝐾𝑟)
1

𝜆  

Phase angle curve is horizontal at −
𝜆𝜋

2
   

Nyquist curve line at arg −
𝜆𝜋

2
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These are shown in Figure 5.6 . Robustness of the closed-loop system is achieved when the loop 

gain achieves  [80] 

𝐺𝑟𝑒𝑓𝐶𝐿(𝑠) =
1

(
1
𝐾𝑟
) 𝑠𝜆 + 1

.                                                        (5.27) 

(0,0)

Real Axis

Im
ag

 A
x

is

Nyquist plot

1 < y < 2 

 

Figure 5.6: Nyquist Bode plot of ideal transfer function. 

5.4 Gain Scheduling Methods 

Gain scheduling methods assist in obtaining robust controller operation for a wider range of 

operating conditions. A fractional-order transfer equation can be achieved for a set of operating 

points {(𝑢𝑘;  𝑦𝑘), 𝑘 =  1, 2, … , 𝑛} for the system [87] as the set 

Ψ = {𝐺1, 𝐺2, … , 𝐺𝑛},                                                        (5.28) 

where 𝐺𝑖 ∈ Ψ narrowly meets a set of performance designations  

Ω = {𝐶1, 𝐶2, … , 𝐶𝑛}.                                                         (5.29) 

Considering a controller defined as 
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Υ(𝑥, 𝑓) =∑𝛽𝑘(𝑥)𝐶𝑠(𝑓),

𝑘

𝑠=1

                                                   (5.30) 

where 𝛽𝑠 is weighting function and 𝑥(𝑡) is scheduled state, 𝐶𝑠(𝑓) ∈ Ω. suppose that it is given 

that 𝑘 = 2. Then the following controller is defined as  

Υ(𝑥, 𝑓) = 𝛽1(𝑥)𝐶1(𝑠) + 𝛽2(𝑥)𝐶2(𝑓),                                    (5.31) 

where 𝑥(𝑡) ∈ [0, 𝑥𝑚𝑎𝑥] and that 

𝛽1(𝑥) ∶=
[1 − 𝜆(𝑥)]

2
,                                                    (5.32) 

𝛽2(𝑥) ∶=
𝜆(𝑥)

2
,                                                               (5.33) 

𝜆(𝑥) ∶=
𝑥(𝑡)

𝑥𝑚𝑎𝑥
.                                                              (5.34) 

5.5 Linear Quadratic Regulator (LQR) Design 

The LQR design is a commonly used approach in an optimal control design. The LQR design 

method provides assurances for phase and gain margins, and some tolerance for nonlinearities 

[94]. Connections between robustness and LQR designs have been established ([95], [96]). The 

LQR design technique adds additional state variable as: 

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡                                                    (5.35) 

Consideration of the tracking error is given by an integral term, 

𝑥1 = ∫𝑒(𝑡).                                                                (5.36) 

Optimization with respect to the input is minimized by the cost function 



63 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

,                                                  (5.37) 

where 𝑄 represents a symmetric positive semidefinite matrix and is often selected as 𝑄 =

 𝑑𝑖𝑎𝑔(𝑞1, 𝑞2, 𝑞3). The qi parameters are adjustable to meet a particular performance objective. 

The design of a closed-loop controller for a dc-dc converter is given in Figure 5.7. 

1/s K1

K2

K3

+ -
--

Vout

iL

Vref

Vin

x-
+

 
d(u)

 

Figure 5.7: Control diagram of voltage to dc-dc converter. 

The controller for a dc-dc converter is often configured with an inner and outer loop 

feedback path. The inner-loop is controlling the inductor current which is tracked as a reference 

value 

�̇�1 = 𝑒(𝑡) = 𝑖𝑙𝑟𝑒𝑓 − 𝑖𝑙 ,                                                        (5.38) 

Where an augmented state variable is defined from the tracking error as: 

𝑥1 = ∫𝑒(𝑡),                                                                  (5.39) 

The current controller is shown in Figure 5.8. 



64 

1/s K1

K2

_
_

il

iref +_
ic

 

Figure 5.8: Inner current control for converter. 

The outer-loop is controlling output voltage of the converter. The LQR design technique 

defines an error state as  

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡 .                                                      (5.40) 

with an additional state variable of the tracking error as 

𝑥1 = ∫𝑒(𝑡).                                                                   (5.41) 

1
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Figure 5.9: Control diagram of inner loop and outer loop controller. 

5.5.1 First Order Plus Dead Time (FOPDT) 

The (FOPDT) models are commonly applied in machine control design  [94]. As an 

example,  

𝐺(𝑗𝜔) =
𝐾𝑒−𝐿𝑗𝜔

𝑇(𝑗𝜔) + 1
,                                                           (5.35) 
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where 𝐾 is the static gain of the model: 

𝐾 =
Δ𝑦

Δ𝑢
,                                                                      (5.36) 

where Δ𝑦 is the incremental change of the output and Δ𝑢 an incremental change of the input. Lag 

L is defined as 

𝐿 = 𝑡𝑢 − 𝑡𝑟 ,                                                                  (5.37) 

where 𝑡𝑢 the time instance of the control input, and 𝑡𝑟 is the time instance of system output. 

Define the control dead-band as 

𝛿 = {(1 − 𝛾)𝑢𝑠, (1 + 𝛾)𝑢𝑠},   𝛾 ∈ (0,1)                                       (5.38) 

where 𝑢𝑠 represents the current steady-state control. A control input signal is defined as: 

𝑢(𝑡) = ∓𝛿                                                                  (5.39) 

After many cycles, the ultimate gain 𝐴𝑢 and final period 𝑇𝑢 are determined as an ultimate 

frequency 𝜔𝑢:  

𝜔𝑢 =
2𝜋

𝑇𝑢
, 𝐴𝑢 =

4𝛿

𝜋𝑎
.                                                           (5.40) 

5.5.2 The Fractional First Order Plu Dead-Time (FFOPDT) 

The FFOPDT model is similar to the FOPDT design methods ([95], [96]). Consider the 

FFOPDT  by 

𝐺(𝑗𝜔) =
𝐾𝑒−𝐿𝑗𝜔

𝑇(𝑗𝜔)𝛼 + 1
,                                                        (5.41) 

where it is assumed that 𝐾 > 0, 𝐿 > 0 , 𝑇 > 0 and 𝛼 ∈ (0,2), for obtaining the magnitude and 

phase angle of  𝐺(𝑗𝜔) from the following: 
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|𝐺(𝑗𝜔)| =
|𝐾|

√1 + 𝑇2𝜔2𝛼 + 2𝑇𝜔𝛼 cos (
𝛼𝜋
2 )

,                                   (5.42) 

and  

arg(𝐺(𝑗𝜔)) = −𝐿𝜔 − tan−1(
𝑇 sin (

𝛼𝜋
2 )

𝜔−𝛼 + 𝑇 cos (
𝛼𝜋
2 )

) .                          (5.43) 

To obtain the gain crossover frequency |𝐺(𝑗𝜔𝑐)| = 1, 

𝜔𝑐 = (
√𝜃(𝐾, 𝛼) − cos (

𝛼𝜋
2 )

𝑇
)

1
𝛼

,                                             (5.44) 

where √𝜃(𝐾, 𝛼) = 𝐾2 + cos2 (
𝛼𝜋

2
) − 1 𝑎𝑛𝑑 𝜔𝑐 ∈ ℝ+. 

𝜃(𝐾, 𝛼) ≥ 0,                                                            (5.45) 

√𝜃(𝐾, 𝛼) − cos (
𝛼𝜋

2
) ≥ 0.                                              (5.46) 

The phase margin of the system is defined by: 

𝜑𝑚 = 𝜋 − arg(𝐺(𝑗𝜔𝑐)) + 2𝜋𝑛   ,    𝑛 ≥ 0.                              (5.47) 

The transcendental equation 

−𝐿𝜔𝑢 − tan
−1(

𝑇 sin (
𝛼𝜋
2 )

𝜔𝑢
−𝛼 + 𝑇 cos (

𝛼𝜋
2 )
) = −𝜋 − 2𝜋𝑛,                      (5.48) 

where n is defined by obtaining a minimum gain margin of  1/ |𝐺(𝜔𝑐) | is achieved in practice by 

tuning the system response [92]. It is analogous to the case of a conventional PI controller [97]. A 

helpful summary of accurate approximations of fractional operatives is presented in [98]. The time 
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constant 𝑇𝑐 can be calculated from the frequency 𝜔𝑢. The final gain of the system can be observed 

as: 

𝑇𝑐 =
tan(𝜋 − 𝐿𝑐𝜔𝑢)

𝜔𝑢
.                                                            (5.49) 

FOPI controller design seeks a suitable integrator order of 𝜆, which can be evauated 

through the closed-loop gain relationship: 

𝜏𝑐 =
𝐿𝑔

𝐿𝑐 + 𝐿𝑔
,                                                               (5.50) 

where 𝜏𝑐 is the dead-time parameter. The approximate guideline for 𝜆 is given by:  

𝜆 = {

1.1
1.0
0.9
0.7

𝜏𝑐 ≥ 0.6,
0.4 ≤ 𝜏𝑐 < 0.6,
0.1 ≤ 𝜏𝑐 < 0.4,
𝜏𝑐 < 0.1.

                                                  (5.51) 

The gain robustness is given by: 

𝜓𝑔
′ (𝜔𝑐) = 0,                                                               (5.52) 

𝜓𝑔
 (𝜔 ) = arg(𝐶(𝑗𝜔)) + arg(𝐺(𝑗𝜔)) + 𝜋 + 2𝜋𝑛.                       (5.53) 

The minimal gain margin 𝐺𝑚 of the resulting functions can be determined from 

𝑘1(𝐾𝑝, 𝐾𝑖, 𝐾𝑑) = |𝐶(𝑗𝜔)| ∙ |𝐺(𝑗𝜔)| − 1,                              (5.54) 

𝑘2(𝐾𝑝, 𝐾𝑖, 𝐾𝑑) = arg(𝐶(𝑗𝜔)) + arg(𝐺(𝑗𝜔)) + 𝜋 − 𝜑𝑚 − 2𝜋𝑛,                 (5.55) 

𝑘3(𝐾𝑝, 𝐾𝑖, 𝐾𝑑) = 𝜓𝑔𝑚
′ (𝜔 ),                                              (5.56) 

where 𝜔 = 𝜔𝑐. Finding gains of the FOPI controller is notated by: 

𝑔 = [ 𝐾𝑝, 𝐾𝑖   ]
𝑇
.                                                         (5.57) 
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To determine the control coefficients a control vector is defined with a constraint: 

𝐹𝑠 = [𝑘1(∙) 𝑘2(∙)]𝑇 = 0.                                               (5.58) 

A solution can be found numerically to the relationship 

𝐽∆𝑔 = −𝐹𝑠 ,                                                               (5.59) 

With the control gain vector of  𝑔+ is calculated: 

𝑔+  = 𝑔 + ∆𝑔.                                                               (5.60) 

Elements of the Jacobian matrix J are defined by  

𝐽𝑛,1 =
𝜕𝑘𝑛
𝜕𝐾𝑝

,                                                                     (5.61) 

𝐽𝑛,2 =
𝜕𝑘𝑛
𝜕𝐾𝑖

,     For 𝑛 = 1,2:                                      (5.62) 

𝐽1,1 =
𝐴𝐺𝐴𝐶𝑅
𝐴𝐶

,                                                                (5.63) 

𝐽1,2 =
𝐴𝐺𝐴12
𝐴𝐶

,                                                                 (5.64) 

where 𝐴𝐺 = |𝐺(𝑗𝜔)|, 𝐴𝐶 = |𝐶(𝑗𝜔)|, and  𝐴𝐶𝑅 = 𝐶𝑅(𝜔), 

𝐴12 = 𝜔
−2𝜆 (𝐾𝑖 + 𝜔

𝜆 cos (
𝜆𝜋

2
) 𝐾𝑝),                                           (5.65) 

𝐽2,1 =
𝐴21
𝐴2

,                                                                      (5.66) 

𝐽2,2 =
𝐴22
𝐴2

,                                                                      (5.67) 

𝐴21 = 𝜔𝜆 (sin (
𝜆𝜋

2
) 𝐾𝑖),                                                 (5.68) 
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𝐴22 = 𝜔𝜆 (sin (
𝜆𝜋

2
) 𝐾𝑝),                                                (5.69) 

j is determined by a stopping criterion for the iteration method, 

‖𝐹𝑠(∙)‖2 < 𝜖.                                                                 (5.70) 

5.5.3 Review of Conventional PI Controller Design Methods 

Prior to showing the experimental results of a prototype dc-dc converter, it is important to 

establish a baseline reference for which the resulting FO-PI controller can be compared. The 

section provides a brief review of root locus based design methods for integer order PI controllers. 

For obtaining values for  Kp and Ki , the root locus method can be applied ([101], [102], [103]):  

∆(𝑠) = 1 + PI(s) 𝐺(𝑠) = 0                                                      (5.71) 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠
                                                              (5.72) 

The root locus for the open loop system (𝐾𝑝𝐺) is obtained using commercially available software 

tools. Specifications are usually given in terms percentage overshoot, rise time, gain margin, phase 

margin, and settling of time to first determine the proportional gain:  

𝐾𝑝 = 𝐾𝑃̅̅̅̅                                                                 (5.73) 

The integral term is found from and evaluation of the characteristic equation: 

1 + (𝑃𝐼)(𝐺(𝑠)) = 0 

No solving for the new root locus expression  where 𝐾𝑃̅̅̅̅  is held fixed and 𝐾𝑚 is to be determined 

 1 + (
𝑠𝐾𝑝̅̅̅̅ + 𝐾𝑚

𝑠
) [𝐺(𝑠)] = 0                                                     (5.74) 
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1 + (
𝑠𝐾𝑝̅̅̅̅ + 𝐾𝑚

𝑠
) [𝐺(𝑠)] = 0                                                     (5.74) 

𝐾𝑝̅̅̅̅ (𝐺) +
𝐾𝑚𝐺

𝑠
+ 1 = 0                                                           (5.75) 

𝐾𝑝̅̅̅̅
𝑁(𝑠)

𝐷(𝑠)
+ (

𝐾𝑚
𝑠
)
𝑁(𝑠)

𝐷(𝑠)
+ 1 = 0                                                   (5.76) 

𝑠𝐾𝑝̅̅̅̅ 𝑁(𝑠) + 𝐾𝑚𝑁(𝑠) + 𝑠𝐷(𝑠) = 0                                              (5.77) 

𝑠𝐾𝑝𝑁(𝑠) + 𝑠𝐷(𝑠) + 𝐾𝑚𝑁(𝑠) = 0                                            (5.78) 

1 + 𝐾𝑚 ∗
𝑁(𝑠)

𝑠𝐾𝑝𝑁(𝑠) + 𝑠𝐷(𝑠)
                                                    (5.79) 

A root locus plot is then used to determine the integral term 𝐾𝑚, 

𝑟𝑜𝑜𝑡 𝑙𝑜𝑐𝑢𝑠 (
𝑁(𝑠)

𝑠𝐾𝑝𝑁(𝑠) + 𝑠𝐷(𝑠)
).                                                 (5.80) 
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6 Simulation and Experiment Identification of DC-DC Converter 

6.1 Introduction 

In this research, the previously defined method for fractional order identification and control  

is applied to switched-mode power electronic dc-dc converters. Results confirm the benefits of the 

new analysis method and it applicability to the improved operation of switched-mode power 

converters.  

6.2 Identification of a DC-DC Buck Converter 
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Figure 6.1: Identification of dc-dc buck converter. 

The circuit configuration of the buck converter is presented in Figure. 6.1. The input 

voltage is a constant value of Vs=20 V. A time-varying reference signal is a combination of a dc 

voltage with an added sinusoidal component over a frequency range of 𝑓 =  {5 − 5K} Hz. The 

average duty ratio is 𝑑(𝑡)=0.6.  
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Figure 6.2: Example of control signal for buck converter of 1500Hz. 

 

Figure 6.3: DC-DC Buck converter Matlab Simulink. 

6.2.1 Fast Fourier Transform (FFT) Algorithm for the Buck Converter  

The FFTs is applied to define the amplitude and phase angle from the output signal to 

determine the gain and the phase shift between the input and output signal as shown in Figure 6.4.  
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Figure 6.4: Example of FFT analysis for buck converter of 1500Hz. 

Consequently, the magnitude and the phase shift for each frequency is tabulated for 

producing a Bode plot for the buck converter with values shown in Table 6.1. 

Table 6.1:  Collected data bode plot for buck converter. 

Frequency (Hz) Magnitude (dB) Phase shift (degrees) 

5 26.3518 -0.1019 

10 26.3532 -0.2038 

20 26.3588 -0.4079 

100 26.5396 -2.0829 

200 27.1286 -4.4615 

300 28.2006 -7.5865 

500 31.2667 -46.6346 
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Continued Table 6.1: Collected data bode plot for boost converter. 

Frequency(Hz) Magnitude (dB)=20*log(gine) Phase shift Degree 

600 30.2814 -83.0687 

700 28.6248 -108.1775 

800 26.8768 -126.7498 

900 25.1362 -141.3072 

1000 23.34 -153.3525 

1500 14.4072 -172.1569 

2000 8.6764 -174.1601 

2500 4.6062 -175.2553 

3000 1.1723 -175.8845 

3500 -1.7045 -176.1434 

4000 -3.9727 -176.2405 

4500 -6.1259 -177.142 

4700 -6.8691 -176.3831 

4800 -6.8691 -176.3831 

5000 -6.8691 -176.3831 
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6.2.2 Bode Plot Formulstion for the Buck Converter 

From the frequency response derived from simulation data, the Bode plot is created for the 

system.  Results ar shown in Fig. 6.5. 

 

Figure 6.5: Bode Plot of buck converter form the Powersim simulation data. 

The simulated buck converter is compared with a high-order integer transfer function by 

using the estimation Matlab command (TFEST). The system estimation fits 84.01% of the buck 

converter simulated results  

𝐺(𝑠)𝑠𝑜𝑠𝑒 =
3.226×108

s2 + 2271 s + 1.601×107
. 

A third-order integer transfer function is estimated for the buck converter. The results is 

fitted to estimation data of 85.98% of the simulated buck converter:  

𝐺(𝑠)𝑡𝑜𝑠𝑒 =
1.063 × 1013

s3 +  3.315 × 104 s2 +  5.939 × 107 s +  5.27 × 1011
 

A third-order system is estimated system with a zero included in the transfer function. The 

results fit the data by 84.95% of the simulated behaviour system as:  
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𝐺(𝑠)𝑡𝑜𝑠𝑒𝑧  =
2.545 × 108 s −  9.328 × 1011

s3  +  925.8 s2 +  9.286 × 106 s +  4.4 × 1010
 

A sixth-order integer estimation function is fitted to the data by 97.3% of the converter 

hehavior.  

𝐺(𝑠)𝑠𝑥𝑜𝑠𝑒

=
4.041 × 108 s4  −  9.786e10 s3  +  7.506e15 s2  +  1.116 × 1018s +  6.171 × 1022

s6 +  1338 s5  +  3.382 × 107 s4  +  7.949 × 109 s3  +  4.971 × 1014 s2  +  1.539 × 1017 s +  2.951 × 1021
. 

The comparison between all the estimated systems for simulation data is made to show the high 

order system is equivalent to the original system behavior as shown in the Figs. 6.6 and 6.7.  

 

Figure 6.6: Bode Plot of buck converter simulated and estimated system. 
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Figure 6.7: Bode Plot of buck converter simulated and approximation system. 

The actual simulated response of the buck converter demonstrates a fractional order 

behavior since the asymptotic magnitude sloes at a rete different from -20 dB/decade. A fractional 

order transfer function is derived using Levy’s method. The transfer function results the estimation 

error by 9% as showing: 

𝐺(𝑠)𝐹𝑂 =
−8.8396𝑒−06𝑠^1.5+0.00077031𝑠^1.2−0.028416𝑠^0.9+0.54375𝑠^0.6−5.2383𝑠^0.3+20.793

1.6537𝑒−07𝑠1.8+5.2915𝑒−06𝑠1.5+9.2978𝑒−05𝑠1.2+0.0016539𝑠0.9+0.026898𝑠0.6+0.2521𝑠^0.3+1
. 

6.2.3 Controller for the DC-DC Buck Converter 

A controller for the output voltage of the dc-dc buck converter is designed. The LQR design 

technique is used with error function defined: 

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡, 

with the buck converter model with a tracking error state variable defined as 

𝑥1 = ∫𝑒(𝑡), 
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𝑥2 = 𝑖𝑙, 

𝑥3 = 𝑉𝑜𝑢𝑡, 

�̇�1 = 𝑉𝑟𝑒𝑓 − 𝑥3 

�̇�2 =
1

𝐶 
𝑥2 −

1

𝐶 𝑅𝐿 
𝑥3 

�̇�3 = −
𝑟𝐿

𝐿
𝑥2 −

1

𝐿 
𝑥3 +

𝑉𝑖𝑛
𝐿 
𝑢 

For determine the tracking error behavior is the following:   

�̇�1 = −𝑧3 

�̇�2 =
1

𝐶 
𝑧2 −

1

𝐶 𝑅𝐿 
𝑧3 

�̇�3 = −
𝑟𝐿

𝐿
𝑧2 −

1

𝐿 
𝑧3 +

𝑉𝑖𝑛
𝐿 
𝑢 

For control input u is optimized by the cost quadratic cost function: 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

, 

where 𝑄 is a symmetric positive semi-definite matrix. The root-locus plot for the buck converter  

is shown in Fig. 6.8. 
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Figure 6.8: Movement of poles in LQR of buck converter. 

 

Figure 6.9: Poles location of system of buck converter. 
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Figure 6.10: Simulation of fractional-order and integer-order controller of buck converter. 
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Figure 6.11: Result of fractional-order and integer-order controller of buck converter. 

In Fig. 6.11 it is shown that the system behavior with a fractional-order controller has 

reduced overshoot. Disturbances are applied to the systems as a load change. At 0.3 s the output 

voltage is tracking the reference command value. At 0.5 s the input voltage is increased to evaluate 

tracking of the output value. At 0.8 s the resistive load is decreased to show the performance of 

the controller in regulating the output voltage.  
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6.2.4 Experimental Verification for the Buck Converter 

 

Figure 6.12: Experimental configuration for the buck converter controller. 

 

Figure 6.13: Simulation of control signal at 60Hz and output voltage of the buck converter. 
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Figure 6.14: Experimental control of 60Hz reference and output voltage of the buck converter. 

 

Figure 6.15: Experimental analysis of 60Hz control signal by FFT of the buck converter. 
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Figure 6.16: Experimental analysis of output voltage by FFT of the buck converter. 

 

Figure 6.17: Experimental control by 10 KHz at output voltage of the buck converter. 
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Figure 6.18: Experimental analyzing 10 KHz control signal by FFT of buck converter. 

 

Figure 6.19: Experimental analyzing output voltage signal by FFT of the buck converter. 

The experimental verification of the input (control) to output voltage signal by FFT of buck 

converter is very close to the simulation results.   
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6.3 Identification of DC-DC Boost Converter 
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Figure 6.20: DC-DC Boost Converter. 

The identification of the boost converter is presented in Fig. 6.21. The boost converter 

contains an inductor (L), capacitor (C), and resistive load. The input voltage is a constant value. 

The control signal is combination of a dc voltage added to a sinusoidal a wave at a selected 

frequency rangr. However, the control signal frequencies are less than the triangular wave 

frequency. The converter operates in the continuous conduction mode by adjusting the amplitude 

of the control signal for each application. The results represent the relationship between the control 

reference signal and the output signal. The input (duty-cycle signal) and the output voltage are 

displayed on the phasor model of the small signal variation. 



87 

 

Figure 6.21: DC-DC Boost Converter Matlab Simulink. 

6.3.1 Fast Fourier Transform (FFT) Algorithm for Boost Converter 

The FFT is applied in the analysis to define the amplitude and phase angle. By using the 

FFT of the output signal the gain and the phase shift between the input and output signal ws 

determined as shown in the following figures:  

 

Figure 6.22: Example of the (FFT) analysis for buck converter of 500Hz. 
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A magnitude and phase shift for each frequency applied was tabulated and is shown in 

Table 6.2. 

Table 6.2: Collected data bode plot for boost converter. 

Frequency (Hz) Magnitude (dB)=20*log( ) Phase shift (degrees) 

5 42.4555 -1.5061 

10 42.4648 -3.0156 

20 42.5014 -6.0584 

100 43.3133 -33.1772 

200 45.5471 -73.3662 

300 45.0749 -140.7821 

400 40.5477 -183.5606 

500 36.4659 -202.3726 

600 33.597 -213.5911 

700 31.2051 -222.7427 

800 29.8854 -224.9429 

900 28.4123 -229.7827 

1000 27.162 -233.7191 

1500 22.8994 -246.3085 

2000 20.2925 -253.2719 
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Continued Table 6.2: Collected data bode plot for boost converter. 

Frequency (Hz) Magnitude (dB)=20*log( ) Phase shift (degrees) 

2500 18.1081 -255.4484 

3000 16.7004 -257.3572 

3500 15.1509 -258.2636 

4000 14.1601 -259.2652 

4500 13.6031 -261.0557 

4700 13.0189 -263.6907 

4800 13.0189 -263.6907 

5000 13.0189 -263.6907 

6.3.2 Bode Plot Generation for Boost Converter 

Using the  data of magnitude and phase shift for the boost converter, the Bode plot drawing 

has a magnitude (∓20) in decibel (dB). The frequencies sine function of the control input is 2πf 

rad/sec. A frequency range of 5-5K Hz is applied in the Simulink model. 
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Figure 6.23:Bode Plot of Boost converter Powersim simulation data. 

A high-order integer transfer function for the system is derived using the TFEST command 

on Matlab. A second order system estimated for the system is analyzed for fitting the estimation 

data by 66.71% of the actual behavior for the system.  

𝐺(𝑠)𝑠𝑜𝑠𝑒 =
2.786 × 108

s2  +  943.4 s +  2.067 × 106
 

The estimation by using TFEST on Matlab to a third order system that  fits the estimation data by 

81.21% of the real system as:  

𝐺(𝑠)𝑡𝑜𝑠𝑒 =
1.116 × 1012

s3  +  3507 s2  +  5.907 × 106 𝑠 +  7.817 × 109
 

The third order transfer function estimated for the system is analyzed with estimation data by 

95.82% the real system as:  

𝐺(𝑠)𝑡𝑜𝑠𝑒𝑧  =
−9.513 × 109 s +  2.761 × 1013

s3  +  7.563 × 104 s2  +  9.698 × 107 s +  2.142 × 1011
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However the fourth order system is estimated that fits of estimation data by 98.09% of the real 

behavior of the system.  

𝐺(𝑠)𝑠𝑥𝑜𝑠𝑒 =
−2.469 × 1011 s2  +  4.4 × 1014 s +  7.544 × 1017

𝑠4  +  2.067 × 106 𝑠3  +  4.351 × 109 𝑠2  +  8.503 × 1012 𝑠 +  5.675 × 1015
. 

The comparison between all the estimated systems for simulation data is made to show the high 

order equivalent to the original system behavior is shown in the Fig. 6.27. 

 

Figure 6.24: Simulated data Bode plot of boost converter and estimation data. 
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Figure 6.25: Simulation data Bode plot boost converter and approximation data. 

The real behavior of the system is represented by the fractional order transfer function by 

applying Levy’s method with resulting estimation error of 4%. 

𝐺(𝑠)𝐹𝑂 =

2.5708×10−13𝑠3.25−1.2387×10−9𝑠2.6+1.1012×10−9𝑠1.95+0.00035331𝑠1.3−0.84513𝑠0.65+137.38

53.669×10−12𝑠3.25+3.8974×10−10𝑠2.6+3.1564×10−7𝑠1.95+3.5464×10−5𝑠1.3+0.00059335𝑠0.65+1
. 

 

Figure 6.26: Simulation of boost converter actual Bode Plot and FO model. 
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6.3.3 Controller for the DC-DC Boost Converter 

The cascaded PI control of the boost converter is used with an inner and outer loop 

controller for the converter. Design of the inner-loop for the inductor current is tracking a reference 

value of the current by define an error variable as: 

�̇�1 = 𝑒(𝑡) = 𝑖𝑙𝑟𝑒𝑓 − 𝑖𝑙 

With an additional state variable defined from the tracking error as: 

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑖𝑙. 

The state space equations are represented as: 

�̇�1 = 𝑖𝑙𝑟𝑒𝑓 − 𝑥2 

�̇�2 = −
𝑟𝑙𝑥2

𝐿 
−
𝑣𝑜(1−𝑢)

𝐿 
. 

Converting the state-space equations to a standard LQR form is represented as: 

�̇�1 = −𝑧2 

�̇�2 = −
𝑟𝑙𝑧2
𝐿 

−
𝑢

𝐿 
. 

Control input u is minimized by the cost function of the LQR: 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

, 

where 𝑄 is symmetrical positive semi-definite matrix. The root locus plot for current control of 

the boost converter as presented in Chapter 5 is shown in Fig. 5.10. 
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Figure 6.27: Root locus of closed loop poles for boost converter inner-loop cpntroller. 

 

Figure 6.28: Poles of current controller location of the boost converter. 

 

Defining gains for outer-loop controller for the boost converter, the LQR technique is used. 

The output error function is represented: 

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡 
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A tracking error state variable is added as 

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑉𝑜𝑢𝑡, 

�̇�1 = 𝑉𝑟𝑒𝑓 − 𝑥2 

�̇�2 =
(1 − 𝑢)

𝐶 
𝑖𝑙 −

1

𝐶 𝑅𝐿 
𝑥2. 

For determining the equation for tracking of the system behavior is 

�̇�1 = −𝑧2 

�̇�2 =
𝑣𝑖𝑛
𝐶𝑣𝑟𝑒𝑓 

𝑢 −
1

𝐶 𝑅𝐿 
𝑧2. 

The control input u is minimized by the quadratic cost function : 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

, 

where 𝑄 is symmetrical positive semi-definite matrix. The control for boost converter from 

Chapter 5 is shown in Fig. 5.11. The corresponding root locus and closed loop poles are shown in 

Figs. 6-30 and 6.31.  
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Figure 6.29: Movement of closed loop poles for voltage controller of the boost converter. 

 

Figure 6.30: Poles of voltage controller location of the boost converter. 
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Figure 6.31: Controller configuration for the boost converter. 
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Figure 6.32: Integer-order controller with fractional-order controller for boost converter. 

The actual system behavior of the boost converter with a fractional controller has less 

overshoot and faster response. Disturbances are applied to the system for controlling the output 

voltage. At 0.1 s the input voltage is increased but the reference output voltage remains at the sa,e 

value. At 0.2 s, the reference of the output voltage is reduced to have verification of tracking the 

output value. At 0.3 s the resistive load is decreased for the system to show the performance of the 

controller shown in Fig. 6.33. 
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6.3.4 Experimental Reults for Boost Converter 

 

Figure 6.33: Experimental control of the boost converter. 

 

Figure 6.34: Simulation of reference signal at 60Hz and output voltage of the boost converter. 
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Figure 6.35: Simulation control signal 60Hz and output voltage of the boost converter. 

 

Figure 6.36: Experimental FFT analysis of control signal 60Hz the boost converter. 
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Figure 6.37: Experimental FFT analysis of output voltage boost converter. 

 

Figure 6.38: Simulation control signal of 100Hz and output voltage boost converter. 
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Figure 6.39: Experimental control signal of 100Hz and output voltage boost converter. 

 

Figure 6.40: Experimentalal FFT analysis of control signal of 100Hz boost converter. 
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Figure 6.41: Experimental analysis FFT of output voltage boost converter. 

Experimental output voltages with FFT analysis of the boost converter is shown in Fig. 

6.41 and Fig. 6.42. The experimental analysis of the input (control) and output voltage signal by 

FFT of the boost converter matches the simulation analysis of the system.  

6.4 Identification of a DC-DC Boost Converter with Constant Power Load (CPL) 

 

 

DC S11

S12

L 

VoutC
Vs

RL CPL

 

Figure 6.42: DC-DC boost converter with CPL. 

The circuit of the boost converter with a constant power load (CPL) is presented that in 

Figure. 6.43. The system of the boost converter with CPL contains an inductor L, capacitor C, 



104 

resistive load and the constant power load. The input voltage on this application is constant value. 

The control signal is combination of a dc voltage added to a sinusoidal a wave of a selected 

frequency range. The converter operates in the continuous conduction mode at all time by adjusting 

the amplitude of the control signal for the application. The results represent the relationship 

between the control signal and the output voltage.  

 

Figure 6.43: Example of control signal for boost converter with CPL at 1000Hz. 
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Figure 6.44: Inductor current and capacitor voltage with CPL at 1000Hz. 

 

Figure 6.45: DC-DC boost converter with CPL in Matlab-Simulink. 

6.4.1  FFT Algorithm for Boost Converter with CPL 

The FFT is used to define the amplitude and phase angle for the output signal. A magnitude 

and phase shift for each frequency is applied to the system that achieved as shown in Table 6.4. 
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Figure 6.46: Example of FFT analysis for boost converter with CPL of 1000Hz. 

Table 6.3: Collected data bode plot for boost with CPL converter. 

Frequency(Hz) Magnitude (dB)=20*log(gine) Phase shift Degree 

1 47.3921 -10.9952 

5 47.0526 -22.0885 

10 47.6473 -30.7251 

15 51.4103 -35.5453 

20 53.6425 -46.8761 

25 56.854 -52.6526 

30 57.3562 -86.1381 
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Continued Table 6.3: Collected data bode plot for boost with CPL converter. 

Frequency(Hz) Magnitude (dB)=20*log(gine) Phase shift Degree 

40 52.9534 -212.2466 

50 45.4137 -226.6947 

60 41.4514 -228.2263 

75 37.8449 -235.7627 

85 35.9335 -241.4321 

100 34.8573 -246.9964 

150 30.6334 -247.3601 

200 28.9137 -256.3521 

250 27.84 -259.6278 

300 26.1333 -261.425 

350 24.7746 -262.295 

400 23.5796 -263.5039 

450 22.9723 -263.6524 

500 21.8184 -264.5572 

550 20.7828 -265.2161 

600 20.3112 -265.6837 
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Continued Table 6.3: Collected data bode plot for boost with CPL converter. 

Frequency(Hz) Magnitude (dB)=20*log(gine) Phase shift Degree 

650 19.3166 -266.1577 

700 18.6279 -267.236 

750 18.0871 -266.1082 

800 17.4952 -266.9808 

850 17.0051 -266.6152 

900 16.475 -267.103 

950 15.9756 -268.3574 

1000 15.5359 -267.7728 

1250 14.6166 -267.464 

1500 13.0996 -267.4748 

1750 12.7184 -268.8022 

2000 12.1755 -268.6971 

2250 10.9842 -269.2033 

2500 9.1765 -268.8765 

2750 8.7891 -268.3201 

3000 8.2396 -269.0522 

3250 7.5043 -269.3374 
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Continued Table 6.3: Collected data bode plot for boost with CPL converter. 

Frequency(Hz) Magnitude (dB)=20*log(gine) Phase shift Degree 

3500 6.7154 -269.0346 

3750 6.3799 -269.6419 

4000 5.7671 -269.0872 

4250 5.0017 -269.5761 

4500 4.2365 -269.8106 

4750 4.1526 -269.0254 

5000 4.0012 -269.4579 

6.4.2 Bode Plot Generation for Boost Converter with CPL 

The open-loop system response to varying frequency inputs (duty cycle) is obtained and 

data tabulated in Table 6.3. Based on the accuracy of data is obtained of magnitude and phase shift 

resulting a Bode plot drawing has magnitude (∓20) in decibel (dB) and the phase shift in degrees 

and angular frequency 𝜔. The frequency of the sinusoidal function in the control input of Simulink 

model is 2πf rad/sec. The frequency range of (1-5K Hz) applied to the model as shown that  in 

Figure . 6.48. 
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Figure 6.47: Bode Plot of boost with CPL from simulation data. 

Comparing the high order transfer function determined with the Matlab command (TFEST) 

is applied to the frequency response data. A second order system is estimated from the analyzed 

data that is fitted with estimation accuracy of 58.07% of the actual system behavior as:  

𝐺(𝑠)𝑠𝑜𝑠𝑒 =
8.65×106

s2 + 63.87 s + 3.413×104
. 

A third order system is estimated from the simulation data that fits to the estimation data by 76.21% 

of the simulated system,  

𝐺(𝑠)𝑡𝑜𝑠𝑒 =
2.82×109

s3 + 244.4 s2 + 5.374×104 𝑠 + 8.981×106
. 

A third order system is estimated for the system with an added zero. It fits the data by 77.96% of 

the simulated system,  

𝐺(𝑠)𝑡𝑜𝑠𝑒𝑧  =
−4.669×106 s + 3.797×109

s3 + 346.7 s2 + 5.955×104 s + 1.357×107
.  
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An eleventh order system is estimated for the analyzed system and has the best fits to the data by 

99.28% of the actual system as following:  

𝐺(𝑠)𝑓𝑜𝑠𝑒 =
−3.837 × 104 𝑠10 + 1.569 × 107 𝑠9 − 1.299 × 109 𝑠8 +  3.145 × 1011 𝑠7   

𝑠11 + 185 𝑠10 + 1.825 × 105 𝑠9  + 5.256 × 107 𝑠8 + 1.374 × 1010 𝑠7
 

−8.446 × 1014 𝑠6 + 4.109 × 1016 𝑠5 − 3.298 × 1019 𝑠4 + 1.315 × 1021 𝑠3 − 1.06 × 1023 𝑠2  
+2.848 × 1012 𝑠6 + 2.668 × 1013 𝑠5 + 4.657 × 1016 𝑠4 + 7.913 × 1018 𝑠3 + 6.848 × 1019 𝑠2

 

+9.548 × 1024 𝑠  + 6.746𝑒25  

+4.939 × 1022 𝑠 + 2.543 × 1023
. 

The comparison between all the estimated transfer functions for simulation data is shown 

in  Figure. 6.49. 

 

Figure 6.48: Bode plot comparison of the boost converter with CPL data. 
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Figure 6.49: Bode plot of boost converter with CPL. 

The actual behavior of the system for the fractional order transfer function is derived by 

applying Levy’s method resulting the estimation error is 6% as following: 

𝐺(𝑠)𝐹𝑂 =
6.0463×10−5𝑠1.8−1.4803𝑠0.9+227

6.425×10−14𝑠3.6+1.4168×10−9𝑠2.7+8.0277×10−5𝑠1.8+7.4832×10−5𝑠0.9+1
. 
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6.4.3 Modeling and Analysis of a DC-DC Boost Converter with CPL 

DC S1

S2

L 

VoutC
Vs

RL CPL

 

Figure 6.50: Boost converter with CPL. 

A dc-dc power converter is constructed by using connection of a boost converter with a 

constant power load (CPL). The model of the boost converter with CPL is derived to be: 

KVL L: 

𝑉𝑠 = 𝐿 
𝑑𝑖
𝑑𝑡
+ 𝑉𝐶(1 − 𝑆1) 

KCL C: 

𝑖 (1 − 𝑆1) = 𝐶 
𝑑𝑣
𝑑𝑡
+
𝑉𝐶
𝑅𝐿

+
𝑃

𝑉𝐶
 

Average Normalized Model 

𝑥1 = 𝑖 , 𝑥2 = 𝑉𝑜𝑢𝑡, 𝑆1 = 𝑈  

�̇�1 =
𝑉𝑆
𝐿 
−
𝑥2(1 − 𝑈 )

𝐿 
 

�̇�2 =
𝑥1(1 − 𝑈 )

𝐶 
−

𝑥2
𝐶 𝑅𝐿

−
𝑃

𝐶𝑥 2
2
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With state-space equations:  

𝐴 =

[
 
 
 
 0

−(1 − 𝑈 )

𝐿 
(1 − 𝑈 )

𝐶 

−1

𝐶 𝑅𝐿
−

𝑃

𝐶𝑥2
2]
 
 
 
 

, 𝐵 = [

𝑥2
𝐿 
−𝑥1
𝐶 

] , 𝐶 = [0 1], 𝐷 = [0] 

The conventional linearized transfer function is: 

𝐺(𝑠)𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 =
−2.677e04 s +  7.738e06 

𝑠2 +  25.15 𝑠 +  3.72𝑒04
∙ 

The actual system is compared with the linearized system as a Bode plot and is shown in Figure. 

6.51. 

 

Figure 6.51: Bode plot comparison of boost converter with CPL (actual data and linearized 

model). 
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6.4.4 Controller for the DC-DC Boost Converter with CPL  

The cascaded controller is used for the boost converter with an inner and outer loop 

controller for the converter. The error variable is defined as: 

�̇�1 = 𝑒(𝑡) = 𝑖𝑙𝑟𝑒𝑓 − 𝑖𝑙 

and the a new state variable is defined from the tracking error as: 

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑖𝑙 . 

The state-space equations are represented as: 

�̇�1 = 𝑖𝑙𝑟𝑒𝑓 − 𝑥2 

�̇�2 = −
𝑟𝑙𝑥2
𝐿 

−
𝑣𝑜(1 − 𝑢)

𝐿 
 

Converting the state-space equations to standard LQR is represented as following: 

�̇�1 = −𝑧2 

�̇�2 = −
𝑟𝑙𝑧2
𝐿 

−
𝑢

𝐿 
 

The controller input u is minimized by the quadratic cost function 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

, 

where 𝑄 is a symmetric positive semi-definite matrix. The root locus of the boost converter is 

provided in Fig. 6.53. 
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Figure 6.52: Movement of closed loop poles for current control loop of the boost with CPL. 

 

Figure 6.53: Poles of current control loop location of the boost with CPL. 

 

Define the gains for outer loop to control the output voltage of the boost converter by using 

the LQR technique. The new state variable is represented as: 

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡. 
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Consideration the tracking error, 

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑉𝑜𝑢𝑡, 

�̇�1 = 𝑉𝑟𝑒𝑓 − 𝑥2 

�̇�2 =
(1 − 𝑢)

𝐶 
𝑖𝑙 −

1

𝐶 𝑅𝐿 
𝑥2 −

𝑃

𝐶𝑥2
 

Determining the tracking of the system behavior as following:   

�̇�1 = −𝑧2 

�̇�2 =
𝑣𝑖𝑛
𝐶𝑣𝑟𝑒𝑓 

𝑢 −
1

𝐶 𝑅𝐿 
𝑧2 −

𝑃

𝐶𝑧2
 

The controller of the input u minimizes the quadratic cost function: 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

 

where 𝑄 is a symmetric positive semi-definite matrix. The control for boost converter is shown in 

Figure. 6.55. 
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Figure 6.54: Movement of closed loop poles for voltage controller of the boost with CPL. 

 

Figure 6.55: Poles of voltage controller location of the boost with CPL. 
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Figure 6.56: Integer-Order controller with fractional-order controller for boost with CPL. 
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Figure 6.57: Fractional order controller and integer-order controller for boost with CPL. 

The actual system behavior of the boost converter with CPL with the fractional controller 

has less overshoot and faster response. Disturbances are applied for the systems for controlling the 

output voltage. At 0.1 s, the input voltage is increased but the output voltage remains at the 

expected value. At 0.2 s, the reference of the output voltage is reduced to have verification of 

tracking the output value. At 0.3 s, the resistive load is decreased top 0.4 of the value of the constant 

power load. The system performance with the controller is shown in Fig. 6.58. 
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6.5 Identification of a Boost-Buck Converter Circuit 
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Figure 6.58: Boost-buck frequency response simulation. 

The system used in this experimental part is a cascaded boost and buck converter. The 

objective behind this study is to develop the FO control for a boost converter with a CPL and 

controlling non-minimum phase fractional-order system. The research additionally shows new 

methods for modeling and examining converters. The procedure presents the actual system boost 

converter with CPL boost buck converter. The cascade boost-buck converter has two controller 

switches. The cascade boost-buck converter is considered as one system. The system is represented 

by a fractional order transfer function. The boost converter PWM switching is shown in Fig. 6.60. 

The PWM structure for the buck converter is shown in Fig. 6.61. The output signal taken from the 

output voltage over the load of the system. The voltage output ripples of frequency is determined 

between 5-5KHz.  
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Figure 6.59: Switching input for boost converter. 

 

Figure 6.60: Switching input for buck converter. 
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Figure 6.61: Input-Output frequency response of boost-buck converter. 

 

Figure 6.62: Boost-buck Matlab simulation. 

The magnitude and phase shift of the system is represented in Table 6.4 by using the 

previously defined methods.  
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Table 6.4: Data of Bode plot for boost-buck converter. 

Frequency (Hz) Magnitude (dB)=20*log( ) Phase shift  (degrees) 

50 26.6144 -25.9991 

100 27.0115 -51.5781 

200 28.6012 -100.997 

300 30.9423 -159.5464 

400 29.4158 -230.1422 

500 24.4035 -275.7914 

600 19.9116 -301.6907 

700 16.2372 -319.0664 

800 13.1326 -332.1507 

900 10.4446 -342.4006 

1000 8.0431 -351.0239 

1500 -1.3096 -378.7302 

2000 -8.1307 -395.1614 

2500 -13.5589 -405.0542 

3000 -17.4309 -416.5254 

3500 -21.7178 -454.032 

4000 -22.9075 -465.3801 
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Continued Table 6.4: Data of Bode plot for boost-buck converter. 

Frequency (Hz) Magnitude (dB)=20*log( ) Phase shift  (degrees) 

4500 -27.4369 -491.8412 

5000 -29.1813 -490.2091 

In Fig. 6. 64 shows the bode plot from the observed data. 

 

Figure 6.63: Bode plot of boost-buck converter form collected simulation data. 
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Figure 6.64: Bode plot of boost-buck simulation data and estimated system. 

Hence, the transfer function for the estimated system in integer order generated by using 

Matlab command (TFEST).  

4 3 2

7 6 5 4 3 2

8.453 11 3.431 16 2.806 19 2.381 22 1.837 26
( )

5.062 04 5.242 08 2.028 12 5.706 15 1.007 19 1.148 22 8.687 24

e s e s e s e s e
G s

s e s e s e s e s e s e s e

    


        

Zeros and poles for the high order system show a non-minimum phase system as below with 

poles in the left hand side. 

z =

   1.0e+04 *

  -4.1412 + 0.0000i

   0.1879 + 0.0000i

  -0.0529 + 0.1586i

  -0.0529 - 0.1586i  
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p =

   1.0e+04 *

  -3.8180 + 0.0000i

  -0.8097 + 0.0000i

  -0.1875 + 0.0000i

  -0.0706 + 0.2185i

  -0.0706 - 0.2185i

  -0.0527 + 0.1601i

  -0.0527 - 0.1601i  

6.5.1 Modeling and Analysis of a DC-DC Boost-Buck Converter 

A multi-variable dc-dc power converter is constructed by using a cascaded boost and buck 

converter. Fig. 6. 69 shows the boost-buck circuit. 
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Figure 6.65: Boost-buck circuit. 

The model of the converter is derived to be: 

KVL L1: 

 1
1 1 1 1 111i

s L

d
V L R i V S

dt
   

 

KCL C1: 
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  1
1 11 1 2 211

dv
i S C i S

dt
  

 

KVL L2: 

2
1 21 2 2 2 2L

di
V S L R i V

dt
  

 

KCL C2: 

2 2
2 2

dv V
i C

dt RL
 

 

Average normalized Model 

1 1 2 1 3 2 4 2 11 1 21 2, , , , ,x i x V x i x V S U S U     
 

 2 11 1
1

1 1 1

1
s L

x UV R x
X

L L L


  

 

 2 1 3 2
2

1 1

1x U x U
X

C C


 

 

2 32 2 4
3

2 2 2

LR xx U x
X

L L L
  

 

3 4
4

2 2

x x
X

C C RL
 

 

A state space model and controller inputs is given by: 
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2

1

31

1 1

2

2

0

0

0 0

x
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x

L

 
 
 

 
 


 
 
 
 
    

0 1 0 0

0 0 0 1
C

 
  
   

0 0

0 0
D

 
  
   

The linearized transfer function is 

2linea 4ri d 3ze( )
1.096 04 3.345 07 7.083 10 7.857 13

-9.276e11 s + 1.657e15
G s

s e s e s e s e


  
 

The zero and poles are: 

z =

 1.7857e+03  
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p =

   1.0e+03 *

  -0.6882 + 2.1813i

  -0.6882 - 2.1813i

  -1.9720 + 0.0000i

  -7.6159 + 0.0000i  

The actual system is compared with the linearized system as shown in Figure 6.68. 

 

Figure 6.66: Bode plot for boost-buck of actual versus linearized data. 

The fractional-order transfer function is compared with the real system characteristic 

behavior is shown in the Figure 6.72. 
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Figure 6.67: Bode plot for boost-buck actual versus fractional order. 

The Levy identification method is used to find the fractional order system. It is compared 

with converter data is shown in Fig. 6.68. The fractional-order transfer function is equivalent to 

the actual system as: 

0.8 0.6 0.4 0.2

0.8 0.6 0.4 0.2

0.0011301 0.03882 0.54057 3.7922 13.322 18.58
( )

3.6463 05 0.0029157 0.041271 0.25783 0.7878 1
fo

s s s s s
G s

e s s s s s

     

        

6.5.2 PI Controller for the DC-DC Boost-buck Converter 

The main objective of this research applies fractional order system identification method 

to find the actual behavior of the system and to design controllers for each stage of boost-buck 

converter to assure a stable system as shown in Figure 6.69. The controller is designed based on 

the both an integer order and fractional order models for comparison purposes. 
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Boost converter Buck converter C2

Controller Controller 

Vin Vout load

 

Figure 6.68: System block diagram of boost-buck converter. 

The controller of the boost converter stage is used an inner and outer loop. The current 

state variable is represented as: 

�̇�1 = 𝑒(𝑡) = 𝑖𝑙𝑏𝑜𝑟𝑒𝑓 − 𝑖𝑙𝑏𝑜 

where  the reference inductor current for the boost converter and 𝑖𝑙𝑏𝑜 is for the boost converter 

inductor. The state variable is defined from the tracking error as: 

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑖𝑙𝑏𝑜 . 

The state-space equations are represented as: 

�̇�1 = 𝑖𝑙𝑏𝑜𝑟𝑒𝑓 − 𝑥2 

�̇�2 = −
𝑟𝑙𝑏𝑜𝑥2
𝐿 

−
𝑣𝑜(1 − 𝑢)

𝐿 
 

Converting the state-space equations to standard LQR is represented as following: 

�̇�1 = −𝑧2 

�̇�2 = −
𝑟𝑙𝑧2
𝐿 

−
𝑢

𝐿 
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For controlling input u is minimized by the quadratic cost function: 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

 

where 𝑄 is a symmetric positive semi-definite matrix. The root locus for boost converter as shown 

in Fig. 6.70. 

 

Figure 6.69: Movement of closed loop poles current controller of boost-buck converter. 
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Figure 6.70: Poles of current controller location boost-buck converter. 

Define the gains for outer-loop to control the output voltage of the boost converter. An 

error is defined as: 

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡 

A new tracking error state-variable is added as  

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑉𝑜𝑢𝑡, 

�̇�1 = 𝑉𝑟𝑒𝑓 − 𝑥2 

�̇�2 =
(1−𝑢)

𝐶 
𝑖𝑙 −

1

𝐶 𝑅𝐿 
𝑥2. 

For determining the tracking of the system behavior: 

�̇�1 = −𝑧2 



135 

�̇�2 =
𝑣𝑖𝑛
𝐶𝑣𝑟𝑒𝑓 

𝑢 −
1

𝐶 𝑅𝐿 
𝑧2 

The control input u is minimized by quadratic cost function 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

 

where 𝑄 is a symmetric positive semi-definite matrix. The control for boost converter is shown in 

Fig. 6.72. 

Figure 6.71: Movement of closed loop poles for voltage controller of the boost-buck converter. 
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Figure 6.72: Poles of voltage controller location of the boost-buck converter. 

The gains for controlling the output voltage of the buck stage uses a new state variable as: 

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡. 

The tracking error has a new state-variable defined as  

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑖𝑙, 

𝑥3 = 𝑉𝑜𝑢𝑡, 

�̇�1 = 𝑉𝑟𝑒𝑓 − 𝑥3 

�̇�2 =
1

𝐶 
𝑥2 −

1

𝐶 𝑅𝐿 
𝑥3 

�̇�3 = −
𝑟𝐿

𝐿
𝑥2 −

1

𝐿 
𝑥3 +

𝑉𝑖𝑛
𝐿 
𝑢 

Tracking of the system behavior is:   
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�̇�1 = −𝑧3 

�̇�2 =
1

𝐶 
𝑧2 −

1

𝐶 𝑅𝐿 
𝑧3 

�̇�3 = −
𝑟𝐿

𝐿
𝑧2 −

1

𝐿 
𝑧3 +

𝑉𝑖𝑛
𝐿 
𝑢 

For control input u is minimized by the quadratic cost function: 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

 

where 𝑄 is a symmetric positive semi-definite matrix . The closed-loop control for buck converter 

is showing in Figure 6.74. 

 

Figure 6.73: Movement of poles in LQR boot-buck converter. 
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Figure 6.74: Poles of the boost-buck System. 

 

Figure 6.75: Simulation fractional-order, integer-order controller of boost-buck converter. 
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Figure 6.76: Simulation result for fractional and integer order controller of boost-buck converter. 

The actual system behavior of the cascaded boost-buck converter with the fractional 

controller has less overshoot and faster response. Disturbances are applied to the systems for 

controlling the output voltage. At 0.2 s, the input voltage of the boost sage is reduced but the output 

voltage remains at the expected value. At 0.4 s, the reference of the output voltage of the boost 

stage is reduced to have verification of tracking the output value. At 0.6 seconds, the reference of 

the output voltage of the buck stage is reduced to have verification of tracking the output value. At 

the 0.6 seconds, the resistive load is decreased and the system performance of the controller is 

shown in Fig. 6.77. 
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6.5.3 Experimental Part for the DC-DC Boost-Buck Converter 

 

Figure 6.77: Experiment of identify and control boost-buck converter. 

 

Figure 6.78: Open loop switching and voltages output of boost-buck converter. 
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The open-loop response for the boost stage switching is around 50% to boost the input 

voltage for double value. However, the buck switch reduces the output voltage around 70%. 

 

Figure 6.79: Experimental result of output voltages and currents of boost-buck converter. 

The result for controlling the system output voltage matches the simulation results. Also 

applying change for the resistive load the system is stable and the voltage is tracking the reference 

value for the output voltage. 
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6.6 Identification of a DC-DC Interleaved Boost Converter with (CPL) 

 

 

DC

S11

S22

VoutC

Vs
RL CPL

S21

S12

L2

L1

SPWM

 

Figure 6.80: DC-DC interleaved boost Converter with CPL. 

The interleaved boost Converter with CPL circuit design is presented in Figure 6. 81.  

 

Figure 6.81: Control signals for interleaved boost converter with CPL of 2000Hz. 
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Figure 6.82: Inductor current signal for interleaved boost converter with CPL of 2000Hz. 

 

Figure 6.83: DC-DC Interleaved Boost Converter with CPL Matlab Simulink. 

6.6.1 Fast Fourier Transform (FFT) Algorithm for Interleaved Boost Converter with (CPL) 

The FFT applied to define the amplitude and phase angle for the output signal to determine 

amplitude and phase angle of input signal. 
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Figure 6.84: FFT analysis of interleaved boost converter with CPL of 2000Hz. 

The magnitude and phase shift for each frequency is applied for the system obtained as 

shown in the Table 6.5: 

Table 6.5: Collected data of bode plot for Interleaved Boost Converter with CPL. 

Frequency(Hz) Magnitude (dB)=20*log( ) Phase shift  (degrees) 

1 47.9018 -1.1225 

5 48.0829 -5.802 

10 48.6301 -13.5089 

25 48.9811 -28.6078 

30 54.6687 -87.3775 

35 53.8314 -129.7308 

50 49.9931 -176.6309 
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Continued Table 6.5: Collected data of bode plot for Interleaved Boost Converter with CPL. 

75 43.0618 -214.1855 

325 23.0879 -261.7982 

350 22.3709 -263.8613 

400 21.1952 -264.9893 

450 20.1376 -266.5506 

500 19.1868 -268.1228 

550 18.3581 -268.707 

600 17.589 -269.6024 

650 16.8806 -270.4099 

700 16.2368 -270.8058 

750 15.6348 -271.4044 

800 15.0701 -271.8631 

850 14.5405 -272.147 

900 14.046 -272.5913 

950 13.5701 -272.8576 

1000 13.128 -273.0826 

1250 11.1963 -274.1456 

1500 9.5991 -274.8814 
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Continued Table 6.5: Collected data of bode plot for Interleaved Boost Converter with CPL. 

Frequency(Hz) Magnitude (dB)=20*log( ) Phase shift (degrees) 

1750 8.2625 -275.3563 

2000 7.1124 -275.6909 

2250 6.0837 -275.994 

2500 5.1873 -276.2134 

2750 4.3514 -276.4246 

3000 3.5577 -276.3014 

3250 2.8382 -276.853 

3500 2.2168 -276.8672 

3750 1.6018 -276.9843 

4000 1.01 -276.7598 

4250 0.5309 -277.0524 

4500 0.0831 -277.1601 

4750 -0.527 -277.3 

5000 -0.819 -277.2365 

6.6.2 Bode plot generation for Interleaved Boost Converter with CPL 

Based on the accuracy of data obtained of magnitude and phase shift, the resulting Bode 

plot has magnitude (∓20) in decibels (dB) and the phase shift represented in degrees. The 
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frequency of the sine waveform in the control input of Simulink model is 2πf rad/sec. The 

frequency range of (50-5K Hz) applied to the model as showing in Fig. 6.91. 

 

Figure 6.85: Bode plot of interleaved boost converter with CPL form obtained data. 

The higher order transfer function of the system is estimated by using TFEST on Matlab 

to the frequency response collected data of the real system. Third order system is estimated for the 

actual system is fits the estimation data by 79.34%. 

𝐺(𝑠)𝑡𝑜𝑠𝑒 =
2.82 × 109

𝑠3 + 244.4 𝑠2 + 5.374 × 104 𝑠 + 8.981 × 106
 

A fourth order system is estimated by using TFEST command fits the estimation data by 77.75%  

𝐺(𝑠)𝑓𝑜𝑠𝑒 =
2.6 × 1012

s4 + 928 s3 + 2.884 × 105 𝑠2 + 4.969 × 107 𝑠 + 9.126 × 109
 

The fourth order system is estimated with an added zero that fits the data by 79.34% of the actual 

behavior. 
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𝐺(𝑠)𝑓𝑜𝑠𝑒𝑧 =
3.188 × 109 s − 9.894 × 1010

s4 + 209.4 s3 + 4.316 × 104 𝑠2 + 7.125 × 106 𝑠 − 4.493 × 108
 

A seventeenth order system fits the data by 99.43% the actual system.  

𝐺(𝑠)𝑠𝑜𝑠𝑒 =
1.984 × 1027 s11  − 6.144 × 1029s10 + 6.462 × 1032s9 − 1.056 × 1035s8

s17 +  1.1557 × 105 s16  + 1.082 × 109 𝑠15 + 1.0031 × 1014 𝑠14 + 2.4 × 1017𝑠13
 

+4.892 × 1037 s7  − 1.586 × 1040s6 + 1.739 × 1042s5 − 4.934 × 1044s4

5.69 × 1022 s12 + 1.566 × 1024 s11 + 1.73 × 1028 𝑠10 + 2.618 × 1030 𝑠9 + 2.023 × 1033𝑠8
 

+4.892 × 1037 s7  − 1.586 × 1040s6 + 1.739 × 1042s5 − 4.934 × 1044s4

 1.638 × 1035 s7 + 9.072 × 1037 s6 + 8.476 × 1038 𝑠5 + 1.569 × 1042 𝑠4 + 6.24 × 1043𝑠3
 

+1.675 × 1046 s3  − 1.965 × 1048s2 + 7.214 × 1049s + 8.357 × 1050

 4.725 × 1045 s2 + 4.204 × 1047 s + 3.275 × 1048
. 

The comparison between the estimated systems to simulation data shows the high order equivalent 

to the original system behavior as shown in Fig. 6. 92. 

 

Figure 6.86: Bode plot of the interleaved boost converter with CPLVs estimation data. 
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Figure 6.87: Bode Plot of interleaved boost converter with CPL 

The real behavior of the system represented by fractional order transfer function using 

Levy’s method with resulting the approximation error of 6%. 

𝐺(𝑠)𝐹𝑂 =
−2.185 × 10−6𝑠2.2 + 0.0010762𝑠1.76 − 0.11674𝑠1.32 + 4.873𝑠0.88 − 69.475𝑠0.44 + 296.25

4.761510−8𝑠2.64 + 6.259510−6𝑠2.2 + 0.00028662𝑠1.76 + 0.0041792𝑠1.32 + 0.02002𝑠0.88 + 0.084919𝑠0.44 + 1
. 

6.6.3 Modeling and Analysis of a DC-DC Interleaved Boost Converter with (CPL) 

    DC-to-DC power converter is constructed by using connection of Boost converters and 

CPL load. The model of the converter is derived to be: 

KVL L: 

𝑉𝑠 = 𝐿1 
𝑑𝑖1
𝑑𝑡
+ 𝑉𝐶(1 − 𝑆11) 

𝑉𝑠 = 𝐿2 
𝑑𝑖2
𝑑𝑡
+ 𝑉𝐶(1 − 𝑆12) 

KCL C: 
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𝑖 1(1 − 𝑆11) + 𝑖 2(1 − 𝑆12) = 𝐶 
𝑑𝑣
𝑑𝑡
+
𝑉𝐶
𝑅𝐿

+
𝑃

𝑉𝐶
 

Average Normalized Model 

𝑥1 = 𝑖 , 𝑥2 = 𝑉𝑜𝑢𝑡, 𝑥3 =
𝑉𝑠

(1 − 𝑈 )
, 𝑆11 = 𝑆12 = 𝑈  

�̇�1 =
𝑉𝑆
𝐿1 

−
𝑥3(1 − 𝑈 )

𝐿1 
 

�̇�2 =
𝑉𝑆
𝐿2 

−
𝑥3(1 − 𝑈 )

𝐿2 
 

�̇�3 =
𝑥1(1 − 𝑈 )

𝐶 
+
𝑥2(1 − 𝑈 )

𝐶 
−

𝑥3
𝐶 𝑅𝐿

−
𝑃

𝐶𝑥 3
2
 

Equilibrium Point and State space model: 

𝐴 =

[
 
 
 
 
 
 0 0

−(1 − 𝑈 )

𝐿 1

0 0
−(1 − 𝑈 )

𝐿 2
(1 − 𝑈 )

𝐶 

(1 − 𝑈 )

𝐶 

−1

𝐶 𝑅𝐿
+

𝑃

𝐶𝑥3
2]
 
 
 
 
 
 

 

𝐵 =

[
 
 
 
 

𝑥3

𝐿1 
𝑥3

𝐿2 
−(𝑥1+𝑥2)

𝐶 ]
 
 
 
 

,𝐶 = [0 0 1], 𝐷 = [0] 

The linearized transfer function is: 

𝐺(𝑠)𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 =
−2.204 × 104𝑠2  +  9.375 × 106𝑠   +  3.052 × 10−8 

𝑠3 +  26.63 𝑠2  +  4.185 × 104𝑠   +  3.738 × 10−10
∙ 
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 The actual system is compared with the linearized system. The resulting Bode plot resonant peak 

is shown in Fig. 6.89. 

 

Figure 6.88: Bode plot of interleaved boost converter with CPL 

6.6.4 Controller for the DC-DC Interleaved Boost with CPL Converter 

The cascaded control is used for controlling the interleaved boost converter with the CPL 

The error variable is represented as: 

�̇�1 = 𝑒(𝑡) = 𝑖𝑙𝑟𝑒𝑓 − (𝑖𝑙1 + 𝑖𝑙2) 

the new state variable is defined for the tracking error as: 

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = (𝑖𝑙1 + 𝑖𝑙2). 

The state-space equations are represented as: 
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�̇�1 = 𝑖𝑙𝑟𝑒𝑓 − 𝑥2 

�̇�2 = −
𝑟𝑙1𝑥2
𝐿 

−
𝑟𝑙2𝑥2
𝐿 

−
𝑣𝑜(1 − 𝑢)

𝐿 
 

Converting the state-space equations are represented as following: 

�̇�1 = −𝑧2 

�̇�2 = −
𝑟𝑙1𝑧2
𝐿 

−
𝑟𝑙2𝑧2
𝐿 

−
𝑢

𝐿 
 

For control input u is minimized by the cost function: 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

 

where 𝑄 is a symmetric positive semi-definite matrix, The current controller for interleaved boost 

with CPL converter is showing in Figure. 6.90. 

 

Figure 6.89: Movement of closed loop poles current controller (interleaved boost with CPL). 
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Figure 6.90: Poles of current controller location of interleaved boost converter with CPL. 

Defining the gains of outer loop to control the output voltage boost converter, the LQR 

design technique is used. For a new state variable is defined as: 

�̇�1 = 𝑒(𝑡) = 𝑉𝑟𝑒𝑓 − 𝑉𝑜𝑢𝑡 

with tracking error, 

𝑥1 = ∫𝑒(𝑡), 

𝑥2 = 𝑉𝑜𝑢𝑡, 

�̇�1 = 𝑉𝑟𝑒𝑓 − 𝑥2 

�̇�2 =
(1−𝑢)

𝐶 
𝑖𝑙𝑡𝑜𝑡𝑎𝑙 −

1

𝐶 𝑅𝐿 
𝑥2 −

𝑃

𝐶𝑥2
. 

The tracking of the system behavior is:   

�̇�1 = −𝑧2 
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�̇�2 =
𝑣𝑖𝑛
𝐶𝑣𝑟𝑒𝑓 

𝑢 −
1

𝐶 𝑅𝐿 
𝑧2 −

𝑃

𝐶𝑧2
 

For control input u is minimized by quadratic cost function 

𝐽(𝑡) = ∫ (𝑧𝑇𝑄𝑧 + 𝑣2)𝑑𝑡
∞

0

 

where 𝑄 is a symmetric positive semi-definite matrix.  The control for boost converter is shown in 

Figure. 6.92. 

 

Figure 6.91: Closed loop poles location of voltage controller interleaved boost with CPL. 
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Figure 6.92: Poles of voltage controller location of interleaved boost converter with CPL. 

Figure 6.93: Simulation design of fractional-order versus integer-order controller of interleaved 

boost converter with CPL. 



156 

 

Figure 6.94: Simulation result Fractional Order controller-Integer order controller of interleaved 

boost converter with CPL. 

The actual system behavior of the interleaved boost converter with a CPL using the 

fractional controller has less overshoot and faster response. Disturbances are applied to the system 

for controlling the output voltage. At 0.1 s, the input voltage is reduced but the output voltage 

remains at the expected value. At 0.2 seconds, the reference of the output voltage of the boost stage 

is reduced to verify the tracking the output value. At 0.3 seconds, the resistive load is decreased 

such that the tracking performance of the controller is shown in Fig. 6.95. 
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7 Conclusion 

The research developed a new method for modelling switched-mode power electronic dc-

dc converters, By employing fractional order calculus, a modified describing function (MDF) 

method was developed that provides a systematic way to determine an accurate representation of 

the converter dynamics such that an improved feedback control design can be implemented. The 

method is primarily motivated by the challenges seen with boost converters however the 

experimental results showed benefits to buck and boost-buck converters. In addition, the nonlinear 

behavior of constant power loads was also demonstrated with the new fractional order MDF 

technique. Examples of constant power loads in LED lighting and computer loads such a data 

centers. Constant power loads exhibit a destabilizing characteristic on the overall dc-dc converter 

operation because of an incremental negative impedance characteristic. As constant power loads 

become more prevalent in electric utility operations, the types of loads will tend towards 

dominating the dynamic response of electric utility operations. Consequently, the importance of 

this research is demonstrated through the improved capability to stabilize dc-dc converters that 

have constant power loads.  

Future work will focus on improved implementation methods of fractional order 

controllers. The disadvantage of the methods developed in this research is the increased numerical 

processing needed for fractional order systems. Improved off-line analysis and real-time fractional 

order computational methods are needed to support future deployment of advanced dc-dc 

converter technologies.      
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Appendix  

Appendix A 

Codes for Resamples input-output signal  

function [yy,tt] = myresample(y,t,dtol,NN) 

 

%function [yy,tt] = myresample(y,t,dtol,NN) 

% 

% Resamples y = y(t) on a uniform grid tt = min(t) : dt : max(t). 

% y may have n columns but should have length(t) rows. 

% This simply calls Matlab's interp1 (with 'linear' as METHOD), but preprocess 

% t (and y) so that tt is monotone increasing. 

% 

% dtol is a threshold such that t(j+1)-t(j) < dtol, then t(j+1) (and y(j+1,:)) 

% is removed. 

% 

% NN is the number of new sample points (defaults to length(t)), giving dt above 

% as   dt = (max(t) - min(t))/(NN-1) 

% 

if nargin < 4, 

   NN = length(t); 

   if nargin < 3,  dtol = 100*max(abs(t))*eps;  end 

end 

[yy,tt,p] = makestrict(y,t,dtol); 

[m,n] = size(yy);  N = NN; 

  

nt = tt(1):(tt(end)-tt(1))/(N-1):tt(end);  nt = nt(:); 

yy = interp1(tt,yy,nt,'linear');  tt = nt; 
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Appendix B 

Codes for Restore input-output signal  

function [yy,tt,p] = makestrict(y,t,dtol); 

%function [yy,tt,p] = makestrict(y,t,dtol); 

% Sorts y and t for increasing t and removes duplicate entries in t 

% (assuming y = y(t)).  Duplicates are defined by t(j+1)-t(j) < dtol. 

% p is an permutation into 1:length(t), so that yy = y(p,:) and tt = t(p). 

% If y is a (2d) matrix, then one of its dimensions must be length(t). 

% If #rows(y) is ~= length(t), then it is transposed.  So on output 

% #rows(yy) = length(tt), and tt is a column vector. 

n = length(t);  t = t(:); 

[ry,cy] = size(y); 

if (ry ~= n & cy ~= n), 

    error('myresample: t and y vectors must be same size'); 

end 

if ry ~= n,  y = y';  end 

dt = diff(t);  s = find(dt < 0); 

if length(s), 

    disp('myresample: must sort') 

    [t,p] = sort(t);  y = y(p,:); 

else, 

    p = 1:n;  p = p(:); 

end 

dt = diff(t);  s = find(dt < dtol);  m = length(s); 

if m, 

    nots = find(dt >= dtol); 

    yy = [y(nots,:);y(end,:)];  tt = [t(nots);t(end)];  p = [p(nots);p(end)]; 

    %[yy,tt] = makestrict(yy,tt,dtol); 

else, 

    yy = y;  tt = t; 

end 
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