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Abstract 

 The current growth of the older population is unprecedented in U.S. history. Chronic 

disease and functional limitation commonly develop prior to old age, leading to prolonged 

physical disability and decreased well-being. The development of chronic disease and loss of 

independence is associated with lean body mass (LBM) loss and fat mass gain beginning in 

middle age. Therefore, it is important to identify modifiable factors to mitigate deleterious shifts 

in body composition to promote successful aging (SA). The concept of SA is associated with 

longevity, the absence of disease and disability, and subjective components of well-being, 

however, an operational definition has yet to be established. For this thesis, we defined SA as 

low cardiometabolic risk, preservation of physical function, and a positive state of well-being. 

Nutrition is a key driver of SA and is a proposed modulator of cardiometabolic risk, physical 

function, and well-being in adults. Among nutrients, several studies have identified dietary 

protein and the omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA; 

20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3), as key supportive nutrients for SA in older 

adults. Therefore, the overall objective of this dissertation was to determine the effect of 

nutrition, specifically dietary protein and n-3 PUFAs on SA outcomes of cardiometabolic risk, 

physical function, and well-being. The central hypothesis of this dissertation was that increased 

intake of high-quality dietary protein or n-3 PUFAs would improve SA outcomes of 

cardiometabolic risk, physical function, and well-being in adults. Therefore, one meta-analysis 

(study 1) and two clinical trials (studies 2 and 3) were designed to test our hypothesis. The 

objective of the first study was to systematically evaluate the available evidence of randomized 

control trials assessing the effect of beef and beef’s nutrients on well-being in healthy, adults ≥ 

50 years of age to increase physical function and well-being to promote SA. The objective of the 



second study was to determine and compare the acute effects of a high-protein breakfast 

containing either animal protein or plant protein on appetite, food intake, energy expenditure, 

and substrate oxidation in young versus older men to decrease cardiometabolic risk and promote 

SA. The objective of the third study was to determine the individual and combined effect of 

protein and n-3 PUFAs on body composition, cardiometabolic risk, indexes of sleep, and mood 

states in postmenopausal women to decrease cardiometabolic risk and increase physical function, 

and well-being to promote SA. Collectively, the results suggest high-quality protein and n-3 

PUFAs act as potential regulators of SA outcomes. However, additional research is necessary to 

determine the effectiveness of protein and n-3 PUFA-based nutrition strategies to promote SA. 
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CHAPTER 1. Introduction    

 The number of Americans ages 65 years and older is estimated to nearly double from ~52 

million in 2018 to ~95 million by 2060 [1]. The observed growth of the older population 

corresponds to the projected increased trends in life expectancy from 78.9 years in 2019 to 85.6 

years by 2060 [2]. In contrast to the trend in life expectancy, the healthspan, or period of life 

spent free from chronic disease and disability [3], has remained stagnant in the United States [4]. 

As chronic disease and functional limitation commonly develop prior to old age [5], the 

preservation of independence, quality of life, and health is critical [6]. One of the major threats to 

living independently is sarcopenia, the loss of muscle mass, strength, and function that 

progressively occurs with age [7]. As the human body ages, skeletal muscle mass declines 

annually by ~0.1%–0.5% beginning from age 30 and may result in sarcopenia as early as 50 

years of age [8, 9]. The progression of sarcopenia is associated with an increased risk of falls 

[10], decreased quality of life [11], increased morbidity [12], and early mortality [13]. However, 

advancing age is not always associated with significant functional regression [14] and some 

individuals maintain a successful aging (SA) trajectory [15, 16]. Therefore, there is a need to 

identify modifiable factors to promote the prevalence of SA [17]. 

 SA has yet to be universally defined. However, SA is commonly described as a 

multidimensional concept with subjective and objective components relating to psychological 

function, physiological function, and well-being [18]. For this thesis, we defined SA in terms of 

three components 1) low cardiometabolic risk, 2) preservation of physical function, and 3) a 

positive state of well-being with nutrition as an integral component. Nutrition is a key driver of 

SA [19], and inadequate nutrition contributes to the increased prevalence of sarcopenia and 

chronic disease risk in the older population, reducing the chance for SA [20]. Several studies 
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have identified dietary protein and the omega-3 polyunsaturated fatty acids (n-3 PUFAs), 

eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3), as key 

supportive nutrients for older adults [21-28]. Furthermore, an anabolic additive effect of protein 

and n-3 PUFAs has been identified in skeletal muscle of middle-aged and older adults [29, 30]. 

However, it is currently unknown if the observed effects project beyond skeletal muscle anabolic 

signaling to promote SA.  

 Low cardiometabolic risk is the first component of SA [16, 31]. Cardiometabolic risk is 

defined as a series of risk factors of metabolic origin (e.g., insulin resistance, dyslipidemia, 

elevated systolic/diastolic blood pressure) that increase the risk of the development of chronic 

diseases such as cardiovascular disease (CVD) and type 2 diabetes (T2D) [32]. Increased 

cardiometabolic risk in older adults is related to changes in both body weight and composition 

due to alterations in energy intake and/or total energy expenditure [33, 34]. Basale metabolic rate 

(BMR) makes up 60-70% of total energy expenditure and progressively decreases with age [35, 

36]. Skeletal muscle is a primary determinant of BMR [36-39].  An increase in BMR is 

associated with improvements in body composition and decreases in cardiometabolic risk factors 

[40, 41]. In addition, a potentially modifiable component of energy expenditure is the thermic 

effect of food (TEF), the increase in post-prandial metabolic rate [42]. As TEF is reduced in 

older adults [43], further research investigating dietary factors that affect TEF may lead to better 

treatment methods to decrease cardiometabolic risk in older adults [44, 45]. In addition to energy 

expenditure, energy intake can influence energy balance and affect SA [34]. In this dissertation, 

study two, measured cardiometabolic risk via post-prandial plasma glucose response and energy 

balance. Short-term energy balance was tested by measuring post-prandial appetite, energy 

expenditure, and 24-hour food intake.  In study three, cardiometabolic risk was measured by 
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biomarkers of glucose metabolism (glucose, insulin, HOMA-IR) and blood lipid levels 

(triglycerides, total cholesterol, and free fatty acids). In addition, body composition was 

measured by dual energy x-ray absorptiometry (DEXA).    

 Physical function is the second component of SA [16, 18, 46]. The decline in physical 

function with age differs between individuals and is commonly measured in terms of mobility, 

balance, and muscle strength [47].  Skeletal muscle plays a critical role in preserving physical 

function [48, 49], especially after 50 years of age [50]. Handgrip strength, a commonly used 

assessment of overall muscle strength, is associated with morbidity and mortality in aging adults 

[51]. Similar to strength, decreased measures of physical function such as the short physical 

performance battery (SPPB) score is a strong indicator of all-cause mortality in older adults [52]. 

Considering the strong association of physical function with all-cause mortality [53], early onset 

interventional strategies are needed to monitor and mitigate physical function decline to promote 

SA outcomes [54]. In this dissertation physical function was evaluated in study one and study 

three. In study one, a meta-analysis and systematic review, measured physical function via 

multiple outcomes such as handgrip strength, SPPB, gait speed, and one-repetition maximum 

knee extension. Study three, a randomized clinical controlled trial (RCT), measured physical 

function via handgrip strength pre- and post- 16-week intervention.   

 The third component of SA is well-being [18]. Well-being is generally defined by 

emotional well-being such as the presence of positive affect states, life satisfaction, and the 

absence of negative affect states; and physical well-being such as sleep quality [55-58]. Positive 

affect states are associated with better health outcomes, lower mortality risk, and longevity in the 

older population [59-61]. In addition, several studies have reported a relationship between 

skeletal muscle mass and depressive symptoms [62-64]. Furthermore, studies in adults have 
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demonstrated an inverse relationship between sleep disorders and poor sleep quality and 

outcomes of well-being [65-67] and body composition [68-70]. In this dissertation well-being 

was evaluated in study one and study three. In study one, a meta-analysis and systematic review, 

aimed to evaluate measures of emotional and physical well-being. However, emotional well-

being outcomes did not meet the inclusion criteria. Therefore, lifestyle factors positively 

associated with well-being were included in the study. Study three, a RCT, measured well-being 

via the Profile of Mood States (POMS) questionnaire. In addition, sleep quality was evaluated 

subjectively by the Pittsburgh Sleep Quality Index (PSQI) questionnaire and objectively by 

accelerometry [71, 72].  

 Nutrition, specifically dietary protein and n-3 PUFAs, are suggested modulators of 

cardiometabolic risk, physical function, and well-being and may promote SA [20, 32, 73-75]. As 

the older population grows and life expectancy continues to rise, it is important to consider 

optimal nutritional recommendations that will promote SA in older adults [76].   

 Protein is a dietary focal point for SA as the constituent amino acids (AA) are the 

essential building blocks necessary to sustain life [20]. The benefits of dietary protein intake for 

older adults above the current recommended dietary allowance (RDA) of 0.8g/kg/day is well 

established [20, 77] and experts generally recommend a dietary protein intake between 1.2 and 

2.0 g/kg/day or higher and ~30 g of high-quality protein per meal to promote skeletal muscle 

mass and physical function in older adults [21, 23, 77-82]. Accordingly, dietary protein 

consumed in higher amounts may prevent sarcopenia, maintain energy balance, reduce 

cardiometabolic risk, and improve function and well-being in community dwelling middle-aged 

and older adults [23].  
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 Similarly, n-3 PUFAs, EPA and DHA are also associated with SA [75]. Although, 

Dietary Reference Intakes (DRI) have yet to be developed, the 2015–2020 Dietary Guidelines for 

Americans (DGA) recommends a combined daily intake of 250 mg/day EPA + DHA equating to 

approximately 8 oz per week of a variety of fish in adults with and without CVD [83].  However, 

the benefits of EPA and DHA intake beyond the recommendations are well-established [83, 84]. 

Furthermore, 3-4 g of combined DHA + EPA may mitigate deleterious characteristics of aging 

via suppression of chronic inflammation, incorporation into cellular membranes, and improved 

cell signaling [29]. Accordingly, dietary EPA and DHA consumed in higher amounts may 

prevent sarcopenia, improve energy metabolism, reduce cardiometabolic risk, improve physical 

function, and well-being in community dwelling older adults [28].  

  Taken together, high-quality dietary protein and n-3 PUFAs may play an integral role in 

promoting SA. Therefore, this doctoral dissertation investigates the impact of high-quality 

protein and n-3 PUFAs on components of SA in middle-aged and older adults.  The objectives of 

this dissertation were:  

1. To systematically evaluate the available evidence of RCTs assessing the effect of beef 

and beef’s nutrients on well-being in healthy, adults ≥ 50 years of age to promote SA. 

 

2. To determine and compare the acute effects of a high-protein breakfast containing either 

animal protein or plant protein on appetite, food intake, energy expenditure, and substrate 

oxidation in young versus older men to decrease cardiometabolic risk and promote SA .   

 

3. To determine the individual and combined effect of protein and n-3 PUFAs on body 

composition, cardiometabolic health, indexes of sleep, and mood states in postmenopausal 
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women to decrease cardiometabolic risk, and increase physical function, and well-being to 

promote SA.  
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CHAPTER 2. Literature Review 

Nutrition as the Foundation of Successful Aging: A Focus on Dietary Protein and Omega-3 

Polyunsaturated Fatty Acids 

 

Abstract  

 Skeletal muscle is thought to play a critical role throughout the aging process. First, 

detectable at ~50 years, the deterioration of skeletal muscle mass and strength and power 

(sarcopenia) are estimated to decline annually at a rate of ~0.8–1% and ~2–3% respectively. 

People living with sarcopenia often experience diminished quality of life, which can be attributed 

to a long period of decline and disability. Therefore, it is important to identify modifiable factors 

that preserve skeletal muscle and promote successful aging (SA). We defined SA in terms of 

three components 1) low cardiometabolic risk, 2) preservation of physical function, and 3) a 

positive state of well-being with nutrition as an integral component. Several studies identify 

nutrition, specifically high-quality protein (e.g., containing all essential amino acids (EAA)) and 

long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA; 20:5 

n-3) and docosahexaenoic acid (DHA; 22:6 n-3), as positive regulators of SA. Recently an 

anabolic additive effect of protein and n-3 PUFAs has been identified in skeletal muscle of 

middle-aged and older adults. Evidence further suggests the additive effect of high-quality 

protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key 

mechanism(s) behind the enhanced effects of concomitant intake of high-quality protein and n-3 

PUFAs remains to be fully elucidated. Therefore, the first objective of this review is to evaluate 

skeletal muscle as a driver of cardiometabolic health, physical function, and well-being to 

promote SA. The second objective of this review is to examine observational and interventional 
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(whole food and/or supplementation alone, without physical exercise) evidence of protein and n-

3 PUFAs on skeletal muscle to promote SA. The final objective of this review is to propose 

mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely 

play a key role in SA.   

 

Introduction 

 The current growth rate of adults ages 65 and older is recognized as one of the most 

substantial demographic trends in United States (U.S.) history [1, 2] and life expectancy is 

projected to increase from 78.5 years in 2017 to 85.6 years by 2060 [3]. Maintaining 

independence, quality of life, and health is crucial as we age [4]. One of the major threats to 

living independently is sarcopenia, the loss of muscle mass, strength, and function that 

progressively occurs with age [5]. As the human body ages, skeletal muscle mass declines 

annually by ~0.1%–0.5% beginning from age 30 and may result in sarcopenia as early as 50 

years of age [6, 7]. The progression of sarcopenia is associated with an increased risk of falls [8], 

decreased quality of life [9], increased morbidity [10] and early mortality [11]. However, 

advancing age is not always associated with significant functional regression [12] and some 

individuals maintain a successful aging trajectory [13, 14].  

 Successful aging (SA) is used in the gerontological literature to cover the multifactorial 

processes of aging throughout the lifespan [15]. SA has recently been identified as a 

multidimensional construct with subjective and objective components such as positive and 

negative affect states, sleep health, and measures of physical and cognitive function [16]. 

However, a universal definition or standardized criteria of SA has yet to be established. 

Nevertheless, investigators have generally based their definitions of SA on the absence of 
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physical disability and maintenance of physical performance and to a lesser extent cognitive 

function and well-being with increased age [17]. Due to the variability among SA definitions, 

approximately 14-42% of older adults (aged ≥60 years) are classified as successful agers [16-20]. 

Moreover, there is a need to identify a SA construct which can be quantified with objective and 

subjective components in order to promote the development of SA.  Therefore, in this review we 

defined SA as low cardiometabolic risk, preservation of physical function, and a positive state of 

well-being with nutrition as an integral component. Furthermore, evidence suggests the SA 

components are influenced by a common physiological factor, skeletal muscle mass [21-23], and 

are further supported by adequate nutrition [24].  

 The first SA component is defined by low cardiometabolic risk [14, 25]. Cardiometabolic 

risk is defined as a series of risk factors of metabolic origin (e.g., insulin resistance, 

dyslipidemia, elevated systolic/diastolic blood pressure) that increase the risk of the development 

of chronic diseases such as cardiovascular disease (CVD) and type 2 diabetes (T2D) [26]. 

Increased cardiometabolic risk in older adults is related to shifts in body weight and composition 

due to alterations in energy intake and/or total energy expenditure (TEE) [27, 28]. Basale 

metabolic rate (BMR) makes up 60-70% of  TEE and progressively decreases with age [29, 30]. 

Skeletal muscle is a primary determinant of BMR [30-33]. An increase in BMR is associated 

with improvements in body composition and decreases in cardiometabolic risk factors [34, 35]. 

Furthermore, the thermic effect of food (TEF), the increase in post-prandial metabolic rate [36], 

is reduced in older adults [37]. Additional research investigating dietary factors that affect TEF 

and TEE may lead to better treatment methods to decrease cardiometabolic risk in older adults 

[38, 39].  
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 The second SA component includes physical function [14, 16, 19]. The decline in 

physical function with age differs between individuals and is commonly measured in terms of 

mobility, balance, and muscle strength [40].  Muscle strength, a key component of physical 

function, is defined by the force-producing capacity of skeletal muscle [41]. Handgrip strength, a 

commonly used assessment of overall muscle strength, is associated with morbidity and 

mortality in aging adults [42]. Physical function is also defined by whole-body function, 

involving skeletal muscle and the peripheral nervous system (e.g., balance), and is related to the 

ability to move from one place to another [43]. Considering the strong association of physical 

function with all-cause mortality, early onset interventional strategies are needed to monitor and 

mitigate muscle strength and performance decline to ensure SA [44].  

 The third component of SA is well-being [16]. Well-being is generally defined by 

emotional well-being such as the presence of positive affect states, life satisfaction, and the 

absence of negative affect states; and physical well-being such as sleep quality [45-48]. Positive 

affect states are associated with better health outcomes, lower mortality risk, and longevity in the 

older population [49-51]. In addition, several studies have reported a relationship between 

skeletal muscle mass and depressive symptoms [52-54]. Furthermore, studies in adults have 

demonstrated an inverse relationship between sleep disorders and poor sleep quality and 

outcomes of well-being [55-57] and body composition [58-60]. Therefore, further research is 

needed to examine possible modulators of well-being and potential factors influencing the 

relationship between well-being and body composition in older adults.  

 Nutrition plays an essential role in the health, function, and well-being of older adults 

[26, 61]. Nutritional strategies can mitigate the development of sarcopenia [62], cardiometabolic 

risk [63], physical impairment [61], and poor well-being [64, 65]. Among nutrients, several 
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studies have identified dietary protein and the omega-3 polyunsaturated fatty acids (n-3 PUFAs), 

eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3), as key 

supportive nutrients for skeletal muscle health in middle-aged and older adults [26, 66-72]. In 

addition to the proposed benefits on skeletal muscle, optimal protein and n-3 PUFA intake can 

help maintain energy balance [73, 74], reduce cardiometabolic risk [26, 68, 75], and promote 

well-being [72, 76, 77].  Observational studies have proposed dietary intake as an integral factor 

separating usual aging from SA [78-80]. Conversely, as the SA construct has developed in the 

gerontological literature, nutrition is rarely viewed as an integral component [16, 81-84]. 

However, this review proposes that nutrition is a foundational factor promoting SA via 

regulation of skeletal muscle mass with advanced age.  

 Therefore, the first objective of this review is to evaluate skeletal muscle as a driver of 

low cardiometabolic risk, high physical function, and positive well-being to promote SA. The 

second objective of this review is to examine observational and interventional (whole food 

and/or supplementation alone, without physical exercise) evidence of protein and n-3 PUFAs on 

skeletal muscle to promote the SA outcomes. The final objective of this review is to propose 

mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely 

play a key role in SA.   

 

The Role of Skeletal Muscle in Successful Aging  

 Skeletal Muscle in Cardiometabolic Risk. Advancing age is the greatest risk factor for 

increased cardiometabolic risk [85] and the possibility of achieving SA decreases with increasing 

age [86, 87]. The age-related reduction in skeletal muscle mass and physical function is 

associated with increased morbidity and mortality via the development of cardiometabolic-based 
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chronic disease such as T2D, CVD, and obesity [33, 61]. Age-related skeletal muscle loss and fat 

mass gain are also associated with a higher prevalence of multiple chronic diseases (MCDs) [88]. 

Once age-related decline in muscle strength, mass, and function fall below established cut-off 

points, older adults (≥ 60 years) are classified as sarcopenic [44]. Sarcopenia, now recognized as 

an independent geriatric condition and muscle disease [44], is consistently associated with 

elevated cardiometabolic risk [10], all-cause mortality [89], and is exacerbated by obesity [90, 

91]. Sarcopenia and obesity act synergistically, which increases the risk of chronic disease, 

premature disability, and decreased quality of life [92].   

  The prevalence of obesity has doubled since 1980. Obesity rates continue to rise with 

obesity rates in middle-aged and older adults estimated at 44.8% and 42.8%, respectively [93, 

94]. Although 9-16% of obese individuals are metabolically healthy [95], midlife obesity is 

associated with decreased likelihood for achieving SA [96]. Moreover, obesity has been linked to 

the progression of sarcopenia and is associated with an increased risk for disabilities [97]. One 

reason that reduced skeletal muscle mass contributes to the accumulation of excess adiposity is 

due to its role in energy expenditure [98]. Total energy expenditure (TEE) is the net energy 

utilized by the body to maintain homeostatic function, digest nutrients, and conduct movement 

[38]. The TEE consists of three basic components: 1) basal metabolic rate (BMR), 2) the thermic 

effect of food (TEF) and 3) the thermic effect of activity (TEA) [99]. BMR makes up 60-70% of 

TEE and represents the energy required to maintain the body’s homeostatic processes at a rested 

fasting state. Skeletal muscle is the primary determinant of BMR and variances in BMR 

contribute to the pathogenesis of obesity [31, 32]. Indeed, BMR declines approximately 1-2% 

per decade beginning in the third decade of life and is associated with reduced skeletal muscle 
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mass and increased adiposity [30, 33]. Importantly, skeletal muscle is a modifiable contributor to 

BMR and can be augmented via lifestyle interventions [100].  

 In addition to absolute adiposity, relative adiposity, the proportion of muscle mass to fat 

mass, the lean-to-fat (LTF) ratio, has been linked to an individual’s overall cardiometabolic risk 

[101]. For example, data obtained from the Korean Sarcopenic Obesity Study found the lowest 

tertile of LTF (appendicular lean mass to visceral fat) was associated with a 5.43 times higher 

odds ratio for metabolic syndrome when compared to the highest LTF in older adults [102]. This 

is further supported by a large cross-sectional analysis which identified a lower risk of CVD and 

all-cause mortality in adults in the highest LTF quartile (appendicular lean mass to trunk fat 

mass) [103].  

 Skeletal muscle is proposed to have a bi-directional relationship with cardiometabolic 

health [104]. Skeletal muscle accounts for approximately 40% of total body mass and is 

inversely associate blood glucose levels [33]. Furthermore, skeletal muscle is the primary site of 

blood glucose disposal, accounts for approximately 80% of postprandial glucose uptake [105], 

and is inversely associated with T2D [106, 107]. Indeed, middle-aged men in an early stage of 

T2D have low-density skeletal muscle area compared to healthy individuals [108]. Therefore, the 

maintenance of skeletal muscle over the lifespan is critical in regulating blood glucose 

homeostasis, reducing cardiometabolic risk, and in the prevention of chronic disease to promote 

SA.  

 The Role of Skeletal Muscle in Physical Function. Independence is a necessary facet of 

SA and is highly correlated with skeletal muscle function in older adults [25, 109]. Skeletal 

muscle plays a critical role in preserving physical performance [110] and muscle strength in 

older adults [111, 112]. Moreover, older adults experience an annual decline of muscle strength 
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and power between 1.5% and 3.5%, respectively [113]. Low muscle strength and mass are 

identified risk factors of all-cause mortality. For example, two longitudinal studies found 

community-dwelling men with low grip strength and appendicular lean mass (ALM) had higher 

odds for mortality after approximately 10 years [114, 115]. In addition, decreases in strength are 

associated with an increased risk of disability in activities of daily living (ADLs). The inability to 

complete ADLs is associated with increased cardiometabolic risk, cognitive decline, and 

decreased well-being [116]. Furthermore, older adults without ADL limitation have increased 

positive outlook and life satisfaction compared to their counterparts with ADL limitations.  

The presence of sarcopenia is associated with increased falls, fractures, and muscle mass 

loss, further emphasizing the importance of skeletal muscle preservation to ensure SA. 

Moreover, a recent exploratory study investigated a physiological model of SA and identified 

muscle strength (i.e., HGS and leg extension) as a significant predictor of SA outcomes 

including self-rated health, walking speed, and decreased dependency risk at baseline and after 

the 9-year follow up period [25]. In addition, a recent analysis from the Nutrition and Successful 

Aging Study (NuAge) found muscle mass decline only explained a small part of the variation of 

muscle strength and function in healthy older adults [117]. Therefore, further research is needed 

to establish a relationship between skeletal muscle and SA.  

 Skeletal Muscle and Well-being. Well-being is generally defined by emotional well-

being such as the presence of positive affect states, life satisfaction, and the absence of negative 

affect states; and physical well-being such as sleep quality [45-48]. Well-being and health are 

closely linked with advanced age [118], albeit a link to skeletal muscle mass is less established. 

A recent prospective longitudinal study in hospitalized older adults identified low skeletal 

muscle mass as a risk factor for outcomes of well-being such as depression symptoms and 
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decreased quality of life  [119]. In agreement, longitudinal and cross-sectional analyses have 

identified an association between skeletal muscle mass and subjective well-being, health, and 

physiological function in healthy older adults [120, 121]. Sarcopenia is also associated with 

decreased well-being indicated by quality of life measures (e.g. SF-12, SF-36, SarQol) [122]. 

However, other cross-sectional analyses have found little to no relationship between sarcopenia 

and well-being aside from subjective health measures [21, 123]. Therefore, further research is 

needed to confirm a relationship between skeletal muscle and well-being.  

 In addition, well-being is commonly correlated with muscle strength and physical 

performance [118, 124]. For example, a cross-sectional analysis in older men and women found 

negative affect states (total mood disturbances, anger, and depression) were negatively correlated 

with physical fitness [125].  In agreement, walking speed is significantly associated with high 

levels of emotional well-being including decreased depression, anxiety, and fear of falling 

accompanied by increased feelings of vitality [126]. Furthermore, adults with reduced muscle 

mass and function are nearly twice as likely to have depression compared to their counterparts 

[114]. As the associations of skeletal muscle mass, strength, and performance with well-being 

gain strength, behavioral modulators of well-being and skeletal muscle are of great interest.  

 Sleep is not only a behavior necessary to sustain life, but a proposed driver of SA. Sleep 

quality and duration is associated with cardiometabolic risk, physiological function, and well-

being with advanced age [127]. The 2020 Sleep in America poll found 55% of Americans 

attributed daytime drowsiness to disrupted sleep quality as opposed to short sleep duration [128]. 

Americans further reported daytime drowsiness worsened their mood, irritability, and deterred 

them from evening socialization and healthy behaviors (e.g., exercise), all which are aspects of 

well-being [128]. Approximately 50% of older adults have continual sleep problems such as 
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frequent awakenings and increased sleep latency [129].  Poor sleep duration (<7h or >8h of sleep 

each night) is associated with low skeletal muscle health [130, 131] and decreased hedonic well-

being [132]. A relationship between sleep and low skeletal muscle mass, strength and function is 

suggested due to the shared positive associations with age, cardiometabolic risk factors, and 

decreased well-being [130, 133]. For example, a cross-sectional study of Chinese community 

dwelling older adults found sarcopenia, especially in women, to be associated with poor sleep 

quality, cognitive decline, malnutrition, and depression [130]. However, more evidence is needed 

to establish a relationship between physical function, between skeletal muscle, and sleep.  

 Well-being, at the physiological level, is associated with cortisol [134], energy 

metabolism [135], inflammation (e.g., IL-6 and CRP) [136], and neurological regulators such as 

brain-derived neurotrophic factor (BDNF) [137], and orexin-A (OXA) [138]. Although the 

potential mechanisms that mediate the relationship between skeletal muscle and outcomes of 

well-being are not fully understood, several mechanisms may contribute to well-being. First, 

stress, sleep disruption, and advancing age are associated with cortisol levels [139, 140]. 

Elevated cortisol is associated with an increased risk for sarcopenia, cognitive decline, and 

decreased cardiometabolic health via insulin resistance, loss of hypothalamic and hippocampal 

glucocorticoid receptors, and alterations in peripheral gene expression [141, 142]. Furthermore, 

decreases in cortisol concentrations are reflective of down-regulation of the hypothalamic-

pituitary adrenal axis (HPA) and subsequently improvements in cardiometabolic health [142]. 

Second, BDNF, a member of the neurotrophic family, plays a role in neurite outgrowth, 

synaptogenesis, and in the prevention of apoptosis [143]. BDNF has been connected to various 

physiological functions in the brain relevant to cognitive function, sleep, and mood states [144]. 

Lastly, human OXA and orexin-B (OXB) are excitatory neuropeptide solely synthesized in the 
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lateral and posterior hypothalamic area and project widely throughout the central nervous system 

[145]. OXA has been identified as the peptide of greater physiological relevance due to its ability 

to rapidly cross the blood-brain barrier by simple diffusion and its lower degradation rate in the 

blood [146]. Furthermore, OXA signals two G protein-coupled receptors, orexin receptor 1 

(OXR1) and orexin receptor 2 (OXR2) [147]. OXA is associated with facets of well-being such 

as arousal, motivation, and regulation of sleep cycles [138, 145].  Hypothalamic expression of 

OXA decreases with age [148], plasma levels decrease with obesity [149], and OXA expression 

has been identified in human adipose tissue [150]. However, little is known about the effects of 

OXA on human skeletal muscle. Contrarily, in avian species, muscle cells secrete and express 

OXA and ORX1 and ORX2, respectively [151]. Therefore, further investigation of OXA as a 

promoter of well-being through skeletal muscle is warranted and will be discussed later in this 

review.  

 

Nutrition and Successful Aging  

 Nutrition is a key contributor to SA. Poor nutrition can contribute to the development of 

sarcopenia and obesity and increase the risk for chronic disease [61, 152, 153]. As the older 

population grows and life expectancy continues to rise, it is important to consider optimal 

nutritional recommendations that will promote SA in older adults [154].  Several studies identify 

dietary protein and n-3 PUFAs as key nutrients for older adults [26, 61, 62, 152, 153]. 

 

 Dietary Protein Recommendations and Current and Optimal Intake for Older Adults   

 Current Dietary Protein Recommendations. Dietary protein is a focal point for SA as the 

constituent amino acids (AA) are the essential building blocks necessary to sustain life [61]. The 
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current dietary protein recommendations have been based on studies that estimate the minimum 

protein intake necessary to maintain nitrogen balance [155]. However, the drawback with relying 

on these findings is that they do not address age-related anabolic resistance, measure 

physiological and behavioral endpoints relevant to skeletal muscle, nor SA outcomes such as 

cardiometabolic risk, physical function, and well-being. Currently, the Food and Nutrition Board 

of the Institute of Medicine has set the recommended daily allowance (RDA) for protein at 0.8 

g/kg/day, covering the minimum requirements of 97-98% of all healthy adults >18 years of age, 

including older adults [156]. In addition to the RDA, recommendations for protein intake are also 

provided in the context of a complete diet within the Acceptable Macronutrient Distribution 

Range (AMDR) [157]. The AMDR expresses protein intake recommendations as a percentage of 

total caloric intake (10-35% of daily energy intake from protein) and is more relevant in the 

context of a complete diet than the RDA [67]. The AMDR upper value of 35% far exceeds the 

RDA of 0.8 g/kg/day by approximately four times at ~3.0g/kg/day. Surprisingly, the current 

percent daily value (DV%) for protein is based off of 50 grams of dietary protein in the context 

of a 2000 kcal/d diet equating to 10% of daily intake, the minimum amount of daily protein 

according to the AMDR. Contrarily, a moderate or high consumption of 1.2 g/kg/day to 2.0 

g/kg/day of dietary protein easily falls within the AMDR and should be considered for older 

adults to preserve muscle mass, strength, and performance to promote SA [61, 66, 158]. 

Therefore, the upper range of the AMDR provides an appropriate recommendation, within 

dietary guidelines, to promote SA 

 Recommendations for Dietary Protein Intake for Successful Aging. Recent dietary 

protein and aging research has focused on the optimal daily and per meal intake to promote 

skeletal muscle mass and function in older adults [159-161]. Optimal protein intake, defined in 
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terms of skeletal muscle, is the minimal dose of protein intake that stimulates a maximal anabolic 

response and maintains or improves skeletal muscle mass and function over time [162, 163]. 

According to the PROT-AGE recommendations, older adults are recommended to consume 25-

30 g (e.g., 0.4g/kg/bw per meal) [164] of protein and 2.5-2.8 g of the branched-chain amino acid 

(BCAA) leucine per meal, equating to 1.0-1.2 g/kg/day of dietary protein intake [165, 166]. In 

line with these recommendations, a cross-sectional study in healthy older adults found a positive 

associate between daily protein distribution of >25 g of protein per meal and appendicular 

skeletal muscle [167]. According to NHANES data, older men and women consume 1.01 ± 0.03 

g/kg/day and 0.97 ± 0.04 g/kg/day of dietary protein, respectively [161, 165, 168]. However, 

19.21 ± 2.11% and 13.17 ± 1.33% of older men and women respectively fall below the RDA for 

dietary protein [168]. In addition, protein consumption in older adults follows a highly skewed 

distribution pattern with a disproportionate amount of daily protein consumed during the evening 

meal (<60% of daily protein) and far less at breakfast [169]. For example, a cross-sectional 

analysis found older men and women consumed 11.4 ± 0.4 g and 15.3 ± 0.5 g of protein at 

breakfast compared to 44.5 ± 1.0 g and 44.8 ± 1.0 g at dinner [170].  

  One potential benefit of optimal dietary protein intake and distribution is to overcome 

anabolic resistance, the reduced response to low doses of protein and AA that occurs with age 

[171, 172].  There appears to be an AA threshold for stimulation of muscle protein synthesis 

(MPS) (fractional synthesis rate) of ~2.5 g leucine, ~15 g of EAA, or ~30 grams of high-quality 

protein [173]. For example, Pennings et al. [174], examined ingestion of 10, 20, and 35 g of 

whey protein isolate in healthy older adult men (73 ± 2 y). AA absorption and subsequent 

stimulation of MPS (fractional synthesis rate) were limited at post-ingestion of 10 g of protein, 

but increased from basal levels in a dose dependent manner following 20 g (16 ± 13 %) and 35 g 
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(44 ± 16 %) of protein. In addition, Symons et al. [163] investigated the effect of 30 g and 90 g 

of high-quality beef protein and found both quantities were equally effective in stimulating MPS 

(~50% increase) in healthy young and older men. Although intakes of protein beyond ~30 g may 

not further increase MPS, research is suggestive of further benefits via suppression of catabolic 

processes and inflammation as well as promotion of cardiometabolic health and physical 

function in favor of SA [68, 175]. As older adults may consume dietary protein in a skewed 

distribution and below levels recommended by aging experts, protein supplementation and/or 

increases in dietary protein exists as a strategy to mitigate anabolic resistance and improve 

functional outcomes of SA in older adults.  

Dietary Protein and Cardiometabolic Risk. Although most older adults fall within the 

RDA for dietary protein intake [168], there is increasing evidence that diets with greater levels of 

high-quality protein, especially at the expense of simple carbohydrates, may decrease 

cardiometabolic risk [176]. Proposed therapeutic effects a high protein diets include lower 

energy intake associated with increased thermogenesis [39] and preservation of skeletal muscle 

[177] translating to decreased waist circumference, systolic and diastolic blood pressure, 

triglycerides, fasting insulin, and increased HDL [61, 66, 178, 179]. According to observational 

data, higher protein diets (1.0 to 1.5 g/kg/day) are associated with lower BMI and waist 

circumference and higher HDL cholesterol levels compared to protein intake at the RDA [180]. 

Similarly, a cross-sectional analysis of middle-aged men (50.5 ± years) found individuals who 

consumed BCAAs in the highest quartile (<0.17g/kg/day) had a lower incident of 

cardiometabolic risk factors [181]. Furthermore, a recent cross-sectional analysis in female twins 

(18-76 years) found higher BCAA intake was associated with lower insulin resistance, systolic 
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blood pressure, and adiposity related metabolites [182]. Overall, dietary BCAA intake exists as a 

possible strategy to restore cardiometabolic health and promote SA [183].  

 Several randomized, controlled clinical trials (RCTs) have observed cardiometabolic 

benefits following high-protein diets and/or supplementation when coupled with weight-loss 

and/or exercise in middle-aged and older adults [184-186]. However, RCTs under caloric 

maintenance remain limited, especially in older adults. Therefore, weight maintenance trials will 

be reviewed. Layman et al. [187] investigated the effect of following a high protein diet (high 

protein: 1.6g/kg/day, ~30% energy) versus the protein RDA (0.8g/kg/day; ~15% energy) after 

four months of weight loss on long-term weight maintenance. The high-protein diet was more 

effective for long-term fat loss (38% greater fat loss) and produced sustained reduction in 

triglycerides and increases in HDL cholesterol [187]. In line with these findings, a meta-analysis 

of long-term weight maintenance diets, found individuals following higher protein, low 

carbohydrate diets had a higher prevalence of sustained weight-loss and decreases in fasting 

triglycerides and insulin levels supporting a cardiometabolic benefit [188]. Contrarily, a RCT 

examining the effects of a high-protein diet (high protein: 1.4 g/kg/day versus RDA 0.8g/kg/day) 

in older adults (70 ± 5 years) observed no differences in outcomes of cardiometabolic risk (e.g., 

HDL, LDL, fasting glucose, blood pressure) nor markers of inflammation including: tumor 

necrosis factor-alpha (TNF- α), interleukin-6 (IL-6), and c-reactive protein (CRP) [189]. In 

addition to dietary protein supplementation, EAA mixtures may improve cardiometabolic health 

in older adults. For example, an RCT implementing two doses of 8g/day of EAAs (10:00 AM 

and 5:00 PM) observed significant reductions in insulin resistance, TNF- α, and increases in 

insulin-like growth factor 1 (IGF-1) and lean body mass (LBM) [190]. In agreement, 

Scognamiglio et al. [191] supplemented 12g/day of EAA for 3 months and observed significant 
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improvements in myocardial performance with non-significant improvements in systolic and 

diastolic blood pressure compared to control. Further RCTs are needed to establish the 

relationship between protein intake and cardiometabolic health in the absence of weight loss in 

healthy middle-aged and older adults.  

 The Role of Dietary Protein in Physical Function. As previously reviewed, most 

middle-aged and older adults consume, at minimum, the RDA for dietary protein. Observational 

studies indicate that higher protein intakes are associated with increased strength and physical 

performance, comprehensively reviewed elsewhere [192]. In addition, observational data 

suggest, the quality of dietary protein (e.g., animal versus plant sources of protein), defined by its 

ability to deliver all EAA in proportion to individual requirements, may be an important 

modulator of muscle strength and performance [193, 194]. For example, data from the 

Framingham Offspring study indicated that animal-protein foods rather than plant-based protein 

foods were positively associated with physical performance in older adults [195]. However, 

observational studies have also indicated total protein, regardless of source, is positively 

associated with muscle strength and performance [196, 197]. In general, these observational data 

suggest that increased dietary protein intake promotes and preserves muscle strength and 

performance to promote SA.     

However, several studies have reported inconsistent results regarding the impact of 

protein and AA supplementation on strength and physical performance with some reporting a 

positive [198, 199] and others reporting no effect [200, 201]. However, heterogeneity is 

commonly high in regard to the studied population (e.g., healthy, frail, diabetic, or sarcopenic 

individuals), duration, and supplement form and dose. However, some studies have identified a 

positive effect of increased dietary protein and EAA with physical function in older adults [202-
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205]. For example, Mitchell et al. [206] conducted a well-controlled feeding study of 35 healthy 

older men to test the effect of protein at the current RDA (0.8 g/kg/day) compared to two times 

the RDA (1.6 g/kg/day) for 10 weeks and found the higher protein diet led to increased power 

(e.g., knee extension peak power) and strength preservation (handgrip strength) compared to no 

change and decreases in the control group respectively. Moreover, in the absence of exercise 

[207], weight-loss [208], and multi-nutrient supplementation (e.g., vitamin D, E, and B vitamins) 

[209], few studies have investigated the effect of increased protein supplementation on outcomes 

of muscle strength and physical performance in healthy middle-aged and older adults. However, 

evidence does suggest EAAs promote physical function in older adults with facets of metabolic 

syndrome and chronic disease. For example, Borsheim et al, supplemented 11g of EAAs + 

arginine two times daily for 16 weeks in older adults with impaired glucose tolerance and found 

a significant increase in physical performance measured by gait speed, timed 5-step test, and 

timed floor-transfer test compared to baseline [210]. Furthermore, according to a meta-analysis 

of 36 studies, the effectiveness of protein in combination with micronutrients supplementation 

significantly increases in studies with a duration ≥ 6 months and in frail or malnourished study 

populations [211]. Therefore, more evidence is needed to establish the effect of protein and AA 

on older adults to promote muscle strength and function prior to the development of frailty and 

chronic disease to ensure SA.  

 The Role of Dietary Protein in Well-being. Dietary protein and its constituent AAs are 

essential for maintaining neuronal function and have been linked to affect states in older adults 

[69]. The effect of dietary protein and depression in older adults has partially focused on the AA 

tryptophan. Tryptophan, the precursor to serotonin, cannot be synthesized in adequate amounts 

in the body, therefore must be obtained from dietary sources [212]. Low plasma tryptophan is a 
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risk factor for depression as it leads to decreased serotonin levels [213]. Data from NHANES 

2001-2002 (n=29,687) found tryptophan intake to be inversely associated with subjective 

depression and positively associated with subjective sleep duration despite even the lowest levels 

of usual intake surpassing the EAR for tryptophan [214]. The average intake of tryptophan was 

826 ± 3 mg/day which is approximately three times the EAR of 4 mg/kg/day tryptophan (~280 

mg/day for a 70-kg adult), albeit adults aged 51-70 and ≥ 71 y consumed 9% and 22% lower 

levels on average, respectively.  

 Sleep is an integral facet of well-being and is influenced by diet with equivocal findings 

in regard to dietary protein [215]. However, substantial observational data suggest dietary protein 

intake is associated with improvements in sleep [216-218]. For example, Kant et al. [216] 

conducted a cross-sectional analysis using NHANES data and found short sleepers consumed a 

lower percentage of protein, higher total sugars, a lower prevalence of breakfast consumption, 

with a higher frequency of snacks. Furthermore, according to a systematic review and meta-

regression of cross-sectional studies and RCTs [217] good sleeper, defined as sleep duration ≥ 7 

hours, PSQI global sleeping score ≤ 5, sleep latency ≤ 30 minutes, and sleep efficiency >85%, 

consumed greater amounts of dietary protein and a lower percentage of energy from dietary 

carbohydrates and fat than poor sleepers. These studies suggest that consuming greater amount 

of dietary protein may benefits sleep quality and healthy adults.  

            Few RCTs have investigated the effect of dietary protein on sleep quality and duration in 

middle-aged and older adults. One RCT conducted by Zhou et al. [219], assessed the effect of a 

high protein energy restricted diet for 16-weeks on middle-aged obese adults (56 ± 3 y) and 

found high protein diets to improve sleep quality. The mechanism of the effect of protein on 

sleep after acute feeding may be related to tryptophan, tyrosine, and the synthesis of the brain 
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neurotransmitters serotonin, melatonin, and dopamine [77, 220]. As BCAAs are transported into 

the brain across the blood brain barrier via the same carrier that transports large neutral amino 

acids (LNAA), phenylalanine, tyrosine, and tryptophan, the competition between BCAAs and 

the aromatic amino acids may influence synthesis of some neurotransmitters, including 

dopamine, norepinephrine, and serotonin [221]. Although higher protein intake results in greater 

postprandial plasma AA, high protein diets do not translate into constant low tryptophan- or 

tyrosine-to-LNAAs ratios. For example, Zhou et al. [219], did not find acute changes in the ratio 

of tryptophan to LNAAs and tyrosine to LNAAs. The relationship between acclimated protein 

intake and the body’s ability to produce or remove brain tryptophan and serotonin is yet to be 

elucidated. However, in an intervention conducted in rhesus monkeys, a higher protein diet 

increased plasma and cerebrospinal fluid concentrations of tryptophan and serotonin metabolites 

indicating a probable beneficial sleep effect [222]. More long-term RCTs are needed to 

investigate the relationship between tryptophan: and tyrosine: LNAA ratios in older adults 

consuming high protein diets. Therefore, the beneficial effect of dietary protein on sleep has yet 

to be established. 

 

 Dietary Omega-3 Polyunsaturated Fatty Acid Recommendation, Current, and Optimal 

Intake      

 Current Omega-3 Polyunsaturated Fatty Acid Dietary Recommendations. n-3 PUFAs 

play a crucial role in SA [223]. n-3 PUFAs are a group of polyunsaturated fatty acids 

characterized by a double bond at the third carbon from the methyl (-CH3) end of the 

hydrocarbon chain. The human body is able to metabolize and convert alpha-linolenic acid 

(ALA; 18:3 n-3), the essential plant-based n-3 PUFA, to the more biologically active and 
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therapeutic longer chain n-3 PUFAs eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic 

acid (DHA; 22:6 n-3) by a series of desaturation and elongation reactions primarily in the liver 

[224]. The conversion rate to EPA and DHA is inefficient in humans and is further inhibited by 

age emphasizing the importance of dietary intake [225]. The 2015–2020 Dietary Guidelines for 

Americans (DGA) acknowledges the benefits of n-3 PUFAs and recommends a combined daily 

intake of 250 mg/day EPA + DHA equating to approximately 8 oz per week of a variety of fish 

in adults with and without CVD [166]. Furthermore, The American Heart Association’s (AHA) 

Strategic Impact Goal Through 2020 and Beyond recommends at least two 3.5-oz fish servings 

per week, with an emphasis on oily fish (e.g., salmon, mackerel, herring), providing ~500 

mg/day of EPA and DHA [226]. DRIs have yet to be established for EPA and DHA and DGA 

and AHA recommendations are derived from findings from prospective cohort studies and RCTs 

suggesting EPA and DHA rich eating patterns are associated with reduced risk of CVD [166] 

 The U.S. diet falls short of n-3 PUFA DGA and AHA recommendations. According to 

NHANES data (2003–2008) adults ≥ 50 years currently consume far below recommended levels 

of fatty fish (~ 0.19 oz/day) equating to 58 mg/day and 81 mg/day EPA and DHA, respectively 

[227]. NHANES data further demonstrates that, even after accounting for supplement intake and 

potential conversion of plant-based n-3 PUFAs, daily EPA and DHA intake from foods and 

supplements is well below recommendations with ~20% and ~10% of adults ≥ 55 years meeting 

or exceeding the DGA and AHA recommendations, respectively [228]. The low consumption of 

n-3 PUFA in the Western diet is of particular importance in the older population. Older adults 

require higher amounts of n-3 PUFAs due to decreased absorption, n-3 PUFA capacity to cross 

the blood-brain barrier, and physiological capacity to convert shorter chained fatty acids (ALA) 
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into longer fatty acids (EPA and DHA) resulting in a lower composition of n-3 PUFAs in body 

tissue [229, 230]. 

 The Recommended Intake of Omega-3 Polyunsaturated Fatty Acids in Aging. To date, 

although somewhat conflicting, a growing number of studies indicate that n-3 PUFAs may exert 

beneficial effects on the aging brain [231, 232] and skeletal muscle [233] which could result in 

decreased cardiometabolic risk, improved physical function, and increased well-being. The 

inconsistent findings may be attributed to the inconsistent doses (~200 mg to 5 g) and duration 

(~4-wks to 6 months) of RCTs, since n-3 PUFA uptake increases in a time- and dose-dependent 

manner [234, 235]. For example, Yee et al. [234] supplemented four varying daily doses of n-3 

PUFA for six months ranging from 0.84 g (0.47 g EPA and 0.37 g DHA) to 7.56 g (4.2 g EPA 

and 3.36 g DHA). Over the 2- to 6-month period, the two highest doses (5.04 g and 7.56 g) 

resulted in a significant increase in total serum lipid EPA and DHA concentrations [234]. 

Importantly, maximum tissue uptake is tissue dependent and has been reported for plasma 

phospholipids (56 days), erythrocytes (180 days), adipose tissue (indefinite), [236] and more 

recently, skeletal muscle (≥ 28 days) [237].   

 Recently, dietary and supplemental n-3 PUFAs have received considerable attention in 

the context of nutrition, aging, and skeletal muscle [229, 233, 238]. The beneficial impact of n-3 

PUFAs on health is often related to the replacement of omega-six polyunsaturated fatty acids (n-

6 PUFAs) by n-3 PUFAs in cell membrane phospholipids [239]. It is well recognized that 

Western diets have considerably higher n-6 PUFAs: n-3 PUFAs ratios than is considered optimal 

(15:1-20:1 versus 1:1-4:1) [240]. This shift in the n-6 PUFAs: n-3 PUFAs acid ratio in cell 

membranes has been shown to induce changes in numerous biological processes related to age-

related decline including the expression of pro- and anti-inflammatory lipid mediators and 
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cytokines [239], gene expression [241],  and is associated with increased chronic disease risk 

[242], functional impairment [63, 243], and depression [65]. n-3 PUFA supplementation has 

recently been observed to increase the relative and absolute EPA and DHA incorporation into 

skeletal muscle phospholipids [237]. The incorporation of n-3 PUFAs into skeletal muscle 

phospholipids supports observational findings of a positive and dose dependent relationship 

between fatty fish consumption and grip strength [244].  

RCTs indicate ~3-5 g/day of combined EPA and DHA can promote skeletal muscle 

health and mass in older adults [26, 236]. The effect of n-3 PUFAs on skeletal muscle mass in 

adults is strengthened in the presence of an anabolic stimulus such as high-quality protein and/or 

EAA [245, 246]. For example, Smith et al., [245] supplemented ~ 4g/day of combined EPA and 

DHA for 8-weeks and found, in the presence of insulin and AAs, MPS rates increased by ~100% 

in older adults with no changes in basal MPS. Interestingly, inflammatory markers were 

unaffected throughout 8 weeks, with anabolic signaling proteins mTORC1 and p70s6k 

upregulated suggesting a possible mechanism by which n-3 PUFAs may have an anabolic effect. 

Therefore, we hypothesize that n-3 PUFAs may act on skeletal muscle as an anabolic primer, 

such that AAs/ high quality protein elicits a greater response when there is greater n-3 PUFA 

presence in skeletal muscle [236]. 

 The Role of Dietary Omega-3 Polyunsaturated Fatty Acids in Cardiometabolic Risk. n-

3 PUFA supplementation is an opportunity to decrease cardiometabolic risk as U.S. adults 

consume well below recommended levels [227]. In fact, the most commonly cited health benefit 

associated with n-3 PUFAs intake is cardiometabolic health [247] via mitigation of inflammation 

[248]. Seminal research in Greenland Inuit people first suggested high EPA and DHA intake was 

responsible for low CVD mortality [249]. Moreover, the Zutphen study, conducted in the 



 

 37 

Netherlands, followed middle-aged adults over 20 years and showed a positive relationship 

between fish consumption and CVD prevention [250]. In agreement, U.S. prospective cohort 

studies have observed an association between higher circulating EPA and DHA and lower total 

mortality and coronary heart disease risk in older adults [251]. However, recent studies have 

challenged the efficacy of n-3 PUFA supplementation for the management of CVD risk due to 

inconsistent findings [252].  

 In RCTs, EPA and DHA supplementation in older adults on cardiometabolic risk is 

conflicting. For example, a 12-week RCT supplementing n-3 PUFAs in older women (N=24; 

EPA: 360mg/day; DHA: 1290mg/day) observed a 29% reduction in triglycerides with no effect 

on fasted blood glucose or insulin [253]. In agreement, a study supplementing n-3 PUFAs for 3-

months (N=74; EPA:540mg/day; DHA:360mg/day) in middle-aged women (51.6 ± 7.8 years) 

found fish oil alone reduced triglycerides and LDL cholesterol by 5.4% and 8.4% respectively 

[254]. In contrast, n-3 PUFA supplementation (EPA: 1860mg/day; DHA: 1500mg/day) for 6 

months was not effective in lowering blood lipids (e.g., TG, HDL, LDL) in healthy older adults 

[255]. However, muscle mass and strength were significantly improved, indicating n-3 PUFAs 

may also reduce overall mortality and cardiometabolic risk apart from blood lipids and via 

muscle mass and quality. Similarly, in postmenopausal women, n-3 PUFA supplementation did 

not affect markers of inflammation (e.g., TNF- α, IL-6 and CRP), but improved markers of 

physical performance (e.g., walking speed) [256]. An extensive 2018 meta-analysis of 79 RCTs 

found EPA and/or DHA to have little or no effect on mortality or cardiovascular health [257]. 

but did not consider outcomes of muscle mass or quality. Therefore, due to the strong 

association between cardiometabolic risk and skeletal muscle, future n-3 PUFA research should 
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be directed towards simultaneous evaluation of traditional markers of cardiometabolic risk in 

conjunction with skeletal muscle mass, strength, and function (reviewed in later sections).  

 Logan et al. [253] investigated the effects of 12-week n-3 PUFA (Total: 3 g/day; EPA 

and DHA) supplementation on body composition, strength, physical function, inflammatory 

markers, metabolic rate, and substrate oxidation in community dwelling older women compared 

to a placebo olive oil control group. The n-3 PUFA group had a 4% increase in muscle mass, a 

7% improvement in the “Timed up and go test”, a 14% increase in RMR, 19% increase in fat 

oxidation, and 10% and 27% increases in energy expenditure and fat oxidation during exercise 

respectively with no differences in inflammatory markers. 

 The Role of Dietary Omega-3 Polyunsaturated Fatty Acids in Physical Function. 

Recently, dietary n-3 PUFAs have received considerable attention in the context of optimizing 

physical function in older adults. First, observational studies have identified a positive 

relationship of n-3 PUFAs and strength [244, 258] and physical function [259, 260]. Furthermore 

RCTs, notably two seminal RCTs in healthy middle-aged and older adults [245, 261], identified 

a potential muscle anabolic effect of combined EPA and DHA [262]. In addition to the observed 

anabolic effect of n-3 PUFAs, RCTs have identified a strength and performance effect of n-3 

PUFAs in middle-aged and older adults. For example, Smith et al. [255] assessed the effects of 6 

months of n-3 PUFA (EPA: 1.86 g/day; DHA: 1.5 g/day) supplementation on muscle mass and 

function in older adult men and women. n-3 PUFAs significantly increased muscle thigh volume 

(3.6%), handgrip strength (2.3 kg), and 1-repetition max (4.0%) with a non-statistical increase in 

isokinetic power (5.6%) when compared to a placebo group. Similarly, Logan et al. [253] 

investigated the effects of 12-week n-3 PUFA (total: 3 g/day; EPA and DHA) supplementation 

on body composition, physical function, inflammatory markers, metabolic rate, and substrate 
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oxidation in community dwelling older women compared to a placebo olive oil control group. 

The n-3 PUFA group had a 4% increase in muscle mass and a 7% improvement in the “Timed up 

and go test”. In contrast, other RCTs have failed to show benefits of n-3 PUFAs in older adults.  

For example, Kryzminska-Siemaszko et al. [263] investigated the effect of 12-week n-3 PUFAs 

supplementation (Total: 1.3 g/day; EPA: 660 mg/day; DHA: 440 mg/day) on body composition 

and physical function in older adults (74.6 ± 8 years) with decreased muscle mass and found no 

significant differences in handgrip strength, “Timed up and go test”, or gate speed. The lack of 

significance may be attributed to the low dose of n-3 PUFAs (<4 g/day). The majority of 

available data suggest diets including n-3 PUFAs increase physical function to promote SA. 

However, more research is needed to confirm these conclusions [264].  

 The Role of Dietary Omega-3 Polyunsaturated Fatty Acids in Well-being. One of the 

primary symptoms of poor well-being in the older population is depression [265]. n-3 PUFAs are 

a promising strategy to prevent and mitigate depression, partially, due to the incorporation into 

cerebral tissue as DHA levels fluctuate with diet, age, and sex [225]. Low consumption of n-3 

PUFAs results in decreased brain DHA levels [266]. Brain inflammation progressively increases 

with age, but increased intake of DHA and EPA reduce inflammation by displacing arachidonic 

acid and cholesterol from the cell membrane [267]. For example, a recent systematic review and 

meta-analysis of RCTs in older adults (≥ 65 years of age) with depression evaluated the effects 

of n-3 PUFA supplementation and found an overall positive effect only in individuals with mild 

to moderate depression [76]. In addition, a longitudinal cohort study in adults 55-85 years 

(Hunter Community Study) found n-3 PUFA consumption to be inversely associated with 

depression [268]. Patients with depression have been reported to have low n-3 PUFA levels in 

RBC membrane (mg/100mg of total phospholipids) and a low dietary intake of DHA and EPA 
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[269]. Although n-3 PUFAs have been investigated in the context of depression, little is known 

on the effect of n-3 PUFAs on positive affect states.   

              In addition to depression, a link between sleep and n-3 PUFAs has been observed in 

adults. Observational evidence by Dashti et al. [216] found an association between recommended 

sleep duration and low carbohydrate and increased n-3 PUFA intake in older women (65-85 

years). The n-3 PUFA index, calculated by the EPA and DHA content of erythrocyte 

membranes, expressed as a percentage of total fatty acids, is associated with sleep quality, 

metabolic health, and mortality [270]. A low n-3 PUFA index has been identified in obstructive 

sleep apnea patients [271]. In a randomized, double blind pilot study, postmenopausal women 

with greater baseline DHA RBC content presented less signs of frailty [256] indicating a 

relationship between frailty, sleep, and n-3 PUFA status. However, RCTs investigating the effect 

of n-3 PUFAs, DHA and EPA, are scarce in middle-aged and older adults. Hansen et al. 

investigated the effect of 6-months of fatty fish consumption of 300 g of Atlantic salmon three 

times per week (4.8g EPA and DHA per serving) in adults 21-60 years of age compared to a 

control group. The investigators found the fish group had significantly lower sleep latency at the 

conclusion of the intervention [272]. However, the sleep latency did not change in the 

intervention group, but worsened in the control group. Therefore, it cannot be concluded that 

fatty fish consumption is beneficial for sleep in this study. Further RCTs are needed to 

investigate the role of n-3 PUFAs and sleep in the older population.



 

 41 

Simultaneous Supplementation of Protein and Omega-3 Polyunsaturated Fatty Acids on 

Successful Aging  

 Increasing dietary protein and n-3 PUFAs intake is a potential strategy to promote 

skeletal muscle and SA in  middle-age and older adults. However, RCTs examining the effect of 

dietary protein and n-3 PUFA combined supplementation have solely been conducted in the 

context of a multi-nutrient supplement or in combination with caloric restriction and/or exercise 

[273-275]. For instance, Bell et al. [274] investigated the effect of a multi-nutrient supplement 

that had 30 g of WPI, 2.5 g of creatine, 500 IU of vitamin D, 400 mg of calcium, and 1.5 g of n-3 

PUFAs (700 mg EPA; 445 mg DHA), that was consumed twice daily. After six weeks of 

supplementation, LBM and muscle strength increased in healthy older adults. In addition, Su et 

al. [275] conducted a caloric restriction intervention in obese women (> 40 years) and found a 

high-protein meal replacement (25 g) and fish oil (2,130 mg) reduced percent android fat and the 

prevalence of metabolic syndrome by almost twofold in comparison to caloric restriction alone. 

As RCTs examining the combined effect of dietary protein and n-3 PUFAs are scarce, the 

modest effects observed in the described trials warrant further investigation.  

 

Mechanisms of Successful Aging  

 According to the existing literature, combined doses of n-3 PUFAs of approximately 4 

g/day and dietary protein of approximately 25-30 g/meal meets the suggested recommended 

nutritive doses to activate MPS in middle-aged and older adults [63, 162]. The mechanisms 

explaining an additive effect of protein and n-3 PUFAs remain to be fully understood. However, 

we speculate that n-3 PUFAs may promote SA outcomes by increasing neurotransmitter 
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sensitivity, membrane fluidity, and by enhancing the anabolic effects and neurotransmitter 

synthesis from EAA [276].  

First, research suggests n-3 PUFAs and EAAs from dietary protein can improve the 

domains of SA via activation of the mammalian/mechanistic target of rapamycin (mTOR) 

pathway. mTOR is a serine-threonine kinase that serves as a nutrient, growth factor, and energy 

sensor and exists in two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 

2 (mTORC2) [277]. The complex mTORC1 is involved in the activation of protein synthesis in 

skeletal muscle [278].  Leucine, a well-established regulator of protein synthesis [279], activates 

mTORC1 [280-285] in tissues such as the brain [281] and skeletal muscle [282], through Sestrin 

2 [286]. In addition, the mTORC1 pathway is a regulator of MPS [287], muscle regeneration and 

repair [288], muscle protein breakdown (atrophy) [289], cerebral cellular survival [290], and is 

activated following n-3 PUFAs supplementation combined with AA infusion [246, 261]. 

Furthermore, stimulation of mTORC1 is a suggested approach to prevent age-related fiber 

atrophy, increase LBM, and improve physical function with advanced age [291, 292]. However, 

the combined effect of n-3 PUFAs and AA dietary intake on mTORC1 activation is unknown.  

 Second, with respect to the cellular membrane, n-3 PUFAs may increase neurotransmitter 

uptake and release. Acetylcholine is a neurotransmitter that supports muscle contraction, making 

synaptic transmission quicker at the neuromuscular junction resulting in a quicker contractility as 

well as improved cognitive function [276]. Moreover, acetylcholine interacts with additional 

excitatory transmitters in the brain such as OXA [293]. Fadel et al. [293-295] have identified a 

relationship between OXA and improved age-related cognitive decline, primarily via 

hippocampal and hypothalamic regulation via the cholinergic system. However, the effect of 

nutrients on the relationship between OXA, acetylcholine, and SA is largely unknown.  Few 
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studies, primarily animal studies, have investigated the effect of dietary protein and n-3 PUFAs 

on OXA. Elliot et al. [296] delineated BCAA supplementation as a potential therapy to restore 

glutamate density to orexin neurons in mice with traumatic brain injury. Furthermore, in a study 

evaluating the effects of a high-protein diet in obese Zucker rats found that obese Zucker rats 

receiving the higher protein diet had higher levels of plasma orexin compared to the other 

treatments. [297]. Currently little research has investigated the effect of n-3 PUFAs on orexin 

neurons.  A study examining the effect of fish oils and vegetable oils (olive, sunflower, linseed, 

and palm) found no effect on the presence or distribution of OXA, OXB, and OX2R in the 

hypothalamus and gastrointestinal system in rainbow trout [298]. Animal studies have shown 

dietary n-3 PUFAs to protect neurons from apoptosis by reducing oxidative stress [299] and 

therefore may protect again the loss of orexin neurons with age, albeit further research is needed 

to support or refute this theory.  

 In vitro analyses indicate OXA activates mTORC1 via extracellular calcium influx and 

lysosome pathway involving Rag GTPases and Erk/Akt-independent pathways [300]. It is 

probable that elevated OXA concentrations and protein and n-3 PUFA supplementation may 

further stimulate mTORC1 with age, resulting in inhibition of catabolic pathways linked to age-

related decline in OXA, skeletal muscle, and well-being. Furthermore, n-3 PUFAs may enhanced 

OX2R signaling via incorporation into cellular membranes [225]. Given that neuronal function 

and anabolic signaling decline with advanced age, combined n-3 PUFA and protein 

supplementation may be a potential interventional strategy to mitigate age-related decline. 

However, further investigation of the mechanisms underlying the proposed effects are warranted.   



 

 44 

Conclusion  

 Age-related loss of skeletal muscle mass increases the likelihood of cardiometabolic risk, 

loss of physical function, and poor well-being. These concerns continue to grow as the older 

population increases in the U.S. On the basis of the reviewed evidence, we propose that 

increased protein above the RDA and n-3 PUFAs above the DGA recommendations for middle-

aged and older adults is required for older people to maintain skeletal muscle mass and to 

promote SA. Given that sarcopenia is, in part, underpinned by the reduced ability of dietary 

protein to stimulate MPS, increasing amounts of protein coupled with increased incorporation of 

n-3 PUFAs into cellular membranes may result in better preservation of muscle mass and 

neuroregulation. However, more research is needed to establish an additive effect of protein and 

n-3 PUFA on skeletal muscle mass, cardiometabolic risk, physical function, and well-being as a 

possible strategy to promote SA. As part of a multimodal intervention, increasing dietary protein 

and n-3 PUFA intakes may increase the prevalence of SA in middle-aged and older adults, 

beyond muscle mass maintenance. However, more research is needed. 
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CHAPTER 3. Beef and Nutrients Found in Beef Positively Impact Well-Being in Healthy 

Adults ≥ 50 Years of Age: A Meta-Analysis and Systematic Review of Randomized 

Controlled Trials 

 

Abstract  

Shifts in well-being occur as we age. Nutrients found in beef are associated with 

outcomes of well-being such as physical and cognitive function, lean body mass, and mood.  

However, it is unclear how beef and nutrients found in beef impact well-being in healthy adults ≥ 

50 years of age. The objective of this meta-analysis and systematic review was to evaluate the 

available evidence of randomized controlled trials (RCTs) assessing the effect of beef and 

nutrients found in beef on well-being in healthy adults ≥ 50 years of age. We hypothesized that 

RCTs using beef, or nutrients found in beef, would improve well-being outcomes in healthy 

adults > 50 years of age. PubMed, CINAHL, and Web of Science were searched up to September 

30, 2019 for eligible RCTs. Nine RCTs with 55 effect sizes were included in the meta-analysis. 

The random-effects model indicated an overall positive effect of beef and its nutrients on well-

being (g = 0.20, 95% CI = [0.05, 0.34], p=0.01), with substantial heterogeneity. An overall 

positive effect of amino acids (g=1.53, 95% CI: [1.04, 2.03], p<0.01) and protein (g=0.71, 95% 

CI: [0.52, 0.92], p<0.01) was found on well-being outcomes with no effect of arginine, vitamin 

B-12, leucine, and zinc. Physical function (g=0.83, 95% CI: [0.49, 1.17], p<0.01) was influenced 

by beef and nutrients found in beef. This meta-analysis identified a need for further research 

regarding the effect of beef and nutrients found in beef on defined functional outcomes of well-

being in healthy adults ≥ 50 years of age. PROSPERO CRD42020145729 



 

 76 

Introduction  

 The older adult population in the United States is a segment of unprecedented growth [1].  

Longer life spans and aging baby boomers will lead to nearly double the population of 

Americans ≥ 65 years of age over the next thirty years. Aging increases the risk of developing 

chronic diseases such as heart disease, cancer, and diabetes [2], which are responsible for the 

majority of health care costs for older Americans [3].  People living with chronic disease often 

experience diminished quality of life (QoL) due to gradual physiological and psychological 

decline and disability [3, 4]. Shifts in characteristics of QoL, such as decreased grip strength and 

cognitive function, begin prior to old age in the sixth decade of life [5-7]. However, advancing 

age is not always associated with significant functional regression [8], and some individuals 

maintain a successful aging trajectory [9, 10].  

Successful aging is commonly defined as a multidimensional concept characterized by 

facets of high levels of physiological functioning, active social and emotional engagement, and 

beneficial extrinsic factors (e.g. improved nutrient intake and increased exercise) [9, 11-13]. 

Underlying the framework of successful aging is well-being [14]. Although a single definition 

for well-being has yet to be solidified, well-being is defined by the Center for Disease Control 

and Prevention (CDC) as positive emotions (presence of positive and absence of negative affect 

states), life satisfaction and fulfillment, and positive functioning [15]. Results from 

epidemiological studies demonstrate that well-being is associated with self-perceived health, 

longevity, healthy behaviors, mental and physical health, social connectedness, and productivity 

[16, 17].  In addition, data suggest that well-being is inversely associated with poor lifestyle 

factors such as dysregulated sleep quality, low physical activity, decreased lean body mass 
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(LBM), and poor diet [18]. However, few clinical trials have investigated the effect of nutrition 

on outcomes of well-being prior to the development of  disability and chronic disease  [19].  

 Adequate nutrition is a key contributor to successful aging [20].  Diets rich in nutrients 

found in high amounts in beef such as protein, essential amino acids, vitamins B-6, B-12, choline 

and minerals zinc and iron are associated with improved markers of chronic disease [21-24].  

Research has validated the importance of protein intake above the current Recommended Dietary 

Allowance [25] of 0.8 grams per kilogram of body weight on strength and physical function for 

older adults [26, 27]. High quality protein sources, such as unprocessed meat, are negatively 

correlated with frailty [28], chronic disease, and muscle loss [29] in older adults. Beef is high in 

nutrients relative to calories [30, 31] and is protein dense (i.e. gram of protein per gram of food 

source) [32] when compared to alternative protein sources such as legumes, eggs, and dairy  

[21]. For example, a 3-ounce (~84g) serving of lean beef accounts for a fraction of daily calorie 

requirements (8.2%), ~25g of dietary protein, ~6.0 mg zinc (40 % daily value (%DV)), 2.2 �g 

B-12 (37 %DV), 0.4 mg B-6 (18 %DV), and 2.7 mg iron (15 %DV) [33].  

Cross-sectional analyses have identified positive associations between unprocessed 

beef/lean red meat, LBM, physical function, and nutrient status [34, 35]. However, randomized 

controlled trials (RCTs) investigating the effect of beef alone are limited.  A recent meta-analysis 

and systematic review of clinical trials found beef protein to provide similar benefits to 

commonly used whey protein isolate on LBM and exercise performance in adults [36]. In 

observational studies, LBM is commonly associated with positive physical and cognitive 

functioning, increased longevity, and improved QoL [37-39]. Furthermore, diets higher in 

nutrients found in greater amounts in beef, such as vitamin B-6, vitamin B-12, choline, zinc, and 

iron, are associated with improved markers of metabolic health [21, 22], but it is unclear how the 
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combination of protein and these nutrients impact well-being and QoL in aging adults.  

Nevertheless, studies of lean, red meat have reached contradictory conclusions in terms of health 

effects, in part because lean meats are often grouped together with processed meats [40-42]. 

However, recent studies suggest that lean red meat intake, such as beef, is not associated with 

increased risk of chronic disease [43-45].  

RCTs have found positive benefits following beef consumption in adults when coupled 

with weight-loss and exercise, or in the presence of chronic disease [36, 46, 47]. However, RCTs 

investigating the effect of beef and nutrients found in beef under caloric maintenance in healthy, 

older adults remain limited. Lean beef contributes ~18% and ~22% of the dietary reference 

intakes for protein for males and females ≥ 51 years of age, respectively [48]. A recent meta-

analysis revealed that beef consumption can promote LBM and exercise performance when 

combined with exercise training but did not explore the effect of beef apart from exercise [36]. 

Other meta-analyses focused on protein [49], vitamin B [50], zinc [51], and iron [52] 

supplementation focus on older adults with chronic disease, younger populations, multi-nutrient 

supplements, or do not assess outcomes of QoL or well-being. To our knowledge, a meta-

analysis of RCTs has yet to summarize the existing data on the effects of beef and nutrients 

found in beef on markers of QoL and well-being in older adults. 

Therefore, the objective of this meta-analysis and systematic review was to evaluate the 

available evidence of RCTs assessing the effect of beef and nutrients found in beef on QoL and 

well-being in healthy adults ≥ 50 years of age to promote successful aging. We hypothesized that 

RCTs using beef, or nutrients found in beef, would improve the successful aging outcomes, QoL 

and well-being, in healthy adults ≥ 50 years of age. We searched PubMed, CINAHL, and Web of 

Science databases and the reference list of the selected articles or related reviews for potential 
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trials up until September 30, 2019 by using key words such as older adults, beef, dietary protein, 

essential amino acids (EAA), branched chain amino acids (BCAA), tryptophan, arginine, 

cysteine, glycine, glutamate, vitamin B6, vitamin B12, choline, zinc, and iron. The QoL and 

well-being concept included search terms such as “well-being”, “quality of life”, “depression”, 

“cognitive function”, “mood”, “sleep”, “physical function”, “frailty”, and “strength”.  

 

Materials and Methods  

 Approach. This systematic review and meta-analysis of randomized controlled trials was 

performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

guidelines (PRISMA) [53]. The protocol for this meta-analysis was registered in PROSPERO 

(CRD42020145729). 

 Search Methods for Study Identification. Using predesigned search strategies, we 

systematically searched PubMed, CINAHL, and Web of Science databases for all RCTs up to 

September 30, 2019 investigating the effect of beef and nutrients found in beef on QoL and well-

being in healthy older adults (aged > 50 years). Three concepts were included in the search: 

population, nutrients, and QoL and well-being. The population search terms were “aging adults”, 

“older adults”, and “elderly”. The intervention search terms were “beef”, “red meat”, “animal 

dietary protein”, “dietary protein”, “essential amino acids”, “branched chain amino acids”, 

“leucine”, “tryptophan”, “arginine”, “cysteine”, “glycine”, “glutamate,” “vitamin B6”, 

“pyridoxine”, “vitamin B12”, “cobalamin”, “choline”, “zinc”, and “iron”. The QoL and well-

being concept included search terms as “well-being”, “wellbeing”, “quality of life”, 

“depression”, “cognitive function”, “mood”, “sleep”, “physical function”, “frailty”, and 
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“strength”. We also searched the reference list of the selected articles or related reviews for 

potential RCTs.  

 Eligibility Criteria. We included RCTs that examined associations between QoL, well-

being, and beef and nutrients found in beef among healthy older adults (aged ≥ 50 years). 

Detailed inclusion and exclusion criteria can be found in Table 1.  

 Study Selection. Two reviewers independently reviewed the retrieved articles. All 

abstracts and titles were screened according to the inclusion and exclusion criteria. 

Disagreements were resolved by discussion to achieve consensus.  Figure 1 depicts the flow of 

information through the different study selection phases including the studies identified, 

included, excluded, and the justifications for exclusions.  

 Study Extraction and Quality Assessment. Two investigators independently retrieved 

data regarding the study design.  Participant characteristics, supplementation regimens, follow-

up duration, outcome measures, statistical model, and experimental design. We assessed the 

quality of the RCTs using the National Heart, Lung, and Blood Institute website quality 

assessment tool for Quality Assessment of Controlled Intervention Studies (Table 2) [54]. 

 Outcomes Assessed. The primary outcome was well-being as defined by the RCTs.  

Well-being was grouped into four categories: LBM, cognitive function, physical function, and 

QoL. Studies were synthesized using effect sizes as the dependent variable and summary 

measures [55]. An effect size was computed for each outcome of each included RCT. As a result, 

nine articles yielded a total of 55 effect sizes for the meta-analysis. First, to calculate the effect 

size  Cohen’s d effect size [56], which quantifies the standardized mean difference between the 

treatment (T) and baseline (B) groups (control), defined as:  
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! = #̅! − #̅"
&#$$%

, (1) 

where #̅! and #̅" are the means of the treatment and baseline groups, respectively, and &#$$% is 

the pooled standard deviation computed as a function of sample sizes ((!, (") and standard 

deviations (&!, &") from both groups: &#$$% = )('!())+!",('#())+$"'!,'$
 was calculated. The Cohen’s d, 

however, has been shown to overestimate the effect in small studies. Thus, the Hedges’ g [57] 

effect size, a transformation of the Cohen’s d was used to correct for small sample bias. Hedges’ 

g was transformed from Cohen’s d as follows:  

* ⋍ ! × -1 − 3
4((! + (") − 9

5. (2) 

A positive g indicates a benefit of the treatment group, and a negative g indicates a benefit of the 

control group.   

 Heterogeneity Tests. The heterogeneity of effect sizes was evaluated using various 

statistical measures. To examine the between-study heterogeneity, the Cochran’s Q statistic [58] 

and Higgin’s and Thompson’s I2 [59] were used to assess the degree of heterogeneity. A 

significant Q statistic indicates heterogeneity (effect sizes come from different populations), 

whereas a non-significant Q statistic indicates homogeneity (effect sizes come from the same 

population). The I2 represents the proportion of variability in effect sizes that is not accounted for 

by sampling errors. The I2 of 25%, 50% and 75% indicates low, moderate and substantial 

heterogeneity, respectively [60]. Subgroup analyses and meta-regression analyses were 

conducted to investigate the possible sources of heterogeneity.  

 Publication Bias. Begg’s funnel plot and Egger’s test were used to statistically evaluate 

asymmetry and  potential publication bias [61].  
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Statistical Analysis 

Cohen’s d effect sizes were computed and then transformed to Hedge’s g. The overall 

differences between the control and treatment groups were examined using both the fixed-effects 

and random-effects models.  The two common approaches for modeling effect sizes are 1) the 

fixed-effects model that assumes a homogeneous population of effect sizes, and 2) the random-

effects model that assumes a distribution of true effect sizes [55]. More specifically, in a random-

effects model, the variability of the effect sizes comes from both the sampling errors and the 

variation of true effects across studies [62]. The random-effects model provides wider 

confidence intervals for the effect estimates. In this study, a random-effects model was used to 

explore the overall variability of effect sizes and a mixed-effect model (random errors, fixed 

moderator effects) was used to evaluate each moderator at a time. The analysis of effect sizes 

was conducted using the computer program R [63], with the R packages meta [64] and dmetar 

[65]. All statistical tests were 2-sided, and statistical significance was defined as P < 0.5. 

 

Results  

 Study Characteristics. Nine RCTs fulfilled the inclusion criteria and were included in the 

meta-analysis. The characteristics of the chosen studies are shown in Tables 3 and 4. The RCTs 

had a total of 864 participants. The RCT sample size ranged from 14 to 249 participants.  Six 

studies recruited both male and female participants, one study recruited only male participants 

and two studies recruited only female participants. The duration of each RCT ranged from 8 to 

104 weeks with one acute response intervention lasting 100 minutes. The average length of RCT 

was 33 weeks when excluding the acute study.  The included RCT nutrients were consumed as a 

liquid (n=2), pill (n=6) or whole foods containing beef (n=1). The publication years of the nine 
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RCTs ranged from 2005 to 2018 and were sourced from 7 different journals. Outcomes 

pertaining to well-being were identified and analyzed separately as physical function (n=17), 

cognitive function/mood (n=36) and LBM (n=2) (Table 4). RCTs containing outcomes of QoL 

did not meet the search criteria. Five RCTs included outcomes pertaining to physical function, 

two RCTs included outcomes pertaining to LBM and physical function and four RCTs included 

outcomes pertaining to cognitive function. In addition, there is an inverse relationship between 

effect size and study characteristics of study duration, age, and BMI ( Figure 2).  

Meta-regression (Table 5) was used to examine study and participant characteristics as 

continuous moderators including age, BMI, study duration (time in weeks), and publication year. 

Continuous moderators of age (g=-0.02, p=0.02), BMI (g=-0.30, p=0.01) and study length (g=-

0.01, p<0.01) were significant. There was no effect of BMI or publication year.  There was a 

significant effect of heterogeneity on all meta-regression factors for continuous moderators 

(p<0.01 for all parameters).  

 Risk of Bias and Quality of Included Studies. The quality assessment score of the RCTs, 

as measured by the National Heart, Lung, and Blood Institute website quality assessment tool for 

Quality Assessment of Controlled Intervention Studies ranged from 11 to 13 out of a maximum 

of 14, indicating that all studies were high quality (Table 2).  

 Overall Effect of Beef and Nutrients Found in Beef on Well-being. The overall effect of 

beef and nutrients found in beef were modeled based on the 55 effect sizes computed from the 

outcomes of 9 RCTs, summarized in Table 6. The fixed-effects model indicated an overall 

positive effect of beef and nutrients found in beef on well-being in healthy, older adults (g = 

0.08, 95% CI = [0.03, 0.13], p<0.01). The significant Q-statistic suggested statistical 

heterogeneity among effect sizes (Q (62) = 270.97, p<0.01). This was also supported by the high 
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I2 of 80.1%, which indicated 80.1% of the variability in effect sizes was beyond the sampling 

errors. Due to the substantial heterogeneity of effect sizes, a random-effects model was fitted, 

which estimated a wider confidence interval for each effect. The random-effects model provided 

a greater overall effect estimate (g = 0.20, 95% CI = [0.05, 0.34], p=0.01) than the fixed-effects 

model. A forest plot (Figure 3) identifies the largest significant positive effects were found in the 

article of Scognamiglio et al [66]. An influence analysis [65] was conducted to identify the 

influential cases (extremely small or large effects). Five effect sizes were identified to have 

remarkably large effects; all came from Scognamiglio et al [66], consistent with what was 

observed in the forest plot. These effect sizes largely contributed to the between-study 

heterogeneity, and if being removed, the mean effect size g would drop to 0.02 (p=0.49).  

 Effect of Beef and Nutrients Found in Beef on Outcomes of Well-being. The results of 

the subgroup analysis suggest that physical function (g=0.83, 95% CI: [0.49, 1.17], p<0.01) was 

significantly influenced by beef and nutrients found in beef. The effect of physical function was 

positive reflecting an overall improvement in physical function. There was no significant effect 

of beef and nutrients found in beef on other outcomes of wellbeing including LBM or cognitive 

function/mood. Sex had a significant impact on effect size. There was a significant positive 

effect in studies including both men and women (g=0.22, 95% CI: [0.06, 0.38], p=0.01) with no 

effect in females only or males only. The results of the intervention nutrient subgroup analysis 

suggest a significant positive effect of amino acids (g=1.53, 95% CI: [1.04, 2.03], p<0.01) and 

protein (g=0.71, 95% CI: [0.52, 0.92], p<0.01) with no effect of arginine, vitamin B-12, leucine, 

and zinc. There was a significant negative effect of vitamin B-12 + vitamin B-6+ folic acid (FA) 

(g=-0.14, 95% CI: [-0.22, -0.064], p<0.01). There was a significant effect of heterogeneity on all 

subgroup analyses by moderator categories (p<0.05 for all parameters). 
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 Publication Bias. There was evidence of publication bias using Begg’s funnel plot and 

Egger’s test of the intercept (p<0.01) (Figure 4) [61].  Caution should be taken when interpreting 

the results on account of the possible publication bias.  

 

Discussion 

 To our knowledge, this is the first meta-analysis and systematic review to synthesize 

scientific literature regarding the impact of beef and nutrients found in beef on well-being in 

healthy adults ≥ 50 years of age. The results suggest that interventions incorporating beef, 

protein, and amino acids are potentially beneficial for outcomes of physical function in healthy 

older adults.  Surprisingly, only one RCT evaluated the effect of beef as a whole food [67] and 

only two RCTs [67, 68] examined LBM, physical function, and multiple domains of well-being,  

within the same trial.  

 In the present meta-analysis, only two RCTs evaluated the effect of beef and nutrients 

found in beef on LBM and physical function. One RCT evaluated the effect of 7.5 g/d leucine 

[68] and the other evaluated the effect of high protein whole foods including beef (1.1 g 

protein·kilogram body weight-1·d -1) [67]. There was no effect of  leucine or beef on LBM, which 

is supported by a previous meta-analysis evaluating the effect of protein supplementation 

sourced from non-beef protein sources on LBM [69].  In contrast to these findings, a meta-

analysis and systematic review summarizing the effects of protein, not sourced from beef, on 

body composition and physical function in older adults found protein significantly increased 

LBM compared to the control group [70].  The lack of effect observed in the current meta-

analysis, and contradictory findings throughout the literature, are likely attributed to the 

inconsistencies in methodology. RCTs showing a beneficial effect of protein supplementation on 
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LBM in healthy, older adults commonly use a supplementation period of at least 12-weeks [71, 

72] and supplement with higher amounts of protein [73, 74] than what were used in the RCTs 

included in this analysis.  

 Only five RCTs measuring physical function, using 11 different physical function 

measurements, were analyzed in this study. These include gate speed/distance  [66, 67, 75], 

handgrip strength [66, 67, 76], sit-and-stand [67, 75], and 1 repetition maximum (1RM) knee 

extensions [67, 68]. The diversity of physical function tests conducted within the five RCTs is 

reflective of the substantial heterogeneity found in this meta-analysis. Verhoeven et al [68] and 

Kim et al [67] found no effect of leucine supplementation or protein intake on strength and 

physical function in healthy, older men. Consumption of beef improved 1RM knee extension 

(kg) post-dietary intervention, although improvements were only observed when protein was 

consumed evenly throughout the day [67]. The lack of significance among other physical 

function tests may be due to the low protein amount or short duration. The largest effect sizes 

found in this meta-analysis came from Scognamiglio et al. [66]. In this study, 12 weeks of daily 

amino acid supplementation resulted in significant improvements in ambulatory function and 

hand-grip strength compared to the control group. The robust effect of amino acids in this RCT 

may be due to the older age of the participants (74 ± 5.5 years), the sedentary activity level of 

participants, and/or the longer study duration of 12 weeks.  

Observational studies suggest a positive role of protein dense foods on cognitive function 

[77, 78]. However, in this meta-analysis there was no effect of either beef or nutrients found in 

beef on cognitive function in healthy older adults. We examined RCTs investigating the effect of 

nutrients found in beef, including vitamin B-12, B-6, folate, and zinc [79-81], on measures of 

cognitive function and found no effect of these nutrients on cognitive function in healthy, older 
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adults. This is supported by two recent meta-analyses which found no effect of B-vitamin intake, 

individually or in combination with other nutrients, on cognitive function in middle-aged and 

older adults [50, 82]. Dietary zinc is hypothesized to play a crucial role in regulating 

neuroplasticity, cognitive function, and positive and negative affect states in older adults [83-85]. 

The RCT included in this meta-analysis measured the effects of 15 mg/d or 30 mg/d of zinc on 

positive and negative affect states in healthy, older adults and found no effect compared to a 

placebo control [86].  In contrast, observational studies report an association of dietary and 

plasma zinc levels on positive and negative affect states [87, 88] and cognitive function in older 

adults [87]. 

Very few RCTs have investigated the effect of beef and nutrients found in beef on well-

being in healthy, older adults independent of weight loss and/or exercise interventions. However, 

in the studies involving weight loss a beneficial effect of lean beef consumption on well-being 

has been found [89, 90]. For example, a 6-month weight loss trial in obese, older adults ≥ 60 

years of age found consumption of 30 g of high-quality protein per meal, predominantly sourced 

from lean beef, reported an improvement in physical function when compared to a lower protein 

control group [89].  Similarly, O’Connor et al [90] compared a Mediterranean diet plan with 200 

grams or 500 grams of lean red meat (beef and pork) per week and reported positive effects on 

outcomes of well-being including reduced physical limitations, improved mental health, and 

reduced fatigue [90].  

There are several limitations to this meta-analysis and systematic review. First, there was 

a small and heterogenous set of studies which met the inclusion criteria for the meta-analysis. 

Few studies shared the same quantitative estimate on the relationship between beef and nutrients 

found in beef and a specific well-being outcome. In addition, beef and the nutrients studied in 
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this meta-analysis were provided in different forms such as whole foods, pills or liquid, which 

were not directly sourced from beef which may influence outcomes. Studies were conducted in 

nine different countries with diverse samples of different size, age, and sex. Lastly, we aimed to 

include a well-being domain of quality of life, albeit available RCTs did not meet our search 

inclusion criteria. The small heterogenous set of studies included in this meta-analysis emphasize 

a need for standardized measurements of well-being outcomes in future RCTs in healthy, older 

adults.  

In summary, the results of our meta-analysis suggest that compared with a control group, 

protein and amino acids found in beef, may positively influence well-being through improved 

physical function in healthy adults ≥ 50 years of age. 

 

Recommendations for Future Research  

There is an evident need for additional well-designed RCTs evaluating the efficacy of 

beef and nutrients found in beef in healthy adults ≥ 50 years of age to promote well-being. Future 

research should adopt a population representative sample of healthy older adults, absent of 

chronic diseases, and examine the effect of lean beef on outcomes of well-being. For example, 

RCTs should implement lean beef supplementation within a multidimensional approach with 

homologous defined functional outcomes of LBM, cognitive function, physical function, and 

QoL to advance research in the field of aging and nutrition. Moreover, future studies should 

investigate the molecular mechanisms underlying the potential effect of beef consumption, apart 

from exercise and weight-loss, on well-being in healthy older adults.    
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Tables 

Table 1. Study Selection Process: Inclusion and Exclusion Criteria 

Criteria Inclusion Criteria Exclusion Criteria 
Beef and Beef’s Nutrients Beef Other sources of red meat 

 Beef sourced protein Non-beef sourced protein 
 Zinc Multivitamin supplements 
 Arginine  
 Vitamin B-6  
 Vitamin B-12  
 Folic Acid  
 Essential amino acids 

(individually and as a 
group) 

 

 Choline  
 Cysteine   
 Glycine   
 Glutamate   

Study Design Randomized controlled 
clinical trials 

Exercise 

 Registered clinical trial Method of nutrient 
supplementation (e.g. 
injection) 

  Review article 
  Meta-analysis 
  Longitudinal or cross-

sectional data 
  Epidemiological 
  Weight-loss 
  Non-human model 
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Table 1. Study Selection Process: Inclusion and Exclusion Criteria (Cont.) 
Criteria Inclusion Criteria Exclusion Criteria 
Outcomes Well-being and Quality of 

Life (e.g. SF-36, SF12, EQ-
5D, HRQOL) 

Mechanistic 

 Strength (e.g. handgrip, 
1RM) 

Appetite 

 Physical function (e.g. gait, 
walking speed, sit-stand test) 

Bone Health 

 Cognitive function, Mood, 
Depression (e.g. POMS, 
MMSE) 

Fat mass  

 Sleep (e.g. PSQI, Actigraph)  
 Lean body mass   
Journal Characteristics Peer-reviewed full text Conference abstracts 
 English language Non-English language 
  Statistics cannot be 

quantified 
Participant Characteristics Humans Chronic disease 
 Healthy Age not specified 
 >50 years of age Cognitive 

disorders/Dementia 
  Non-human model 
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Table 2. Quality Assessment of Controlled Intervention Studies 

1 denotes Yes, 0 denotes N0, and X denotes not reported   
 

 Study ID (Reference number) 
Criteria 1 2 3 4 5 6 7 8 9 

1. Was the study described as randomized, a randomized trial, a randomized 
clinical trial, or an RCT? 

1 1 1 1 1 1 1 1 1 

2. Was the method of randomization adequate (i.e., use of randomly generated 
assignment)? 

X 1 X X 1 1 X 1 X 

3. Was the treatment allocation concealed (so that assignments could not be 
predicted)? 

1 1 1 1 1 1 X 1 1 

4. Were study participants and providers blinded to treatment group 
assignment? 

1 1 1 1 X 1 1 1 1 

5. Were the people assessing the outcomes blinded to the participants' group 
assignments? 

1 1 1 0 X 1 X 1 1 

6. Were the groups similar at baseline on important characteristics that could 
affect outcomes (e.g., demographics, risk factors, co-morbid conditions)? 

1 1 1 1 1 0 1 X 1 

7. Was the overall drop-out rate from the study at endpoint 20% or lower of 
the number allocated to treatment? 

1 1 1 1 1 1 1 X 1 

8. Was the differential drop-out rate (between treatment groups) at endpoint 15 
percentage points or lower? 

1 1 1 1 1 1 1 X 1 

9. Was there high adherence to the intervention protocols for each treatment 
group? 

1 1 1 1 X X 1 1 X 

10. Were other interventions avoided or similar in the groups (e.g., similar 
background treatments)? 

1 1 1 1 1 1 1 1 1 

11. Were outcomes assessed using valid and reliable measures, implemented 
consistently across all study participants? 

1 1 1 1 1 1 1 1 1 

12. Did the authors report that the sample size was sufficiently large to be able 
to detect a difference in the main outcome between groups with at least 80% 
power? 

1 1 1 0 X 1 1 1 0 

13. Were outcomes reported or subgroups analyzed prespecified (i.e., 
identified before analyses were conducted)? 

1 0 1 0 1 1 1 1 1 

14. Were all randomized participants analyzed in the group to which they were 
originally assigned, i.e., did they use an intention-to-treat analysis? 

1 1 1 1 1 1 1 1 1 

Total Score  13 13 13 10 10 12 11 11 11 
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Table 3. Main characteristics of subjects in randomized controlled trials included for the meta-analysis 

Study 
ID 

Primary Author 
(Year) 

Country Sample Size 
(Experimental) 

Sample Size 
(Control) 

Age 
(Years) 

 

Age 
(SD) 

Sex BMI 

1 Aguiar, 2015  
[73] Brazil 10 10 71.6 6.1 F 26.6 

2 Dangour, 2015 
[77] England 97 100 80.0 3.6 B 27.3 

3 Eussen, 2006  
[78] Netherlands 50 53 82.0 5 B NR 

4 Fricke, 2008  
[74] Germany 11 12 53.9 4.3 F 23.5 

 

5 Kim, 2018  
[65] United States 7 7 59.2 6.3 B 27.5 

6 McMahon,  2006  
[79] New Zealand 125 124 73.5 5.8 B 26.8 

7 Scognamiglio, 2005  
[64] Italy 48 47 74.0 5.5 B 25.3 

8 Stewart-Knox, 2011 
[84] Ireland 62 62 68.1 4.1 B NR 

9 Verhoeven, 2009  
[66] Belgium 15 14 71.0 15.3 M 26.1 

Int, intervention; M, male; F, female; B, both males and females; NR, not reported 
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Table 3. Main characteristics of subjects in randomized controlled trials included for the meta-analysis (Cont.) 

Int, intervention; M, male; F, female; B, both males and females; NR, not reported

Study ID 
Primary Author 

(Year) 

Int. 
Duration  

 

Statistical 
Model 

Attrition 
Rate 

1 
Aguiar, 2015  
[73] 

Acute 
Repeated measures 

ANOVA 
0% 

2 
Dangour, 2015 
[77] 

52 
ANCOVA 

Logistic Regression 
5.0% 

3 Eussen, 2006  
[78] 

24 ANOVA 16.9% 

4 
Fricke, 2008  
[74] 

26 ANOVA 0% 

5 
Kim, 2018  
[65] 

8 ANCOVA 0% 

6 
McMahon,  2006  
[79] 104 

Estimating equations w/ 
exchangeable correlation matrix 8.3% 

7 
Scognamiglio, 2005  
[64] 12 Repeated measures ANOVA 5.0% 

8 Stewart-Knox, 2011 [84] 26 Mixed ANOVA Not Reported 

9 
Verhoeven, 2009  
[66] 

12 Repeated Measures ANOVA 3.6% 
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results.  

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall Conclusion  

1  
[73] 

Intervention: L-
Arginine 8 g, liquid 
form  
Control:  
Corn starch 8 g, 
liquid form  

Supplements were 
orally administered 
in water in a double-
blind placebo-
controlled 
randomized design. 
Physical tests and 
examinations were 
initiated 80 min 
after 
supplementation  

Physical 
Function  

*Tandem gait: ARG:16.8±1.2 vs. 
PLA: *18.8±1.3s; (NS) 
*Sit-stand:  
*ARG:4.9±0.1. vs. PLA: 
5.1±0.3s; (NS) 
*Timed up and go 
*ARG:7.2± 0.3 vs PLA: 7.4±0.4s; 
(NS) 

Acute arginine 
supplementation 
does not 
significantly effect 
endothelial function 
or muscle 
performance in 
older women.  

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo.  
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  

Study 
ID 

Intervention 
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion 

2  
[77] 

Intervention: 
Vitamin B-12 
(cyanocobalamin) 
1 mg 
Control: 1 mg 
control tablet 
(nutrient not 
reported) 

Participants had 
moderate vitamin 
B-12 deficiency in 
the absence of 
anemia and of 
neurologic and 
cognitive signs or 
symptoms. 
Supplements 
administered as a 
daily oral tablet for 
12 months in a 
double-blind 
placebo-controlled 
randomized 
manner. 

Cognitive 
Function/ 
Mood 

30-item general health questionnaire 
Vit B-12: 2.4±0.5 vs PLA: 2.7±0.5; Adj 
effect size and 95% CI -0.1(-1.3,1.1); 
California Verbal Learning Test: A Total 
words correct in first 3 trials 
Vit B-12: 23.9±0.7 vs PLA: 24.6±0.7; 
Adj effect size and 95% CI -1.4 (-
2.9,0.1) 
B Words recalled at delayed recall 
Vit B-12 7.5±0.3 vs PLA:7.7±0.4 Adj 
effect size and 95% CI -0.4 (-1.0,0.2) 
Symbol letter modality, n correct 
Vit B-12: 39.6±1.1 vs PLA: 4-.1±1.2; 
Adj effect size and 95% CI -1.3 (-
3.2,0.6) 
Simple-reaction time 
Vit B-12: 0.3±0.01 vs PLA: 0.3±0.01; 
Adj effect size and 95% CI 0.01 (-
0.02,0.04) 
Choice-reaction time 
Vit B-12: 0.7±0.01 vs. PLA: 0.7±0.02; 
Adj effect size and 95% CI - 0.003 (-
0.03,0.02) 
Verbal fluency 
Vit B-12: 20.8±0.5 vs PLA 19.9±0.6; Adj 
effect size and 95% CI 1.1(-0.01,0.22) 

12-months of 
vitamin B-12 
supplementation 
does not 
significantly 
effect 
neurologic or 
cognitive 
function. 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo.  
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion  

3 
[78] 

Intervention
: Vitamin B-
12 
(cyanocobal
amin) 1000 
μg, tablet 
Control: 
AVICEL 
PH102, 
tablet 

Participants had 
moderate vitamin 
B-12 deficiency 
in the absence of 
anemia and of 
cognitive 
impairment. 
Supplements 
administered as a 
daily oral tablet 
for 24 weeks in a 
double-blind 
placebo 
controlled 
randomized 
manner. 

Cognitive 
Function/ 
Mood 

Construction: complex figure of Rey (pts) 
Vit B-12: 30.0±7.5 vs PLA:29.2±7.0 (NS) 
Attention: digit span forward-attention (pts) 
Vit B-12: 7.5±1.7 vs PLA: 7.8±1.6 (NS) 
Motor planning 2-sensomotor speed (millisecond) 
Vit B-12: 647±265 vs PLA: 618±300 (NS) 
Finger tapping-sensomotor speed (millisecond) 
Vit B-12: 412±175 vs. PLA:389±168 (NS) 
Trail making test-sensomotor speed  [1] 
Vit B-12: 77.5±52.3 vs PLA: 73.9±43.9 (NS) 
15 word learning immediate recall-memory(pts) 
Vit B-12: 35.2±12.1 vs PLA: 35.7±11.1 (NS) 
15 word learning delayed recall-memory(pts) 
VitB-12: 5.5±3.9 vs. PLA: 6.1±3.9 (NS) 
15 word learning recognition-memory(pts) 
Vit B-12: 26.6±3.7 vs PLA: 27.0±3.6 (P<0.05) 
Complex figure of Rey, immediate recall-memory 
(pts) 
Vit B-12: 12.2±7.7 vs PLA: 12.7±7.4 (NS) 
Complex figure of Rey delayed recall-memory 
(pts) 
Vit B-12: 11.4±7.0 vs PLA: 11.9±7.3 (NS) 
Digit span backward-memory (pts) 
Vit B-12: 4.6±1.6 vs PLA: 5.3±1.7 (P<0.05) 
 

Oral 
supplementati
on of vitamin 
B-12 for 24 
weeks does 
not effect 
cognitive 
function. 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo.
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion  

3 
[78] 

Intervention
: Vitamin B-
12 
(cyanocobal
amin) 1000 
μg, tablet 
Control: 
AVICEL 
PH102, 
tablet 

Participants had 
moderate vitamin 
B-12 deficiency in 
the absence of 
anemia and of 
cognitive 
impairment. 
Supplements 
administered as a 
daily oral tablet for 
24 weeks in a 
double-blind 
placebo controlled 
randomized 
manner. 

Cognitive 
Function/ 
Mood 

Motor planning 3-executive function 
(millisecond) 
Vit B-12: 863±376 vs PLA: 990±696 (NS) 
Trail making test (part C/part A)-executive 
function (millisecond) 
Vit B-12: 2.8±1.2 vs PLA: 2.8±1.0 (NS) 
Stroop test (part 3/part 2)-executive function 
(millisecond) 
Vit B-12: 2.2±0.9 vs PLA: 2.8±1.0 (NS) 
Similarities WAIS-executive function (pts) 
Vit B-12: 6.1±2.6 vs PLA: 5.4±2.8 (NS) 
Raven-executive function (pts) 
Vit B-12: 16.6±3.5 vs PLA: 16.5±3.9 (NS) 
Word fluency animals-executive function (#onf) 
Vit B-12: 17.6±5.5 vs PLA: 16.5±5.9 (NS) 
Word fluency letter-executive function (#ofn) 
VitB-12: 15.5±7.9 vs PLA: 17.5±8.8 (p<0.05) 
 

Oral 
supplementa
tion of 
vitamin B-
12 for 24 
weeks does 
not effect 
cognitive 
function. 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo. 
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion  

4 
[74] 

Intervention
: L-Arginine 
hydrochlori
de 18 g and 
14.8 g, 
tablet L-
Arginine/ 
daily 
Control: 
Dextrose, 
tablet 

Supplements 
administered 
orally for 26 -
weeks in a 
double-blind 
placebo 
controlled 
randomized 
manner. 
Secondary 
analysis from 
Baecker et al., 

Physical 
Function 

Maximal isometric grip force (MIGF) of non-
dominant hand via Jamar dynamometer (Newton) 
*ARG: 0.909±2.3: vs PLA: 1.167±2.368 (NS) 
 

Oral 
supplementati
on of L-
Arginine for 
26 weeks did 
not 
significantly 
influence 
MIGF in 
postmenopaus
al women. 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05 
2 PLA, placebo. 
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-
being 

parameter 

Study Results Post-Intervention Overall 
Conclusion  

5 
[65] 

Intervention
: Even 
Distribution 
of high 
protein beef 
containing 
foods 
(33/33/33%) 
Control: 
Typical 
American 
distribution 
of beef high 
protein 
containing 
foods 
(15/20/65%) 
Protein 
sources 
including 
beef, eggs, 
and dairy 

UNEVEN control 
group consumed 
1.1g protein/kg 
body weight/day 
in an uneven 
pattern 
(15/20/65%) 
comparable to the 
traditional pattern 
of meal intake in 
the U.S  for 8-
weeks. The 
EVEN group 
consumed an 
equal amount of 
protein with an 
even pattern of 
~33/33/33% 
protein for 8-
weeks Diets were 
configured to 
maintain a stable 
body weight via 
Harris-Benedict 
equation and level 
of physical 
activity. 

Lean body 
mass 
 
Physical 
Function 

DEXA Lean body mass (kg) 
EVEN Pre: 50.5 ±2.7 vs, EVEN Post: 50.3±3.1 (NS) 
UNEVEN Pre:47.7±4.2 vs UNEVEN: Post 46.9±4.1 
(NS) 
EVEN Post: 50.3±3.1 vs UNEVEN: Post 46.9±4.1 
(NS) 
1 RM knee extension, kg 
EVEN Pre:59.2±5.6 vs, EVEN Post: 73.1±7.4 * 
UNEVEN Pre: 45.8±6.1 vs UNEVEN: Post 52.3±8.7 
(NS) 
EVEN Post: 73.1±7.4 vs UNEVEN Post: 52.3±8.7 
(NS) 
Handgrip strength, kg 
Even Pre: 37.5±3.8: vs EVEN Post: 40.7±4.5 
Uneven Pre: 33.0±4.6 vs UNEVEN Post: 32.9±3.9 
(NS) 
EVEN Post: 40.7±4.5 vs UNEVEN Post: 32.9±3.9 
(NS) 
10 m gait speed, s 
Even Pre:5.6±0.6 vs EVEN Post: 5.0±0.4 (NS) 
Uneven Pre: 6.2±0.6 vs UNEVEN Post: 6.7±0.6 
(NS) 
EVEN Post: 5.0±0.4 vs UNEVEN Post: 6.7±0.6 
(NS) 
Sit/Stand 5 reps (s) 
Even Pre:10.4 ±0.9 vs EVEN Post: 8.0±1.0 (NS) 
Uneven Pre:10.5 ± 1.7 vs UNEVEN Post: 9.7±1.2 
(NS) 

8-week 
interventio
n period of 
an even or 
uneven 
distributio
n pattern 
of mixed 
meals does 
not 
significantl
y affect 
muscle 
strength or 
functional 
outcomes. 
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1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo.  
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  
 

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion  

5 
[65] 

Intervention: 
Even 
Distribution of 
high protein 
beef containing 
foods 
(33/33/33%) 
Control: 
Typical 
American 
distribution of 
beef high 
protein 
containing 
foods 
(15/20/65%) 
Protein sources 
including beef, 
eggs, and dairy 

UNEVEN control 
group consumed 1.1g 
protein/kg body 
weight/day in an 
uneven pattern 
(15/20/65%) 
comparable to the 
traditional pattern of 
meal intake in the 
U.S  for 8-weeks. The 
EVEN group 
consumed an equal 
amount of protein 
with an even pattern 
of ~33/33/33% 
protein for 8-weeks 
Diets were 
configured to 
maintain a stable 
body weight via 
Harris-Benedict 
equation and level of 
physical activity. 

Lean body mass 
 
Physical 
Function 

Sit/Stand 5 reps (s) 
Even Pre:10.4 ±0.9 vs EVEN Post: 
8.0±1.0 (NS) 
Uneven Pre:10.5 ± 1.7 vs UNEVEN 
Post: 9.7±1.2 (NS) 
EVEN Post: 8.0±1.0 vs UNEVEN 
Post: 9.7±1.2 (NS) 
Stair ascend power, Nm/s 
Even Pre: 347.9 ± 15.7 vs EVEN 
Post:360.3±30.3 (NS) 
UNEVEN Pre: 290.6 ± 46.6 
UNEVEN Post: 282.7±46.6 (NS) 
EVEN Post:360.3±30.3   vs 
UNEVEN Post: 282.7±46.6 (NS) 
Stair descend power, Nm/s 
Even Pre: 363.9 ± 16.8 vs EVEN 
Post: 401.1±32.7 (NS) 
UNEVEN Pre: 300.8 ± 53.7 
UNEVEN Post: 304.6±58.1 (NS) 
EVEN Post: 401.1±32.7 vs 
UNEVEN Post: 304.6±58.1 (NS) 

8-week 
intervention 
period of an 
even or 
uneven 
distribution 
pattern of 
mixed meals 
does not 
significantly 
affect muscle 
strength or 
functional 
outcomes. 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo.  
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  
 

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion  

6 
[79] 

Intervention: 
Folic acid: 
1000 μg, 
Vitamin B-12 
(cobalamin) 
500 μg, 
Vitamin B-6 
(pyridoxine) 
10 mg, tablet 
Control: 
MGF, tablet 

Participants had 
high fasting 
homocysteine 
concentrations of 
at least 13 μmol 
per liter and were 
otherwise healthy. 
Participants orally 
consumed a daily 
treatment or 
control capsule 
for 2 years in a 
double-blind, 
placebo-
controlled, 
randomized 
manner. 

Cognitive 
Function/ 
Mood 

Mini-Mental State Examination (pts.) 
B-VIT: 29.29±1.41 vs PLA: 29.32±2.10 
(NS) 
Wechsler Paragraph Recall test (pts) 
B-VIT:18.67±6.55 vs PLA:20.76±7.21 
(NS) 
Category Word Fluency test (# of words) 
B-VIT: 65.72±14.96 vs PLA:68.78±13.71 
(NS) 
Rey Auditory Verbal Learning (# of 
words) 
B-VIT:43.90±9.70 vs PLA: 44.22±9.90 
(NS) 
Raven's Progressive Matrices (pts) 
B-VIT: 11.60±2.92 vs PLA: 11.90±3.05 
(NS) 
Controlled Oral Word Association test (# 
of words) 
B-VIT: 40.11±14.08 vs PLA: 
41.00±12.44(NS) 
Part B of the Reitan Trail Making Test 
(sec to completion) 
B-VIT: 114.40±84.23 vs 
PLA:98.96±40.75  (p=0.007) 

2-year oral 
supplementation 
of B-vitamins 
does not 
significantly 
affect cognitive 
performance. 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo.
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  
 

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion  

7 
[64] 

Intervention: oral 
amino acid (AA) 
mixture 12 g/day+ 
12.21 g of glucose, 
liquid 
Control: glucose 
12.21 g/day, liquid 
AA 
Composition/day: 
L-leucine: 3.8 g 
L-lysine 2 g 
L-isoleucine 1.9 g 
L-valine 1.9 g 
L-threonine: 1.1 g 
L-cystine: 0.4 g 
L-histidine: 0.4 g 
L-phenylalanine: 0.3 
g 
L-methionine: 0.2 g 
L-tyrosine: 0.1 g 
L-tryptophan 0.1 g 

Participants with 
reduced physical 
activity consumed 
an oral amino acid 
mixture or placebo 
3-times daily for 3 
months as snacks at 
10:00am., 4:00p.m., 
and 10:00 p.m. in a 
single-blind, 
placebo-controlled, 
randomized 
manner. 
Participants were 
instructed to reduce 
their usual dietary 
intake by 450kcal 
per day to 
compensate for the 
supplements. 

Physical 
Function 

Ambulatory function: 6 min walk 
distance (m) 
AA: 268.8±34.9 vs PLA: 212±40 
(p<0.001) 
Self -reported ambulatory ability: 
distance (%) 
AA:68.3±12 vs PLA: 53±14.8 
(p<0.001) 
Self -reported ambulatory ability: 
speed (%) 
AA: 72.2±14.4 vs PLA: 52.8±12 
(p<0.001) 
Self -reported ambulatory ability: 
stairs (%) 
AA: 98.2±24 vs PLA: 72.4±22 
(p<0.001) 
Maximal Isometric muscle strength; 
Right hand (kg) 
AA: 20.2±2 vs PLA: 14.38 
(p<0.001) 

3-months of 
oral amino acid 
mixture 
significantly 
improved 
ambulatory 
capacity, 
maximal 
isometric 
muscle strength, 
and myocardial 
ability in 
elderly subjects 
without 
affecting tested 
metabolic 
parameters. 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  
 

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-
being 

parameter 

Study Results Post-Intervention Overall 
Conclusion  

8 
[84] 

Intervention: 
Zinc 
gluconate 15 
mg/d 
Zinc 
gluconate 30 
mg/d 
Control: 
placebo pill 

Participants in 
four European 
centers 
(Northern 
Ireland, 
Clermont-
Ferrand, Rome, 
Grenoble) 
consumed 
15mg, 30mg, or 
a placebo pill 
with breakfast 
daily for 6 
months in a 
double-blind 
placebo-
controlled, 
randomized 
manner 

Cognitive 
Function/ 
Mood 

Positive and Negative Affect Scale (PANAS): 55-
70 yrs old/Coleraine and Clermont-Ferrand (pts) 
Sum of 4 consecutive days (upon rising, 
breakfast, lunch, after dinner and before going to 
bed) 
Positive affect 
Zn(15mg) 28.70±6.09 vs PLA: 26.86±5.20 (NS) 
Zn (30mg): 29.06±5.54vs PLA 26.86±5.20 (NS) 
Negative affect (pts) 
Zn(15mg): 12.22±3.30 vs PLA 11.84±2.89 (NS) 
Zn (30mg): 11.22±1.95vs PLA 11.84±2.89 (NS) 
Positive and Negative Affect Scale (PANAS): ≥ 70 
yrs old/Rome and Grenoble 
Sum of 4 consecutive days (upon rising, 
breakfast, lunch, after dinner and before going to 
bed) 
Positive affect 
Zn(15mg) 23.20±6.50 vs PLA: 24.36±9.02 (NS) 
Zn (30mg): 23.59±7.68 vs PLA: 24.36±9.02 (NS) 
Negative affect (pts) 
Zn(15mg): 13.27±4.90 vs PLA 12.29±3.02 (NS) 
Zn (30mg): 12.81±4.26.95vs PLA 12.29±3.02 
(NS) 

6-months of 
oral zinc 

supplementati
on does not 
significantly 

affect mood in 
healthy 
elderly 

European 
adults 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo. 
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Table 4. Intervention arms, nutrients consumed, well-being measures, and results (Cont.)  
 

 

1All values are means ± SDs unless indicated as * denoting SEMs. Non-significant p-values are denoted by NS; #ofn: number of 
nouns; significant p-values are denoted by the given p-value, P=0.05  
2 PLA, placebo.  
 

Study 
ID 

Intervention  
Arms 

Nutrient/diet 
methodology 

Well-being 
parameter 

Study Results Post-Intervention Overall 
Conclusion  

9 
[66] 

Intervention
: Leucine 
2.5 g/main 
meal and 
7.5 g/day, 
tablet  
Control: 
Wheat flour: 
2.5 g/main 
meal and 
7.5 g/day, 
tablet   

Participants 
consumed 5 
capsules of 
leucine or placebo 
with each main 
meal daily for 3-
months in a 
double-blind 
placebo-
controlled 
randomized 
manner.   

Physical 
Function  
 
Lean body mass 

1RM leg press  
*Leucine:170±8 vs Placebo:172±6 
(NS) 
*1RM leg extension  
*Leucine: 85±3vs Placebo: 85±3 (NS) 
*Lean Mass (Kg) 
*Leucine: 55.0±1.5 Placebo: 56.2±1.1 
(NS) 

3-months of 
leucine 
supplementation 
with each main 
meal does 
significantly 
affect muscle 
mass and strength 
in healthy elderly 
men 
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Table 5. Meta-Regression Results for Continuous Moderators   
 

Aggregation n Estimate SE 
95 CI 

p  Heterogeneity 

Lower Upper  Qb df p 

Age 55       260.24 53 <0.01 

  Intercept   1.93 0.75 0.42 3.43 0.01     
  Age (slope)  -0.02 0.01 -0.04 -0.003 0.02     

BMI 33       148.26 31 <0.01 

  Intercept   8.43 3.17 1.96 14.90 0.01     
  BMI (slope)  -0.30 0.11 -0.55 -0.06 0.01     

Length of time in weeks 52       219.51 50 <0.01 

  Intercept   0.46 0.11 0.24 0.68 <0.01     
  Length (slope)  -0.01 0.002 -0.01 -0.003 <0.01     

Publication year 
(centered at 2005) 55       270.97 53 <0.01 

  Intercept   0.18 0.10 -0.02 0.38 0.07     
  Year (slope)  0.004 0.02 -0.03 0.04 0.82     
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Table 6. Modeling Results for Overall Effects and by Moderator Categories 
 

Aggregation n 
Effect Size  95 CI 

p 
 Heterogeneity 

g SE  Lower Upper  Qb df p 
Fixed effects 55 0.08 0.03  0.03 0.13 <0.01  270.97 54 <0.01 

Random effects 55 0.20 0.07  0.05 0.34 0.01  270.97 54 <0.01 

Well-being Outcome         22.33 2 <0.01 

  Lean body mass    2 -0.06 0.29  -0.63 0.52 0.85     
  Cognitive Function 36 -0.01 0.03  -0.07 0.06 0.81     
  Physical Function  17 0.83 0.17  0.49 1.17 <0.01     

Sex         9.32 2 0.01 

      Female  4 0.19 0.13  -0.06 0.45 0.13     
      Male  3 -0.11 0.08  -0.28 0.05 0.16     
      Both  48 0.22 0.08  0.06 0.38 0.01     

Beef and Beef’s Nutrients          106.06 6 <0.01 

     AA 5 1.53 0.25  1.04 2.03 <0.01     
     Arginine 4 0.19 0.13  -0.06 0.45 0.13     
     B-12 25 0.01 0.04  -0.07 0.08 0.83     
     B-12 +B-6 +FA 7 -0.14 0.04  -0.22 -0.06 <0.01     
     Leucine 3 -0.11 0.08  -0.28 0.05 0.16     
     Protein/Beef  7 0.71 0.10  0.52 0.90 <0.01     
     Zinc 4 0.21 0.12  -0.02 0.44 0.07     

  1  FA, folic acid. 
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Figures 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Literature search: Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram 
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Records after duplicates removed 
(n = 9,772) 

Records screened 
(n = 9,772 ) 

Records excluded with justifications 
(n =9,685) 

Abstract/ non-peered review= 19 
Age <50 years = 623 
Animal/in-vitro = 49 
Disease State = 1356 

Duplicate = 73 
Exercise= 780 

Food/supplement Source= 385 
Missing Well-being/Quality of Life Quantifiable 

Outcomes = 577 
Multi-vitamin/supplement= 34 

Missing Beef/Nutrients of Beef= 262 
Non-English= 2 

Off Topic = 4,062 
Review/meta-analysis/report/book chapter = 619 

Study design = 863 
 

Full-text articles assessed for 
eligibility 
(n =87) 

Full-text articles excluded, with reasons 
(n = 55) 
Age= 7 

Disease State: 4 
Exercise/Physical activity: 8 

Non-peered review=3 
Statistical Analysis = 2 

Inappropriate design = 16 
Well-being/quality of life missing/can’t be 

quantified = 2 
Source of nutrient = 12 

Methods paper/Abstract=1 
 

Studies included in qualitative 
synthesis 

Randomized control trials 
(n = 9) 

Studies included in 
quantitative synthesis (meta-

analysis) 
(n = 9) 

Records identified through database searching 
(n = 23,821) 

 
 (PubMed =12.136)  (Web of Science=5,131) 

(CINAHL= 6,554) 

Coded articles excluded, with reasons 
(n =22) 
Age=1 

Statistical Analysis = 11 
Inappropriate design =2 

Health= 4  
Well-being/quality of life missing/can’t be 

quantified = 2 
Weight loss= 2 

 

Studies included for coding  
(n = 32) 
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Figure 2. Scatterplots that display the relationship between the effect size and the continuous 
moderator 
Note: the bubble size is proportional to the sample size
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Figure 3. Forest plot for the random-effects mode 
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Figure 4. Funnel plot that displays publication bias
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Abstract  

 Background: Diets higher in protein have been reported to improve age-related changes 

in body composition via increased energy expenditure, shifts in substrate oxidation, and 

decreased appetite.  However, how protein source (e.g. animal versus plant protein) impacts 

energy expenditure, appetite and food intake as we age is unknown. Objective: The objective of 

this study was to evaluate the effect of protein source as part of a high protein breakfast on 

appetite, food intake, energy expenditure, and fat oxidation in young men compared to older 

men. Methods: This study used a randomized, single-blinded crossover design, with a one-week 

washout period between testing days. Fifteen young (YM; 25.2 ± 2.8 years) and fifteen older 

(OM; 67.7 ± 4.5 years) healthy, adult men participated in the study. Participants arrived fasted 

and consumed an isocaloric, volume-matched, high-protein (40g) test beverage made with either 

an animal (whey protein isolate; WPI) or plant (pea protein isolate; PPI) protein isolate source.  

Markers of appetite and energy expenditure were determined at baseline and over four hours 

postprandial. Results: There was a significant effect of time, age, and protein source on appetite 

(p < 0.05). There was no effect of protein source on plasma markers of appetite, food intake, 

energy expenditure, and substrate oxidation. After controlling for body weight OM had 

decreased energy expenditure (p < 0.05) and lower fat oxidation (p < 0.001) compared to YM.   

Conclusions: This study indicates that a high protein breakfast containing WPI or PPI exerts 

comparable effects on appetite, energy expenditure, and 24-hour energy intake in both young and 

older healthy adult men.  This trial was registered at clinical trials.gov as NCT0339981
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Introduction 

 Life expectancy continues to increase in the United States and adults 65 years of age and 

older are projected to more than double from 600 million to 1.6 billion between 2015 and 2050 

[1]. Successful aging is commonly defined by high levels of physiological function [2],  which is 

strongly associated with body composition, strength, and appetite [3, 4]. Skeletal muscle mass 

and strength begin to decrease in the third decade of life and these losses are accelerated in the 

sixth decade of life [5]. In the midst of skeletal muscle loss, older adults commonly experience 

concurrent fat mass gain [6]. These shifts in body composition are often accompanied by 

changes in energy homeostasis via decreased energy expenditure [7], shifts in substrate oxidation 

[8], and decreases in appetite [9].  Age-related shifts in appetite contribute to energy imbalance 

and altered body composition often observed with age [10]. Age-related decreases in appetite are 

largely contributed to  alterations in appetite hormones [11], changes in gastrointestinal motility 

[12] and losses in lean body mass [13-15] . Research suggests nutritional strategies focused on 

higher-protein diets containing high-quality proteins are a potential way to mitigate the decrease 

in energy expenditure and body composition observed with age [6].   

 Dietary patterns promoting plant-based protein have gained significant attention in recent 

years [16]. However, studies examining the effect of plant-based protein sources versus animal-

based protein sources markers of appetite, energy expenditure and markers of metabolism offer 

conflicting results [17-20] . For example, high-protein meals containing varying protein sources 

have been shown to influence appetite differently [18, 21, 22], albeit previous work from our lab 

did not see a difference in postprandial appetite responses in participants consuming an animal 

protein- versus plant protein-based breakfast [17]. 
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 Although research exists comparing the effects of protein source on appetite and energy 

expenditure in healthy young adults, there is little data looking at the effect of animal and plant 

protein sources on energy expenditure, appetite, and food intake in young versus older men.  

Therefore, the primary objective of this study was to compare the acute effects of a high-protein 

breakfast containing either animal protein or plant protein on energy expenditure, appetite, and 

food intake young versus older men.  Whey protein isolate (WPI) was used as the animal protein 

source due to the high level of branched chain amino acids (leucine, isoleucine, and valine) and 

its ability to increase satiety in response to a mixed meal [23]. Pea protein isolate (PPI) was used 

as the plant protein source due to its complete amino acid profile and its potential to suppress 

appetite compared to animal proteins [24].   

 

Materials and Methods 

 Participants and Ethical Approval. From December 2017 to May 2018, young men 

(YM) between 18-29 years of age and older men (OM) 60-85 years of age were recruited to 

participate in this study. Participants were recruited from the Northwest Arkansas area via the 

daily University of Arkansas digital newsletter, flyers throughout the community, word-of-

mouth, and social media to participate in this study. The initial screening was carried out via 

phone interview. Participants who consumed protein related supplements, did not regularly 

consume breakfast (<5 times per week), smoked, had dietary restrictions, disliked chocolate, 

were actively trying to lose weight, participated in vigorous activity for 4 hours a week or more, 

were competitive athletes, had any pre-existing metabolic conditions (e.g. type 1 or 2 diabetes, 

cancer, cardiovascular disease), were taking medications that would influence protein or energy 
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metabolism, were claustrophobic and/or were uncomfortable with needles were excluded from 

participating in the study.  

 Sixty-one men underwent an initial screening, 17 younger and 20 older men met the 

screening criteria, and 15 young and 15 older men completed all study procedures (May 2018). 

Of those who did not complete the study, participants dropped out due to claustrophobia under 

the metabolic canopy hood, time constraints, and personal reasons. The total participant dropout 

rate was 18.9%. Each individual agreed to participate by signing the study consent form, 

completed two test days and an additional final body composition assessment. Written consent 

was obtained from participants prior to starting the study. Ethical approval for the study protocol 

was approved by the Office of Research Compliance Institutional Review Board of the 

University of Arkansas (Fayetteville, AR, USA). This trial was registered at clinical trials.gov as 

NCT03399812.  

 Study Design. The study was conducted as a single-blinded randomized cross-over 

design study in which each participant was allocated to YM (18-29 years of age; n=15) or OM 

(60-85 years of age; n=15) intervention group.  Refer to Table 1 for participant characteristics. 

On the two test days, the participants arrived fasted (10-12 hours) at the Center for Human 

Nutrition at the University of Arkansas prior to 08:00. for data collection. Each participant 

followed a randomized crossover comparison design as they received both breakfast beverages, 

whey protein-based isolate (WPI) and pea protein-based isolate (PPI), on subsequent test days 

with each participant serving as their own control. A one-week washout period separated the test 

days. Refer to Figure 1 for study design. 

 Upon arrival, anthropometrics were recorded and an intravenous catheter was inserted 

into an antecubital arm vein. Fasting measurements of subjective appetite via visual analogue 
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scale [25], resting energy expenditure (REE) and substrate oxidation via indirect calorimetry 

[26], and venous blood via an intravenous catheter were collected prior to the consumption of the 

protein-based breakfast test beverage. Participants were then served one of two test breakfast 

beverages. Each protein-based breakfast test beverage was served with a straw inserted into an 

opaque disposable cup and lid to prevent visual and olfactory influence. Participants consumed 

the protein-based breakfast test beverage during the next 10 minutes. The cups were evaluated by 

research staff to confirm the contents were fully consumed. Subsequently, the participants 

completed a VAS on subjective appetite and for the palatability of the protein-based breakfast 

test beverage. Assessment of subjective appetite using a VAS was repeated at 30, 60, 90, 120, 

180, and 240 minutes after the ingestion of the protein-based breakfast test beverage. Resting 

energy expenditure (REE), thermic effect of food (TEF), and substrate oxidation (SO) via 

indirect colorimetry were measured at 30, 60, 120, 180, and 240 minutes after the ingestion of 

the protein-based breakfast test beverage. In addition, 10 ml of blood were collected via a 

syringe from an intravenous catheter at 30, 60, 90, 120, and 240 minutes after the ingestion of 

the protein-based breakfast test beverage. At the conclusion of the 4-hour test day, a 24-hour 

food log was administered, and detailed instructions were given to participants to record their 

food intake until 11:59 p.m.  

 Dietary Intervention. The protein-based breakfast test beverage contained 40 grams of 

dietary supplementary chocolate WPI or chocolate PPI. The WPI (BiPRO; Davisco Foods 

International. Le Sueur, MN) and PPI (NOW Foods Bloomingdale, IL, USA; sourced from 

yellow peas (Lathyrus aphaca species) were commercially purchased.  The test beverages were 

isocaloric, volume matched, and macronutrient matched (refer to Table 2 for nutrient 

composition of the test beverages). The amino acid profile of the test beverages is listed in 
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Supplemental Table 1. Palatability of the test beverages was measured using visual analog 

scales. Viscosity was measured using a Brookfield Synchro-Lectric Viscometer (Brookfield 

Engineering Laboratories, INC, Stroughton, Massachusetts). Viscosity of the pea and whey 

protein drinks were measured at ambient conditions in separate 16 oz. opaque serving containers. 

Samples were thoroughly mixed immediately prior to measurement. The viscosity samples were 

measured following the immersion of the spindle and a minimum of 5 revolutions. When the 

motor was activated, the spindle rotated at a constant speed of 4 rpm. The palatability and 

viscosity of the protein-based breakfast test beverages can be found in Table 2.  

 Anthropometric Measurements. Height was measured to the nearest 0.01 cm using a 

standard stadiometer (Detecto, St. Louis, MO) without shoes, in the free-standing position. Body 

weight was measured to the nearest 0.05 kg using a calibrated scale (Detecto, St. Louis, MO) in 

the fasted state. Body composition was determined using duel energy X-ray absorptiometry 

(DXA) analysis (Lunar Prodigy, GE Healthcare, Madison, WI, USA) at the Exercise Science 

Research Center at the University of Arkansas.  

 Appetite Response. Subjective appetite and palatability were assessed using a traditional 

100-mm VAS [25] with opposing anchors at 0, 15, 30, 60, 90, 120, 180, and 240 minutes 

postprandial. Participants were asked to place an “X” on the 100-mm VAS that most accurately 

reflected their perceived feeling of appetite according to a series of seven questions (e.g., “How 

HUNGRY do you feel at this moment” and “How FULL do you feel at this moment”).  

 Dietary Records and Assessment. Participants completed a total of two 24-hour food 

logs, one following each test day.  The energy and macronutrient composition of the test 

breakfast beverages and the remaining 24-hours of the test day were analyzed using the Genesis 

R&D nutrient analysis software package (version 9.10.2, ESHA Research, Salem, OR, USA).   
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Energy Expenditure and Substrate Oxidation. Resting energy expenditure (REE; kcal/min), 

thermic effect of feeding (TEF; kcal/min), and substrate oxidation (SO; kcal/min) were measured 

by indirect calorimetry using the validated [26] ventilated hood technique with the TrueOne 

2400 metabolic cart (Parvo Medics, Sandy, Utah, USA; [27]).  

 Plasma Biomarkers. Six blood samples (10mL/sample, 60mL/testing day) were collected 

following a 10-12 hour fast and during the four-hour postprandial meal time response period. 

The samples were collected in EDTA vacutainer tubes. Samples were immediately centrifuged at 

4ºC for 15 minutes at 1800 x g. The plasma was separated and stored at -80 ºC until analysis. 

Plasma glucose (mg/dl), cholecystokinin (CCK) (pg/ml) and peptide YY (PYY) (pg/ml) levels 

were determined via colorimetric (Cayman Chemical Company, Ann Arbor, MI, USA), and 

Enzyme Immunoassay (RayBiotech, Inc) using commercially available kits per manufacture 

instructions.  

 

Statistical Analysis 

 Summary statistics were calculated for all data and data are expressed as means ± 

standard deviation (SD). Two-sample independent t-tests were used to analyze baseline 

measurements of participant characteristics and body composition. The two factor repeated 

measures design was analyzed as a generalized linear mixed model with protein source and age 

as fixed effects and subjects as a random effect nested within age categories. Appetite ratings, 

REE, substrate oxidation, food intake, and metabolic biomarker levels (glucose, PYY and CCK), 

that could only take on positive values were assumed to follow a gamma distribution. Thermic 

effect of food was analyzed as a proportion and was assumed to follow a beta distribution. For 

appetite ratings, energy expenditure, substrate oxidation, and plasma markers of glucose, PYY, 
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and CCK there was a third main effect of time. In our model we analyzed main effects of time, 

age, and protein source. Where appropriate, two-way and three-way interaction of age x protein 

source, age x time, and protein source x time and age x protein source x time respectively were 

tested for significance. Where appropriate, follow-up least squares mean comparisons for protein 

source, age and time main effects were declared significantly different if the corresponding 

analysis of variance F statistic was significant. For any significant interactions mean comparison 

were carried using the protected least significant difference (LSD). Subjective rating of 

palatability was analyzed as a generalized linear mixed model with protein source and age as 

fixed effects and subjects as a random effect nested within age categories without repeated 

measures. Viscosity of the test beverages were analyzed using independent t-tests. Net 

incremental area under the curve (niAUC) was calculated for appetite ratings, REE, TEF, SO, 

and metabolic biomarker levels. Where significance was found, follow-up least squares mean 

comparisons for protein source and age categories. For any significant interactions mean 

comparison were carried using the protected leas significant difference (LSD). Statistical 

analyses involving generalized linear mixed models were performed using PROC GLIMMIX in 

SAS version 9.4. All graphs were made using GraphPad Prism Software version 7.0 (GraphPad 

Software, La Jolla, CA, USA).  p < 0.05 was considered significant.  To verify the 

appropriateness of the sample sizes we carried out a post-hoc power analysis using the SAS 

procedure PROC POWER with the paired t-test option. The observed sample means and 

standard deviations were used to determine that 15 participants per group had a statistical power 

of 0.987 (based on an overall level of significance of 0.05) to detect an accurate postprandial 

difference in TEF after supplementation of WPI and PPI protein-based breakfast test beverages. 
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Results 

 Participant Characteristics. The demographics and physical characteristics of the 

participants who completed the study are presented in Table 1. The YM and OM had a mean age 

of 25.2 ± 2.8 years and 67.7 ± 4.5 years, respectively (p < 0.0001). There were significant 

differences in fat mass (FM; p < 0.01), body fat percentage (p < 0.05), and fat-to-lean ratio (p < 

0.05) between groups with no significant differences in lean body mass (LBM) and fat free mass 

(FFM).  

 Energy Expenditure and Substrate Oxidation. Results for energy expenditure and 

substrate oxidation are presented in the line (individual time points) and bar graphs (niAUC) in 

Figure 2. After controlling for body weight (kg), there was a significant effect of age (p < 

0.0001) and time (p < 0.0001) on REE (kcal/min), TEF (kcal/min), and fat oxidation (kcal/min) 

with no effect of protein source. There was an effect of age on REE, TEF, and fat oxidation with 

YM having significantly higher REE (p < 0.0001), TEF (p < 0.05), and fat oxidation (p < 0.01) 

compared to OM. There was a significant age x time interaction on TEF (kcal/min) (p < 0.01). 

All other two- and three-way interactions of REE, TEF, and substrate oxidation were not 

significant.   

 Subjective Appetite and Palatability. Results for perceived hunger, perceived fullness, 

prospective food consumption (PFC), and perceived desire to eat are presented in Figure 3. 

Fasting values of perceived hunger, fullness, prospective food consumption and desire to eat 

were not significantly different between the YM and OM when consuming either protein-based 

breakfast test beverages. There was a significant effect of time, age, and protein source on 

subjective hunger (p < 0.01), fullness (p < 0.01), PFC (p < 0.01), desire to eat (p < 0.01) and 

desire for a snack (p < 0.05). There was a significant interaction effect of age x time (p < 0.01) 
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and protein source x time (p < 0.05) on desire for a snack. All other interactions of age x protein 

source, age x time, protein source x time, and age x protein source x time were not significant. 

There were no significant differences in the desire for something sweet on time, age, or protein 

source (Supplemental Figure 1).  

However, there was a significant effect of age on the desire for something salty (p < 0.001; 

Supplemental Figure 1) and an age x time interaction (p  < 0.01) with no significant interaction 

effect of age x time x protein source. Palatability was higher for the WPI compared to the PPI 

protein-based breakfast test beverage (p < 0.01) with no significant difference between age 

groups (Table 2).   

 Plasma Biomarkers. The plasma glucose, CCK, and PYY responses to the test breakfast 

beverage are depicted in Figure 4. There was an effect of age (p < 0.05), but not protein source, 

with older men having higher concentrations of all tested biomarkers. There was a significant 

time x age interaction on glucose ( p < 0.05) with no significant effect of age x time x protein 

source. All other interactions of age x time, protein source x time, and age x protein source x 

time interactions of plasma glucose, CCK, and PYY were not significant.  

24-hour Dietary Assessment. Twenty-four-hour energy and macronutrient intake are shown in 

Table 3. No significant differences were observed in 24-hour total food intake between either 

protein source or age groups.  

 

Discussion 

 To our knowledge, this is the first study to examine the short-term effect of a high-protein 

breakfast from plant or animal derived protein sources on energy expenditure and appetite 

response in healthy, young and older men. The present study tested the hypothesis that WPI, 
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when compared to PPI, would have a greater effect on energy expenditure and appetite in OM 

versus YM when supplemented as a 40-gram protein-based breakfast beverage. Collectively, the 

results of this study suggest that age, not protein source, effects postprandial energy expenditure 

and appetite responses.  

 A breakfast containing high-protein foods has been shown to increase energy expenditure 

and fat oxidation in healthy, young adults [18, 27]. However, the impact of protein source as part 

of a high-protein breakfast on energy expenditure and fat oxidation in aging adults still needs to 

be established. For example, consumption of whey, casein, and soy protein-based beverages 

compared to a carbohydrate-based control beverage increased TEF and fat oxidation in young 

men over a five-hour period [18]. One likely mechanism for the increase in TEF could be due to 

protein turnover and the favoring of protein synthesis or deamination and urea synthesis 

associated with protein breakdown [28]. However, in this clinical trial, we did not observe any 

differences between protein source with respect to energy expenditure and substrate oxidation.  

This may have been due to the 40 grams of protein used in the test breakfast beverages which 

was a larger dose compared to the doses used in other studies demonstrating differences in 

energy metabolism between protein sources [18, 29].   

 The majority of clinical trials investigating the short-term effect of animal- and plant- 

based proteins on appetite and food intake use soy as the plant-based protein source [20, 30], 

whey as the animal-based protein source [18, 31, 32], or a complete mixed meal [30, 33-35].  In 

agreement with our study,  fifteen grams of protein sourced from either whey-, pea-, or a 

combination of whey and pea protein isolate on appetite, postprandial changes in satiety 

hormones, and energy intake found that the pea protein resulted in a modest increase in satiety, 

with no differences in energy intake [21]. In addition, a randomized single-blind cross-over study 
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investigating the role of a meal preload of twenty grams of casein, whey, pea protein, egg 

albumin, or maltodextrin compared to water found that casein and pea protein increased satiety 

significantly more when compared to the other sources of protein [24]. In contrast, casein and 

pea protein also lowered energy intake, albeit food intake was recorded 30 minutes following the 

meal preload.  

 There are a limited number of studies investigating the differences in energy expenditure 

and substrate oxidation between protein sources. In one study, three isoenergetic 30% protein 

test meals using meat, dairy, and soy protein sources found no significant differences in energy 

expenditure, carbohydrate oxidation, or fat oxidation between test meals [30], similar to the 

results found in this study.  In contrast, a second study tested three meals with 50% protein 

coming from either whey, casein, or soy protein and found that TEF and fat oxidation were 

greater after the consumption of the whey protein meal [18].  

 To our knowledge, this is the first short-term meal response study to demonstrate the 

effect of whey protein isolate and pea protein isolate on energy expenditure and appetite in 

young versus older men at breakfast. However, there are several limitations to this study. This 

study had strict inclusion and exclusion criteria and we only recruited healthy young and older 

men which could be the reason that there was no difference in lean or fat-free mass between the 

younger and older men.  Women were excluded from this study, which means the results may 

not apply to the overall population. The sample size, although powered correctly, was small. The 

breakfast test breakfast beverages varied in viscosity which may have contributed to differences 

seen in participant appetite response [36]. The test beverages also varied in palatability despite 

controlling for nutrient content and sensory properties of smell and sight, which may have 

influenced appetite [37]. We also relied on self-reported 24-hour food intake for intake for the 
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24-hour dietary assessment, which may provide inaccurate measurements of food intake [38]. In 

addition, we did not provide the pea protein and whey protein in mixed-meal context. Therefore, 

the results cannot be directly translated into a plant-based or animal-based protein complete diet. 

Finally, there was a racial imbalance in the young compared to the older participants. The 15 

older men were Caucasian as the younger men were Caucasian, Indian, and American 

Asian/Asian.  However, as this was a crossover design the racial imbalance was unlikely to 

impact our primary outcomes.  

 In conclusion, an isocaloric, isovolumetric, macronutrient- and fiber-matched protein-

based breakfast beverages from an animal-based whey protein isolate and a plant-based pea 

protein isolate exerts comparable effects on appetite, energy expenditure, and 24-hour energy 

intake in both young and older healthy adult men.  
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Tables 

Table 1. Baseline characteristics of the study population by age group 1 

 
1 Data are expressed as means + SDs. Significant differences denoted by ****p<0.0001; **p<0.01; 
* p<0.05.  
2 Ethnicity is expressed as number of participants within age group. 
 
 

 Young  
(n=15) 

Older  
(n=15) p-value 

Age, y 25.2 ± 2.8 67.65 ± 4.5 <0.0001**** 

Anthropometrics    

     Height, m 1.8 ± 0.1 1.81 ± 0.1 0.59 
     Weight, kg 78.4 ± 11.3 88.9 ± 10.4 0.01* 

     BMI, kg/m2 25.1 ± 3.3 27.9 ± 3.0 0.02* 

DXA    
     Total body fat mass, kg 17.5 ± 6.4 26.3 ± 9.8 0.01** 

     Percent body Fat, % 23.5 ± 7.8 30.5 ± 9.7 0.04* 

     Total lean mass, kg 57.6 ± 11.1 58.3 ± 7.0 0.84 

     Total fat-free mass, kg  60.9 ± 11.6 58.0 ± 16.6 0.59 

     Fat-to-Lean ratio, (total 
fat  
     mass/ total lean mass) 

0.32 ± 0.1 0.46 ± 0.2 0.03* 

Ethnicity 2 
   

     American Asian/Asian 4/15 -  
     Indian  1/15 -  
     Caucasian  10/15 15/15  
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Table 2. Ingredient composition and nutrient profile of breakfast test beverages  
     Macronutrient Profile, Palatibility, and Viscosity of Breakfast Test Beverages1  

 

1Whey protein isolate, WPI; Pea protein isolate, PPI; Centipoise, cP.  
2 Palatability is expressed  as means + SDs. Palatability measurements were collected from 
participants at time point 15 minutes. Significant differences denoted by * p<0.05.  

 WPI PPI 

Ingredient composition   

     Protein isolate, g 50.00  73.33 

     Cane sugar, g 13.00 - 

     Canola oil, g 0.75 - 

     Inulin, g 3.60 - 

     Water, mL 350.00 350.00 

Nutrient profile    

     Calories, kcal  265.8 263.8 

     Protein, g  40.0 40.0 

     Carbohydrate, g 15.0 15.0 

     Fiber, g  3.6 3.3 

     Fat, g  4.4 4.2 

Palatability, mm2   56.2 ± 16.6 37.9 ± 17.9* 

Viscosity, cP  62.5 10,500.0* 
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Table 3. 24-hour energy and macronutrient intake post-consumption of test breakfast beverages 1   

 
1 Data are expressed as means + SDs. Whey protein isolate, WPI; Pea protein isolate, PPI.

  
Young  

 
Older 

 WPI 
(n=15) 

PPI 
(n=15) 

WPI 
(n=15) 

PPI 
(n=15) 

Calories, kcal  2248.6 ± 703.0   2328.6 ± 903.7 2078.0 ± 542.3 2120.7 ± 850.1  

Protein, g  129.4 ± 44.9  141.4 ± 51.4 117.9 ± 26.3 115.7 ± 29.5 

Fat, g  88.7 ± 40.1 87.1 ± 53.8 80.1 ± 31.2 80.0 ± 43.7 

Carbohydrate
, g  

236.5 ± 73.1 244.9 ± 82.7 217.7 ± 87.1 2058.0 ± 92.0 

Sugar, g  73.5 ± 26.7 64.0 ± 26.7 94.5 ± 52.2 64.5 ± 40.4 

Fiber, g  21.4 ± 7.6 22.3 ± 9.2 19.5 ± 5.3 21.1 ± 11.1 

Sodium, mg 3934.3 ± 1937.8 3895.0 ± 1482.4 2577.3 ± 
1329.8 

3611.3 ± 1976.9 

Protein, % 23.2 ± 1 24.97 ± 1 23.40 ± 1 24.1 ± 1 

Carbohydrate
, % 

43.3 ± 1 43.9 ± 1 41.3 ± 1 40.0 ± 1 

Fat, % 34.1 ± 1 32.3 ± 1 34.5± 1 32.9± 0 
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Figures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of randomized, controlled, single-blinded study design
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Figure 2. Energy expenditure and substrate oxidation following ingestion of either a whey 
protein isolate (WPI)-based or pea protein isolate (PPI)-based breakfast test beverage in young 
(YM, n=15) or older (OM, n=15) men using indirect calorimetry. Data are expressed as means ± 
SD.  Data is controlled for body weight in kilograms (kg). (A) Resting energy expenditure (REE) 
over time and net incremental area under the curve (niAUC). (B) Postprandial energy 
expenditure (TEF) over time and niAUC. (C) Fat oxidation over time and niAUC. Data is 
expressed as means ± SD. Means not sharing the same letter are significantly different (p < 
0.05).
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Figure 3. Ratings of perceived appetite assessment following ingestion of either whey protein 
isolate (WPI)-based or pea protein isolate (PPI)-based breakfast test beverage in young (YM, 
n=15) or older (OM, n=15) men using visual analog scales. (A) Perceived hunger over time and 
net incremental area under the curve (niAUC). (B) Perceived fullness over time and niAUC. (C) 
Perceived prospective food consumption over time and niAUC. (D) Perceived desire to eat over 
time and niAUC per age and protein source. Data are expressed as means ± SD. Means not 
sharing the same letter are significantly different (p < 0.05).
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Figure 4. Postprandial peptide YY (PYY), and cholecystokinin (CCK) response following 
ingestion of either whey protein isolate (WPI)-based or pea protein isolate (PPI)-based breakfast 
test beverage in young (YM, n=15) or older (OM, n=15) men. (A) CCK response over time and 
net incremental area under the curve (niAUC). (B) PYYbresponse over time and niAUC. Data is 
expressed as means ± SD. Means not sharing the same letter are significantly different (p < 
0.05). 
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Appendix 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplemental Figure 1: Ratings of perceived desire for a snack and food cravings Ratings of 
perceived appetite assessment following ingestion of either whey protein isolate (WPI)-based or 
pea protein isolate (PPI)-based breakfast test beverage in young (YM, n=15) or older (OM, 
n=15) men using visual analog scales. Line graphs represent perceived appetite over time and bar 
graphs represent net incremental area under the curve (niAUC) per age and protein source group 
(A) Perceived desire to eat; (B) Perceived desire for a snack; (C) Perceived desire for something 
salty; (D) Perceived desire for something sweet. Data are expressed as means ± SDs. Means not 
sharing the same letter are significantly different (p < 0.05).  
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Supplemental Figure 2. Carbohydrate oxidation following ingestion of either whey protein 
isolate (WPI)-based or pea protein isolate (PPI)-based breakfast test beverage in young (YM, 
n=15) or older (OM, n=15) men using indirect calorimetry. Data is controlled for body weight in 
kilograms (kg). The line graph represents Carbohydrate (CHO) oxidation over time and the bar 
graph represents net incremental area under the curve (niAUC). Data is expressed as means ± 
SDs. Means not sharing the same letter are significantly different (p < 0.05)
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Supplemental Figure 3. Postprandial glucose response following ingestion of either whey 
protein isolate (WPI)-based or pea protein isolate (PPI)-based breakfast test beverage in young 
(YM, n=15) or older (OM, n=15) men. The line graph represents the plasma glucose postprandial 
response over time and the bar graph represents net incremental area under the curve (niAUC). 
Data is expressed as means ± SDs. Means not sharing the same letter are significantly different 
(p < 0.05). 
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Supplemental Table 1.  Amino acid composition per serving of breakfast test beverages  

The amino acid composition of 40 grams of protein in the WPI and PPI breakfast test beverages. 
WPI, whey protein isolate; PPI, pea protein isolate.

 WPI PPI  

Alanine  2.00 1.62 

Arginine 1.00 3.38 

Aspartic Acid 4.60 4.70 

Cysteine 1.20 0.60 

Glutamic acid 6.40 7.14 

Glycine 0.60 1.64 

Histidine 0.80 0.98 

Isoleucine 2.20 1.82 

Leucine 5.00 3.35 

Lysine  4.00 3.00 

Methionine 1.00 0.35 

Phenylalanine 1.40 2.20 

Proline 1.80 1.74 

Serine  1.40 2.08 

Threonine 1.80 1.56 

Tryptophan 1.20 0.35 

Tyrosine 1.40 1.49 

Valine  2.20 1.86 
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CHAPTER 5. The Effect of Whey Protein Isolate and Omega-3 Fatty Acid 

Supplementation on Markers of Cardiometabolic Health, Sleep, and Mood in Post-

Menopausal Women: A 16-Week Randomized, Controlled Trial 

 

Abstract  

 Background: Post-menopausal women are at an increased risk for negative health 

outcomes including cardiometabolic disease, sleep disturbances, and depression. Individual 

supplementation of protein and omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been 

shown to mitigate age-related physiological decline with little evidence on well-being. In 

addition, the combined effect of protein and n-3 PUFAs on successful aging (SA) is unknown. 

Objective: The objective of this study was to determine the effect of protein and n-3 PUFA 

supplementation individually and in combination on body composition, cardiometabolic risk, 

strength, sleep and mood states in postmenopausal women to promote SA. We hypothesized that 

concomitant protein and n-3 PUFA supplementation would improve body composition, decrease 

cardiometabolic risk, and increase strength, indexes of sleep, and mood states compared to 

individual supplementation and would be accompanied by increases in orexin-A (OXA) 

concentrations.  Methods: Thirty-nine postmenopausal women (age: 61.3 ± 8.7 years; BMI: 27.6 

± 6.6 kg/m2) were randomly allocated to one of 5 groups: 1) control (CON; no intervention free-

living; n=6), 2) whey protein isolate (PRO; 25 g/d; n=7), 3) n-3 PUFA (DHA/EPA; 4.3 g/d; 

n=10), 4) PRO + placebo soybean oil (PRO + PLA; 4.1 g/d; n=7), or 5) PRO + n-3 PUFAs 

(n=9). Outcome measures of body composition, energy metabolism, metabolic health, sleep, and 

mood states were assessed every four weeks and compared across all five groups at 0, 4, 8, 12, 

and 16 weeks, except objective sleep, which was assessed at 0, 8, and 16 weeks, and body 
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composition and hand-grip strength (HGS) which were assessed at 0 and 16 weeks only.  

Results: We did not observe a significant treatment effect on anthropometrics, body composition, 

HGS, resting energy expenditure, mood states, nor subjective or objective sleep quality. We 

observed a significant treatment effect on OXA ( P < 0.05). OXA increased significantly in PRO 

+ n-3 PUFA compared to all other groups (P < 0.05).  Conclusions: Although not significant, the 

data suggests individual and combined supplementation of protein and n-3 PUFAs have the 

potential to improve outcomes of SA including cardiometabolic health, mood states, subjective 

sleep, and OXA levels in postmenopausal women. NCT0303041 

 

Introduction 

The older adult population in the United States (U.S.) is a segment of unprecedented 

growth [1]. This robust shift in demographics emphasizes the importance of independence, 

quality of life, and health across the lifespan to promote successful aging (SA) [2]. SA can be 

defined by low cardiometabolic risk, preservation of physical function, and a positive state of 

well-being, which are strongly associated with body composition [3-9]. Age-related deleterious 

shifts in body composition, one of the major threats to SA, can lead to sarcopenia, which is the 

age-related loss of muscle mass, strength, and function [10]. Furthermore, declines in 

endogenous estrogen production during the menopausal transition are associated with muscle 

mass loss and increased central adiposity, putting postmenopausal women at increased risk for 

negative health outcomes such as cardiovascular disease and type-2 diabetes mellitus [11-13]. In 

addition to cardiometabolic risk, age- and menopause-related reduction in muscle mass and 

function is associated with decreased well-being such as depression [14] and poor sleep quality 

[15]. Research suggests nutritional strategies focused on the incorporation of high-quality protein 
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and omega-3 polyunsaturated fatty acids (n-3 PUFAs) are potential methods to mitigate age-

related decline in skeletal muscle mass and gain in fat mass, decreases in metabolic health, sleep, 

and mood in postmenopausal women to promote SA [16, 17]. 

Protein is a dietary focal point for SA as the constituent amino acids (AA) are the 

essential building blocks necessary to sustain life [17]. The benefits of dietary protein intake for 

older adults above the current recommended dietary allowance (RDA) of 0.8g/kg/day is well 

established [17, 18], and experts generally recommend a dietary protein intake between 1.2 and 

2.0 g/kg/day or higher and ~30 g of high-quality protein per meal to promote skeletal muscle 

mass and function in older adults [18-25]. A recent cross-sectional analysis found 

postmenopausal women who consumed ≥ 1.3 g/kg/day had a significantly higher skeletal muscle 

mass index (appendicular lean mass / BMI) and significantly lower body fat percentage and 

waist circumference when compared to women who consumed 0.94-1.29 g/kg/day [26].  

n-3 PUFAs, eicosapentaenoic acid (EPA; 20:5 n-3), and docosahexaenoic acid (DHA; 

22:6 n-3) are also associated with SA [27]. High doses of EPA and DHA (3-4 g/day) [28, 29] 

may mitigate deleterious characteristics of aging via suppression of chronic inflammation, 

incorporation into cellular membranes, and via stimulation of muscle growth through the same 

mechanistic pathway, mechanistic target of rapamycin complex 1 (mTORC1), as dietary protein 

[30]. Smith et al, demonstrated n-3 PUFAs (in the presence of AA infusion) increased whole-

body protein synthesis [30] and that supplementation of 4g/d of n-3 PUFAs for six months 

increased muscle mass and function in healthy older adult men and women [31]. Similarly, 

postmenopausal women who consume a diet high in fish rich in EPA and DHA, such as the 

Mediterranean diet, tend to have higher lean body mass than their counterparts [32] . However, 

NHANES data demonstrates daily EPA and DHA intake from foods and supplements is well 
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below recommendations with only ~10% of U.S. adults ≥ 55 years meeting or exceeding the 

American Heart Association’s recommendations of 500 mg/day of EPA and DHA [33].  

Approximately 30% of adults ≥ 50 years of age suffer from poor sleep quality and the 

prevalence of sleep disruption is notably higher in postmenopausal women, with 35 to 60% 

reporting significant sleep disruptions [34].  Sleep deprivation and low sleep quality are 

associated with increased energy intake [35], insulin resistance, elevated glucose [36, 37], mood 

disturbances (e.g., stress, cortisol, and depression) [38, 39], and poor body composition [40, 41]. 

Cross-sectional studies have found both dietary protein and n-3 PUFAs to independently 

improve sleep and mood [42-44]. Yet, apart from weight-loss and exercise interventions, few 

RCTs have investigated the effect of protein or n-3 PUFAs on sleep and mood in adults. 

Therefore, further research is needed to investigate dietary protein and n-3 PUFAs as moderators 

of indexes of sleep and mood as well as to further investigate possible mechanisms.  

Orexin-A (OXA) and orexin-B (OXB), also known as hypocretin-1 and hypocretin-2, are 

excitatory neuropeptides solely synthesized in the hypothalamus [45, 46] and project throughout 

the brain and spinal cord where G-coupled protein receptors, orexin receptor 1 (OXR1) and 

orexin receptor 2 (OXR2) are located [46, 47]. OXA is a “multi-tasking” neuron and regulates a 

broad range of physiological functions such as sleep/wake states (rapid eye movement), energy 

homeostasis (increase in O2 consumption), excitatory motivational behavior, cognitive function, 

and affect states [48-50] and has been proposed as a possible mechanism of SA [51]. A lack or 

deficiency of OXA is associated with daytime sleepiness and nighttime wakefulness (REM 

disruption), decreased energy expenditure, increased adiposity, decreased mood/motivation [52], 

decreased motor neuron signaling, and inflammation [46, 47, 53] . Current literature suggests 
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OXA is a unique endogenous factor that influences SA [51], albeit nutrition-based human 

research is limited.   

The objective of the current randomized, controlled dietary intervention was to assess the 

individual and combined effect of protein and n-3 PUFAs on body composition, cardiometabolic 

health, indexes of sleep, and mood states in postmenopausal women to promote SA. This study 

was also designed to assess the effect of protein and n-3 PUFAs on OXA as a proposed 

biomarker of SA. We hypothesized that concomitant protein and n-3 PUFA supplementation 

would improve body composition, metabolic health, indexes of sleep, and mood states compared 

to individual supplementation and would be accompanied by increases in OXA concentrations.      

 

Materials and Methods  

 Participant Recruitment and Ethical Approval. From July 2018 to April 2020, 

postmenopausal women (≥ 12 consecutive months without menstruation) were recruited to 

participate in this clinical trial. Due to the onset of the COVID-19 pandemic recruitment and 

enrollment were terminated earlier than expected. Participants were recruited from the Northwest 

Arkansas area via the daily University of Arkansas digital newsletter, flyers throughout the 

community, word-of-mouth, and social media to participate in this study. The initial screening 

was carried out via phone interview. Participants who consumed protein and or n-3 PUFA 

supplements, consumed fatty fish ≥ two times per week, did not regularly consume breakfast (<5 

times/week), smoked, had dietary restrictions, food allergies, were actively trying to lose weight, 

participated in vigorous activity for ≥4 h/week, had any pre-existing metabolic conditions (e.g., 

type 1 or 2 diabetes, cancer, cardiovascular disease), were taking hormone replacement therapy 

and/or medications that would influence protein, n-3 PUFA, or energy metabolism, were 
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claustrophobic, and/or were uncomfortable with needles, or were unavailable due to travel or 

work schedule were excluded from participating in the study. At the conclusion of the phone 

screening participants completed the Pittsburgh Sleep Quality Index (PSQI). 

Participants who met all exclusion criteria and scored >5 via the PSQI global score or slept < 7 

hours a night qualified for participation in this clinical trial. One hundred seventy women 

underwent an initial phone screening and 39 eligible women completed all study procedures 

(July 2020). Written consent was obtained from participants prior to starting the study. Ethical 

approval for the study protocol was approved by the Office of Research Compliance Institutional 

Review Board of the University of Arkansas (Fayetteville, AR, USA). This trial was registered at 

clinical trials.gov as NCT0303041.  

 Study Design. The study and all measurements were conducted at the Center for Human 

Nutrition at the University of Arkansas unless otherwise stated. The study was conducted as a 

randomized parallel design study with one control and four dietary intervention arms via excel 

complete double randomization of treatment groups and treatment code with an allocation ratio 

of 1:1. The dietary intervention groups were as follows; 1) control (no intervention, free-living; 

CON; n=6), 2) whey protein isolate (WPI; 25 g; n=7), 3) n-3 PUFAs, EPA and DHA (n-3 PUFA; 

4,300 mg; n=10), 4) WPI + placebo fat (PRO+PLA; 25 g WPI +4,140 g soybean oil; n=7), and 

5) WPI + n-3 PUFAs (WPI+n-3 PUFA; 25 g WPI + 4,300 mg of n-3 PUFA; n=9). Refer to 

Table 1 for participant demographics and baseline anthropometrics for each treatment group. On 

the basis of previous estimates of variance in triglyceride assessment, we originally aimed to 

recruit 80 participants as 80 participants (n=16 per dietary intervention) provide 80% power at P 

< 0.05 for detection of a 17.7 mg/dl change in fasting triglycerides. However, to test the 

appropriateness of the of the forced sample size (due to COVID-19 ending recruitment early) we 
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carried out two post-hoc power analyses using the SAS procedure PROC POWER with a one-

way ANOVA. First, using the observed sample means and standard deviations we determined 11 

participants were needed to reach a statistical power of 0.86 (based on an overall level of 

significance of 0.05) to detect an accurate 16-week difference in fasting plasma triglyceride 

concentration.  Next, we determined the power of the obtained sample size of 6, 7, 10, 7, and 9 

had a statistical power of 0.722.    

 In this 16-week supplementation intervention all nutritional supplements were consumed 

daily for 16 weeks. To ensure compliance, participants returned empty containers every four 

weeks. n-3 PUFA and soybean capsules were stored in pill boxes with AM and PM dividers and 

WPI was received in 28 individual one-serving bags. At the initial visit, participants signed the 

consent form and body composition was determined using dual energy X-ray absorptiometry 

(DXA) analysis (Lunar Prodigy, GE Healthcare, Madison, WI, USA) at the Exercise Science 

Research Center at the University of Arkansas. Participants also received an ActiGraph sleep 

monitor (ActiGraph, LLC, Pensacola, FL, USA), sleep diary, and 3-day food records to return at 

their first clinical test day and the following study materials: a breakfast recipe book with or 

without the addition of WPI, food scales, measuring cups and spoons, and a Blender Bottle 

(Blender Bottle Company, Lehi, UT) for protein consumption.  

 Outcome measures were assessed every four weeks and compared across the four 

intervention and one control group at 0, 4, 8, 12, and 16 weeks, except objective sleep at 0, 8, 

and 16 weeks and body composition and strength which was assessed at 0 and 16 weeks only. 

On the five clinical test days, the participants arrived fasted (10–12 h) at the Center for Human 

Nutrition at the University of Arkansas at or before 08:00 for data collection. Compliance was 
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assessed via capsule and empty WPI bag count, completion of weighed food records, and verbal 

participant confirmation of supplement consumption, and time of consumption.    

 Dietary Intervention. The n-3 PUFA and placebo soft gels and were supplied by “Nordic 

Naturals” (94 Hangar Way, Watsonville CA, 95076) and stored in the refrigerator at 4 °C. 

During the 16-week intervention, participants were instructed to swallow two soft gels 

containing either n-3 PUFA or placebo fat twice daily with the breakfast and dinner meal. One 

dose of n-3 PUFAs, two soft gels, contained 1125 mg of EPA and 875 mg of DHA for a daily 

dose of 4.0 g/day and ratio of 1.3 EPA: DHA. The n-3 PUFAs were sourced from anchovies and 

sardines. All capsules contained a lemon oil to mask differences in taste and were identical in 

color and shape. n-3 PUFAs and PLA (4.14 g/d)  were administered in a single-blinded manner. 

The daily supplement of protein contained 25 g unflavored WPI (BiPRO; Davisco Foods 

International). The WPI was allocated into 28 separate small bags and participants received a 

new batch every four weeks. Each WPI bag contained one serving of unflavored protein powder 

and was consumed daily prior to 10:00 am with breakfast. Each daily serving provided 106 kcal, 

25 g protein, 3.6 g leucine, 1.6 g isoleucine, 1.5 g valine, 0.4 g fat and 0 grams of carbohydrates. 

Refer to Table 2 for the nutritional composition of the dietary supplements. Participants were 

instructed to continue their habitual dietary and physical activity routines for the duration of the 

clinical trial.  

 Body Composition and Anthropometrics. Height, weight, and waist-to-hip ratio (WHR) 

were measured in the fasted state. Body weight was measured to the nearest 0.05 kg using a 

calibrated scale (Detecto, St. Louis, MO). Height was measured to the nearest 0.01 cm via a 

standard stadiometer (Detecto, St. Louis, MO) following the removal of shoes and layered 

clothing, in the free-standing position. Waist circumference measurements were measured by 
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research personnel at the level of the umbilicus with a 150 cm soft tape measure snug, but no 

constricting, around the participant’s body. Participants were instructed to take normal breaths 

and relax with their hands at their side, feet positioned closely together, and weight evenly 

distributed. The measurements were taken at the end of normal expiration or at functional 

residual capacity, duplicated, and averaged [54]. Body composition was determined via dual-

energy X-ray absorptiometry (DXA) analysis (Lunar Prodigy, GE Healthcare) at the Exercise 

Science Research Center at the University of Arkansas. 

 Strength Measurements. Isometric grip strength (kg) was measured using a standard 

hand-grip dynamometer (Takei Scientific Instruments, Niigata-City, Japan). Participants 

observed a demonstration by the researcher and were properly fitted to the dynamometer so that 

their middle finger was at a 90-degree angle. In the standing position, participants were 

instructed to squeeze maximally for 3-seconds.  Three trials were completed on each hand, 

beginning with the dominant hand, with a 60-seconds rest period between trials according to the 

NHANES Muscle Strength Procedures Manual [55]. Handgrip strength was quantified by the 

maximal grip force of the dominant hand. Grip strength relative to body weight and lean body 

mass (LBM) was calculated by dividing grip force by the body mass (kg) and LBM (kg) 

respectively of the participant at each timepoint.  

 Energy Expenditure and Substrate Oxidation. Resting energy expenditure (REE; 

kcal/min) and substrate oxidation (SO; kcal/min) were measured in the fasted state via indirect 

calorimetry (PARVO Medics, TrueMax 2400 metabolic cart) using the validated ventilated hood 

technique [56]. A detailed methodology description has been published by Neumann et al [57].    
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 Sleep Assessment. Sleep quality and duration were assessed objectively via an ActiGraph 

triaxial wrist accelerometer GT3X+, a validated method of sleep assessment [58]. Each 

participant wore an ActiGraph monitor on the non-dominant wrist for 24-hour per day for seven 

days (except when bathing or involved in water activities) prior to the start of the intervention, 8-

, and 16-weeks. Actigraph monitors were fitted securely on each participants wrist. Participants 

received sleep diaries to define “time in bed” and “time out of bed”. Researchers used the 

indicated “start” and “end” points to define a sleep region to be analyzed within the ActiGraph 

software. Sleep outcomes were calculated based on epoch-to-epoch sleep/wake algorithms 

within the defined sleep period. Data were processed by using the ActiLife Version 6.9.2 

software (Pensacola, FL, USA) and sleep was scored via the Cole-Kripke algorithm [59]. The 

following data was sleep outcomes were recorded: sleep latency (time between lights out and 

first minute algorithm scores as sleep); sleep efficiency % (total sleep time/total time in bed); 

total sleep time (TST; total number of minutes scored asleep); time in bed (TIB; total number of 

minutes in bed); wake after sleep onset (WASO; total minutes awake after sleep onset); 

awakenings (total and average};  Sleep Fragmentation Index (SFI; degree of sleep 

fragmentation). A seven-day average was calculated for each sleep outcome. 

 A subjective measure of sleep quality was assed via the Pittsburgh Sleep Quality Index 

(PSQI) questionnaire [60]. The 19-item PSQI questionnaire addressed seven components of 

subjective sleep quality: subjective sleep quality, sleep latency, sleep duration, habitual sleep 

efficiency, sleep disturbances, use of sleep medications, and daytime dysfunction. In scoring the 

PSQI, seven component scores are derived, each scored 0 (no difficulty) to 3 (severe difficulty). 

The component scores are summed to produce a global sleeping score (GSS) with a range of 0 to 
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21. Higher scores indicate worse sleep quality. A compiled global score of the seven scored 

components distinguishes good sleepers (≤ 5) from poor sleepers (>5) [61] .  

 Positive and Negative Affect States. The Profile of Mood States (POMS) questionnaire 

consists of 65 questions containing a one-word adjective of mood to measure and identify six 

affective states. The six identifiable mood/affective states are tension-anxiety, depression-

dejection, anger-hostility, vigor-activity, fatigue/-inertia, and confusion-bewilderment.  

Participants were instructed to define their mood on a 5-point Likert scale ranging from 0 to 4. 

The numbers refer to the following descriptive phrases: 0 = Not at all, 1 = A little, 2 = 

Moderately, 3 = Quite a bit, 4 = Extremely. Prior to the start of the questionnaire each participant 

was read the following directions: Describe how you have been feeling during the past week 

including today by circling the number that best describes your present mood with 0 indicating 

“Not at all,” and 4 indicating “Extremely”. A researcher was readily available to answer 

questions regarding the meaning of a word. POMS was administered in the fasted state at 

baseline, 4-, 8-, 12- and 16- weeks. To obtain the score for reach identifiable mood/affective 

state subscale, the sum of the responses for each adjective is calculated. The subscale scores 

range from 0 up to 36, 60, 48, 32, 28, and 28 for tension-anxiety depression-dejection, anger-

hostility, vigor-activity, fatigue/-inertia, and confusion-bewilderment respectively. Higher 

subscale scores for all affect states, but the vigor domain represent poorer mood. Two adjectives 

relaxed and efficient were inversely scored from 4 to 0 rather than 0 to 4. Total Mood 

Disturbance Score (TMD) is calculated by summing the scores across all six factors (weighting 

vigor negatively). The total mood disturbance (TMD) is calculated by the following equation:  

TMD = (Tension-Anxiety) + (Depression-Dejection) + (Anger-Hostility) + (Fatigue-Inertia) + 

(Confusion-Bewilderment) – (Vigor-Activity). 
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The TMD score is the most reliable outcome of POMS because of the intercorrelations among 

the six affective factors and ranges from -32 (best possible TMD score) to 200 (worst possible 

TMD score). The POMS questionnaire has been validated in postmenopausal women [62].  

 Plasma Biomarkers. Two blood samples (10 mL/sample, 20 mL/testing day) were 

collected after a 10- to 12-h fast at baseline, 4-, 8-, 12-, and 16-weeks. The samples were 

collected in EDTA-coated vacutainer tubes. Samples were immediately centrifuged at 4°C for 15 

min at 1800 × g. The plasma was separated and stored at −80°C until analysis. Plasma glucose 

(catalog #: 10009582; mg/dL), triglycerides (TG ; catalog #: 10010303mg/dl), C-reactive protein 

(CRP; catalog #: 10011236; pg/mL), free-fatty acids (FFA; catalog #: 700310; uM), total 

cholesterol (catalog #: 10007640, mg/dl), insulin (catalog #: 26619, uUI/mL) concentrations 

were determined via commercially available kits (Cayman Chemical Company, Ann Arbor, MI, 

USA).  Plasma cortisol (EIA-CORT, ng/mL) and brain-derived neurotrophic factor (BDNF; 

ELH-BDNF, ng/mL) concentrations were determined via commercially available kits 

(RayBiotech, Inc, Norcross, GA, USA). Human orexin-A (OXA; LS-F4072; pg/mL) 

concentrations was determined via commercially available kit (LifeSpan Biosciences, Inc, 

Seattle, WA, USA). Creatine kinase M (CKM; Ab185988, U/mL) concentrations were 

determined via commercially available kits (Abcam Cambridge, UK). All kits were performed 

per the manufacturer’s instructions.  

 Dietary Records and Assessment. Participants completed a five self-administered 3-day 

weighed food record prior to the intervention and at 4, 8, 12, and 16 weeks (two weekdays and 

one weekend).  Each participant was trained to accurately record quantities of food using a 

provided food scales (Greater Goods, LLC) and beverages. Participants were instructed to 

include brand names and methods of food preparation. The 3-day food records were reviewed 
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with participants on each test day to ensure food intake was properly recorded in detail. The 

energy, macronutrient, and micronutrient composition of the 3-day food records analyzed using 

the Nutrition Data System for Research software (NDSR; NDS version 2018, Nutrition 

Coordinating Center, University of Minnesota, Minneapolis, MN).   

 

Statistical Analysis  

 Summary statistics were calculated for all data and data are expressed as mean ± SD. 

One-way ANOVA was used to analyze baseline measurements of participant characteristics and 

body composition. The one factor repeated measures design was analyzed as a generalized linear 

mixed model with treatment group and time as fixed factors with time treated as a repeated 

measures and subjects as random nested within treatment group. Number of levels of time 

depended on the variable being tested which included 2, 3, and 5 time points. Initially, age and 

BMI were considered as covariates. BMI was not considered as a covariate when measured as a 

response or when analyzing body composition variables. All of the response variables, if they 

could only take on only a positive value and were non-proportion values, were assumed to follow 

a gamma distribution. Responses that were percentages were converted to proportions and 

analyzed as a beta distribution. PSQI global score was assumed to follow a Poisson distribution. 

POMS TMD was assumed to follow a gaussian distribution as TMD includes a range of positive 

and negative scores. The treatment effect was tested when variables were converted to 16-week 

change, by subtracting out baseline values (week-16 – baseline) they could take on positive or 

negative value and were assumed to follow a gaussian distribution.  

 Where appropriate, follow-up least-squares mean (LS-mean) comparisons for treatment 

and time main effects were declared significantly different if the corresponding ANOVA F 
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statistic was significant. For any significant and interaction trends (P <0.1), mean comparisons 

were carried out using the least significant difference (LSD). Statistical analyses involving 

generalized linear mixed models were performed using PROC GLIMMIX in SAS version 9.4 

(SAS Institute inc., Cary, NC). All graphs were made using GraphPad Prism Software version 

7.0 (GraphPad Software, San Diego, CA). P < 0.05 was considered significant. As previously 

mentioned, post-hoc power analyses using the SAS procedure PROC POWER with a one-way 

ANOVA determined the observed sample means, standard deviations, and sample size of 6, 7, 

10, 7, and 9 had a statistical power of 0.722. Therefore, as type-2 error is high trends will be 

addressed in the subsequent sections.     

 

Results  

 Subject Flow Chart, Characteristics, and Compliance. Of the 45 women eligible for the 

study, 39 completed the study resulting in a 13.33 % attrition rate as shown in Figure 1. Reasons 

for subject withdrawal can be found in Figure 1. Baseline characteristics (sex, age, baseline 

anthropometrics, and baseline PSQI GSS) of subjects in the four treatment and control groups 

who completed the study were not statistically different (Table 1). The average compliance of 

subjects who completed the study in a dietary intervention group, as judged by the leftover 

capsule and bag count was as follows: PRO: 99.4 ± 0.01%; n-3 PUFA: 98.6 ± 0.02%; PRO + 

PLA: 98.8 ± 0.02%; and PRO + n-3 PUFA: 99.0 ± 0.02%. 16-weeks of dietary interventions did 

not significantly affect anthropometric measurements of body weight, BMI, waist circumference, 

hip circumference, or the waist to hip ratio (Table 3 and Table 4).   
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 Body Composition and Handgrip Strength. The differences in outcomes of body 

composition and handgrip strength as a result of the dietary intervention are outlined in Table 4. 

We observed a decreased trend for a group-by-time interaction effect for android fat % (P = 

0.07) over the 16-week period. After applying LS-means, the CON and PRO groups had a 

significant increase and decrease in % android fat from week 1 to week 16 respectively (P < 

0.05) with no significant differences between treatment groups. A decreased trend for the 

treatment effect (16wk – baseline) was observed for android fat % (P = 0.07). Following LS-

means, we found android fat % in PRO (-2.5 ± 2.2 %), n-3 PUFA ( -0.2 ± 3.2 %), and PRO + n-3 

PUFA (-0.1 ± 3.0 %) significantly decreased when compared to the CON group (+2.8 ± 1.8 %) 

(P < 0.05) with no differences when compared to PRO + PLA (0.2 ± 4.2 %). Although non-

significant, we observed a trend towards greater % increase in the treatment effect on total fat 

mass (kg) in the CON (+4.6 ± 3.6 %) compared to the PRO (-2.4 ± 5.2 %), n-3 PUFA (-0.7 ± 8.6 

%), PRO + PLA (+1.3 ± 10.2 %), and PRO + n-3 PUFA (+2.0 ± 6.7 %).  Similarly, we observed 

a non-significant trend in the CON group towards a greater % decrease in FFM (-0.65 ± 2.06 %) 

compared to PRO (+0.82 ± 1.19 %), n-3 PUFA (+1.25 ± 2.82 %), PRO and PRO + n-3 PUFA 

(+0.36 ± 3.62) with similar losses compared to PRO + PLA (-0.98 ± 2.93 %). We did not 

observe any significant effects of the 16-week dietary intervention on FFM, LBM, ALM, Total 

FM, whole body fat %, android fat %, gynoid fat %, fat-to-lean ratio, or BMD.  

 We observed an increased trend of treatment effect on high HGS, over the 16-week 

intervention (P = 0.08).  PRO + PLA and PRO + n-3 PUFA supplementation resulted in 

increases in high HGS by 7.9% and 5.2% compared to 0.3% increase in the control group (P < 

0.05).   
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 Energy Expenditure and Substrate Oxidation. The effects of the 16-week 

supplementation intervention on energy expenditure and substrate oxidation controlled for FFM 

can be found in Table 5. After controlling for FFM, there was a significant effect of group on fat 

oxidation (kcal/min), carbohydrate oxidation (kcal/min) and REE (kcal/day).  Following LS-

mean we observed no significant differences between treatment groups in carbohydrate oxidation 

nor REE. However, fat oxidation increased in n-3 PUFAs and PRO + n-3 PUFAs from baseline 

to 16 weeks (P < 0.05). After controlling for baseline, an increased trend for fat oxidation 

treatment effect was observed (P = 0.06).  Following LS-means n-3 PUFA (+34.6 %; P < 0.05) 

and PRO + n-3 PUFA (+55.6 %; P < 0.05) had significantly higher fat oxidation at 16 weeks 

compared to baseline and PRO had significantly lower fat oxidation (-37.8%; P < 0.05) 

compared to differences in all other treatment groups from baseline to 16 weeks.  

 Objective and Subjective Sleep. The effects of the 16-week supplementation intervention 

on objective sleep duration and quality can be found in Table 6.  We observed a significant 

treatment effect (P < 0.05) for time in bed with PRO + n-3 PUFA significantly decreasing their 

bedtime (-42 ± 62.4 min) when compared to n-3 PUFA (+0.6 ± 36.6 min) and PRO (+32.4 ± 18 

min). Contrarily, PRO and n-3 PUFAs had a significant increase in bedtime compared to CON (-

15 ± 25.8 min).  We observed a significant group (P < 0.05), but not a treatment effect for 

WASO and sleep fragmentation with n-3 PUFA displaying a significant increase in WASO and 

the sleep fragmentation index compared to all other groups. PRO had significantly lower WASO 

and sleep fragmentation index at baseline (P < 0.05) and n-3 PUFA group had significantly 

higher sleep latency (P < 0.05). We found no significant treatment effects of time out of bed, 

sleep latency, sleep efficiency, sleep duration, nor number of awakenings.      
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 The effects of the 16-week intervention on subjective sleep duration and quality can be 

found in Figure 2, and seven component scores in Table 7. We observed a significant time effect 

(P < 0.05) on PSQI global scores with no differences between groups, but a significant decrease 

in GSS from week 1 to 16 (P < 0.05).  Although not significant, a greater % decrease was 

observed in PRO (30.3%), n-3 PUFA (23.3%), PRO + PLA (20.2%), and PRO + n-3 PUFA 

(26.4%) when compared to CON (-17.9%). 

 Profile of Mood States. The effects of the 16-week intervention on POMS TMD and six-

affect state subcomponent scores can be found in Table 8.  No significant treatment, group, time, 

nor group x time main effects were observed for POMS TMD score or subcomponents of 

depression, anger, and fatigue over the 16-week intervention. However, a significant group and 

group x time effect was observed for vigor (P < 0.05).  At week-16 vigor scores were 

significantly higher following PRO (20.6 ± 9.1) and n-3 PUFA (18.1 ± 8.0) supplementation 

compared to CON (12.3± 6.4)  with no differences compared to PRO + PLA (16.4 ± 6.2) and 

PRO + n-3 PUFAs (16.3 ± 5.0).  

 Biomarkers of Metabolic Health and Well-being. The effects of the 16-week 

intervention on biomarkers of cardiometabolic risk can be found in Table 9.   We observed a 

significant time or group X time effect of the 16-week supplementation intervention on insulin 

(time: P < 0.05), FFA (time: P < 0.05), and cholesterol (group X time: P < 0.05) with a trend for 

HOMA-IR (time: P = 0.09) and TG (group: P = 0.05). Following LS-means we found insulin, 

HOMA-IR, FFA, cholesterol, and triglycerides decreased over time regardless of group (P < 

0.05). A significant treatment effect was observed in cholesterol alone (P < 0.05) with significant 

decreases in PRO by -7.3%, n-3 PUFA by -7.9%, PRO + PLA by -1.8% and PRO+n-3 PUFA by 

-20.6% compared to an increase in CON by +17.8%. Although a treatment effect was not 
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observed, the percent decrease in triglycerides in n-3 PUFA + PRO was at least -16% greater 

when compared to subsequent groups. No effect of 16-week intervention was observed on CRP 

concentrations. 

 The effects of the 16-week intervention on biomarkers of well-being can be found in 

Figure 3. We observed a significant effect of time BDNF (P < 0.05) and cortisol (P < 0.05) with 

a trend on OXA (P = 0.07). However, we observed a significant treatment effect for OXA (P < 

0.05). After applying LS-means we observed a significant increase in OXA concentration in 

PRO + n-3 PUFA (Wk16: 28.4 ± 17.5; Δ Wk16: 8.6 ± 9.3 pg/mL) compared to PRO (Wk16: 

19.2 ± 9.5; Δ Wk16 : -1.3  ± 7.0  pg/mL), n-3 PUFA (Wk16: 15.7 ± 11.2; Δ Wk16: -0.8 ± 5.9 

pg/mL) , PRO +PLA (Wk16: 25.0 ± 16.8; Δ Wk16:  1.5 ± 8.1  pg/mL) , and CON (Wk16: 19.2 ± 

10.7; Δ Wk16: 0.8 ± 3.3 pg/mL).  Overall, the percent OXA increase in n-3 PUFA + PRO was at 

least 19.4 % greater than subsequent study groups. We did not observe a treatment effect for 

CKM, BDNF, or cortisol. OXA, BDNF, CKM, and cortisol raw values can be found in Table 10. 

 Dietary Intake. The effects of the 16-week intervention on dietary intake of energy and 

macronutrients, AAs, and lipids can be found in Table 11, Table 12, and Table 13 respectively. 

We observed no differences in energy intake (kcal/d) at baseline nor a group, time, group X time, 

or treatment effect.  We did not observe a significant treatment effect on total energy (kcal/day) 

intake, macronutrients total (g/d and % energy), nor protein g/kg/bw. However, at baseline PRO 

+ n-3 PUFA and PRO had a significantly higher protein intake g/day compared to CON (P < 

0.05). We observed a significant time effect on carbohydrates (P < 0.05). Following LS-means 

total carbohydrates significantly decreased in all groups from week 1 to week 16 (P < 0.05) with 

no significant differences between groups.  
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 We observed a significant increase in EPA (mg/d), DHA (mg/d), % n-3 PUFAs of total 

energy, and decreased n-6 PUFA: n-3 PUFA ratio (P < 0.05) in n-3 PUFA and PRO + n-3 

PUFA. We observed a significant treatment effect of cholesterol (mg/d) (P < 0.05), but not 

saturated fat (g/d), with lower cholesterol dietary intake in PRO + n-3 PUFA compared to 

subsequent groups. PRO + PLA had a significantly lower cholesterol intake at baseline (P < 

0.05) compared to subsequent groups. No differences in AA intake were observed at baseline. 

We observed a significant time, group, time X group on total essential amino acids, branched-

chain amino acids, tryptophan, and cysteine with increases in the PRO and PRO + n-3 PUFA 

groups (P < 0.05).  We observed a significant treatment effect on tryptophan (P < 0.05) with an 

increased trend on total essential amino acids (P = 0.07), branched-chain amino acids (P = 0.05), 

and cysteine with increases in the PRO and PRO + n-3 PUFA groups (P = 0.08).   

 

Discussion  

 To our knowledge, this is the first RCT to examine the effect of 16-weeks of dietary 

protein and/or n-3 PUFA supplementation on body composition, cardiometabolic risk, and well-

being effect of in postmenopausal women. The present study tested the hypothesis that combined 

dietary protein and n-3 PUFA supplementation would have a greater effect on body composition, 

cardiometabolic risk, and indexes of sleep and mood states in postmenopausal women when 

supplemented in combination as WPI and n-3 PUFA compared to individual supplementation. 

Collectively, the results of this study suggest protein and n-3 PUFA combined supplementation 

when compared to individual supplementation for 16-weeks does not provide additional benefits 

on body composition, cardiometabolic health, and well-being. However, the results of this study 
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indicate a trend that individual protein and n-3 PUFA improve different outcomes of SA 

compared to free-living postmenopausal women.  

 Diets rich in high-quality protein and n-3 PUFAs, EPA and DHA, are positively 

correlated with body composition, cardiometabolic health, and well-being in middle-aged and 

older adults [27, 63, 64]. To our knowledge, RCTs examining the effect of dietary protein and n-

3 PUFA combined supplementation have solely been conducted in the context of a multi-nutrient 

supplement or in combination with caloric restriction or exercise [65-67]. When consumed bi-

daily for 6-weeks a multi-nutrient supplement containing WPI, EPA, and DHA increased LBM 

and strength in older adults [66]. Although not significant, the present study found an increased 

trend in handgrip strength following PRO + PLA (2.1 ± 2.5) and PRO + n-3 PUFA (1.2 ± 2.5 kg) 

supplementation with a decrease in CON (-0.3 ± 2.1) from baseline. The observed increases may 

be functionally relevant as HGS is reflective of physical performance [68]. For example, in older 

women every 1-kg increase in HGS is associated with a 0.13-s decrease in 3-minute walk time 

and 1% decrease in chair rise time [69].  Similarly, in the present study non-significant increases 

in FFM, were found following supplementation with PRO by 0.82%, n-3 PUFAs by 1.25%, and 

protein + n-3 PUFAs by 0.35% compared to decreases in the control, free-living group by -0.65 

%. Although, not statistically significant, in adults ≥50 years of age skeletal muscle begins to 

significantly decline [70] and annual skeletal muscle loss is estimated to be approximately ~0.5 

to 1% which emphasizes the physiological importance for even a small enhancement of FFM 

preservation [71, 72]. The protective effect of protein and n-3 PUFAs on FFM/LBM is further 

supported in longitudinal prospective studies in older adults [73, 74], which demonstrates a 

longer supplementation period may be required to observe changes LBM. Furthermore, a caloric 

restriction intervention in combination with a high-protein meal replacement (25 g) and fish oil 
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(2,130 mg) reduced percent of android fat and the prevalence of metabolic syndrome by almost 

twofold in comparison to caloric restriction alone (>40 years of age) [67]. In the present study 

we observed a trend for individual PRO supplementation alone to reduce central adiposity. 

Overall, the results do not indicate a significant effect of supplementation on body composition 

nor HGS in post-menopausal women.  

 Protein and n-3 PUFAs may increase whole body REE and fatty acid oxidation, but the 

results to date are varied.  Dietary protein supplementation has been shown to increase REE by 

preserving LBM primarily under caloric-restriction conditions [75]. When protein is consumed 

within the AMDR, REE rarely increases after controlling for FFM [76]. For example, a weight-

maintenance study following 12-weeks of energy restriction in adults (34-65 y) observed no 

effect of a high-protein (27% dietary protein) compared to a lower protein (16%) diet [76]. 

Conflicting results are present in the literature regarding the influence of n-3 PUFAs on REE and 

substrate oxidation and are conducted primarily in young adults [77-80]. For example, Noreen et 

al. found six-weeks of fish oil supplementation (1,600mg EPA + 800mg DHA) did not influence 

REE in adult men and women (34 ±  13 y) [78] and an alternative RCT found 3 g/day EPA and 

DHA improved REE, but not fat oxidation, over a 12-week supplementation period in young 

men [77]. However, a seminal study by Couet et al. found supplementation of 6 g/day of fish oil 

for 3 weeks significantly increased fat oxidation, but not REE after controlling for LBM in 

young men [79]. More recently, Logen et al. supplemented n-3 PUFAs (2 g EPA, 1 g DHA) for 

12-weeks in healthy older women (66 ± 1 y) and found a significant increase in both REE (14%) 

and fat oxidation (19%) [80]. Our study found no effect of supplementation on REE, but n-3 

PUFAs and n-3 PUFAs combined with protein increased fat oxidation over the 16-week 

intervention by ~34.6 % and ~55.6% respectively after controlling for FFM. Several theories 
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have been proposed to explain the mechanisms of n-3 PUFAs and protein supplementation on 

REE and substrate oxidation, although the precise mechanisms are yet to be fully elucidated. A 

few likely theories include preservation/increases in skeletal muscle mass [81], EPA and DHA 

incorporation into the phospholipid and mitochondrial membrane [82, 83], and altered gene 

expression of enzymes involved in fatty acid oxidation [84] and energy metabolism [85] .  

 Poor well-being characterized by decreased sleep quantity, quality, and mood is 

independently associated with an increased risk of obesity, sarcopenia, cardiometabolic disease, 

and functional decline in middle-aged and post-menopausal women [86]. Over the past decade, 

sleep duration and quality has decreased, and depression has increased in the US.  Post-

menopausal women report worse sleep quality and higher total mood disturbances compared to 

the U.S. average [62, 87]. However, a link between diet, sleep, and mood remains inconsistent.  

Our study results did not indicate a significant effect of supplementation of protein or n-3 PUFAs 

on indexes of subjective or objective sleep or mood states compared to the free-living control 

group. Interestingly, we observed improvements in perceived sleep quality and mood states in all 

arms of the intervention over time. However, as the observed improvements were not 

significantly greater than the control free-living group benefits cannot be attributed to one or 

both of the supplemented nutrients. Contrarily, we did not observe an increasing trend in 

objective sleep quality. In support of our findings, a PSQI validation study identified affect 

states, opposed to actigraphy sleep parameters as correlates due to the influence of depression 

and positive outlook on perceived sleep quality [88]. In agreement with the current literature, 

biomarkers associated with mood states, BDNF and cortisol, increased and decreased 

respectively with improvements in mood scores [89, 90] . Decreases in cortisol concentrations 

are reflective of down-regulation of the hypothalamic-pituitary adrenal axis and subsequently 
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decreases in cardiometabolic health [91]. Collectively we observed improvements in HOMA-IR 

and decreases in triglycerides, FFA, and cholesterol among treatment groups over time.  Similar 

to our findings, intervention investigating dietary protein and n-3 PUFAs found no effect on 

mood (POMS), cognitive function [92] or indexes of sleep (accelerometry) [93]. Furthermore, 

recent meta-analyses concluded n-3 PUFAs decrease depression and anxiety in older adults with, 

but not without clinical depression [94] and anxiety [95].  Although RCTs have suggested 

dietary protein and n-3 PUFAs as potential modulators of sleep and mood [96] further data is 

needed to support these findings.  

 The orexin system has recently been suggested as “The Key for a Healthy Life” [51]. 

OXA has an identified role in emotion regulation, energy homeostasis, and sleep and 

wakefulness [46, 48, 50, 97-99]. However, the effect of nutrients on OXA in humans is largely 

unknown. Although, open-label, medication clinical trials and cross-sectional analyses have 

observed a positive association between improvements in metabolic health and psychological 

outcomes and OXA concentrations [97, 100]. For example, anti-hyperglycemic treatment in 

type-2 diabetics via metformin improved glycemic control and increased OXA concentration by 

26% [97]. Similarly, our results showed that protein and n-3 PUFAs increased OXA 

concentrations by ~23.9% with <6% change in additional study arms. To our knowledge, 

comparable dietary interventions have yet to be conducted and a mechanism of action of OXA in 

cardiometabolic health, physical, and cognitive function, and well-being is yet to be elucidated in 

humans. Moreover, data from our lab indicate obese Zucker rats assigned a high-protein (40% 

energy) diet had reduced liver and skeletal muscle lipid deposition, and higher OXA  

concentrations compared to obese Zucker rats consuming a moderate-protein (20% energy) diet 
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for 12-weeks [101]. Therefore, there is a need to further assess the effect of dietary protein and 

n-3 PUFA intake on OXA in post-menopausal women.  

 There are multiple limitations in the present study. First, only women were included in 

our study sample to control for sex‐specific differences in well-being [102, 103], body 

composition [104], and strength [105]. Second, in our study, all arms including the control, were 

associated with significant improvements in sleep quality and duration via the PSQI GSS. The 

improvements in all groups, despite no changes in objective sleep quality, may be attributed to 

the placebo effect. The mechanisms of the placebo effect have not been directly established. 

However, participant expectancy and optimism are significant mediators of subjective outcomes 

of well-being [106, 107]. To avoid bias, future clinical trials evaluating subjective components of 

well-being should consider evaluation of expectancy of outcomes post-randomization (e.g., 

Credibility and Expectance scale) [108]. Third, although we screened for dietary protein 

supplementation, we did not screen for baseline dietary protein intake. Fourth, a group of 

participants completed the trial during the COVID-19 pandemic. Although, all supplements were 

supplied we cannot verify how COVID-19 may have affected food availability, sleep, and stress 

levels.  Lastly, the findings of this clinical trial are based off of a lower than anticipated sample 

size and may not translate to all post-menopausal women.  

 The results of this study indicate that concomitant compared to individual 

supplementation of protein and n-3 PUFAs does not provide significant additional benefits on 

body composition, cardiometabolic risk, and well-being in post-menopausal women. However, 

protein and n-3 PUFA have the potential to reduce abdominal adiposity, increase strength, 

enhance fatty acid oxidation, and to improve subjective mood states and sleep. In addition, a 

potential additive effect on OXA concentration warrants further investigation. Future research 
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should evaluate the efficacy of combined protein and n-3 PUFA supplementation over a longer 

duration and investigate the mechanisms underlying the suggested improvements in 

cardiometabolic risk, well-being, and OXA to promote SA.
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Tables 

Table 1. Demographic and baseline anthropometric characteristics of the study population by treatment group  
 

 
CON 
(n=6) 

PRO 
(n=7) 

n-3 PUFA 
(n=10) 

PRO + PLA 
(n=7) 

PRO + n-3 PUFA 
(n=9) P-value 

Age, y 63.0 ± 8.9 61.6 ± 8.4 58.5 ± 12.0 61.2 ± 2.6 63.3 ± 8.4 0.81 
Anthropometrics1        
     Height, m 1.62 ± 

0.08 
1.63 ± 0.06 1.62 ± 0.05 1.64 ± 0.10 1.65 ± 0.08 0.70 

     Weight, kg 72.4 ± 
15.2 

73.4 ± 18.1 76.7 ± 20.3 70.0 ± 19.6 72.8 ± 22.4 0.97 

     BMI, kg/m
2
 27.4 ± 4.6 27.4 ± 4.8 29.5 ± 8.4 25.9 ± 6.0 27.0 ± 8.1 0.86 

     Waist, cm 91.4 ± 
10.1 

92.8 ± 17.2 98.0 ±18.0 89.8 ±15.6 89.1 ± 18.8 0.80 

     Hip, cm 107.3 ± 
9.6 

108.5 ± 12.1 111.6 ± 17.4 106.2 ± 16.4 110.1 ± 18.0 0.96 

     WHR 0.85 ± 
0.05 

0.85 ± 0.07 0.88 ± 0.06 0.84 ± 0.04 0.81 ± 0.06 0.80 

PSQI       
     GSS, AU 8.3 ± 3.0 6.7 ± 1.6 7.8 ± 2.7 7.7 ± 2.5 8.9 ± 2.8 0.56 
Ethnicity 2       
     American Asian/Asian, 
n (%) 

- - 1 (10.0) - -  

     Hispanic, n (%)   - 2 (28.6) - 1 (14.3) -  
     Caucasian, n (%) 6 (100) 5 (71.4) 9 (90.0) 6 (85.7) 8 (89.9)  
     Other, n (%)   - - - - 1 (11.1)  

1 Data are expressed as mean ± SD unless otherwise indicated. Significant differences: * P < 0.05. Control, no intervention,  free 
living; whey protein isolate, PRO; omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA; 
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whey protein isolate + placebo soybean oil, PRO + PLA; whey protein isolate + omega-3 polyunsaturated fatty acids, 
eicosapentaenoic acid + docosahexaenoic acid, PRO + n-3 PUFA; Waist to hip ratio, WHR; Pittsburgh Sleep Quality Index, PSQI; 
global sleeping score, GSS. 
 2 Ethnicity is expressed in terms of frequency (n) with percentage of participants within treatment group (%).   
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Table 2. Nutrient composition of dietary supplements1 

 PRO n-3 PUFAs PRO + PLA PRO + n-3 PUFA 

Energy content, kcal 106.4 50 143.7 156.4 

Protein, g 25.5 - 25.5 25.5 

     Leucine, g 3.6 - 3.6 3.6 

     Isoleucine, g 1.6  1.6 1.6 

     Valine, g  1.5  1.5 1.5 

Fat, g 0.4 5 4.14 5 

Total n-3 PUFA - 4,300 284 4,300 

     EPA, mg  - 2,250 - 2,250 

     DHA, mg  - 1,750 - 1,750 

     Other, mg  - 300 284 300 

Carbohydrates, g  - - - - 

 

1 The PRO represents a single dose of whey protein isolate which participants consumed prior to 10:00 AM with breakfast daily. The 
n-3 PUFAs and PLA represent a combination of two daily doses. Two capsules of n-3 PUFAs or two capsules of PLAs were 
consumed with breakfast and with dinner daily. Whey protein isolate, PRO; omega-3 polyunsaturated fatty acids, eicosapentaenoic 
acid + docosahexaenoic acid, n-3 PUFA; whey protein isolate + placebo soybean oil, PRO + PLA; whey protein isolate + omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, PRO + n-3 PUFA; soybean placebo, PLA; 
eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA.
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Table 3.  Effects of a 16-week supplementation intervention on anthropometrics in dietary intervention and control groups1 
 

 Weeks of Intervention Treatment effect2 ANCOVA P3 

Anthropometri
cs 0 4 8 12 16 Δ 16 wk P Group Time 

Grou
p X 
time 

Weight, kg       0.64 0.97 0.11 0.70 
     CON 72.4 ± 15.2 72.7 ± 15.2 73.0 ± 14.2 73.1 ± 14.2 73.0 ± 14.1 0.57 ± 2.01     
     PRO 73.4 ± 18.1 73.3 ± 18.2 73.0 ± 18.4 73.4 ± 19.1 73.2 ± 18.8 -0.23 ± 1.42     
     n-3 PUFA 76.7 ± 20.3 76.3 ± 20.9 77.3 ± 20.8 76.9 ± 20.8 76.7 ± 20.8 -0.01 ± 2.52     
     PRO + PLA 70.0 ± 19.6 69.7 ± 19.8 70.2 ± 19.3 70.4 ± 19.5 70.2 ± 19.7 0.23 ± 2.06     
     PRO + n-3 
PUFA  72.8 ± 22.4 73.2 ± 22.4 73.2 ± 21.6 73.8 ± 21.6 74.2 ± 21.7 1.28 ± 2.27     

BMI, kg/m2       0.46 0.86 0.12 0.58 
     CON 27.4 ± 4.6 27.6 ± 4.3 27.7 ± 4.3 27.8 ± 4.2 27.7 ± 4.0 0.30 ± 0.79     
     PRO 27.4 ± 4.8 27.4 ± 5.0 27.2 ± 4.9 27.3 ± 5.2 27.3 ± 4.9 -0.12 ± 0.52     
     n-3 PUFA 29.5 ± 8.4 29.3 ± 8.6 29.6 ± 8.5 29.6 ± 8.6 29.4 ± 8.6 -0.07 ± 0.92     
     PRO + PLA 25.9 ± 6.0 25.6 ± 6.1 25.8 ± 5.8 25.9 ± 5.9 25.8 ± 6.1 -0.05 ± 0.89     
     PRO + n-3 
PUFA  27.0 ± 8.1 27.0 ± 8.2 26.9 ± 8.0 27.3 ± 8.0 27.5 ± 7.9 0.49 ± 0.82     

Waist, cm           
     CON 91.4 ± 10.1 91.9 ± 8.3 92.7 ± 8.5 93.2 ± 8.4 92.8 ± 8.6 1.4 ± 3.14 0.36 0.85 0.18 0.42 
     PRO 92.8 ± 17.2 92.1 ± 16.7 91.9 ± 16.3 91.4 ± 17.1 91.0 ± 16.4 -1.8 ± 3.35     
     n-3 PUFA 98.0 ± 18.0 97.7 ± 18.5 98.0 ± 17.2 96.3 ± 16.8 97.1 ± 16.9 -0.8 ± 3.91     
     PRO + PLA 89.8 ± 15.6 90.5 ± 16.4 90.4 ± 15.7 88.7 ± 16.8 87.5 ± 15.7 -2.3 ± 3.41     
     PRO + n-3 
PUFA  89.1 ± 18.8 90.6 ± 18.7 91.8 ± 17.1 91.3 ± 19.2 90.2 ± 18.9 1.0 ± 5.93     

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
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oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age as a covariate. P-values are indicated for main effects 
of group and time and an interaction effect of group X time.  * P < 0.05 for main effect of intervention; # significantly different from 
control within time point following LS-means; $ significantly different compared to baseline follow LS-means.
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Table 3.  Effects of a 16-week supplementation intervention on anthropometrics in dietary intervention and control groups1(Cont.) 
 

 Weeks of Intervention Treatment 
effect2 ANCOVA P3 

Anthropometrics 0 4 8 12 16 Δ 16 
wk P Group Time Group 

X time 
Hip, cm       0.99 0.94 0.97 0.94 
     CON 107.3 ± 

9.6 
107.2 ± 

7.0 
107.2 ± 

9.1 
107.8 ± 

9.2 
107.4 ± 

10.3 
0.08 ± 
1.46     

     PRO 108.5 ± 
12.1 

108.2 ± 
12.5 

107.8 ± 
13.0 

108.6 ± 
12.4 

108.4 ± 
12.5 

-0.18 
± 2.12     

     n-3 PUFA 111.6 ± 
17.4 

111.3 ± 
16.9 

112.6 ± 
16.2 

111.6 ± 
17.4 

111.6 ± 
16.5 

-0.01 
± 3.44     

     PRO + PLA 106.2 ± 
16.4 

105.3 ± 
16.7 

106.3 ± 
14.0 

105.9 ± 
17.4 

106.1 ± 
15.3 

-0.02 
± 3.52     

     PRO + n-3 
PUFA  

110.1 ± 
18.0 

111.3 ± 
17.8 

110.5 ± 
17.2 

110.5 ± 
16.7 

110.6 ± 
17.5 

0.51 ± 
3.17     

WHR       0.39 0.34 0.13 0.41 
     CON 0.85 ± 

0.05 
0.86 ± 
0.04 

0.87 ± 
0.06 

0.86 ± 
0.04 

0.86 ± 
0.04 

0.01 ± 
0.02     

     PRO 0.85 ± 
0.08 

0.85 ± 
0.05 

0.85 ± 
0.05 

0.84 ± 
0.08 

0.84 ± 
0.08 

-0.01 
± 0.03     

     n-3 PUFA 0.88 ± 
0.06 

0.88 ± 
0.07 

0.87 ± 
0.06 

0.86 ± 
0.04 

0.87 ± 
0.05 

-0.01 
± 0.03     

     PRO + PLA 0.84 ± 
0.04 0.86 ± 0.5 0.85 ± 

0.06 
0.84 ± 
0.06 

0.82 ± 
0.07 

-0.02 
± 0.04     

     PRO + n-3 
PUFA  

0.81 ± 
0.06 

0.81 ± 
0.08 

0.83 ± 
0.07 

0.82 ± 
0.08 

0.81 ± 
0.08 

0.01 ± 
0.04     

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
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2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age as a covariate. P-values are indicated for main effects 
of group and time and an interaction effect of group X time.  * P < 0.05 for main effect of intervention; # significantly different from 
control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 4. Effects of a 16-week supplementation intervention on anthropometrics, body composition and handgrip strength in dietary 
intervention and control groups1 

1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are mean ± SD. There were no significant differences between groups at baseline test by one-way ANOVA. Waist-to-hip ratio, 
WHR; lean body mass, LBM; appendicular lean mass, ALM; fat-free mass, FFM; fat mass, FM; bone mineral density, BMD; 
handgrip strength, HGS. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=7; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 

 Weeks of intervention Treatment effect2 ANCOVA P3 

Body Composition 0 16 Δ 16 wk P Group Time2 Group X time 
Weight, kg     0.64 0.97 0.11 0.70 
     CON 72.4 ± 15.2 73.0 ± 14.1 0.57 ± 2.01     
     PRO 73.4 ± 18.1 73.2 ± 18.8 -0.23 ± 1.42     
     n-3 PUFA 76.7 ± 20.3 76.7 ± 20.8 -0.01 ± 2.52     
     PRO + PLA 70.0 ± 19.6 70.2 ± 19.7 0.23 ± 2.06     
     PRO + n-3 PUFA 72.8 ± 22.4 74.2 ± 21.7 1.28 ± 2.27     
Waist, cm     0.36 0.85 0.18 0.42 
     CON 91.4 ± 10.1 92.8 ± 8.6 1.4 ± 3.14     
     PRO 92.8 ± 17.2 91.0 ± 16.4 -1.8 ± 3.35     
     n-3 PUFA 98.0 ± 18.0 97.1 ± 16.9 -0.8 ± 3.91     
     PRO + PLA 89.8 ± 15.6 87.5 ± 15.7 -2.3 ± 3.41     
     PRO + n-3 PUFA 89.1 ± 18.8 90.2 ± 18.9 1.0 ± 5.93     
WHR     0.39 0.34 0.13 0.41 
     CON 0.85 ± 0.05 0.86 ± 0.04 0.01 ± 0.02     
     PRO 0.85 ± 0.08 0.84 ± 0.08 -0.01 ± 0.03     
     n-3 PUFA 0.88 ± 0.06 0.87 ± 0.05 -0.01 ± 0.03     
     PRO + PLA 0.84 ± 0.04 0.82 ± 0.07 -0.02 ± 0.04     
     PRO + n-3 PUFA 0.81 ± 0.06 0.81 ± 0.08 0.01 ± 0.04     
LBM, kg     0.57 0.99 0.41 0.54 
     CON 40.3 ± 8.1 40.1 ± 8.8 -0.17 ± 0.99     
     PRO 40.2 ± 6.7 40.8 ± 7.5 0.42 ± 0.55     
     n-3 PUFA 39.3 ± 5.4 39.9 ± 6.4 0.64 ± 1.46     
     PRO + PLA 38.7 ± 6.1 38.6 ± 5.9 -0.13 ± 0.91     
     PRO + n-3 PUFA 41.5 ± 7.9 41.8 ± 7.9 0.31 ± 1.25     
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oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age as a covariate. P-values are indicated for main effects 
of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly different 
between groups within time point following LS-means; $ significantly different compared to baseline follow LS-means. 
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Table 4. Effects of a 16-week supplementation intervention on anthropometrics, body composition and handgrip strength in dietary 
intervention and control groups1 (Cont.) 

 
1 

Values are mean ± SD. There were no significant differences between groups at baseline test by one-way ANOVA. Waist-to-hip ratio, 
WHR; lean body mass, LBM; appendicular lean mass, ALM; fat-free mass, FFM; fat mass, FM; bone mineral density, BMD; 
handgrip strength, HGS. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=7; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 

 Weeks of intervention Treatment effect2 ANCOVA P3 

Body Composition 0 16 Δ 16 wk P Group Time2 Group X 
time 

ALM, kg     0.73 0.90 0.14 0.59 
     CON 17.0 ± 3.6 17.4 ± 3.7 0.40 ± 0.63     
     PRO 17.2 ± 3.5 17.4 ± 3.7 0.09 ± 0.44     
     n-3 PUFA 16.7 ± 2.8 16.7 ± 3.1 0.03 ± 0.66     
     PRO + PLA 16.2 ± 2.2 16.3 ± 2.7 0.09 ± 1.26     
     PRO + n-3 PUFA 17.6 ± 4.0 18.1 ± 4.0 0.45 ± 0.81     
FFM, kg     0.47 0.99 0.94 0.60 
     CON 42.8 ± 8.4 42.6 ± 9.0 -0.17 ± 0.93     
     PRO 42.5 ± 7.0 43.1 ± 7.9 0.37 ± 0.51     
     n-3 PUFA 41.6 ± 5.5 42.2 ± 6.5 0.61 ± 1.40     
     PRO + PLA 41.1 ± 6.3 40.7 ± 6.5 -0.38 ± 1.16     
     PRO + n-3 PUFA 43.6 ± 8.3 43.8 ± 8.3 0.16 ± 1.37     
Total FM, kg     0.80 0.89 0.57 0.45 
     CON 28.4 ±8.8 29.7 ± 9.6 1.32 ± 1.31     
     PRO 30.7 ± 11.4 29.5 ± 12.6 -0.75 ± 1.67     
     n-3 PUFA 34.5 ±15.9 33.7 ± 14.7 -0.78 ± 2.67     
     PRO + PLA 28.6 ± 15.1 28.6 ±14.9 -0.01 ± 1.57     
     PRO + n-3 PUFA 29.1 ±16.3 29.5 ± 15.3 0.42 ± 2.09     
Body fat, %    0.80 0.84 0.61 0.21 
     CON  41.1 ± 9.5 42.3 ± 9.4 0.48 ± 1.74     
     PRO 42.1 ± 6.2 40.5 ± 6.2 -0.39 ± 1.30     
     n-3 PUFA 44.8 ± 8.3 44.3 ± 7.4 -0.50 ± 2.08     
     PRO + PLA   40.4 ± 10.0 40.6 ± 9.2 0.17 ± 2.21     
     PRO + n-3 PUFA   39. 2 ± 10.0 39.5 ± 9.6 0.26 ± 1.72     
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oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age as a covariate. P-values are indicated for main effects 
of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly different 
between groups within time point following LS-means; $ significantly different compared to baseline follow LS-means 
 
.
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Table 4. Effects of a 16-week supplementation intervention on anthropometrics, body composition and handgrip strength in dietary 
intervention and control groups1 (Cont.) 
 

1 Values are mean ± SD. There were no significant differences between groups at baseline test by one-way ANOVA. Waist-to-hip 
ratio, WHR; lean body mass, LBM; appendicular lean mass, ALM; fat-free mass, FFM; fat mass, FM; bone mineral density, BMD; 
handgrip strength, HGS. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=7; omega-3 

 Weeks of intervention Treatment effect2 ANCOVA P3 

Body Composition 0 16 Δ 16 wk P Group Time2 Group X 
time 

Android fat, %    0.06 0.41 0.94 0.07 
     CON   43.5 ± 11.9 46.3 ± 10.6  2.78 ± 1.82      
     PRO 44.5 ± 9.7 40.3 ± 9.7  -2.47 ± 2.24     
     n-3 PUFA 49.0 ± 9.0 48.8 ± 8.3  -0.24 ± 3.15     
     PRO + PLA   43.8 ± 12.0 44.1 ± 10.7 0.24 ± 4.15     
     PRO + n-3 PUFA  38.8 ± 14.2 38.7 ± 14.2 -0.10 ± 3.03     
Gynoid fat, %    0.42 0.75 0.67 0.44 
     CON 46.7 ± 9.1 47.4 ± 7.8 0.75 ± 3.79     
     PRO 49.7 ± 4.1 47.9 ± 5.7 -1.94 ± 1.65     
     n-3 PUFA 49.7 ± 7.7 50.3 ± 5.6 0.57 ± 3.10     
     PRO + PLA 47.5 ± 7.9 46.8 ± 8.0 -0.66 ± 3.55     
     PRO + n-3 PUFA 46.4 ± 6.7 46.5 ± 6.7 0.08 ± 2.35     
Fat-to-lean ratio    0.14 0.68 0.83 0.22 
     CON 0.73 ± 0.3 0.77 ± 0.3 0.04 ± 0.02     
     PRO 0.75 ± 0.2 0.70 ± 0.2 -0.03 ± 0.05     
     n-3 PUFA 0. 85 ± 0.3 0.82 ± 0.2 -0.03 ± 0.07     
     PRO + PLA 0.72 ± 0.3 0.72 ± 0.3 0.00 ± 0.05     
     PRO + n-3 PUFA 0.68 ±0.3 0.69 ± 0.3 0.01 ± 0.05     
BMD, g/cm2    0.79 0.28 0.61 0.67 
     CON 1.17 ± 0.07 1.19 ± 0.08 0.02 ± 0.03     
     PRO 1.09 ± 0.08 1.09 ± 0.11 -0.01 ± 0.02     
     n-3 PUFA 1.11 ± 0.10 1.12 ± 0.10 0.01 ± 0.02     
     PRO + PLA 1.12 ± 0.11 1.13 ± 0.11 0.01 ± 0.03     
     PRO + n-3 PUFA 1.07 ± 0.10 1.07 ± 0.10 -0.01 ± 0.09     
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polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age as a covariate. P-values are indicated for main effects 
of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly different 
between groups within time point following LS-means; $ significantly different compared to baseline follow LS-mean 
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Table 4. Effects of a 16-week supplementation intervention on anthropometrics, body composition and handgrip strength in dietary 
intervention and control groups1 (Cont.).  

 
1 Values are mean ± SD. There were no significant differences between groups at baseline test by one-way ANOVA. Waist-to-hip 
ratio, WHR; lean body mass, LBM; appendicular lean mass, ALM; fat-free mass, FFM; fat mass, FM; bone mineral density, BMD; 
handgrip strength, HGS. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=7; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age as a covariate. P-values are indicated for main effects 
of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly different 
between groups within time point following LS-means; $ significantly different compared to baseline follow LS-means. 
 

 Weeks of intervention Treatment effect2 ANCOVA P3 

Body Composition 0 16 Δ 16 wk P Group Time2 Group X 
time 

High HGS, kg    0.08 0.65 0.14 0.59 
     CON 28.2 ± 8.1 27.9 ± 7.0 -0.3 ± 2.1      
     PRO 27.4 ± 3.8 27.5 ± 3.1 -1.5 ± 2.3     
     n-3 PUFA 25.7 ± 4.2  25.8 ± 4.3  0.1 ± 3.3     
     PRO + PLA 28.1 ± 4.9 30.2 ± 4.6 2.1 ± 2.5     
     PRO + n-3 
PUFA 

25.8 ± 4.6 27.0 ± 4.6  1.2 ± 2.5     
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Table 5.  Effects of a 16-week supplementation intervention on energy expenditure and substrate oxidation controlled for FFM in 
dietary intervention and control groups1 

 Weeks of Intervention Treatment effect2 ANCOVA P 3 

REE and SO 0 4 8 12 16 Δ 16 wk P Group Time Group 
X time 

REE, Kcal/min       0.81 0.76 0.18 0.40 

     CON 0.022 ± 
0.002 

0.024 ± 
0.005 

0.021 ± 
0.004 

0.023 ± 
0.003 

0.022 ± 
0.003 

0.002 ± 
0.003 

    

     PRO 0.024 ± 
0.003 

0.023 ± 
0.003 

0.024 ± 
0.003 

0.024 ± 
0.002 

0.024 ± 
0.002 

0.000 ± 
0.004 

    

     n-3 PUFA 0.023 ± 
0.002 

0.023 ± 
0.002 

0.023 ± 
0.002 

0.023 ± 
0.003 

0.024 ± 
0.003 

0.001 ± 
0.002 

    

     PRO + PLA 0.022 ± 
0.002 

0.023 ± 
0.003 

0.023 ± 
0.002 

0.022 ± 
0.004 

0.023 ± 
0.002 

0.001 ± 
0.001 

    

     PRO + n-3 
PUFA 

0.022 ± 
0.002 

0.022 ± 
0.002 

0.022 ± 
0.002 

0.022 ± 
0.002 

0.022 ± 
0.003 

0.001 ± 
0.002 

    

KFAT, Kcal/min       0.06 0.09 0.21 0.03* 

     CON 0.012 ± 
0.004 

0.014 ± 
0.002 

0.010 ± 
0.004 

0.010 ± 
0.004 

0.012 ± 
0.009 

0.001 ± 
0.007 

    

     PRO 0.019 ± 
0.004 

0.016 ± 
0.005 

0.016 ± 
0.007# 

0.016 ± 
0.004# 

0.012 ± 
0.009$ 

-0.006 ± 
0.007* 

    

     n-3 PUFA 0.015 ± 
0.003 

0.013 ± 
0.004 

0.014 ± 
0.006# 

0.017 ± 
0.005# 

0.020 ± 
0.008$# 

0.005 ± 
0.007 

    

     PRO + PLA 0.016 ± 
0.001 

0.013 ± 
0.008 

0.017 ± 
0.004# 

0.013 ± 
0.006# 

0.019 ± 
0.005 

0.002 ± 
0.006 

    

     PRO + n-3 
PUFA 

0.014 ± 
0.005 

0.014 ± 
0.003 

0.017 ± 
0.003# 

0.016 ± 
0.002# 

0.018 ± 
0.005$ 

0.004 ± 
0.009 

    

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9; rate of fat oxidation (kilocalories per minute), KFAT; rate of carbohydrate oxidation (kilocalories per minute), 
KCHO. 
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2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 5.  Effects of a 16-week supplementation intervention on energy expenditure and substrate oxidation controlled for FFM in the 
dietary intervention and control groups1 (Cont.) 

 
1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9; rate of fat oxidation (kilocalories per minute), KFAT; rate of carbohydrate oxidation (kilocalories per minute), 
KCHO. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 

 Weeks of Intervention Treatment effect2 ANCOVA P 3 

REE and SO 0 4 8 12 16 Δ 16 wk P Group Time Group X 
time 

KCHO, 
kcal/min 

      0.22 0.04* 0.28 .50 

     CON 0.010 ± 
0.004 

0.010 ± 
0.005 

0.011 ± 
0.005 

0.013 ± 
0.003 

0.010 ± 
0.007 

-0.004 
±0.004 

    

     PRO 0.005 ± 
0.003 

0.007 ± 
0.004 

0.008 ± 
0.006 

0.008 ± 
0.005 

0.009 ± 
0.009 

0.004 ± 
0.009 

    

     n-3 PUFA 0.008 ± 
0.003 

0.010 ± 
0.003 

0.009 ± 
0.004 

0.006 ± 
0.003 

0.004 ± 
0.006 

-0.004 ± 
0.006 

    

     PRO + 
PLA 

0.006 ± 
0.002 

0.009 ± 
0.008 

0.006 ± 
0.004 

0.009 ± 
0.003 

0.005 ± 
0.005 

-0.001 ± 
0.004 

    

     PRO + n-
3 PUFA 

0.008 ± 
0.005 

0.008 ± 
0.003 

0.005 ± 
0.002 

0.006 ± 
0.003 

0.004 ± 
0.003 

-0.003 ± 
0.007 
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3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 6. Effects of the 16-week dietary supplementation intervention on objective sleep duration and quality in the dietary 
intervention and control group1 
 

 Weeks of intervention Treatment effect2 ANCOVA P3 

 0 8 16 Δ 16 wk P Group Time Group 
X time 

7-day ActiGraph         
Time in bed     0.03* 0.21 0.21 0.047* 
     CON 23.1 ± 1.3 22.6 ± 1.4$ 22.8 ± 1.3 -0.25 ± 0.43     
     PRO 22.6 ± 0.8 22.8 ± 1.1 23.1 ± 1.0$ 0.54 ± 0.65*     
     n-3 PUFA 23.2 ± 0.7 23.0 ± 0.4 23.3 ± 0.8 0.14 ± 0.61*     
     PRO + PLA 23.0 ± 0.7 23.1 ± 1.0 22.9 ± 0.9 -0.15 ± 0.30     
     PRO + n-3 PUFA  22.7 ± 1.0 22.2 ± 0.7$ 22.0 ± 0.8$ -0.70 ± 1.04     
Time out of bed     0.18 0.74 0.31 0.21 
     CON 6.8 ± 1.2 5.7 ± 2.2 6.2 ± 1.0 -0.57 ± 0.51     
     PRO 6.0 ± 1.2 6.2 ± 1.0 6.1 ± 1.1 0.12 ± 0.51     
     n-3 PUFA 6.4 ± 1.1 6.4 ± 1.2 6.7 ± 1.4 0.30 ± 0.93     
     PRO + PLA 6.8 ± 0.8 6.8 ± 0.7 6.8 ± 1.0 -0.11 ± 0.45     
     PRO + n-3 PUFA  6.2 ± 1.4 6.0 ± 1.3 6.0 ± 1.4 -0.21 ± 0.31     
Sleep latency, min     0.95 < 0.01* 0.42 0.33 
     CON 3.9 ± 3.5 3.7 ± 1.6 3.5 ± 2.0 -0.41 ± 4.78     
     PRO 2.0 ± 1.2 2.4 ± 1.3 2.9 ± 2.1 0.92 ± 2.97     
     n-3 PUFA 8.5 ± 6.9$ 4.2 ± 3.7 9.0 ± 11.5 0.46 ± 13.14     
     PRO + PLA 3.9 ± 2.1 3.8 ± 2.2 5.9 ± 1.6 2.14 ± 2.96     
     PRO + n-3 PUFA  4.4 ± 1.8 6.3 ± 3.3 4.1 ± 3.3 -0.39 ± 3.27     
Sleep efficiency, %     0.31 0.46 0.98 0.41 
`    CON 85.8 ± 4.5 87.6 ± 4.2 88.7 ± 3.4 2.91 ± 2.89     
     PRO 92.6 ± 1.1 91.5 ± 3.7 92.0 ± 3.1 -0.54 ± 2.96     
     n-3 PUFA 88.7.1 ± 4.4 86.8 ± 4.4 87.7 ± 5.8 -0.95 ± 6.82     
     PRO + PLA 87.0 ± 4.2 88.9 ± 2.3 88.3 ± 1.7 1.23 ± 3.61     
     PRO + n-3 PUFA  86.0 ± 5.2 84.8 ± 5.9 87.0 ± 5.8 0.97 ± 2.13     

1 All baseline, 8, and 16-week values are means ± SD. Control, no intervention and free living, CON, n=5; whey protein isolate, PRO, 
n=7; omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + 
placebo soybean oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + 
docosahexaenoic acid, PRO + n-3 PUFA, n=8. “Time in bed” denotes time from “lights out” to “got up” as indicated by participants in 
their sleep diary. Time is expressed as hours followed by the proportion of an hour in minutes. “Sleep period” denotes time from “fell 
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asleep” to “woke up”; “Sleep duration” denotes time spent asleep within sleep period, excluding wake time; WASO denotes time from 
sleeping to first period of wakefulness;  “Sleep latency” denotes time from “lights out” to “fell asleep”; “Sleep duration” (%) denotes 
the proportion of time spent asleep in the sleep period; “Sleep efficiency” (%) denotes the proportion of time spent asleep of time in 
bed (100% × sleep duration/the time between bed time and get up time). “Sleep fragmentation index” denotes the number of 
interruptions of sleep by physical movement calculated as 100 × the number of groups of consecutive mobile 60‐s epochs/by the total 
number of immobile epochs.  H:mm, hours: minutes; TST, total sleep time; WASO, wake after sleep onset; SFI, sleep fragmentation 
index.  
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time.  * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 6. Effects of the 16-week dietary supplementation intervention on objective sleep duration and quality in the dietary 
intervention and control group1 (Cont.) 

1 All baseline, 8, and 16-week values are means ± SD. Control, no intervention and free living, CON, n=5; whey protein isolate, PRO, 
n=7; omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + 
placebo soybean oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + 
docosahexaenoic acid, PRO + n-3 PUFA, n=8. “Time in bed” denotes time from “lights out” to “got up” as indicated by participants in 
their sleep diary. Time is expressed as hours followed by the proportion of an hour in minutes. “Sleep period” denotes time from “fell 
asleep” to “woke up”; “Sleep duration” denotes time spent asleep within sleep period, excluding wake time; WASO denotes time from 

 Weeks of intervention Treatment effect2 ANCOVA P3 

 0 8 16 Δ 16 wk P Group Time Group 
X time 

7-day ActiGraph         
TST, min      0.22 0.46 0.98 0.42 
     CON 395.3 ± 38.1 405.0 ± 25.6 392.3 ± 38.3 -2.94 ± 39.73     
     PRO 414.6 ± 47.4 377.9 ± 97.8 388.1 ± 46.2 -26.47 ± 19.92     
     n-3 PUFA 381.3 ± 53.9 389.5 ± 57.6  390.3 ± 53.6 9.01 ± 37.70     
     PRO + PLA 400.6 ± 35.5 424.4 ± 75.3 409.8 ± 59.6 4.06 ± 36.16     
     PRO + n-3 PUFA  384.1 ± 45.2 386.9 ± 56.2 408.6 ± 63.1 24.47 ± 56.30     
Awakenings, #      0.24 0.02* 0.87 0.32 
     CON 15.9 ± 4.3 15.3 ± 6.1 14.0 ± 4.1 -1.92 ± 2.13     
     PRO 10.5 ± 2.8 8.9 ± 2.2 9.4 ± 2.6 -1.15 ± 1.58     
     n-3 PUFA 12.6 ± 6.0 16.1 ± 6.0 13.5 ± 6.1 0.89 ± 3.77     
     PRO + PLA 16.0 ± 4.1 16.9 ± 2.5 17.0 ± 5.2 0.35 ± 3.77     
     PRO + n-3 PUFA  13.4 ± 6.0 14.6 ± 7.6 14.9 ± 7.9 1.54 ± 2.81     
WASO      0.09 0.05 0.76 0.42 
     CON 61.6 ± 14.7 54.0 ± 19.5 45.7 ± 15.8 -15.88 ± 7.47     
     PRO 31.9 ± 4.0  32.4 ± 16.4 31.0 ± 11.6 -0.93 ± 13.22     
     n-3 PUFA 40.9 ± 18.8 56.8 ± 20.6 49.7 ± 26.3 8.75 ± 24.01     
     PRO + PLA 58.5 ± 25.5 49.7 ± 16.6 48.0 ± 12.9 -10.35 ± 19.53     
     PRO + n-3 PUFA  58.1 ± 23.3 62.8 ± 31.2 59.3 ± 34.5 1.23 ± 18.64     
SFI      0.10 0.03* 0.96 0.12 
     CON 27.3 ± 4.7 24.2 ± 4.1 22.2 ± 7.4 -5.06 ± 4.72     
     PRO 16.6 ± 4.4 $ 19.5 ± 6.6 19.7 ± 6.7 3.01 ± 3.57     
     n-3 PUFA 23.6 ± 6.7 25.5 ± 6.2 27.7 ± 10.4 4.18 ± 11.69     
     PRO + PLA 27.9 ± 7.3 26.0 ± 4.8 25.5 ± 5.3 -2.48 ± 4.69     
     PRO + n-3 PUFA  24.2 ± 7.9 26.0 ± 7.1 22.0 ± 8.4 -2.23 ± 6.79     
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sleeping to first period of wakefulness;  “Sleep latency” denotes time from “lights out” to “fell asleep”; “Sleep duration” (%) denotes 
the proportion of time spent asleep in the sleep period; “Sleep efficiency” (%) denotes the proportion of time spent asleep of time in 
bed (100% × sleep duration/the time between bed time and get up time). “Sleep fragmentation index” denotes the number of 
interruptions of sleep by physical movement calculated as 100 × the number of groups of consecutive mobile 60‐s epochs/by the total 
number of immobile epochs.  H:mm, hours: minutes; TST, total sleep time; WASO, wake after sleep onset; SFI, sleep fragmentation 
index.  
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time.  * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means 
. 
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Table 7.  Mean ± SD are presented from the 16-week supplementation intervention on ratings of subjective sleep quality and duration 
via the Pittsburg Sleep Quality Index seven subcomponents and GSS in dietary intervention and control groups1. 

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 

 Weeks of Intervention Treatment effect 
PSQI  0 4 8 12 16 Δ 16 wk   

Component 1: Sleep 
Quality       

     CON 1.5 ± 0.5 0.8 ± 0.4 1.5 ± 0.8 1.3 ± 0.5 1.0 ± 0.6 -0.5 ± 0.1 
     PRO 1.3 ± 0.5 0.9 ± 0.4 1.1 ± 0.7 0.9 ± 0.9 0.7 ± 0.8 -0.6 ± 0.3 
     n-3 PUFA 1.3 ± 0.5 1.2 ± 0.8 0.9 ± 0.3 0.9 ± 0.7 0.8 ± 0.4 -0.5 ± -0.1 
     PRO + PLA 1.1 ± 0.7 1.0 ± 0.6 0.9 ± 0.4 0.9 ± 0.7 0.9 ± 0.4 -0.3 ± -0.3 
     PRO + n-3 PUFA  1.4 ± 0.5 0.9 ± 0.6 1.3 ± 0.5 0.9 ± 0.6 0.9 ± 0.6 -0.6 ± 0.1 
Component 2: Latency       
     CON 1.2 ± 0.8 1.2 ± 0.8 1.0 ± 1.1 1.5 ± 1.0 1.5 ± 0.5 0.3 ± -0.2 
     PRO 1.1 ± 0.9 1.1 ± 0.9 1.1 ± 0.9 1.1 ± 1.1 0.9 ± 1.1 -0.3 ± 0.2 
     n-3 PUFA 1.4 ± 1.3 1.2 ± 1.1 0.9 ± 0.9 1.2 ± 0.6 1.2 ± 0.9 -0.2 ± -0.3 
     PRO + PLA 1.3 ± 0.8 1.4 ± 1.0 1.1 ± 1.1 1.1 ± 0.7 1.1 ± 0.9 -0.1 ± 0.1 
     PRO + n-3 PUFA  1.4 ± 0.7 1.2 ± 0.7 1.1 ± 0.6 1.3 ± 0.9 1.3 ± 1.0 -0.1 ± 0.3 
Component 3: Duration        
     CON 1.3 ± 0.5 1.0 ± 0.6 1.5 ± 0.5 1.2 ± 0.4 1.2 ± 0.8 -0.2 ± 0.2 
     PRO 0.9 ± 0.7 0.7 ± 0.5 0.7 ± 0.8 0.6 ± 0.5 0.9 ± 0.7 0.0 ± 0.0 
     n-3 PUFA 1.6 ± 0.8 1.3 ± 0.9 1.3 ± 0.9 1.2 ± 0.9 1.2 ± 0.9 -0.4 ± 0.1 
     PRO + PLA 0.9 ± 0.9 1.0 ± 0.8 0.9 ± 0.7 0.6 ± 0.5 0.7 ± 0.5 -0.1 ± -0.4 
     PRO + n-3 PUFA  1.3 ± 1.1 1.1 ± 0.8 0.9 ± 0.8 0.8 ± 0.8 0.7 ± 0.7 -0.7 ± -0.4 
Component 4: Sleep 
Efficiency        

     CON 0.8 ± 0.4 0.3 ± 0.5 0.7 ± 0.8 0.2 ± 0.4 0.2 ± 0.4 -0.7 ± 0.0 
     PRO 0.6 ± 0.5 0.3 ± 0.5 0.1 ± 0.4 0.7 ± 1.0 0.4 ± 0.5 -0.1 ± 0.0 
     n-3 PUFA 0.6 ± 0.8 0.5 ± 0.8 0.6 ± 0.7 0.5 ± 0.8 0.5 ± 1.1 -0.1 ± 0.2 
     PRO + PLA 0.7 ± 1.1 0.6 ± 0.8 0.3 ± 0.5 0.3 ± 0.5 0.3 ± 0.5 -0.4 ± -0.6 
     PRO + n-3 PUFA  1.1 ± 0.9 0.7 ± 0.9 1.0 ± 1.0 0.6 ± 0.9 0.6 ± 0.5 -0.6 ± -0.4 
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oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9.    Pittsburgh sleep quality index, PSQI; global sleeping score . GSS. 
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Table 7.  Mean ± SD are presented from the 16-week supplementation intervention on ratings of subjective sleep quality and duration 
via the Pittsburg Sleep Quality Index seven subcomponents and GSS in dietary intervention and control groups1 (Cont.) 

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9.    Pittsburgh sleep quality index, PSQI; global sleeping score . GSS.

 Weeks of Intervention Treatment effect 
PSQI  0 4 8 12 16 Δ 16 wk   

Component 5: Disturbances        
     CON 1.5 ± 0.8 1.2 ± 0.8 1.3 ± 0.5 1.3 ± 0.5 1.3 ± 0.5 -0.2 ± -0.3 
     PRO 1.6 ± 0.5 1.4 ± 0.5 1.3 ± 0.8 1.1 ± 0.7 1.0 ± 0.6 -0.6 ± 0.0 
     n-3 PUFA 1.7 ± 0.5 1.5 ± 0.5 1.3 ± 0.5 1.1 ± 0.3 1.3 ± 0.5 -0.4 ± 0.0 
     PRO + PLA 1.6 ± 0.5 1.3 ± 0.5 1.3 ± 0.5 1.1 ± 0.4 1.3 ± 0.5 -0.3 ± 0.0 
     PRO + n-3 PUFA  1.8 ± 0.4 1.4 ± 0.5 1.6 ± 0.5 1.6 ± 0.5 1.6 ± 0.5 -0.2 ± 0.1 
Component 6: Medications        
     CON 1.2 ± 1.2 1.2 ± 1.2 1.3 ± 1.0 1.2 ± 1.2 0.8 ± 1.0 -0.3 ± -0.2 
     PRO 0.3 ± 0.5 0.1 ± 0.4 0.7 ± 1.3 0.3 ± 0.8 0.1 ± 0.4 -0.1 ± -0.1 
     n-3 PUFA 0.4 ± 1.0 03 ± 0.9 0.3 ± 0.9 0.2 ± 0.6 0.4 ± 1.0 0.0 ± 0.0 
     PRO + PLA 1.0 ± 1.2 1.1 ± 1.2 0.6 ± 0.8 0.9 ± 0.9 1.0 ± 1.2 0.0 ± 0.0 
     PRO + n-3 PUFA  1.0 ± 1.3 0.8 ± 1.3 0.8 ± 1.3 0.8 ± 1.1 0.8 ± 1.3 -0.2 ± 0.0 
Component 7: Daytime 
Dysfunction       

     CON 0.8 ± 0.8 1.2 ± 1.0 1.0 ± 1.1 1.0 ± 1.1 0.8 ± 1.0 0.0 ± 0.2 
     PRO 1.0 ± 0.8 0.7 ± 0.5 0.6 ± 0.5 0.7 ± 0.8 0.6 ± 0.5 -0.4 ± -0.3 
     n-3 PUFA 0.8 ± 0.6 1.1 ± 0.9 1.1 ± 0.7 0.9 ± 0.6 1.1 ± 0.6 0.3 ± -0.1 
     PRO + PLA 0.9 ± 0.4 1.0 ± 0.0 0.9 ± 0.4 0.9 ± 0.7 1.0 ± 0.0 0.1 ± -0.4 
     PRO + n-3 PUFA  0.8 ± 0.4 0.8 ± 0.4 0.9 ± 0.6 0.9 ± 0.6 0.9 ± 0.6 0.1 ± 0.2 
Compiled GSS        
     CON 8.3 ± 3.0 6.8 ± 2.9 8.3 ± 3.6 7.7 ± 3.5 6.8 ± 3.2 -1.5 ± 0.2 
     PRO 6.7 ± 1.6 5.3 ± 1.8 5.7 ± 3.7 5.4 ± 4.1 4.6 ± 2.2 -2.1 ± 0.6 
     n-3 PUFA 7.8 ± 2.7 7.1 ± 4.5 6.4 ± 3.2 6.0 ± 2.4 6.5 ± 2.8 -1.3 ± 0.1 
     PRO + PLA 7.7 ± 2.5 7.4 ± 2.5 5.9 ± 2.5 5.7 ± 1.4 6.3 ± 2.1 -1.4 ± -0.4 
     PRO + n-3 PUFA  8.9 ± 2.8 6.9 ± 2.7 7.6 ± 3.2 6.8 ± 3.3 6.7 ± 3.6 -2.2 ± 0.8 
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Table 8. Effects of the 16-week dietary supplementation interventions on negative and positive affect states in the dietary intervention 
and control groups1.  
 

 Weeks of Intervention Treatment effect2 ANCOVA P 3 

POMS 0 4 8 12 16 Δ 16 wk P Group Time Group 
X time 

Tension/Anxiety        0.83 0.58 0.28 0.79 
     CON 4.0 ± 3.3 5.8 ± 7.8 3.7 ± 3.9 4.8 ± 4.4 4.0 ± 3.8 0.0 ± 1.9     
     PRO 8.7 ± 6.9 5.6 ± 3.8 7.0 ± 6.4 8.0 ± 5.5 6.4 ± 5.5 -2.3 ± 6.5     
     n-3 PUFA 6.7 ± 5.0 3.8 ± 4.0 5.1 ± 4.3 4.0 ± 3.9 6.3 ± 7.0 -0.4 ± 7.6     
     PRO + PLA 6.9 ± 3.4 4.9 ± 2.4 6.3 ± 4.5 5.7 ± 4.2 6.3 ± 3.1 -0.6 ± 2.6     
     PRO + n-3 PUFA  8.0 ± 6.9 6.0 ± 3.1 7.4 ± 5.5 6.9 ± 3.8 5.8 ± 3.8 -2.2 ± 5.6     
Depression       0.87 0.20 0.84 0.50 
     CON 3.0 ± 3.0 7.7 ± 13.6 2.7 ± 2.7 5.8 ± 5.8 2.3 ± 2.4 -0.7 ± 0.8     
     PRO 7.4 ± 8.3 5.7 ± 5.3 6.7 ± 9.8 7.3 ± 8.0 8.1 ± 8.4 0.7 ± 7.3     
     n-3 PUFA 4.1 ± 4.9 2.7 ± 2.7 3.1 ± 3.6 2.7 ± 2.9 2.3 ± 3.4 -1.8 ± 3.6     
     PRO + PLA 4.1 ± 4.3 3.4 ± 3.0 2.3 ± 2.2 2.7 ± 1.9 4.6 ± 3.2 0.4 ± 4.4     
     PRO + n-3 PUFA  6.7 ± 

12.4 3.7 ± 4.0 5.9 ± 4.9 7.0 ± 6.5 6.6 ± 5.2 -0.1 ± 
12.1     

Anger            
     CON 3.8 ± 5.5 6.7 ± 7.6 1.5 ± 2.5 4.8 ± 6.5 3.0 ± 4.0 -0.8 ± 5.3 0.89 0.65 0.56 0.12 
     PRO 5.0 ± 3.4 3.0 ± 3.5 5.9 ± 10.4 5.3 ± 8.2 4.4 ± 7.9 -0.6 ± 6.7     
     n-3 PUFA 4.1 ± 5.1 3.2 ± 3.4 3.7 ± 4.6 1.8 ± 3.4 1.7 ± 2.1 -2.4 ± 4.5     
     PRO + PLA 3.0 ± 1.6 1.9 ± 1.3 1.1 ± 1.3 2.6 ± 2.9 2.7 ± 2.1 -0.3 ± 2.0     
     PRO + n-3 PUFA  4.7 ± 5.7 2.6 ± 2.4 5.2 ± 4.3 4.8 ± 6.7 3.1 ± 3.6 -1.6 ± 5.2     
Fatigue       0.42 0.43 0.14 0.41 
     CON 6.5 ± 8.8 9.3 ± 12.3 6.7 ± 6.1 11.7 ± 8.0 8.5 ± 8.1 2.0 ± 4.6     
     PRO 9.1 ± 7.2 7.4 ± 4.9 8.0 ± 6.1 6.4 ± 5.5 4.9 ± 4.5 -4.3 ± 4.6     
     n-3 PUFA 5.9 ± 5.0 7.1 ± 5.5 5.7 ± 3.8 4.0 ± 3.6 3.9 ± 3.9 -2.0 ± 5.3     
     PRO + PLA 5.6 ± 4.4 6.7 ± 5.0 5.7 ± 4.2 6.6 ± 3.2 5.0 ± 2.9 -0.6 ± 4.4     
     PRO + n-3 PUFA  7.8 ± 3.8 9.1 ± 5.9 8.1 ± 5.9 6.0 ± 5.7 6.2 ± 2.2 -1.6 ± 4.7     

1Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
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PRO + n-3 PUFA, n=9. POMS: TMD = (Sum of all subscales except Vigor) minus Vigor, TMD score range (−32) to 200. All 
subscales are positive.  
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time.   * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
 
 
 
 



 

 

215 

Table 8.  Effects of the 16-week dietary supplementation interventions on negative and positive affect states in the dietary intervention 
and control groups1 (Cont.) 

 
 Weeks of Intervention Treatment effect2 ANCOVA P 3 

POMS 0 4 8 12 16 Δ 16 wk P Group Time 
Group 

X 
time 

     CON 5.3 ± 3.0 5.8 ± 4.6 5.2 ± 3.8 7.5 ± 6.6 5.7 ± 4.3 0.3 ± 2.0     
     PRO 6.6 ± 4.5 4.7 ± 3.8 6.1 ± 4.1 5.0 ± 4.5 3.6 ± 3.9 -3.0 ± 3.7     
     n-3 PUFA 5.0 ± 2.7 4.4 ± 3.2 5.3 ± 3.2 4.2 ± 2.6 5.6 ± 4.2 0.6 ± 4.1     
     PRO + PLA 4.4 ± 1.7 5.7 ± 2.0 4.1 ± 1.3 5.1 ± 1.5 4.3 ± 2.1 -0.1 ± 2.5     
     PRO + n-3 
PUFA  5.7 ± 3.2 5.2 ± 2.8 5.6 ± 4.1 4.8 ± 3.4 5.9 ± 4.3 0.2 ± 3.9     

Vigor        0.17 0.01 0.21 0.046 
     CON 16.3 ± 2.3 17.2 ± 5.5 15.8 ± 5.5 11 ± 7.4 12.3 ± 6.4 -4.0 ± 5.9     
     PRO 18.6 ± 6.9 22.0 ± 5.5 23.0 ± 7.3 19.7 ± 9.5 20.6 ± 9.1* 2.0 ± 6.5     
     n-3 PUFA 17.4 ± 6.1 18.2 ± 6.3 17.7 ± 7.7 18.9 ± 8.3 18.1 ± 8.0* 0.7 ± 4.7     
     PRO + PLA 17.6 ± 5.3 15.6 ± 6.4 18.0 ± 5.1 15.7 ± 5.3 16.4 ± 6.2 -1.1 ± 4.9     
     PRO + n-3 
PUFA  15.8 ± 6.3 16.3 ± 5.0 15.2 ± 7.1 16.9 ± 4.7 16.3 ± 5.0 0.6 ± 4.3     

TMD        0.71 0.71 0.73 0.11 
     CON 6.3 ± 19.5 18.2 ± 45.5 3.8 ± 18.1 23.7 ± 33.4 11.2 ± 23.4 4.8 ± 15.6     
     PRO 18.3 ± 33.0 4.4 ± 22.4 10.7 ± 37.8 12.3 ± 34.4 6.9 ± 32.6 -11.4 ± 26.1     
     n-3 PUFA 8.4 ± 20.7 3.0 ± 19.4 5.2 ± 21.1 -2.2 ± 18.4 1.7 ± 20.2 -6.7 ± 18.2     
     PRO + PLA -0.4 ± 9.1 7.0 ± 9.1 1.6 ± 12.4 7.0 ± 11.5 6.4 ± 10.8 6.9 ± 12.0     
     PRO + n-3 
PUFA  17.0 ± 31.7 10.2 ± 16.2 17.0 ± 17.4 12.6 ± 15.6 11.2 ± 19.4 -5.8 ± 29.0     

 
1Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. POMS: TMD = (Sum of all subscales except Vigor) minus Vigor, TMD score range (−32) to 200. All 
subscales are positive.  
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 
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3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time.   * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 9. Effects of the 16-week dietary interventions on fasting plasma concentrations of cardiometabolic risk in the dietary 
intervention groups and control group1 
 

   Weeks of Intervention  Treatment effect2 ANCOVA P3 

Metabolic 
Biomarkers 0 8 16 Δ 16 wk P Group1 Time

2 
Group X 

Time3 
Glucose. mg/dl     0.78 0.34 0.22 0.72 
     CON 90.1 ± 15.9 98.4 ± 17.1 91.5 ± 14.9 1.5 ± 6.4     
     PRO 92.6 ± 11.0 91.7 ± 6.9 88.2 ± 6.6 -4.4 ± 8.6     
     n-3 PUFA 93.3 ± 13.2 93.4 ± 12.4 92.0 ± 11.8 -1.3 ± 13.5     
     PRO + PLA 88.8 ± 9.6 88.1 ± 12.4 89.9 ± 7.8 1.1 ± 4.8     
     PRO + n-3 PUFA  83.7 ± 12.6 86.6 ± 13.4 81.8 ± 5.5 -1.9 ± 9.0     
Insulin, uUI/mL     0.89 0.38 0.07 0.32 
     CON 10.6 ± 4.1 12.8 ± 9.2 7.5 ± 3.5 -3.2 ± 4.6     
     PRO 13.8 ± 9.3 11.9 ± 6.9 11.7 ± 10.4 -2.0 ± 8.0     
     n-3 PUFA 22.0 ± 27.1 16.2 ± 13.1 22.4 ± 21.3 0.4 ± 9.5     
     PRO + PLA 10.6 ± 8.8 12.8 ± 8.9 10.1 6.4 -0.5 ± 4.3     
     PRO + n-3 PUFA  9.6 ± 5.8 11.2 ± 4.7 8.8 ± 4.8 -0.8 ± 6.5     
HOMA-IR, AU     0.98 0.32 0.09 0.54 
     CON 2.4 ± 1.0 3.3 ± 2.6 1.7 ±1.0 -0.6 ± 0.9     
     PRO 3.3 ± 2.5 2.7 ± 1.6 2.6 ± 2.4 -0.7 ± 1.9     
     n-3 PUFA 5.2 ± 6.1 4.0 ± 3.7  5.0 ± 4.2 -0.2 ± 3.2     
     PRO + PLA 2.5 ± 2.4 3.0 ± 2.5 2.3 ± 1.6 -0.2 ± 1.1     
     PRO + n-3 PUFA  2.1 ± 1.6 2.3 ± 1.6 1.8 ± 1.0 -0.3 ± 1.5     
FFA, uM     0.12 0.48 0.02* 0.37 
     CON 131.5 ± 24.7 144.2 ± 47.2 161.3 ± 42.2 29.7 ± 22.5     
     PRO 186.5 ± 36.8 154.9 ± 33.4 147.0 ± 33.4 -39.5 ± 25.1     
     n-3 PUFA 187.8 ± 54.2 164.5 ± 68.0 175.4 ± 48.9 -12.4 ± 38.2     
     PRO + PLA 175.8 ± 48.2 135.7 ± 54.3 156.8 ± 60.6 -19.1 ± 63.4     
     PRO + n-3 PUFA  162.9 ± 71.9 126.1 ± 50.7 137.0 ± 47.0 -26.0 ± 63.0     

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10  *Wk8:n=9; whey protein isolate + 
placebo soybean oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + 
docosahexaenoic acid, PRO + n-3 PUFA, n=9. Homeostatic Model Assessment of Insulin Resistance, HOMA-IR; free-fatty acids, 
FFA; c-reactive protein. CRP. 
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2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time.  * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 9. Effects of the 16-week dietary interventions on fasting plasma concentrations of cardiometabolic risk in the dietary 
intervention groups and control group1 (Cont.) 

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10  *Wk8:n=9; whey protein isolate + 
placebo soybean oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + 
docosahexaenoic acid, PRO + n-3 PUFA, n=9. Homeostatic Model Assessment of Insulin Resistance, HOMA-IR; free-fatty acids, 
FFA; c-reactive protein. CRP. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time.  * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
 

  Weeks of Intervention  Treatment effect2 ANCOVA P3 

Metabolic Biomarkers 0 8 16 Δ 16 wk P Group1 Time2 Group X 
Time3 

Cholesterol, mg/dl      0.01* 0.34 0.58 0.01* 
     CON 179.5 ± 33.0 200.5 ± 18.1 219.0 ± 24.5$ 39.5 ± 30.4     
     PRO 190.4 ± 30.4 200.0 ± 29.4 178.7 ± 22.9 -11.8 ± 30.8*     
     n-3 PUFA 197.5 ± 23.0 212.6 ± 20.9 186.0 ± 32.5 -11.4 ± 24.1*     
     PRO + PLA 206.8 ± 19.6 194.4 ± 20.5 204.9 ± 24.7 -1.9 ± 24.8*     
     PRO + n-3 PUFA  196.5 ± 28.4 178.0 ± 33.7$ 171.4 ± 38.2$ -25. 1 ± 43.6*     
Triglycerides, mg/dl           
     CON 78.1 ± 23.8 66.8 ± 24.6 66.6 ± 16.4 -11.5 ± 26.1 0.25 0.05 0.13 0.71 
     PRO 118.9 ± 46.2 110.0 ± 51.0 103.5 ± 31.2 -15.4 ± 32.7     
     n-3 PUFA 105.8 ± 44.5 92.0 ± 36.0 89.5 ± 36.4 -16.4 ± 29.1     
     PRO + PLA 80.4 ± 32.8 74.6 ± 22.2 89.8 ± 29.6 9.4 ± 42.5     
     PRO + n-3 PUFA  102.3 ± 36.6 84.0 ± 35.4 76.8 ± 32.8 -25.5 ± 17.0     
CRP, u/L     0.48 0.88 0.99 0.24 
     CON .72 ± .43 .70 ± .45 .85 ± .53 0.13 ± .42     
     PRO 1.29 ± .60 1.11 ± .61 1.02 ± .72 -0.27 ± .90     
     O3FA 1.07 ± .58 1.28 ± .65 1.00 ± .43 -0.07 ± .47     
     PRO + PLA .81 ± .62 .94 ± .61 1.01 ± .76 0.20 ± .33     
     PRO + O3FA  1.02 ± 1.09 .82 ± .68 1.04 ± 1.14 0.01 ± .33     
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Table 10. Effects of the 16-week dietary interventions on fasting plasma concentrations of well-being biomarkers the dietary 
intervention groups and control group1 

 Weeks of Intervention Treatment effect 2 ANCOVA P3 
Biomarkers 0 8 16 Δ 16 wk P Group Time Group X 

time 
OXA, pg/mL       0.046 0.39 0.08 0.27 
     CON 18.4 ± 10.5 17.8 ± 10.3 19.2 ± 10.7 0.8 ± 3.3     
     PRO 20.5 ± 15.3 23.6 ± 13.2 19.2 ± 9.5 -1.3 ± 7.0     
     n-3 PUFA 16.6 ± 13.6 15.5 ± 9.5 15.7 ± 11.2 -0.8 ± 5.9     
     PRO + PLA 23.5 ± 15.7 24.6 ± 18.5 25.0 ± 16.8 1.5 ± 8.1     
     PRO + n-3 
PUFA  

19.8 ± 11.8 25.0 ± 14.0 28.4 ± 17.5$ 8.6 ± 9.3*     

BDNF, ng/m:      0.39 0.67 0.01* 0.53 
     CON 562.9 419.9 460.4 101.3 667.7 ± 306.9 104.7 ± 1819.8     
     PRO 485.0 ± 148.3 449.8 ± 134.1 452.0 ± 100.7 -32.9 ± 106.0     
     n-3 PUFA 528.0 ± 126.7 502.3 ± 142.4 621.1 ± 201.5 93.1 ± 173.6     
     PRO + PLA 540.9 ± 241.3 528.0 ± 254.2 611.9 ± 342.1 71 ± 189.9     
     PRO + n-3 
PUFA  

513.6 ± 200.1 400.0 ± 133.2 499.5 ± 179.6 -14.1 ± 1788     

CKM, U/mL     0.32 0.57 0.28 0.40 
     CON 30.6 ± 16.2 29.4 ± 7.9 33.5 ± 15.0 2.9 ± 11.1     
     PRO 27.4 ± 11.6 34.5 ± 17.9 32.5 ± 18.0 5.1 ± 8.6     
     n-3 PUFA 30.5 ± 8.6 31.1 ± 17.5 35.7 ± 15.7 5.1 ± 10.0     
     PRO + PLA 40.8 ± 13.8 40.1 ± 20.0 37.6 ± 16.6 -3.2 ± 6.5     
     PRO + n-3 
PUFA  

39.6 ± 17.4 40.7 ± 18.9 43.7 ± 20.0 4.2 ± 5.7     

Cortisol, ng/mL      0.47 0.47 0.02 0.16 
     CON 27.7 ± 18.8 22.0 ± 14.6 24.5 ± 22.2 -3.17 ± 12.57     
     PRO 26.0 ± 17.8 26.0 ± 13.5 18.7 ± 13.4 -7.31 ± 15.33     
     n-3 PUFA 14.4 ± 6.1 19.4 ± 7.8 15.1 ± 9.9 0.69 ± 6.30     
     PRO + PLA 17.3 ± 6.0 16.5 ± 7.4 14.4 ± 4.0 -2.88 ± 4.85     
     PRO + n-3 
PUFA  

15.9 ± 3.1 15.7 ± 3.1 15.2 ± 2.7 -0.70 ± 2.48     
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1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10  *Wk8:n=9; whey protein isolate + 
placebo soybean oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + 
docosahexaenoic acid, PRO + n-3 PUFA, n=9. Orexin A, OXA; brain-derived neurotrophic factor, BDNF; creatine kinase M-type, 
CKM.  
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time.  * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means. 
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Table 11. Effects of a 16-week supplementation intervention on energy and macronutrient intake in dietary intervention and control 
groups1  

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 

 Weeks of Intervention Treatment effect2 ANCOVA P 3 

Energy & 
Macronutrients 0 8 16 Δ 16 wk P Group Time Group 

X time 
Energy, kcal/d      0.27 0.60 0.73 0.84 
     CON 1757.3 ± 573.5 1963.3 ± 

858.3 
1844.6 ± 

490.9 87.3 ± 170.8     

     PRO 2193.9 ± 
1403.0 

1560.9 ± 
447.1 

1560.2 ± 
332.1 -124.5 ± 409.9     

     n-3 PUFA 2091.7 ± 848.2 1726.5 ± 
500.1 

1709.6 ± 
854.9 -106.2 ± 680.1     

     PRO + PLA 1988.1 ± 798.8 1737.0 ± 
619.9 

1641.4 ± 
469.4 -320.7 ± 851.1     

     PRO + n-3 PUFA  1881.6 ± 604.5 2006.8 ± 
886.1 

1799.5 ± 
886.0 115.7 ± 597.8     

Protein, g/day     0.51 <0.01* 0.04* 0.12 
     CON 71.3 ± 18.6 69.9 ± 16.2 72.7 ± 19.7 1.4 ± 18.7     
     PRO 87.1 ± 35.9$ 90.8 ± 32.8  93.9 ± 31.5  6.8 ± 36.5     
     n-3 PUFA 76.5 ± 28.2 67.5 ± 21.0 74.3 ± 32.9  -0.9 ± 19.5     
     PRO + PLA 73.3 ± 30.6 92.5 ± 29.4  95.2 ± 30.3  25.7 ± 21.6     
     PRO + n-3 PUFA  93.2 ± 20.3 $ 112.6 ± 45.3  95.9 ± 21.1  12.6 ± 30.2     
Protein, %          
     CON 16.2 ± 1.6 15.4 ± 2.1 16.1 ± 3.2 -0.07 ± 4.22 0.29 <0.01* <0.01

* 
<0.01* 

     PRO 18.9 ± 6.7 26.6 ± 9.0$# 23.6 ± 4.2$#  4.70 ± 6.13     
     n-3 PUFA 15.2 ± 4.1 15.8 ± 3.1 18.7 ± 6.4 1.14 ± 7.85     
     PRO + PLA 15.6 ± 4.9 22.5 ± 5.3 $# 24.1 ± 6.6$#  9.15 ± 7.02     
     PRO + n-3 PUFA  20.8 ± 5.7 23.8 ± 5.0$#  23.9 ± 6.7# 2.64 ± 3.97     
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2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 11.  Effects of a 16-week supplementation intervention on energy and macronutrient intake in dietary intervention and control 
groups1 (Cont.)  

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 

 Weeks of Intervention Treatment effect2 ANCOVA P 3 

Energy & 
Macronutrients 0 8 16 Δ 16 wk P Group Time Group 

X time 
Protein, g/kg/bw      0.14 0.01 0.05 0.14 
     CON 0.99 ± 0.23 1.00 ± 0.27 1.01 ± 0.29 0.018 ± 0.274     
     PRO 1.23 ± 0.54 1.32 ± 0.62 1.6 ± 0.54 0.128 ± 0.548     
     n-3 PUFA 0.92 ± 0.33 0.79 ± 0.21 0.86 ± 0.24 -0.040 ± 0.256     
     PRO + PLA 1.00 ± 0.24 1.28 ± 0.18 1.32 ± 0.23 0.417 ± 0.287     
     PRO + n-3 
PUFA  

1.27 ± 0.26$ 1.56 ± 0.61 1.35 ± 0.50 0.206 ± 0.442     

CHO, g/d     0.71 0.98 0.03* 0.49 
     CON 183.8 ± 70.3 204.6 ± 75.1 194.2 ± 46.3 10.3 ± 21.7     
     PRO 272.3 ± 202.7 178.2 ± 45.7 175.8 ± 42.3 -96.5 ± 192.8     
     n-3 PUFA 242.6 ± 100.2 185.3 ± 85.2 180.4 ± 98.1 -15.4 ± 120.7     
     PRO + PLA 235.3 ± 112.5 174.5 ± 83.4 158.9 ± 72.0 -71.9 ± 115.8     
     PRO + n-3 
PUFA  

208.7 ± 92.9 167.8 ± 51.3 190.7 ± 92.2 -17.3 ± 49.8     

CHO, %     0.29 0.72 0.15 0.27 
     CON 41.4 ± 6.1 42.3 ± 3.7 41.8 ± 9.9 0.36 ± 11.89     
     PRO 45.8 ± 11.4 44.5 ± 8.7 47.6 ± 7.3 1.79 ± 6.11     
     n-3 PUFA 46.1 ± 7.1 42.7 ± 11.3 41.6 ± 13.7 -0.09 ± 13.63     
     PRO + PLA 46.4 ± 10.4 39.6 ± 12.9 37.8 ± 12.2 -7.61 ± 6.25     
     PRO + n-3 
PUFA  

42.4 ± 6.2 35.1 ± 5.4 42.9 ± 4.0 -3.07 ± 8.62     
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3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 11.  Effects of a 16-week supplementation intervention on energy and macronutrient intake in dietary intervention and control 
groups1 (Cont.)  

 Weeks of Intervention Treatment effect2 ANCOVA P 3 

Energy & 
Macronutrients 

0 8 16 Δ 16 wk P Group Time Group X 
time 

Fat, g     0.79 0.65 0.27 0.14 
     CON 79.0 ± 30.7 83.1 ± 35.7 83.6 ± 33.8 4.6 ± 11.2     
     PRO 89.3 ± 64.0 55.8 ± 22.8 55.6 ± 17.6 -33.8 ± 60.4     
     n-3 PUFA 93.3 ± 45.2 81.8 ± 26.4 78.6 ± 46.4 -4.2 ± 25.8     
     PRO + PLA 81.0 ± 42.5 76.2 ± 32.9 70.2 ± 23.6 -11.2 ± 39.7     
     PRO + n-3 PUFA  76.7 ± 25.7 100.4 ± 56.8 76.0 ± 38.4 6.6 ± 28.7     
Fat, %      0.79 0.05 0.38 0.27 
     CON 39.0 ± 8.3$ 40.0 ± 5.3 38.2 ±8.3 -0.82 ± 10.87     
     PRO 34.8 ± 6.5 30.0 ± 7.2 30.4 ± 4.6 -4.40 ± 3.89     
     n-3 PUFA 34.4 ± 8.2 42.8 ± 8.5 40.6 ± 9.9 2.60 ± 6.81     
     PRO + PLA 33.9 ± 6.7 38.6 ± 6.6 38.4 ± 5.4 3.37 ± 6.84     
     PRO + n-3 PUFA  36.5 ± 7.8 42.4 ± 7.1 37.8 ± 12.6 1.68 ± 8.15     

 
1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.  
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Table 12. Effects of a 16-week supplementation intervention on dietary lipid profile in dietary intervention and control groups1  
 

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 

 Weeks of Intervention Treatment effect2 ANCOVA P3 

Dietary Lipid Profile 0 8 16 Δ 16 wk P Group Time Group 
X time 

n-3 PUFA s         
ALA, g/d      0.82 0.82 0.19 0.77 
     CON 2.0 ± 1.0 1.79 ± 0.6 2.04 ± 0.9 0.01 ± 1.0     
     PRO 1.9 ±1.4 1.55 ± 1.0 1.39 ± 1.2 -0.49 ± 1.5     
     n-3 PUFA 1.7 ± 1.1 1.50 ± 0.6 1.47 ± 1.1 -0.25 ± 1.5     
     PRO + PLA 1.9 ± 0.9 1.36 ± 0.8 1.12 ± 0.5 -0.79 ± 1.2     
     PRO + n-3 PUFA  1.6 ± 0.5 1.97 ± 1.3 1.49 ± 1.3 -0.08 ± 1.4     
EPA, mg/d     <0.01 <0.01 <0.0

1 
<0.01 

     CON 11.0 ± 5.9 19.6 ± 12.5 52.3 ± 101.8 41.2 ± 102.6     
     PRO 61.9 ± 88.3 55.1 ± 87.1 8.6 ± 7.8 -53.3 ± 81.9     
     n-3 PUFA 40.5 ± 96.3 2267.0 ± 21.9#$ 2356.5 ± 314.7#$ 2316.0 ± 340.5*     
     PRO + PLA 10.2 ± 6.3 39.5 ± 72.6 16.5 ± 19.4 6.3 ± 17.7     
     PRO + n-3 PUFA  27.6 ± 23.5 2326.5 ± 131.7#$ 2308.8 ± 107.4#$ 2281.2 ± 1134.0*     
DHA, mg/d      <0.01 <0.01 <0.0

1 
<0.01 

     CON 26.2 ± 14.1 46.6 ± 31.5 133.4 ± 247.7 107.2 ± 238.4     
     PRO 104.0 ± 115.6 44.9 ± 50.9 34.0 ± 25.2 -123.8 ± 209.6*     
     n-3 PUFA 94.6 ± 202.5 1784.1 ± 40.6#$ 1801.5 ± 71.6#$ 1706.9 ± 214.5*     
     PRO + PLA 30.8 ± 19.0 89.9 ± 157.1 37.0 ± 37.4 6.2 ± 40.9     
     PRO + n-3 PUFA  67.6 ± 56.8 1923.2 ± 291.8#$ 1938.9 ± 330.2#$ 1871.2 ± 338.5*     
Total  n-3 PUFA, g/d        <0.01 <0.01 <0.0

1 
<0.01 

     CON 2.2 ± 0.9 2.1 ± 1.0 2.5 ± 0.7 0.3 ± 0.9     
     PRO 2.2 ± 1.3 1.8 ± 1.0 1.5 ± 1.2 -0.7 ± 1.3     
     n-3 PUFA 1.9 ± 1.2 6.0 ± 0.6#$ 5.9 ± 1.1#$ 3.9 ± 1.5*     
     PRO + PLA 2.1 ± 1.2 1.8 ± 1.1 1.2 ± 0.5 -0.9 ± 1.5     
     PRO + n-3 PUFA  1.9 ± 0.6 6.0 ± 0.8#$ 5.8 ± 1.3#$ 3.9 ± 1.7*     
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oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means. 
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Table 12. Effects of a 16-week supplementation intervention on dietary lipid profile in dietary intervention and control groups1 
(Cont.)  

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 

 Weeks of Intervention Treatment effect2 ANCOVA P3 

Dietary Lipid Profile 0 8 16 Δ 16 wk P Group Time Group 
X time 

n-3 PUFA, %      <0.01 <0.01 <0.01 <0.01 
     CON 1.33 ± 1.03 1.08 ± 0.67 1.24 ± 0.35 -0.09 ± 0.77     
     PRO 1.16 ± 0.69 0.98 ± 0.41 0.79 ± 0.60 -0.36 ± 0.70     
     n-3 PUFA 1.03 ± 0.69 3.59 ± 1.05 3.35 ± 0.68 2.33 ± 0.93*     
     PRO + PLA 0.93 ± 0.24 0.90 ± 0.52 0.66 ± 0.20 -0.27 ± 0.36     
     PRO + n-3 PUFA  1.04 ± 0.61 2.86 ± 0.83 2.91 ± 0.87 1.87 ± 0.80*     
n-6 PUFA / n-3 
PUFA  Ratio   

        

     CON 10.5 ± 4.4  9.6 ± 2.8 14.9 ± 5.3 4.5 ± 2.8  <0.01 <0.01 <0.01 <0.01 
     PRO 10.1 ± 2.7 8.1 ±2.6 12.4 ± 8.5 2.3 ± 7.9     
     n-3 PUFA  9.7 ± 3.3  2.9 ± 0.7#$  2.6 ± 0.9#$ -7.1 ± 3.4*      
     PRO + PLA 9.3 ± 1.1  10.4 ± 3.8   10.7 ± 1.0 1.5 ± 1.9     
     PRO + n-3 PUFA   9.2 ± 3.8 3.5 ± 2.8#$ 2.7 ± 2.0#$ -6.5 ± 3.7*     
Cholesterol, mg/d     0.05 0.96 0.51 0.02 
     CON 281.7 ± 169.7 268.2 ± 71.5 263.7 ± 158.6 -18.1 ± 171.3     
     PRO 287.9 ± 157.5 252.1 ± 139.0 247.0 ± 181.9 -40.9 ± 132.9     
     n-3 PUFA 273.8 ± 107.8 211.8 ± 120.2 341.3 ± 191.1# 67.5 ± 167.6     
     PRO + PLA 188.3 ± 106.1# 300.7 ± 187.6 245.8 ± 118.3$ 57.5 ± 92.9     
     PRO + n-3 PUFA  300.8 ± 99.4 280.0 ± 240.0$ 182.1 ± 145.3$ -118.7 ± 160.0     
Saturated fat, g/d      0.79 0.79 0.08 0.56 
     CON 29.3 ± 6.4 38.4 ± 19.6 26.5 ± 11.5 -2.9 ± 12.8     
     PRO 29.0 ± 25.3 19.0 ± 6.8 16.4 ± 6.5 -12.6 ± 24.3     
     n-3 PUFA 26.4 ± 14.2 20.3 ± 7.7 21.5 ± 8.4 -4.9 ± 8.3     
     PRO + PLA 25.4 ± 15.1 25.5 ± 10.2 21.0 ± 7.6 -4.4 ± 13.7     
     PRO + n-3 PUFA  24.3 ± 9.7 32.3 ± 22.2 28.0 ± 18.5 3.6 ± 20.0     
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3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means. 
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Table 13. Effects of a 16-week supplementation intervention on dietary amino acid profile in dietary intervention and control groups1  
 

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 

 Weeks of Intervention Treatment effect2 ANCOVA P3 

Amino Acid Profile  0 8 16 Δ 16 wk 2 P Group Time Group X 
time 

Leucine, g/d      <0.01 <0.01 <0.01 <0.01 
     CON 5.41 ± 1.40 5.58 ± 1.55 5.64 ± 1.56 0.23 ± 1.54     
     PRO 6.72 ± 2.38 8.70 ± 2.47#$ 8.80 ± 2.54#$ 2.08 ± 2.96*     
     n-3 PUFA 5.40 ± 2.00 4.65 ± 1.57 5.49 ± 2.26 0.09 ± 1.57     
     PRO + PLA 5.20 ± 2.39 8.65 ± 2.19#$ 8.93 ± 1.83#$ 3.74 ± 1.81 *     
     PRO + n-3 PUFA  6.57 ± 1.72 9.17 ± 3.92#$ 9.10 ± 2.04#$ 2.53 ± 2.54 *     
Total BCAAs, g/d       0.05 <0.01 <0.01 <0.05 
     CON 12.07 ± 3.08 12.48 ± 3.40 12.54 ± 3.54 0.47 ± 3.26     
     PRO 15.04 ± 5.38 18.14 ± 5.65 18.38 ± 5.74 3.33 ± 6.75     
     n-3 PUFA 12.10 ± 4.44 10.39 ± 3.48 12.08 ± 5.06 -0.03 ± 3.59     
     PRO + PLA 11.61 ± 5.40 17.87 ± 4.75#$ 18.38 ± 3.67#$ 6.77 ± 4.29     
     PRO + n-3 PUFA  14.82 ± 3.75 19.59 ± 8.54#$ 19.14 ± 4.34#$ 4.32 ± 5.49     
Tryptophan, g/d       <0.01 <0.01 <0.01 <0.01 
     CON 0.83 ± 0.16 0.83 ± 0.21 0.89 ± 0.23 0.06 ± 0.20     
     PRO 1.03 ± 0.37 1.58 ± 0.45#$ 1.64 ± 0.41#$ 0.61 ± 0.46 *     
     n-3 PUFA 0.80 ± 0.29 0.70 ± 0.19 0.84 ± 0.30 0.04 ± 0.23     
     PRO + PLA 0.75 ± 0.34 1.55 ± 0.31#$ 1.63 ± 0.32#$ 0.88 ± 0.29 *     
     PRO + n-3 PUFA  1.05 ± 0.25 1.60 ± 0.77#$ 1.67 ± 0.34#$ 0.62 ± 0.37 *     
Methionine, g/d       0.15 <0.05 0.16 0.12 
     CON 1.75 ± 0.72 1.59 ± 0.40 1.61 ± 0.49 -0.15 ± 0.70     
     PRO 2.02 ± 0.80 2.19 ± 0.85#$ 2.23 ± 0.86#$ 0.21 ± 0.92      
     n-3 PUFA 1.58 ± 0.56 1.33 ± 0.47 1.53 ± 0.69 -0.05 ± 0.48     
     PRO + PLA 1.49 ± 0.82 2.10 ± 0.73#$ 2.23 ± 0.69#$ 0.75 ± 0.61      
     PRO + n-3 PUFA  1.93 ± 0.52 2.33 ± 1.00#$ 2.24 ± 0.56#$ 0.31 ± 0.80      
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2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.
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Table 13.. Effects of a 16-week supplementation intervention on dietary amino acid profile in dietary intervention and control groups1 
(Cont.)  

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 

 Weeks of Intervention Treatment effect2 ANCOVA P3 

Amino Acid Profile  0 8 16 Δ 16 wk 2 P Group Time Group X 
time 

Total EAAs, g/d       0.07 < 0.01 <0.05 <0.05 
     CON 27.03 ± 7.12 27.09 ± 7.20 27.65 ± 7.99 0.62 ± 7.70     
     PRO 34.26 ± 11.73 39.58 ± 13.31 40.48 ± 13.73 6.22 ± 15.53     
     n-3 PUFA 26.96 ± 10.13 22.88 ± 7.88 26.73 ± 11.64 -0.23 ± 8.07     
     PRO + PLA 25.74 ± 12.46 38.58 ± 11.05#$ 40.22 ± 9.26#$ 14.48 ± 9.52     
     PRO + n-3 PUFA  32.86 ± 8.34 42.29 ± 18.24#$ 41.42 ± 9.23#$ 8.56 ± 12.20     
Arginine, g/d       0.9 0.22 0.68 0.96 
     CON 3.98 ± 1.16 3.70 ± 0.90 3.93 ± 1.11 -0.05 ± 1.62     
     PRO 4.65 ± 1.85 4.27 ± 1.93 4.40 ± 1.97 -0.25 ± 2.00     
     n-3 PUFA 3.75 ± 1.57 3.21 ± 1.36 3.63 ± 1.58 -0.12 ± 1.10     
     PRO + PLA 3.96 ± 1.76 4.10 ± 1.55 4.46 ± 1.68 0.51 ± 1.32     
     PRO + n-3 PUFA  4.45 ± 1.12 4.90 ± 1.67 4.76 ± 1.65 0.32 ± 2.35     
Tyrosine, g/d        0.12 <0.01 <0.05 0.11 
     CON 2.57 ± 0.75 2.55 ± 0.70 2.52 ± 0.75 -0.05 ± 0.68     
     PRO 3.01 ± 1.04 3.29 ± 1.11 3.31 ± 1.11 0.30 ± 1.30     
     n-3 PUFA 2.41 ± 0.86 2.09 ± 0.68 2.42 ± 0.93 0.02 ± 0.65     
     PRO + PLA 2.27 ± 1.05 3.30 ± 1.01 3.42 ± 0.86 1.15 ± 0.82     
     PRO + n-3 PUFA  2.96 ± 0.82 3.76 ± 1.82 3.50 ± 0.90 0.54 ± 1.10     
Cysteine, g/d        0.08 <0.01 <0.01 <0.01 
     CON 0.97 ± 0.29 0.90 ± 0.25 0.94 ± 0.23 -0.04 ± 0.29     
     PRO 1.15 ± 0.45 1.59 ± 0.38 1.66 ± 0.43 0.51 ± 0.54     
     n-3 PUFA 0.91 ± 0.30 0.76 ± 0.27 1.15 ± 0.67 0.24 ± 0.78     
     PRO + PLA 0.90 ± 0.40 1.59 ± 0.35 1.59 ± 0.32 0.70 ± 0.36     
     PRO + n-3 PUFA  1.12 ± 0.27 1.66 ± 0.63 1.78 ± 0.35 0.66 ± 0.44     
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3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-means.
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Table 13. Effects of a 16-week supplementation intervention on dietary amino acid profile in dietary intervention and control groups1 
(Cont.)  

1 Values are mean ± SD. Control, no intervention and free living, CON, n=6; whey protein isolate, PRO, n=6; omega-3 
polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, n-3 PUFA, n=10; whey protein isolate + placebo soybean 
oil, PRO + PLA, n=7; whey protein isolate + omega-3 polyunsaturated fatty acids, eicosapentaenoic acid + docosahexaenoic acid, 
PRO + n-3 PUFA, n=9. 
2 Treatment effect between groups were tested by one-way ANOVA with baseline measurements subtracted from 16-week values. LS-
means significant differences: * P < 0.05. 
3 Differences in raw data were analyzed at 0, 8, and 16 using ANCOVA with age and BMI as covariates. P-values are indicated for 
main effects of group and time and an interaction effect of group X time. * P < 0.05 for main effect of intervention; # significantly 
different from control within time point following LS-means; $ significantly different compared to baseline follow LS-mean.

 Weeks of Intervention Treatment effect2 ANCOVA P3 

Amino Acid Profile  0 8 16 Δ 16 wk 2 P Group Time Group X 
time 

Glutamic Acid, g/d        0.59 <0.05 0.08 0.65 
     CON 13.53 ± 3.31 14.53 ± 4.67 14.60 ± 3.48 1.07 ± 3.02     
     PRO 15.98 ± 7.10 16.57 ± 5.26 16.83 ± 5.09 0.85 ± 7.39     
     n-3 PUFA 12.94 ± 4.85 11.83 ± 3.66 13.20 ± 4.27 0.27 ± 3.46     
     PRO + PLA 13.21 ± 5.18 17.20 ± 4.59 17.23 ± 4.43 4.02 ± 3.59     
     PRO + n-3 PUFA  16.49 ± 5.00 18.88 ± 8.18 18.48 ± 4.63 1.99 ± 5.39     
Glycine, g/d             0.64 0.12 0.27 0.80 
     CON 3.76 ± 2.39 2.77 ± 0.75 2.85 ± 0.87 -0.91 ± 2.33     
     PRO 3.90 ± 1.38 3.32 ± 1.55 3.39 ± 1.49 -0.51 ± 1.65     
     n-3 PUFA 2.95 ± 1.27 2.45 ± 1.10 2.77 ± 1.50 -0.17 ± 1.18     
     PRO + PLA 3.03 ± 1.52 3.03 ± 1.29 3.37 ± 1.25 0.35 ± 1.12     
     PRO + n-3 PUFA  3.38 ± 0.90 3.62 ± 1.34 3.52 ± 1.36 0.14 ± 1.81     
Try/LNAAs     0.04 <0.01 <0.01 <0.01 
     CON 0.05 ± 0.01 0.05 ± 0.01 0.06 ± 0.00 0.03 ± 0.10     
     PRO 0.05 ± 0.00 0.07 ± 0.01 0.07 ± 0.00 0.04 ± 0.61     
     n-3 PUFA 0.05 ± 0.00 0.05 ± 0.01 0.06 ± 0.00 0.05 ± 0.04     
     PRO + PLA 0.05 ± 0.00 0.07 ± 0.01 0.07 ± 0.00 0.13 ± 0.07*     
     PRO + n-3 PUFA  0.06 ± 0.00 0.06 ± 0.01 0.07 ± 0.01 0.10 ± 0.07*     
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Assessed for eligibility 
(n=170)

Excluded: 125
• Not meeting inclusion criteria: 116
• Declined to participate: 8
• Requested control group only: 1

Analyzed: 6

Lost to follow-up: 0

Discontinued INT: 0

Allocated to CON: 6
Received CON INT:6

Randomized (n=45)

Allocated to PRO: 8
Received PRO INT: 8

Allocated to O3FAs: 12
Received O3FA INT: 12 

Allocated to PRO+PLA: 7
Received PRO + PLA INT: 7

Allocated to PRO+O3FA: 12 
Did not receive PRO+O3FA
INT: 1a

Received PRO+O3FA INT:11

Lost to follow-up: 0

Discontinued INT: 1b

Lost to follow-up: 0

Discontinued INT: 2c,d

Lost to follow-up: 0

Discontinued INT: 0

Lost to follow-up: 0

Discontinued INT: 2e,f

Analyzed: 7 Analyzed: 10 Analyzed: 7 Analyzed: 9

Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Flow chart showing number of subjects recruited and their attrition patters during the 16-wk intervention study. Int, 
intervention; CON, control; n-3 PUFA, omega-3 polyunsaturated fatty acids, Eicosapentaenoic acid + docosahexaenoic acid, PRO + 
PLA, whey protein isolate + placebo soybean oil; PRO + n-3 PUFA, whey protein isolate + omega-3 polyunsaturated fatty acids, 
Eicosapentaenoic acid + docosahexaenoic acid. Reason for subject withdrawal were as follows: a  discomfort wearing the ActiGraph 
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sleep monitor (1), b unexpected menstrual cycle (1), c fall resulting in injury and pain medication (1), d discomfort while swallowing 
the supplement capsules (1), e dislike of the WPI (1), and F time constraints (1). 
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Figure 2: Ratings of subjective sleep quality and duration during and following the 16-week supplementation intervention in the 
control (CON, n=7), whey protein isolate (PRO, n=7), EPA + DHA (n-3 PUFA, n=10), protein + placebo (PRO + PLA, n=7), and 
whey protein isolate + EPA +DHA (PRO + n-3 PUFA, n=9) using the Pittsburgh Sleep Quality Index (PSQI) questionnaire. Global 
sleeping score (GSS) = Sum of seven sub-component scores; range from 0-21. Line graphs represent the GSS over time and bar 
graphs represent the treatment effect (16-week – baseline values) per treatment group. (A) GSS. Data are expressed as mean ± SD. * P 
< 0.05 is considered significant. 
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Figure 3. Fasting plasma orexin-A (OXA), cortisol, and brain-derived neurotrophic factor 
(BDNF) response during and following the 16-week supplementation intervention in the control 
(CON, n=7), whey protein isolate (PRO, n=7), EPA + DHA (n-3 PUFA, n=10), protein + 
placebo (PRO + PLA, n=7), and whey protein isolate + EPA +DHA (PRO + n-3 PUFA, n=9). 
Line graphs represent fasting plasma concentrations over time and bar graphs represent the 
treatment effect (16-week – baseline values) per treatment group. (A) OXA concentrations; (B) 
cortisol concentrations; (C) BDNF concentrations. Data is expressed as mean ± SD. * P < 0.05 is 
considered significant.
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CHAPTER 6. Conclusion  

The current growth rate of the older population is recognized as one of the most 

substantial demographic trends in United States (U.S.) history [1, 2]. This robust shift in 

demographics emphasizes the importance of independence, quality of life, and health across the 

lifespan to promote successful aging (SA) [3]. The concept of SA is associated with longevity, 

the absence of disease and disability, and a positive state of well-being which are strongly 

associated with body composition [4-10]. We defined SA as low cardiometabolic risk, 

preservation of physical function, and a positive state of well-being with nutrition as an integral 

component. Research suggests nutritional strategies focused on the incorporation of high-quality 

protein and omega-3 polyunsaturated fatty acids (n-3 PUFAs) are potential methods to mitigate 

age-related decline in skeletal muscle mass, fat mass gain, cardiometabolic risk, physical 

function, and well-being in adults to promote SA [11-16]. The overall objective of this 

dissertation was to determine the effect of nutrition, specifically dietary protein and n-3 PUFAs, 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on SA outcomes of 

cardiometabolic risk, physical function, and well-being. The central hypothesis tested in this 

dissertation was that increased intake of high-quality dietary protein or n-3 PUFAs would 

improve SA outcomes of cardiometabolic risk, preservation physical function, and well-being in 

middle-aged and older adults. This dissertation includes three independent research studies 

investigating the effect of nutrition on components of SA. Collectively, the results suggest high-

quality protein and n-3 PUFAs act as potential regulators of SA.  

 Study 1, a meta-analysis and systematic review, was designed to evaluate the available 

evidence of randomized controlled trials (RCTs) incorporating beef and nutrients found in beef, a 

high-quality dietary protein, on components of SA with a focus on well-being. Nine RCTs were 
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included in the meta-analysis and an overall positive effect of beef (n=1) and beef’s nutrients 

(n=8) was found on well-being with substantial heterogeneity among sample populations. In this 

meta-analysis well-being outcomes included LBM, cognitive function, and physical function. 

Physical function significantly improved following intervention supplementation of beef and 

beef’s nutrients. Although quality of life and subjective well-being outcomes were included in 

the search processes, RCTs incorporating quality of life and subjective outcomes of well-being 

did not meet our inclusion criteria. According to the Center for Disease Control and Prevention 

(CDC) [8], physical well-being and psychological well-being are specific components which are 

included under the well-being concept. Therefore, although subjective outcomes of well-being 

were not included, LBM, physical function, and cognitive function components were analyzed 

within the well-being model. Furthermore, and evident need was identified for additional well-

designed RCTs evaluating the efficacy of beef and nutrients found in beef in healthy adults ≥ 50 

years of age to promote well-being and SA. Future research should adopt a population 

representative sample of healthy older adults, absent of chronic diseases, and examine the effect 

of lean beef on outcomes of well-being. Furthermore, RCTs implementing dietary interventions 

should incorporate a multidimensional approach with homologous defined functional outcomes 

of LBM, cognitive function, physical function, and quality of life to advance research in the field 

of aging, nutrition, and SA in healthy adults.  

 Study two, a clinical trial with a randomized cross-over design, was designed to 

investigate the effect of a high protein breakfast containing whey protein isolate (WPI) or pea 

protein isolate (PPI) on appetite, energy expenditure, and 24-hour energy intake in young 

compared to older healthy men to decrease cardiometabolic risk and promote SA. To our 

knowledge, this is the first study to examine the short-term effect of a high-protein breakfast 
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from plant- or animal-derived protein sources on energy expenditure and appetite response in 

healthy, young and older men. Collectively, the results of this study suggest an isocaloric, 

isovolumetric, macronutrient- and fiber-matched protein-based breakfast beverages from an 

animal-based whey protein isolate and a plant-based pea protein isolate exerts comparable effects 

on appetite, energy expenditure, and 24-hour energy intake in both young and older healthy adult 

men. The lack of differences observed between protein source may have been due to the 40 

grams of protein used in the test breakfast beverages which was a larger dose compared to the 

doses used in other studies demonstrating differences in energy metabolism [17, 18] and appetite 

[19] between protein sources. In addition, we did not provide the pea protein and whey protein in 

mixed-meal context. Data from the 2017-2018 National Health and Nutrition Examination 

Survey (NHANES) demonstrate that adults in the U.S. skew protein (and energy) consumption 

toward the evening meal [20]. Moreover, mean protein consumption for adults aged 20 and over 

is ~13 grams at the breakfast meal [21]. Therefore, further research is needed to determine the 

effect of a plant-based compared to an animal-based protein breakfast meal in a comparable 

quantity to a standard American breakfast of ~13 grams in young compared to older adults.  

 Study three, a 16-week randomized controlled trial, was designed to investigate the effect 

of protein and n-3 PUFA supplementation individually and in combination on LBM, physical 

function, cardiometabolic risk, and well-being in postmenopausal women to promote SA. To our 

knowledge, this is the first RCT to examine the effect of 16-weeks of dietary protein and/or n-3 

PUFA supplementation on LBM, physical function, cardiometabolic risk, and well-being in 

postmenopausal women. The present study tested the hypothesis that combined dietary protein 

and n-3 PUFA supplementation would have a greater effect on body composition, 

cardiometabolic risk, and indexes of sleep and mood states in postmenopausal women when 
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supplemented in combination as WPI and n-3 PUFA compared to individual supplementation. 

Collectively, the results of this study suggest protein and n-3 PUFA combined supplementation 

when compared to individual supplementation for 16-weeks does not provide additional benefits 

on body composition, cardiometabolic risk, and well-being. However, we observed a potential 

additive effect of protein and n-3 PUFAs on orexin-A (OXA) concentration. To our knowledge, 

comparable dietary interventions have yet to be conducted and a mechanism of action of OXA in 

cardiometabolic risk, physical function, and well-being is yet to be elucidated in humans.  

Moreover, data from our lab indicate obese Zucker rats assigned a high-protein (40% energy) 

diet had reduced liver and skeletal muscle lipid deposition, and higher OXA concentrations 

compared to obese Zucker rats consuming a moderate-protein (20% energy) diet for 12-weeks 

[22]. There is a need to further assess the effect of dietary protein and n-3 PUFA intake on OXA 

concentrations in post-menopausal women. Furthermore, a relationship between SA and OXA 

[23] warrants further investigation.  

 Collectively, the results of this dissertation suggest high-quality protein and n-3 PUFAs 

act as potential regulators of SA outcomes. However, additional research is necessary to 

determine the effectiveness of protein and n-3 PUFA-based nutrition strategies to promote SA. 

Altogether, further research is recommended to implement RCTs with longer duration and larger 

study populations to identify the effects of high-quality protein (e.g., whey protein isolate and 

lean beef) and n-3 PUFAs, EPA + DHA, on middle-aged and older adults to promote outcomes 

of SA. Moreover, additional research is necessary to determine the effect of dietary protein and 

n-3 PUFAs on OXA as a potential mechanism of SA. For example, future RCTs should 

implement WPI and lean beef supplementation alone and in combination with n-3 PUFAs within 

a multidimensional approach with homologous defined functional outcomes of LBM, physical 
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function, and well-being to advance research in the field of aging and nutrition. In addition, 

future studies should investigate the molecular mechanisms underlying the potential effect of 

dietary protein and n-3 PUFAs, apart from exercise and weight-loss, on OXA and SA in healthy 

older adults.
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