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Abstract

Proper allocation of law enforcement agencies falls under the umbrella of risk terrain

modeling (Caplan et al., 2011, 2015; Drawve, 2016) that primarily focuses on crime

prediction and prevention by spatially aggregating response and predictor variables of

interest. Although mental health incidents demand resource allocation from law

enforcement agencies and the city, relatively less emphasis has been placed on building

spatial models for mental health incidents events. Analyzing spatial mental health events

in Little Rock, AR over 2015 to 2018, we found evidence of spatial heterogeneity via

Moran’s I statistic. A spatial modeling framework is then built using generalized linear

models, spatial regression models and a tree based method, in particular, Poisson

regression, spatial Durbin error model, Manski model and Random Forest. The insights

obtained from these different models are presented here along with their relative

predictive performances. These inferential tools have the potential to aid both law

enforcement agencies and the city in properly allocating resources required for such

events.
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Chapter 1

Introduction

Over the last two decades, law enforcement agencies are relying more and more on

statistical tools to build an objective criminal justice system, leading to a meteoric rise of

“predictive policing”, loosely defined as “the application of analytical techniques - particularly

quantitative techniques - to identify likely targets for police intervention and prevent crime or solve

past crimes by making statistical predictions” (Perry et al., 2013). The proposed algorithms

and methods attempt to uncover and exploit different aspects of crime activities data. For

example, Gotway & Stroup (1997) use a spatial generalized linear model, that has been

extended both by considering the temporal pattern as well as a non-linear modeling

approach using generalized additive modeling in ST-GAM or LST-GAM (Wang & Brown,

2012). In a series of papers, Mohler et al. (2011, 2013, 2015) propose a self-exciting point

process model that treats near-repeat nature of crimes (Townsley et al., 2000) as

aftershocks of an earthquake. This is the main driving force behind the popular crime

forecasting software called PredPol (https://predpol.com/) that has been since adopted

by many policing agencies over the US.

Apart from increasing the accuracy of prediction of future crime, it is also important to

understand which geographical factors significantly contribute to crime that can inform a

plan for allocating resources or making policy changes to either counteract the effect of

‘risky’ place or increase the intensity or presence of a ‘protective’ place. This is also closely

related to the goal of ensuring that a prediction rule that does not suffer from algorithmic

or systemic biases. This is particularly important, as with the increase in complexity and

use of such data-based tools, there is an increasing concern of reducing the racial

disparities in predictive policing, while producing dynamic and real-time forecasts and

insights about spatio-temporal crime activities. For example, using a combination of
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demographically representative synthetic data and survey data on drug use, Lum & Isaac

(2016) point out that predictive policing estimates based on biased policing records often

accentuate the racial bias instead of removing it. A natural solution seems to be the risk

terrain modeling (RTM) framework of Caplan et al. (2011), that uses a simple but

interpretable approach. In RTM, a separate map layer is created for each predictor, that are

then combined to produce a composite map where contribution or importance of each

factor can be evaluated in a model-based way.

We start with a brief review of the existing statistical methodology behind the most

common crime forecasting tools.

1.1 Literature Review

Self-exciting Point Process: One of the popular statistical approaches to modeling

criminal activities is self-exciting processes (Mohler et al., 2011, 2013, 2015) that is

characterized by the increasing probability of repeated events following an event, similar

to aftershocks of an earthquake. Here the intensity of a discrete-time point process

(criminal activities, in this context) is determined as a log-Gaussian Cox process (LGCP)

whose intensity is self-excited by occurrence of many events in a short time-window.

Generalized Additive Modeling for Spatio-temporal Data: Wang & Brown (2012)

developed a more sophisticated model using a generalized additive modeling for

spatio-temporal data (ST-GAM) that can be thought of as an extension of grid-based

regression approaches that can account for non-linear relationships. Here, spatio-temporal

features include previous crime activities, socio-economic and built-environment features

at the grid-cell resolution indexed over time, and Wang & Brown (2012) showed that their

method outperforms spatial Generalized Linear Model (GLM) (Gotway & Stroup, 1997)

where temporal information is not incorporated.

Risk Terrain Modeling: Risk terrain modeling, henceforth abbreviated as RTM, (Caplan
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et al., 2011, 2015; Drawve, 2016) is a class of statistical methods that combines geographic

features such as built-environments and socioeconomic variables in a supervised learning

set-up to provide insights and forecasts for crime activities at a chosen grid-level based on

the proximity to features and social factors. A typical RTM approach involves three steps:

(1) identifying potentially relevant factors for the spatial varying response variable, (2)

assign a value for each factor considered for each location or grid-cell spanning a common

geography, and (3) combine the factor-specific raster maps in a supervised regression

framework so that each factor can be judged in terms of its relevance for the crime

outcome. There are three key advantages of risk terrain modeling approach over the

LST-GAM or Hawkes process based algorithms. Firstly, the underlying statistical

methodology for RTM immediately provides interpretability to the factors influencing

spatial clustering of crime or other response variables. Secondly, it alleviates some of the

racial disparity concerns by moving the focus of the modeling approach from people to

places. Finally, the raster-map based modeling framework lets us easily incorporate

different machine learning and statistical tools of choice depending on their performance

for a given jurisdiction. In this thesis, we use Poisson GLM, spatial error model and

random forest, but it is straightforward to add any number of methodologies to the mix

and choose the best performing method or combine the disparate tools in an ensemble

learning framework.

While these developments have been mostly focused on crime prediction and

prevention, there is relatively less emphasis on other spatial events such as mental health

calls that also require resource allocation from the law enforcement agency or the city. The

goal of this thesis is to extend the powerful and interpretable statistics and machine

learning methodologies under the general umbrella of risk terrain modeling to the

geo-spatial predictive modeling of mental health call locations in Little Rock, AR.

The outline of the thesis is as follows: in Chapter 2, we describe the modeling

3



approach and the different methodologies used in developing the risk terrain for mental

health calls. Next Chapter 3 illustrates the spatial clustering and other descriptive features

of the data and demonstrates the performances of the proposed framework. Finally, in

Chapter 4, we provide some new directions for research in this area.
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Chapter 2

Spatial Forecasting

2.1 Modeling Approach

Our spatial modeling and forecasting framework is similar to RTM, with a key difference

being the underlying statistical methodologies. In this thesis, we use the following

methodologies and compare both the important predictors chosen by the model as well as

their predictive performance for forecasting mental health incidents in Little Rock, AR:

Poisson Generalized Linear Model The Poisson regression model belongs to a family of

regression models called the generalized linear model (GLM). As a special case of

the GLM family, the fitted Poisson regression model uses ηi = ln(λ) as canonical

link and is of the form:

ŷi = g−1(xT
i β̂) = exT

i β̂.

Among several link functions commonly used with the Poisson distribution, the log

link function ensures that λi ≥ 0 which is crucial for the expected value of a count

outcome of response variable (mental health incidents) (Montgomery et al., 2006). In

terms of model interpretation, parameters may be interpreted in a probabilistic sense

which arises as an advantage from the fact that Poisson regression belongs to the

GLM family. This suggest that significant factors present in the fitted model may be

explained in strict probabilistic terms with respective levels of uncertainty.

Random Forest Random forest (Breiman, 2001) falls into the non-linear/non-parametric

category of supervised learning approaches known as decision trees. Decision trees

are particularly known due to their inherent ease of use and interpretability in both

cases of regression and classification problems. For regression problems, decision

trees divide the predictor space into J distinct and non-overlapping regions,
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R1, R2, ..., RJ also known as terminal nodes or leaves using the training data through

a recursive binary splitting procedure. Note that a threshold is implemented onto

the recursive binary splitting procedure at each step to ensure that the process ends

when the number of observations at a given split is less than the threshold. In

addition to the preceding criteria, the aim is to obtain terminal nodes that minimize

the residual sum of squares:

J

∑
j=1

∑
I∈Rj

(yi − ŷRj)
2.

The results obtained are likely to over-fit the data due to the complexity of the

resulting tree so, a cost-complexity pruning procedure is implemented to find a sub

tree which minimizes the objective function:

|T|

∑
j=1

∑
i:xi∈Rj

(yi − ŷRj)
2 + α|T|,

thereby reducing the variance at the cost of little bias for better interpretation. As a

preventative measure to not over-fit the training data and control the length of the

tree, the penalty factor α is added to |T|(the number of terminal nodes). Any

observation that fall into the Rth
i region is simply the mean response of the R

variables from the training data set.

Single Decision trees however are not as competitive when compared to other forms

of linear or non-linear supervise learning models. One solution to build a more

robust decision tree is known as Random forests. Random forests builds B number

of trees to improve its performance using bootstrapped samples from the training

data in a strategic manner that decorrelates the trees and the final prediction is done

by averaging the prediction from each individual trees. In the process of building
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each decision tree, at every stage or split, a random sample of size m =
√

p

predictors are chosen as candidates from the pool of p predictors. As a result, strong

predictors do not influence the building order of every tree (making them not look

alike). This process decorrelates the trees, as on average p−m
p of the splits would not

have such strong predictors thus reducing the variance and improving results. We

refer the reader to James et al. (2014) for an in-depth discussion of random forest.

Spatial Econometric Model: Spatial Durbin Model Data containing a

location/geographic component contain spatial dependencies among observations

which may lead to spatial relationship. Spatial relationships occur not only in the

dependent variables (response variable), but also independent variables (covariates)

and residuals terms (ε). The proper terms defining spatial relationships among

dependent variables, independent variables and residual terms are known as

endogenous interaction, exogenous interaction and error interaction respectively .A

model that accounts for all spatial relationship is the Manski model 1, with the form:

Y = δWY + Xβ + WXθ + u; u = λWu + ε. (2.1.1)

Here δ is known as the spatial autoregressive coefficient, λ is the spatial

autocorrelation coefficient, W represents the spatial weighted matrix that describes

the spatial configuration of the unit samples, X is a matrix of exogenous variables or

covariates and lastly θ and β are unknown parameters to be estimated that explain

the contribution of each predictor and their spatially lagged version(Elhorst, 2014).

For the purpose of this thesis, both Manski and spatial Durbin error models were

fitted onto the mental health spatial data. The Manksi model otherwise known as

the General nesting spatial model in Fig. 2.1 models the spatial events (mental health

incidents) as a function of endogenous interactions (neighboring values or spatial

1The Manski model is also known as the Generalized Nesting Spatial Model(GNS) (Elhorst, 2014)
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Figure 2.1: Taxonomy of Spatial models, reproduced from (Halleck Vega & Elhorst, 2015).

lags), exogenous interactions(build environment, social factors etc.) and error

interactions (spatial autocorrelation& spatial heterogeneity). The spatial Durbin

Error Model is a special case of a Manski model with δ = 0, thus having the

endogenous interactions removed. Spatial Durbin Error Model is of the form:

Y = Xβ + WXθ + u; u = λWu + ε. (2.1.2)
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Chapter 3

Analyzing mental health incidents in Little Rock

3.1 Descriptive Statistics

3.1.1 EVIDENCE OF CLUSTERING: MORAN’S I

The underlying assumption at the start of this study was that mental health incident in

Little Rock were rather present as concentrated groups (i.e. Clusters) rather than occurring

at random. To put matters into visual perspective, see Fig. 3.1 where panel 1 represents

the actual geographic position of recorded 2018 mental health incidents in Little Rock and

panel 2 represents the same number of incidents but simulated as if they were of random

occurrence following an uniform spatial distribution. Following Fig. 3.1, it can clearly be

seen the presence of concentrated zones of mental health incidents when comparing both

panels. Such remarks may be interpreted as being subjective, therefore rather than relying

on visual senses to identify clustered and non-clustered regions; a measure of spatial auto

correlation was introduced to test the initial assumptions. In proper statistical terminology,

the null hypothesis follows that mental health incidents are randomly distributed across

the area of study (Little Rock) and the alternative hypothesis was that mental health

incidents were more clustered than as expected from usual randomness.

It must be noted that the clustering terminology refers to the whole spatial pattern

described by a global statistic for spatial auto - correlation. In order to properly identify

the clustered and non-clustered regions, a specific application for a LISA (Local Indicator

of Spatial Association) must be implemented. LISA is any statistic that provides the extent

of significant spatial clustering of similar values around a given observation (i.e Local

Spatial Statistic). It also establishes the connection between the local and global statistic

for spatial association having the sum of all local spatial statistics be proportional to the
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global statistic thereby allowing the decomposition of global indicators. (Anselin, 1995)

Among a handful number of global tests for spatial auto correlation including Geary’s

C and the global Getis-G, Moran’s I is perhaps the most common global test, and is

implemented in almost all common spatial toolboxes for testing auto-correlation (Bivand

et al., 2008). Spatial auto-correlation quantifies the degree to which similar features cluster

and identifies their location. In the presence of spatial auto-correlation, we can predict the

values of observation i from the values observed at j ∈ Ni, the set of its proximate

neighbors (Pebesma & Bivand, 2019). As in typical correlation, Moran’s I value generally

ranges from −1 to +1 inclusively as a result of having a normalizing factor, n
∑n

i=1 ∑n
j=1 wij

(Boots, 2001). The contrast between spatial auto correlation Moran’s I and

Pearson/Spearman’s correlation lie in the presence the spatial weight matrix in Moran’s I

statistic. The inclusion for the spatial weight matrix in Moran’s I enables the possibility of

obtaining extreme values greater than the usual (−1, 1) bounds depending on the

structure/composition of the weight matrix. Extreme Moran values are obtained via the

relation between the min and max eigen values from the spatial weight matrix, for a

thorough discussion regarding extreme values we refer the reader to (de Jong et al., 1984) .

A negative and significant Moran’s I value represent negative spatial auto-correlation

indicating dissimilar values are next to each other. A positive and significant Moran’s I

value represent positive spatial auto-correlation indicating evidence of clustering of liked

values.

In order to apply the spatial auto correlation test (both Global and Local Moran’s I)

onto the Spatial Data, two critical prerequisites steps had to be executed. Steps included

the identification of the k nearest neighbors then assigning their respective weights using

the package spdep (Bivand & Wong, 2018). To identify both prerequisites, a fishnet of grid

cell size of 1000m by 1000m representation from Little Rock containing all the necessary

attributes for the analysis previously created was used after undergoing a centroid
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Recorded Mental Health Incidents In Little Rock, 2018

Panel 1

Simulated Case of Random Mental Health Incidents In Little Rock

Panel 2

Figure 3.1: Panel 1 showing observed mental health incidents in Little Rock in 2018. Panel 2
shows distribution of simulated mental health incidents following a Uniform distribution,
keeping the total number of incidents fixed.

transformation (Fig. 3.2). This transformation realized unto the grid cells was necessary in

order to extend the neighborhood criteria from just contiguity to distance-based neighbors

(k-nearest neighbors) (Pebesma & Bivand, 2019).

Using k-nearest neighbors typically leads to asymmetric neighbors. However, this is

not the case as all centroids are uniformly spaced. A key advantage of using

distance-based neighbors to ordinary polygon contiguity is that it ensures that all fishnet

grid cells polygon representation (centroids) have k neighbors. It is common practice to

11



Little Rock Fishnet Transformation

Fishnet to Centroid Transformation

Little Rock Centroid Transformation

Figure 3.2: Panels showing fishnet grid-cell to centroid transformation representation of
Little Rock, AR.

use k = 8 or k = 4 neighbors which are formally know as “Queen Case” and “Rook Case”

for the number of desired neighbor (Figure 3.3). For this research, k = 8 nearest neighbors

were used and located using the function knearneigh and Knn2nb from the package spdep.

Following on the identification of all 8 neighbors for each centroid, their respective

weights were assign using the function nb2listw from the package spdep.

As an example, consider Fig. 3.3 (“8 Nearest Neighbors”) as a zoomed in portion of

Fig. 3.2. The numbers represent the fishnet Grid ID, in essence Grid ID 1 will have the

following list of neighbors 2,3,4,5,6,7,8,9. The following step after the identification of the

neighbors of Grid 1 is to assignment spatial weights to the list of neighbors. As the term

12



1

2 3 4

5 6

7 8 9

8 Nearest Neighbors

1

2 3 4

5 6

7 8 9

4 Nearest Neighbors

Figure 3.3: Fishnet grid cell representation of Queen case and Rook case neighborhood
definition, k = 8 and k = 4 respectively.

weight implies, it is how much value we want to extract from each neighbors. Assigning

equal weights to each grid’s neighbors list methodology was used in this research, this

suggest that each neighbor will have a corresponding weight of 1
8 . This weight is then

used to compute the mean neighbor values as weight = 1
8 ∑9

i=2 weight for neighbori. This is

equivalent to summing all eight mental health incident case that fell within the neighbor

grid cell then dividing by 8. Having obtained both neighbors and their respective weights,

the following step was to test for the presence of spatial auto-correlation using both Global

Moran’s I and Local Moran’s I.

Global Moran’s I

The process for calculating the global test for spatial auto correlation uses local

relationships between the observed spatial entity value and its defining neighbors (Bivand

et al., 2008).

Definition 3.1.1 (Global Moran’s I). Let yi be the ith observation, with the mean being ȳ,

and let and wij be the spatial weight of the link between i and j, then Global Moran’s I

13



statistic is given by the following formula:

I =
n

∑n
i=1 ∑n

j=1 wij

∑n
i=1 ∑n

j=1 wij(yi − ȳ)(yj − ȳ)

∑n
i=1(yi − ȳ)

,

where I represents the ratio of the product of the variable of interest, and adjusted for the

spatial weights used.

Centering on the mean is equivalent to asserting that the correct model has a constant

mean, and that any remaining patterning after centering is caused by the spatial

relationships encoded in the spatial weights.

Local Moran’s I

Localized tests are built by breaking global measures into components which aids in

the detection of clusters and hot-spots, where, clusters are defined as groups of

observations where neighbors have similar features and hot-spots are groups of

observations with distinct neighbors. (Bivand et al., 2008).

Definition 3.1.2 (Local Moran’s I). Local Moran’s Ii values consist of the n individual

components added to produce the global Moran’s I (definition3.1.1): where the

assumption is that the global mean ȳ is an accurate summary of the variable of interest y.

Note that here we do not center the two components in the numerator, (yi − ȳ) and

∑n
j=1 wij(yj − ȳ).

Ii =
(yi − ȳ)∑n

j=1 wij(yj − ȳ)
∑n

i=1(yi−ȳ)2

n

.

The global Moran’s I computed using the function moran.test from the spdep R

packaged produced a single value of 0.22923. We note here that the the global Moran’s I

has an alternative representation as the slope of the Ordinary Least Square (OLS)

regression line in the Fig. 3.4 describing the universal spatial autocorrelation of the data.

To test the significance of Global Moran’s I statistic, a permutation bootstrap test with

14
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Figure 3.4: Moran’s Plot described by the slope of the OLS regression between fishnet
mental health incidents and spatially lagged fishnet mental health incidents.

999 simulations was conducted via the moran.mc function from the spdep R package. The

permutation test produced a sampling distribution of the test statistic Moran’s I under the

null hypothesis of no spatial auto-correlation, which was used to derive a (pseudo)

p-value. The (pseudo) p-value of a permutation test is computed using the following

formula:
Nextreme + 1

N + 1
,

where Nextreme represent the number of simulated Moran’s I values more extreme than

the observed Moran’s I statistic and N denotes the total number of simulations

(gimond2019). The sampling distribution and the observed value of Moran’s I is shown on

3.5 for a visual illustration of this test.

Note that the observed value of the Global Moran’s I statistic was the max when

compared to the simulated values obtained from the permutation test. These results

provide a pseudo p-value of 1/1000 = 0.001 indicating that there is a 0.1% probability of

observing a test statistic that is as or more extreme compared to the current observed

value of the Moran’s I under the null hypothesis H0. With the statistical significance level
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Figure 3.5: Sampling Distribution and Observed Value for the Moran’s I test statistics.

of the Global Moran’s I statistics value established, a localized Moran’s test was conducted

to identify the location of the possible mental health incident clustering using the function

localmoran from the spdep package. Similar to the global Moran’s I described above, the

local Moran’s I evaluates the level of spatial auto-correlation among the k-nearest fishnet

grid cells (k = 8, here) surrounding a given fishnet grid cell. Local Moran’s test also

computes the (pseudo) P-value indicating the significance of the spatial auto-correlation at

the level of each fishnet grid cell. Using a significance level of α = 0.05 to determine which

grid cells indicate a significant level of clustering will be flawed as the local Moran’s test

executes multiple comparison test (Anselin, 1995). To address the multiple comparison

test issue, a Bonferroni p-value adjustment was implemented using the function p.adjustSP

from the spdep package thereby allowing the use of α = 0.05 to determine significance

post p-value adjustment . For the following figure, the first panel shows the count of

Health Incident events; Panel 2 shows the local Moran’s I Statistic value at each grid cell,

the final panel shows areas that exhibit statistical significant clustering (Gimond, 2019).

The presence of positive and significant spatial auto-correlation in the mental health

incidents data clearly substantiates our claim that such events are clustered in space,
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Figure 3.6: Local Moran’s I plot illustrating the spatial clusters of mental health incident
calls in Little Rock, AR.

instead of uniformly distributed over the entire region of interest. Having obtained such

results is essentially the first step in the process of identifying a proper model (Pebesma &

Bivand, 2019).
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3.1.2 PERFORMANCE COMPARISON

Table 3.1: Model Performance Comparison

MAPE
Mean

MAPE
SD

MAE
Mean

MAE
SD

RMSE
Mean

RMSE
SD

Poisson GLM 1.3112 0.0308 0.9098 0.2699 2.9166 1.5893
Random Forest 1.306 0.0346 0.8677 0.1708 2.1904 0.9008
Manski Model 1.302 NA 0.7708 NA 2.5832 NA
Spatial Durbin 1.316 NA 0.6356 NA 2.135 NA

We compare the predictive performance of the four candidate methods on Table 3.1,

and report the mean and standard deviation for each error measure. To better assess the

accuracy of the models, we use four different error measures: Mean Absolute Percentage

Error (MAPE), Mean Absolute Error (MAE) & Root Mean Square Error (RMSE), see Table

3.1 above. The errors were calculated in a supervised learning set-up, where both Poisson

regression and Random Forest models were built using leave-one-group-out

cross-validation with the number of folds being equal to five. Below, we define the

different error measures used to compare and describe the best performing model

according to that criterion.

First, the Mean Absolute percentage Error (MAPE) statistic captures the model’s

accuracy in terms of percentage error. The MAPE is calculated using the following

formula:

MAPE =
1
n

n

∑
i=1
|Ai − Fi

Ai
| × 100,

where Ai is the ith actual observation and Fi is the ith forecast value. Since the MAPE

expresses the error as percentage, it can be relatively easier to interpret when compared to

other statistic measures. The lower the percentage error, the more accurate the model

represents the data. For a given model, it can be concluded that on average, the forecast is

off by the MAPE. We can clearly see that on average all models forecasts were off by

approximately 1.3% with a standard deviation of approximately 0.0308 and 0.0346 for the
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Poisson GLM and Random Forest respectively. In terms of MAPE, all models perform

relatively the same with the Manski model having the smallest.

The Mean Absolute Error (MAE) statistic captures on average how large the forecast

error is expected. The MAE is given by the formula

MAE =
∑n

i=1|Ai − Fi|
n

,

where Ai is the ith actual observation and Fi is the ith forecast value. Spatial Durbin error

model had on average the smallest forecast error of 0.6356 followed by the Manski Model

with a MAE of 0.7708 and Poisson GLM having the largest forecast error of 0.9098.

The Root Mean Square Error (RMSE) or otherwise also known as the Root Mean

Square Deviation calculates the square root of the average of the square errors. The RMSE

measures the spread of the prediction errors. The RMSE is given by the formula

RMSE =

√
∑n

i=1(Fi − Ai)2

n
.

Spatial Durbin Error model had the smallest RMSE value of 2.135 followed by Random

Forest with a RMSE of 2.1904 and the Poisson GLM having the largest RMSE of 2.9166.

3.1.3 GOODNESS OF FIT METRICS

Table 3.2: Model Goodness of fit Comparision

R2
Mean

R2
SD

LogDev
Mean

LogDev
Sd

Poisson glm 0.3927 0.1517 0.6141 0.0509
Random Forest 0.3822 0.0582 0.5844 0.0403
Manski Model 0.4366 NA 0.6124 NA
Spatial Durbin 0.4735 NA 0.7102 NA

In terms of Goodness of fit metrics, the R squared (R2) values and logarithmic

deviance score were used to evaluate the models. The most common measure is perhaps
19



the R2 that represents the percentage of variation explained by the model,

R2 = 1− ∑i(yi − ŷi)
2

∑i(yi − ȳ)2 , ŷi = predicted value of yi, ȳ = grand mean,

thus a larger R2 is indicative of a better model fit. Note that the Adjusted R2 value was not

computed as it is rather difficult to compute for random forest and use in goodness-of-fit

comparison. The Logarithmic deviance Score is a measure of the deviance between the

predicted and observed counts, via the log likelihood ratio. To measure this, we calculate

the likelihood ratio of the observed value and the predicted value based on a Poisson

distribution. The goodness of fit reported here is the negative log of the probability

density so a lower value indicates a better predictive ability. As seen in table 3.2, Spatial

Durbin error model obtained the largest R square value followed by the Manski Model.

Note that despite having obtained the largest R square value i.e the best model in terms of

R square goodness of fit metric, it obtained the largest logarithmic deviance score thus the

worst model in logarithmic deviance score goodness of fit metric for the mental health

dataset. Continuing on table 3.2, for the Logarithmic Deviance score goodness of fit metric,

the Random Forest model obtained the smallest score. This suggest that Random Forest

had the smallest deviance between predicted and observed count of mental health

incidents i.e. the best model of such category.
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Figure 3.7: Predicted versus observed mental health incident cases plots by the candidate
models.

3.1.4 FEATURE IMPORTANCE COMPARISON

Finally, we look at the important features or variables driving the prediction for each of

the four candidate methods. We call these measures ‘variable importance’ following the
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nomenclature used by random forest literature, but for purely statistical models such as

Poisson regression or spatial Durbin models, the quantities being compared are a measure

of each variable’s significance. As discussed before, this a key step in the prediction

process as the important variables help us in identifying which environmental and social

features are predominantly occupying each of these predictive processes, investigate

whether they play a risky or protective role and then allocate resources accordingly.

A note about nomenclature for the features plotted on the following figures. There are

three unique prefixes linked with each type of feature. Nearest neighbor (‘NN’) refers to

features obtained by calculating the average distance between a fishnet grid cell centroid

and its nearest neighbor in Queen case definition. Euclidean distance (‘ed’) refers to

features obtained by calculating the euclidean distance between a fishnet grid cell centroid

and its first nearest neighbor. agg refers to the count of mental health incident in a given

fishnet grid cell. The term ‘agg’ was coined based on the aggregate function used in R to

obtain the count of cases associated per fishnet cell.

Table 3.3: Top ten covariates with decreasing order of significance for each model.

Poisson GLM Random Forest
agg Rentals Apts Over100units NN PoliceFacilities
agg Rentals Apts LessThan100units NN Banks
agg MajorDeptRetailDiscount agg BusStops
agg FastFoodAndBeverage agg GasStationAndConvMart
agg MixedDrink BarRestClub agg FastFoodAndBeverage
agg BusStops NN ChildCareServices
NN ReligiousOrgs NN BarberAndBeautyShops
agg LiquorStores NN ChildYouthServices
agg GasStationAndConvMart agg LiquorStores
NN Unsafe Vacant BldgsNEW NN ReligiousOrgs

Table 3.3 Continued.

Spatial Durbin Manski
agg Rentals Apts Over100units agg Rentals Apts Over100units
agg FastFoodAndBeverage agg FastFoodAndBeverage
agg BusStops agg BusStops
agg Rentals Apts LessThan100units agg GasStationAndConvMart
agg GasStationAndConvMart agg MajorDeptRetailDiscount
agg MajorDeptRetailDiscount agg Rentals Apts LessThan100units
agg HotelMotel.x agg HotelMotel.x
agg MixedDrink BarRestClub agg MixedDrink BarRestClub
NN Unsafe Vacant BldgsNEW NN Unsafe Vacant BldgsNEW
agg LiquorStores agg LiquorStores
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Table 3.3 summarizes the top ten most influential features from each model. We note

here that four similar features were found among the set of top features selected by four

models. These common features were: agg FastFoodAndBeverage, agg BusStops,

agg LiquorStores, agg GasStationAndConvMart. As the four models highlight the

importance of the influence these features had on the models, further interdisciplinary

study involving experts from criminology and local law enforcement is required to

understand whether any causal relationship exists between these environmental factors

and mental health incidents in Little Rock, AR.

The following plots illustrate the feature importance in descending order with respect

to each model. In order to create a visual feature comparison between the Random Forest

feature importance plot and the remaining models, the − log10 P-values of each predictor

for each other models were plotted.
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Figure 3.8: Variable Importance for Random Forest.
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Figure 3.9: Poisson Regression variables in decreasing order of significance via - log
P-values.
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Figure 3.10: Spatial Durbin Regression variables in decreasing order of significance via -
log P-values.
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Figure 3.11: Manski Regression variables in decreasing order of significance via - log
P-values.
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Chapter 4

Conclusion

In this thesis we used a machine learning framework to understand the effect of

socio-demographics as well as environmental factors in predicting the spatial clusters of

mental health incidents in Little Rock, Ar. The use of spatial auto-correlation Moran’s I as

exploratory data analysis revealed an uneven distribution of mental health incidents

across the areas of study. The primary aim of this thesis was to expand the methodology

under risk terrain management by incorporating statistical models to predict mental

health incidents based on socio-economic predictors and environmental factors. We

compared four different statistical methods prediction accuracy and goodness of fit to

provide insight on the list of factors affecting mental health incidents in Little Rock, Ar.

Results indicate that in terms prediction accuracy, the spatial econometric models (Manski

and Spatial Durbin Error model) performed better than their models counter parts by a

small margin. For goodness of fit test R squared and Logarithmic deviance score

respectively, Spatial Durbin error model and Random Forest model performed the best.

The incorporation of these models under the risk terrain management would definitely

serve law enforcement agencies to properly allocate resources to address the unequal

distribution of theses incidents.

Furthermore, if law enforcement agencies adopt this framework, creating a meta

model from the models generated would serve as a better tool if indecisive of which

model to select based on prediction accuracy or goodness of fit. In addition to creating a

meta model, the implementation of temporal features and regularization parameters

would provide if not better prediction and model goodness of fit results. Finally in would

be meaningful to determine how these associations or patterns change in relation to a post

Covid-19 pandemic.
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