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Resumo

A redução drástica dos preços dos painéis fotovoltaicos que ocorreu na década passada permitiu
que centrais fotovoltaicas fossem instaladas em massa, levando a que esta fonte ocupasse uma
maior fatia da produção de energia elétrica.

Este tipo de energia apresenta baixo impacto ambiental, no entanto, a sua alta variabilidade e
incerteza intrínsecas desafiam os agentes de mercado e operadores do sistema. De forma a ajudá-
los a combater os dois fatores negativos apresentados são realizadas previsões de potência solar
a cada instante definido. Estas previsões são, normalmente, acompanhadas por um determinado
erro, que se pretende que seja o mais baixo possível a fim de otimizar as decisões com impacto
futuro. Assim, vários estudos têm vindo a ser desenvolvidos nesta área com o intuito de maximizar
a qualidade das previsões fornecidas. Apesar dos grandes avanços conseguidos, ainda há margem
para melhoria e, por isso, é apresentado neste projeto uma nova abordagem ao problema.

Nesta tese, apresentam-se diversos modelos de previsão de potência solar com horizonte tem-
poral de um dia para uma central fotovoltaica num cenário real. Estes modelos são desenvolvidos
através de deep learning que extraem automaticamente features a partir de imagens baseadas numa
grelha de pontos de Numerical Weather Predictions. Para determinar o desempenho dos mesmos,
são concebidas redes que requerem a criação manual de features. Todos os modelos são sujeitos
a uma seleção, a fim de comparar apenas os melhores de cada tipo numa posterior fase de avali-
ação. O desempenho geral e o desempenho em determinadas condições climatéricas de cada um
dos referidos são avaliados de acordo com os valores de um conjunto de métricas aplicadas às
previsões fornecidas pelos mesmos.
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Abstract

The drastic reduction in the prices of photovoltaic panels that occurred in the past decade allowed
photovoltaic plants to be installed in large scale, making this source occupy a greater share of the
production of electricity.

This type of energy has a low environmental impact, however, its high intrinsic variability
and uncertainty challenge market agents and system operators. In order to help them tackle the
two negative factors presented, solar power forecasts are produced for specific timestamps. These
predictions usually contain errors, which are intended to be as low as possible to optimize decisions
with a future impact. Thus, several studies have been developed in this area in order to maximize
the quality of the provided forecasts. Despite the great advances achieved, there is still room for
improvement and, therefore, a new approach to the problem is presented in this project.

In this thesis, several models of day-ahead solar power forecasting for a photovoltaic plant in a
real scenario are presented. These models are developed through deep learning that automatically
extract features from images based on a grid of Numerical Weather Predictions points. To assess
their performance, networks that require manual feature creation are designed. All of the created
models are subject to a selection, in order to compare only the best of each type in a later evaluation
phase. The global performance and the performance in certain climatic conditions of the selected
networks are evaluated according to the values retrieved by a set of metrics applied to the forecasts
which are provided by these models.
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Chapter 1

Introduction

The present chapter aims to provide the reader an overview regarding the motivation that supports

the theme of the thesis. Additionally, this chapter intends to show to the reader the main objectives

of the dissertation and the organisation of this document, describing each chapter briefly.

1.1 Motivation

Lately, the electrical power systems have been subject of various changes in order to improve

not only its reliability and quality of service provided, but also reduce its environmental impact.

Nowadays, electric power production is one of the main sectors that emit the most carbon dioxide

into the atmosphere, worsening the effects of climate change. In order to reverse the situation,

several countries and companies have been investing in alternative sources of energy that are more

environmentally friendly, such as wind and solar power. While the installed wind capacity has

increased in a very significant way over the last 20 years, the installed solar capacity has only

started to expand at a similar pace to the mentioned one since approximately 2010. In the coming

years, the installed solar capacity is expected to surpass installed wind capacity, because several

countries are running out of economically viable places to install wind turbines and there has been

a very steep decrease in the price of PV panels. In the figures 1.1 and 1.2 are represented the growth

of the cumulative installed capacity of PV in Portugal and in EU-28, respectively. According to

the National Energy and Climate Plan presented by the Government of Portugal, the cumulative

installed capacity of PV solar, in Portugal, is expected to reach 6.6 GWp by 2025 and 9.0 GWp

by 2030 [11]. In EU-28, this capacity can achieve values between 180.1 GWp and 276.8 GWp by

2023 [12].

This progressive penetration of solar power generation means that conventional sources, such

as thermal power stations, have an increasingly diminished role in the electrical power systems.

This event contributes to a greater difficulty in the management of the system and energy markets,

because unlike the production of energy from traditional sources, the production of solar energy

cannot be increased when it is desired and is dependent on external factors. Additionally, the

generation of solar energy is highly variable, uncertain and difficult to predict with high accuracy.
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Figure 1.1: Evolution of the cumulative installed capacity of PV solar in Portugal [1].

Solar power forecasting is an important asset for market agents, solar power plant operators

and system operators. These predictions optimise bids in the energy market and, consequently

control the costs associated with balancing. They can help PV power plant operators scheduling

maintenance in their facilities, minimizing potential economical losses. System operators need to

receive accurate solar power predictions, in order to increase the system stability that is challenged

by the inherent variability of solar power production. These forecasts can help determine operation

reserve requirements, optimise production planning, establish strategies to guarantee grid security

in any situation, avoid local voltage disruptions and minimise curtailment of solar power. The

errors present in the forecasts can affect negatively the decisions taken by their users, both in

economic and security terms.

Several studies conducted in the previous years showed a considerable error reduction by

applying algorithms that had never been applied in the sector. However, new methods keep being

discovered, namely in the field of deep learning, which can further reduce the errors provided by

these predictions. Nowadays, deep learning is also used in several sectors such as: healthcare

industry to detect tumors from clinical images as studied in [13] and farm industry to detect and

count the number of trees in an orchard using high-resolution remote sensing images as proposed

in [14].

The evolution of GPU over the last decade allowed them to become powerful computing ac-

celerators for high-performance computing. GPU accelerators usually reduce significantly the

computation time required to solve complex practical problems [15]. Therefore, the use of GPU

in solar power forecasting allowed the researchers to design more sophisticated models without

compromising the runtime and, consequently, delivering better results than classical approaches.

Most of the algorithms proposed by previous studies related to solar power forecasting rely on
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Figure 1.2: Evolution of the cumulative installed capacity of PV solar in EU-28 [2, 3, 4, 5, 6, 7, 8].

inputs that need to be manually pre-processed, known as manual features. This procedure is time

consuming and, additionally, does no not allow the generalisation for the desired application. The

remaining studies in the area were achieved using features generated by the models themselves,

called automatic features. These models have the capability to learn from the input which one is

best set of features and, consequently reduce the time spent by the researchers and, also, allow the

generalisation for the intended use.

1.2 Objectives and Contributions

As mentioned before, solar power forecasts play an important role in electrical power systems

with high solar power penetration. Their accuracy can be crucial to power system operators taking

decisions, hence there is a need to do further studies in order to improve their errors.

In this dissertation, it is intended to develop a set of deep learning models capable of predicting

solar power for a determined temporal horizon with a similar or even better performance than the

ones used in the industry. The differentiating factor of this project is the automatic extraction of

features from a grid of NWP points. This approach allows the researchers to spend more time

optimizing the network instead of the inputs, since the models themselves define which features

are the most crucial ones. The developed work will accomplish the following objectives:

• Development of models that predict solar power using automatic features, by testing and

comparing different networks with capability to generate distinct features;

• Evaluation of the automatic features in solar power forecasting, by benchmarking the pre-

dictions delivered by the different proposed networks;
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• Definition of a set of procedures that allow the replication of the models developed in this

dissertation in other PV plants using the same type of inputs.

1.3 Organisation of the Thesis

The present section intends to explain the organisation of the five chapters that compose the thesis.

The current chapter introduces the need for further studies in the area of solar power forecasting

and contains the objectives that this work will achieve.

Chapter 2, which is followed by the introduction, delivers an overview about solar power

forecasting and feature engineering. In the first part of this chapter, the solar power forecasts are

classified and some of the available methods are referred. The importance of feature engineering

is described in the second part as well as some of the studies conducted in this area that used

manual features and automatic features are mentioned along with their results. In the last part

three possible approaches to obtain automatic features are briefly explained.

In the chapter 3, the methodology followed in this work to obtain the models, that are later

analysed, is explained. Firstly, in order to help the reader understand the used information in the

models, the available data sets are described. Then, the methods used to pre-process the input data

are defined and the models developed are compared according to each type.

The next chapter addresses the hardware specifications of the server where the models are

tested and the hyperparameter tuning of the best models developed in the chapter 3. After this tun-

ing, the models are subject to several comparisons, in order to understand the value that automatic

features can bring to solar power forecasts.

Lastly, chapter 5 presents the conclusions reached throughout the work developed and possible

methods to improve the performance of the forecasts provided by the models designed.



Chapter 2

State of art

2.1 Introduction

The production of solar energy is undoubtedly dependent on weather conditions and the time of

day in which it occurs. Therefore, this source of energy is extremely variable and difficult to

predict with high accuracy. There are several ways to forecast the power output of a PV plant and

they can be classified according to their time horizon as it will be seen in this chapter.

The most advanced prediction techniques rely on machine learning algorithms, whose inputs

need to be pre-processed in order to obtain better forecasts. This pre-processing involves the cre-

ation of new variables, known as feature engineering, and respective selection. This part will have

a special focus in the current chapter, since it plays an important role in deep learning networks

and is one of the main motives for this project. The variables can either be generated manually

or automatically, however both methods have their own upsides and downsides that need to be

considered.

2.2 Solar Power Forecasting: Information Versus Time Horizon

Forecasting solar power involves a variety of methods based on the time frame being forecasted,

the data available to the forecaster and the usage of the forecast [16]. Several factors influence

its forecasted power output including, but not restricted to the measurement of solar irradiance,

reflectivity, estimation of PV cell temperatures and efficiency of the inverter [9]. Solar power

predictions can be classified by its time horizon: very-short term, short term, medium term and

long term. Each type of prediction can provide additional information for power system operations

and electricity markets as it can be seen in 2.1 [17, 9].

Very short-term solar power forecasts have a timescale from 5 minutes up to 6 hours and can

be based on:

• Statistical models, such as AR, ARMA and ANN, with online measurements as input;

• Cloud motion vectors derived from the sequential satellite cloud images for the temporal

range from 30 minutes up to 6 hours;

5
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Figure 2.1: Time horizon and applications for each type of solar power forecasting [9].

• Cloud information from ground-based sky images for the sub hour range [18];

• Machine learning techniques combined with NWP data [19].

Recently, stochastic learning techniques, which attempt to remove the modeller’s opinion in the

optimisation of the the topology, received attention, since they can be highly competitive in accu-

racy and relatively simple to setup. The best approaches use measured data and NWP models [20].

In short-term horizon, NWP models are combined with statistical methods for better solar

predictions. In cloudy conditions, the errors are higher, but in clear sky conditions are lower.

The NWP models displays large positive errors which require a model output statistics approach.

The NWP models conjugated with MOS correction method based on clear sky index and solar

zenith angle provides an important base line prediction accuracy to evaluate other forecasting

models [21].

For medium-term forecasts, it is possible to use information from NWP models, since they

can provide data for up to 6 days-ahead [22] and statistical models with processed data [21].

In the long-term forecasting process, the neural network toolbox is used, in order to predict

the future GHI. The historical and other weather data are fed to the model as input whereas the

actual data is fed as target [23].

2.3 Clear Sky-models and Naive Approaches

The clear-sky model originally included water vapor and Rayleigh scatter, but gradually added

ozone and aerosols [24]. Due to the diversity of atmospheric processes involved and their spatio-

temporal variability, modelling solar radiation incident at the surface is a difficult task. The general

irradiance modelling challenge is typically simplified by considering the following independent

parts:

• Modelling under presumed cloudless conditions;

• Modelling of the superimposed effect of clouds, if present.

The all-sky irradiance is, therefore, assumed a direct function of its clear-sky counterpart, even

when the sky is totally covered by clouds [25]. Such value can be used obtain the production of
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a solar plant under stationary conditions. Typically, meteorological variables and solar geometry

feed clear sky models, using Radiative Transfer Models to establish the connections between the

inputs [26].

Naive approaches can be considered as the reference models, in order to evaluate the perfor-

mance of other forecast models. The development of prediction models tries to focus more on

achieving better forecast accuracy instead of reducing the computational cost [27]. This model

can be used to create forecasts for minutes to hours-ahead time scales or less frequently forecasts

day-ahead restricted to clear sky conditions and its logic is to assume that the forecasted conditions

are similar to the current. There are several variations of naive-based modelling in solar radiation

predictions:

• Assuming that the forecasted and current values are equal;

• Assuming that the forecasted values are based on the current, but adjusted by the stage of

diurnal cycle;

• Using trends of change;

• Assuming long-term persistence of climatological means.

The results obtained from this model are affected by the information source, because data acquired

at the site provides better estimates than values derived from NWP [28].

2.4 Statistical Methods for Solar Power Forecasting

Statistical techniques extract relations of historical influential variables, in order to forecast its

future behaviour [27, 26]. These models do not need any internal data from the system and its

accuracy depends on the quality and quantity of historical meteorological and power measure-

ments [26]. Statistical methods can be separated into two distinct subgroups: regressive methods

and artificial intelligence techniques.

Regressive methods estimate the relationship between solar power output and independent

variables, by finding a mathematical function that correlates them. According to how time series

are treated, a further classification appears: linear or non-linear and stationary and non-stationary.

A time-series is classified as stationary if it fluctuates around a static mean and non-stationary if

that mean it is not shown. The regressive models used in solar power forecasting are:

• Linear stationary models: where is included AR model, Moving Average models, ARMA

models, AR exogenous models and ARMA models with exogenous variables;

• Linear non-stationary models: ARIMA models and SARIMA models are incorporated in

this category;

• Non-linear stationary models: composed by Non-linear AR-exogenous models [26].
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Artificial intelligence systems learn from example are able to deal with non-linear problems

and noisy and/or incomplete data (which is common in meteorological and power measurements).

Once they are trained, they can forecast and generalise at high speed [29]. The main AI models

applied in this field are: Artificial Neural Networks, k-Nearest Neighbours, Support Vector Ma-

chines and Random Forests. It will be done a further review on ANN, since they are the most

adopted machine learning models in solar power prediction and the project is related to them.

Artificial Neural Networks are effective tools since they can correlate highly nonlinear be-

haviour and they are inspired in the neuron operation, where a group of neurons are intercon-

nected to form a neural network [26]. These models have predicted solar irradiance with success

for different time horizons (from intra-hour to years) and display good performance for both data-

rich/poor environments [30]. To evaluate the performance of ANN, several studies were done such

as the ones conducted by:

• Pedro et al., where it is shown that ANN outperform Persistence, the ARIMA and the k-NN

models on 1 hour and 2 hours-ahead solar power forecasting [31];

• Kardakos et al., where it was concluded that ANN provide better day-ahead predictions than

SARIMA and Persistence and similar to SARIMA with exogenous factor [32].

2.5 The Importance of Feature Engineering

Feature engineering, also called feature construction, is often described as the process of extracting

new representations from the raw data that are more beneficial to a computing task [33]. These

new representations are obtained via a single or set of mathematical operations between part of

the original data set and provide another perspective of the data to the machine learning model as

it can be seen in [34] and [35].

Feature construction plays a crucial role in many machine learning models, because their per-

formance strongly depends on having insightful input representations that uncover the fundamen-

tal explanatory components of the output for the observed input [33]. Therefore, it can enhance

the overall result and, also, help build simpler models that are simultaneously easier to understand

and faster to run.

This process creates features that can be classified as:

• Relevant - shows strong influence on the output;

• Irrelevant - exhibits no effect on the output;

• Redundant - displays no impact when another feature that captures the same functionality is

present.

Therefore, it is important to perform feature selection, which consists in the stage where only the

relevant features are chosen to serve as the model’s input. Although feature selection is mainly per-

formed to enhance the model’s performance, it can also decrease the operating time of a learning

process and help build simpler models [36].
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2.5.1 Manual Feature Creation

Manual feature creation requires humans to build new representations of the original data and, then

select the relevant features. Both processes are time consuming and error prone. Although, these

processes, usually, are possible to do in small data sets, larger data sets require a more complex

feature representation, which is challenging for humans to realise based on domain knowledge

alone [37].

Another issue that manual feature construction faces is not having capability to generalise, at

least for each application. This can be seen in different PV plants, since the ideal set of features

discovered for one, might not be even good for another, due to the different location where they

are installed, which can make some factors more important in one and irrelevant in the other.

Chow et al. proposed an ANN that performs day-ahead solar power predictions based on

a database with NWP for the PV plant site. They carried out data min-max normalisation and

concluded that the most relevant variables to forecast the daily power output are: day of the month,

the mean daily relative humidity, the mean daily wind speed, the mean daily solar irradiance and

the daily air temperature [38].

Wang et al. created an ANN network capable of predicting solar irradiance with a time scale

of 24 hours based on measurements taken on the previous day of the forecast. This model receives

5 inputs and retrieves 24 variables corresponding to the solar irradiance of each hour for the next

day. From a data set with irradiance and temperature measurements, they extracted the following

features: daily average surface irradiance, daily average temperature, normalised discrete differ-

ence of solar irradiance, maximum value of the third order derivative of solar irradiance difference

and day of the year [39].

In the Global Energy Forecasting Competition 2014, participants studied probabilistic fore-

casting for hourly solar and wind production. For the task of solar prediction, they had available

information regarding 12 independent NWP variables, 4 of which contained accumulated values.

Gábor et al. decided to extract regular variables from the accumulated ones and time-related infor-

mation from the given timestamp (hour in two different formats, day of the year and month) [40].

Andrade and Bessa suggested another method to day-ahead solar power forecasts, but with

higher time resolution (1 hour). They had access to a database with a grid of NWP and engineered

new variables based on: temporal variance, lags and leads, spatial PCA, spatial standard deviation

and temporal and spatial means. Several approaches were tested according to the type of extracted

features, it was concluded that the combination of both types of features resulted on the best

performance [34].

The model developed by Andrade and Bessa is expected to achieve better results than the

remaining aforementioned ones, because it uses both temporal and spatial features. However,

this model certainly took longer to develop, as they had to discover spatial relationships with the

output.
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2.5.2 Automatic Feature Creation

The feature extraction stage is typically performed manually, additionally, depending on the type

of data, it is possible to face a wide range of methods to extract features. In this sense, the process

to create and select appropriate techniques, normally, takes a long time, so several methods were

created to overcome this issue [41]. These methods automatically discover the best representations

to perform a determined forecast, removing the need of feature selection.

Gensler et al. tested the performance between MLP, LSTM, DBN and LSTM Autoencoder

networks for solar power forecasts with time horizon of 24 hours to 48 hours. The features of the

first two models were obtained from manual feature engineering and the remaining automatically

from the models themselves. It was concluded that models with inherent capability of feature

extraction (in this case temporal features) led to better forecasts than the others [42].

Recent studies showed promising results when using CNN as a mean to learn and extract

automatically from time series data. These types of neural networks predict future values, since it

can learn filters that represent repeated patterns in the data. A closer analysis to CNN will be done

in 2.6.1. Koprinska et al. transposed this knowledge to day-ahead solar power forecasting and

adopted 1D-CNN and LSTM to extract temporal features by using arrays with hourly data of each

day. Persistence and MLP models which require manual feature extraction were also tested to

benchmark the performance. It was concluded that 1D-CNN under these conditions outperformed

the other models Koprinska2018.

Higashiyama et al. suggested another approach, but now applied to wind power forecasting

with time horizon between 30 minutes to 48 hours, which used 3D-CNN to automatically extract

features from a grid of NPW data. As referred in the article, 2D-CNN and 3D-CNN are able to ex-

tract nonlinear intrinsic spatial features and spatio-temporal features from the input, respectively.

In order to benchmark the performance of features extracted by 3D-CNN, the following meth-

ods were also studied to extract features: Naive approaches (direct use of NWP data), Principal

Component Analysis (where there a dimensionality reduction of NWP data) and 2D-CNN. It was

proven that 3D-CNN improve the accuracy of wind power forecasts, especially for a time horizon

greater than 20 hours, which shows that it can be an effective tools to extract features from NWP

data [43].

Since solar power data sets are organised in time-series, it is always possible to use 1D-CNN

and LSTM to extract temporal features, however, to extract spatial and spatio-temporal features

using 2D-CNN and 3D-CNN, respectively, it is necessary to have access to a grid of measure-

ments. 3D-CNN models are expected to have better performance than the remaining aforemen-

tioned models, because they can extract features that others cannot.

2.6 Approaches for Automatic Feature Creation

Since the project will address automatic feature creation, it is essential to understand the un-

derlying mechanisms of the structures that can automatically extract features. Therefore, in the
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following subsections, it will be explained how these structures work.

2.6.1 Convolutional Neural Networks

Convolutional neural networks, which are one of the most widely used categories of neural net-

works, especially for high-dimensional data, operate in a very similar manner to standard neural

networks [44]. CNN use a specialised kind of linear operation named convolution instead of gen-

eral matrix multiplication in at least one of their layers [10].

A CNN is composed by several basic building blocks that implement basic functionalities

such as normalization, pooling, convolution, and fully connected layers. Convolutional layers

contain a set of filters (also named convolutional kernels) that generate an output feature map after

convolving with the input, as it can be seen in 2.2. In order to obtain the output feature map,

the filter takes a determined number of steps, previously defined by the user, along horizontal

and vertical position [44]. After this operation, some redundancies were stored in the feature

map, since adjacent activities are usually related to each other. The use of a pooling layer after a

convolutional layer may be beneficial, because it can filter the most prominent features [33].

Figure 2.2: Simplified diagram that represents the operations performed by convolution layers
(extracted from [10]).

In a standard neural network, every output unit interacts with every input unit, since its layers

use matrix multiplication by a matrix of parameters. CNN have sparse interactions when the

kernel is smaller than the input, reducing the number of parameters to store. Thereby, improving

its statistical efficiency and decreasing the number of required operations [10]. Convolution takes

advantage of three fundamental ideas that can help enhance machine learning systems: sparse
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interactions, parameter sharing and equivariant representations. Such operation allows to work

with inputs with variable shapes [10].

A network has parameter sharing when the weight applied to one input is related to the weight

applied elsewhere. In a CNN, such feature is verified, because each member of the kernel is used

at every position of the input except some of the boundary pixels. With parameter sharing instead

of learning a separate set of parameters for every location, it is learned only one set, which reduces

even more storage requirements [10].

The particular form of parameter sharing causes the layer to be equivariant to translation,

which means that a change in the input would cause a change in the same way in the output. The

equivariance to translation makes it possible to appear the same output representation after moving

an event later in time in the input [10].

2.6.2 Long Short-Term Memory Networks

A LSTM network is composed by a set of recurrently connected subnets called memory blocks.

These blocks contain one or more self-connected memory cells and three adaptive multiplicative

gating units (input, output and forget gates) as it can be seen in 2.3. These gates can be trained to

learn what information to store for a determined period of time and when to read it out [45].

sigmoid sigmoid tanh sigmoid
X

X

+X

Forget
gate

Input gate
Output gate

Hidden 
state

Cell 
state

Next 
Hidden 

state

Next 
cell

state

Input

Output

tanh

Figure 2.3: Simplified diagram of a LSTM cell, where small rectangles and circular shapes repre-
sent layers and pointwise operations, respectively.

LSTM can generate a list of state representations during composition, however, as it is shown

in 2.3, the next state is dependent from the current state. It is assumed that LSTM maintain

unbounded memory [46].

2.6.3 Convolutional Long Short-Term Memory Networks

A Convolutional Long Short-Term Memory network, also known as ConvLSTM network, is an

extent of LSTM network which has convolutional structures in the following transitions: input-

to-state and state-to-state. By stacking multiple ConvLSTM layers and creating an encoding-
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forecasting structure, it is possible to build a model that can handle spatio-temporal sequence

problems.

ConvLSTM networks, unlike standard LSTM networks, can handle spatial data, because its

inputs, cell outputs, hidden states and gates are 3D tensors, whose two last dimensions are spatial

dimensions. The ConvLSTM predicts the future state of a determined cell in the grid based on

inputs and previous states of its local neighbours. If states are seen as hidden representation of

moving objects, faster motions should be captured by ConvLSTM layer with larger transitional

kernel, while slower motions by one with smaller kernel [47].

2.7 Conclusion

Solar power forecasts can be classified according to its time horizon, and each type has different

applications that can be important for electricity markets and system maintenance. NWP data has

an essential role in these predictions, since PV power output depends on the weather conditions at

the time of production.

Statistical methods show good performance for predictions with different time horizons, while

persistence models are only suitable for very short-term forecasts. Different studies prove that

ANN can outperform time-series models at several time horizons, since these models cannot cap-

ture some solar data features.

The performance of machine learning models highly depends on the input representation, so

it is necessary to create new features from the raw data set, and then select the relevant ones to

improve the input’s correlation with the output. This process can be done manually or automati-

cally. Manual feature engineering can lead machine learning models to good results, however it is

time consuming, challenging for humans to do based on domain knowledge alone and incapable to

generalise to each application. Automatic feature engineering requires only code implementation

(which brings time savings) and can generalise to each application, because it learns the relations

between the inputs and the output. Additionally, this process can create features that cannot be

generated manually, originating better forecast results in some papers, on one hand, and, on the

other, making the features more difficult to humans to understand.

Using CNN, LSTM and ConvLSTM networks are some of the ways to extract automatically

features related to solar power forecasting. While CNN and LSTM networks are able to extract

only spatial or temporal and temporal features, respectively, ConvLSTM network can extract both

at the same time, leading to better predictions.
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Chapter 3

Methodology

In this chapter, the procedures to choose the most adequate models to explore in the chapter 4 are

explained. The data sets available are analysed to help the reader understand in which context they

surge. As reviewed in the chapter 2, the inputs of each model must be properly pre-processed in

order to ensure better forecasting performance. Therefore, the set of operations applied to each

variable is further explored. Several structures are studied for each type of input, however, only

the ones that show the most promising forecasts are selected for an additional review.

3.1 Data Description

The solar power data set is composed by hourly power measurements of a PV power plant, located

in the city of Porto in Portugal, from 28 April 2013 to 28 June 2016. This plant has installed

capacity of 16.32 kW and is divided by the following arrays: 3 × 2160 W, 2 × 3360 W and 1 ×
3120 W.

The use NWP data is fundamental to achieve good results for short-term solar power forecast-

ing, therefore a data set constituted by a grid of NWP is used. This grid covers an approximate

area of 2400 km2 and composed by 169 uniformly distributed points in a 13 × 13 spatial config-

uration, as it is possible to see in 3.1. Each point is separated from its closest neighbours by a 4

km distance. This NWP data set consists in 1014 variables, corresponding to the six categories

present in the table 3.1 per point.

The NWP data were obtained from the MeteoGalicia THREDDS server, which provides pub-

licly historical and daily forecasts with a time resolution of 1 hour. It has capability to generate

new climate forecasts every 24 hours at 12 a.m. UTC with a time horizon up to 96 hours. Each

variable at each hour present in this data set is represented by 4 forecasts, one generated on the

current day at 12 a.m. UTC and remaining on the previous days.

Both solar power measurements and NWP data sets are publicly available in [48].

15
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Table 3.1: Weather information provided by NWP data set for each point.

Category Meaning
sw f lx [W/m2] Surface downwelling shortwave flux

temp [K] Ambient temperature at 2 meters
c f l [0, 1] Cloud cover at low levels
c f m [0, 1] Cloud cover at mid levels
c f m [0, 1] Cloud cover at high levels
c f t [0, 1] Cloud cover at low and mid levels

3.2 Data Pre-processing

Data pre-processing plays a decisive role in the machine learning algorithms’ performance, as the

collected data related to power and meteorological measurements have often errors and missing

values. Their performance also depend on how the data is represented as it was seen in 2.5.

For this study case, it was found missing data in some periods of time in the solar power

data set, which do not participate in the predictions performed in the following chapters. In the

NWP data set, some values related to cloud cover variables were discovered to be higher than the

established limits mentioned in 3.1, so they were replaced by the upper limit value.

3.2.1 Manual Feature Creation

As shown in 2.5.1, there are several ways to represent the original data to minimise the prediction

error. One way is to normalise the input data, as several machine learning algorithms cannot cor-

rectly correlate data with different scales. There are several ways to normalise data and the most

common in the field of solar power forecast are: min-max normalisation and clear sky normalisa-

tion. While the first mentioned normalisation is done by calculating values via a simple formula

(that is represented in 3.1) to the values, the second one requires a clear sky-model (which was

reviewed in the section 2.3) to predict the an intermediary value that is used in 3.2 [49].

X ′ =
X−Xmin

Xmax−Xmax
(3.1)

X ′ =
X

Xpred
(3.2)

Where X , X ′, Xmin, Xmax and Xpred mean value before normalisation, value after normalisation,

minimum value that X can be, maximum value that X can be and value predicted by the clear sky

model, respectively.

Since a grid of NWP is at disposal, it is possible to extract both temporal and spatial features.

Andrade and Bessa, as referred in 2.5.1, discovered the combination of both types of features

leads to better solar power forecasts [34]. The features extracted are based on the ones suggested
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Figure 3.1: Geographic location of the points of NWP grid.

by Andrade and Bessa. In table 3.2, it is possible to see the transformations that some variables of

the NWP data set will be subject.

For the temporal variance, it is considered a moving window of 3, 7, and 11 hours centred

in a determined lead-time t + k. Therefore, it is possible to create three new variables for each

one present in the NWP data set, by calculating the variance according to the formula 3.3 for the

following intervals of time: [t +k−1, t +k+1]h, [t +k−3, t +k+3]h and [t +k−5, t +k+5]h.

σ
2
time(t + k) =

∑
t+k+(Nh−1)/2
i=t+k−(Nh−1)/2(x(i)− x̄)2

Nh
(3.3)

Where x(i) and x̄ correspond to the value of a variable at a specific time i and the mean value that

the variable has for the considered window, respectively. The temporal variance is only calculated

for sw f lx at the central point of the NWP grid, because Andrade and Bessa showed that this type

of variance is correlated to power variability periods.

The temporal dependency of a NWP variable can expressed by adding its prior and subsequent

values. The inclusion of lags and leads in the study conducted by Nagy et al. have shown an

increase of predictions’ accuracy [40].

There is a high similarity between the 4 forecasts provided by the NWP data set in clear days

predictions, however, this similarity decreases in the remaining days. Therefore, to include the

information given by each forecast in the model without excessively increase its number of inputs,

it is calculated the mean between the 4 forecasts.

x̄past(t + k) =
∑

Nrun
d=1 xd(t + k)

Nrun
(3.4)
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Table 3.2: Transformations to be applied to the some NWP data set variables.

Domain Transformations

Temporal
Variance

Lags and leads
Mean

Spatial
PCA

Standard deviation
Mean

Where Nrun and xd mean number of forecast runs available at t + k and value of the variable

predicted by the forecast run d.

PCA is a method to reduce the dimensionality of data, exposing the most important patterns

and dynamics of the original data. This is implemented by dividing all grid variables accord-

ing to their type, normalising each value and then using sklearn.decomposition. PCA from the

Scikit-learn library [50]. Andrade and Bessa concluded that the best overall results were achieved

applying PCA to sw f lx, c f l, c f m and c f t and choosing their respective number of principal com-

ponents that assured 90% variance threshold.

Andrade and Bessa found a meaningful correlation between the dispersion of sw f lx NWP grid

values and distinct power variability time periods. So, to include this information in the prediction

model they suggested computing individually a hourly standard deviation index (3.5) for each type

of variable available in the NWP data set [34].

σspatial(t + k) =

√
∑

169
i=1(xi(t + k)− x̄)2

169
(3.5)

Where xi and x̄ correspond to the value of a variable at point i and mean value of all points at t +k.

Spatial standard deviation index may not describe well enough the magnitude of power varia-

tions, leading to over/underestimations. Therefore, a new variable called Spatial Smoothing was

created to smooth the sw f lx forecasts for the central location based on surrounding predictions

for the entire grid. This feature is generated by computing the hourly mean value of each layer

represented in 3.2 and then the mean of the preciously calculated values (3.6).

x̄spatial =
∑

6
i=1 x̄i(t + k)

6
(3.6)

Where x̄i corresponds to the mean value of the layer i.

The features aforementioned use only variables given by the latest weather forecast run with

the exception of temporal mean that use variables provided by every run.

It is possible to obtain non-weather features from the NWP data set. Every weather forecast

has an associated timestamp, where time-related features can be extracted, such as hour and month.
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Figure 3.2: Diagram that represents the spatial layers in different colours.

These variables add information related to the sun’s position and can be expressed via a min-max

normalisation or by the expressions 3.7, 3.8, 3.9 and 3.10.

hoursin(n) = sin
(

π×n
23

)
(3.7)

hourcos(n) = cos
(

π×n
23

)
(3.8)

monthsin(n) = sin
(

π×n
12

)
(3.9)

monthcos(n) = cos
(

π×n
12

)
(3.10)

Where n corresponds to the hour or month when the forecast occurs.

3.2.2 Image Creation

As there are 6 types of variables described by a square NWP grid, it is possible to create 6 types

of square matrices. These matrices represent the weather conditions at a determined hour for the

space defined by the NWP grid.

To create these matrices it is necessary to, first, normalise the data, according to their type

and then, assign the value of each grid point to its corresponding matrix element. Each element

corresponds to the value of the NWP point with similar spatial location to the element (e.g. the

first element of the matrix, which is located in the top right position, corresponds to the northwest

point). Therefore, each matrix is be 13 × 13.
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9 a.m.8 a.m.7 a.m.6 a.m.5 a.m.

10 a.m. 11 a.m. 12 p.m. 1 p.m. 2 p.m.

3 p.m. 4 p.m. 5 p.m. 6 p.m. 7 p.m.

Figure 3.3: Evolution of sw f lx from 5 a.m. to 7 p.m. on 1 May 2013.

These matrices can be seen as monochromatic images, because each element, which has only

one value, can correspond to a pixel. The values of the variables used to create these images are the

ones retrieved by the run closest to the moment of prediction, because in theory this run provides

greater accuracy than the remaining which contain higher levels of uncertainty. In the figure 3.3,

the evolution of sw f lx for a specific period of time can be seen with a different scale of colours to

help understand the concept, where lightest and darkest colours correspond to lowest and highest

values of sw f lx, respectively. Thus, during the daytime the lighter the pixels, the more clouds or

possibly fog there will be at the corresponding point on the NWP grid.

3.3 Neural Network Structures

The neural network structures are implemented via Keras [51], which is TensorFlow’s high-level

API for building and training deep learning models. The models, that are designed, receive the

following set of inputs:

• Numerical variables;

• Images;

• Images and numerical variables.

Where the numerical variables refer to manual features created. Different structures are tested for

each set of inputs and the ones that provide best results will be further reviewed in the chapter 4.
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The developed models predict the power generated by the PV solar plant for the hours corre-

sponding to the numerical variables and/or images created that feed the neuronal networks.

3.3.1 Experimental Data Setup

In order to evaluate the overall performance of every model, it is created 5 data folds. Each data

fold is divided into the following sets: training, validation and test. In the table 3.3, it is represented

the time periods of each test set.

Table 3.3: Time period of each test data fold.

Fold Time period
1 01/05/2014 - 30/09/2014
2 01/10/2014 - 28/02/2015
3 01/03/2015 - 31/07/2015
4 01/08/2015 - 21/12/2015
5 01/01/2016 - 28/06/2016

The models are trained using the training sets and their selection will be done according to the

error retrieved by each structure using validation set as input. The use of test data is exclusive to

a final comparison between models that will be performed in the chapter 4. Each data fold has a

validation set that is composed by 6 months that are mentioned in the table 3.4.

Table 3.4: Months that compose the validation set of each data fold.

Fold Months
1 July 2013, January 2014, April 2014, September 2015, November 2015 and March 2016
2 July 2013, January 2014, April 2014, September 2015, November 2015 and March 2016
3 July 2013, January 2014, April 2014, September 2015, November 2015 and March 2016
4 July 2013, January 2014, April 2014, September 2014, December 2014 and March 2016
5 July 2013, January 2014, April 2014, March 2015, September 2015 and November 2015

The validations sets were chosen from the training sets to represent both cloudy and clear sky

months. In the figure 3.4, the temporal distributions of the sets are represented for each fold.

28/04/2013 28/06/2016

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Figure 3.4: Time diagram of the sets for each fold, where grey, yellow and blue shapes correspond
to training, validation and test sets, respectively.
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3.3.2 Dense Neural Networks

These networks are composed by dense layers which are a regular densely-connected neural net-

work layers. These networks predict the PV power plant output from the features generated pre-

viously. Since their input is 2D, the intrinsic dense layers will receive as well a 2D matrix, where

the first and the second dimensions correspond to the batch size and input dimension, respectively.

These layers generate the output by applying an activation function to the sum of the bias array to

the scalar product between the input matrix and the generated weights matrix. The output of these

layers can be described by the formula 3.11 and is 2D, whose dimensions match the batch size and

the units.

out put = activation(input · kernel +bias) (3.11)

Where activation, kernel and bias correspond to the element-wise activation function, the weights

matrix and the bias vector, respectively.

It was created two networks, DNN1 and DNN2, which are represented in the figure 3.5. The

only structural difference between both is that DNN2 has a hidden layer while DNN1 does not

contain any. The main purpose of comparing these networks is to understand the value that hidden

layers can add to the forecasts.

Input numerical variables

Model DNN1

Dense

Dense

Output

Input numerical variables

Model DNN2

Dense

Dense

Output

Dense

Figure 3.5: DNN1 and DNN2 structures.

Before performing this benchmark, it is necessary to define the hyperparameters of the net-

works and determine which is the most suitable set of inputs to this type of networks. The hyperpa-

rameters introduced in DNN1 and DNN2 are based on the approaches proposed by Moolayil [52]

and preliminary tests conducted. The number of neurons in the first dense layer is chosen ac-

cording to the closest number to double of inputs in the power of 2 and its weights and bias are

initialised to random uniform and zero, respectively. Both networks are trained with:

• Batch size of 32;

• Adam as optimiser;
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• Learning rate of 0.001.

After many experiments using the network DNN1 with different combinations of the features

referred in the subsection 3.2.1, it was concluded that the best set of inputs is the one described in

the table 3.5, since it provided the lowest average RMSE forecasts.

Table 3.5: Input variables divided by their type.

Type Variables
Chronological hoursin and monthsin

Temporal
Temporal variance of sw f lx for 3, 7 and 11 hours

Lags of 1h, 2h and 3h of sw f lx
Temporal mean of sw f lx

Spatial
Spatial PCA of c f l, c f m and c f t

Spatial standard deviation of sw f lx and c f l
Spatial mean of sw f lx

Others
sw f lx and temp at the central position

provided by the latest weather forecast run

Variables extracted from temperature and cloud data are min-max normalised. However,

power measurements and variables related to sw f lx can either be normalised by clear sky models

or minimum-maximum values. Therefore, to choose the combination of normalisations that best

fits the structure, tests with the same parameters were conducted using training and validation sets.

From the experiments performed, it was concluded that power measurements and sw f lx should be

normalised according to clear sky models.

Using the same inputs, the models DNN1 and DNN2 were tested and it was verified that DNN2

had better performance than DNN1, as DNN2 provided forecasts with lower average RMSE. Other

models with more hidden layers were analysed, but they didn’t bring any improvements to the final

results.

3.3.3 Convolutional Neural Networks

The convolutional neural networks, that will be analysed, are composed by several types of layers,

such as 2D convolutional layers. These layers can be implemented in Keras using the Conv2D

class, which convolves the input matrix with a generated convolution kernel and then applies an

activation function to the result added by a bias vector, producing an output that feeds the next

layer. This sequence of operations can be converted to the mathematical expression present in the

formula 3.12.

out put = activation(input ∗ kernel +bias) (3.12)

Where activation, kernel and bias correspond to the element-wise activation function, the weights

matrix and the bias vector, respectively. The input of the Conv2D is a matrix with 4 dimensions

that correspond to the batch size, rows, columns and channels. The produced output is also 4D,
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however, its dimensions match the batch size, new rows, new columns and filters. The number of

new rows and new columns follow the formula 3.13 for square images with no padding.

Lout =
Lin−K

s
+1 (3.13)

Where Lout , Lin, K and s correspond to the number of output columns/rows, number of input

columns/rows, kernel size and number of strides, respectively.

Convolutional layers are usually followed by pooling layers that downsample the output of

convolutional layers by summarising the presence of features of the feature map. There are

several types of pooling layers in Keras, however, the ones that are compatible with the output

provided Conv2D are: MaxPooling2D, AveragePooling2D, GlobalMaxPooling2D and GlobalAv-

eragePooling2D. MaxPooling2D and AveragePooling2D take the maximum or the average value

over a defined window, depending on its type, and return a 4D matrix where its dimensions corre-

spond to batch size, pooled rows, pooled columns and channels. The number of pooled rows and

pooled columns is given by the formula 3.13 for square inputs. GlobalMaxPooling2D and Glob-

alAveragePooling2D present similar operation to the aforementioned ones, however, they take the

maximum or average value of the entire feature map, downsampling it into a single value.

While dense neural networks rely on manual features created to predict solar power fore-

casting, Conv2D layers generate features for the convolutional neural networks from the images

previously generated. The convolutional layers apply filters to the input images, changing the way

these images are interpreted by the CNN, as it can be seen in the figure 3.6, where lightest and

darkest colours correspond to lowest and highest pixel values, respectively.

Output Conv2D [1, 11, 11, 8]

Output MaxPooling2D [1, 5, 5, 8]

Input [1, 13, 13, 1]

1 p.m.

Figure 3.6: Example of the transformations performed by Conv2D and MaxPooling2D in an image
related to sw f lx on 2 May 2014 at 1 a.m..
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As the training progresses, the filters adapt in order to ensure the minimum loss, therefore,

allowing to find the features that contribute the most to the performance of the network. The

convolutional layers can extract spatial features of each type of variables present in the NWP data

set, since the pixels present in the images are organised by geographic location as stated in the

subsection 3.2.2 and, additionally, these layers can learn relations from each pixel’s neighbours.

The use of pooling layers after convolutional layers extracts the relevant features created during

the convolution process, because as the kernel passes more than once through the same pixel, it

creates redundant information.

This method should provide better features than the spatial ones created manually, since the

model learns itself which are the most relevant and finds others that otherwise would be impossible

due to the intricate connections of neural networks. These networks can also receive manual

features as input, however, they only implemented after Conv2D and pooling layers.

Two different groups of CNN are analysed: one that only uses images as input (CNN-Ix) and

the other receives the same images as the previous one, temporal features mentioned in the ta-

ble 3.5, hourcos and monthcos (CNN-ITx). It will be created three pairs of models in which each

one is composed by networks from different groups with the same upper structure. The hyperpa-

rameters chosen for each model are based again on [52]. The number of filters in Conv2D selected

is low, since these types of networks deal with simple images. Preliminary experiments conducted

in the networks showed that they have better performance when: Conv2D have a reduced number

of filters, since these types of networks deal with simple images, and they are trained with a batch

size much higher than DNN1 and DNN2, such as 128. Additionally, from the same experiments

it was concluded that smaller kernel size in Conv2D and reduced pool size in MaxPooling2D and

AveragePooling2D improved the accuracy of the networks.

The first pair of networks, that is constituted by CNN-I1 and CNN-IT1, concatenates input im-

ages per hour and then applies a sequence of Conv2D and MaxPooling2D, extracting the features

of the images with different variables together. These networks are represented in the figure 3.7.

The input images of every CNN model were chosen based on tests performed on a model with a

similar structure to CNN-I1. These tests showed that the most adequate set of images is obtained

by sw f lx, c f l, c f m, c f h and c f t variables from the NWP data set. Additionally, NWP variables

should receive a min-max normalisation and power measurements a clear sky normalisation. In the

second set of networks, which are composed by CNN-I2 and CNN-IT2 described in the figure 3.8,

each type of type of images passes through a different sequence of Conv2D and MaxPooling2D

and then they are concatenated. This method extracts features from each input independently. The

models CNN-I3 and CNN-IT3, that belong in the third pair of networks and are characterised in

the figure 3.9, have similar upper structures to the CNN-I2 and CNN-IT2, however, after the con-

catenation of feature maps, the output goes through the layers Conv2D and MaxPooling2D. This

procedure provides a summary of all the features discovered by the upper layers.

Several extents to the proposed models were tested, some of which included adding more con-

volutional layers, removing pooling layers, replacing max pooling layers to average pooling layers

and adding more dense layers. However, none of these approaches resulted in better performance.
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Figure 3.7: CNN-I1 and CNN-IT1 structures.

The last concatenation that can be found in the models CNN-IT1, CNN-IT2 and CNN-IT1 was

also tested in different places, however the ideal position, according to tests conducted, is the one

present in the figures 3.7, 3.8 and 3.9.

After performing tests in all of the aforementioned models, it was concluded that the best

networks are CNN-I2 and CNN-IT3, since they delivered forecasts with lower RMSE than others.

3.3.4 Convolutional LSTM Neural Networks

The convolutional LSTM layers, that are one of the main layers in these networks, work in a

similar manner to the LSTM layers, but with convolutional input transformations and recurrent

transformations. They are implemented in Keras via ConvLSTM2D class and receive 5D inputs
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Figure 3.8: CNN-I2 and CNN-IT2 structures.

where the dimensions correspond to samples, time step, height, width and channels and output

a matrix with samples, filters, output rows and output columns as dimensions. The number of

rows and columns of the outputted matrix is given by the expression 3.13. Convolutional LSTM

layers are composed by a set of memory blocks, where each one corresponds to a specific time

step. In order to obtain the output of this layer, it is necessary to perform a series of sequential

mathematical operations, which are defined in the formulas 3.14, 3.15, 3.16, 3.17 and 3.18.
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Figure 3.9: CNN-I3 and CNN-IT3 structures.

it = sigmoid(Wxi ∗Xt +Whi ∗ht−1 +Wci ◦Ct−1 +bi) (3.14)

ft = sigmoid(Wx f ∗Xt +Wh f ∗ht−1 +Wc f ◦Ct−1 +b f ) (3.15)

Ct = ft ◦Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗ht−1 +bc) (3.16)
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ot = sigmoid(Wxo ∗Xt +Who ∗ht−1 +Wco ◦Ct +bo) (3.17)

ht = ot ◦ tanh(Ct) (3.18)

Where ‘◦’ denotes the Hadamard product and it , ft , Ct , ot , ht , W , X , b and t correspond to input

gate, forget gate, cell output, output gate, hidden state, weight, cell input, bias vector and t-th time

step, respectively. The functions sigmoid and tanh represent the logistic sigmoid function and the

hyperbolic tangent function, respectively.

The images of each variable created in the subsection 3.2.2 were organised in arrays where the

dimension of the array corresponded to the time step.

ConvLSTM2D layers combine the capability of LSTM layers to generate temporal features

with the ability of Conv2D layers to create spatial features. The intrinsic LSTM structure present

in the ConvLSTM2D layers allows them to extract temporal relations between each point and its

predecessors. Since some of the operations performed in this structure require intermediate con-

volutional layers, spatial features can be extracted the same way they were in the subsection 3.3.3.

Therefore, convolutional LSTM networks can extract more features than convolutional networks,

leading to possibly better solar power predictions. In the figure 3.10, an example of the applica-

tion of a convolutional LSTM layer in a sequence of images is shown, where lightest and darkest

colours correspond to lowest and highest pixel values, respectively. These networks like convo-

lutional networks can receive manual features as input, but only after ConvLSTM2D and pooling

layers.

12 p.m.11 a.m.10 a.m. 1 p.m.

Output ConvLSTM2D [1, 11, 11, 8]

Input [1, 4, 13, 13, 1]

Figure 3.10: Example of the transformations performed by ConvLSTM2D in images related to
sw f lx on 2 May 2014 from 10 a.m. to 1 p.m..

In order to determine which are the most adequate input images, several experiments were

performed in a network similar to CNN-I1, where the Conv2D layers were replaced by ConvL-

STM2D layers. The hyperparameters chosen for the network are based on the ones presented

in 3.3.3, because of the existing similarity. From these experiments, it was verified that images
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Figure 3.11: CLSTMNN1 and CLSTMNN2 structures.

based on sw f lx, c f l, c f m, c f h and c f t variables from the NWP are the most suitable for input,

since the images obtained using temp variables don’t add any information. In the same tests per-

formed, it was discovered that power measurements and sw f lx images must be subject to a clear

sky and a min-max normalisations, respectively. Additionally, it was verified that ideal time step is

4, which allows the convolutional LSTM networks to extract temporal features between t + k−3

and t + k, where t + k corresponds to the time when the forecast occurs.

Similar structures to CNN-I2 and CNN-I3, where the convolutional layers were also replaced

by convolutional LSTM layers, were tested with, again, similar hyperparameters presented in 3.3.3.

Other experiments that consisted in replacing max pooling layers by global max pooling layers in

the aforementioned models showed better results. The networks similar to CNN-I1 and CNN-

I2 are the only ones compatible to this replacement, originating the models CLSTMNN-1 and

CLSTMNN-2, represented in the figure 3.11. The input of global pooling layers is 4D whose di-

mensions correspond to batch size, rows, columns and channels. These layers return a 2D matrix

constituted by batch size and channels. For this reason, a model based on CNN-I3 was impossible

to test.

After the tests performed, it was verified that the model CLSTMNN-2 provided forecasts with
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lower average RMSE than the model CLSTMNN-1. Both structures were subjected to various ad-

justments, such as adding more convolutional LSTM layers and removing pooling layers, however,

these changes led to worse predictions.
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Chapter 4

Results

In this chapter, the solar power forecasts provided by different networks are compared in order to

determine the value that automatic features add. These models are benchmarked according to the

predictions provided on clear sky, partly cloudy and cloudy hours and to metrics that evaluate the

overall performance.

The reader is advised to visit the chapter 3 to understand the data used in the models and the

selection process of the networks. Each of the compared models goes through a procedure of

hyperparameter tuning and is trained using a server.

4.1 Evaluation of Forecasting Accuracy

The solar power forecasts given by different models can be evaluated via several metrics, which

allow a performance comparison between themselves. In 4.1, 4.2, 4.3 and 4.4, it is possible to see

the formulas of some of the most common metrics: MBE, MAE, MAPE and RMSE.

MBE =
1
N

N

∑
i=1

(Ppred−Pmeas) (4.1)

MAE =
1
N

N

∑
i=1

∣∣Ppred−Pmeas
∣∣ (4.2)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Ppred−Pmeas

P0

∣∣∣∣ (4.3)

RMSE =

√
1
N

N

∑
i=1

(Ppred−Pmeas)2 (4.4)
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Where Ppred , Pmeas, P0 and N mean predicted power, measured power, power capacity of the

PV plant and number of predictions/measurements, respectively.

MAE displays the average distance between the predicted power and the respective measure-

ment. Both MAE and MAPE are suitable to evaluate uniform forecast errors. While MBE can

determine if a model is over/underestimating, RMSE penalises large errors in a square order [26].

4.2 Hyperparameter Tuning

It was seen in the subsection 3.3, that the models which provided better solar power forecasts

were:

• DNN2: a dense neural network with a hidden layer that receives manual engineered vari-

ables as input;

• CNN-I2: a convolutional neural network whose inputs are generated images from variables

present in the NWP data set;

• CNN-IT3: a convolutional neural network with an upper structure more complex than CNN-

I2, which extracts features from the same images used in CNN-I2 and uses temporal and

chronological features manually created;

• CLSTMNN2: a convolutional long-short-term memory neural network that extracts both

spacial and temporal features with a time horizon of 3 hours using exclusively the same set

of images that CNN-I2 and CNN-IT3 received as input.

Hyperparameters are essential since they influence the overall performance of ANNs. The

main goal of hyperparameter tuning is to discover of the optimal set of hyperparameters that

minimises a specific loss function and, consequently, ensures the best predictions. Failure to do so

provides sub-optimal forecasts. Although this procedure is important for the performance of each

model, it is computationally expensive and time-consuming. Additionally, it is extremely difficult

to find the optimum set of parameters.

The selection of hyperparameters of each network presented is done using Keras Tuner [53],

which is a library that helps pick the optimal set of hyperparameters for each model. The first

step to perform a hyperparameter tuning consists in defining the training and validation sets which

will be used to obtain intermediate errors that will allow the selection of the best hyperparameters.

Then, it is necessary to define which hyperparameters to search and their respective search space.

Lastly, the number of trials, number of epochs per trial and tuner must be chosen.

Each of the proposed models has its hyperparameters tuned according to the test and valida-

tions sets referred in the subsection 3.3.1. Therefore, each network is subject of five processes of

hyperparameter selection corresponding to each data fold.

The number of epochs per trial is defined by early-stopping, which is implemented in Keras

using EarlyStopping class. This class allows to stop the training of a neural network after a de-

termined number of epochs in which any improvement in the result occurred. The early-stopping
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implemented in each model stops the training after 25 epochs where the validation set loss dos not

show any improvement.

For this case study, Keras Tuner provides the following tuners: Random Search, Hyperband

and Bayesian Optimisation. Random Search and Hyperband tries random combinations of hyper-

parameters, however, Hyperband focus on speeding up the process by adaptive resource allocation

and early-stopping [54]. Unlike the other tuners, Bayesian Optimisation monitors the previous

evaluation results and uses it to build a probabilistic model, which is then exploited to make de-

cisions about the next set of hyperparameters to evaluate [55]. The tuner chosen for the hyperpa-

rameter optimisation is Bayesian Optimisation, because it is more likely to lead to better results

in lesser trials since its choice of hyperparameters set is based on a determined function and not a

random distribution.

The appendix A contains the structures with the representation of the hyperparameters related

to the network structure and activation functions that are subject to a hyperparameter tuning. Ad-

ditionally, it includes tables with search space for each hyperparameter of the proposed networks.

The ideal hyperparameter values found for each fold is also present in this appendix.

4.3 Comparison Between Forecasts Provided by Each Model

After tuning the hyperparameters, it was obtained the forecasts for each fold of models DNN2,

CNN-I2, CNN-IT3 and CLSTMNN2. The input data of each model come from the data sets

reviewed in the subsection 3.3.1. However, the validation sets merge with the training sets, creating

more extensive training sets which can lead to an increase model performance. The training and

test sets are represented in the time diagram present in the figure 4.1. The obtained predictions

allow an analysis between the proposed models, and consequently help determine which one is

the most adequate.

To determine the errors in the following subsections, the forecasts were filtered according to

the value of the zenith angle in the PV plant site using solar calculations proposed by NOAA [56].

During daytime, this angle is between 0o and 90o, and during nighttime, it is higher than 90o.

Fold 5

Fold 1

Fold 2

Fold 3

Fold 4

28/04/2013 28/06/2016

Figure 4.1: Time diagram of the sets for each fold, where grey and blue shapes correspond to
training and test sets, respectively.



36 Results

This filtration of predictions prevents errors from being underestimated, since at night the power

produced is zero.

4.3.1 Overall Benchmark

To evaluate the overall performance of the forecasts retrieved by the models, the metrics RMSE,

MAE, MAPE and MBE are used. In this case, MAE is ignored, since MAPE is an extent of the

referred metric. The tables 4.1, 4.2 and 4.3 contain the RMSE, MAPE and MBE associated with

each model and fold, respectively.

Table 4.1: Values of RMSE for each fold and model.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 9.98% 10.27% 10.44% 9.86%
2 9.50% 10.16% 9.89% 9.98%
3 9.57% 10.23% 10.60% 10.33%
4 10.17% 10.01% 9.64% 9.65%
5 9.81% 11.91% 10.43% 9.97%

Average 9.84% 10.60% 10.25% 9.96%

Table 4.2: Values of MAPE for each fold and model.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 6.00% 6.18% 6.09% 5.94%
2 6.33% 7.30% 6.79% 6.94%
3 5.55% 5.95% 6.24% 6.09%
4 6.16% 6.44% 6.26% 5.96%
5 7.05% 7.78% 6.83% 6.63%

Average 6.23% 6.72% 6.43% 6.29%

Table 4.3: Values of MBE for each fold and model.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 -58.20W 29.84 W -129.57 W -88.75 W
2 235.45 W 200.07 W 171.92 W 74.69 W
3 -192.09 W -269.85 W -150.45W 81.93 W
4 179.68 W -71.69 W 189.15 W -14.94 W
5 76.45 W -554.94 W -269.19 W -99.80 W

Average 35.54 W -156.40 W -60.79 W -17.17 W

The model DNN2 has a better overall performance than the reaming ones, as it has the lowest

average RMSE and MAPE. This can be justified by the exhaustive optimisation of features carried

out by Andrade and Bessa for this data set.

The network CNN-I2 is the one that presents the worst global performance as it can be seen in

the metrics represented in the tables 4.1 and 4.2. Unlike the other models, CNN-I2 uses exclusively
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the spatial features generated in the Conv2D layers of the network to predict the power produced

by the PV panels, thus it is at disadvantage compared to the others.

CNN-IT3, followed by CNN-I2, is the model with lowest performance, therefore it can be

concluded, in a quick analysis, that the spatial features created automatically are worse than the

ones engineered manually. From the comparison between these two models it is possible to deduce

that the use of manual features that could not be generated by the model itself improves the overall

performance of the network.

Despite CLSTMNN2 being the second-best performing model, according to the table 4.1

and 4.2, it presents a similar global performance to DNN2, as the difference of average RMSE

and MAPE between these two models is relatively small. The network CLSTMNN2 is capable

of making better predictions in the folds 1 and 4 than DNN2. CLSTMNN2, unlike DNN2, relies

only on spatial and temporal features created automatically with a time horizon of 3 hours.

From the table 4.3, it can be concluded that model DNN2 tends to underestimate the values of

the produced power in the PV plant, while the remaining models tend to overestimate them.

The analysis performed above showed that convolutional neural networks and convolutional

long-short-term memory neural networks can extract valuable features that can surpass the perfor-

mance of those created manually. In the following subsections, the performance of each proposed

model is further evaluated by benchmarking them according to different weather conditions.

4.3.2 Clear Sky Hours Performance

It is considered clear sky when there no clouds present in the sky over the PV plant site, therefore,

in this analysis only measured and predicted solar power associated with c f l, c f m, c f h and c f t

values of 0 in the central point of NWP grid are evaluated. These values that allow the stated

selection are given by the latest run.

In the figure 4.2 are present the some graphs of the measured and predicted powers by the

different models in clear sky days. Most of the forecasts that are represented in the referred figure

display good accuracy as the predicted power is close to the measured one.

For the first example, 3 May 2014, it is verified that the measured production is very close to

the forecasted one by the proposed models from the beginning of the day until 10 a.m., where there

is a small gap between them. The peak production predicted by the models with the exception of

DNN2 has a delay, however, from 4 p.m. till dusk a new approximation of values occurs. For the

case presented, the model DNN2 performs better than the others, since it has the lowest RMSE and

MAPE, as it can be seen in the table 4.4. In addition, it is concluded that all models underestimate

the value of generated power.

Table 4.4: Metrics of each model for 3 May 2014.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 1.03% 2.18% 1.75% 1.92%
MAPE 0.88% 1.78% 1.41% 1.55%
MBE 66.48 W 152.38 W 59.92 W 144.71 W
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Figure 4.2: Graphs of forecasts retrieved by the proposed models versus the measured power in
clear sky days, numbered according to the fold where they belong.

The case of 17 February 2015, which belongs to the fold 2, there is a more noticeable dif-

ference between the forecasts provided by each model than the aforementioned example. It is

demonstrated again that the predictions at the beginning of the day assume similar values to ones

measured, however, at 10 a.m. the forecasts retrieved by different models follow different paths.

The predictions originated from network DNN2 overestimate the peak power production that oc-

curred between 12 p.m. and 2 p.m., while the forecasts provided by the remaining networks

underestimates them. The created spatial features on convolutional neural networks worsened the

predictions, as CNN-I2 and CNN-IT3 had lower performance than DNN2. The use of manual

engineered temporal and chronological features in the same type of networks seems to improve

the performance of the models since CNN-IT3 originates better predictions than CNN-I2. From
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all the presented models, DNN2 is again the best performing network as it can checked in the

table 4.5.

Table 4.5: Metrics of each model for 17 February 2015.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 2.32% 5.66% 4.05% 3.28%
MAPE 1.91% 5.07% 3.61% 2.77%
MBE 104.16 W 827.15 W 588.48 W 452.48 W

The example shown for fold 3, unlike the aforementioned cases, displays a noticeable disper-

sion of forecasts during the morning. The model CNN-I2 has a better overall performance during

7 March 2015 compared to the other models, as it delivers predictions with lower underestima-

tions between 7 a.m. to 1 p.m.. The performance of each model can be checked in the table 4.6. It

can be concluded that during this day, the use of manual features in convolutional neural networks

worsened the quality of the forecasts, since the ones generated by CNN-IT3 have higher RMSE

and MAPE than the ones provided by CNN-I2, which only uses the extracted features from the

input images.

Table 4.6: Metrics of each model for 7 March 2015.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 3.10% 2.70% 4.60% 3.23%
MAPE 2.61% 2.26% 3.73% 2.67%
MBE 426.06 W 256.14 W 596.19 W 435.09 W

On 1 October 2015, it is verified that during the morning the predictions follow a similar path

presented on 7 March 2015. By 11 a.m., it is clear that the forecasts provided by DNN2 and

CNN-IT3 deviate from the measured power values, and they only return to their encounter only

after 4 p.m.. The forecasts originated from CNN-I2 and CLSTMNN2 seem to describe properly

the evolution of the generated power in the photovoltaic plant, which can be proven by the low

RMSE and MAPE that are described in the table 4.7. In short, during this day the models that use

exclusively automatic features have better performance than the ones which use features manually

created.

Table 4.7: Metrics of each model for 1 October 2015.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 3.51% 1.83% 4.18% 1.65%
MAPE 3.09% 1.59% 3.59% 1.27%
MBE 474.27 W 259.42 W 586.02 W 207.23 W

The figure 4.2 shows, on 21 June 2016, that the model DNN2 provides good forecasts for

the first two hours of the day, however these predictions in the next hours deviate significantly

from the actual PV power production values. This model tends to underestimate the values of

the produced power during that day, while the others tend to overestimate them. This statement
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is confirmed according to the MBE metric present in the table 4.8. At the end of the day, the

forecasts retrieved by the studied networks assume similar values to the measured ones. In this

case, the use of automatic temporal features whether automatically or manually generated reduces

the overall performance of the forecasts.

Table 4.8: Metrics of each model for 21 June 2016.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 4.29% 1.44% 1.47% 1.68%
MAPE 3.29% 1.11% 1.18% 1.36%
MBE 486.92 W -68.03 W -148.09 W -207.66 W

In the tables 4.9 and 4.10 are presented the values of RMSE and MAPE, respectively, of

the predictions generated from DNN2, CNN-I2, CNN-IT3 and CLSTMNN2 in clear sky hours,

which allow to evaluate the performance of the mentioned models. The network DNN2 along

with CLSTMNN2 provides better overall forecasts as they contain the lowest average RMSE and

MAPE, respectively. Although CNN-I2 and CNN-IT3 have worse global metrics, they present

lower RMSE or/and MAPE in the some of the folds, showing their potential. The models CLSTMNN2,

CNN-IT3 and DNN2 can be considered identical, in terms of performance, since they assume av-

erage RMSE and MAPE values close to each other. According to the table 4.11, the models

designed tend to underestimate the value of the production PV power in clear sky conditions.

Table 4.9: Values of RMSE for each fold and model in clear sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 8.17% 8.56% 8.40% 8.19%
2 7.15% 9.24% 8.23% 8.49%
3 7.72% 7.27% 8.34% 7.93%
4 8.11% 8.37% 8.27% 8.16%
5 9.06% 9.42% 8.36% 8.63%

Average 8.12% 8.49% 8.33% 8.24%

Table 4.10: Values of MAPE for each fold and model in clear sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 4.44% 4.57% 4.27% 4.35%
2 4.75% 7.01% 5.95% 6.14%
3 3.95% 4.05% 4.51% 4.49%
4 5.18% 5.06% 5.35% 4.57%
5 6.24% 5.52% 4.95% 5.25%

Average 4.85% 5.00% 4.87% 4.81%
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Table 4.11: Values of MBE for each fold and model in clear sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 -59.74 W -82.69 W -193.04 W -126.27 W
2 190.83 W 578.34 W 427.57 W 439.66 W
3 -153.06 W -171.86 W 5.43 W 71.72 W
4 243.49 W 119.16 W 264.80 W 21.02 W
5 462.30 W 30.31 W 76.60 W 195.38 W

Average 107.39 W 34.58 W 69.95 W 81.01 W

4.3.3 Partly Cloudy Sky Hours Performance

The performance evaluation of the models in partly cloudy sky hours is done considering only

hours when the central values of c f l, c f m, c f h and c f t of the NWP grid given by the last run are

in the following interval [0, 0.3[. It should be noted that hours when all the values of the variables

mentioned are equal to zero are not considered, as they belong to the group of forecasts analysed

in subsection 4.3.2.

The figure 4.3 shows 5 graphs that represent the predicted and measured powers in days com-

posed mostly by partly cloudy sky. Each graph present in the aforementioned figure can be con-

sidered as an illustrative example of each data fold.

On 20 August 2014, the NWP at the central point determined the occurrence of sky partially

clouded from 7 a.m. to 5 p.m.. On this day there is a constant underestimation of production with

the exception of the period between 7 a.m. and 9 a.m.. The models, in general, show difficulty

in predicting the generated power values between 10 a.m. and 4 p.m., which may result from

the existence of fewer clouds than predicted by the NWP. These networks were unable to predict

the time corresponding to the peak of production with the exception of CNN-IT3. According to

table 4.12, the model DNN2 is the best performing one on this day, as it shows lower RMSE and

MAPE than the remaining networks.

Table 4.12: Metrics of each model for 20 August 2014.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 6.68% 8.45% 9.84% 9.81%
MAPE 4.79% 6.46% 7.06% 7.01%
MBE 613.47 W 951.52 W 896.47 W 895.44 W

The second example, corresponding to the 25 October 2014, there is a significant underestima-

tion of the power values until approximately 1 p.m. which is followed by an overestimation until 6

p.m.. During this day there may have been fewer clouds than expected during the underestimation

period and more clouds during the overestimation period. Unlike the example corresponding to

20 August 2014, the models were able to predict the time when the peak production occurred.

On this day, the exclusive use of automatically extracted spatial features originated forecasts with

higher quality, since the predictions generated from CNN-I2 have lower RMSE and MAPE than

ones provided by CNN-IT3 and CLSTMNN2, as shown in table 4.13.
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Table 4.13: Metrics of each model for 25 October 2014.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 9.03% 4.94% 7.45% 7.32%
MAPE 7.38% 3.85% 5.78% 6.19%
MBE 678.49 W 24.21 W 94.48 W 253.74 W

In the case of 23 April 2015, which belongs to the fold 3, it is verified that the forecasts

generated by the proposed models are generally of good quality, since they follow a similar path to

the one taken by the power measurements. It should be noted that at 2 p.m., the sky is clear, hence

there was an increase in power generation at that same hour. The models tend to underestimate the

solar production, as can be seen from the values of the MBE metric present in table 4.14. As on 25

October 2014, the exclusive use of automatically extracted spatial features led to predictions with

smaller errors which can be seen in table 4.14. In this specific case, the use of manually created

features leads to a considerable increase in error.

Table 4.14: Metrics of each model for 23 April 2015.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 5.20% 3.35% 4.94% 4.70%
MAPE 3.99% 2.62% 3.97% 3.44%
MBE 294.08 W 20.37 W 481.87 W 186.89 W

The graph 4, which corresponds to 5 August 2015, shows that every model was able to ade-

quately predict the power values generated for most of the useful period. During the period when

the zenith angle is lower than 90o, the sky is partially cloudy except between 7 a.m. and 10 a.m.

and at 2 p.m.. On this day, the sky has very few clouds since the production curve is similar to

that one found on clear days. The model CLSTMNN2 behaved in a remarkable way, which can

be confirmed by the values of the metrics present in table 4.15. The use of spatial, temporal and

chronological features engineered manually as network inputs worsens the quality of the forecasts.

Table 4.15: Metrics of each model for 5 August 2015.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 3.67% 3.10% 3.91% 2.33%
MAPE 3.14% 2.75% 3.38% 1.71%
MBE 450.05 W 368.49 W 506.40 W 162.51 W

On March 13, 2016, all the models studied underestimated the power values produced during

the entire period in which production occurred. The possible cause for this event is that there may

have fewer clouds than NWP forecasted. On this day, the model CNN-IT3 is the best performing

one, which is shown in table 4.16. From the referred table, it is concluded that the spatial features

created manually worsened the quality of the predictions, since DNN2 is the one that presents the

worst performance and is the only one that uses the mentioned features.
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Table 4.16: Metrics of each model for 13 March 2016.

Metric DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 6.69% 5.32% 4.95% 5.38%
MAPE 5.98% 4.70% 4.39% 4.78%
MBE 976.23 W 766.79 W 716.82 W 779.71 W

The tables 4.17 and 4.18 show that the best performing networks for predicting the power

generated in hours with partly cloudy sky are DNN2 and CLSTMNN2. Both models have similar

overall performance in these events. The models DNN2 is the one with the best performance in

folds 1 and 3, while the models CNN-IT3 and CLSTMNN2 are the ones that provide the best

predictions in folds 2 and 5, respectively. The forecasts originated from the model CNN-I2, on the

other hand, did not stand out in any of the folds and presents the worst global metrics. According

to the table 4.19, model DNN2 is the only one that tends to underestimate the production values,

whereas the other models tend to overestimate them.

Table 4.17: Values of RMSE for each fold and model in partly cloudy sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 10.71% 11.02% 11.20% 10.77%
2 11.61% 11.66% 11.45% 11.76%
3 12.38% 12.79% 12.93% 13.34%
4 10.18% 10.82% 10.32% 10.32%
5 11.54% 13.50% 12.42% 11.13%

Average 11.30% 12.01% 11.72% 11.47%

Table 4.18: Values of MAPE for each fold and model in partly cloudy sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 6.80% 7.07% 6.97% 6.87%
2 8.11% 8.40% 7.99% 8.20%
3 7.25% 7.43% 7.88% 7.97%
4 6.73% 7.08% 6.76% 6.55%
5 8.31% 8.86% 8.31% 7.62%

Average 7.43% 7.76% 7.57% 7.42%

Table 4.19: Values of MBE for each fold and model in partly cloudy sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 -130.21 W -37.89 W -260.07 W -154.84 W
2 316.64 W 189.56 W 141.78 W 137.70 W
3 -203.92 W -280.28 W -212.94 W 124.88 W
4 232.39 W -77.54 W 176.02 W -70.85 W
5 28.68 W -760.42 W -383.40 W -220.39 W

Average 28.28 W -204.67 W -135.77 W -51.37 W
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Figure 4.3: Graphs of forecasts retrieved by the proposed models versus the measured power in
partly cloudy sky days, numbered according to the fold where they belong.

4.3.4 Cloudy Sky Hours Performance

The performance of the proposed models under cloudy sky conditions is assessed by selecting the

hours when at least one of the central values of c f l, c f m, c f h and c f t provided by NWP grid on

the latest run is higher or equal to 0.3. Under these circumstances, the production of solar power

is expected to be lower than the ones presented in the subsections 4.3.2 and 4.3.3, as the values of

short wave flux are lower.

In the figure 4.4 are represented 5 illustrative graphs, one for each data fold, that show the

values of forecasted and measured powers under cloudy sky conditions during one day. The pro-

duction curves that are present in the aforementioned figure assume different forms compared to

those that in the figures 4.2 and 4.3 due to a higher cloud coverage variability verified in these
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Figure 4.4: Graphs of forecasts retrieved by the proposed models versus the measured power in
cloudy sky days, numbered according to the fold where they belong.

situations.

The graph 1 of figure 4.4 shows that there is an overestimation of solar production, with the

exception at the beginning and at the end of the day. The model CLSTMNN2 is the only one that

is able to detect peak production and is the one that best described the production curve between

9 a.m. and 6 p.m., which is reflected in the value of its metrics that is present in table 4.20. The

excessive overestimation of the model DNN2 devalued its performance and led it to have the worst

quality forecasts of those studied.

On 22 February 2015, it appears that there was an error in the NWP, since none of the proposed

models managed to detect a sharp increase in the power produced between 10 a.m. and 11 a.m..

The NWP must have foreseen the existence of more clouds for the referred period. The model
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Table 4.20: Metrics of each model for 6 June 2014.

Metrics DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 9.72% 9.59% 9.71% 5.99%
MAPE 7.57% 7.22% 6.86% 4.12%
MBE -993.02 W -842.74 W -846.79 W -335.06 W

CNN-I2 is the one that presents forecasts with lower underestimation of solar power values gener-

ated between 10 a.m. and 12 p.m. and at 2 p.m.. Despite the poor forecasts presented after 4 p.m.

and the anomaly that occurs at 5 p.m., this network is the one with the best overall performance

during this day, as can be seen from table 4.21. It should be noted that the use of temporal features

seems to improve the models’ performance at the end of the afternoon.

Table 4.21: Metrics of each model for 22 February 2015.

Metrics DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 16.44% 12.52% 16.31% 15.72%
MAPE 10.22% 8.19% 9.84% 9.47%
MBE 1651.22 W 833.18 W 1601.11 W 1389.14 W

In the case of example 3, corresponding to 3 May 2015, it is verified that the forecasts at the

beginning of the day provided by model CNN-IT3 are very accurate, but end up diverging in the

following hours to values excessively high values during peak production. The model CNN-I2

presents a production curve from 9 a.m. to 2 p.m. similar to the one that contains the measured

power. From 3 p.m. until the end of the day, the model CLSTMNN2 is the best performing one,

however it underestimates significantly the production values in the remaining hours of the day.

The high divergence of values verified between 3 p.m. and 7 p.m. in the forecasts of the model

CNN-I2 lead the network CLSTMNN2 to present the best global performance during this day,

which can be checked in the table 4.22.

Table 4.22: Metrics of each model for 3 May 2015.

Metrics DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 5.95% 3.86% 4.60% 3.24%
MAPE 4.30% 2.58% 3.39% 2.33%
MBE -657.48 W -219.65 W -526.26 W 318.49 W

The graph, that corresponds to 4 October 2015, shows that NWP contain considerable errors as

every model overestimated the values of the solar power generated from 9 a.m. to 6 p.m.. Contrary

to what happened on 22 February 2015 (graph 2), the NWP must have foreseen less clouds than

expected. At 9 a.m. it appears that the network CLSTMNN2 produced an anomalous forecast

and this, like the others models, failed to determine the time when the peak production occurred.

According to table 4.23, the network DNN2 is the one that delivers forecasts with lower RMSE

and MAPE, since this model is the one that produces the least underestimation of values compared

to the others.
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Table 4.23: Metrics of each model for 4 October 2015.

Metrics DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 10.48% 16.73% 14.64% 13.61%
MAPE 8.26% 13.41% 11.26% 9.96%
MBE -1347.56 W -2165.76 W -1837.29 W -1556.51 W

The NWP seems to have an adequate quality on April 2, 2016, as the forecasts provided

by the models tend to follow the measured power values. The CLSTMNN2 is the only model

able to detect the time when peak production occurs, however during that hour the network that

presented the best forecast is the CNN-I2. Additionally, the referred model delivered the best

hourly predictions at 11 a.m. and between 3 p.m. and 6 p.m., which led this network to be

considered best overall performing one for this day, as can be seen in table 4.24. The use of

manual time and chronological features seems to originate worse forecasts between 11 a.m. and

5 p.m. (except for the model CNN-IT3 at 2 p.m.). The table previously mentioned shows that all

models tend to underestimate the generation of PV power as the values of the metric MBE are

negative.

Table 4.24: Metrics of each model for 2 April 2016.

Metrics DNN2 CNN-I2 CNN-IT3 CLSTMNN2
RMSE 8.27% 5.54% 7.46% 6.11%
MAPE 6.78% 4.20% 5.82% 4.90%
MBE -271.34 W -488.77 W -223.99 W -317.79 W

Under cloudy sky conditions the model DNN2 has better overall performance than the other

networks, as it delivers predictions with the lowest RMSE and MAPE, as it can be seen in the

tables 4.25 and 4.26. Although CLSTMNN2 is the second-best performing network, it delivers

predictions with lower RMSE and MAPE on the fold 1. The model DNN2 is considered the worst

performing one as its associated RMSE and MAPE are higher than the remaining.

The networks tend to retrieve forecasts that overestimate the value of the PV power, since the

average MBE of each model is negative, as it can be verified in the table 4.27.

Table 4.25: Values of RMSE for each fold and model in cloudy sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 11.61% 11.76% 12.30% 11.13%
2 9.30% 9.67% 9.76% 9.58%
3 10.36% 11.83% 11.65% 10.87%
4 10.67% 11.15% 10.62% 10.75%
5 10.14% 12.58% 10.60% 10.21%

Average 10.39% 11.53% 10.94% 10.46%
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Table 4.26: Values of MAPE for each fold and model in cloudy sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 7.56% 7.71% 7.97% 7.43%
2 6.10% 6.71% 6.47% 6.54%
3 6.68% 7.69% 7.61% 7.15%
4 6.94% 7.65% 7.00% 7.21%
5 6.94% 8.85% 7.40% 7.09%

Average 6.84% 7.82% 7.28% 7.07%

Table 4.27: Values of MBE for each fold and model in cloudy sky hours.

Fold DNN2 CNN-I2 CNN-IT3 CLSTMNN2
1 22.66 W 279.42 W 111.78 W 41.87 W
2 210.95 W -39.96 W 24.91 W -205.22 W
3 -256.65 W -421.69 W -358.53 W 55.08 W
4 66.94 W -295.25 W 108.07 W -18.95 W
5 -183.25 W -874.25 W -461.89 W -251.33 W

Average -37.48 W -329.04 W -147.88 W -98.97 W

4.4 Hardware Specifications

The CPU, whose main purpose is to sequential run tasks that are kept in the computer mem-

ory, processes the mathematical operations during the training phase of neural networks. Since

CPU usually contain few strong processing cores, they are ideal for running sequential tasks [57].

These components, whether they are used to train neural networks, handle all the input/output

operations [58].

The models developed were tested in a server with the following specifications:

• CPU: AMD EPYC 7351P 16-Core (up to 2.9GHz , 64MB of cache) [59];

• GPU: GEFORCE GTX 1080 Ti with 11GB of memory and 3584 cores (up to 1.582GHz) [60].

The table 4.28 contain the average runtime of hyperparameter tuning and training of each

model per fold using the server with the aforementioned specifications.

Table 4.28: Average runtime of hyperparameter tuning and training of each model per fold.

Models Hyperparameter tuning Training
DNN2 2 h 2 min

CNN-I2 1 h 15min 3 min
CNN-IT3 1 h 3 min

CLSTMNN2 19 h 15 min
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4.5 Final Remarks

The present chapter proves the value of the features created automatically in the field of solar

power forecasting, as the models studied that rely on them have similar performances to the one

designed whose inputs are manually engineered features.

The use of night values in the training set reduces forecast errors at the beginning and at the

end of the day, increasing the overall performance of each model.

The errors present in the NWP prejudice the predictions of the models, since they will be

predicting the values of PV power under non-real conditions. As NWP has a greater difficulty in

predicting atmospheric conditions when there are clouds in the sky, due to the increased uncer-

tainty brought by them, there are higher errors associated with the power forecasts in the models

designed.

A more in-depth tuning, doing more trials and using independent hyperparameters, could fur-

ther reduce the error present in the forecasts provided by the studied networks, mainly of CNN-I2,

CNN-IT3 and CLSTMNN2, as these networks depend on their hyperparameters to extract the

features by themselves.

The use of GPU instead of CPU reduced by approximately 3 times the runtime of hyperpa-

rameter tuning of CNN-I2, CNN-IT3 and CLSTMNN2, thus it is an important tool in the deep

learning process.

In this chapter, it is concluded that the model CLSTMNN2 is the most adequate one to use

since it provides, generally, forecasts of good quality, does not require a long search for manual

features and is scalable to other PV plants. The application of the exact same features determined

in the model DNN2 in other solar power plants can deliver predictions with high RMSE and

MAPE, as those features might not be the ideal ones for that plant, due to the existing different

relations between weather conditions and power produced. Thus, the capacity to learn which

spatial and temporal features are most suitable considering the data introduced is one of the main

factors that makes the model CLSTMNN2 so appealing.
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Chapter 5

Conclusions and Future Work

This chapter is divided in two sections, the first one addresses the major conclusions obtained from

the conducted work, while the last one introduces some lines of possible future research that could

lead to better forecast accuracy.

5.1 Conclusions

There is a continuous need to improve the quality of solar power forecasts, due to increasing

penetration of PV power in electrical power systems. Over the years, several approaches have been

tested, the common ones being those that require the creation of manual features. This process

of engineering features is usually time-consuming, as it involves manual testing in order to verify

which set of features is the most adequate. In addition, the features created for a model designed

for a determined photovoltaic plant may not be suitable for another, since the relationships between

climatic conditions and power may be different. Therefore, in this work, several networks were

developed that automatically extract features from the inputs, in order to provide good quality

forecasts and allow generalisation to other PV plants.

The use of deep learning structures allows the models to learn for themselves which features

to extract from the network inputs according to each study case. The hyperparameters play an im-

portant role in these networks, since the features extracted depend on them. Thus, better forecasts

require more time to tune the hyperparameters.

Keras proved to be a useful tool in the development of the models proposed in this research, as

it allowed an easy construction of those networks. This is mainly due to the fact that this platform

is user-centred instead of machine-centred, allowing an intricate model to be designed with a small

number of actions without compromising its performance. The variety of types of layers available

and their modularity make Keras a good option for creating even the most mathematically complex

models.

In general, the four models studied in deeper detail are capable of generating good quality solar

power forecasts. The model DNN2 is the one that generally presents the best performance, which

is followed by CLSTMNN2. CNN-I2 is considered the model with the worst performance of all
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since it has the highest overall RMSE and MAPE, which can be justified by the exclusive use of

spatial features. During the research, it was confirmed that the model CLSTMNN2 is the one that

requires more computational power both in the hyperparameter tuning and in the network training,

due to the complex temporal relations that the ConvLSTM layers extract. Future advances in GPU

and CPU will reduce these runtimes in all models.

In the daily cases analysed, it was found that the existence of errors in the NWP significantly

impairs the performance of the networks by underestimating or overestimating production accord-

ing to the error type. These errors are considered to be one of the main constraints in solar power

forecasts, as once NWP performance is improved, they will be enhanced as well.

For another photovoltaic plant in which the same type of data is available, it is concluded that

the most indicated network to use, in situations when there is a rigid time constrain, is the con-

volutional neural network, as it presents a reasonable performance for its hyperparameter tuning

and training time. If there is more flexibility in the development time, the use of a convolutional

LSTM neural network is recommended, because although DNN2 provided a better performance

in the case study, the search time for manual features can be used in the hyperparameter tuning of

a convolutional LSTM neural network resulting in better forecasts.

5.2 Future Work

Although the designed models that rely exclusively on automatic features perform in a similar

manner to the one that depends on manually engineered features, some enhancements can be

made with future work. These upgrades could lead to a significant boost of performance, retrieving

forecasts with lower errors than the ones outputted by networks whose inputs are manual features.

In general, the following ideas are proposed:

• Implementation of neural attention: this mechanism provides the neural network capability

to focus on specific parts of inputs images linked to a determined context to extract more

relevant features [61];

• Use of similar structures to the ones studied in this thesis in other sources of inputs: as

CNNs and ConvLSTM neural networks were successful at extracting features from NWP

data, they might be able to learn features from satellite and sky images;

• An alternative approach using Graph Convolutional Neural Networks: after building adja-

cency matrices between the points of the NWP grid, it is possible to extract automatically

features using the suggested network [62];

• Further research on ConvLSTM networks: performing additional tests in structures whose

inputs contain a higher temporal horizon might increase the overall accuracy, since it may

find other relevant temporal features;
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• Forecasting solar power via Gradient Boosting Trees using the automatically extracted fea-

tures: simple tests, that were performed using this technique on the features extracted by the

model CNN-I2, showed promising results.
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Appendix A

Hyperparameter Tuning Results

The present chapter provides the hyperparameters determined on the tuning of each model. The

figures A.1, A.2, A.3 and A.4 show the variables related to the layers of each model.

Input numerical variables

Model DNN2

Dense

Output

D_UN_0
D_AF_0

Dense

Dense
1

D_UN_1
D_AF_1

D_AF_2

Figure A.1: DNN2 hyperparameters related to the network structure and activation functions.

The tables A.1, A.2, A.3 and A.4 contain the space search and the values of each variable

retrieved by the hyperparameter tuning performed in each data fold and model.
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Figure A.2: CNN-I2 hyperparameters related to the network structure and activation functions.
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Figure A.3: CNN-IT3 hyperparameters related to the network structure and activation functions.
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Figure A.4: CLSTMNN2 hyperparameters related to the network structure and activation func-
tions.

Table A.1: Model DNN2 hyperparameter sets selected for each data fold.

Category Hyperparameter Search space Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Number
of units

D_UN_0 [16, 64], step of 4 60 64 60 64 64
D_UN_1 [16, 64], step of 4 52 40 52 8 8

Activation
function

D_AF_0 ReLU, tanh, linear ReLU ReLU ReLU ReLU ReLU
D_AF_1 ReLU, tanh, linear ReLU ReLU ReLU ReLU ReLU
D_AF_2 ELU, tanh, linear ELU linear ELU ELU ELU

Training
algorithm

Optimiser Adam
Learning rate 0.01, 0.001, 0.0001 0.0001 0.0001 0.0001 0.001 0.001

Batch size [16, 128], step of 16 16 16 16 96 96
Number of epochs [1, 1000] 52 80 84 65 35

Maximum number of trials = 50

Table A.2: Model CNN-I2 hyperparameter sets selected for each data fold.

Category Hyperparameter Search space Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Number of filters F_0 [4, 32], step of 2 32 32 32 26 4

Width/height
of kernel

KS_0 [1, 6] 1 1 1 2 1
PS_0 [1, 4] 4 3 4 4 4

Activation
function

AF_0 ReLU, tanh tanh ReLU tanh tanh tanh
D_AF_0 ReLU, tanh, linear tanh tanh tanh tanh tanh
D_AF_1 ELU, tanh, linear linear tanh linear ELU tanh

Number of units D_UN_0 [8, 64], step of 4 8 64 64 64 64

Training
algorithm

Optimiser Adam
Learning rate 0.01, 0.001, 0.0001 0.0001 0.0001 0.0001 0.0001 0.01

Batch size [128, 512], step of 8 512 512 128 240 128
Number of epochs [1, 1000] 566 540 232 148 12

Maximum number of trials = 50
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Table A.3: Model CNN-IT3 hyperparameter sets selected for each data fold.

Category Hyperparameter Search space Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Number of filters
F_0 [4, 32], step of 2 26 24 4 8 12
F_1 [4, 32], step of 2 26 18 20 4 20

Width/height
of kernel

KS_0 [1, 4] 2 4 2 4 1
KS_1 [1, 4] 2 2 4 3 1
PS_0 [1, 2] 1 1 2 2 2
PS_1 [1, 2] 2 2 1 2 2

Activation
function

AF_0 ReLU, tanh ReLU ReLU tanh ReLU ReLU
AF_1 ReLU, tanh ReLU ReLU ReLU tanh ReLU

D_AF_0 ReLU, tanh, linear ReLU ReLU linear ReLU ReLU
D_AF_1 ELU, tanh, linear ELU ELU linear ELU tanh
D_AF_2 ReLU, tanh, linear ReLU ReLU ReLU ReLU ReLU
D_AF_3 ELU, tanh, linear tanh tanh linear tanh ELU

Number of units
D_UN_0 [8, 64], step of 4 32 32 16 8 44
D_UN_2 [8, 64], step of 4 52 64 20 52 60

Training
algorithm

Optimiser Adam
Learning rate 0.01, 0.001, 0.0001 0.001 0.001 0.001 0.001 0.001

Batch size [128, 512], step of 8 400 304 512 264 408
Number of epochs [1, 1000] 65 39 15 33 35

Maximum number of trials = 50

Table A.4: Model CLSTMNN2 hyperparameter sets selected for each data fold.

Category Hyperparameter Search space Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Number of filters F_0 [4, 32], step of 2 4 4 30 4 8

Width/height
of kernel

KS_0 [1, 6] 6 6 1 6 1

Activation
function

AF_0 ReLU, tanh tanh tanh tanh tanh tanh
D_AF_0 ReLU, tanh, linear ReLU ReLU tanh ReLU tanh
D_AF_1 ELU, tanh, linear linear linear linear linear tanh

Number of units D_UN_0 [8, 64], step of 4 48 48 56 16 20

Training
algorithm

Optimiser RMSprop
Learning rate 0.01, 0.001, 0.0001 0.0001 0.0001 0.01 0.0001 0.01

Batch size [128, 512], step of 8 200 200 408 240 192
Number of epochs [1, 1000] 86 115 70 104 52

Maximum number of trials = 50
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