
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Monitoring Framework for Clinical
ETL processes and associated

performance resources

Margarida Abranches

DISSERTATION

Orientador da FEUP: João Correia Lopes

Co-orientador da B2F: Francisco Capa

October 31, 2020

c©Margarida Abranches, 2020

Resumo

A arquitetura do sistema Business Intelligence, implementado no âmbito desta dissertação, está
organizada em dois ambientes: back-end (ambiente de desenvolvimento) e front-end (ambiente de
visualização). No back-end, o processo BI começa com a recolha de dados clínicos anonimizados,
em formato de ficheiros CSV, a partir da versão demo MIMIC-III v.1.4 e subsequente extração,
transformação e carregamento (ETL) dos dados para as dimensões e factos da Data Warehouse
(DW) Clínical.

O processo ETL clínico foi implementado, on-premises, utilizando os módulos dos Serviços
de Integração da Microsoft SQL Server (SS) e, no ambiente Microsoft Azure, foram utilizados os
recursos Azure Blob Storage e da Data Factory.

Os sistemas de Business intelligence estão sempre associados a tecnlogias de visualização
que criam dashboards interativos e de fácil utilização para analisar métricas e indicadores chave
de desempenho. A Solução Visual Clínica foi desenvolvida no Power BI Desktop (PBID) e está
dividida em cinco Data Marts: serviços de admissão hospitalar, medições da ficha eletrónica
médica, intervenções médicas e testes laboratoriais.

As soluções clínicas proporcionam decisões rápidas e eficazes para profissionais de saúde e
administradores, poupando tempo e recursos valiosos. Na solução desenvolvida é possível avaliar
a carga de trabalho dos profissionais médicos, o número de intervenções médicas, medições da
ficha eletrónica médica, e testes laboratoriais realizados por categoria médica, data (mês, trimestre
e ano), profissional de saúde, e Unidade de Cuidados Intensivos (UCI). Também é possível analisar
o tipo de admissão, a taxa de sobrevivência da admissão hospitalar, o tempo médio de espera da
assistência médica do paciente (tempo entre a admissão e o primeiro teste realizado) e o tempo de
hospitalização.

O DW clínico integra múltiplas fontes de dados heterogéneas no setor da saúde, fornecendo
uma plataforma de informação otimizada e eficaz para os decisores de saúde. Assim, emerge a
necessidade de construir uma plataforma centralizada para monitorizar todos os processos de ETL
clínico, implementados no servidor on-premises ou na cloud.

A plataforma foi implementada no Ambiente Microsoft Azure para monitorizar mensagens de
erro do ETL e as métricas de desempenho de recursos (por exemplo, CPU, RAM) de diferentes
Soluções Clínicas. As informações de monitorização (erros do ETL e métricas de desempenho
dos recursos) foram enviadas por e-mail, utilizando o serviço SendGrid Web API. A Azure Logic
Application interpreta o corpo e assunto do e-mail para armazenar a informação de monitorização
nas respetivas tabelas da base de dados do Azure. Finalmente, o utilizador final pode analisar o
dashboard de monitorização e ser alertado se um ou mais projetos falharem ou estiverem perto de
falhar.

Palavras-chave: Solução Clínica; ETL; Data Warehouse; Business Intelligence; Framework de
monitorização;

i

ii

Abstract

The dissertation’s Business Intelligence Architecture is organized in two environments: back-
end (development environment) and front-end (visualization environment). In the back-end, the
process begins with the collection of clinical de-identified data, in CSV files format, from the
MIMIC-III demo v.1.4 and subsequent extraction, transformation, and loading (ETL) of the data
to the dimensions and facts of the Clinical Data Warehouse (DW).

The Clinical ETL process was implemented, on-premises, using Integration Services modules
from the Microsoft SQL Server (SS) and, in the Microsoft Azure environment, using the Azure
Blob Storage and Data Factory resources.

The Business intelligence systems are always associated with Reporting Technologies that
create unified, user-friendly dashboards to analyze metrics and key performance indicators. The
Clinical Visual Solution was developed in the Power BI Desktop (PBID) and is divided into five
data marts: hospital admission services, electronic charted measurements, medical interventions,
microbiology, and laboratory tests.

Clinical solutions provide quick and effective business decisions for medical and adminis-
trative professionals while saving valuable time and resources. In the developed solution, it is
possible to evaluate the medical professionals’ workload, the number of medical interventions,
electronic charted measurements, microbiology and laboratory tests performed by medical cate-
gory, date (month, trimester, and year), caregiver, and Intensive Care Unit (ICU). It is also possible
to analyze the type of admission, the hospital admission’s survival rate, and the patient’s average
medical assistance waiting (time between the admission and the first performed test) and hospital-
ization time.

The clinical DW integrates multiple heterogeneous data sources in the healthcare sector, pro-
viding an optimized and effective information platform for health decision-makers. Thus, emerg-
ing the necessity to built a central framework to monitor all the Clinical ETL processes, imple-
mented on-premises or in the cloud.

The central framework was implemented in the Microsoft Azure Environment to monitor the
ETL message errors and resources’ performance metrics (e.g., CPU, RAM) of different Clinical
Solutions. The monitoring information (ETL errors and the resources’ performance metrics) were
sent via e-mail, using the SendGrid Web API service. The Azure Logic Application interprets
the e-mail body and subject to retrieve the monitoring information and store it into the respective
Azure SQL database tables. Finally, the end-user can analyze the monitoring dashboard and be
alerted if one or more projects fail or are close to failure.

Keywords: Clinical Solution; ETL; Data Warehouse; Business Intelligence; Monitoring Frame-
work;

iii

iv

Agradecimentos

Em primeiro lugar queria agradecer ao meu orientador João Correia Lopes pela orientação prestada
e por toda a disponibilidade e paciência durante este moroso percurso.

À B2F que me possibilitou a realização desta dissertação e que teve sempre disponível para me
ajudar a ultrapassar os obstáculos encontrados pelo caminho. Queria agradecer, especialmente, ao
meu co-orientador Francisco Capa pela amibilidade e disponibilidade ilimitada que demonstrou
comigo.

À minha família pelo apoio emocional dado nestes últimos meses. Queria deixar um enorme
obrigada à minha irmã por todas as mensagens de apoio, playlists e vídeos motivadores partilhados
às 3 da manhã.

Aos reVOLTados pelas noitadas de partilha de gossip e pelas mensagens inspiradoras diárias.
Um obrigado especial à Mariana e ao Rui que almoçaram comigo todos os dias para partilhar as
angústias mais profundas.

À Simões que me fez companhia na escrita desta epopeia académica.
À Sara, Teresa, Cátia Vanessa e Rafaela por todas as conversas e pausas de café que ajudaram

a manter a minha sanidade mental.
E, finalmente, um enorme obrigada à colega de casa que me viu passar todas as horríficas fases

numa época de pandemia e que nunca me deixou ir a baixo por muito que eu tentasse. À minha
querida amiga e psicóloga Mónica Filipa.

Margarida Abranches

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Document Structure . 3

2 Literature Review 5
2.1 Health Information Systems . 5

2.1.1 SONHO . 5
2.1.2 LIGHT . 7
2.1.3 SClínico . 7
2.1.4 Health Systems Monitoring . 7

2.2 Business Intelligence . 8
2.3 Data Warehouse . 9

2.3.1 Kimball versus Inmon approaches . 10
2.3.2 Dimensional Modeling . 11
2.3.3 Data Warehouse Requirements . 13
2.3.4 Clinical Data Warehouse . 13

2.4 Extract, Transform and Load . 15
2.4.1 Slowly Changing Dimension . 15

2.5 Cloud Computing . 16
2.5.1 Types of Clouds . 16
2.5.2 Types of Services . 17
2.5.3 On-premises versus Cloud . 18
2.5.4 Cloud Computing Technologies . 18

2.6 Reporting Technologies . 20
2.6.1 Tableau . 20
2.6.2 QlikView . 20
2.6.3 Microsoft Power BI . 21
2.6.4 Reporting Technologies Comparison . 21

2.7 Microsoft Azure Resources . 22
2.7.1 Azure SQL database . 22
2.7.2 Azure Storage Account . 22
2.7.3 Azure Data Factory . 23
2.7.4 Logic Application . 23
2.7.5 Azure Functions . 24

2.8 Summary . 24

vii

viii CONTENTS

3 Clinical Database 25
3.1 MIMIC-III v1.4 . 25

3.1.1 Methods . 26
3.2 Data Description . 26
3.3 Data Access . 27
3.4 Limitations . 28
3.5 Clinical Database . 28
3.6 Summary . 34

4 Business Intelligence Architecture 39
4.1 Introduction . 39
4.2 Business Intelligence Tools . 40
4.3 Extract, Transform and Load . 41

4.3.1 Extraction . 43
4.3.2 Transformation . 45
4.3.3 Loading . 46

4.4 Report Visualization . 48
4.4.1 Power BI Desktop Report Features . 50

4.5 Summary . 51

5 Clinical Report 53
5.1 Introduction . 53
5.2 Business Indicators . 53
5.3 Clinical Dashboard . 54
5.4 Summary . 62

6 Monitoring Framework 63
6.1 Introduction . 63
6.2 Monitoring Framework Overview . 64

6.2.1 ETL Monitoring . 65
6.2.2 Performance Monitoring . 66
6.2.3 Logic Application . 72
6.2.4 Monitoring Dashboard . 73

6.3 Summary . 73

7 Conclusions and Future Work 75
7.1 Conclusions . 75
7.2 Future Work . 76

A Supplementary Material 79

References 89

List of Figures

2.1 Business Intelligence Architecture . 9
2.2 Inmon’s top-down and Kimball’s bottom-up approaches 11
2.3 Star Schema . 12
2.4 Snowflake Schema . 13
2.5 Sample rows from a dimension table . 14
2.6 Types of Cloud Services . 17

3.1 Overview of the Hospital Admission Services Data Mart Relational Model 35
3.2 Overview of the Charted Measurements Data Mart Relational Model 36
3.3 Overview of the Medical Interventions Data Mart Relational Model 37
3.4 Overview of the Microbiology Tests Data Mart Relational Model 38
3.5 Overview of the Laboratory Tests Data Mart Relational Model 38

4.1 Clinical Business Intelligence Architecture . 42
4.2 Clinical ETL procedures . 43
4.3 Clinical ETL’s “ETL_ALL” package implemented in Visual Studio 44
4.4 Antibacterial Disks Prices Extraction Pipeline implemented in Data Factory . . . 45
4.5 Caregivers Table Transformation in the Staging Area 46
4.6 Loading new records from the Staging Area to the Data Warehouse Admissions

Table . 49
4.7 Updating the Admissions Table’s attributes using a combination of type 1 and 2

SCD . 50
4.8 Creation of the Admissions Table in the Data Warehouse 51

5.1 General Admissions Page Overview . 55
5.2 Procedures Page Overview . 58
5.3 Chart Page Overview . 59
5.4 Microbiology & Laboratory Page Overview . 61

6.1 Performance monitor graph with the counters Total Processor Time (percentage),
Memory committed bytes in use (percentage), and Total Physical Disk Time (per-
centage). 68

6.2 Azure monitor graph with the metrics CPU Percentage and the Data Space Use
Percentage. 70

6.3 Monitoring Dashboard . 74

A.1 General Admissions Page. Admissions that resulted in hospital death. 83
A.2 General Admissions Page filtered by selective admissions 83
A.3 Procedures Page Overview filtered with the medical intervention category Imaging. 84

ix

x LIST OF FIGURES

A.4 Procedures Page Overview. Medical interventions: X-Ray, Ultrasound from the
Imaging category. Care unit: MICU. Date: 4th trimester between 2101 and 2203 84

A.5 Chart Page Overview of the Respiratory Therapist, on February 2130. 85
A.6 Chart Page Overview of the Nurses working at the Coronary Care Unit, in 2130,

within the Skin categories. 85
A.7 Laboratory Hematology Tests . 86
A.8 Azure Database Resource Metrics . 87

List of Tables

2.1 Summary of the Slowly Changing Dimension Types 16
2.2 Cloud Technologies Characteristics . 20
2.3 Report Technologies Characteristics . 21

3.1 An overview of the 26 data tables comprising the MIMIC-III (v1.4) critical care
database. 27

3.2 Classes of data available in the MIMIC-III critical care database. 28

4.1 Summary of the transforming actions of the clinical database tables’ attributes. . 47
4.2 SCD types of all dimensional tables’ attributes. 48

5.1 Business Indicators . 54
5.2 Total of hospital admissions and average, minimum and maximum medical assis-

tance waiting time per hospital service . 57

A.1 Clinical ETL’s Control Packages Table . 81
A.2 Business Indicators’ DAX Expressions . 82

xi

xii LIST OF TABLES

Abreviaturas e Símbolos

API Application Programming Interface
AWS Amazon Web Services
BI Business Intelligence
CIF Corporate Information Factory
CPU Central Processing Unit
CSV Comma-Separated Value
DBMS Database Management System
DE Database Engine
DM Data Mart
DSA Destination Staging Area
DOD Date of Death
DW Data Warehouse
ETL Extract, Transform and Load
FK Foreign Key
GCP Google Cloud Platform
HIPAA Health Insurance Portability and Accountability Act
HTTP HyperText Transfer Protocol
IaaS Infrastructure as a Service
ICU Intensive Care Unit
IT Information Technology
MIMIC Medical Information Mart for Intensive Care
NoSQL Non Relational Structured Query Language
OLAP Online Analytical Processing
PaaS Platforms as a Service
PBID Power BI Desktop
PK Primary Key
RAM Random-access Memory
SaaS Software as a Service
SMTP Simple Mail Transfer Protocol
SQL Structured Query Language
SS SQL Server
SSIS SQL Server Integration Services
SSMS SQL Server Management Studio
vCPU Virtual Central Processing Unit

xiii

Chapter 1

Introduction

This document presents the dissertation of the Bioengineering Integrated Master carried out in a

business environment at BUSINESSTOFUTURE (B2F).

In this introductory chapter, it will be explained in what context the project was developed, the

description of the problem and its objectives.

1.1 Motivation

The Health industry generates and collects a huge amount of data every day (images, diagnosis,

medical records, among others) from several isolated and dispersed information repositories [1].

Doctors assess the user’s condition and decide on the respective treatment. Medical direc-

tors assess the clinical purposes, quality and cost of the health service provided. Administrators

manage human resources and inventories. Executives make investment decisions in new lines of

business, partnerships with other organizations and the removal of underutilized services. Collec-

tively, these professionals need timely, accurate and relevant information in their decision-making

process [2].

However, the accumulation of health data is exceeding the capacity of organizations to take ad-

vantage of data to improve the decision-making process of these professionals [3]. Thus, Business

Intelligence (BI) systems are considered as an answer to these needs, allowing the management,

transformation and integration of data and consequently improve in the different areas of perfor-

mance of the organization.

Furthermore, databases, data extraction and treatment processes in health units have a funda-

mental role in the quality of services provided since the data needs to be permanently available

and the information flow working correctly.

In this context, there is a need to prevent failures in ETL (Extract, Load, and Transform)

processes implemented in hospital units, which consists in monitoring the ETL state (success or

failure) and the performance measurements that can lead to systems deficiencies.

1

2 Introduction

Thus, the aim of this work is to develop a centralized framework, in the Microsoft Azure

environment, compatible with cloud and on-premises technologies, to actively monitor the Clinical

Solutions and act proactively in case of error or malfunction detection.

Combined with all the steps necessary for implementing the monitoring framework, it will

also be essential to develop visual and intuitive reports using the B2F’s current visualization tools.

These dashboards allow the healthcare administrators to provide a proactive and non-reactive mon-

itoring towards the several implemented Clinical Solutions.

1.2 Objectives

To develop a centralized framework to be implemented in the health industry, it is necessary to

proceed with the following three phases.

The first step is to develop an Extract, Transform, and Load process, using both on-premises

and cloud environments, to promote effective clinical decisions by organizing and structuring clin-

ical data that is usually ambiguous, incomplete and inconclusive. In this project, the data source

is the MIMIC-III (Medical Information Mart for Intensive Care - III) Demo v.1.4. which com-

prises a range of data of 100 patients hospitalized in the emergency units of Beth Israel Deaconess

medical center between 2001 and 2012. This freely-available online clinical database covers from

demographic patients information to medical procedures and laboratory and microbiological test

results.

The second phase consists of the clinical dashboard design, allowing hospital unit managers

to have more efficient support during the analysis and decision processes. In this dashboard,

the manager must view the following indicators interactively and clearly: emergency events, the

volume of medical interventions, laboratory and microbiology tests organized by medical service,

department category and date (month, trimester, and year).

Finally, associated with the development of monitoring processes and the use of cloud tools,

it will be necessary to design and implement a standardized structure applied in the different

databases of the existing health units. In addition to the mechanisms already mentioned, it will be

essential to implement a model of logs together with a report developed in a visual tool so that it

is possible to consult it quickly and effectively daily.

The proposed framework architecture and model should respond to the following points:

•Monitoring and alert of Extract, Transform and Load processes;

•Monitoring of server resources such as CPU, RAM, etc;

•Monitoring the use level of dashboards and reports;

• Monitoring the degree of reliability of the information; To ensure that the metrics with

temporal context are with the correct value (for example, the number of clinical exams may not be

well calculated because one of the data sources was down and it was not possible to extract and

compile this information)

1.3 Document Structure 3

1.3 Document Structure

This document is divided into seven chapters.

The first one is the present introduction followed by the State of the Art. Chapter 2 is an

overview of health systems monitoring published work and contains information about Business

Intelligence (BI), Cloud Computing, and Reporting Tools.

The third chapter describes, in detail, the freely-available online clinical database, MIMIC-

III Demo v.1.4., and the required adaptations to create the Clinical database and the associated

relational model.

The Business Intelligence Architecture construction process to organize and structure the Clin-

ical database both on-premises and cloud environments, is presented in Chapter 4.

Chapter 5 present the analysis and discussion of the clinical dashboard reports results.

Chapter 6 describes the necessary resources and steps to implement the proposed monitoring

framework and its architecture and dashboard.

The conclusions and future work can be found in Chapter 7.

4 Introduction

Chapter 2

Literature Review

This chapter presents the current state of research and development of the relevant topics for

carrying out the proposed work, namely an overview of health systems monitoring published work

and the technologies associated with Business Intelligence (BI), Cloud Computing, and Reporting

Tools.

2.1 Health Information Systems

Computer technologies’ constant evolution has led to the massive computerization of services in

organizations in the most diverse areas such as education, commerce, and health. Simultaneously,

the importance of information for organizations has increased considerably, and nowadays, the

success of an organization is directly connected to how it manages its information.

In healthcare environments, information systems are responsible for optimizing information

that exists in a healthcare unit. They proceed to collecting, processing, and data management of

all stakeholders (patients, nurses, doctors) and all healthcare unit services [1].

Thus, they support health care working professionals’ activities and must provide safe and

consistent access, confidentiality, efficiency, and continuous availability at high performance. In

particular, they should:

• Improve the quality of treatment by providing automatic alerts and checks on the consistency

of information;

• Increase efficiency using better standards of clinical practice and registration;

• Reduce long-term costs in information management and carrying out complementary means

of diagnosis, eliminating the need for redundant exams.

2.1.1 SONHO

SONHO system exists in 90% of SNS (National Health System) institutions in Portugal.

5

6 Literature Review

The main features include patient documentation, hospital administrative, and financial man-

agement using CID’s (International Classification of Diseases) relationship codes with GDH (Ho-

mogeneous diagnostic groups). It is designated as an ADT system (Admission, Discharge, Trans-

fer) that helps Portugal’s hospital administrative work. It is the CORE system, inside the hospital,

for other health systems because it has information about patients, such as user number, name,

age, contact, clinical history, eliminating the possibility of duplicating patients in the database [4].

The database system is Oracle, version 7.3.4 (currently in version 12) with PL/SQL language

(Oracle’s procedural language extension to SQL). The database is manipulated using a connection,

DBLink (database link), between two physical database servers that allow a client to access them

as one logical database.

SONHO is divided into the following eight modules: patient registration, emergency, hospital

internment, operating room, and external appointment calendar management, hospital admission,

billing, and patient file archive [4].

SONHO’s technology caused problems at application and infrastructure levels, such as au-

thentication security, performance, and availability rate (the system fails several times a day in

individual hospitals), among others.

Therefore, the system was gradually replaced by SONHO V2 and aims to respond to hospital

units’ technical problems resulting from SONHO’s obsolescence. In order to guarantee scalability

and the ability to evolve to new functionalities, SONHO V2 includes [4]:

• The technological migration to Oracle Forms and Reports Services 11g R2, which ensures

greater alignment with most current applications and allows to build and design more com-

plex dashboards that interact with an Oracle database;

• Development of a new service-oriented integration layer, the Local Interoperability Gateway

For Healthcare (LIGHT);

• Provision of a Reporting Database, from which metrics, data and management reports can

be obtained, removing cargo from the production database;

• Online Help tool that provides the user with support for navigation in the system, which can

be updated and printed;

• Upload/Download of documentation, avoiding the paper file in the management of admin-

istrative documentation;

• Management Fees, which allows a global view of the information referring to the payment

of user fees;

• Use of the citizen card, allowing fast and efficient identification of the user;

• Visualization of Daily and Statistical Maps;

• Access and schedule of several tasks simultaneously (appointments and medical tests).

2.1 Health Information Systems 7

2.1.2 LIGHT

One of the significant improvements with introducing the SONHO V2 version, in 2013, was adopt-

ing an interoperability platform, LIGHT, which consists of an integration layer, middleware, that

mediates the exchange of information between the Health Ministry Shared Services (SPMS) prod-

ucts and external customers. Thus, SPMS intends to unify local systems at a national level so that

health institutions communicate the same language and in a standardized way that will facilitate

future international integrations [5].

This platform allows gradually to discontinue the SONHO V1’s DBLink connections since

they were developed individually for each institution and application (the same application often

had different integration schemes in different institutions).

2.1.3 SClínico

The SClínico hospital information system is born from the fusion of the previous applications

developed by SPMS to provide care to users, the Physician Support System (SAM), and the Nurs-

ing Practice Support System (SAPE), resulting in a single shared application to all health care

providers, user-centered [6].

SClínico appeared as a strategy defined by the Ministry of Health to achieve uniformity of

clinical records, increasing efficiency of health professionals and, consequently, saving resources

and improving quality of care.

Unfortunately, although SClínico is used daily in most primary care health units, it is not yet

used in all hospitals across the country. Some of the hospital records appointments are made at

ALERT (system that forwards, automatically, a request for a new medical specialty or hospital).

The lack of a return response when using ALERT is one of the most significant platform deficien-

cies because the family doctor, responsible for the request, does not receive clarification, and the

information gets lost in the process [6].

Since 2017, only Centro Hospitalar de Leiria and Centro Hospitalar Distrital de Santarém have

gradually implemented the SClínico/SONHO V2/LIGHT systems, and this platform still co-exists

with a lot of other heterogeneous information systems [5].

2.1.4 Health Systems Monitoring

The health industry’s database management systems consume large amounts of storage resources,

processing, communication, and can not be subject to failures.

Failure monitoring consists of evaluating the system’s behavior data and obtaining useful re-

ports to avoid future failure circumstances. Therefore, the quality of hospital services provided to

patients depends on failure prevention [7].

In many healthcare units, online fault-tolerant systems are used to ensure the permanent avail-

ability, reliability, and disaster recovery of data.

8 Literature Review

However, these mechanisms do not allow us to take preventive actions to avoid fault occur-

rence. Thus, the necessity of the development of faults prevention and prediction systems is emerg-

ing. These systems can predict faults with time in advance and allow taking early action to solve

problems [7].

In the previous subsection, it was possible to conclude that are a lot of heterogeneous infor-

mation systems so it is important to ensure a monitoring framework capable of monitoring all of

these different systems.

There are several problems that influence database availability, such as the database can be

inaccessible due to network problems or can be too slow and therefore not satisfy the users’ re-

quests.

According to the objective of preventing faults related to the resource limitation it has been

selected the following statistics:

Processor utilization – The processor is one of the most important components, so it is necessary

to constantly monitor its utilization by the user processes. Low values of processor utiliza-

tion may indicate problems at the level of I/O. If the values are too high, it can compromise

the functioning of the database.

Memory utilization – The memory is a key component to the speed of the database systems. The

speed of access to data depends on the place where they are: memory or disk. If the data are

in memory then access to them is faster.

DB time – This statistic gives information related to database response time. The response time

is the period between an initial user request and the return of the results. In Oracle systems,

this time is a sum of total time (including CPU time, IO time, Wait time). Therefore it is a

good indicator of the workload of the system. Typically, this time increases with the number

of simultaneous users or applications, but it also may increase due to large transactions.

Using a Business Intelligence tool, it is possible to analyze the data collected and create graphs

that demonstrate the normal behavior of the database.

2.2 Business Intelligence

Business intelligence (BI) combines business analytics, data mining, data visualization, data tools,

and the best practices to help institutions to make more data-driven decisions [8].

The concept of BI is comprehensive, but it can be defined as a combination of products, tech-

nologies, and methodologies that organize the critical information that a company needs to im-

prove profits and its performance. It is considered the relationship between management and

technology, where the raw material is information, and the final product is its knowledge [9].

This concept made possible the analysis and visualization of data available in real-time, pre-

viously considered useless and now considered essential assets to allow managers to have a clear

perspective of the areas they must control and help the company make strategic decisions [10].

2.3 Data Warehouse 9

Figure 2.1: Business Intelligence Architecture

In practice, in modern business intelligence, there is a comprehensive view of an organization’s

data, which is used to drive change, eliminating inefficiencies, and quickly adapting to the market

or supply changes [9].

BI has the task of extracting and processing data, depending on the project’s requirements

in question, to have it visualized, thus improving the availability and quality of information for

decision making [11].

As illustrated in Figure 2.1, adapted from Kimball et. al. [11], there are five steps to con-

sider in the BI architecture: operational source systems, ETL system, the data warehouse (DW),

multidimensional database, and data visualization (reporting). Data and information are extracted

from one or more sources, processed and transformed based on the requirements accordingly to

the business needs, and are subsequently stored in a separate repository in a DW (Section 2.3).

The described process is ETL – Extract, Transform, Load – covered in Section 2.4. The data

are then prepared according to the project requirements, through Online Analytical Processing,

OLAP queries and data mining applications, and, finally, submitted to the visualization phase,

which communicates directly with the end-user.

2.3 Data Warehouse

In practice, business decisions are taken based on the analysis of past and current data, continu-

ously collected during an enterprise’s lifetime. A data analysis technology, widely accepted by

research and industry, is based on data warehouse architecture [12]. In this architecture, data

10 Literature Review

from multiple heterogeneous storage systems are integrated into a central repository, called a data

warehouse (DW).

Data warehouses are mostly based on a so-called “multidimensional” data model, where es-

sential events, e.g., medical interventions performed, are modeled as so-called facts, characterized

by several hierarchical dimensions, e.g., time and patients, with associated measures, e.g., name

and date of birth [12]. The multidimensional model is unique in providing a framework that is

both intuitive and efficient, allowing data to be viewed and analyzed at the desired level of detail

with excellent performance.

2.3.1 Kimball versus Inmon approaches

When a data warehouse is being designed for an organization, the two most common methods are

the approaches proposed by Bill Inmon and Ralph Kimball.

In Bill Inmon’s data warehouse approach (the top-down design), the data is defined as a cen-

tralized repository for the entire enterprise. Since the data warehouse stores the “atomic” data at

the lowest level of detail, it is necessary to separate and differentiate the data according to the

different existing business areas to be analyzed using Data Mart’s after the DW is complete [13].

A Data Mart (DM) is a subsection of a Data Warehouse and is usually oriented towards a spe-

cific business area of the organization, and inside, the data are subdivided by areas (e.g., Finance,

Human Resources, etc.). A Data Mart is created to complement a DW to satisfy the customer

needs more effectively, restrict access, and, undoubtedly, reduce processing times, increasing the

solution’s performance and speed.

Thus, in this approach, the data warehouse is at the center of the Corporate Information Factory

(CIF), providing a logical framework for delivering business intelligence.

According to Inmon [13], the data warehouse is:

Subject-oriented: The DW data is organized so that all the data elements relating to the same

subjects are linked together. Classical operations systems are organized according to the

company’s applications (e.g., For an insurance company, the applications may be health and

the insurance corporation’s major subject areas might be customer, policy, premium, and

claim.)

Time-variant: The data alterations in the database are tracked and recorded so that reports can be

produced showing changes over time. Time variance implies that all the values that a unit

of data had, within a specific period, are stored in the data warehouse (data history)

Non-volatile: Data in the data warehouse is never overwritten or deleted. The data is loaded in a

snapshot in a static format, read-only, and retained for future reporting.

Integrated: Data is fed from multiple sources into the data warehouse. As the data is fed, it is

converted, reformatted, resequenced, summarized, etc. The result is a consistent data that

has a single physical corporate image.

2.3 Data Warehouse 11

Figure 2.2: Inmon’s top-down and Kimball’s bottom-up approaches

In Ralph Kimball’s dimensional design approach (the bottom-up design), the data marts facil-

itating reports and analysis are created first to provide a narrow view into the organizational data

and, these can be combined into more massive data warehouse. In this approach, the first step to

build the DW is to differentiate the data according to the business areas. Kimball defines the data

warehouse as “a copy of transaction data specifically structured for query and analysis” [11].

On the other hand, Ralph Kimball’s dimensional design approach (the bottom-up design),

defending that DMs should be created initially, taking so that the first step in building the DW is

to differentiate the data and according to with the surrounding business areas.

In Figure 2.2 adapted from Kimball et. al. [11], it is possible to compare both concepts behav-

iors in the architecture of a BI system and visualize Kimball and Inmon approaches.

2.3.2 Dimensional Modeling

Ralph Kimball defends the need for a logical design technique that seeks to present the data in an

intuitive standard structure, allowing efficient and quick access. Thus, Kimball suggested a new

methodology that would revolutionize the modeling of a Data Warehouse, dimensional modeling.

This technique consists of a central table, called a fact table, and a set of surrounding tables:

dimension tables. Each of the dimension tables has a primary key that corresponds precisely to

one of the keys in the fact table (foreign keys) [14].

12 Literature Review

Figure 2.3: Star Schema

In order to build a Dimensional Model, it is necessary to identify the facts and dimensions

for the construction of the respective tables. These are vital elements that define how the data is

structured in the model in question.

There are two possible schemes in the dimensional model: Star schema and Snowflake schema

represented in Figure 2.3 and 2.4 [11], respectively.

Star schema is a star shape model where each dimension table is linked to the central element:

the fact table. In the case of the Snowflake schema, the dimension tables are related to other

dimension tables to normalize the dimension information.

2.3.2.1 Fact tables

The fact tables store information on the organization’s performance measures resulting from its

events. Each table’s row represents an event associated with a process, which contains the mea-

surement information associated with that same event [14].

One of the core concepts of dimensional modeling is that all the measurement rows in a fact

table have to be at the same level of detail (e.g., a laboratory test on laboratory measurements).

Thus, the facts contain crucial information for the analysis and consequent development of the

company.

2.3.2.2 Dimension tables

Dimension tables are integral associations to a fact table and describe the objects involved in a BI

project. The dimension tables store the textual context associated with a business process mea-

surement event. While fact tables contain details about each instance of an object, the dimension

table describes the “who, what, where, when, how, and why” allied with the event. These tables

often have various columns or attributes (that consist of real words rather than abbreviations) and

tend to have fewer rows than fact tables [14].

Each dimension is defined by a single primary key, PK, refer to the Product Key (notation

in Figure 2.5), which serves as the basis to reference any attribute to a given fact table using a

2.3 Data Warehouse 13

Figure 2.4: Snowflake Schema

foreign key (FK) because measurement data should not be repeated in multiple places for various

organizational functions.

The data warehouse is as good as the dimension attributes since the BI environment’s analytic

power is directly proportional to the quality and extent of the dimension attributes [11].

2.3.3 Data Warehouse Requirements

According to Kimbal, there are universal requirements for all data warehouse systems [11]. The

DW must:

• make information easily accessible, fast, understandable and intuitive to the business user,

not merely the developer;

• present information consistently that is carefully assembled from a variety of sources, cleansed,

quality-assured, and released when it is fit for user consumption;

• adapt to user needs, business conditions and data to handle inevitable changes so that it does

not invalidate existing data or applications;

• present information in a timely way. The DW team and business users need to have realistic

expectations for data delivery if there is a short time to clean or validate it;

• be a secure bastion that protects the information assets and confidential data;

• serves as an authoritative and trustworthy foundation to build a decision support system;

• be accepted by the business community.

2.3.4 Clinical Data Warehouse

Traditional DW has as its primary objective, decision support, to increase productivity and effi-

ciency in a business. These DWs are based on well-defined structures, data sources and objectives.

14 Literature Review

Figure 2.5: Sample rows from a dimension table

On the other hand, the main focus of a clinical DW is to facilitate the extraction of knowl-

edge from clinical data. Traditional DWs are less focused on regulatory compliance compared to

clinical DWs. The key feature of a clinical DW, as with all DWs, is to allow an organization to

store and gain value from the data to support and improve decisions. The ability to standardize,

group, analyze, explore and extract data from diverse and dispersed sources has been a challenge

for the healthcare industry. While a traditional DW uses only a finite set of data sources, there are

potentially hundreds of data sources in the industry [15].

In the Health sector, it is necessary to determine the requirements of clinical data, the purpose

of the business, data integration, data quality and the ETL process to overcome the DW technolo-

gies’ new challenges described below [15]:

Data format – The use of DW technology aims to define relationships in clinical data, discover

disease trends, evaluate the performance of the different treatments and protocols used, im-

prove the results of users and provide information to users from different areas (e.g., re-

search, management). The medical data is collected during daily events are stored in various

systems;

Business analysis – A clear understanding of the business purpose represents an important step

in the clinical DW development process, since clinical DW does not fulfill its objectives

without a clear definition of the business objective. In addition, medical data requirements

are collected to understand the problem domain, in addition to determining the appropriate

data model to design the clinical DW architecture;

Data integration – The data is integrated, transformed and consolidated to allow a unified view

in the analysis of the data. The integration of data from different sources becomes a signif-

icant obstacle in situations of development of a clinical DW due to the complexity of the

2.4 Extract, Transform and Load 15

hospital environment, with various service practices, types of data and definitions. In ad-

dition, clinical data are integrated into various information systems, with incompatible and

incomplete structures;

Data quality – In the health sector, the data are usually semi-structured, so it is necessary to

assess their quality (relevance, consistency, validity, integrity). Data quality issues must be

determined and resolved in order to determine the reliability of data for analysis, decision

making and planning.

If these challenges are not addressed and managed carefully, can affect the quality of the data

and, consequently, the Clinical DW.

2.4 Extract, Transform and Load

Extraction, Transformation, and Loading are procedures of a data loading technique responsible

for extracting data from various sources, cleaning, optimizing, and inserting that data into a data

warehouse [16]. This process is the most critical and time-consuming in building a DW.

ETL, as its name reveals, is based on the following three main phases.

Extraction, as its designation indicates, is the first ETL process, where the necessary infor-

mation is extracted, from one or multiple sources (e.g., Flat Files, databases) available, to an

intermediate storage space used between the data sources and the destination repository, called

Data Staging Area (DSA) [17].

The second phase is the transformation responsible for manipulating the available informa-

tion according to the business objectives and requirements. Tasks such as information cleaning

(correcting misspellings, resolving domains conflicts, dealing with missing data, or parsing into

standard formats), combining data from several sources, and duplicating data are examples used

in the transformation process [11].

In the last phase, the previously treated information is loaded and aggregated into the DW [16].

2.4.1 Slowly Changing Dimension

Dealing correctly with the changes at the dimensions’ data level is a critical success factor to the

future of a Data Warehousing System.

Slowly Changing Dimension (SCD) is a dimension that stores and manages both current and

historical data and is fundamental in tracking dimension records’ history [18]. There are different

approaches to deal with slowly changing dimensions to reduce the complexity of the ETL design,

improve the ETL process performance, and minimize future data analysis computation.

In Table 4.2, it is summarized the several types of SCD identified by Kimball [18].

16 Literature Review

Table 2.1: Summary of the Slowly Changing Dimension Types

SCD Type Methodology
0 Any detected change is disregarded and the DW is not updated.

1
The new dimension value overwrites the previous one, and there is no interest in maintaining
any historical values of the modified attribute.
This type is often used for processing data corrections.

2

All dimension history changes are preserved in the database using additional
attributes to identify the record’s validity.
The standard method is to implement a binary active indicator (RecordActive),
a start time (StartDate), and an expiration time (EndDate) to identify the active record period.
The current record has the attribute End_Date as NULL and the RecordActive column set to 1.
When the ETL process identifies a record with a different value in a Type 2 attribute,
a new row is created in the dimension, with a new primary key but with the same identifier.

3 Only the current and previous values of the dimension’s attribute are preserved.

4
The dimension is divided into two tables: one has all the current records (dimension_current),
and the other stores all the updated records and, therefore, are expired (dimension_history).

6 Combines the approaches of types 1,2,3 (1+2+3=6).

2.5 Cloud Computing

Cloud computing provides services such as databases, analysis software and intelligence, storage,

among others, through the Internet, to boost innovation, speed, and flexibility in accessing re-

sources. This theme appeals to most companies and organizations today, as its traditional software

brings high costs, and sometimes requires a high quantity and variety of hardware and software

to be used. The cloud has the solution to these problems since the user only has to pay for the

services he needs, and these are always just a click away [19].

There are several cloud models, types and services since the desired solution has to take into

account the needs that the customer has. There are, therefore, three types of cloud implementa-

tions: public, private and hybrid.

2.5.1 Types of Clouds

• Public Cloud: In this case, the cloud service provider is the operator and owner of the public

cloud, and it is who makes its resources available, such as servers and storage, through the

Internet. Access to this type of cloud is done through the browser [20].

• Private Cloud: In the case of a private cloud, the organization/company is solely who pro-

vides and uses its resources. These clouds can be physically located in the data center of the

company [20].

• Hybrid Cloud: This type of cloud, as the name implies, takes advantage of the public and

private cloud, these are linked through a technology that allows data and applications to be

shared between them. In this way, this solution provides greater flexibility implementation

options, as it allows data movement and applications between public and private clouds.

2.5 Cloud Computing 17

Figure 2.6: Types of Cloud Services

2.5.2 Types of Services

Most cloud services belong to one of these three different categories: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

The knowledge of these categories allows the user of cloud services to make better decisions

taking into account your business needs and objectives as seen in Figure2.6.

• Infrastructure as a Service: IaaS is an infrastructure that provides services to the user inte-

grated in data centers making it an automatic computing infrastructure, being managed with

Internet use. Thus, the IaaS promotes a reduction in fixed costs to the extent that the user

only pays for the services he uses, and avoids expenses on configuration and management

of local data centers since they are virtual. It also offers advantages such as: continuous

innovation, faster response to changes in the business, improvements in business continuity

and disaster recovery, automatic backups, etc [21].

• Platforms as a Service: PaaS provides a wide range of features, from simple applications

and cloud-based environments to sophisticated applications. It is the platform was initially

designed to support the entire Web application development: construction, implementa-

tion, testing, management, and update. Thus, this platform offers advantages such as the

reduction of time spent on the program as it provides pre-programmed application compo-

nents, increase in development capacities without the need to increase teams, greater ease in

managing the “life cycle” of applications and developing multiplatform (including mobile

platforms), among others [22].

• Software as a Service: This last, more comprehensive service offers the user the possibility

to connect and take advantage of cloud applications, over the Internet. In this way, the user

rents the use of a cloud application for the respective organization and the organization’s

constituents connect to it, usually through the browser [23].

18 Literature Review

2.5.3 On-premises versus Cloud

With the evolution that the cloud has had over the years, and the advantages that come from it, it

appears the need to understand the differences between these two approaches.

The main difference between cloud and on-premises is where the software is deployed.

On-premises means that the company has the software installed on their computers and servers,

and it is managed and configured by them. On the other hand, in the cloud, the IT environment is

located on servers outside the company’s location and can be accessed through a web browser [24].

2.5.4 Cloud Computing Technologies

This Subsection presents the three leading Cloud Computing technologies (Amazon Web Services,

Microsoft Azure and Google Cloud Platform) and its main features.

2.5.4.1 Amazon Web Services

Amazon Web Services (AWS) is a cloud computing platform that was launched by Amazon in

2006 and has been the leader in the market since.

Although it offers PaaS and SaaS services, its main features are Infrastructure as a Service,

storage solutions, content migration as well as machine learning features. It is considered a service

with good options for configuration, monitoring, security, and flexibility [25].

Unlike Microsoft Azure, it does not consider the use of private clouds.

2.5.4.2 Microsoft Azure

The scope of Microsoft Azure is similar to that of AWS. This platform was launched by Microsoft

in 2010 and offers several features such as storage, databases, virtual machines, development and

analysis tools, among others [26].

Azure is fully compatible with other Microsoft systems, such as Windows Server, System

Center Active Directory.

2.5.4.3 Google Cloud

Unlike AWS and Azure, which entered this market as service providers based on IaaS, Google’s

first public cloud service was based on PaaS, the App Engine, launched in 2008. Although cloud

computing surfaces like Azure or AWS have a broad service portfolio, Google Cloud Platform

(GCP) has earned its reputation mostly due to its cloud computing services in the open source

community, analysis tools, artificial intelligence, and machine learning [27].

2.5.4.4 Cloud Technologies Comparison

Cloud selection depends on each user’s needs and it is common for companies to use several cloud

service providers for different parts of the operation, designating them as semi-cloud. AWS, Mi-

crosoft Azure and Google Cloud offer very similar basic capabilities, such as flexible computing

2.5 Cloud Computing 19

and storage. They share the same elements as a public cloud, such as self-service, instant pro-

visioning, self-scaling, security and identity management tools. However, these differ from each

other in relation to some characteristics, namely computing, storage, networking, databases, and

security [28].

Computing: It is one of the main functions of the Infrastructure service. Processing and com-

puting are the main capabilities of a computer, as such, it is also essential that the chosen

supplier comes from capabilities that meet the needs of the customer. A suitable cloud

provider can compute huge tasks in just minutes.

In the cloud computing market, selecting the best cloud is a difficult process, as it is neces-

sary to consider CPU performance, memory, and computing price.

As we can see in Table 2.2, all three suppliers are a platform as a Service and include server-

less functions. These are programmatic functions that are hosted on managed infrastructure,

are invoked through the Internet, are hosted and maintained by cloud computing companies.

Storage: One of the most important capabilities of cloud services is storage. The exponential

increase in communication and the consequent information growth, forces the presence of a

service with an efficient storage power and a large volume.

Database: All the suppliers offer SQL and non-relational database (NoSQL) solutions when it

comes to databases. In Table 2.2 it is easily noticeable that AWS and Microsoft Azure

have characteristics with the same objectives. Concerning GCP, it appears that there are

no database migration resources, which is important when more than one service is used.

This feature allows you to migrate data from commercial data bases as long as these are

open-source, such as MySQL, with the least possible downtime. The three competitors also

offer management capabilities for the data warehouse which allows a quick, efficient and

low cost analysis using BI and SQL tools.

Security: In this context, only two cloud suppliers provide security services that are one of the

biggest attractions of cloud users. It is visible in the Table that Google is lacking in terms

of security features. The Google environment does not consider cloud directory and does

not provide firewall, which helps protect against common Internet attacks. Cloud directory

services software is a modern implementation of identity management and directory solu-

tions delivered through the cloud. These solutions provide many simple integrations to help

expedite identity management operations across different networks and applications.

Costs: Considering the smallest instance that includes 2 virtual CPUs and 8 GB of RAM, AWS,

Azure and Google Cloud will cost approximately $69, $70 and $52 per month, respectively.

On the other hand, the largest instance that includes 3.84 TB of RAM and 128 vCPUs will

cost around $3.97/h, $6.79/h, $5.32/h in AWS, Azure and GCP respectively.

20 Literature Review

Table 2.2: Cloud Technologies Characteristics

Characteristics Service Amazon Web Service Microsoft Azure Google Cloud

Computing
PaaS Elastic Beanstalk Cloud Services Google App Engine

Serverless Functions AWS Lambda GCP Functions
Azure Functions, Azure
Event Grid

Storage Object Storage Simple Storage Services Blob Storage Google Cloud Storage

Database

Managed relational
database-as-a-service

RDS
SQL Database, Database for
MySQL and PostgreSQL

Cloud Spanner and
Cloud SQL

NoSQL Amazon DynamoDB Azure Cosmos DB
Google Cloud Bigtable
and Datastore

Managed data warehouse Amazon Redshift SQL Data Warehouse Google Cloud BigQuery

Database Migration
AWS Database Migration
Services

Azure Database Migration
Services

–

Security
Web Firewall

AWS Web Application
Firewall

Azure Application Gateway
and Firewall

–

Directory Services AWS Directory Services Azure Active Directory –

Costs
Smallest Instance $69/month $70/month $52/month
Largest Instance $3.97/h $6.79/h $5.32/h

Azure charges resource usage per minute while AWS charges per hour. This means that if a

user uses the feature for 61 minutes on Azure they will pay 61 minutes while on AWS they

will pay 2 hours [29].

2.6 Reporting Technologies

The Business intelligence systems offer features that analyze and report data for a streamlined

presentation, creating a unified user-friendly dashboard showing analytics, metrics and key per-

formance indicators.

Dashboards present interactive reports, with information typically relating to the obtained per-

formance, aligning the objectives with the organization’s strategy, and monitoring its progress.

Tableau, QlikView and Microsoft Power BI are some of the best BI systems available in the

market.

2.6.1 Tableau

Tableau is a development platform, launched in 2003, that has a user-friendly interface allowing

non-technical users to quickly and easily create customized dashboards to provide insight into a

broad spectrum of business information. One of the key feature is to allow users to drag and drop

data points into the visualization dashboard. The users can import all sizes and types of data from

a range of sources like Oracle, MySQL, SAP, NoSQL, etc [30].

The main disadvantages include the lack of support for data encryption, the lack of multi-

location support and not having a user-friendly interface for report-builder.

2.6.2 QlikView

QlikView is a data discovery and customer insight platform, launched in 1993 by Qlik, well-known

for its data associations and relationship functionality, keeping data in-context automatically. It

2.6 Reporting Technologies 21

Table 2.3: Report Technologies Characteristics

Characteristics Tableau Qlik Power BI

Analytic Capabilities
Supports R and Python
languages-based visualization

Does not support R or Python
Supports R language-based
visualization

Visualization Capabilities
Perfect Graphics and
visualization capabilities

Self-service Tool Easy to use platform

Cloud Capability
It is compatible with
Microsoft Azure

It offers a SaaS cloud
It is compatible with Microsoft
Azure, Amazon Web Services, etc.

Ease of Learning
Requires a Data Science
background

Requires a Data Science
background

User-friendly due to the similarity of
Excel interface and formulas

Storage Limit 100GB on cloud storage 500GB on cloud storage 10GB on cloud storage

Costs
Basic Version Free but with limit features Free but with limit features Desktop version is free
Advanced Desktop
Version

35$per month/per user 20$/per month/per user 10$/per month/per user

offers several features, including its “pre-canned” dashboards which are dashboards that are pre-

configured for data analysis and interpretation [31].

Similarly to Tableau, QlikView connects to the majority of data sources. It has a strong as-

sociation engine built-in, which means that users can conduct direct and indirect searches across

their data, or within a single field. All stored data is located in RAM, which means conversions,

queries and searches can happen quicker and more efficiently [32].

However, it does not support online analytical processing (OLAP), lacks ad hoc reporting func-

tionality and does not allow users to schedule receiving BI reports at specific times in a particular

format.

2.6.3 Microsoft Power BI

Microsoft Power BI is a powerful tool, founded in 2011 by Microsoft, that helps users gather and

interpret proprietary data to make better business decisions and it offers two solutions: Power BI

Services, an SaaS deployment, and Power BI Desktop, the on-premises based version [33].

One of the biggest advantages of this tool is the development of dashboards that update in real-

time from all data sources, so users will never be out of the loop about crucial business information.

Users can also receive alerts, share insights, create reports and stay informed from any mobile

device (compatible with Apple, Android, and Windows) via the application.

On the other hand, the graphical visualization is fairly limited as compared to other BI tools

and is relatively difficult to work with huge data sets [32].

2.6.4 Reporting Technologies Comparison

Business analytics tools are used in business representation of data for the concerned stakeholders

so it is necessary to take into consideration the clients needs.

Although Tableau, QlikView and Microsoft Power BI offer similar services, they have some

differences between them that are presented in Table 2.3 [34].

Regarding the analytics capabilities, the three competitors provide features such as regressions,

clustering, and predictive analytics but Tableau has the advantage of the drill-down and filtering

options and Qlik lacks some analytics features [34].

22 Literature Review

Tableau and Power BI are both easy-to-use software, known for their perfect graphics and

visualization capabilities. Qlik is a self-service analytics tool that provides good visualizations

that are dynamic due to the in-memory engine.

Tableau is compatible with most cloud platforms such as Microsoft Azure, Amazon Web Ser-

vices, etc. Qlik offers a SaaS cloud product. Power BI is compatible with Microsoft Azure which

offers cloud-software called “Cloud-first”.

Power BI is an easy work tool due to the similarity of Excel interface, formulas, and other

features. On the other hand, Tableau and Qlik require that the user have some programming skills

knowledge.

The Qlik Sense Cloud Business, Tableau and Power BI subscription limits allow 500GB,

100GB, and 10GB, respectively, of cloud storage of data. It is possible to expand the data storage

capacity by paying a fee.

In terms of cost Power BI leads the race because of less expensive membership fees and avail-

able features in the free version.

2.7 Microsoft Azure Resources

After analyzing Section 2.5.4.4 and Section 2.6.4, it is possible to understand the main differences

between the cloud and reporting technologies. However, it is also possible to verify that the rank-

ing criteria of this technologies depends entirely on the scope and objectives of the organization

that the want to purchase. In the case of BUSINESSTOFUTURE (B2F), the company opted for

Microsoft technologies, that is, Azure and Power BI as a cloud computing and reporting technol-

ogy, respectively. In the project in question, the technologies adopted were Microsoft technologies

stated above.

The present section contains an approach and definition of the Microsoft Azure resources

operation currently used in the development of this dissertation solution.

2.7.1 Azure SQL database

Azure SQL Database is a scalable, cloud and managed relational database service that provides

SQL Server compatibility [35].

The technology is based on a pay-per-month model and it has two purchasing packages:

Database Transaction Unit (DTU)-Based and Virtual Core (vCore)-Based.

The Database Transaction Units (DTUs) represents a mixture of the CPU, Memory and Data

I/O and Log I/O performance metrics as a single performance unit for Azure SQL Database. The

DTU basic purchase model costs $4.8971/month and it has 5 DTUs and 2GB storage.

2.7.2 Azure Storage Account

The Azure Storage platform is Microsoft’s cloud storage solution for data storage scenarios, offer-

ing a massively scalable object store for text and binary data (Azure Blob), disk storage for Azure

2.7 Microsoft Azure Resources 23

virtual machines (Azure Disks), a file system service for the cloud (Azure Files), a messaging

store for reliable messaging (Azure Queues), and a NoSQL store (Azure Tables).

Data in Azure Storage is accessible from anywhere using HTTP or HTTPS. Microsoft provides

client libraries for Azure Storage in a variety of languages, including .NET, Java, Node.js, Python,

PHP, Ruby, Go, and others, as well as a mature REST API. Azure Storage supports scripting in

Azure PowerShell or Azure CLI [36].

The cheaper billing plan includes locally redundant storage (LRS) Archive Block Blob with

3-year reserved capacity and it costs $0.00081/GB per month.

2.7.3 Azure Data Factory

The Azure Data Factory is a service designed to allow developers to integrate different data

sources and to store relational and non-relational data. The role of Azure Data Factory is to

manage a Cloud service that is built for complex hybrid extract-transform-load (ETL), extract-

load-transform (ELT), and data integration projects [37].

This platform is able to store, process, analyze, and visualize data of any variety, volume, or

velocity.

The technology adopted a pay-per-need model where the user can pay a fee per hour or for

each activity that is executed.

2.7.4 Logic Application

Logic Apps is the Azure Integration software as a service (SaaS) solution from Microsoft that

can connect applications, data, and devices anywhere on-premises or in the cloud by orchestrating

calls to system APIs [38]. Each connector has a cost of $0.000125.

It is possible to access SQL Server Integration Services (SSIS) using a connector that supports

the on-premises data gateway.

A logic app is comprised of a set of building blocks that work together to construct a process

that orchestrates integration between various parts. Those building blocks are workflows, triggers,

actions and flow controls.

A workflow is a sequence of API calls and flow control elements that defines a business process

automation – each logic app defines a workflow. A trigger is the event that kicks off the workflow

right before an action (HTTP call executing an operation against a System API) is executed. Flow

controls control the flow of execution of the workflow, analyzing the messages from a trigger or

previous actions.

The technology is based on a pay-per-execution model, where the user only pay for the logic

apps steps that are executed every time a new logic app instance is invoked [38]. Each action has

a cost of $0.000025.

24 Literature Review

2.7.5 Azure Functions

Azure Functions (AF) is a serverless compute service that allows the user to ran event-triggered

script or piece of code without having to explicitly provision or manage infrastructure. Azure

Functions support different languages: C#, F#, JavaScript, node.js.

Azure Functions consumption plan is billed based on per-second resource consumption and

executions. Consumption plan pricing includes a monthly free grant of 1 million requests and

400,000 GB-s of resource consumption per month per subscription. If the user exceeds this grant,

each execution time will cost $0.000016/GB-s and each million request will cost $0.20 [39].

2.8 Summary

The present Chapter is divided into seven sections. The first section gives the reader an overview

of the currently existing Healthcare Information Systems in Portugal. The next three sections

cover the main steps inherent to the Clinical Solution construction: Business Intelligence (BI),

Data Warehouse (DW), and ETL (Extraction, Transformation and Loading). The fifth section ap-

proaches the several Cloud Computing Services and Technologies available in the market. The

Business intelligence systems are always associated with Reporting Technologies that create a

unified user-friendly dashboard to analyze metrics and key performance indicators. The sixth sec-

tion presents the different Reporting Technologies available. Finally, the last and seventh section

presents an overview of all the Microsoft Azure Resources used in this dissertation.

Chapter 3

Clinical Database

This chapter describes, in detail, the freely-available online clinical database, MIMIC-III Demo

v.1.4., and the required adaptations to create the Clinical database. Also, it presents the Clinical

Data Warehouse’s five data marts (hospital admission services, electronic charted measurements,

medical interventions, microbiology and laboratory tests) and the corresponding relational model.

3.1 MIMIC-III v1.4

MIMIC (Medical Information Mart for Intensive Care) integrates deidentified, comprehensive

clinical data of patients admitted, from June 2001 to October 2012, to the Beth Israel Deaconess

Medical Center in Boston, Massachusetts [40]. The latest version of MIMIC, MIMIC-III v1.4,

was released on 2 September 2016 and comprised 61,532 intensive care unit stays: 53,432 stays

for adults and 8,100 for neonatal patients [41].

The data’s open nature supports a diverse range of clinical studies spanning epidemiology,

clinical decision-rule improvement, and electronic tool development to be reproduced and im-

proved in ways that would not otherwise be possible. Among these researches, the eICU program

and the ICU (Intensive Care Unit) discharge delay analysis were both relevant papers to conduct

the short report of ICU admissions and medical tests conducted, presented in Section 5.3.

A telehealth ICU, or teleICU, is a centralized monitoring framework that provides remote

appointments and reactive alerts for ICU patients. The eICU Collaborative Research Database

(eICU-CRD) resulted in a publicly available database sourced from the eICU program and the

MIMIC-III database [42].

After implementing the eICU program, massive volumes of data were compiled and streamed

for real-time monitoring, during the clinical routine, by a remote ICU unit.

eICU-CRD includes the APACHE IV system that predicts patient mortality using a set of

parameters regarding the patients’ first 24 hours: physiologic measurements, administrated treat-

ments, and admission diagnosis. These data provide an informative estimate of the patient’s med-

ical condition severity on admission to the ICU, allowing hospitals to identify which policies may

benefit patient outcomes [42].

25

26 Clinical Database

According to Bose et. al. [43], while the economic implications of discharge delays (time

between when a patient ready to be discharged and when they leave the ICU) are substantial, it did

not significantly contribute to hospital mortality or increased the discharge length stay.

3.1.1 Methods

The MIMIC-III database was populated with data acquired during routine hospital care to not

interfere with the caregivers’ workflow. Data was acquired from several sources, including So-

cial Security Administration Death Master File, hospital electronic health record databases, and

archives from two critical care information systems: Philips CareVue Clinical Information System

(models M2331A and M1215A; Philips Health-care, Andover, MA) and iMDsoft MetaVision ICU

(iMDsoft, Needham, MA [41]. The information from CareVue and MetaVision systems was com-

bined when building the events tables, except for the INPUTEVENTS_CV and INPUTEVENTS_

MV tables, which store inputs for monitored patients. The mortality dates registered outside the

hospital were collected using the Social Security Administration Death Master File [41].

3.1.1.1 Deidentification

Before data was incorporated into the MIMIC-III database, it was first deidentified following

Health Insurance Portability and Accountability Act (HIPAA) standards using data cleansing and

date shifting [41]. The deidentification process for structured data required removing all identi-

fying data elements listed in HIPAA, including fields such as patient name, telephone number,

address, dates, diagnostic reports, and physician notes. Regarding the dates, these were shifted

into the future by a random offset for each patient consistently to preserve intervals, resulting in

stays that occur between the years 2100 and 2200 [40]. Time of day, day of the week, and approx-

imate seasonality were preserved during date shifting. Accordingly to HIPAA regulations, dates

of birth for patients aged over 89 appear in the database with ages above 300 years to obscure their

real age.

It was not necessary to require patient consent since the project did not impact clinical care,

and all protected health information was deidentified [41].

3.2 Data Description

Table 3.1 summarizes the MIMIC-III v.1.4 relational database’s 26 tables, divided into four cate-

gories: definition and tracking of patient stays, dictionary tables, data associated with critical care

units, and hospital record system [41].

Generally, five descriptive tables define and track patient stays: ADMISSIONS, PATIENTS,

ICUSTAYS, SERVICES, and TRANSFERS. Tables prefixed with “D_” are dictionaries and pro-

vide definitions for identifiers: D_CPT, D_ICD_DIAGNOSES, D_ICD_PROCEDURES, D_ITEMS,

and D_LABITEMS. The other tables contain time-stamped patient care data, such as physiolog-

ical measurements, medical interventions, laboratory, and microbiology test results, discharge

3.3 Data Access 27

Table 3.1: An overview of the 26 data tables comprising the MIMIC-III (v1.4) critical care
database.

Category Table Description

Patient Stay Description

ADMISSIONS Every unique hospitalization for each patient in the database (defines HADM_ID).

CALLOUT
Information regarding when a patient was cleared for ICU discharge and when the patient
was actually discharged.

ICUSTAYS Every unique ICU stay in the database (defines ICUSTAY_ID).
PATIENTS Every unique patient in the database (defines SUBJECT_ID).
SERVICES The clinical service under which a patient is registered during their hospital stay.
TRANSFERS Patient movement from bed to bed within the hospital, including ICU admission and discharge.

Critical Care Unit Data

CAREGIVERS Every caregiver who has recorded data in the database (defines CGID).

CHARTEVENTS
All charted observations for patients. The electronic chart displays patients’ routine vital signs
and any additional information relevant to their care

DATETIMEEVENTS All recorded observations which are dates, for example time of dialysis or insertion of lines.
INPUTEVENTS_CV Intake for patients monitored using the Philips CareVue system while in the ICU.
INPUTEVENTS_MV Intake for patients monitored using the iMDSoft Metavision system while in the ICU.

NOTEEVENTS
Deidentified notes, including nursing and physician notes, ECG reports, imaging reports,
and discharge summaries.

OUTPUTEVENTS Output information for patients while in the ICU.

PROCEDUREEVENTS_MV
Patient procedures for the subset of patients who were monitored in the ICU using the
iMDSoft MetaVision system.

Hospital Record System Data

CPTEVENTS Procedures recorded as Current Procedural Terminology (CPT) codes.

DIAGNOSES_ICD
Hospital assigned diagnoses, coded using the International Statistical Classification of
Diseases and Related Health Problems (ICD) system.

DRGCODES Diagnosis Related Groups (DRG), which are used by the hospital for billing purposes.
LABEVENTS Laboratory measurements for patients both within the hospital and in out patient clinics.
MICROBIOLOGYEVENTS Microbiology measurements and sensitivities from the hospital database.
PRESCRIPTIONS Medications ordered, and not necessarily administered, for a given patient.

PROCEDURES_ICD
Patient procedures, coded using the International Statistical Classification of Diseases and
Related Health Problems (ICD) system.

Dictionaries

D_CPT High-level dictionary of Current Procedural Terminology (CPT) codes.

D_ICD_DIAGNOSES
Dictionary of International Statistical Classification of Diseases and Related Health Problems
(ICD) codes relating to diagnoses. These codes are assigned at the end of the patient’s stay and are
used by the hospital to bill for care provided.

D_ICD_PROCEDURES
Dictionary of International Statistical Classification of Diseases and Related Health Problems
(ICD) codes relating to procedures. These codes are assigned at the end of the patient’s stay and
are by the hospital to bill for care provided.

D_ITEMS
Dictionary of ITEMIDs appearing in the MIMIC database, except those that relate to
laboratory tests.

D_LABITEMS Dictionary of ITEMIDs in the laboratory database that relate to laboratory tests.

summaries, caregiver observations, billing information, medication records, electrocardiogram re-

ports, and imaging studies. These classes are summarized in Table 3.2 [41].

The tables are connected by the following identifiers: SUBJECT_ID (unique patient), HADM_

ID (unique admission to the hospital), ICUSTAY_ID (unique admission to an intensive care unit),

CGID (unique caregiver), and ITEMID (unique measurement).

3.3 Data Access

MIMIC-III is provided as a collection of comma-separated value (CSV) files, with scripts to import

the data into database systems, including PostgreSQL, MySQL, and MonetDB. Since the database

contains sensitive information regarding patients’ clinical care, researchers must formally request

access via a process documented on the MIMIC website [41].

The access to the integral database is only granted if the researcher completes the “Data or

Specimens Only Research” course and signs a data use agreement, which outlines appropriate

data usage and security standards [41]. When the application is approved, the researcher receives

the instructions to download the database from PhysioNet.

The MIMIC-III v.1.4 Clinical Database Demo contains all intensive care unit (ICU) stays for

100 randomly selected patients and excludes the NOTEEVENTS table [44]. These patients have a

28 Clinical Database

Table 3.2: Classes of data available in the MIMIC-III critical care database.

Class of data Description

Billing
Coded data recorded primarily for billing and administrative purposes.
Includes Current Procedural Terminology (CPT) codes, Diagnosis-RelatedGroup (DRG)
codes, and International Classification of Diseases (ICD) codes

Descriptive Demographic detail, admission and discharge times, and dates of death

Dictionary
Look-up tables for cross-referencing concept identifiers (i.e., International Classification of
Diseases (ICD) codes) with associated labels

Interventions Procedures such as dialysis, imaging studies, and placement of lines
Laboratory Blood chemistry, hematology, urine analysis, and microbiology test results
Medications Administration records of intravenous medications and medication orders
Notes Free text notes such as provider progress notes and hospital discharge summaries
Physiologic Nurse-verified vital signs, approximately hourly (e.g., heart rate, blood pressure, respiratory rate)
Reports Free text reports of electrocardiogram and imaging studies

date of death (DOD) but do not necessarily died during individual hospital admission or ICU stay.

Researchers can review the structure and content of MIMIC-III Demo and, posteriorly, deter-

mine whether or not to acquire the full dataset for a more thorough analysis.

The demo dataset latest version (v.1.4.) can be downloaded either as 25 comma-separated-

value (CSV) files or as a single PostgreSQL database backup file (PostgreSQL 9.5) [44].

3.4 Limitations

Although MIMIC-III demo v.1.4 has useful information, the low number of patients registered

(100 samples) and the random admissions time-shifting into the future difficulties the data analysis.

Consequently, the results can only be interpreted by the year season and can not be linked to

external factors (e.g., local epidemics or massive public transport accidents) that directly affect

healthcare responses.

This database also contains dictionary tables with International Classification of Diseases Ver-

sion 9 (ICD-9) codes of diagnoses, medical procedures, and drugs administrated used by the hos-

pital billing system. However, the corresponding invoice costs are not available; therefore, it is

impossible to evaluate the patient’s expenses during his hospital stay.

In the demo version, all the listed patients are deceased, which makes difficult to assess the

impact of the medical interventions, hospitalization period, and admission waiting time in the

hospital survival rate.

Due to the storage’s imprecision across the caregivers table, there is missing information about

the professionals’ occupation, and distinct caregivers with the same name may be considered the

same caregiver.

3.5 Clinical Database

The Clinical Database resulted from the ETL (Extract, Transform and Load) process, described in

the next chapter, using the MIMIC-III demo v.1.4 as the source.

3.5 Clinical Database 29

The billing and the medications tables of the MIMIC-III demo v.1.4 are not present in the

Clinical Data Warehouse.

Unfortunately, it was not possible to match the coded data (Current Procedural Terminology,

Diagnosis-Related Group, and International Classification of Diseases codes) associated to the

billing tables to health insurance and hospital costs, making it impossible to conduct a Hospital

revenue analysis.

Drug products are identified and reported using a unique, three-segment number, called the

National Drug Code (NDC), which serves as a universal product identifier for drugs. FDA pub-

lishes the listed NDC numbers and the information, including National Average Drug Acquisition

Cost (NADAC), which is updated daily. However the medications records were associated with

internal hospital codes, making it impossible to calculate the hospital orders and costs.

The Clinical Data Warehouse has nineteen dimension tables and five fact tables divided into

five data marts: hospital admission services (Figure 3.1), electronic charted measurements (Fig-

ure 3.2), medical interventions (Figure 3.3), microbiology (Figure 3.4) and laboratory (Figure 3.5)

tests.

Note that each table’s first row corresponds to its primary key (PK), and each table contains

a not null integer id except for DW_DIM_D_CARE_UNITS and DW_DIM_D_SERVICES that

has as an identifier a not null acronym.

In the Slowly Changing Dimension type 2 (see Table 4.2), when the value of a determined

attribute changes, the current record is closed (RecordActive is set to 0), and a new record is

created with the adjusted data values (RecordActive is 1).

Each record contains the start time (StartDate) and the expiration time (EndDate) to identify

the active record period.

In this model, DW_DIM_CAREGIVERS, DW_DIM_ADMISSIONS, DW_DIM_ICUSTAYS,

DW_DIM_D_ITEMS_PROCEDURE, DW_DIM_D_ITEMS_CHART, and DW_DIM_D_LABITEMS

have three additional attributes (RecordActive, StartDate, EndDate) to preserve the relevant his-

torical data.

DW_DIM_PATIENTS

The DW_DIM_PATIENTS dimensional table defines a single patient, PatientId, and the patient’s

demographics: gender, date of birth, and death if applied. This table characterizes 100 subjects

obtained from the CareVue and Metavision ICU databases.

DW_DIM_CAREGIVERS

The DW_DIM_CAREGIVERS table provides information regarding the type of caregiver repre-

sented by a unique identifier (CaregiverId), occupation (CaregiverLabel), and respective descrip-

tion (CaregiverDescription).

30 Clinical Database

FlagActive is a binary integer that designates whether the caregiver is currently a hospital’s

employer. FlagActiveStartDate and FlagActiveEndDate define the period of the caregiver’s work

at the Beth Israel Deaconess Medical Center.

When a caregiver changes occupation, the respective record is closed, and RecordActive set to

zero. It is created a new record, with the same CaregiverId updated CaregiverLabel and respective

CaregiverDescription, and RecordActive equal to 1.

This dimensional table contains 7567 caregivers gathered from the CareVue and Metavision

ICU databases.

Date Dimensions

Unlike the other dimensions, the date dimensions tables (DW_DIM_DATE_DISCHARGE, DW_

DIM_DATE_ADMISSION, and DW_DIM_DATE_EVENTS) were built, using stored procedures,

to cover the years from 2100 and 2200. These tables have the attributes DayId (in the format

yyyymmdd), MonthId, Month description, TrimesterId, SemesterId, and YearId, allowing filtering

the patients’ admission, discharge, and medical event (e.g., procedure, laboratory and microbiol-

ogy tests) by these time variables.

DW_DIM_ADMISSIONS

The DW_DIM_ADMISSIONS dimensional table defines all patient’s hospital admission, Admis-

sionId, covering the period between 1 June 2001 and 10 October 2012. This dimension is charac-

terized by:

• admission type (AdmissionType), which can be Elective (previously planned hospital ad-

mission), Urgent or Emergency (unplanned medical care);

• patient’s admission and discharge date (PatientDoadmit and PatientDodisch, respectively)

and time (PatientToadmit and PatientTodisch, respectively);

• a free text preliminary diagnosis (AdmissionDiagnosis) for patient’s hospital admission;

• a flag (AdmissionExpireFlag) that indicates if the patient died within the given hospitaliza-

tion (0 - survive; 1 - death) and the patient’s death date (PatientDodeath) if applied;

• patient’s id, PatientId, and the respective foreign key (FK), PatientKey, that corresponds to

the DW_DIM_PATIENTS’s PK.

When an incorrect patient characterizes an admission, the respective record is closed. It is

then created a new record, with the same AdmissionId, with the updated PatientId and respective

demographic information.

It is composed of 129 records retrieved from the Beth Israel Deaconess Medical Center.

3.5 Clinical Database 31

DW_DIM_D_CARE_UNITS

DW_DIM_D_CARE_UNITS is a care unit dictionary described by a unique identifier, CareUnitId,

and the respective description, CareUnitDescription. FlagActive is a binary integer that designates

whether the care unit is discontinued. Consequently, the StartDate and EndDate represent the

active period of the care unit. This dimensional table currently describes the Coronary care unit,

Cardiac surgery recovery unit, Medical intensive care unit, Neonatal intensive care unit, Neonatal

ward, Surgical intensive care unit, and Trauma/surgical intensive care unit.

DW_DIM_D_SERVICES

DW_DIM_D_SERVICES has an identical organization to the DW_DIM_D_CARE_UNITS table.

The currently listed services range from Dental to Obstetrics.

DW_DIM_ICUSTAYS table

The DW_DIM_ICUSTAYS table represents each of the 136 patient’s Intensive Care Unit (ICU)

stays, IcustayId, registered in the hospital database, and compresses the following:

• patient’s admission and discharge date (PatientDoadmit and PatientDodisch, respectively)

and time (PatientToadmit and PatientTodisch, respectively);

• admission’s id, AdmissionId, and the respective FK, AdmissionKey references the DW_

DIM_ADMISSIONS’ PK;

• patient’s id, PatientId, and the respective FK, PatientKey, references the DW_DIM_PA-

TIENTS’s PK;

• first and last care unit identifiers which the patient was cared for, FirstCareUnitId and Last-

CareUnitId, and the respective foreign keys, FirstCareUnitKey and LastCareUnitKey, that

link to the DW_DIM_D_CARE_UNITS’ primary key.

When an incorrect patient or admission characterizes an ICU stay, the respective record is

closed. It is inserted a new record, with the same IcustayId, with the updated PatientId or Admis-

sionId.

DW_FACT_SERVICES

While a patient can be physically located at a given ICU, they are not necessarily being cared

for by the same ICU team due to, for example, bed shortage. The DW_FACT_SERVICES table

identifies the type of service a patient is receiving in the hospital. A patient’s service is charac-

terized by its identifier (PatientId), admission (AdmissioId), current service type (CurrServiceId),

previous service type if applied (PrevServiceId), time of service transfer (ServiceToStart), and the

ActiveServiceFlag. This binary integer flag is only positive for the last service that a patient was

32 Clinical Database

admitted. The fact table, shown in Figure 3.1, has the foreign keys PatientKey, AdmissionKey,

CurrServiceKey and LastServiceKey, referencing the dimensional tables DW_DIM_PATIENTS,

DW_DIM_ADMISSIONS, and DW_DIM_D_CARE_UNITS, respectively.

Dimension table normalization is referred to as snowflaking (as seen in Section 2.3.2, which

is an extension of the dimensional model. Redundant attributes are removed from the flat, denor-

malized dimension table and placed in separate normalized dimension tables [11].

When a dimension table is normalized, low-cardinality attributes appear as secondary tables

connected to the base dimension table by a key. Although the snowflake represents hierarchical

data accurately, it is difficult for business users to understand and explore snowflakes. They may

reduce the disk space consumed by dimension tables, but the savings are usually insignificant

compared to the entire data warehouse environment and negative impact in query performance.

In the case of Figure 3.1, the DW_FACT_SERVICES table could be connected to the admissions

table, and the patients’ table relationship removed since it is already referenced in the admissions

table. Nonetheless, to increase query performance, both relationships were kept.

There are situations in which it is permissible to build an outrigger dimension that attaches

to a dimension within the fact table’s immediate halo, as illustrated in Figure 3.1. Outriggers are

dimension tables joined to other dimension tables, but they distinguish themselves from the fully

normalized snowflakes because it is one layer removed from the fact table [11].

In this example, the outrigger is two date dimensions snowflaked off a primary dimension

(DW_DIM_ADMISSIONS). The outrigger date attributes are descriptively and uniquely labeled

to distinguish the dates associated with the admission and discharge process, making it possible to

simultaneously filter these dates.

DW_DIM_D_ITEMS_CATEGORY

DW_DIM_D_ITEMS_CATEGORY_CHART, DW_DIM_D_ITEMS_CATEGORY_PROCEDURE,

and DW_DIM_D_ITEMS_CATEGORY_LABITEMS are similar structured dimensional tables

that provide information about the data category of the patient’s nurse-verified physiological mea-

surements, medical interventions, and laboratory test results, respectively.

These dictionary tables are described by a unique integer identifier, ItemCategoryId, and the

respective label, ItemCategoryLabel, and a binary flag, FlagActive, designates whether the item

category is discarded. The StartDate and EndDate represent the active period of the item category.

Moreover, the DW_DIM_D_ITEMS_CATEGORY_CHART dimensional table also has a de-

scriptive item category attribute, ItemCategoryDescription, that gives more detailed information

about the patient’s charted observations category.

DW_DIM_D_ITEMS_PROCEDURE, DW_DIM_D_ITEMS_CHART, and DW_DIM_D_LABITEMS

define all items from the CareVue and Metavision ICU databases regarding clinical procedures

(e.g., X-Ray, electroencephalogram, or dialysis), electronic charted nurse-verified measurements

such as vital signs and laboratory measurements, respectively.

These dimensional tables are characterized by an integer identifier (ItemId or LabitemId),

the item nomenclature (ItemLabel or LabitemLabel), the category identifier (ItemCategoryId or

3.5 Clinical Database 33

LabitemCategoruKey), and the respective foreign key (ItemCategoryKey or LabitemCategoryKey)

referencing the respective category items tables.

When an item changes category, the respective record is closed, and it is created a new record,

with the same ItemId or LabitemId.

DW_FACT_CHARTEVENTS

The DW_FACT_CHARTEVENTS table registers all the events occurring on a patient chart (see

Figure 3.2). A patient’s chart event is characterized by its identifier (PatientId), admission (Admis-

sioId), intensive care unit stay (IcustayId), assigned caregiver (CaregiverId), item administrated

(ItemId) and the corresponding result (ItemValue) and measurement unit (ItemUom), date and

time of the observation, PatientDoStart, and PatientToStart, respectively.

This fact table has the foreign keys PatientKey, AdmissionKey, IcustayKey, CaregiverKey,

ItemKey, PatiendDoStart, referencing the dimensional tables DW_DIM_PATIENTS, DW_DIM_

ADMISSIONS, DW_DIM_ICUSTAYS, DW_DIM_CAREGIVERS, DW_DIM_D_ITEMS_CHART,

and DW_DIM_DATE_EVENTS, respectively.

DW_FACT_PROCEDUREEVENTS

The DW_FACT_PROCEDUREEVENTS table lists all the events related to the patient’s medical

interventions. The structure of this table is similar to DW_FACT_CHARTEVENTS, as shown in

Figure 3.3.

DW_DIM_D_ITEMS_MICROBIOLOGY

DW_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM, DW_DIM_D_ITEMS_MICRO-

BIOLOGY_SPECIMEN, and DW_DIM_D_ITEMS_MICROBIOLOGY_ORGANISM dimensional

tables are dictionaries listing antibacterial antibiotics, type of samples (e.g., blood, pleural fluid,

urine), and organisms (e.g., virus, bacteria, fungi), respectively. Each of these tables contains the

attribute FlagActive, designating whether the item is discontinued.

The disk diffusion test or Kirby–Bauer test is an antibiotic susceptibility analysis to determine

a pathogenic bacteria’s sensitivity or resistance against a range of antimicrobial compounds. In

this test, paper disks impregnated with antibiotics are placed on an agar plate to test the antibiotic

efficiency to inhibit the organism’s growth, assisting the physician in selecting treatment options

for the patients’ bacteria [45].

Fisher Scientific is an American distributor of scientific instrumentation, reagents and consum-

ables, and software and services to healthcare and industry [46]. This company has a public online

catalog of sensitive antibiotic disks produced by a global medical technology company BD [47].

Unlike the specimen and organism tables, the antibacterial one has the following attributes:

antibiotic disk concentration (ItemConcentration), package’s number of disks (ItemQuantity), and

package price (ItemPrice). Note that all of the listed antibiotic prices refer to the current market

values of the BD BBLTM Sensi-DiscTM brand available in the Fisher Scientific platform [47].

34 Clinical Database

DW_FACT_MICROBIOLOGYEVENTS

DW_FACT_MICROBIOLOGYEVENTS comprises microbiology information, including cultures

acquired, administered tests, and associated sensitivities/results, as illustrated in Figure 3.4. Simi-

larly to the other event tables, a patient’s microbiology event is described by its identifier (Patien-

tId), admission (AdmissionId), specimen collected (SpecimenId), tested organism (OrganismId),

and antibiotic (AntibioticId) and the corresponding result (AntibioticTestResult).

This fact table has the foreign keys PatientKey, AdmissionKey, SpecimenKey, OrganismKey,

AntibioticKey and PatiendDoStart, referencing the dimensional tables DW_DIM_PATIENTS,

DW_DIM_ADMISSIONS, DW_DIM_D_ITEMS_MICROBIOLOGY_SPECIMEN,

DW_DIM_D_ITEMS_MICROBIOLOGY_ORGANISM,

DW_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM, and DW_DIM_DATE_EVENTS,

respectively.

DW_FACT_LABEVENTS

The DW_FACT_LABEVENTS table registers all the patient’s laboratory tests (see Figure 3.5), in-

cluding out patient data (meaning do not have an admission at the Hospital). A patient’s laboratory

test is characterized by its identifier (PatientId), admission (AdmissioId), intensive care unit stay

(IcustayId), assigned caregiver (CaregiverId), item tested (ItemId) and the corresponding result

(ItemValue) and measurement unit (ItemUom), date and time of the observation, PatientDoStart,

and PatientToStart, respectively.

This fact table has the foreign keys PatientKey, AdmissionKey, ItemKey, PatiendDoStart, ref-

erencing the dimensional tables DW_DIM_PATIENTS, DW_DIM_ADMISSIONS, DW_DIM_

D_LABITEMS, and DW_DIM_DATE_EVENTS, respectively.

3.6 Summary

MIMIC (Medical Information Mart for Intensive Care) integrates deidentified, comprehensive

clinical data of patients admitted, from 2001 to 2012, in the Beth Israel Deaconess Medical Center,

Boston. This Chapter gives a detailed description of the this database’s data, access and limita-

tions.

The Clinical Database resulted from the ETL (Extract, Transform and Load) process that used

the MIMIC-III demo v.1.4 as the data source. The Clinical Database is composed by nineteen

dimension tables and five fact tables divided into five data marts: hospital admission services,

electronic charted measurements, medical interventions, microbiology and laboratory tests. It is

also presented this Clinical Solution’s relational model, as well as, a detailed description of each

table’s attributes.

3.6 Summary 35

Figure 3.1: Overview of the Hospital Admission Services Data Mart Relational Model

36 Clinical Database

Figure 3.2: Overview of the Charted Measurements Data Mart Relational Model

3.6 Summary 37

Figure 3.3: Overview of the Medical Interventions Data Mart Relational Model

38 Clinical Database

Figure 3.4: Overview of the Microbiology Tests Data Mart Relational Model

Figure 3.5: Overview of the Laboratory Tests Data Mart Relational Model

Chapter 4

Business Intelligence Architecture

This chapter dives into the Business Intelligence Architecture construction process. Firstly, there is

the definition of the local and Microsoft Business Intelligence tools used to built the BI architecture

in question. Then, the Clinical Extraction, Transformation and Loading steps to organize the

Clinical database, both on-premises and cloud environments, is described.

4.1 Introduction

The increase in clinical records produced every day and the absence of analytical tools to handle all

the information produced make it imperative to use Information Technologies (ITs) in the health

sector, to support the decision-making process and reduce unpropitious events in a clinical setting.

The adoption of health information technologies is seen as an opportunity to improve not

only the effectiveness, efficiency and quality of health services, but also to provide transparency

about economic activities and the availability of information [2]. Healthcare organizations face

a common problem with the high amount of gathered data from several relational tables, which

normally are disorganized and unstructured, requiring computational time for data integration.

Despite the benefits inherent in the application of BI in Health Institutions, its adoption is not

yet global and is lagging behind other sectors. Factors such as limited budgets, the absence of

sponsors and qualified professionals, as well as data quality and interoperability issues between

different information systems, have created difficulties in the implementation of BI solutions in

health [48].

In the present context, the implementation of solutions based on the BI concept, at Beth Is-

rael Deaconess Medical Center, promotes the creation of intensive care units’ indicators and im-

proves the clinical service provided through the representation of useful and interactive informa-

tion. These solutions have the following advantages:

1. Organization and management of information from different sources, allowing relevant, ag-

ile, and transparent access to data;

39

40 Business Intelligence Architecture

2. Creation of reports, and clinical and administrative analysis in a fast and straightforward

way;

3. Monitoring of hospital activities and processes to allow their improvement and increase user

satisfaction;

4. Support and security of users’ private data and control of information quality.

The data validation and importation from Database Management Systems (DBMS), the con-

struction of mechanisms to automate procedures, and the creation of queries to consult indicators

are tasks associated with the development of DW, subsequently allowing the representation of

useful knowledge through the application of BI tools.

This chapter reflects the project’s Business Intelligence process, which consists of the Extract,

Transform and Load (ETL) of the data obtained by Beth Israel Deaconess Medical Center and the

development of report and dashboards for viewing and analyzing medical information.

4.2 Business Intelligence Tools

The tools evaluation and selection follows the architecture definition since it is necessary first to

define and understand what is necessary to accomplish. The tools selection focused on Microsoft

products due to the existing partnership between Microsoft and B2F.

Figure 4.1 illustrates the tools selected for each stage of the on-premises and cloud BI’s ar-

chitecture, organized in two environments: back-end (development environment) and front-end

(visualization environment).

In the back-end, the process begins with the collection of data, in CSV files format, from the

MIMIC-III demo v.1.4 and subsequent extraction and transformation of the data to the dimensions

and facts of the Staging Area and, finally, the loading of this information for the Data Warehouse

(DW).

In this sense, SQL Server Management Studio (SSMS) was used to manage the Database En-

gine (DE), responsible for constructing the DW, where the dimension and fact tables are allocated.

The DE used, both on-premises and in the cloud environment, was the Azure SQL Database.

On-premises, Visual Studio enabled the ETL process using Integration Services modules from

the Microsoft SQL Server (SS). Each data extraction, transformation, and loading is built in one

package using “Data Flow Task” and the “Execute SQL Task” tasks. The first one is responsible

for moving and mapping data from a table or flat file (CSV file) source to the destination table

using a Flat File and ADO.NET connection when sinking to the CSV File and the Microsoft

Azure SQL Database, respectively. The second one is to run SQL statements to clean or modify

data such as truncating or updating tables.

On the other hand, in the Microsoft Azure environment, the Azure Blob Storage and Data

Factory are support resources to develop the ETL process. The Azure Blob Storage collects all

the information of each CSV file, and the Data Factory facilitates the ETL construction using

4.3 Extract, Transform and Load 41

pipelines. Each pipeline is responsible for the extraction, transformation, or loading of one table,

and contains a sequence of activity blocks that allow copying, mapping, and modifying data.

When there is a movement of data between two datasets, the ’Copy Data’ activity connects to

the table (Azure SQL Database service) or blob (Azure Blob Storage service) source and sinks and

maps the columns to the destiny table. In this activity, it is possible to supplement with simple SQL

scripts (e.g., truncate a table) or stored procedures (e.g., data transformation such as converting

data types or semantic re-categorization of descriptive labels).

Using the Azure SQL Server in the cloud environment was sufficient to access the Azure

SQL Database and run the Data Factory’s ETL process. However, on-premises, it is mandatory

to use two SQL Servers: Azure and the local machine (MSSQLSERVERMARGA) to access the

database and run the developed ETL, respectively.

In the front-end, DW tables act as a source for the report and respective dashboards, providing

the end user’s optimized information, presented in the Power BI Desktop (PBID).

Once the on-premises tools (Visual Studio, SSMS and, Power BI Desktop) were selected, they

were installed and tested on the prototype’s local machine to ensure their operation.

Similarly, after creating a Microsoft Azure account, it was necessary to subscribe to the fol-

lowing resources: SQL Server, SQL database, Storage account, Data Factory (V2) and, Power

BI.

In Section 2.7, the description of the tools incorporated in the prototype architecture is pre-

sented.

4.3 Extract, Transform and Load

The development of the necessary processes for the construction of the DW and the respective data

marts modeled in the previous chapter depends on the execution of procedures and ETL functions,

shown in the Figure 4.2. Note that all the tables resulting from the extraction, transformation, and

loading have the prefixes “SA_CSV_”; “SA_DIM_” or “SA_FACT_”; “DW_DIM_” or “DW_

FACT”, respectively.

When building an ETL process is good practice to create two parameters tables: PARAMS_

Control_Packages and PARAMS_Log_Packages. The first table contains all the created packages

type (E – Extraction; T – Transformation; L – Loading), running order, creation and alteration

dates and users name, and the binary flag RecordActive to indicate whether or not the package

should be run. The Log table contains the running state information of all the run packages of an

ETL project. Each row represents one package and includes the start and end running timestamp,

a binary flag to indicate the ETL success or failure and the error message if applied.

In the Visual Studio, each package whether extracts, transforms or loads data from the source

table/CSV file to the destiny table. However, the user running one package at a time is not an

option. Therefore, it is created the “E_ALL”, “T_ALL” and “L_ALL” packages that run all the

extraction, transformation, and loading packages, respectively. The specific package running order

is defined by the Control Table (see Table A.1 in Appendix). For example, the “L_ALL” is going

42 Business Intelligence Architecture

Figure 4.1: Clinical Business Intelligence Architecture

to load all the “L” type packages, starting with the dimensional tables first, followed by the fact

tables. Finally, it is created the “ETL_ALL” package that runs, in this order, the “E_ALL”, “T_

ALL” and “L_ALL” packages.

On-premises, it was implemented a Clinical ETL with a total of 58 packages where the “ETL_

ALL” package runs sequentially the other 57 packages using a foreach loop.

Figure 4.3 represents the clinical ETL’s “ETL_ALL” package. The process begins with insert-

ing a row into the PARAMS_Log_Packages with the “ETL_ALL” package name and start running

time. Then, it will retrieve an array with all the packages that have a not null RecordActive and that

the type “A” (“E_ALL”, “T_ALL” and “L_ALL” packages). In the foreach loop, it inserts a row

into the PARAMS_Log_Packages with the “E_ALL” name and start running time, and executes

this package. When the execution of the “E_ALL” is complete, it is updated the corresponding

row with the end running time and with the error message(s) if it was encounter an error. Note

that the “E_ALL” package execution is very similar to the one described before but instead of run-

ning the type “A” packages, it runs the type “E” packages. Finally the “ETL_ALL” loop repeats

the process for the other two type “A” packages and updates the PARAMS_Log_Packages table’s

“ETL_ALL” row. The two scripts “Send Mail on Failure” and “Send Mail on Success” are not

components of the ETL process itself but have the purpose to monitor it. The monitoring process

will be explained in Section 6.2.1.

On the other hand, in the Azure Data Factory, it was only implemented a short extraction

4.3 Extract, Transform and Load 43

Figure 4.2: Clinical ETL procedures

pipeline which consisted into obtaining the listed antibacterial agents and their attributes from

the Antibacterial disks prices excel and transferring this data into the SA_CSV_D_ITEMS_AN-

TIBACTERIUM_PRICES destiny table (see Figure 4.4). The two azure functions are not compo-

nents of the ETL process itself but have the purpose to monitor it. The monitoring process will be

explained in Section 6.2.1.

Since Antibacterial disks prices Excel was retrieved from Fisher Scientific platform [47] and

not from the Hospital database, this information would be in a different server than the rest of the

data. However, if it was necessary to replicate the exactly same clinical ETL in Azure, the im-

plementation would be very similar with exception that it does not exist foreach loops in the Data

Factory. The solution is to create a “ETL_ALL” pipeline with the sequenced “Execute Pipeline”

activities to run multiple pipelines, in the desired order.

4.3.1 Extraction

In the information extraction phase, the following MIMIC-III tables were collected, in the form of

CSV files:

• SA_CSV_ADMISSIONS

• SA_CSV_PATIENTS

44 Business Intelligence Architecture

Figure 4.3: Clinical ETL’s “ETL_ALL” package implemented in Visual Studio

• SA_CSV_CAREGIVERS

• SA_CSV_ICUSTAYS

• SA_CSV_SERVICES

• SA_CSV_D_ITEMS

• SA_CSV_D_LABITEMS

• SA_CSV_CHARTEVENTS

• SA_CSV_PROCEDUREEVENTS_MV

• SA_CSV_LABEVENTS

• SA_CSV_MICROBIOLOGYEVENTS

Furthermore, the Excel file (MIMIC_PARAMS) describes the microbiology concepts, the

patient’s nurse-verified physiological measurements, and medical intervention categories (SA_

4.3 Extract, Transform and Load 45

Figure 4.4: Antibacterial Disks Prices Extraction Pipeline implemented in Data Factory

CSV_D_ITEMS_CATEGORY), Critical Hospital Units (SA_CSV_D_CARE_UNITS), and Ser-

vices (SA_CSV_D_SERVICES), generating three extraction new tables.

Finally, the listed antibacterial agents and their attributes (SA_CSV_D_ITEMS_ANTIBAC-

TERIUM_PRICES) were collected from the Fisher Scientific platform [47].

4.3.2 Transformation

The SA_CSV_D_ITEMS table has the columns “linksto” (e.g., microbiologyevents) and “cat-

egory” (e.g., organism), allowing to filter the registered items by the associated fact table and

category. Thus, originating the following five tables SA_DIM_D_ITEMS_CHART, SA_DIM_D_

ITEMS_PROCEDURE, SA_DIM_D_ITEMS_MICROBIOLOGY_SPECIMEN, SA_DIM_D_ITEMS_

MICROBIOLOGY_ORGANISM, SA_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM.

The last table resulted from the merging between the SA_CSV_D_ITEMS and SA_CSV_D_

ITEMS_ANTIBACTERIUM_PRICES, using the antibiotic identifier code.

Similarly, the SA_CSV_D_ITEMS_CATEGORY column “linksto” filters the items’ category

by the linked fact tables, generating the tables SA_DIM_D_ITEMS_CATEGORY_CHART, SA_

DIM_D_ITEMS_CATEGORY_PROCEDURE, and SA_DIM_D_ITEMS_CATEGORY_LABITEMS.

After assessing the quality of the attributes selected from the data sources provided by the

MIMIC-III demo v.1.4, it was possible to identify the following inconsistencies: attributes with

some null values, spelling errors, or identifier codes with different associated descriptors. Based

on this assessment, proposals for corrective actions for attributes considered relevant to the final

solution are presented in Table 4.1.

As noted in Table 4.1, the transforming actions consist of changing the data type, semantic re-

categorization of descriptive codes (see Figure 4.5), adding attributes directly linked to the existing

46 Business Intelligence Architecture

Figure 4.5: Caregivers Table Transformation in the Staging Area

ones, and restructuring the dates to the ISO 8601 format “YYYYMMDD”. All string data types

were converted to nvarchar, storing Unicode characters of variable-length.

4.3.3 Loading

In all the tables, primary keys were automatically generated, which are referenced by other tables’

foreign keys. Thus, at this stage, the connections of the relational model of the clinical database

are built, as shown in Figures 3.1–3.5.

In this step, the parent dimensional tables are loaded first, followed by the child dimensional

tables and fact tables accordingly to the foreign keys hierarchy.

Unlike the other tables, the date dimension was loaded through a stored procedure, which au-

tomatically generates the different attributes (year, month, description of the month, day, semester,

trimester) of the date dimension when the solicited range of dates is provided.

When SA tables have new records that are not present in the respective DW tables, each row

is loaded into the DW table using a LEFT JOIN.

Note that for each table’s FK, the loading implies a LEFT JOIN between the SA table and

the DW referenced parent table. For example, the PatientKey in the DW_DIM_ADMISSIONS

results from the LEFT JOIN between the SA_DIM_ADMISSIONS and DW_DIM_PATIENTS

(see Figure 4.6).

After inserting the new records into the DW tables, updating the dimensional tables’ attributes

is the next step. In this project, the implemented Slowing Changing Dimensions’ types are 1, 2,

and a combination of these two (see Figure 4.7).

The majority of the dimensional table’s attributes are type 1, so they are overwritten when

the ETL encounters a change. Three more columns are incorporated when there is at least one

type 2 attributes in the dimensional tables: StartDate, EndDate, and RecordActive. StartDate and

4.3 Extract, Transform and Load 47

Table 4.1: Summary of the transforming actions of the clinical database tables’ attributes.

Table(s) Attribute(s) Transformation

PATIENTS PatientDob Convert the timestamp data type to the ISO 8601
’YYYYMMDD’ date format.

PatientDod Convert the timestamp data type to the ISO 8601
’YYYYMMDD’ date format.

CAREGIVERS CaregiverLabel Aggregate identical professionals label seman-
tics (e.g., Med, Dr, and MD all refer to Medicine
Doctor). It is assigned the value ’Unknown’ to
null caregivers identifiers.

ADMISSIONS
PatientDoadmit New column. Convert the timestamp data type

to the ISO 8601 ’YYYYMMDD’ date format.
PatientDodisch New column. Convert the timestamp data type

to the ISO 8601 ’YYYYMMDD’ date format.
PatientDod Convert the timestamp data type to the ISO 8601

’YYYYMMDD’ date format

ICUSTAYS
PatientDIn New column. Convert the timestamp data type

to the ISO 8601 ’YYYYMMDD’ date format.
PatientDOut New column. Convert the timestamp data type

to the ISO 8601 ’YYYYMMDD’ date format.
FirstCareUnitId,
LastCareUnitId

It is assigned the value ’N/A’ to null identifiers
codes.

LABITEMS LabitemFluid Aggregate identical body fluid semantics (e.g.,
Cerebrospinal and CSF both refer to Cere-
brospinal fluid (CSF))

D_ITEMS_CHART, D_ITEMS_
PROCEDURE, D_ITEMS_MICRO-
BIOLOGY_ANTIBACTERIUM,
D_ITEMS_MICROBIOLOGY_
ORGANISM, D_ITEMS_MI-
CROBIOLOGY_SPECIMEN, D_
LABITEMS

ItemCategoryId Convert the category name attribute from the
extraction process to an integer identifier code
(ItemCategoryId). This transformation results
from a LEFT JOIN between the SA_CSV_
D_ITEMS_ and SA_DIM_D_ITEMS_CATE-
GORY_ tables. Additionally, it is necessary
to aggregate similar category names that corre-
spond to the same category using SQL CASE
statements. It is assigned the value -1 to the
items that don’t belong to a category.

SERVICES
PatientId, Admis-
sionId

It is assigned the value -1 to null identifiers
codes.

CurrServiceId It is assigned the value ’N/A’ to null identifiers
codes.

ServiceDoStart New column. Convert the timestamp data type
to the ISO 8601 ’YYYYMMDD’ date format.

PROCEDUREEVENTS_MV,
CHARTEVENTS

PatientId, Admis-
sionId, IcustayId,
CaregiverId, ItemId

It is assigned the value -1 to null identifiers
codes.

PatientDoStart New column. Convert the timestamp data type
to the ISO 8601 ’YYYYMMDD’ date format.

MICROBIOLOGYEVENTS PatientId, Admis-
sionId, SpecimenId,
OrganismId, Antibi-
oticId

It is assigned the value -1 to null identifiers
codes.

LABEVENTS PatientId, Admis-
sionId, ItemId

It is assigned the value -1 to null identifiers
codes.

48 Business Intelligence Architecture

Table 4.2: SCD types of all dimensional tables’ attributes.

Table Attribute(s) SCD

PATIENTS
PatientGender, PatientDob, PatientDod,
PatientDeathFlag

Type 1

CAREGIVERS
CaregiverLabel Type 2
CaregiverDescription Type 1

D_SERVICES ServiceDescription Type 1
D_CARE_UNITS CareunitDescription Type 1

ADMISSIONS

PatientDoadmit, PatientToadmit, PatientDodisch,
PatientTodisch, PatientDod, AdmissionType,
AdmissionDiagnosis, AdmissionExpireFlag

Type 1

PatientId Type 2

ICUSTAYS
PatientDIn, PatientTIn, PatientDOut,
PatientTOut, FirstCareUnitId, LastCareUnitId

Type 1

PatientId, AdmissionId Type 2
D_ITEMS_CATEGORY_PROCEDURE ItemCategoryLabel Type 1

D_ITEMS_PROCEDURE
ItemLabel, ItemUnitName Type 1
ItemCategoryId Type 2

D_ITEMS_CATEGORY_CHART ItemCategoryLabel, ItemCategoryDescription Type 1

D_ITEMS_CHART
ItemLabel, ItemUnitName Type 1
ItemCategoryId Type 2

D_ITEMS_CATEGORY_LABITEMS ItemCategoryLabel Type 1

D_LABITEMS
LabitemLabel, LabitemFluid Type 1
ItemCategoryId Type 2

D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM
IemId, ItemLabel, ItemConcentration,
ItemQuantity, ItemPrice

Type 1

D_ITEMS_MICROBIOLOGY_ORGANISM ItemLabel Type 1
D_ITEMS_MICROBIOLOGY_SPECIMEN ItemLabel Type 1

EndDate identify the active record period of each record. Table 4.2 shows identifies the SCD types

of all attributes and the respective dimensional tables.

In all the dimensional tables, a record was added with primary key -1 and respective code -1

or ’N/A’ depending on the type of variable (see Figure 4.8). Thus, it is guaranteed that if there is

no correspondence between the identification codes (id) of the dimension and the fact tables that

reference these keys, the fact table’s foreign key is never null.

4.4 Report Visualization

Once the Power BI Desktop application is installed and launched, it is possible to connect to many

different types of data sources, such as online services (Salesforce, Azure Blob Storage, Etc.),

databases (SQL Server, Access, Amazon Redshift, Etc.), and files (Excel, JSON, Etc.). In this

specific project, the selected data source was the SQL Server, which is compatible with Import

and DirectQuery connections [49].

When building a visual within Power BI Desktop, with the DirectQuery connection, queries

are sent to the underlying data source to retrieve the necessary data. The time taken to refresh the

visual depends on the performance of the underlying data source.

On the other hand, with the Import connection, queries will be imported into the Power BI

cache, and any changes to the underlying data are only displayed in the visuals after reimporting

4.4 Report Visualization 49

Figure 4.6: Loading new records from the Staging Area to the Data Warehouse Admissions Table

the data through the refresh button. Models with imported data can be refreshed at most once

per hour while using DirectQuery always shows the latest data in the source (data automatically

refreshes every 15 minutes) [50].

There are also limitations in the data transformations that can be applied within Query Edi-

tor. With imported data, a sophisticated set of transformations can easily be applied to clean and

reshape the data before using it to create visuals, such as pivoting data from a column to a row.

Those transformations are more limited in the DirectQuery connection [50]. In this dissertation,

all the data transformations were applied during the ETL phase, so this limited feature is not an

obstacle.

If the data is extensive, using the Import connection would not be feasible, but DirectQuery,

by contrast, requires no massive data transfer due to it is queried in place.

When importing data, every date/datetime column will also have a built-in date hierarchy

available by default so that the user can choose the appropriate level (year, month, day) of infor-

mation. The built-in date hierarchy is not available when using DirectQuery; however, the loading

of hierarchy date dimensions overcomes this restriction.

Considering the clinical scenario where the data is massive, frequently changing, and near

real-time reporting is needed, the DirectQuery connection was selected to create the medical dash-

boards.

The Power BI Desktop has the following three main tabs:

Relationships – visualize and edit the select database tables and relational model;

Report – provide a dynamic and user-friendly interface for data visualization without using any

coding language or have specific technical knowledge;

Data – scrutinize the database tables’ data.

50 Business Intelligence Architecture

Figure 4.7: Updating the Admissions Table’s attributes using a combination of type 1 and 2 SCD

4.4.1 Power BI Desktop Report Features

In the report tab, there are four panes: fields, visualizations, bookmarks, and filters. The fields

pane displays all the database tables and respective attributes and calculated metrics. The user

selects the chart type (e.g., bar, column, line, gauge, doughnut, funnel, scatter, pie, and maps) in

the visualizations pane and drags the fields pane’s desired columns.

The bookmarks allow the user to save the currently configured view of a report page, including

filtering and the visuals’ state, to later facilitate the reports’ navigation.

There are three levels of filters in Power BI:

Report-level filters – affect all of the data in the report and act as universal filters.

Page-level filters – only filter the data on a given page, making them useful for creating pages

that focus on particular data subsets. For example, create page-level filters to make a page

focus solely on a specific medical area. Page-level filters operate within the context of the

report-level filters, which means that a page-level filter cannot override a report-level filter

and can not be programmed to filter the data on other pages.

Visual-level filters – only filter the data on a given visual, whether it is a table, chart, or card.

These are the most granular filters, and they operate within the context of both the page-

level and report-level filters, so visual-level filters cannot override them or be programmed

to filter data on other visuals.

Power BI reports use features called “slicers” which are objects (e.g., checkbox lists, dropdown

lists, buttons, and sliders) embedded in the report body that interactively “slice and dice” the data.

When applying a filter, it is impossible to select what variables of the report will be affected: a

report-level filter will invariably filter all the data in the report, and a page-level filter will do the

4.5 Summary 51

Figure 4.8: Creation of the Admissions Table in the Data Warehouse

same for the page. However, slicers are a bit more flexible because they can be programmed to

affect particular objects on the page.

The next Chapter presents the developed Clinical Report and the respective Business Intelli-

gence Indicators and dashboards.

4.5 Summary

In the present Chapter, the implementation of solutions based on the BI concept, at Beth Israel

Deaconess Medical Center, promotes the creation of intensive care units’ indicators and improves

the clinical service provided through the representation of useful and dynamic information.

The first step of the Business Intelligence Architecture is the understand and select the BI

Tools. In this dissertation it was used, on-premises, the Visual Studio, and, in the Microsoft Azure

Environment, the Data Factory to build the Clinical ETL.

The Business Intelligence Architecture process begins with the collection of clinical de-identified

data, in CSV files format, from the MIMIC-III demo v.1.4 and subsequent extraction, transforma-

tion, and loading (ETL) of the data to the dimensions and facts of the Clinical Data Warehouse

(DW).

On-premises, it was implemented a Clinical ETL with a total of 58 packages. The extraction

sources were 10 CSV files from the Beth Center Hospital, the Fisher Scientific Excel (contains

the antibiotic disk prices) and an external parameters Excel File that describes medical categories,

Critical Hospital Units and Services. The transforming actions consisted of changing the data

type, semantic re-categorization of descriptive codes, adding attributes, and restructuring the dates

to the ISO 8601 format “YYYYMMD”. In the Azure Data Factory, it was only implemented a

short extraction pipeline which consisted into obtaining the listed antibacterial disks prices.

52 Business Intelligence Architecture

In both environments it was necessary to manage the Clinical Data Warehouse, using the

SQL Server Management Studio. In the front-end, DW tables act as a source for the report and

respective dashboards, providing the end user’s optimized information, presented in the Power BI

Desktop (PBID).

Chapter 5

Clinical Report

This chapter presents the business indicators and the developed Clinical Solution that allows med-

ical professionals to quickly and confidently make data-driven business decisions while saving

valuable time and resources. To conclude the chapter, it is presented an analysis and discussion

of the Clinical Report’s four pages: general hospital admissions, medical procedures, electronic

charted measurements, and microbiology and laboratory.

5.1 Introduction

Healthcare analytics solutions enable clinics, hospitals, caregivers, and managers to quickly and

confidently make data-driven business decisions while saving valuable time and resources. These

solutions commonly include hospital and department statistics, and information to analyze the bed

availability, discharge rate, average waiting time, health professionals’ efficiency rate, and revenue

summary.

5.2 Business Indicators

The business indicators support the analyzes presented in the report when evaluating the hospital

admission process’ different components performance and the respective clinical procedures (e.g.,

X-Ray, electroencephalogram, or dialysis), electronic charted nurse-verified and laboratory mea-

surements. The selected indicators are specific to the clinical database available data and needs.

In this project, it is crucial that the hospitals managers have useful healthcare analytics solu-

tions to make informed clinical and business decisions such as evaluating which caregivers have a

heavier work load or what microbiology tests have a higher costs.

Table 5.1 presents the 23 indicators developed for this project as well as their respective de-

scription.

Table A.2 presents DAX (Data Analysis eXpressions) codes elaborated.

53

54 Clinical Report

Table 5.1: Business Indicators

Report Page Indicator Description

Admissions

Waiting Medical Assistance
Time (AVG) Average time (minutes) between the hospital admission and

the first medical exam performed
Waiting Medical Assistance
Time (MIN) Minimum time (minutes) recorded between the hospital ad-

mission and the first medical exam performed
Waiting Medical Assistance
Time (MAX) Maximum time (minutes) recorded between the hospital

admission and the first medical exam performed
Hospitalization Time (AVG) Average hospitalization time (days)
Hospitalization Time (MIN) Minimum hospitalization time (days)
Hospitalization Time (MAX) Maximum hospitalization time (days)
Hospital Admissions by Service Total of admissions per hospital service
% Hospital Admission Deaths Percentage of hospital deaths that occur during hospitaliza-

tion
% Hospital Admission Type Percentage of hospital admission types

Procedures

% CategoryProcedures Percentage of performed procedures by medical category
(e.g., Imaging)

% CategoryItemsProcedures Percentage of performed procedures by a medical cate-
gory’s item (e.g., X-Ray)

CareuintProcedures Total of performed procedures by hospital intensive care
unit

TypeCaregiverProcedures Total of performed procedures by hospital caregivers type
(e.g., Nurse)

CaregiverProcedures Total of performed procedures by hospital caregiver

Electronic Chart

% CategoryChart Percentage of charted observations by medical category
(e.g., Routine Vital Signs)

% CategoryItemsProcedures Percentage of charted observations by a medical category’s
item (e.g., Heart Rate)

CareuintChart Total of charted observations by hospital intensive care unit
TypeCaregiverChart Total of charted observations by hospital caregivers type
CaregiverChart Total of charted observations by hospital caregiver

Microbiology % CategorySpecimen Percentage of microbiology tests by the specimen (e.g.,
Blood Culture)

AntibioticPrice Total antibacterial disks spending, in euros, by antibiotic
(e.g., Penicillin)

Laboratory % CategoryLaboratory Percentage of executed laboratory tests by medical cate-
gory (e.g., Hematology)

% CategoryItemsLaboratory Percentage of executed laboratory tests by a medical cate-
gory’s item (e.g., Glucose)

5.3 Clinical Dashboard

The visual solution built-in PBID has four pages: general hospital admissions page, procedures,

chart, and microbiology & laboratory.

Note that the available database does not have enough data (only characterizes 100 patients

and 129 hospital admissions) to conduct in-depth analyzes and retrieve reliable conclusions.

5.3 Clinical Dashboard 55

Figure 5.1: General Admissions Page Overview

Admissions Page

The admissions page (see Figure 5.1) includes four slicers (year, month, trimester, and service)

and the following five graphs:

1. Average, minimum, and maximum waiting time (minutes) between the hospital admission

and the first patient’s medical exam;

2. Average, minimum, and maximum hospitalization time (days);

3. Total of admissions per hospital service;

4. Total of hospital deaths that occur during hospitalization (%);

5. Total of hospital admissions stratified by admission type (%).

In the “hospital admission type” pie chart (see Figure A.2 in Appendix), the 8 (6.2%) pre-

viously planned hospital admission – Selective Admissions – were assigned to the CSURG (Car-

diac Surgery), TSURG (Thoracic Surgical), GU (Genitourinary), ORTHO (Orthopaedic Surgical),

SURG (Surgical), and VSURG (Vascular Surgical) services and all the patients survived the surg-

eries.

All the patients represented in this report are deceased. Thus, the death flag in the hospital

admission pie chart only signals the deaths that occurred within the hospital admission.

When analyzing the “hospital admission death” pie chart (see Figure A.1 in Appendix), it is

possible to conclude that the 40 admissions that resulted in death within the hospital (30%) be-

longed to the MED (Medical General), SURG, CMED (Cardiac Medical), NMED (Neurologic

Medic), OMED (Orthopaedic Medicine) and TRAUM (Trauma) services and were all in the con-

text of Emergency or Urgent admissions.

56 Clinical Report

Figure 5.1 shows the five services with the highest number of hospital admissions: MED (73),

SURG (14), CMED (11), OMED (8), and NMED (5). The top five admission services represent

90% of the hospitalization admissions total (129), and the MED service describes more than 50%

of this total. Note that each admission can be associated with more than one service since the

patient can be transferred. In this visual element, it is only considered the most recent transfer

service (ActiveFlag equals 1) and the valid current services, meaning the CurrServiceKey has to

be different from -1.

In Figure 5.1, the hospitalization time gauge chart displays the average, minimum, and maxi-

mum of 9.33, 0.04, and 123.98 days, respectively.

Similarly, the waiting medical assistance time gauge chart shows that the average, minimum,

and maximum time between the hospital admission and the first patient’s medical exam are, re-

spectively, 111.36, 1, and 1065 minutes.

Table 5.2 contains only the services that have more than one hospital admission.

The average waiting medical assistance time (WMAVG) of the CSURG (28.60 min), NSURG

(63.60 min), and TRAUM (76.63 min) services are significantly lower than the global average

(111.36 min). The medical assistance priority is higher in these services since they are associated

with trauma and/or life-threatening surgeries. However, the low WMAVGs can also be related to

the reduced number of hospital admissions (3–4), leading to bias conclusions.

On the other hand, the WMAVG of the OMED (304.33 min) and NMED (225.17 min) services

are double the global average (111.36 min), which corroborates the expectation that non-surgical

services have a lower medical assistance priority. These values can be inflated due to the low

number of hospital admissions in the OMED and NMED services.

Regarding the filters, the page only accounts for the data associated with a valid Admission-

Key, meaning it has to be different from -1.

The hospital admission main page has four icons on the bottom left corner that redirects to the

other three medical pages (procedures, chart, and microbiology & laboratory).

Procedures Page

The procedures page (see Figure 5.2) includes six slicers (year, month, trimester, care units, no

of procedures completed by a caregiver, and the items and respective procedure categories) that

affect the three visual elements. This page filter only the valid AdmissionKey, meaning it has to

be different from -1.

The funnel chart displays the top 5 care units with the highest number of performed proce-

dures:

MICU – Medical intensive care unit (378)

SICU – Surgical intensive care unit (172)

CCU – Coronary care unit (141)

TSICO – Trauma/surgical intensive care unit (36)

5.3 Clinical Dashboard 57

Table 5.2: Total of hospital admissions and average, minimum and maximum medical assistance
waiting time per hospital service

Service Service Description No of ad-
missions

Average
medical
assistance
waiting
time (min)

Minimum
medical
assistance
waiting
time (min)

Maximum
medical
assistance
waiting
time (min)

MED Medical - general service for internal
medicine

73 97.57 1 985

SURG Surgical - general surgical service not
classified elsewhere

14 105.71 1 782

CMED Cardiac Medical - for non-surgical
cardiac related admissions

11 104.54 1 853

OMED Orthopaedic medicine - non-surgical,
relating to musculoskeletal system

8 304.33 2 782

NMED Neurologic Medical - non-surgical,
relating to the brain

5 225.17 1 1065

TSURG Thoracic Surgical - surgery on the
thorax

4 196.67 1 853

TRAUM Trauma - injury or damage caused by
physical harm

4 76.63 26 107

CSURG Cardiac Surgery - for surgical cardiac
admissions

4 28.60 1 98

NSURG Neurologic Surgical - surgical, relat-
ing to the brain

3 63.60 1 218

Total 129 111.36 1 1065

58 Clinical Report

Figure 5.2: Procedures Page Overview

CSRU – Cardiac surgery recovery unit (26)

Note that this visual element was filtered to assure that only valid care units are displayed (Care-

unitKey different than -1).

The Care Units slicer allows the user to conduct specific analyzes on one or multiple care

units.

The pie chart reveals the top 10 most common procedures performed in patients, organized

by their respective categories. As seen in Figure 5.2, the most common executed procedures are

associated with the Imaging (138) and the Access Lines – Peripheral (152) categories.

When a visual has a hierarchy, the drill mode allows the user to drill down or up to explore

data in-depth details. In the procedures pie chart, the user can drill up the desired category and

explore what procedures were executed. For example, the user has to drill up the Imaging category

to investigate which procedures, from the top 10, belong to this category. In this particular case,

the drill up shows that 27% of the top 10 procedures that belong to the Imaging category are CT

Scans (37), and 73% are Chest X-Rays (101).

However, if the user wants to search all the performed procedures that belong to the Imaging

category, it has to select the respective slices’ desired category. When the category slicer filters

only the Imaging category, the total of procedures is 184, which is divided by the procedures

Abdominal X-Ray (4), Chest X-Ray (101), CT Scan (37), Interventional Radiology (2), Magnet

Resonance Imaging (6), Pelvis (1), Transthoracic Echo (12), Ultrasound (14), and X-Ray (7) (see

Figure A.3. As expected, the Chest X-ray (55%) and the CT Scan (20%) are the majority of the

total number of executed imaging procedures.

This visual element was filtered to guarantee that only valid procedure categories and respec-

tive items are displayed (ItemCategoryKey and ItemKey different from -1).

5.3 Clinical Dashboard 59

Figure 5.3: Chart Page Overview

The bar chart in Figure 5.2 represents the number of performed procedures by the caregiver

group (e.g., NP/RN, MD). Generally, Registered Nurse (RN) and Nurse Practioner (NP) perform

almost 75% (561) of all the medical procedures (753). FlagActive (binary flag), in this visual

element, has to be 1 is a binary to filter only the caregivers who are currently employed at the Beth

Israel Deaconess Medical Center.

The caregivers’ chart also has a drill mode that allows the user to explore, inside a caregivers’

group, the professionals’ identifier codes that executed medical interventions and analyze which

categories or procedures or care units are associated with them. The user can also evaluate which

caregivers have higher or lower records of performed medical interventions accordingly to the

available slicers (date, category, procedures, or care units).

Furthermore, it is also possible to restrict all visual elements’ view by using the slicer range of

the total procedures (regardless of the category and care unit) performed by caregivers.

For example, Figure A.4 shows that inside the NP/NR group, there are two caregivers (with

the identifiers code 1134 and 5879), that since the day they started working at the hospital, have

executed at least eight medical interventions (6 and 2, respectively) and part or all of them were

Chest X-ray or Ultrasound administered at the medical intensive care unit, in the 4th trimester.

Chart Page

The chart page (see Figure 5.3) structure is very similar to the procedures page. It includes the

same six slicers (year, month, trimester, care units, number of charted measurements noted by a

caregiver, and the items and respective chart categories) that affect the three visual elements. The

page filters the AdmissionKeys different from -1.

The funnel chart displays the top 5 valid care units (CareunitKey different than -1) with the

highest number of noted electronic charted measurements:

60 Clinical Report

MICU – Medical intensive care unit (397k)

SICU – Surgical intensive care unit (251k)

CCU – Coronary care unit (110k)

TSICO – Trauma/surgical intensive care unit (54k)

CSRU – Cardiac surgery recovery unit (32k)

The charted data graphic reveals the top 10 most common charted measurements registered,

organized by their respective categories. As seen in Figure 5.3, the majority of registered elec-

tronic data is not associated with any specific category – “N/A” (57%) –, which includes typical

ICU patients “check-in” measurements such as heart rate and arterial blood pressure. From a total

of 68 chart categories, the highlighted ones are Routine Vital Signs (52k), Neurologic (41k), Re-

straint/Support Systems (40k), Treatments (31k), Skin – Impairment (25k), Genitourinary (23k),

Respiratory (20k), Pain/Sedation (18k), and Skin – Assessment (14k).

Contrary to the procedures page, the drill mode is not available, and the user can not search

the desired electronic charted measurements of a specific category since each category has at least

20 items. However, if the user wants to evaluate a specific chart item’s statistics, it can use the

respective slicer.

Nevertheless, if the user wants to search all the registered charted measurements that belong to

a specific category, it has to select the respective slices’ desired category. This visual element was

filtered to ensure that only valid electronic charted items are represented (ItemKey differs from

-1).

The bar chart in Figure 5.3 represents the number of registered electronic chart measurements

by the caregiver group. Generally, Registered Nurse (RN) and Nurse Practioner (NP) register over

75% (639,863) of all the charted measurements (844,733). In this visual element, FlagActive has

to be 1 is a binary to filter only the currently employed caregivers at the hospital.

The caregivers’ chart has a drill mode identical to the one on the procedure page.

For example, Figure A.5 shows two caregivers, when selected the Respiratory Therapist group,

with the identifiers code 2569 and 3828 that have registered 35 and 1, respectively, charted data

from the Respiratory, Alarms, and Pulmonary categories, in February of 2130. All the 36 medical

records were noted at the Medical Intensive Care Unit.

Figure A.6 results from the selection of the year 2130, the Coronary Care Unit, and the Skins

categories. It was registered 466 electronic data from the Skin – Impairment (277), Skin – Assess-

ment (172), and Skin – Incisions (17) categories. All these electronic charted notes (466) were

retrieved solely by nurses with identifier codes 2050 (138), 3671 (87), 3255 (72), 3397 (61), 1733

(60), and 7352 (48).

Microbiology & Laboratory Page

The Microbiology & Laboratory page (see Figure 5.4) structure consists of three slicers (year,

month, trimester) that affect the four visual elements.

5.3 Clinical Dashboard 61

Figure 5.4: Microbiology & Laboratory Page Overview

Regarding the microbiology field, it is possible to analyze the number of microbiology tests by

specimens, and the antibiotic disks costs. In the laboratory field, the user can evaluate the number

of laboratory tests executed by category and lab items.

The laboratory pie chart exhibits (see Figure 5.4) the top 10 most common tests executed,

organized by three categories: Chemistry (13,821), Hematology (3561), and Blood Gas (395).

The visual element has a drill mode that allows the user to drill down or up to explore data in-

depth details. For example, inside the Hematology category, the top tests are Hematocrit (1800),

Hemoglobin (1546), and Glucose (215).

However, if the user wants to search all the executed laboratory tests that belong to the Hema-

tology category, it has to select the respective slices’ desired category. Hematology tests total

15,319 divided by Hematocrit, Platelet Count, Hemoglobin, White Blood Count, MCH, MCHC,

MCV, RDW, Red Blood Cells, and PTT (see Figure A.7).

This visual element was filtered to guarantee that only valid admissions, laboratory categories,

and respective items are displayed (AdmissionKey, ItemCategoryKey, and ItemKey different from

-1).

The microbiology pie chart displays (see Figure 5.4) the top 5 most common specimen used

in microbiology tests: Blood Culture (559), Urine (508), Sputum (464), Swab (104), and MRSA

Screen (87). To investigate other specimen statistics, the user has to use the slicer placed on the

graphic’s left.

The antibiotics bar char shows the estimate of the antibiotic disk costs associated to the micro-

biology tests, assuming that five antibiotic disks are enough replicas to ensure the veracity of the

test for each bacteria culture. The highest costs are associated with the Gentocimin (367.20$), To-

bracymin (242.55$), Meropenem (228$), and Thrimethropin/Sulfa (156.42$) disks. Furthermore,

a card displays the updated total of antibiotic disks hospital costs (1855.68$).

Unfortunately, the medical database did not have information on the procedures, electronic

62 Clinical Report

charted nurse-verified measurements, and laboratory tests costs to the hospital, medical insurances,

and patients, so it is impossible to evaluate each department’s revenue balance. However, there

is a small estimate of the antibiotic disk costs, in the Microbiology & Laboratory page, by using

the current market values of the BD BBLTM Sensi-DiscTM brand available in the Fisher Scientific

platform [47]. This estimate does not account for the reagents, and the microbiology equipment

(e.g., Petri dishes, growth mediums, inoculation loops) costs.

5.4 Summary

This Chapter summarizes the calculated business indicators to create healthcare analytics solutions

that allow clinics, hospitals, medical professionals, and managers to quickly and confidently make

data-driven business decisions while saving valuable time and resources. The developed Clinical

Report includes four pages: general hospital admissions, medical procedures, electronic charted

measurements, and microbiology and laboratory.

Unfortunately, the Clinical database only characterizes 100 patients and 129 hospital admis-

sions so it is very difficult to conduct depth analyzes.

In the General Admission Page it was possible to conclude that all the selective admissions

(previously planned hospital admissions) were assigned to surgical services and all the patients

survived the surgical procedures. The MED service describes more than 50% of the hospitalization

admissions. The average waiting medical assistance time (time between the hospital admission

and the first patient’s medical test) and the average hospitalization time is 111.36 minutes and

9.33 days, respectively.

In the Procedures Page, it is possible to conclude that the most common medical interventions

are associated with the Imaging (138) and the Access Lines – Peripheral (152) categories.

In the Chart Page, the majority of registered electronic data is not associated with any specific

category – “N/A” (57%) –, which includes common ICU patients “check-in” measurements such

as heart rate and arterial blood pressure.

Generally, Registered Nurse (RN) and Nurse Practioner (NP) perform the majority (approxi-

mately 75%) of all the medical procedures and electronic charted measurements.

In the Laboratory section, there are three categories: Chemistry, Hematology and Blood Gas.

The Chemistry category represents over 75% of the analyzed exams.

On the other hand, in the Microbiology section, it was calculated an estimate of the antibiotic

disk costs (1855.68$). However this estimate does not account for the reagents, and the microbi-

ology equipment (e.g., Petri dishes, growth mediums, inoculation loops) costs.

Chapter 6

Monitoring Framework

This chapter states the problem in question and introduces the solution proposal, showing the

monitoring framework architecture, the necessary resources and development methodology to im-

plement it. To conclude the chapter, it is presented monitoring framework dashboard.

6.1 Introduction

Fault monitoring is a complex process carried out by assessing the behavior of the system, namely

when it is exposed to factors that may cause a fault. That is, regardless of the area, the fault

monitoring process consists in obtaining useful information to have an early proactive, instead of

a reactive response to prevent future failures [51].

Failure prevention is often related to the concept of risk, so its importance is proportional to

the adverse effects that may arise from a possible failure. This characteristic makes the prevention

of hospital database failures a central issue, one that is at risk to the quality of services provided

to the patient.

To build an efficient failure prevention system, it is necessary to assess the performance of the

resources that may cause these same failures in the database.

The analysis of the performance of a database depends both on the environment that surrounds

it and on its vendor and aims to promote fault diagnosis [51]. Some types of database failures are

described below [52].

System Crashes – The systems fail due to hardware malfunction or a bug in the database software

or the operating system itself. The system needs to be rebooted.

User Error – When a user, inadvertently, performs a wrong action such as deleting a row or

deleting a table by accident.

Application Software Errors – While running a user program, a transaction might have multiple

SQL statements to access the database, and one of the statements might fail due to various

reasons. The Database Engine usually detects these errors.

63

64 Monitoring Framework

Network failures – Can occur while using a client-server configuration or a distributed database

system where communication networks connect multiple database servers.

Natural and physical disasters – Damage caused to data, hardware, and software due to natural

disasters (e.g., fires, floods, earthquakes, power failures).

Disk failure – When the disk cannot be accessed to write or read data. It is necessary to activate

the disk recovery mechanisms and recover the lost files.

Memory Failure – When there is not enough memory, the database may have to resort to disk

more times, slowing down the system causing it to become unavailable.

Processor Failure – When the processor is overloaded, it cannot respond to all requests and may

cause the entire system to block.

In this dissertation, the construction of the monitoring process was divided into three phases:

Define the Action Area – Establish which components/functions to monitor to minimize the cost

in terms of resource usage, resulting from this process. This selection should be made

with the help of the database’s end users, as they investigate abnormalities in the database’s

behavior.

Despite the existence of a heterogeneous set of failures, this dissertation focuses only on

failures resulted from the ETL process (Application Software Errors) and on the monitoring

of server resources (CPU, RAM, and Memory) and their allocation, since these are very

common and serious in databases that contain a lot of information and high utilization target.

Thus, decreasing the area of action reduces the amount of data to collect, thus promoting

more concise and correct monitoring.

Statistics Collection – Statistics should be collected at the level of the computer and cloud system

relevant to the specified action area.

The information from the monitoring process (error messages and the server resources

statistics) are stored in the server database to be analyzed whenever necessary.

Analyze Collected Statistics – The visualization reporting tools (in this particular case Microsoft

Power BI) facilitate the analyses of the collected statistics to ascertain the existence of per-

formance problems, or symptoms of the same, in the database system.

6.2 Monitoring Framework Overview

In the healthcare sector, DW integrates data from a wide variety of internal and external sources,

providing an optimized and effective information platform for health decision makers [15]. How-

ever, a clinical DW development is complicated and time-consuming, primarily due to the need to

integrate multiple heterogeneous data sources, whose data are generally not structured. Thus, it

6.2 Monitoring Framework Overview 65

emerges the necessity to build a central framework to monitor all the ETL processes, implemented

in the cloud or on-premises, since evaluating each data source individually is a very demanding

and time-consuming task.

Since the multiple clinical data sources can be in different servers, it was necessary to ensure

secure and reliable communication between these servers and the monitoring framework server

(Azure SQL Server).

Thus, it was decided to send the monitoring information (ETL errors and the resources’ per-

formance metrics) via e-mail to prevent firewall restrictions. Then, the Azure Logic Application

interprets the e-mail body and subject to retrieve the monitoring information and store it into the

respective Azure SQL database tables. Finally, the end-user can analyze the monitoring dashboard

and be alerted if one or more projects fail or are close to failure.

SendGrid is a cloud-based SMTP (Simple Mail Transfer Protocol) provider that allows send-

ing e-mails without having to maintain e-mail servers and provides two ways to send an e-mail:

through SMTP relay or Web APIs [53].

A server-side Web Application Programming Interface (API) consists of one or more publicly

exposed endpoints to a defined request-response message system, typically expressed in JSON

or XML, which is exposed via the HTTP (HyperText Transfer Protocol)-based web server. The

HTTP requests and responses are used to access a website that is specialized for access by arbitrary

computer programs [54].

The SendGrid Email API leverages SMTP to allow customers to send large amounts of trans-

actional and triggered e-mails because it is faster since SMTP involves back-and-forth communi-

cation between the client and the server, having a slower performance when sending bulk e-mails.

Furthermore, some environments may block SMTP ports (usually port 25) due to built-in or fire-

wall restrictions, which is not an issue with Web APIs since the world-wide-web itself runs on

HTTP, and most firewalls allow HTTP connections [53].

After evaluating both protocols, the SendGrid Web API was chosen to communicate the clin-

ical databases’ monitoring information, implemented on-premises or in Microsoft Azure Cloud,

and the monitoring framework server. The SendGrid free plan allows the user to send 100 e-mails

per day.

The following sections will discuss the steps to monitor the ETL’s errors and the server/-

database performance measures.

6.2.1 ETL Monitoring

Although it is common for an ETL project to implement a Log Register (e.g., see Log table in

Section 4.3) to monitor the running ETL state, it becomes tough, from the end-user perspective, to

analyze all the projects’ Log information.

Thus, developing a central framework to monitor all the ETL’s error messages allows the user

to analyze multiple solutions implemented in different environments.

66 Monitoring Framework

6.2.1.1 On-premises

In the Visual Studio Clinical Solution, when there are errors in one or more tasks in the package,

its event handler OnError is called.

This solution has 4 types of ETL packages: E – Extration, T – Transformation, L – Loading,

A – All (“E_ALL”, “T_ALL” and “L_ALL”), and T (“ETL_ALL”).

For the “E”, “T”, and “L” package types, the event handler OnError contains a simple SQL

task to update the Log table, setting the binary flag to zero and storing the error message provided

by the system local package variable (ErrorDescription).

On the other hand, the event handler OnError of the “A” and “T” package types run multiple

packages, so it was necessary to develop a simple C# script to calculate the number of errors that

occur in the run packages and to concatenate the respective error messages (provided by ErrorDe-

scription of each local failed package) into a package variable. If at least one error occurred in the

running package, the Log table is updated.

After the package stops running, the local and the global error message are sent using the

SendGrid Web API service. Note that if one of the extraction packages runs with an error, the user

will receive three e-mails because besides the local package’s failure, the “E_ALL” and “ETL_

ALL” run with mistakes.

After creating a SendGrid account and generating the API Key, a simple C# script was devel-

oped to send an HTTP request, from the host web address, via POST. When this script is invoked,

its input variables are the recipient and sender e-mail address, the subject, the e-mail body, and the

generated API Key to configure the request’s authorization header.

Similarly, it was also developed a short Microsoft Visual Basic code to send the ETL error

messages using a SMTP connection, using the same input variables when invoked.

6.2.1.2 Microsoft Azure

The Microsoft Azure Functions resource is a serverless service that allows the user to run a script

or piece of code. Azure Functions are integrated with Azure Data Factory (ADF), allowing the

user to run these functions in a pipeline.

One of the Azure Functions created was able to extract the error information required for each

failed Activity and stored it into a JSON object.

Azure Functions also support an output binding for SendGrid, which facilitates the SendGrid

integration with the Azure Data Factory. The second Azure function configures the SendGrid

output, including the recipient and sender e-mail address, the subject, the e-mail body, and the

generated API Key. Then, the error message variable is incorporated into the body message before

sending it.

6.2.2 Performance Monitoring

Performance monitoring ensures that the information about the application operating underper-

formance test is the closest to real-time than possible. It is essential to define a baseline, a range

6.2 Monitoring Framework Overview 67

of measurements that represent acceptable performance under typical operating conditions. This

baseline provides a reference point, which makes it easier to identify problems when they oc-

cur [55].

When troubleshooting system problems, performance data provides information about system

resources’ behavior when the problem occurs, which helps identify the cause(s).

Finally, monitoring application performance allows the user to project future growth and to

plan for how changing the system configurations might affect future operations [55].

Performance monitoring helps verify whether the application meets its performance objectives

by collecting metrics that characterize the application’s behavior under different workload condi-

tions (performance test, stress, or single-user operation). These metrics can be: response time,

throughput, and resource utilization (e.g., CPU, memory, disk I/O, network bandwidth).

6.2.2.1 On-premises

The hardware components of a server are involved in servicing user requests, so it is crucial to

monitor Windows system resources. The timely performance of these components is directly re-

lated to overall perceived application performance. Therefore, a problem with one or more of

these four areas is likely to result in user complaints. SQL Server relies heavily on CPU perfor-

mance, available memory, and disk throughput, whereas the client performance depends heavily

on network performance.

Furthermore, SQL Server can be very demanding on memory, and performance can suffer if

physical memory becomes exhausted. The disk is almost certainly the slowest component because

of its mechanical nature. SQL Server’s need to retrieve disk data often means any delays at the

disk I/O will impact overall performance.

The Windows Performance Monitor is a system monitoring program, available in Windows 7

and 10, that determines the cause of problems on a local or remote computer by measuring the

performance of hardware, software services, and applications by analyzing data, such as CPU,

physical disk, memory, and network usage.

Windows Performance Monitor has over 350 performance measurement criteria, called “coun-

ters”, available that can be displayed, in real-time, as a graph, a bar chart, or numeric values.

In this project, when monitoring system resources of a machine with SQL Server installed, the

most relevant counters to be tracked are:

Processor Time (percentage) – The percentage of elapsed time that the processor spends exe-

cuting a non-Idle thread (the purpose of Idle threads is to keep the CPU occupied until the

next computation or process is fed). This counter is the primary indicator of processor ac-

tivity and displays the average percentage of busy time observed during the sample interval.

It is calculated by monitoring the percentage of time that the service was inactive, and then

subtracting that value from 100% [56].

If this percentage stays over 80% constantly, it is difficult for the processor to handle all the

processes.

68 Monitoring Framework

Figure 6.1: Performance monitor graph with the counters Total Processor Time (percentage),
Memory committed bytes in use (percentage), and Total Physical Disk Time (percentage).

In this particular case, this counter is calculated for each processor since the local machine

system has four. Each processor has an Idle thread that consumes unproductive processor

cycles not used by any other threads.

Total Processor Time (percentage) – The fraction of time that all the processors on the system

are busy executing non-idle threads [56].

In this case, if all four processors are always busy, this value is 100%, and if one-quarter of

the processors are 100% busy, then the value is 25%.

Memory committed bytes in use (percentage) – This counter shows what percentage of RAM

is currently in use or is committed. This counter fluctuates its values as different programs

are opened and closed, but if it keeps on increasing, there might be a memory leak [56].

Total Physical Disk Time (percentage) – This counter monitors the percentage of elapsed time

taken when a drive is busy processing read and write requests [56].

In Figure 6.1, it is possible to observe the performance monitor chart with the previously se-

lected counters (Total Processor Time (percentage), Memory committed bytes in use (percentage),

and Total Physical Disk Time (percentage)) when running the ETL process described in Section

4.3. The Physical disk time highest peak signalizes the end of the ETL process.

PowerShell is a task automation and configuration management framework from Microsoft,

consisting of a command-line shell and the associated scripting language [56]. PowerShell allows

the user to search the performance counters available in the Windows Performance Monitor and

select the relevant ones. Therefore, a short PowerShell script was developed to calculate the Pro-

cessor Time for the total and each of the four processors, Physical disk time, and the memory

committed bytes in use.

The aim is to monitor the performance resources when the ETL process runs so that the de-

veloped PowerShell script runs simultaneously to the ETL. Therefore, the ETL process (meaning

6.2 Monitoring Framework Overview 69

the package “ETL_ALL”) is scheduled, using the SQL Server Agent that allows the user to set

the time and the frequency to run a specific package. Then, the Windows Task Manager, which

provides the ability to schedule the launch of programs or scripts at pre-defined times, is used to

launch the developed PowerShell Script simultaneously as the SQL Server Agent job. Note that

the Task Manager can launch the script as often as the user desires within the time frame of the

ETL process running.

In this particular project, knowing that the ETL of the clinical database takes approximately

20 minutes to finish running, the Task Manager will launch the script at the same time as the SQL

Server Agent job (7 PM), and repeat the process every 5 minutes, reading the pre-selected metrics

at a total of three times.

6.2.2.2 Microsoft Azure

Azure resources generate a significant amount of monitoring data. Azure Monitor collects and

aggregates data from various sources into a Metrics or Logs platform where it can be used for

analysis, visualization, and alerting.

Logs are events that occurred within the system (e.g., ETL failure or successful) and are usu-

ally stored in a table with structured data with a timestamp.

Metrics are numerical values that describe an aspect of a system at a particular point in time.

They are collected at regular intervals and are identified with, at least, a timestamp, a name, and a

value.

Metrics in Azure Monitor are stored in a time-series database, which is optimized for analyzing

timestamped data, making these metrics very useful for alerting and fast detection of issues.

Azure Monitor allows the user to monitor several resources (e.g., Data Factory or Azure SQL

Database). The performance measurement criteria (metrics) can be displayed, near real-time, as

a graph or numeric values. It is also possible to create alerts for each selected metric to warn the

user when they reach a pre-defined threshold.

This dissertation, since both implemented ETL (on-premises and Microsoft Azure) have the

same source database (Azure SQL Database), makes sense to monitor the Azure SQL Database. In

this particular case, the chosen metrics are the CPU Percentage and the Data Space Use Percentage.

In Figure 6.2, it is possible to observe the Azure monitor chart with the previously selected

metrics (CPU Percentage and the Data Space Use Percentage) when running the ETL process

described in Section 4.3.

Additionally, it is also possible to monitor the pipeline developed in the Data Factory (Integra-

tion Server) using the Azure Monitor.

Similarly to the Windows PowerShell, there is an Azure PowerShell where it is possible to

investigate the performance metrics (see Appendix A.8) available in the Azure Monitor and select

the relevant ones. Therefore, it was possible to develop a short Azure PowerShell script, using the

Az module, to calculate the Percentage of CPU and the Data Space Use Percentage.

The Azure PowerShell scripts are run Azure Automation runbook. Azure automation includes

runbook jobs and watchers. Billing for jobs (0.002e/minute) is based on the number of job run

70 Monitoring Framework

Figure 6.2: Azure monitor graph with the metrics CPU Percentage and the Data Space Use Per-
centage.

time minutes used in the month, and for watchers (0.002e/hour) is based on the number of hours

used in a month [57].

Considering the low complexity of the developed pipeline in the Data Factory and the Azure

Automation runbook pricing, the performance measures Azure PowerShell script was not im-

plemented in the runbook. However, the developed Azure PowerShell transition to the Azure

Automation runbook would be a simple task.

The aim is to monitor the performance resources when the ETL process runs, so the devel-

oped PowerShell script has runs simultaneously to the ETL. The Azure PowerShell script can be

scheduled using the Azure Automation scheduling features.

The Azure Automation notebook needs to synchronize to the Azure resource that the user

wants to monitor, which can be the Data Factory or the Azure SQL Database. Note that the Data

Factory Scheduler allows the user to set the time and the frequency to run a specific pipeline.

In summary, during the Clinical ETL running process (on-premises), it is possible to monitor

the local server using the Windows Performance Monitor metrics and the Azure SQL database

using Azure Monitor metrics of this resource. The developed pipeline in the Azure Data Fac-

tory (Extraction of the antibacterial disk prices) with a database integrated into the Azure SQL

Database, the performance metrics for both these resources (Azure SQL Database and Azure DF)

can be obtained using the Azure Monitor functions.

6.2.2.3 Notifications

The next step after retrieving the performance counter, whether it is on-premises or from the cloud,

is to send a notification with these metrics to later be interpreted by the Logic Application (see

Subsection 6.2.3).

These notifications, similarly to the ETL error notifications, are sent using the SendGrid Web

API.

6.2 Monitoring Framework Overview 71

After creating a SendGrid account and generating the API Key, it was developed a simple

PowerShell function to send an HTTP request, from the host web address, via POST using the

Invoke–RestMethod command (see Code A.1). When this function is invoked, the user has to

provide the recipient and sender e-mail address, the subject, the e-mail body, and the generated

API Key to configure the request’s authorization header.

On-premises, the PowerShell script to send an e-mail was incorporated into the performance

counters calculating PowerShell script. Then, each time the Task Manager launched both scripts,

an e-mail would be sent with the timestamp, metrics names, and respective values calculated

during the ETL run.

However, on-premises, sometimes the firewalls are blocked, for security reasons, that do not

accept HTTP requests, and it is not possible to use the SendGrid PowerShell script. One possible

solution is to add to the performance counters PowerShell script a function to save, in a CSV file,

these metrics names and the respective values along with the timestamp, in a pre-defined local

computer path. Thus, there will be appended three rows with the timestamp, metrics names, and

values in the CSV file for each run ETL process.

Each CSV file contains the performance counters’ information for each time a specific ETL

project run. In this case, if the project MIMC runs 50 times, there will be 150 rows in the CSV

file. The CSV File (Clinical.csv) and the Visual Studio solution (Clinical.snl) where the ETL was

implemented have the same name to easily associate each file to its project if the local machine

has multiple VS solutions, and consequently, multiple ETL processes implemented.

Finally, in the Visual Studio Solution, it was created a package, to run at the end of the ETL

process, to read the CSV File and to insert the new rows into the ETL database (in this case, Azure

SQL database) monitoring parameters table (PARAMS.PARAMS_Resources_Tracking). Then,

the new rows of this table are read using SQL statements and sent, in the body e-mail, using the

SendGrid Web API script implemented in the Visual Studio Solution, similar to the process in

Subsection 6.2.3.

In the Microsoft Azure environment, it is also possible to implement the script A.1 to send an

e-mail with the SendGrid Web API. However, it has two crucial steps with associated costs:

1. Create an Azure KeyVault and store the SendGrid API key in it. The subscription to this

service costs 4.217e/key per month and 0.026e/10,000 transactions.

2. Create a runbook, with Azure Automation resource, that retrieves the API key and imple-

ments both scripts (calculate performance metrics and sends an e-mail) in the Azure Pow-

erShell. It also has the functionality to schedule the notebook to run at a specific time and

frequency.

When evaluating the associated costs in sending a SendGrid e-mail with the Azure Automa-

tion, and knowing that the pipeline created in the Data Factory was very simple and only a proto-

type, it was decided not to invest in these Azure Resources. However, in both environments on-

premise and cloud, the SendGrid Web API method was proven to work to send e-mails on failure

72 Monitoring Framework

and success, as seen in the Subsection 6.2.1. Furthermore, since both environments are compatible

with PowerShell scripts, the SendGrid one would be easily implemented in this project.

6.2.3 Logic Application

Logic Apps is the Azure Integration software as a service (SaaS) solution from Microsoft that can

connect data or devices anywhere on-premises or in the cloud using APIs calls (see more details

in Section 2.7.4).

The goals Logic Application workflow is to store both project’s ETL error messages and per-

formance measures into the respective Azure SQL database tables. The monitoring schema is com-

posed of three tables: Projects, ETL_MONITORING, and RESOURCES_MONITORING. The

first table contains the listed names and respective primary keys of all the implemented projects

on-premises and Microsoft Azure Cloud. The ETL_MONITORING stores the ETL primary key,

projectKey (FK references the Project table), the isSuccess binary flag (0 if the ETL run with

failure; 1 if it was a success), the ETL process timestamp, and the respective error message if

applied.

On the other hand, the RESOURCES_MONITORING stores the row primary key (rowKey),

projectKey (FK references the Project table), the monitoringKey, the resource monitoring times-

tamp, the resource name, and its value. Each row describes one performance metric retrieved from

one ETL project, which is identified by the ProjectKey. The monitoringKey allows to aggregate

the metrics obtained and sent, in the same e-mail, through a PowerShell script. For example, for

each mail sent containing the performance metrics obtained during the project Clinical’s ETL pro-

cess, it is inserted one row for each performance metric with the same projectKey and the same

monitoringKey but with different sequential rowKey.

The built workflow has two activated triggers every time a new e-mail arrives and two actions

that execute stored procedures using the Microsoft e-mail account’s connection and the Azure

SQL Database connection, respectively.

The first pair of trigger and action aims to read the subject and body of every e-mail sent to the

“ETL Monitoring” Microsoft e-mail folder and to process this information in the stored procedure.

The message’s subject has the following structure “ETL from project: <project_name>”, and in

the stored procedure, the project name is compared to the listed project names of the Project table

present in the Azure SQL Database. The message’s body first line is the following “ETL from

project <project_name> run with <state>”. If the <state> is “success”, it is inserted a row into the

ETL_MONITORING table the corresponding projectKey and the isSuccess binary flag is set to

1. If the <state> is “failure”, it is inserted a row with corresponding projectKey, isSuccess is set

to 0, and the message body (contains the description of all the errors that occur) is added to the

errorMessage column.

The second pair of trigger and action interprets the subject and body of all the e-mails sent to

the “Resources Monitoring” Microsoft e-mail folder. The analysis of the message subject is similar

to the one described before. Besides matching the message subject name to the existing project

names table, the stored procedure reads every row of the e-mail and inserts the timestamp, metric

6.3 Summary 73

name, and respective value into RESOURCES_MONITORING table, along with the generated

monitoringKey.

6.2.4 Monitoring Dashboard

Clinical institutes often have multiple ETL processes, which can be implemented on-premises or

in the cloud, so it is important to have a central monitoring dashboard to analyze the performance

metrics and ETL states (success or failure) of each ETL project. This dashboard was built in the

Power BI Desktop application.

The dashboard in Figure 6.3 has a slicer to navigate the different projects and two tables to

visualize, for each project, the latest performance metrics values, and the error ETL messages (if

applied).

In the ETL state table, if the binary flag isSuccess is zero, the table row color turns red so

the user can spot more easily the project that needs closer attention. The same applies to the

Performance Metrics table if any of these measurements is higher than 80%.

6.3 Summary

The clinical DW integrates multiple heterogeneous data sources in the healthcare sector, providing

an optimized and effective information platform for health decision-makers. Since evaluating, in-

dividually, each clinical data source is a very demanding and time-consuming task, it is necessary

to build a central framework to monitor all the Clinical ETL processes, implemented in the cloud

or on-premises. The central framework was implemented in the Microsoft Azure Environment to

monitor the different clinical ETL’s errors and the resources’ performance metrics. On-premises,

the selected server counters to monitor are: Total Processor Time (percentage), Memory commit-

ted bytes in use (percentage), and Total Physical Disk Time (percentage)). The CPU Percentage

and the Data Space Use Percentage are the chosen metrics to monitor the Azure SQL Database.

The monitoring information (ETL errors and the resources’ performance metrics) were sent

via e-mail to prevent firewall restrictions, using the SendGrid Web API service. Then, the Azure

Logic Application interprets the e-mail body and subject to retrieve the monitoring information

and store it into the respective Azure SQL database tables. Finally, the end-user can analyze the

monitoring dashboard and be alerted if one or more projects fail or are close to failure.

74 Monitoring Framework

Figure 6.3: Monitoring Dashboard

Chapter 7

Conclusions and Future Work

In this chapter, the conclusions about the work performed are presented, from the perspective

of the results and contributions obtained. In addition, the future work to be carried out is also

presented.

7.1 Conclusions

The Health industry generates and collects a vast amount of data every day (images, diagnoses,

medical records, among others) from several data sources, making it very difficult to aggregate,

structure, and organize this data efficiently into one information system.

SClínico/SONHO V2/LIGHT systems appeared as a strategy defined by the Portuguese Min-

istry of Health to achieve uniformity of clinical records, increasing the efficiency of health profes-

sionals and, consequently, saving resources and improving quality of care.

However, since 2017, only Centro Hospitalar de Leiria and Centro Hospitalar Distrital de

Santarém have gradually implemented the SClínico/SONHO V2/LIGHT systems. Unfortunately,

even with this platform, there are still many other heterogeneous information systems (for exam-

ple, ALERT is used to request a medical specialty).

Thus, in the health units, Business Intelligence (BI) systems are crucial in the quality of ser-

vices provided since the data needs to be permanently available and the information flow working

correctly. BI systems take even a more significant role in the Health Industry because improving

medical professionals, and hospital managers’ decision-making can save lives.

In this dissertation, it was developed a Clinical DW to replicate the existing healthcare solu-

tions, evaluate medical professionals’ workload, analyze the volume of medical interventions and

laboratory tests, and calculate the hospital revenue balance.

Unfortunately, the Clinical database only characterizes 100 patients and 129 hospital admis-

sions, so it is challenging to conduct depth analyzes.

The Clinical Report includes four pages: general hospital admissions, medical procedures,

electronic charted measurements, and microbiology and laboratory. In the General Admission

Page, it was possible to conclude that all the selective admissions (previously planned hospital

75

76 Conclusions and Future Work

admissions) were assigned to surgical services. All the patients survived the surgical procedures.

The MED service describes more than 50% of the hospitalization admissions. The average waiting

medical assistance time (time between the hospital admission and the first patient’s medical test)

and the average hospitalization time is 111.36 minutes and 9.33 days, respectively.

In the Procedures Page, it is possible to conclude that the most common medical interventions

are associated with the Imaging (138) and the Access Lines – Peripheral (152) categories.

In the Chart Page, the majority of registered electronic data is not associated with any specific

category – “N/A” (57%) –, which includes typical ICU patients “check-in” measurements such as

heart rate and arterial blood pressure.

Generally, Registered Nurse (RN) and Nurse Practioner (NP) perform the majority (approxi-

mately 75%) of all the medical procedures and electronic charted measurements.

In the Laboratory section, there are three categories: Chemistry, Hematology, and Blood Gas.

The Chemistry category represents over 75% of the analyzed exams.

On the other hand, in the Microbiology section, it was calculated an estimate of the antibiotic

disk costs (1855.68$). However, this estimate does not account for the reagents and the microbi-

ology equipment (e.g., Petri dishes, growth mediums, inoculation loops) costs.

Due to the Hospital’s data source heterogeneity, one healthcare institute can have multiple

Clinical Extract, Transform, and Load processes implemented in different environments (on-

premises or cloud).

Therefore, it emerges the necessity to monitor multiple Clinical Data Warehouses to prevent

process failures that can put the patient’s health and safety at risk.

In this project, it was proposed to build a central monitoring framework prototype based in the

Microsoft Azure Environment. The communication between the framework server and the clinical

data source servers is established via the SendGrid Web API service.

The SendGrid proved to be an efficient method to transfer the monitoring information (ETL

error messages and server performance measurements) from the clinical DW to the Azure SQL

database framework.

The monitoring dashboard shows the end-user the ETL error messages and server performance

measurements of the multiple Clinical ETL processes supervised. Instead of checking each ETL’s

Log table, the user can easily navigate in the report to observe if any project run with failure or be

alerted if any of the performance metrics (e.g., CPU, RAM) have dangerously high values.

7.2 Future Work

The MIMIC-III demo v.1.4 was not the most suitable database to develop a clinical ETL since

there were only 100 registered deceased patients, making it very difficult to assess the medical

interventions’ impact, hospitalization period, and admission waiting time in the hospital survival

rate. Furthermore, the invoice costs associated with the billing of diagnoses, medical procedures,

and drugs administrated were not available, making it impossible to evaluate the Hospital revenue.

7.2 Future Work 77

Regarding the Azure environment’s performance metrics, two Azure PowerShell scripts were

developed: one to calculate the Percentage of CPU and the Data Space Use Percentage of the

Azure SQL database and the other to send this monitoring information using the SendGrid Web

API service. However, after evaluating the associated costs in implementing the Azure PowerShell

scripts in the Azure Automation Runbook, and knowing that the pipeline created in the Data

Factory was only a prototype, it was decided not to invest in this Azure Resource.

In the future, a more complex Clinical ETL should be implemented in the Azure Data Factory

to test developed PowerShell scripts, and consequently, store the Azure SQL database performance

metrics into the monitoring framework database.

Although the SendGrid Web API service is compatible with the Microsoft Azure Environment,

it would help implementing this method in other cloud vendors.

Currently, the user can analyze the performance metrics in the monitoring dashboard’s table

since it is only retrieved a few points per ETL execution. However, it could be useful for the user

to visualize this information under a graphic form. Additionally, it would also help the user see

ETL’s past months or year statistics.

78 Conclusions and Future Work

Appendix A

Supplementary Material

Listing A.1: Function Send-EmailWithSendGrid

F u n c t i o n Send−Emai lWithSendGrid {

Param

(

[P a r a m e t e r (Mandatory= $ t r u e)]

[s t r i n g] $From ,

[P a r a m e t e r (Mandatory= $ t r u e)]

[S t r i n g] $To ,

[P a r a m e t e r (Mandatory= $ t r u e)]

[s t r i n g] $ApiKey ,

[P a r a m e t e r (Mandatory= $ t r u e)]

[s t r i n g] $ S u b j e c t ,

[P a r a m e t e r (Mandatory= $ t r u e)]

[s t r i n g] $Body

)

$ h e a d e r s = @{}

$ h e a d e r s . Add (" A u t h o r i z a t i o n " , " B e a r e r $ApiKey ")

$ h e a d e r s . Add (" Conten t−Type " , " a p p l i c a t i o n / j s o n ")

$ j s o n R e q u e s t = [o r d e r e d]@{

p e r s o n a l i z a t i o n s = @(@{ t o = @(@{ e m a i l = " $To " })

s u b j e c t = " $ S u b J e c t " })

79

80 Supplementary Material

from = @{ e m a i l = " $From " }

c o n t e n t = @(@{ t y p e = " t e x t / p l a i n " v a l u e = " $Body " })

} | ConvertTo−J son −Depth 10

Invoke−RestMethod −Uri " h t t p s : / / a p i . s e n d g r i d . com / v3 / ma i l / send "

−Method P o s t −Headers $ h e a d e r s −Body $ j s o n R e q u e s t

}

Supplementary Material 81

Table A.1: Clinical ETL’s Control Packages Table

ID PackageName TypeEtl OrderPackage CreationDate AlterDate CreateUser AlterUser Record_Active
12 1_E_CSV_PATIENTS.dtsx E 1 2020-07-09 11:16:51.943 NULL B2F_Margarida NULL 1
1 1_E_CSV_ADMISSIONS.dtsx E 2 2020-07-09 11:16:51.857 NULL B2F_Margarida NULL 1
2 1_E_CSV_CAREGIVERS.dtsx E 3 2020-07-09 11:16:51.863 NULL B2F_Margarida NULL 1
4 1_E_CSV_D_CARE_UNITS.dtsx E 4 2020-07-09 11:16:51.877 NULL B2F_Margarida NULL 1
6 1_E_CSV_D_ITEMS_CATEGORY.dtsx E 5 2020-07-09 11:16:51.890 NULL B2F_Margarida NULL 1
5 1_E_CSV_D_ITEMS.dtsx E 6 2020-07-09 11:16:51.883 NULL B2F_Margarida NULL 1
7 1_E_CSV_D_LABITEMS.dtsx E 7 2020-07-09 11:16:51.897 NULL B2F_Margarida NULL 1
8 1_E_CSV_D_SERVICES.dtsx E 8 2020-07-09 11:16:51.910 NULL B2F_Margarida NULL 1
9 1_E_CSV_ICUSTAYS.dtsx E 9 2020-07-09 11:16:51.913 NULL B2F_Margarida NULL 1
10 1_E_CSV_LABEVENTS.dtsx E 10 2020-07-09 11:16:51.923 NULL B2F_Margarida NULL 1
11 1_E_CSV_MICROBIOLOGYEVENTS.dtsx E 11 2020-07-09 11:16:51.937 NULL B2F_Margarida NULL 1
13 1_E_CSV_PROCEDUREEVENTS_MV.dtsx E 12 2020-07-09 11:16:51.950 NULL B2F_Margarida NULL 1
3 1_E_CSV_CHARTEVENTS.dtsx E 13 2020-07-09 11:16:51.870 NULL B2F_Margarida NULL 1
59 1_E_CSV_D_ITEMS_ANTIBACTERIUM_PRICES.dtsx E 14 2020-08-16 23:46:15.933 NULL B2F_Margarida NULL 1
15 2_T_DIM_PATIENTS.dtsx T 14 2020-07-14 16:31:14.447 NULL B2F_Margarida NULL 1
16 2_T_DIM_ADMISSIONS.dtsx T 15 2020-07-14 16:31:14.487 NULL B2F_Margarida NULL 1
17 2_T_DIM_CAREGIVERS.dtsx T 16 2020-07-14 16:31:14.497 NULL B2F_Margarida NULL 1
18 2_T_DIM_D_CARE_UNITS.dtsx T 17 2020-07-14 16:31:14.523 NULL B2F_Margarida NULL 1
19 2_T_DIM_D_SERVICES.dtsx T 18 2020-07-14 16:31:14.533 NULL B2F_Margarida NULL 1
20 2_T_DIM_D_ITEMS_CATEGORY_CHART.dtsx T 19 2020-07-14 16:31:14.543 NULL B2F_Margarida NULL 1
21 2_T_DIM_D_ITEMS_CATEGORY_LABITEMS.dtsx T 20 2020-07-14 16:31:14.550 NULL B2F_Margarida NULL 1
22 2_T_DIM_D_ITEMS_CATEGORY_PROCEDURE.dtsx T 21 2020-07-14 16:31:14.560 NULL B2F_Margarida NULL 1
23 2_T_DIM_D_ITEMS_ANTIBACTERIUM.dtsx T 22 2020-07-14 16:31:14.570 NULL B2F_Margarida NULL 1
24 2_T_DIM_D_ITEMS_CHART.dtsx T 23 2020-07-14 16:31:14.580 NULL B2F_Margarida NULL 1
25 2_T_DIM_D_ITEMS_ORGANISM.dtsx T 24 2020-07-14 16:31:14.590 NULL B2F_Margarida NULL 1
26 2_T_DIM_D_ITEMS_PROCEDURE.dtsx T 25 2020-07-14 16:31:14.600 NULL B2F_Margarida NULL 1
27 2_T_DIM_D_ITEMS_SPECIMEN.dtsx T 26 2020-07-14 16:31:14.610 NULL B2F_Margarida NULL 1
28 2_T_DIM_D_LABITEMS.dtsx T 27 2020-07-14 16:31:14.617 NULL B2F_Margarida NULL 1
29 2_T_DIM_ICUSTAYS.dtsx T 28 2020-07-14 16:31:14.623 NULL B2F_Margarida NULL 1
30 2_T_FACT_LABEVENTS.dtsx T 29 2020-07-14 16:31:14.633 NULL B2F_Margarida NULL 1
31 2_T_FACT_MICROBIOLOGYEVENTS.dtsx T 30 2020-07-14 16:31:14.640 NULL B2F_Margarida NULL 1
32 2_T_FACT_PROCEDUREEVENTS_MV.dtsx T 31 2020-07-14 16:31:14.647 NULL B2F_Margarida NULL 1
33 2_T_FACT_CHARTEVENTS.dtsx T 32 2020-07-14 16:31:14.653 NULL B2F_Margarida NULL 1
34 2_T_FACT_SERVICES.dtsx T 33 2020-07-14 16:31:14.663 NULL B2F_Margarida NULL 1
35 3_L_DIM_PATIENTS.dtsx L 34 2020-07-20 22:09:31.683 NULL B2F_Margarida NULL 1
36 3_L_DIM_ADMISSIONS.dtsx L 35 2020-07-20 22:09:31.697 NULL B2F_Margarida NULL 1
37 3_L_DIM_CAREGIVERS.dtsx L 36 2020-07-20 22:09:31.703 NULL B2F_Margarida NULL 1
38 3_L_DIM_D_CARE_UNITS.dtsx L 37 2020-07-20 22:09:31.710 NULL B2F_Margarida NULL 1
39 3_L_DIM_D_SERVICES.dtsx L 38 2020-07-20 22:09:31.720 NULL B2F_Margarida NULL 1
40 3_L_DIM_D_ITEMS_CATEGORY_CHART.dtsx L 39 2020-07-20 22:09:31.727 NULL B2F_Margarida NULL 1
41 3_L_DIM_D_ITEMS_CATEGORY_LABITEMS.dtsx L 40 2020-07-20 22:09:31.733 NULL B2F_Margarida NULL 1
42 3_L_DIM_D_ITEMS_CATEGORY_PROCEDURE.dtsx L 41 2020-07-20 22:09:31.740 NULL B2F_Margarida NULL 1
43 3_L_DIM_D_ITEMS_ANTIBACTERIUM.dtsx L 42 2020-07-20 22:09:31.747 NULL B2F_Margarida NULL 1
44 3_L_DIM_D_ITEMS_CHART.dtsx L 43 2020-07-20 22:09:31.757 NULL B2F_Margarida NULL 1
45 3_L_DIM_D_ITEMS_ORGANISM.dtsx L 44 2020-07-20 22:09:31.763 NULL B2F_Margarida NULL 1
46 3_L_DIM_D_ITEMS_PROCEDURE.dtsx L 45 2020-07-20 22:09:31.770 NULL B2F_Margarida NULL 1
47 3_L_DIM_D_ITEMS_SPECIMEN.dtsx L 46 2020-07-20 22:09:31.780 NULL B2F_Margarida NULL 1
48 3_L_DIM_D_LABITEMS.dtsx L 47 2020-07-20 22:09:31.787 NULL B2F_Margarida NULL 1
49 3_L_DIM_ICUSTAYS.dtsx L 48 2020-07-20 22:09:31.797 NULL B2F_Margarida NULL 1
50 3_L_FACT_LABEVENTS.dtsx L 49 2020-07-20 22:09:31.803 NULL B2F_Margarida NULL 1
51 3_L_FACT_MICROBIOLOGYEVENTS.dtsx L 50 2020-07-20 22:09:31.810 NULL B2F_Margarida NULL 1
52 3_L_FACT_PROCEDUREEVENTS_MV.dtsx L 51 2020-07-20 22:09:31.817 NULL B2F_Margarida NULL 1
53 3_L_FACT_CHARTEVENTS.dtsx L 52 2020-07-20 22:09:31.827 NULL B2F_Margarida NULL 1
54 3_L_FACT_SERVICES.dtsx L 53 2020-07-20 22:09:31.833 NULL B2F_Margarida NULL 1
55 E_ALL.dtsx A 54 2020-07-20 22:09:31.840 NULL B2F_Margarida NULL 1
56 T_ALL.dtsx A 55 2020-07-20 22:09:31.850 NULL B2F_Margarida NULL 1
57 L_ALL.dtsx A 56 2020-07-20 22:09:31.857 NULL B2F_Margarida NULL 1
58 ETL_ALL.dtsx F 57 2020-07-20 22:09:31.863 NULL B2F_Margarida NULL 1

82 Supplementary Material

Table A.2: Business Indicators’ DAX Expressions

Report Indicator DAX

Admissions

Waiting Medical Assistance
Time (AVG)

AVERAGEX(’Admission Events’, ’Admission Events’[Time 1st Test]*)

Waiting Medical Assistance
Time (MIN)

MINX(’Admission Events’, ’Admission Events’[Time 1st Test]*)

Waiting Medical Assistance
Time (MAX)

MAXX(’Admission Events’, ’Admission Events’[Time 1st Test]*)

Hospitalization Time (AVG) AVERAGEX(’DW DW_DIM_ADMISSIONS’, ’DW DW_DIM_ADMISSIONS’[Date Difference]**)
Hospitalization Time (MIN) MINX(’DW DW_DIM_ADMISSIONS’, ’DW DW_DIM_ADMISSIONS’[Date Difference]**)
Hospitalization Time (MAX) MAXX(’DW DW_DIM_ADMISSIONS’, ’DW DW_DIM_ADMISSIONS’[Date Difference]**)

Hospital Admissions by Service

Calculate(COUNT(’DW DW_FACT_SERVICES’[AdmissionKey]) , FILTER(’DW DW_FACT_SERVICES’,
’DW DW_FACT_SERVICES’[ActiveServiceFlag] = 1), FILTER(’DW DW_Fact_SERVICES’,
’DW DW_FACT_SERVICES’[CurrServiceKey]<>-1),
USERELATIONSHIP(’DW DW_DIM_ADMISSIONS’[AdmissionKey],
’DW DW_FACT_SERVICES’[AdmissionKey]))

% Hospital Admission Deaths COUNT(’DW DW_DIM_ADMISSIONS’[AdmissionKey])
% Hospital Admission Type COUNT(’DW DW_DIM_ADMISSIONS’[AdmissionKey])

Procedures

% CategoryProcedures

Calculate(COUNT(’DW DW_FACT_PROCEDUREEVENTS_MV’[ItemKey]),
USERELATIONSHIP(’DW DW_FACT_PROCEDUREEVENTS_MV’[ItemKey],
’DW DW_DIM_D_ITEMS_PROCEDURE’[ItemKey]),
USERELATIONSHIP(’DW DW_DIM_D_ITEMS_PROCEDURE’[ItemCategoryKey],
’DW DW_DIM_D_ITEMS_CATEGORY_PROCEDURE’[ItemCategoryKey]))

% CategoryItemsProcedures
The visual element has a hierarchy with the % CategoryProcedures and % CategoryItemsProcedures,
the drill down feature reveals the subcategories

CareuintProcedures

Calculate(COUNT(’DW DW_FACT_PROCEDUREEVENTS_MV’[ItemKey]),
USERELATIONSHIP(’DW DW_FACT_PROCEDUREEVENTS_MV’[IcustayKey],
’DW DW_DIM_ICUSTAYS’[IcustayKey]),
USERELATIONSHIP(’DW DW_DIM_ICUSTAYS’[LastCareUnitKey],
’DW DW_DIM_D_CARE_UNITS’[CareunitKey]),
FILTER(’DW DW_DIM_D_CARE_UNITS’, ’DW DW_DIM_D_CARE_UNITS’[CareunitKey]<>-1))

TypeCaregiverProcedures

Calculate(COUNT(’DW DW_FACT_PROCEDUREEVENTS_MV’[ItemKey]),
USERELATIONSHIP(’DW DW_FACT_PROCEDUREEVENTS_MV’[IcustayKey],
’DW DW_DIM_CAREGIVERS’[CaregiverKey]), FILTER(’DW DW_DIM_CAREGIVERS’,
’DW DW_DIM_CAREGIVERS[CaregiverKey]<>-1)

CaregiverProcedures
The visual element has a hierarchy with the % TypeCaregiverProcedures and % CaregiverProcedures,
the drill down feature reveals the subcategories

Electronic
Chart

% CategoryChart

Calculate(COUNT(’DW DW_FACT_CHARTEVENTS’[ItemKey]),
USERELATIONSHIP(’DW DW_FACT_CHARTEVENTS_MV’[ItemKey],
’DW DW_DIM_D_ITEMS_CHART’[ItemKey]),
USERELATIONSHIP(’DW DW_DIM_D_ITEMS_CHART’[ItemCategoryKey],
’DW DW_DIM_D_ITEMS_CATEGORY_CHART’[ItemCategoryKey]))

% CategoryItemsChart
The visual element has a hierarchy with the % CategoryChart and % CategoryItemsChart,
the drill down feature reveals the subcategories

CareuintChart

Calculate(COUNT(’DW DW_FACT_CHARTEVENTS’[ItemKey]),
USERELATIONSHIP(’DW DW_FACT_CHARTEVENTS’[IcustayKey],
’DW DW_DIM_ICUSTAYS’[IcustayKey]),
USERELATIONSHIP(’DW DW_DIM_ICUSTAYS’[LastCareUnitKey],
’DW DW_DIM_D_CARE_UNITS’[CareunitKey]),
FILTER(’DW DW_DIM_D_CARE_UNITS’, ’DW DW_DIM_D_CARE_UNITS’[CareunitKey]<>-1))

TypeCaregiverChart

Calculate(COUNT(’DW DW_FACT_CHARTEVENTS’[ItemKey]),
USERELATIONSHIP(’DW DW_FACT_CHARTEVENTS’[IcustayKey],
’DW DW_DIM_CAREGIVERS’[CaregiverKey]), FILTER(’DW DW_DIM_CAREGIVERS’,
’DW DW_DIM_CAREGIVERS[CaregiverKey]<>-1)

CaregiverChart
The visual element has a hierarchy with the % TypeCaregiverChart and % CaregiverChart,
the drill down feature reveals the subcategories

Microbiology
% CategorySpecimen

Calculate(COUNT(’DW DW_FACT_MICROBIOLOGYEVENTS’[SpecimenKey]),
USERELATIONSHIP(’DW DW_FACT_MICROBIOLOGYEVENTS_MV’[SpecimenKey],
’DW DW_DIM_D_ITEMS_MICROBIOLOGY_SPECIMEN’[ItemKey]),
FILTER(’DW DW_DIM_D_ITEMS_MICROBIOLOGY_SPECIMEN’,
’DW DW_DIM_D_ITEMS_MICROBIOLOGY_SPECIMEN’[ItemKey]<>-1))

AntibioticPrice

Calculate(COUNT(’DW DW_FACT_MICROBIOLOGYEVENTS’[AntibioticKey])*
SUM(’DW DW_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM’[ItemPrice])*5
/SUM(’DW DW_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM’[ItemQuantity]),
USERELATIONSHIP(’DW DW_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM’[ItemKey],
’DW DW_FACT_MICROBIOLOGYEVENTS’[AntibioticKey]),
FILTER(’DW DW_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM’,
’DW DW_DIM_D_ITEMS_MICROBIOLOGY_ANTIBACTERIUM’[ItemKey]<>-1))

Laboratory
% CategoryLaboratory

Calculate(COUNT(’DW DW_FACT_CHARTEVENTS’[ItemKey]),
USERELATIONSHIP(’DW DW_FACT_CHARTEVENTS_MV’[ItemKey],
’DW DW_DIM_D_ITEMS_CHART’[ItemKey]),
USERELATIONSHIP(’DW DW_DIM_D_ITEMS_CHART’[ItemCategoryKey],
’DW DW_DIM_D_ITEMS_CATEGORY_CHART’[ItemCategoryKey]))

% CategoryItemsLaboratory
The visual element has a hierarchy with the % CategoryChart and % CategoryItemsChart,
the drill down feature reveals the subcategories

*Time 1st Test = MIN(MIN(MIN(’Admission Events’[Time Admission Chart], ’Admission Events’[Time Admission Lab]), ’Admission Events’[Time Admission Micro]),
’Admission Events’[Time Admission Proced])
**Date Difference = CALCULATE(1.0*(MIN(’DW DW_DIM_ADMISSIONS’[PatientTodisch])-MIN(’DW DW_DIM_ADMISSIONS’[PatientToadmit])),
USERELATIONSHIP(’DW DW_DIM_ADMISSIONS’[AdmissionKey], ’DW DW_FACT_SERVICES’[AdmissionKey]))

Supplementary Material 83

Figure A.1: General Admissions Page. Admissions that resulted in hospital death.

Figure A.2: General Admissions Page filtered by selective admissions

84 Supplementary Material

Figure A.3: Procedures Page Overview filtered with the medical intervention category Imaging.

Figure A.4: Procedures Page Overview. Medical interventions: X-Ray, Ultrasound from the Imag-
ing category. Care unit: MICU. Date: 4th trimester between 2101 and 2203

Supplementary Material 85

Figure A.5: Chart Page Overview of the Respiratory Therapist, on February 2130.

Figure A.6: Chart Page Overview of the Nurses working at the Coronary Care Unit, in 2130,
within the Skin categories.

86 Supplementary Material

Figure A.7: Laboratory Hematology Tests

Supplementary Material 87

Figure A.8: Azure Database Resource Metrics

88 Supplementary Material

References

[1] Shahidul Islam Khan and Abu Sayed Latiful Hoque. Privacy and security problems of na-
tional health data warehouse: a convenient solution for developing countries. 2016 Interna-
tional Conference on Networking Systems and Security (NSysS), pages 151–152, Jan 2016.
doi:10.1109/NSysS.2016.7400708.

[2] Maria Antonina Mach and M. Salem Abdel-Badeeh. Intelligent techniques for business
intelligence in healthcare. 2010 10th International Conference on Intelligent Systems Design
and Applications, pages 545–550, Nov 2010. doi:10.1109/ISDA.2010.5687209.

[3] Mu-Hsing Kuo, Dillon Chrimes, Belaid Moa, and Wei Hu. Design and Construction of a
Big Data Analytics Framework for Health Applications. ResearchGate, pages 631–636, Dec
2015. doi:10.1109/SmartCity.2015.140.

[4] SONHO - aprendis, May 2018. [Online; accessed 1. Sep. 2020]. URL: http://
aprendis.gim.med.up.pt/index.php/SONHO#SONHO_v2.

[5] Interoperabilidade Técnica: LIGHt; PNB; NCP – SPMS, Sep 2020. [Online;
accessed 1. Sep. 2020]. URL: http://www.spms.min-saude.pt/2017/06/
interoperabilidade-tecnica-light-pnb-ncp.

[6] Ana Paula Pinheiro. Os sistemas de informação na prática do médico de família: onde está
a interoperabilidade? Revista Portuguesa de Medicina Geral e Familiar, 34(4):250–4, Jul
2018. doi:10.32385/rpmgf.v34i4.12486.

[7] Paulo Silva, César Quintas, Júlio Duarte, Manuel Santos, José Neves, António Abelha, and
José Manuel Machado. Hospital database workload and fault forecasting. IEEE, 2012.
doi:10.1109/IECBES.2012.6498150.

[8] What is business intelligence? Your guide to BI and why it matters, Feb 2020. [On-
line; accessed 05. Feb. 2020]. URL: https://www.tableau.com/learn/articles/
business-intelligence.

[9] BNP - Business intelligence, Feb 2020. [Online; accessed 11. Feb. 2020]. URL: http:
//bibliografia.bnportugal.gov.pt/bnp/bnp.exe/registo?1694528.

[10] H. P. Luhn. A Business Intelligence System. IBM J. Res. Dev., 2(4):314–319, Oct 1958.
doi:10.1147/rd.24.0314.

[11] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide
to Dimensional Modeling. Wiley, Apr 2002. URL: https://www.amazon.com/
Data-Warehouse-Toolkit-Complete-Dimensional/dp/0471200247.

89

http://dx.doi.org/10.1109/NSysS.2016.7400708
http://dx.doi.org/10.1109/ISDA.2010.5687209
http://dx.doi.org/10.1109/SmartCity.2015.140
http://aprendis.gim.med.up.pt/index.php/SONHO#SONHO_v2
http://aprendis.gim.med.up.pt/index.php/SONHO#SONHO_v2
http://www.spms.min-saude.pt/2017/06/interoperabilidade-tecnica-light-pnb-ncp
http://www.spms.min-saude.pt/2017/06/interoperabilidade-tecnica-light-pnb-ncp
http://dx.doi.org/10.32385/rpmgf.v34i4.12486
http://dx.doi.org/10.1109/IECBES.2012.6498150
https://www.tableau.com/learn/articles/business-intelligence
https://www.tableau.com/learn/articles/business-intelligence
http://bibliografia.bnportugal.gov.pt/bnp/bnp.exe/registo?1694528
http://bibliografia.bnportugal.gov.pt/bnp/bnp.exe/registo?1694528
http://dx.doi.org/10.1147/rd.24.0314
https://www.amazon.com/Data-Warehouse-Toolkit-Complete-Dimensional/dp/0471200247
https://www.amazon.com/Data-Warehouse-Toolkit-Complete-Dimensional/dp/0471200247

90 REFERENCES

[12] Stanisław Kozielski and Robert Wrembel. New Trends in Data Warehousing and
Data Analysis | Stanisław Kozielski | Springer. Springer US, 2009. doi:10.1007/
978-0-387-87431-9.

[13] William H. Inmon. Building the Data Warehouse Fourth Edition. Wiley, Oct 2005. URL:
http://fit.hcmute.edu.vn/Resources/Docs/SubDomain/fit/ThayTuan/
DataWH/Bulding%20the%20Data%20Warehouse%204%20Edition.pdf.

[14] Fact Tables and Dimension Tables, Jan 2003. [Online; accessed 11.
Feb. 2020]. URL: https://www.kimballgroup.com/2003/01/
fact-tables-and-dimension-tables.

[15] Razi O. Mohammed and Samani A. Talab. Clinical Data Warehouse Issues and Challenges.
International Journal of u- and e-Service, Science and Technology, 7(5):251–262, Oct 2014.
doi:10.14257/ijunesst.2014.7.5.22.

[16] João Ferreira, Miguel Miranda, António Abelha, and José Machado.
O Processo ETL em Sistemas Data Warehouse, Feb 2020. [On-
line; accessed 13. Feb. 2020]. URL: https://docplayer.com.br/
497244-O-processo-etl-em-sistemas-data-warehouse.html.

[17] Krish Krishnan. Data Warehousing in the Age of Big Data (The Morgan Kaufmann Series
on Business Intelligence). Morgan Kaufmann, May 2013.

[18] Vasco Santos and Orlando Belo. No Need to Type Slowly Changing Dimensions. Re-
searchGate, pages 129–136, Mar 2011. URL: https://www.researchgate.net/
publication/259293002_No_Need_to_Type_Slowly_Changing_Dimensions.

[19] Victor Chang, Yen-Hung Kuo, and Muthu Ramachandran. Cloud computing adoption frame-
work: A security framework for business clouds. Future Gener. Comput. Syst., 57:24–41,
Apr 2016. doi:10.1016/j.future.2015.09.031.

[20] Cloud Computing and Business Intelligence Market Study, Feb 2020. [Online; ac-
cessed 11. Feb. 2020]. URL: https://www.martechcube.com/whitepapers/
cloud-computing-and-business-intelligence-market-study.

[21] John Brandon. What is Infrastructure-as-a-Service? Everything you need to know
about IaaS. TechRadar, Dec 2019. URL: https://www.techradar.com/news/
what-is-infrastructure-as-a-service.

[22] Gurudatt Kulkarni, Prasad Khatawkar, and Jayant Gambhir. Cloud Computing-
Platform as Service. ResearchGate, -1(-2):115–120, Dec 2011. URL: https://www.
researchgate.net/publication/234166315_Cloud_Computing-Platform_
as_Service.

[23] Mihaela Muntean. Considerations Regarding Business Intelligence in Cloud Context.
ResearchGate, 19(4/2015):55–67, Dec 2015. doi:10.12948/issn14531305/19.4.
2015.05.

[24] Cameron Fisher. Cloud versus On-Premise Computing. American Journal of Industrial
and Business Management, 08(09):1991–2006, Jan 2018. doi:10.4236/ajibm.2018.
89133.

http://dx.doi.org/10.1007/978-0-387-87431-9
http://dx.doi.org/10.1007/978-0-387-87431-9
http://fit.hcmute.edu.vn/Resources/Docs/SubDomain/fit/ThayTuan/DataWH/Bulding%20the%20Data%20Warehouse%204%20Edition.pdf
http://fit.hcmute.edu.vn/Resources/Docs/SubDomain/fit/ThayTuan/DataWH/Bulding%20the%20Data%20Warehouse%204%20Edition.pdf
https://www.kimballgroup.com/2003/01/fact-tables-and-dimension-tables
https://www.kimballgroup.com/2003/01/fact-tables-and-dimension-tables
http://dx.doi.org/10.14257/ijunesst.2014.7.5.22
https://docplayer.com.br/497244-O-processo-etl-em-sistemas-data-warehouse.html
https://docplayer.com.br/497244-O-processo-etl-em-sistemas-data-warehouse.html
https://www.researchgate.net/publication/259293002_No_Need_to_Type_Slowly_Changing_Dimensions
https://www.researchgate.net/publication/259293002_No_Need_to_Type_Slowly_Changing_Dimensions
http://dx.doi.org/10.1016/j.future.2015.09.031
https://www.martechcube.com/whitepapers/cloud-computing-and-business-intelligence-market-study
https://www.martechcube.com/whitepapers/cloud-computing-and-business-intelligence-market-study
https://www.techradar.com/news/what-is-infrastructure-as-a-service
https://www.techradar.com/news/what-is-infrastructure-as-a-service
https://www.researchgate.net/publication/234166315_Cloud_Computing-Platform_as_Service
https://www.researchgate.net/publication/234166315_Cloud_Computing-Platform_as_Service
https://www.researchgate.net/publication/234166315_Cloud_Computing-Platform_as_Service
http://dx.doi.org/10.12948/issn14531305/19.4.2015.05
http://dx.doi.org/10.12948/issn14531305/19.4.2015.05
http://dx.doi.org/10.4236/ajibm.2018.89133
http://dx.doi.org/10.4236/ajibm.2018.89133

REFERENCES 91

[25] What is AWS, Feb 2020. [Online; accessed 14. Feb. 2020]. URL: https://aws.amazon.
com/what-is-aws.

[26] Cloud Computing Services |Microsoft Azure, Feb 2020. [Online; accessed 14. FeB. 2020].
URL: https://azure.microsoft.com/en-us.

[27] Google Cloud, Feb 2020. [Online; accessed 14. Feb. 2020]. URL: https://cloud.
google.com.

[28] Cloud Services Terminology Guide: Comparing AWS vs Azure vs
Google | CloudHealth by VMware, Feb 2020. [Online; accessed 14.
Feb. 2020]. URL: https://www.cloudhealthtech.com/blog/
cloud-comparison-guide-glossary-aws-azure-gcp.

[29] Comparing Cloud Instance Pricing: AWS vs Azure vs Google vs
IBM | Flexera Blog, Nov 2017. [Online; accessed 16. Feb.
2020]. URL: https://www.flexera.com/blog/cloud/2017/11/
comparing-cloud-instance-pricing-aws-vs-azure-vs-google-vs-ibm.

[30] Tableau Server Pricing, Demo, Reviews, Features, Feb 2020. [Online; accessed 15. Feb.
2020]. URL: https://www.selecthub.com/business-intelligence-tools/
tableau-server/?from_category=69.

[31] Qlikview Pricing - How Much Does Qlikview Cost, Feb 2020. [Online; accessed 15.
Feb. 2020]. URL: https://www.selecthub.com/big-data-analytics-tools/
qlikview.

[32] Power BI vs Tableau vs Qlikview | Top 6 Differences (with Infographics), Nov 2019.
[Online; accessed 15. Feb. 2020]. URL: https://www.wallstreetmojo.com/
power-bi-vs-tableau-vs-qlikview.

[33] Power BI Pricing - Microsoft Power BI Price Info, Feb 2020. [Online; accessed 15. Feb.
2020]. URL: https://www.selecthub.com/business-intelligence-tools/
microsoft-bi.

[34] Himani Bansal. Tableau vs Qlik Sense vs Power BI—Choose best BI Tool for Big Data
Visualization. Medium, Jun 2019. URL: https://medium.com/javarevisited/
tableau-vs-qlik-sense-vs-power-bi-choose-best-bi-tool-for-big-data-visualization-533976324c47.

[35] Azure SQL Database, Feb 2020. [Online; accessed 12. Feb. 2020]. URL:
https://azure.microsoft.com/en-us/services/sql-database/
#product-overview.

[36] tamram. Introduction to Azure Storage - Cloud storage on Azure, Sep 2020. [On-
line; accessed 26. Sep. 2020]. URL: https://docs.microsoft.com/en-us/azure/
storage/common/storage-introduction.

[37] Data Factory - Data Integration Service | Microsoft Azure, Feb 2020. [Online; ac-
cessed 12. Feb. 2020]. URL: https://azure.microsoft.com/en-us/services/
data-factory/#overview.

[38] Logic App Service | Microsoft Azure, Feb 2020. [Online; accessed 12. Feb. 2020]. URL:
https://azure.microsoft.com/en-us/services/logic-apps/#features.

https://aws.amazon.com/what-is-aws
https://aws.amazon.com/what-is-aws
https://azure.microsoft.com/en-us
https://cloud.google.com
https://cloud.google.com
https://www.cloudhealthtech.com/blog/cloud-comparison-guide-glossary-aws-azure-gcp
https://www.cloudhealthtech.com/blog/cloud-comparison-guide-glossary-aws-azure-gcp
https://www.flexera.com/blog/cloud/2017/11/comparing-cloud-instance-pricing-aws-vs-azure-vs-google-vs-ibm
https://www.flexera.com/blog/cloud/2017/11/comparing-cloud-instance-pricing-aws-vs-azure-vs-google-vs-ibm
https://www.selecthub.com/business-intelligence-tools/tableau-server/?from_category=69
https://www.selecthub.com/business-intelligence-tools/tableau-server/?from_category=69
https://www.selecthub.com/big-data-analytics-tools/qlikview
https://www.selecthub.com/big-data-analytics-tools/qlikview
https://www.wallstreetmojo.com/power-bi-vs-tableau-vs-qlikview
https://www.wallstreetmojo.com/power-bi-vs-tableau-vs-qlikview
https://www.selecthub.com/business-intelligence-tools/microsoft-bi
https://www.selecthub.com/business-intelligence-tools/microsoft-bi
https://medium.com/javarevisited/tableau-vs-qlik-sense-vs-power-bi-choose-best-bi-tool-for-big-data-visualization-533976324c47
https://medium.com/javarevisited/tableau-vs-qlik-sense-vs-power-bi-choose-best-bi-tool-for-big-data-visualization-533976324c47
https://azure.microsoft.com/en-us/services/sql-database/#product-overview
https://azure.microsoft.com/en-us/services/sql-database/#product-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction
https://azure.microsoft.com/en-us/services/data-factory/#overview
https://azure.microsoft.com/en-us/services/data-factory/#overview
https://azure.microsoft.com/en-us/services/logic-apps/#features

92 REFERENCES

[39] Pricing - Functions | Microsoft Azure, Sep 2020. [Online; accessed 26. Sep. 2020]. URL:
https://azure.microsoft.com/en-us/pricing/details/functions.

[40] MIMIC-III Clinical Database v1.4, Aug 2020. [Online; accessed 22. Aug. 2020]. URL:
https://physionet.org/content/mimiciii/1.4.

[41] Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-Wei H. Lehman, Mengling Feng, Mo-
hammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G.
Mark. MIMIC-III, a freely accessible critical care database. Sci. Data, 3:160035., May
2016. arXiv:27219127, doi:10.1038/sdata.2016.35.

[42] Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, Leo A. Celi, Roger G. Mark, and
Omar Badawi. The eICU Collaborative Research Database, a freely available multi-center
database for critical care research. Sci. Data, 5(180178):1–13, Sep 2018. doi:10.1038/
sdata.2018.178.

[43] Somnath Bose, Alistair E. W. Johnson, Ari Moskowitz, Leo Anthony Celi, and Jesse D.
Raffa. Impact of Intensive Care Unit Discharge Delays on Patient Outcomes: A Ret-
rospective Cohort Study. J. Intensive Care Med., 34(11-12):924–929, Oct 2018. doi:
10.1177/0885066618800276.

[44] MIMIC-III Clinical Database Demo v1.4, Apr 2019. [Online; accessed 23. Aug. 2020].
URL: https://physionet.org/content/mimiciii-demo/1.4.

[45] Jan Hudzicki. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. American So-
ciety of Microbiology, Dec 2009. URL: https://www.asmscience.org/content/
education/protocol/protocol.3189.

[46] Contributors to Wikimedia projects. Thermo Fisher Scientific - Wikipedia, Aug 2020. [On-
line; accessed 1. Sep. 2020]. URL: https://en.wikipedia.org/w/index.php?
title=Thermo_Fisher_Scientific&oldid=975761270.

[47] Susceptibility Testing Discs, Sep 2020. [Online; accessed 1. Sep. 2020].
URL: https://www.fishersci.com/us/en/browse/90222069/
susceptibility-testing-discs.

[48] Health System Analytics: The Missing Key to Unlock Value-based Care, Sep 2020. [Online;
accessed 27. Sep. 2020]. URL: https://www2.deloitte.com/us/en/pages/
life-sciences-and-health-care/articles/health-system-analytics.
html.

[49] davidiseminger. Using DirectQuery in Power BI - Power BI, Sep 2020. [Online; ac-
cessed 16. Sep. 2020]. URL: https://docs.microsoft.com/en-us/power-bi/
connect-data/desktop-directquery-about.

[50] peter myers. DirectQuery model guidance in Power BI Desktop - Power BI, Sep 2020.
[Online; accessed 16. Sep. 2020]. URL: https://docs.microsoft.com/en-us/
power-bi/guidance/directquery-model-guidance.

[51] Effective Monitoring and Alerting. O’Reilly Media, Inc., 2016. URL:
https://www.oreilly.com/library/view/effective-monitoring-and/
9781449333515/ch01.html.

https://azure.microsoft.com/en-us/pricing/details/functions
https://physionet.org/content/mimiciii/1.4
http://arxiv.org/abs/27219127
http://dx.doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1038/sdata.2018.178
http://dx.doi.org/10.1038/sdata.2018.178
http://dx.doi.org/10.1177/0885066618800276
http://dx.doi.org/10.1177/0885066618800276
https://physionet.org/content/mimiciii-demo/1.4
https://www.asmscience.org/content/education/protocol/protocol.3189
https://www.asmscience.org/content/education/protocol/protocol.3189
https://en.wikipedia.org/w/index.php?title=Thermo_Fisher_Scientific&oldid=975761270
https://en.wikipedia.org/w/index.php?title=Thermo_Fisher_Scientific&oldid=975761270
https://www.fishersci.com/us/en/browse/90222069/susceptibility-testing-discs
https://www.fishersci.com/us/en/browse/90222069/susceptibility-testing-discs
https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/health-system-analytics.html
https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/health-system-analytics.html
https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/health-system-analytics.html
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-directquery-about
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-directquery-about
https://docs.microsoft.com/en-us/power-bi/guidance/directquery-model-guidance
https://docs.microsoft.com/en-us/power-bi/guidance/directquery-model-guidance
https://www.oreilly.com/library/view/effective-monitoring-and/9781449333515/ch01.html
https://www.oreilly.com/library/view/effective-monitoring-and/9781449333515/ch01.html

REFERENCES 93

[52] Johnny Long, Bill Gardner, and Justin Brown. Chapter 4 - Document Grinding and Database
Digging. In Google Hacking for Penetration Testers (Third Edition), pages 61–78. Syngress,
Jan 2016. doi:10.1016/B978-0-12-802964-0.00004-0.

[53] SendGrid Documentation, Sep 2020. [Online; accessed 23. Sep. 2020]. URL: https:
//sendgrid.com/docs.

[54] Web API Design The Missing Link Best Practices for Crafting Interfaces
that Developers Love | Course Hero, Sep 2018. [Online; accessed 23. Sep.
2020]. URL: https://pages.apigee.com/rs/351-WXY-166/images/
Web-design-the-missing-link-ebook-2016-11.pdf.

[55] HP Performance Engineering Best Practices Series - PDF Free Download, Jun
2015. [Online; accessed 22. Sep. 2020]. URL: https://docplayer.net/
8196271-Hp-performance-engineering-best-practices-series.html.

[56] Jeffery Hicks, Aleksandar Nikolic, Richard Siddaway, and Oisin Grehan. PowerShell Deep
Dives. Manning Publications, Jul 2013. URL: https://livebook.manning.com/
book/powershell-deep-dives/about-this-book/34.

[57] Pricing - Automation |Microsoft Azure, Sep 2020. [Online; accessed 24. Sep. 2020]. URL:
https://azure.microsoft.com/en-us/pricing/details/automation.

http://dx.doi.org/10.1016/B978-0-12-802964-0.00004-0
https://sendgrid.com/docs
https://sendgrid.com/docs
https://pages.apigee.com/rs/351-WXY-166/images/Web-design-the-missing-link-ebook-2016-11.pdf
https://pages.apigee.com/rs/351-WXY-166/images/Web-design-the-missing-link-ebook-2016-11.pdf
https://docplayer.net/8196271-Hp-performance-engineering-best-practices-series.html
https://docplayer.net/8196271-Hp-performance-engineering-best-practices-series.html
https://livebook.manning.com/book/powershell-deep-dives/about-this-book/34
https://livebook.manning.com/book/powershell-deep-dives/about-this-book/34
https://azure.microsoft.com/en-us/pricing/details/automation

94 REFERENCES

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Document Structure

	2 Literature Review
	2.1 Health Information Systems
	2.1.1 SONHO
	2.1.2 LIGHT
	2.1.3 SClínico
	2.1.4 Health Systems Monitoring

	2.2 Business Intelligence
	2.3 Data Warehouse
	2.3.1 Kimball versus Inmon approaches
	2.3.2 Dimensional Modeling
	2.3.3 Data Warehouse Requirements
	2.3.4 Clinical Data Warehouse

	2.4 Extract, Transform and Load
	2.4.1 Slowly Changing Dimension

	2.5 Cloud Computing
	2.5.1 Types of Clouds
	2.5.2 Types of Services
	2.5.3 On-premises versus Cloud
	2.5.4 Cloud Computing Technologies

	2.6 Reporting Technologies
	2.6.1 Tableau
	2.6.2 QlikView
	2.6.3 Microsoft Power BI
	2.6.4 Reporting Technologies Comparison

	2.7 Microsoft Azure Resources
	2.7.1 Azure SQL database
	2.7.2 Azure Storage Account
	2.7.3 Azure Data Factory
	2.7.4 Logic Application
	2.7.5 Azure Functions

	2.8 Summary

	3 Clinical Database
	3.1 MIMIC-III v1.4
	3.1.1 Methods

	3.2 Data Description
	3.3 Data Access
	3.4 Limitations
	3.5 Clinical Database
	3.6 Summary

	4 Business Intelligence Architecture
	4.1 Introduction
	4.2 Business Intelligence Tools
	4.3 Extract, Transform and Load
	4.3.1 Extraction
	4.3.2 Transformation
	4.3.3 Loading

	4.4 Report Visualization
	4.4.1 Power BI Desktop Report Features

	4.5 Summary

	5 Clinical Report
	5.1 Introduction
	5.2 Business Indicators
	5.3 Clinical Dashboard
	5.4 Summary

	6 Monitoring Framework
	6.1 Introduction
	6.2 Monitoring Framework Overview
	6.2.1 ETL Monitoring
	6.2.2 Performance Monitoring
	6.2.3 Logic Application
	6.2.4 Monitoring Dashboard

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	A Supplementary Material
	References

