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Resumo

Uma das principais decisões que uma uma empresa de car rental deve tomar diz respeito à
definição do tamanho e do mix da frota, ou seja, a capacidade de atendimento da procura. Essa
procura é altamente imprevisível e sensível ao preço, portanto, a definição dos preços cobrados in-
fluencia as decisões de capacidade. Além disso, as decisões de capacidade também estão ligadas a
outras estratégias da empresa para atender à procura, como oferta de upgrades, downgrades, real-
ização de transferências em vazio entre estações e recurso ao leasing adicional de veículos. Além
disso, a decisão de aceitar ou rejeitar um pedido de reserva é complexa. Os pedidos de reserva
podem ser aceites por ordem de chegada, desde que haja capacidade para o realizar (veículos
disponíveis) ou, por outro lado, um pedido pode ser rejeitado, mesmo havendo capacidade para o
realizar, guardando assim essa capacidade para um pedido futuro mais rentável financeiramente.
Tipicamente, este tipo de problemas podem ser descritos em modelos matemáticos que tentam
otimizar, usualmente, os lucros obtidos. Contudo, os resutados financeiros não devem ser o único
foco de preocupação. As alterações climáticas são um grande problema que a humanidade terá
que enfrentar e medidas devem ser tomadas o quanto antes para evitar medidas mais drásticas no
futuro.

Posto iso, este trabalho visa a incorporação de preocupações ambientais num modelo matemático
referente ao problema de integração das decisões de capacidade e de preços no negócio do car
rental, resultando então num modelo bi-objetivo. O método Life Cycle Assessment é aplicado
não só aos veículos mas também ao combustível, para definição dos parâmetros ambientais e do
objetivo correspondente. São considerados 4 tipos de veículos: veículos de combustão interna,
híbridos, híbridos plug-in e veículos elétricos.

Vários métodos de solução de problemas multi-objetivo são abordados e o método epsilon
constraint é desenvolvido e aplicado a este problema e modelo matemático bi-objetivo. Os re-
sultados obtidos permitem concluir que a fonte de energia elétrica é preponderante nos resultados
ambientais enquanto a utilização de incentivos à utilização de veículos elétricos não se traduz
num decréscimo nas emissões de CO2. Os resultados ambientais e financeiros tendem a seguir
alterações na procura e uma pequena variação de preços influencia quase linearmente os resulta-
dos financeiros. O orçamento disponível prova ser essencial na capacidade do modelo em aceitar
pedidos de reserva enquanto os resultados ambientais dependem essencialmente do tamanho da
frota. Os resultados mostram uma predisposição a comprar veículos em vez de recorrer ao seu
leasing, enquanto que as transferências em vazio mostram não ser muito comuns. Por fim, anal-
isando todas as curvas de Pareto, conclui-se que, em média, com um decréscimo de 16.10% nos
resultados financeiros, é possível obter um decréscimo de 65.33% nos resultados ambientais.
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Abstract

One of the main decisions that a car rental company has to make regards the definition of the fleet
size and mix, i.e., the capacity to meet demand. This demand is highly unpredictable and price-
sensitive, thus, the definition of prices charged influences capacity decisions. In addition to this,
capacity decisions are also linked to other company strategies to meet demand such as offering
upgrades, downgrades, performing empty transfers between stations, and resorting to additional
vehicle leasing. Moreover, the decision to accept or reject a rental request is complex. Rental
requests can be accepted on a first-come, first-served basis, as long as there is the capacity to
carry it out (vehicles available) or, on the other hand, a request can be rejected, even if there is
the capacity to carry it out, thus keeping that capacity for a more profitable further rental request.
Typically, these types of problems can be described in mathematical models that try to optimize,
usually, the profits obtained. However, financial results should not be the only focus of concern.
Climate change is a major problem that humanity will have to face and measures must be taken as
soon as possible to avoid more drastic measures in the future.

That said, this work aims to incorporate environmental concerns into a mathematical model
related to the capacity-pricing problem in the car rental business, resulting in a bi-objective model.
The Life Cycle Assessment method is applied not only to vehicles but also to fuel, to define
environmental parameters and the corresponding objective. Four types of vehicles are considered:
internal combustion engine vehicles, hybrids, hybrids plug-in, and electric vehicles.

Several methods of solving multi-objective problems are addressed and the epsilon constraint
method is developed and applied to this problem and to the bi-objective mathematical model.
The results obtained allow us to conclude that the source of electric energy is significant in the
environmental results while the use of incentives for using electric vehicles does not translate
into a decrease in CO2 emissions. Environmental and financial results tend to follow changes in
demand and a small variation in prices influences financial results almost linearly. The available
budget proves to be essential in the model’s capacity to accept rental requests while environmental
results depend essentially on the size of the fleet. The results show a predisposition to buy vehicles
instead of resorting to its leasing, while empty transfers are not very common. Finally, analysing
all Pareto fronts, it is concluded that, on average, with a decrease of 16.10% in financial results, it
is possible to obtain a decrease of 65.33% in environmental results.
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Chapter 1

Literature Review

The literature review is divided into two main parts: Application and Methodology. The first

one focuses on two different themes. Firstly, the car rental business is explained. Its growth

is addressed alongside the predictions for the future and some particularities of car rental are

exploited such as pools, rentals, capacity-pricing relation, among others. The second part of the

section focuses on the environmental aspects and has the goal of supporting the development of a

realistic environmental objective function for this sector. Herein a very comprehensive approach

is taken not only to the car but also to the fuel. The Life Cycle Assessment (LCA) is introduced

and exhaustive analyses are carried out on all the pollution existing in individual transportation by

car.

Lastly, the Methodology section focuses on the optimization of multi-criteria problems. Four

optimization methods are exploited: solving the model considering only one criterion at a time,

using a weighted sum approach to convert a multi-objective into single-objective problems, ep-

silon constraint method, and NSGA-II which is a genetic algorithm that can solve multi-objective

problems. These methods were selected because they represent common ways of solving the prob-

lem and are progressive in terms of complexity. Examples of practical applications of these same

methods are also shown.

1.1 Application

This section is divided into two parts as follows. Firstly, the car rental business is explained in Sec-

tion 1.1.1. After that, the environmental impacts of mobility sector are exploited in Section 1.1.2.

1.1.1 Car Rental

The car rental business is a relevant sector within the current mobility systems, which has been

significantly growing in the past years. In 2018, the fleet had an average growth of 1.2% while the

revenue gains have grown 4.83%, in U.S [6, 7]. In addition to this, Market Research Future has

published a research report about the global car rental market that foresees a massive hike for this

market with 14% CAGR (Compound Annual Growth Rate) between 2018 and 2023 [8]. All these
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2 Literature Review

details highlight not only the importance of car rental in the present but, above all, the importance

of it in the future. That said, it is important to understand how the car rental business operates.

In brief, the car rental business consists of renting cars from the fleet for a pre-defined period

that can be short term (1 day) to long term (1 month or more). The rental stations are usually

aggregated in pools - groups of stations that share the same fleet. These stations are used by the

drivers to pick up or leave the car. Also, there is flexibility between the pools, which means the

pool design can be frequently reshuffled in order to e.g. fulfill a seasonal demand on a specific

location [29].

A car rental fleet is composed by rental groups - cars of different types (e.g. sport utility

vehicle (SUV), compact, hybrid, battery electric car (BEV), etc.), and the size of the fleet is mainly

determined by the company’s strategy and the available investment. In addition to this, the size of

the fleet is neither steady nor a one-time decision. In fact, the vehicle acquisition and removal from

a fleet play a very important part on the company’s financial results and is considerably flexible.

Another relevant management decision regards the fleet distribution. This decision takes

particular relevance since the majority of the operational costs in car rental depend on the idle

fleet [29]. Even so, there is a certain flexibility associated with these decisions due to the in-

coming pick-ups and returns (can occur in different stations at different times). To overcome this

possible mismatch between fleet availability and demand in certain locations and keep the fleet

distribution balanced, it is possible the use of empty transfers of the vehicles between stations.

This is typically done by a driver in two ways, depending on the number of cars to move: driving

a specific car or driving a set of cars by truck.

The task of assigning a specific vehicle to a booking request is also included in the fleet man-

agement. This task intertwines with the scheduling of the planned maintenance and is of utmost

importance to the efficient interaction between them. Also, there are other details linked to the

booking request that require an analysis. A rental request is characterized by the following: de-

sired rental group, check-in and check-out station, and check-in and check-out date. This way, it

is likely that there will be situations of unavailability of the intended vehicle group. To avoid a lost

sale, car rental companies usually offer an upgrade or a downgrade although the latter one is only

used as a last resort and not all companies do it. The first one consists of offering an upper vehicle

group for the price of the originally desired one. The downgrade consists on the possibility of

getting a “worse” vehicle group with a discount [29].

Moreover, uncertainty also plays an important role and greatly affects the car rental fleet man-

agement. Firstly, the demand is highly difficult to predict and, as already said above, the idle fleet

represents the majority of the operational costs. Besides, the unplanned vehicle maintenance and

repair or the delayed car return by a client highly affects the availability of the fleet. There is then

uncertainty regarding the available capacity forecast.

Summing up, the car rental fleet management problems include several decisions on the fol-

lowing topics:

• Clustering locations into pools;
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• Fleet size and composition;

• Fleet distribution among rental stations;

• Acceptance of rental requests;

• Assigning rentals to vehicles.

Considering the topics above, the ones with relation to the capacity problem regards the fleet

size and composition, distribution among rental stations, and the acceptance of rental requests.

The acceptance of rental requests is a very critical decision since it is firmly linked to the

revenue stream. Therefore, the decision to accept or reject a booking request should be always

made in order to optimise the revenue. Some companies may fulfill all the requests by arriving

in order as long as they have available capacity. Other companies may reject a rental request,

even though there is available capacity, in order to save the vehicle for a more profitable further

request. This optimisation is not trivial and some companies use mathematical models to support

the decision. A literature review of some of these models was performed and presented below.

Guerriero et al. modelled and solved a car rental revenue stream optimisation problem [16].

An innovative integer programming model was devised with the inclusion of car rental business

particularities such as multi-day rentals and non-cascading upgrades. The developed model allows

the determination of the appropriate number of cars to be rented and incorporates the possibility

of implementing upgrades.

Another similar support system can be found in [13] where Hertz (wholly owned subsidiary

of Ford) developed its yield management system (YMS) to help decide the availability of several

combinations such as car types, rental periods, pickup and return locations, and temporary insur-

ance and refueling options. The YMS supports models that solve the closely-related problems of

pricing, fleet planning, and fleet deployment.

In [30], Oliveira et al. tackle the integration of capacity and pricing problems for car rental

companies proposing a mathematical model that defines it and developing a matheuristic approach

to solving it. This mathematical model is particularly relevant for this work since it will be used as

a starting point for the development of the bi-objective mathematical model presented in Chapter 2.

Oliveira et al. extend the model proposed in [30] to consider uncertainty in demand and competitor

prices, thus presenting the stochastic car rental capacity-pricing problem [31]. They also proposed

a co-evolutionary matheuristic to solve it. This matheuristic is based on a co-evolutionary ge-

netic algorithm where parallel populations of solutions and scenarios co-evolve. This matheuristic

provides a set of good solutions and there is no need for information regarding the probability dis-

tribution. The decision-maker only needs to establish an upper and lower bound for the uncertain

parameters.

One of the main contributions of this work is the integration of environmental concerns with

the mathematical model first proposed in [30]. For that, it is important to understand how these

environmental issues can relate to car rental.
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1.1.2 Environmental Impacts

The growing environmental concerns make it imperative to adapt the way of organizing and man-

aging a business. It is important not only to consider financial aspects but also environmental ones,

and this should be transverse to all sectors of industry. The mobility sector is one in which it is

particularly important to address these concerns due to its contribution to pollution. An example of

this integration is found in [36] where environmental and financial impacts of adopting alternative

vehicle technologies and relocation strategies in station-based one-way carsharing are measured.

Taking a closer look at the environmental impacts associated with the individual transportation

sector, it is important to understand that they are not only present in the vehicle utilization phase,

going far beyond that. Commonly, a life cycle assessment (LCA) methodology is applied in related

matters. It is possible to apply the LCA methodology to the mobility sector and for this case, in

particular, to study the vehicle cycle [20, 21].

The whole vehicle cycle is divided into two parts: the fuel cycle, which considers the produc-

tion, processing, and use of the fuel, and the vehicle cycle. The latter one contains the following

steps, in which energy is consumed and emissions are generated:

• Vehicle material production — The energy used to produce and the respective emissions

from the materials (e.g. aluminum, steel, plastic, etc.);

• Vehicle assembly — The energy consumption and emissions during the assembly;

• Vehicle distribution — The energy required and emissions for transportation from the as-

sembly line to the dealership;

• Vehicle maintenance — Energy required and emissions during the maintenance and repair

over the vehicle lifetime;

• Vehicle disposal — Energy used for dismantling vehicles for disposal or recycling.

This approach is taken into account in [21] where average consumption and emission of green-

house gas (GHG) are estimated as 91.1 GJ and 11.5 ton per vehicle. These values are calculated

regarding a mid-size passenger conventional vehicle. Moreover, this paper provides some signifi-

cant outcomes:

• The vehicle material production process is significantly energy-intensive;

• The vehicle assembly process is significantly emission-intensive;

• The energy consumption and and GHG emissions in vehicle distribution, maintenance
and disposal are small compared to the overall vehicle cycle impacts.

All these conclusions are relevant to the further definition of the environmental objective func-

tion.
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Extending the analysis from the emissions point of view to the entire vehicle cycle is not

enough. There is still an essential missing part of this analysis - the fuel. Since it varies depending

on the type of vehicle - battery electric vehicle (BEV), internal combustion engine (ICE), hybrid

or plug-in hybrid electric vehicles (PHEV) - the fuel cycle will also be different for each type of

vehicle. The fuel cycle is divided into three parts [14, 18]:

• Tank-to-wheel (TTW) — Vehicle onboard energy consumption to move the wheels;

• Well-to-tank (WTT) — All steps to fill the onboard full tank (feedstock extraction, trans-

port, storage, processing, distribution, etc.);

• Well-to-wheel (WTW) — Aggregation of WTT and TTW.

The Well-to-wheel approach is difficult to apply since it is hard to quantify the emissions as-

sociated with feedstock extraction, transport, storage, among others [12]. Instead, it is common to

use a simpler approach: Plant-to-wheel (PTW) [14, 11]. It estimates only the emissions associated

with the use of fuel.

From a TTW standpoint, an electric vehicle does not produce either pollutant or greenhouse

gas. Nevertheless, the electricity generation mix will be decisive on the WTT emissions quan-

tification. On the other hand, a conventional internal combustion engine (ICE) vehicle pollutes

on both stages and is not so dependent on the electricity generation mix as the BEVs. These

considerations will also be important to the analyses carried out further in this work.

Donateo et al. proposed three approaches to improve the efficiency of conventional vehicles,

and thus reduce the vehicle cycle environmental impacts [14].

• Automotive light weighting - reducing the total weight of the vehicle through the use of

lighter materials;

• Adoption of low energy-intensive and low emission-intensive materials;

• Substitution of coal as main process fuel for environment friendly sources.

Ribeiro et al. proved the efficiency of the second approach where a car component which is

part of the brake system has been modified. That modification implied the use of a new multi-

material injection moulding process and the consumption of recycled materials and that scenario

proved to be less pollutant [33].

Simões et al. applied the first solution where three different car multimedia solution chassis

were studied. It was found a decrease in the environmental impact in all-new designs, mostly

because of weight reduction and decrease of the number of parts [35].

Considering only the fuel cycle, PHEVs and BEVs not only have the advantage of being less

polluting than conventional ones, but they also have lower fuel costs. Despite that, the financial

aspect is still a barrier against the adoption of electric vehicles [32]. The same article also shows

that, on the one hand, the willingness to take a chance on new technologies significantly increases
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the likelihood of adopting electric vehicles. On the other hand, the environmental concerns and

impacts of using more energy-efficient cars do not have such a significant relationship. Moreover,

this article also shows that people are not still convinced of the reliability and cost savings of elec-

tric cars. Eventually, from a client standpoint, this fact can make these vehicles more interesting

for renting rather than buying them.

In addition to this, the batteries are a critic point due to their cost, short life cycle, and long

charging times [14]. Also, the utilization of auxiliaries (e.g. lights, radio, air conditioning, etc.)

reduces considerably the vehicle range (21% more consumption).

Despite all the inherent limitations already mentioned, electric vehicles have the potential to

contribute to a path less dependent on fossil fuels, and at least in some countries, these concerns

have been taken into account. For instance, the Swedish local authorities are obligated through

legislation to substitute fossil-fuelled vehicles [37]. Also, in 2017 more than half of Norways

new car sales were electric or hybrid [32]. This is due to the following factors: strong policy

incentives, low electricity prices and high fuel prices, and relatively well developed re-charging

infrastructures.

1.2 Methodology

Multi-objective optimization (MOO) is present in numerous sectors and is used to solve many

different problems. A particularly interesting application for this work, since it relates to the sector

under study, is verified in [34] where an electric vehicle with an adaptive cruise control (ACC)

function is chosen as an object to study the car-following process. A multi-objective optimization

algorithm for ACC system is proposed in order to optimize safety, tracking, comfort, and energy

consumption. It is important to first understand what is multi-objective optimization and how it

can be achieved.

The main goal of MOO is to depict the Pareto-optimal front - Figure 1.1. The Pareto front is

formed by the solutions in which any change in any of the decision variables aimed at improving

a particular performance index will produce a deterioration in some of the other performance

indices.

Solving a MOO model considering only one criterion at a time is the most simple method to

do it. For example, in [27] the three pillars of sustainability are addressed as objective functions:

economic, environmental, and social. The impacts of a sustainable supply chain are calculated and

analysed for each one.

Another possible to solve this MOO is the assignment of weights to each one of the objectives

and combines them linearly into a single algebraic expression - the weighted sum method. It con-

tinues to be used extensively not only to provide multiple solution points by varying the weights

consistently but also to provide a single solution point that considers the multiple objectives [25].

Despite that, this method requires an important input since the definition of the weights is needed.

Moreover, it is also important to remark that if the functions are in different units (e.g. euros and
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Figure 1.1: Pareto front solution set [22]

grams), weights must consider the order of magnitude of each one so that the final impact is bal-

anced. Although there are many different approaches to define the weights, these are just different

ways of organizing the preferences and priorities [24]. Marler et al. focus on the mathematical

characteristics of the function instead of proposing another algorithm for translating preferences

into weights [25]. Moreover, it is also mentioned that the understanding of these fundamentals is

useful in setting the weights directly (without the use of an additional algorithm). Another impor-

tant conclusion to retrieve from this literature is that although the weighted sum method is easy to

use, it provides only a linear approximation of the Pareto front.

The utilization of genetic algorithms (GA) is another possible way to optimize these multi-

objective models. For instance, a GA is applied in [23] to solve a problem of automatic parking

by a back-wheel drive vehicle. This approach dealt with a dynamic multi-objective optimization

problem, which is extremely hard to be dealt with analytically. Despite that, the GA allowed to

obtain a simple and efficient solution.

Another example of genetic algorithm utilization to solve a multi-objective problem is the

NSGA-II, one of the most recognized GAs. It is widely used in a myriad of fields for multi-

objective problems and also has good results [17]. In the same article, based on a multi-parent

crossover operator, the experimental results have shown such an operator has better global search

capabilities and maintain the diversity of the population. It shows that it is always possible to try

to improve the efficiency of these methods since its performance highly depends on the problem

and context.

Another common method to solve MOO is using the Epsilon constraint method. Considering,

for example, a bi-objective mathematical model, this method turns one of the objectives into a

constraint OF <= Epsilon in which Epsilon is progressively changed, in order to build an approx-

imation to the Pareto front - Figure 1.2.
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Figure 1.2: Feasible region and directions of objective functions [26]

Aghaei et al. proposed a new multi-objective model for electricity market clearing consider-

ing both voltage and dynamic security aspects of the power system. To solve this multi-criteria

problem, an augmented epsilon constraint method is proposed. Once more, the scope of this type

of method is proven [9].

1.3 Summary

Summing up, this literature review focuses on three different themes. Firstly, the car rental busi-

ness is explained alongside its growth predictions. Some particularities of car rental are exploited

such as pools, rentals, capacity-pricing relation, among others. Then it focuses on the environ-

mental aspects of this business. Herein a very comprehensive approach is taken not only to the car

but also to the fuel and the Life Cycle Assessment (LCA) is introduced.

Lastly, the Methodology section focuses on the optimization of multi-criteria problems. Sev-

eral optimization methods are exploited: solving the model considering only one criterion at

a time, using a weighted sum approach to convert a multi-objective into single-objective prob-

lems, epsilon constraint method, and NSGA-II which is a genetic algorithm that can solve multi-

objective problems. These methods were selected because they represent common ways of solving

the problem and are progressive in terms of complexity, the effort required, and performance po-

tential.



Chapter 2

Bi-objective Mathematical Model

In this chapter, the bi-objective mathematical model is presented and explained. This model was

developed from the one proposed in [30]. In order to improve the efficiency of that model, some

adjustments were made to linearize it. After that, the environmental components were added

resulting in a new decision variable, a new objective function and some additional constraints.

Several parameters were added to the model, essentially related to emissions from vehicles,

trucks, and fuel. The inclusion of emissions related to trucks is a change from the original model

because the original considered an approximation, not differentiating when an empty transfer was

made by a truck that loads several cars or the cars being driven individually - which has a quite

different environmental impact. Regarding the decision variables, the changes made are related

with two main purposes: the linearization of the model and the inclusion of the possibility of

empty transfers by truck. As far as the objective functions concerns, the changes that lead to the

model linearization are presented and explained. At the same time, the new objective function

representing environmental impacts is introduced. Finally, new constraints are added, mostly

related to fixing maximum and minimum capacities of empty transferred vehicles by truck so that

the number of trucks needed is calculated. The remaining modifications in constraints are the

result of the model linearization.

For a better distinction between the parameters already existing in the original model and

the new or adapted ones, asterisks are used in the next section. More specifically, the changed

parameters are followed by an asterisk (*) while the new parameters are followed by two asterisks

(**). No special notation was applied to the unchanged parameters.

This chapter is thus divided into four sections: indices and parameters, decision variables,

objective functions and constraints.

2.1 Indices and Parameters

t, t ′ = {0, ...,T} Index for the set T of time periods, where t = 0 represents the initial

conditions of the time horizon (season) and “overlaps” with t = T for the

previous season

9
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g,g1,g2 = {1, ...,G} Index for the set G of vehicle groups

s,s1,s2,c = {1, ...,S} Indices for the set S of rental locations

r = {1, ...,R} Index for the set R of rental types (characterized by check-out and check-

in location and time period, and vehicle group requested)

soutr Check-out location of rental type r

sinr Check-in location of rental type r

doutr Check-out time period of rental type r

dinr Check-in time period of rental type r

grr Vehicle group requested by rental type r

α** Estimated distance (km) traveled by a vehicle per time period during the

rental period

β** Estimated distance (km) traveled by a vehicle during the time at rental

service

a = {0, ...,A} Index for the set A of antecedences allowed (number of time periods be-

tween the rental request and the start of the rental), where a= 0 represents

a “walk-in” customer

p = {1, ...,P} Index for the set P of price levels allowed

PRIpg Pecuniary value associated with price level p for vehicle group g (for

example, for group g = 2, price level p = 1 has a pecuniary value of

PRI1,2 = 20e)

DEMrap Demand for rental type r, at price level p, with antecedence a

COSg Buy cost of a vehicle of group g. The value considered is the net cost:

purchase gross cost minus salvage value derived from its sale after one

year

LEAg Leasing cost (per time unit) of a vehicle of group g

OWNg Ownership cost (per time unit) of a vehicle of group g

LPg Leasing period for a vehicle of group g

PIg** Environmental impacts related with the production of a vehicle of group

g

FCg** Fuel consumption (l/km or kWh/km) of a vehicle of group g

FPg** Emissions (gCO2/kWh or gCO2/l) related with the fuel production for a

vehicle of group g

UTg** Emissions (gCO2/km) related with driving a vehicle of group g

DIg** Environmental impacts related with the disposal of a vehicle of group g

PYU Penalty charged for each upgrade

UPGg1g2 Whether a vehicle of group g1 can be upgraded to a vehicle of group g2

(= 1) or not (= 0)

T Ts1s2 Transfer time from location s1 to location s2

ds1s2** Distance (km) between locations s1 and s2

TCgs1s2 Transfer cost of a vehicle of group g from location s1 to location s2
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MAXT ** Maximum number of cars transferred by one truck

MINT ** Minimum number of cars transferred by one truck

UT T ** Emissions (gCO2/km) related with driving one truck transporting vehi-

cles

BUD Total budget for the purchase of vehicles

M Big-M large enough coefficient

Other sets:

Rg− Rental types that do not require group g

R in
st Rental types whose check-in is at location s at time ∈ [t−1, t[

Rout
st Rental types whose check-out is at location s at time ∈ [t−1, t[

Ruse
t Rental types that require a vehicle to be in use at t (i.e., dout < t ∧din≥ t)

Inputs from previous seasons (previous decision periods):

INXO
gs Initial number of owned (O) vehicles of group g located at s, at the beginning of

the season (t = 0)

ONY L/O
gts Number of owned (O) or leased (L) vehicles of group g on on-going empty trans-

portation (previously decided), being transferred to location s, arriving at time

t

ONUL/O
gts Number of owned (O) or leased (L) vehicles of group g on on-going rentals (pre-

viously decided), being returned to location s at time t

2.2 Decision Variables

The decision variables are mainly related with the acquisition of vehicles - both by leasing and

for the owned fleet - and the prices definition for each different rental type. The owned vehicles

are considered to be available at the beginning of the time horizon while the leased vehicles can

become available during shorter periods of time throughout the time horizon. For a better under-

standing of the results obtained, other decision variables are considered to help track the vehicles

over the time horizon considered.

A rental type is characterized by a check-out and check-in location and time period, and the

vehicle group requested. The number of fulfilled rentals requested includes the rental type, the

antecedence of the request, the required group and the price level. In the previous model, the price

level was not included. This change allows the model to be linear, as shown in the next section.

The last decision variable is related with the number of trucks used to perform empty transfers.

Although not present in the original model, it is necessary when considering the environmental

impact since the emissions produced by a truck are different than the ones produced by a car.
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wO
gs Number of vehicles of group g acquired for the owned fleet available at t = 0 in

location s

wL
gts Number of vehicles of group g acquired by leasing to be available at time t in location

s

qrap = 1 if price level p is charged for rental type r with antecedence a; = 0 otherwise

xL/O
gts Number (stock) of leased (L) or owned (O)vehicles of group g located at s at time t

yL/O,T/D
s1s2gt * Number of leased (L) or owned (O) vehicles of group g empty transferred by truck

(T ) or driver (D) at time t from location s1 to location s2

uL/O
ragp* Number of fulfilled rentals requested as rental type r with antecedence a that are

served by a leased (L) or owned (O) vehicle of group g at a price level p

f L/O
gt Auxiliary variable: total leased (L) or owned (O) fleet of group g at time t

zs1s2t** Number of trucks used to transfer cars from s1 to s2 at time t

2.3 Objective Functions

Equation 2.1 represents the financial objective function and consists of the following elements:

revenues from the fulfilled rentals, buying costs, leasing costs, ownership costs, empty transfer

costs and penalties for upgrades.

Firstly, the revenues from the fulfilled rentals are calculated multiplying the total number of

fulfilled rentals served by a leased or owned vehicle with the pecuniary value associated with

the price level and the group requested. In the original model, as the number of fulfilled rentals

did not include the price level, it was multiplied by the binary decision variable (qrap) with the

value of 1 when the specific price level was charged or 0 otherwise. The multiplication of these

two decision variables rendered the model non-linear. This multiplication is no longer necessary

since the number of rentals fulfilled already includes the price level, rendering the model linear,

requiring some changes in the constraints.

Secondly, the costs are calculated with significant differences between the owned and the

leased cars. Owned cars are considered to be available at the beginning of the time horizon and

continue available throughout the entire time horizon. Therefore, acquisition costs are a one-time

cost. With a different process, the costs for the leased vehicles are calculated multiplying the

leasing cost per time unit and the number of vehicles acquired by leasing during a certain period.

Ownership costs only apply to owned vehicles.

Afterwards, empty transfer costs are represented. This element considers several aspects such

as the group transferred, the initial and final stations and whether or not a truck is used.

Finally, the last element of the objective function concerns upgrading costs, included in order

to guarantee that upgrades only exists when there are no available vehicles from the required

group.
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Equation 2.2 aims to represent the environmental impacts (in gCO2) and comprises the fol-

lowing elements: production and disposal impacts, fuel, vehicle and truck utilization impacts and

empty transfer emissions. All these phases were selected according to the LCA method, aiming to

assess all direct and indirect environmental impacts across the full life cycle of a vehicle, as stated

in the literature review.

The first element of the objective function defines the impacts related with both production

and disposal. These two impacts are only affected by the vehicle group, therefore there is no

distinction between owned or leased vehicles.

Secondly, regarding the fuel impact, the multiplication of the fuel consumption by the fuel

production results in the emissions in gCO2/km. Moreover, it is important to understand the

differences between owned and leased vehicles. For that, the estimated distance travelled by a

vehicle during the time at rental service (β ) is considered for owned vehicles. As far as leased cars

are concerned, the ratio between the leasing period and the time horizon duration are considered

to deliver more consistent and coherent results. This way, for example, a vehicle leased for half

the time horizon, will have an estimated travelled distance, and consequent fuel consumption, of

half of the owned car which is available in the fleet throughout all time horizon. All estimated

distances, both for owned and leased vehicles, are summed up and multiplied by the emissions

previously mentioned, obtaining the final emissions in gCO2.

Afterwards, the emissions due to vehicle utilization are calculated. For that, a distance trav-

elled by a vehicle per rental day is estimated (α). This estimation is multiplied by the rental

duration (the difference between the check-in and check-out time periods) and summed up the

distance between the check-in and check-out locations, thus obtaining an approximation of the

total distance travelled by a vehicle in a given rental. This distance is multiplied by the emissions

related with driving a vehicle of a certain group and by the number of fulfilled rentals.

Finally, the last two elements consider the empty transfer impacts. The total number of trucks

utilized to perform empty transfers multiplied by the emission values of utilizing a truck multiplied

by the distance between the initial and final stations describes the empty transfer emissions when

performed by a truck. Empty transfer emissions performed by a driver are calculated in a similar

way. The main difference between the two situations is the value of the utilization emissions, since

in the empty transfer by a driver the vehicle group is considered as the car itself is being driven,

unlike with the truck transfer. The sum of the emissions resulting from both leased and owned
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vehicles transferred by a driver is also considered.
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2.4 Constraints

Equations 2.3-2.7 calculate the stock of available vehicles of a specific group, in a specific location,

at a specific time. Firstly, Equations 2.3 deal with the stock of owned vehicles of each group, in a

specific location, at a given time period except the initial one. To do so, the stock of owned vehicles

from the previous period is summed with the arrivals of vehicles on on-going empty transportation

and rentals from the previous season. The arrival of vehicles that were being employed in rentals

during this season and meanwhile returned to this specific location is also considered and the

number of vehicles meanwhile used in rentals that started in this season are subtracted. Then,

the number of vehicles being empty transferred and meanwhile arrived at the specific location are

summed while the number of vehicles empty transferred to another locations are subtracted.

Equations 2.4 and 2.5 represent a similar situation yet applied to the leased vehicles. The main

difference to the owned ones is that the leasing can occur at any time throughout the time horizon

so the vehicles can be added or removed from the fleet at any time. In Equations 2.4 the acquisition

of leased vehicles is summed while in Equations 2.5 its removal is subtracted. Another important

note resides on the validation of these constraints: the first equations are valid for any period lower

or equal than the leasing period, and the second are valid only for time periods greater than the

leasing time.

Equations 2.6 and 2.7 calculate the number of stock available at the beginning of the season

(t=0). The owned fleet consists on the sum of the owned vehicles from the previous season and

the new ones purchased. The leased fleet is considered to be initially empty.
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Equations 2.8 ensure that, at a given time and location, the sum of the number of fulfilled rentals

and empty transfers starting at that location and time are limited by the total stock of vehicles

available. Equations 2.9 guarantee that the number of fulfilled rentals is limited by the demand for

the rental type, at a chosen price level. This constraint has also undergone considerable changes

when compared with the original model. Previously, since the sum of the fulfilled rentals did not

include the price level, it was necessary to sum a factor, M(1-qrap), to the demand. This way, when

the price level was chosen, this portion would be null, thus limiting the number of fulfilled rentals
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to the demand, and otherwise this constraint would not limit the aggregated (per price level) rentals

fulfilled. In this model, as the chosen price is already included in the number of fulfilled rentals, it

is only necessary to multiply the demand by the binary variable regarding the choice or not of the

price level. Thus, in cases where the price level is chosen, the number of fulfilled rentals is limited

to the demand. Otherwise, the number of fulfilled rentals is null.
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The decision of offering upgrades or not is presented in Equations 2.10. If the upgrade between

groups is allowed, a large enough coefficient is utilized so the upgrades can be performed even

with a significant number of rental requests.
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To ensure that the investment in owned fleet does not exceed the available budget, Equation 2.11

assures that the number of purchased vehicles multiplied by their cost is lower or equal than the

budget available.
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Equations 2.12 assure that only one price is chosen per rental type and antecedence.

P

∑
p=1

qrap = 1 ∀r,a (2.12)

An auxiliary variable representing the total fleet was created to facilitate building the objective

function. In Equations 2.13, the total fleet is described as the sum of the stock of vehicles at all

stations and the ones currently being used either in rentals or empty transfers.

f L/O
gt =

S

∑
s=1

xL/O
gts + ∑

r∈Ruse
t

A

∑
a=1

P

∑
p=1

uL/O
r,g,a,p

+
S

∑
s1=1

S

∑
s2=1

t−1

∑
t ′=max{0,t−T Ts1s2}

yL/O,T
s1,s2,g,t ′+ yL/O,D

s1,s2,g,t ′ ∀g, t (2.13)

Equations 2.14 ensure that the total number of vehicles empty transferred by truck is bigger or

equal than the number of trucks utilized multiplied by the minimum number of cars that a truck

can carry. In a similar way, Equations 2.15 ensure that the trucks capacity is not exceeded. These

equations allow to calculate the number of trucks needed to transfer the vehicles, in accordance
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with their maximum capacity and ensuring that there is a minimum amount of vehicles that render

the use of the truck reasonable. Equations 2.14 and 2.15 represent new constraints in the model.

G

∑
g=1

(
yT,O

s1s2gt + yT,L
s1s2gt

)
≥MINT × zs1s2t ∀s1,s2, t (2.14)

G

∑
g=1

(
yT,O

s1s2gt + yT,L
s1s2gt

)
≤MAXT × zs1s2t ∀s1,s2, t (2.15)

Lastly, Equations 2.16 represent the domain of the decision variables.

qrap ∈ {0,1} ∀r,a, p

wL
gts ∈ Z+

0 ∀g, t,s

wO
gs ∈ Z+

0 ∀g,s

yL/O,T/D
s1s2gt ∈ Z+

0 ∀s1,s2,g, t

xL/O
gts ∈ Z+

0 ∀g, t,s

uL/O
ragp ∈ Z+

0 ∀r,a,g, p

f L/O
gt ∈ Z+

0 ∀g, t (2.16)
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Chapter 3

Environmental Parameters Definition

In this chapter, all the steps taken into account for the definition of the environmental parameters

used in the model presented in Chapter 2 are explained. These parameters include several elements

from both vehicle and fuel cycles and are clustered into two main sections:

• Production and disposal;

• Fuel and utilization.

Although they are not environmental impacts themselves, parameters such as the maximum

(minimum) number of cars transferred by one truck and the estimated distance travelled by a

vehicle per time period and during the time at rental service are necessary for the implementation

of the model. These parameters are presented and explained in this chapter as well.

Regarding the vehicles characterized by these parameters, the following four groups are con-

sidered: internal combustion engine (ICE), hybrid, plug-in hybrid electric vehicles (PHEV), and

battery electric vehicles (BEV). These vehicle groups were chosen because they represent the

main vehicle groups currently in the automotive market. These are also the groups considered in

the analyses later described in Chapter 4.

Lastly in this chapter, a table with the summary of this matter is presented for a better percep-

tion.

3.1 Production and Disposal

As already referred in the literature review, the production phase (materials production and as-

sembly) is significantly pollutant compared to the overall vehicle cycle impacts. On the other

hand, the disposal impact is almost negligible when compared with the production one. Even so,

it is important to include it since impact of the disposal of the electric batteries goes beyond the

energy consumption itself. Almarzooqi et al. tackle the management of used lithium ion batter-

ies [10]. The same paper emphasizes the need of appropriate disposal methods of lithium batteries

in response to the expected large number of lithium batteries to be recycled.
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The production and disposal impacts are then calculated from data retrieved from [21]. Here,

the material production is obtained considering the different car components (Ferrous, Aluminum,

Copper, etc.) alongside the respective weight. Moreover, the assembly energy consumption is

estimated as a linear function of the vehicle mass of 19.75 (MJ/kg). A vehicle with the mass of

1324 kg is considered.

The disposal energy consumption is also estimated as a linear function of the vehicle mass of

370 (kJ/kg). Considering the vehicle mass of 1324 kg and converting the energy from joules (J) to

kilowatt hour (kWh)1, the total energy required is estimated as follows:

• Production — 24826 kWh;

• Disposal — 0.136 kWh.

It is then necessary to know the CO2 emissions due to energy production. For that, the report of

International Energy Association (IEA) published in 20192 was consulted [19]. The main results

of the report, used in this dissertation, are presented in Table 3.1. Considering the World values

(485 gCO2/kWh), the production and disposal emissions are calculated as 12040610 gCO2 and

65.96 gCO2 respectively. These emissions are considered equal for all vehicle groups.

Table 3.1: Emissions from energy production

Region Emissions (gCO2/kWh)

Africa 568
America 353

Asia 610
Europe 303
Oceania 651
World 485

3.2 Fuel and Utilization

In the mathematical model, the fuel component is divided into two: fuel production and fuel

consumption. Firstly, it is important to notice the units of these two parameters. While the fuel

production represents an effective environmental impact (gCO2/kWh or gCO2/l), the fuel combus-

tion only represents the consumption of the same fuel by a certain vehicle of a certain group (l/km

or kWh/km). This way, the intended environmental impact (gCO2/km) is obtained multiplying

both elements as in the environmental objective function.

The difference between a hybrid and a plug-in hybrid electric vehicle (PHEV) is an important

matter needed to be fully understood since it is linked to the fuel utilization of the vehicle. Both

vehicles have an electrical and an internal combustion engine but, unlike hybrids, the PHEVs

11 MJ = 0.277778 kWh
2Although published in 2019, the data retrieved regards 2017.
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can be connected to an outside electrical source for charging its battery. This way, the PHEV

fuel source can be either electrical or through oil products (petrol or diesel). Therefore, as for

the fuel production concerns, this impact is estimated as 750 gCO2/l for both ICE and hybrid

vehicles. Regarding the battery electric vehicles (BEV), the World average emissions from energy

production presented in Table 3.1 are utilized - 485 gCO2/kWh. Regarding the PHEV, as their fuel

source can be either electric or fossil, it is particularly challenging to define their consumption.

To do so, the electric and total autonomy of ten PHEV were analysed [3]. It was thus concluded

that about 5% of the total autonomy of the vehicles is due to the electric motor. Due to the lack

of more straightforward indicators, autonomy was selected as a proxy of utilization. Therefore,

considering 5% of the fuel being from an electric source and the rest being petrol, the production

of fuel is then estimated as 1074 gCO2/l for the PHEV.

As for the fuel consumption and utilization emissions, it is an intrinsic characteristic of each

vehicle. Therefore, the types of vehicles selected and their respective consumption and utilization

emissions are expressed in Table 3.2. The vehicles were chosen giving preference to vehicles

typically used in conventional transportation and of the same brand, to be as comparable between

them as possible. The BEV chosen was a Daimler AG which is the vehicle considered in an

article previously referenced in the literature review. The data relating to Toyota vehicles were

retrieved from the official brochures available on the official website [5, 4]. Regarding the BEV,

its consumption is estimated as 0.194 kWh/km and its utilization does not imply the emission of

any greenhouse gas [14].

Table 3.2: Fuel consumption

Car type Model Fuel consumption Utilization

ICE Toyota Yaris 1.5 VVT-iE 0.060 (l/km) 135 (gCO2/km)
Hybrid Toyota Yaris 1.5 Hybrid e-CVT 0.048 (l/km) 108 (gCO2/km)
PHEV Toyota Prius 1.8 Plug-in e-CVT 0.013 (l/km) 28 (gCO2/km)
BEV Daimler AG Smart ForTwo Electric Drive 0.194 (kWh/km) 0 (gCO2/km)

Lastly, the emissions from trucks are calculated taking into account several steps. Since emis-

sions related with driving a truck were not available in any official brochure of any brand, as in

the definition of vehicle emissions, a new approach was needed. For that, the emissions associated

with the fuel combustion are calculated as 20 kgCO2/100km - value referring to a passenger petrol

car with a consumption of 5.87 kgl/100km [33]. These consumption values are not, however, in

the desired units (the intention is to define the value in units of volume by distance and not mass by

distance). For that, the petrol density was consulted (0.715 - 0.780 kg/l)3, with the average value

being considered [2]. The consumption of the passenger vehicle in the desired units is then ob-

tained (7.83 l/100km). The average fuel consumption of a truck is estimated at 28.6 l/100km [1].

Combining all these data, the truck emissions are thus calculated as 730 gCO2/km.

3Density at 15oC
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3.3 Other Parameters

Considering the mathematical model proposed in Chapter 2, some parameters must be defined

even though they are not directly linked to gas emissions. These parameters are essentially related

to the travelled distances by the vehicles and the number of vehicles transported by truck.

The average distance travelled by a vehicle per time period during the rental (α) is estimated as

50 km. This estimate is based on typical daily commuting but also considers typical trips during

a more seasonal period such as coming and going to the beach, for example. After consulting

directly with a car rental company, the distance travelled by a vehicle during the time at rental

service (β ) is estimated at 60000 km.

The maximum capacity of cars transported by truck is estimated at 8, representing the capacity

of a medium-sized car carrier trailer. To assure efficiency in the empty transfers, the minimum

capacity was defined as half of the maximum capacity considered, that is, 4.

The mathematical model proposed in Chapter 2 comprises several groups of vehicles, each

with an associated level, where higher-level vehicles have higher prices and higher purchase,

leasing, and ownership costs. The lower the level, the cheaper the costs and lower the prices,

respectively. Thus, ICE vehicles are considered to be the lowest level since they are cheaper when

compared to the other vehicle groups. Moreover, BEVs are considered to be the highest level

because they are more expensive. Concerning both hybrids, PHEVs are considered the second

highest class since they are more similar to electric vehicles (they allow charging the batteries

through an electrical plug) and, thus, Hybrid vehicles are defined as being the penultimate class.

Therefore, from the highest to the lowest group levels, vehicle groups are ordered as follows: BEV,

PHEV, Hybrid, and ICE.

3.4 Summary

In this chapter, the steps taken into account for the environmental parameters definition were

explained. These parameters definition were divided into two main sections.

In the first section, the environmental impacts regarding the production and the disposal of ve-

hicles are estimated. Then, in the second section, the fuel and utilization emissions are discussed.

Then, some other parameters regarding the distance travelled by a vehicle at the rental service/per

time period as well as the minimum and maximum number of vehicles empty transferred by one

truck are presented. The main conclusions retrieved from these analyses are presented in Table 3.3.
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Table 3.3: Environmental parameters

Vehicle group Production Disposal Fuel production Fuel consumption Utilization

ICE 12040610 65.96 750 (gCO2/l) 0.060 (l/km) 135
Hybrid 12040610 65.96 750 (gCO2/l) 0.048 (l/km) 108
PHEV 12040610 65.96 1074 (gCO2/l) 0.013 (l/km) 28
BEV 12040610 65.96 485 (gCO2/kWh) 0.194 (kWh/km) 0

Truck - - - - 730
Units (gCO2) (gCO2) (gCO2/kWh or gCO2/l) (l/km or kWh/km) (gCO2/km)
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Chapter 4

Solution Method

This chapter presents the methods used to solve the bi-objective function present in Chapter 2.

Three methods are covered: single objective function, weighted sum, and epsilon constraint. The

methods are explained in this chapter, with the main focus on the epsilon constraint method as it

has shown to be the most promising in the literature review. In Chapter 5, methodological tests are

carried out on the three methods discussed in this chapter.

4.1 Single Objective Function Method

One simple and common approach to solve multi-objective models is to consider only one ob-

jective function at a time and retrieve the solution and value obtained. Nevertheless, it is not

possible to obtain the desired Pareto front applying this method. In fact, different solutions are

usually obtained depending on the objective function selected, which hinders a balanced support

to decision-making. It is therefore necessary to have a more advanced method that supports the

creation of the Pareto front and, thus, allows for more comprehensive analyses.

4.2 Weighted Sum Method

The weighted sum method consists of assigning weights to each one of the objective functions

and combining them linearly into a single algebraic expression. This method not only provides

multiple solution points by varying the weights consistently, but for each configuration obtains a

single solution that considers the multiple objectives. However, the definition of the weights can

be particularly challenging, especially in cases where the difference in magnitude of the units is

considerable (e.g. euros and grams), as is the case with this model. A simple demonstration of this

method is shown below, where OFi represents an objective function and wi represents a weight

associated with that same objective function. Considering N objective functions (the objective

being the maximization of each one), the objective function presented in Equation 4.1 is obtained.
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max
N

∑
i=1

wiOFi = w1OF1 + w2OF2 + w3OF3 + w4OF4 + (...) + wNOFN (4.1)

4.3 Epsilon Constraint Method

As discussed in the literature review, the epsilon constraint method is a common method used to

solve multi-objective problems. This method consists on considering only one of the objective

functions as an objective function of the model and using the remaining objective function as a

constraint. The objective function (OF) turned into a constraint adopts the form OF <= Epsilon,

if the objective is to minimize its value, where the Epsilon value is progressively changed, thus

allowing to obtain the Pareto front. In cases where the objective function that is transformed into

a constraint must be maximized, it adopts the form OF >= Epsilon. Considering the epsilon con-

straint with a financial objective function, the implemented algorithm is divided into the following

steps:

• Execution of the model considering only the financial component as an objective function

and extraction of the corresponding financial and environmental values from that solution;

• Creation of the epsilon vector: predefined sized vector with equidistant values up to the

environmental value retrieved from the previous step;

• Running the model through an iterative cycle running through all the values of the epsilon

vector. For each iteration, the financial function is considered as an objective function and

the environmental objective function turns into a constraint with its value having to be less

than or equal to the value in the vector.

The algorithm implemented with the environmental objective function is similar, with only a

few differences: in the epsilon vector creation, it is the financial value obtained in the first step that

is used. Also, in the last step, the environmental function is the one used as an objective function,

with the financial function being defined as a constraint of value greater than or equal to the value

in the vector.

In Chapter 5, methodological tests are carried out on these two variants of the epsilon con-

straint method.



Chapter 5

Tests and Analyses

This chapter presents the analyses conducted to derive realistic and applicable insights from the

bi-objective model proposed in Chapter 2 and solved using the method presented in Chapter 4.

However, before performing these analyses, it is important to understand what input data is used

in the model - the instances - as well as how this data is handled - the performance of the method.

Thus, firstly, the characteristics of the instances used are presented and analysed. This analysis

has the objective of understanding the instances in aspects such as the average number of rental

days per rental request, the mix of vehicle groups requested, the distribution of the check-out and

check-in locations per rental request, among others.

After that, methodological tests are performed. These analyses and tests aim to characterize

and validate the method, as well as select the most efficient and fit parametrization to use in

subsequent analyses.

Finally, managerial analyses that retrieved relevant insights from the model are presented and

the corresponding results are analysed and discussed. These tests are essentially of an environ-

mental and management nature, and are as follows:

• Analysis of the impact of incentives for using electric vehicles;

• Analysis of the impact of using renewable sources of energy;

• Analysis of the impact of electric vehicles disposal;

• Analysis of the impact of fuel production;

• Analysis of the impact of homogeneous fleets;

• Analysis of the impact of total demand variation;

• Analysis of the impact of demand variation by group;

• Analysis of the impact of market competition;

• Analysis of the impact of available budget.

27
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A summary of the chapter is then presented, where the main conclusions drawn from the

analyses carried out are discussed.

5.1 Analysis of Instance Characteristics

The dataset of instances used is the literature benchmark for car rental pricing and capacity prob-

lems, available in [28]. These instances are presented in Table 5.1 alongside the main characteris-

tics of each one. Also, instances are listed by the increasing size represented as the multiplication

of the number of rental requests by the number of vehicle groups.

Each rental request has a certain demand associated with the price level and the antecedence

with which the rental request was made. The scale factor affects that demand profile and the

available budget by multiplying these parameters by 100 in instances with an odd number. Thus,

instances are grouped in pairs in Table 5.1. Instances with an even number represent “scale factors”

of 1 while the odd-numbered instances represent “scale factors” of 100. All other parameters,

except for the demand profile and the budget, are the same for each pair of instances.

Table 5.1: Instances main characteristics

Instance number Scale factor Number of rental requests Number of vehicle groups

30/31 1/100 428 1
38/39 1/100 486 1
24/25 1/100 517 1
26/27 1/100 562 2
34/35 1/100 572 2
42/43 1/100 831 3
32/33 1/100 865 3
40/41 1/100 922 3
16/17 1/100 924 3
04/05 1/100 564 5
08/09 1/100 948 3
10/11 1/100 724 4
28/29 1/100 742 4
12/13 1/100 793 4
36/37 1/100 1046 4
20/21 1/100 1141 4
22/23 1/100 933 5
18/19 1/100 1182 4
06/07 1/100 1234 5

A total of thirty-eight instances were tested and all original parameters were maintained. In

addition, new environmental parameters were included with their values being already defined and

explained in Chapter 3.
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One of the main parameters included in the instances is the list of rental requests. A rental

request is characterized by a check-out and check-in location and time, and a vehicle group re-

quired. Rental requests are analysed in this section in order to better draw conclusions regarding

the distribution of the rental check-in and check-out locations, check-in and check-out time period

and groups requested.

Regarding the check-out time and location, all instances were analysed individually. For each

instance, the data is analysed in percentage of the total number of requests, making it possible

to compare data for all instances, even though they have a different number of requests (it varies

between the minimum of 428 and the maximum of 1234 rental requests). In Figure 5.1, it is

possible to observe that the check-out time periods are significantly concentrated at the beginning

of the considered time horizon. In fact, more than 50% of the total rental requests start within the

first three periods. This distribution represents the real behavior of the rental requests coming in a

company: there are usually more requests for the next week than for those that follow. Therefore, it

is expected that, for example, the size of the initial fleet will be particularly decisive in the number

of accepted rentals. Regarding the check-out locations, their distribution appears to be random,

not favoring any specific station.

Figure 5.1: Distribution of check-out time period

Similarly, check-in times seem to follow an approximately normal distribution, although slightly

shifted to the left. It is also visible that a large part of the vehicle check-ins are made in more cen-

tral periods, with more than 50% of these returns concentrated in the interval [2; 5], as shown in

Figure 5.2.
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Figure 5.2: Distribution of check-in time period

Figure 5.3 represents the duration of the rentals in number of time periods between vehicle

check-out and check-in. It is possible to verify that the requests are mostly short-term. In fact,

approximately 15% of the rental have the same check-in and check-out periods. Also, more than

50% of the rentals lasts for one or two periods.

Figure 5.3: Distribution of rental requests duration

Lastly, regarding the groups of vehicles requested, their distribution also appears to be random

and thus no group appears to be more requested than the rest.

5.2 Methodological Tests

To solve the bi-objective mathematical function, several methods were tested. Firstly, the model

was tested using a single objective function at a time. This method did not prove to be efficient

because, as expected in the case of the environmental objective function, the optimal value would



5.2 Methodological Tests 31

always be zero, not performing any rentals, since it aims to minimize the environmental impacts

and there is no constraint to ensure that a minimum value of demand must be met. Table 5.2 shows

the instances tested and the respective results when considering a financial objective function and

an environmental objective function.

Table 5.2: Results of solving a single objective function at a time

Instance Financial OF Environmental OF

10 68442.1 0
11 5126230 0
12 73712.3 0
13 5526310 0
28 81394.6 0
29 6294720 0

Then, the weighted sum method was tested. However, the results showed that this is not the

most appropriate method due to the large difference between the magnitude of the units consid-

ered in each objective function (Euros and gCO2). As the magnitude of the environmental solution

is much greater than the magnitude of the financial solution, even with very low environmental

weights, the results obtained end up being null - Table 5.3. This method was tested using an algo-

rithm that iteratively ran the model with the different weights in the range [0; 1] with a predefined

increment between iterations. Table 5.3 shows two examples: one with a 0.05 increment and the

other with a 0.01 increment.

Table 5.3: Results of the weighted sum method

Instance Financial Environmental Financial Environmental
weight weight solution (e) solution (gCO2)

31 1.00 0.00 5851950 1.56E+14
31 0.95 0.05 0 0
31 (...) (...) (...) (...)
31 0.00 1.00 0 0
27 1.00 0.00 4697580 2.85E+14
27 0.99 0.01 340390 3.09E+11
27 0.98 0.02 71830 4.95E+10
27 0.97 0.03 0 0
27 (...) (...) (...) (...)
27 0.96 0.04 0 0

To overcome this obstacle, the implementation of a normalizing value to be applied in the

environmental component was studied. Even so, this value is extremely difficult to define and

after some tests, it was found that there is no single normalizing value suitable for all instances.

Finally, the epsilon constraint method was tested. Due to time constraints, each iteration was

defined as having a maximum of 600 seconds, that is, 10 minutes. The method was applied to the
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38 instances referenced in the previous section and a summary of these results can be found in

Table 5.4.

The average time per iteration, the percentage of optimal values obtained, and the average

mixed-integer programming (MIP) gap are included in Table 5.4. The percentage of optimal

values consists of the number of iterations in which the optimal value was reached divided by

the total number of iterations performed. The MIP gap (the difference between the best integer

solution obtained and the upper bound of the optimal value to be divided by the best integer

solution obtained) regards to the total number of iterations performed. The tables containing the

complete results of these tests are presented in Appendix A.

Table 5.4: Results of the epsilon constraint method

Objective Function (OF) Avg. iteration time (sec) Optimal Values (%) Avg. MIP gap (%)

Financial OF 321.41 68.32 0.000216
Environmental OF 553.66 15.27 0.035095

Both versions of the epsilon method (using the financial objective function or the environmen-

tal objective function) were applied to 38 instances with a number of iterations ranging from 10

to 45. These data results are compiled in Table A.1 in Appendix A. For all tests, the epsilon con-

straint method using the financial function as an objective function lasted a total of 348049 seconds

(approx. 96 hours), while using the environmental function as an objective function lasted a total

of 586592 seconds (approx. 163 hours).

Using the financial function as the objective function and the environmental function as a

constraint has thus proved to be better in terms of time and results obtained. Even in cases

where the optimal value has not been reached, the MIP gap is relatively low (average MIP gap

of 0.000507%). For this reason, the epsilon constraint method considering the financial function

as an objective function and the environmental function as a constraint will be used considered in

the next analyses.

Results of instance number 7 (the larger instance) are not contained in Table 5.4, which there-

fore contains only the values for 37 instances. These results are not included because in some

of iterations (3) the MIP gap is significantly higher when compared with the rest of the results -

Table A.3 in Appendix A. Thus, to not distort the average results obtained in all other instances,

instance 7 results are considered outliers and therefore not contained in Table 5.4.

As explained before, the analysed instances are built so that there are pairs of instances where

all characteristics are similar, except for the scale factor (the difference is that one instance has a

certain number of rentals and budget and the other has the same value multiplied by 100). Thus,

analysing the average iteration time (Figure 5.4) and the MIP gap (Figure 5.5) for both situations,

it is possible to conclude that the average iteration time and the MIP gap are lower in average when

the scale factor is larger. Although time differences are significant, the gap values are remarkably

small for both scale factors - the y-axis of Figure 5.5 describes a super reduced scale. The pairs of

instances represented on the horizontal axis of Figures 5.4 and 5.5 were ordered by the increasing
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size, calculated as the multiplication of the number of rental requests by the number of vehicle

groups.

The justification for this may rest in the way the solver performs the branch-and-bound tree

search. The scale factor increase results on an admissible solution set much wider. That fact can

lead the search for the optimal value to explore more nodes and, thus, taking more time, or to reach

the node with the optimal value more quickly, and thus being more efficient. In this specific case,

it appears that it allows the search for the optimal solution to happen in a much more efficient way.

Figure 5.4: Average iteration time for different scale factors

Figure 5.5: Average gap for different scale factors

Figures 5.6 and 5.7 show the average iteration time depending on the number of rentals and

groups, respectively. The radius of the bubbles is proportional to (R×G), where R is the number

of rentals and G is the number of vehicle groups, which has been used as a measure of instance

size. Analysing both figures, it is possible to conclude that the time to solve increases as expected

with size; however, the number of rentals appears to have more influence on the average iteration

time.
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Figure 5.6: Average iteration time depending on the number of rentals

Figure 5.7: Average iteration time depending on the number of vehicle groups

The number of iterations defines the size of the epsilon vector. Figure 5.8 shows that the

average iteration time has no relation to the chosen epsilon size. Even so, the total time per

instance is bigger if the epsilon size increases (Figure 5.9) as would be expected, since bigger

epsilon size values imply more iterations performed per instance. Due to time constraint reasons,

the use of epsilon constraint with an epsilon size of 30 was defined.
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Figure 5.8: Average iteration time depending on the epsilon size

Figure 5.9: Total time per instance depending on the epsilon size

Summing up, the most fit parametrization of the method to be used in the following tests and

analyses has the following characteristics:

• The financial objective is used as the objective function whereas the environmental function

is a constraint with a bound changing iteratively;

• 30 iterations will be used per analysis. For each iteration, the epsilon value constraints the

environmental function. The epsilon values change iteratively according to the expression
EV
ES×N where EV represents the environmental value obtained in the preliminary iteration,

ES stands for the Epsilon size, and N represents the iteration number;

• Maximum time of 10 minutes per iteration (with a resulting maximum of 300 minutes per

instance run).

The algorithms were developed in the programming language C++ in Visual Studio 2017 and

were run on a HP Z820 Workstation computer with 128GB of RAM memory, and with 2 CPUs

(Xeon E5-2687W 0 @ 3.10 GHz). The MIP Solver used was CPLEX 12.8.0.
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5.3 Analyses and Insights

In this section, the analysis tests are presented and the respective results are analysed and dis-

cussed. These tests are essentially of an environmental and managerial nature.

Regarding tests of an environmental nature, the influence of incentives for the use of electric

vehicles is first analysed. These incentives aim to understand how this influences the types of

vehicles used in rentals and the consequent variations in environmental impacts. After that, the

use of cleaner energy sources is studied. This test is carried out since the electric energy influences

the impacts in the production and disposal phases, but it is also used as fuel by BEVs and PHEVs.

Due to the current high production of electric vehicles, it is important to understand the impacts

that arise from recycling batteries. To do so, tests are carried out considering different scenarios

with different disposal impacts. A sensitivity analysis on fuel production is also performed since

this parameter combines several stages (such as oil extraction, oil transportation, refining, and

transportation to gasoline pumps), which is why it is arduous to estimate.

From a management point of view, the first test conducted regards homogeneous fleets and

aims to understand the model results in the impossibility of making upgrades. Then, variations in

demand are tested, since it leads to different choices of price levels and thus significantly influences

financial results. To reproduce an illustrative situation of market competitors, the influence of price

changing is also analysed. Finally, the significance of the initial available budget is tested since,

in all businesses, a greater or lesser investment capacity tends to be quite decisive in the overall

financial results.

In Table 5.5, the instances utilized for each test are presented.

Table 5.5: Instances utilized

Test number Test name Instance number Number of
requests

Vehicle
groups

5.3.1 Incentives for using electric
vehicles 12 793 4

5.3.2 Use of renewable sources of
energy 36 1046 4

4.3.3 Electric vehicles disposal 10 724 4
5.3.4 Fuel production 11 724 4
5.3.5 Homogeneous fleets 30 428 1
5.3.6 Total demand variation 29 742 4
5.3.7 Demand variation by group 13 793 4
5.3.8 Market competition 28 742 4
5.3.9 Available budget 28 742 4

All instances were chosen because they present the number of groups of vehicles suitable for

the tests to be carried out. In fact, in all tests, 4 groups of vehicles are used (ICE, Hybrid, PHEV,

and BEV) except in the test of homogeneous fleets where only one group is considered for each

scenario. The number of rental requests was also considered, favoring the instances with the least

number of rentals, to reduce the computation time required, and considering all instances have a

realistic size. Finally, the choice of repeated instances was avoided whenever possible.
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The results were obtained by running once the method presented in Chapter 4 alongside the

parametrization defined in Section 5.2. A summary of these analyses is then presented at the end

of the chapter with the main conclusions and managerial insights obtained.

5.3.1 Incentives for Using Electric Vehicles

One of the obstacles to the utilization of electric vehicles is related to their high cost, not only

related to the purchase of the car but also to changing batteries, if needed. Thus, the use of

incentives can be important to overcome the price obstacle. In this test, the impact of reducing the

purchase price of electric vehicles is studied. The same percentage of discount is applied to the

costs of leasing, ownership, and prices. Three scenarios are tested:

1. Buying, leasing and ownership costs and prices according to original instance’s values;

2. Buying, leasing and ownership costs and prices: 25% discount for BEVs;

3. Buying, leasing and ownership costs and prices: 50% discount for BEVs.

Analysing the Pareto front in Figure 5.10, no major differences are visible in the three sce-

narios. In fact, scenario 1 proves to be slightly better than scenario 2 and 3 because, for each

environmental impact value, it presents a higher profit.

Figure 5.10: Incentives for using electric vehicles: Pareto front

Figure 5.11 contains all the environmental impacts, namely production, disposal, emissions

resulting from fuel consumption (both for own and leased vehicles), utilization, and emissions

related to empty transfers (distinguishing between empty transfers performed by truck or by a

single driver). The horizontal axis of Figure 5.11 shows values in the interval [1; 90] representing

the 30 iterations performed in each of the scenarios, considering the scenarios in ascending order.
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The most significant impacts are related to vehicle production and fuel. Disposal impacts, as

verified in the literature review, are practically negligible when compared to the remaining impacts.

On the other hand, emissions related to the utilization of vehicles are not meaningful due to the

reduced time horizon considered. These impacts are similar in scenarios 1 and 2, while in scenario

3, it is possible to observe an increase in emissions regarding the fuel for owned vehicles.

Figure 5.11: Incentives for using electric vehicles: Environmental impacts decomposition

In scenario 3, incentives are greater and this leads to the acquisition of more electric vehicles.

These, as will also be shown further in this chapter, are highly polluting due to the value related to

electricity generation emissions estimated in Chapter 3 - 485 gCO2 / kWh. This value is consider-

ably high as it represents the World average. For example, by multiplying fuel production by fuel

consumption, it is concluded that ICE vehicles have emissions of 45 gCO2/km while BEVs have

emissions of approximately 94 gCO2/km. These values justify the greater environmental impacts

in scenario 3.

Through a deeper look at the financial component of the solution, it is worth noting that this

higher profit is essentially due to a reduction in costs. In every iteration, the revenues are greater

in scenario 1 - Figure 5.12. The x-axis in Figure 5.12 represents the number of iterations. The

direction of the environmental constraint relaxation is consistent with the increase in the number

of iterations, that is, the greater the number of the iteration is, the greater the relaxation of the

environmental constraint.
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Figure 5.12: Incentives for using electric vehicles: Revenues

In global, costs are lower in scenario 2 and even lower in scenario 3 - Figure 5.13. The x-axis

in Figure 5.13 represents the number of iterations performed in all scenarios, each one containing

30 iterations. Scenarios are presented in ascending order. There is, however, a component that

deserves a detailed analysis: the upgrade costs. The budget is maintained but the price of electric

vehicles drops considerably. Thus, the model privileges the purchase of these vehicles and their

subsequent offer as an upgrade in a rental request. As it allows the purchase of more vehicles, it

will also allow the acceptance of a greater percentage of booking requests, as shown in Figure 5.14.

The acceptance rate is the quotient between the number of accepted rental requests and the total

number of requests.

Figure 5.13: Incentives for using electric vehicles: Costs decomposition
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Figure 5.14: Incentives for using electric vehicles: Acceptance rate

In Table 5.6, it is possible to verify that this solution privileges the purchase of electric vehicles

instead of vehicles of other groups. All values regard the last iteration for each scenario, that

is, where the environmental constraint is most relaxed (i.e. it corresponds to a single objective

solution when considering the financial objective function).

Table 5.6: Purchased vehicles by group

Vehicle group Scenario 1 Scenario 2 Scenario 3

BEV 98 239 640
PHEV 58 0 0
Hybrid 163 115 0

ICE 87 94 0

The use of incentives for using electric vehicles does not lead to a reduction in environmental

impacts. The tests carried out show that the impacts end up being even greater in scenario 3 where

the incentives are the highest. The reduction in electric vehicle buying costs allows the purchase

of more BEVs and the following offer of them as an upgrade, thus managing to meet a higher

percentage of rental requests.

5.3.2 Use of Renewable Sources of Energy

The electric energy source is fundamental in determining emissions since it is linked not only to

the production and disposal of vehicles but also to the fuel consumption, in the case of electric

vehicles and PHEV. To simulate the use of cleaner energy sources, the maximum and minimum

values presented in Table 3.1 were retrieved. The following three scenarios are tested:

1. Electricity generation emissions from Europe (303 gCO2/kWh);
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2. Electricity generation emissions from the World average (485 gCO2/kWh);

3. Electricity generation emissions from Oceania (651 gCO2/kWh).

Figure 5.15 shows a considerable difference in the environmental solutions and scenario 3

proves to be the worst from an environmental standpoint, as expected. Even so, the three Pareto

fronts tend roughly to the same financial solution, showing that in financial terms the results are

very similar. This is an interesting result, as it is possible to keep financial performance and

improve in environmental impact.

Figure 5.15: Use of renewable sources of energy: Pareto front

Analysing Table 5.7, it is also possible to verify that the electricity generation emissions vari-

ation (in percentage) translates into a similar variation in the final environmental solution. All

values regard the last iteration of each scenario.

Table 5.7: Emissions variation

Emissions (gCO2/kWh) and variation Environmental solution (gCO2) Variation

303 (- 37.53%) 2.16E+10 - 34.73%
485 (Baseline) 3.32E+10 0 (Baseline)
651 (+ 34.23%) 4.38E+10 + 32.10%

These similarities in terms of environmental variation follow this apparent proportionality ratio

due to the main emissions factor and their dependence on the use of electricity. Vehicle produc-

tion is the most significant environmental impact, as shown in Figure 5.16. As already discussed

in Section 3.1, the impacts of vehicle production are equivalent to the sum of the energy con-

sumed in the car components production, and the subsequent energy consumed in the assembly

process. In both cases, the required energy is estimated in units of energy per units of mass (kJ/kg).

Production emissions are then expected to follow the variation due to electricity dependency. The
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horizontal axis in Figures 5.16 and 5.17 shows the 30 iterations performed in each of the scenarios,

considering the scenarios in ascending order.

Figure 5.16: Use of renewable sources of energy: Environmental impacts decomposition

Analysing the remaining impacts in Figure 5.17, it is possible to verify that the variation is not

so linear. This happens because, depending on the type of vehicle, the fuel used is different. Thus,

in the case of BEVs and PHEVs, fuel emissions increase but for the ICE and Hybrid vehicles,

they remain the same. If this test had been carried out on a homogeneous fleet with only electric

vehicles, growth in fuel emissions would be expected as the ones that occurred in production.

Figure 5.17: Use of renewable sources of energy: Environmental impacts decomposition (exclud-
ing production)

The tests carried out show that the source of electric energy plays a major role in the environ-

mental solution due essentially to the impacts related to the production of the vehicles. The Pareto
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front (Figure 5.15) tends roughly to the same financial value in all scenarios, therefore, the source

of electric energy does not affect the financial results obtained.

5.3.3 Electric Vehicles Disposal

To simulate the existing concern regarding the disposal of electric batteries, multiplicative factors

are applied to the disposal impacts of electric vehicles. Hybrid vehicles also have an electric motor,

although with less capacity than electric cars. Therefore, in all tests, 1/10 of the same factor is also

applied for both hybrid vehicles (Hybrid and PHEV). Five scenarios are tested:

1. Disposal impacts according to original instance’s values defined in Chapter 3;

2. Multiplicative factor = 5000;

3. Multiplicative factor = 50000;

4. Multiplicative factor = 500000;

5. Multiplicative factor = 5000000.

Analysing the Pareto front in Figure 5.18, it is possible to conclude that as the disposal impact

increases, the final impacts are greater, and the financial solutions are successively smaller for the

same impact. The Pareto front grows asymptotically to the same financial result in all cases, only

changing the slope.

Figure 5.18: Electric vehicles disposal: Pareto front

Table 5.8 shows the fleet composition for an identical environmental solution (1.40E+10 gCO2).

Since Pareto fronts evolve differently in each scenario, the number of the iteration in which that

scenario reaches the environmental value considered will also be different. Thus, the iteration in
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which each scenario reaches the environmental value considered is shown in Table 5.8. It shows

that the number of electric vehicles purchased decreases considerably as the impact of the disposal

of its batteries is increased. The budget that is not spent on this type of vehicle, is redirected to the

remaining vehicle groups.

Table 5.8: Purchased vehicles for the same environmental impact

Scenarios Iteration ICE Hybrid PHEV BEV

1 22 166 131 65 48
2 22 165 132 66 47
3 22 165 132 66 47
4 17 187 135 69 29
5 5 252 87 98 0

Table 5.9 shows the fleet composition in the last iteration of each scenario, where no major

changes between the three scenarios are identified. This happens due to the epsilon value used. As

explained in Section 5.2, the epsilon values change iteratively according to the expression EV
ES×N

where EV represents the environmental value obtained in the preliminary iteration, ES stands for

the Epsilon size, and N represents the iteration number. In the final iteration (ES = N) the epsilon

value coincides with the environmental value retrieved from the preliminary iteration and, thus,

the relaxation of the environmental constraint is maximum.

Table 5.9: Purchased vehicles at final iteration

Scenarios ICE Hybrid PHEV BEV

1 194 127 49 48
2 201 124 49 46
3 204 120 48 48
4 196 124 49 49
5 196 124 49 49

The test conducted shows that, in scenarios where the impact of disposal is greater, the use

of electric vehicles is avoided in the initial iterations, due to a tighter environmental constraint.

However, in the final iterations where relaxation is greatest, the fleets proved to be similar in all

scenarios.

From a financial standpoint, an increase in disposal impacts does not affect the best financial

solution obtained. It is visible in the Pareto front (Figure 5.18) that all curves grow asymptotically

to the same financial solution with different slopes.

5.3.4 Fuel Production

Fuel production is a very difficult impact to estimate because it includes factors such as oil extrac-

tion, oil transportation, refining, and transportation to gasoline pumps. This impact is estimated
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in Chapter 3, corresponding to the value used in scenario 2. Therefore, a sensitivity analysis is

performed in this section, reproducing smaller and greater impacts, respectively, preserving the

same difference for the baseline value - scenarios 1 and 3. Three scenarios are tested:

1. Fuel production = 500 gCO2/l;

2. Fuel production = 750 gCO2/l;

3. Fuel production = 1000 gCO2/l.

Analysing the Pareto front in Figure 5.19, it is possible to verify the existence of a few differ-

ences between the three observed scenarios. The main difference regards the maximum emissions

achieved, which are higher where fuel production has the greatest impact.

Figure 5.19: Fuel Production: Pareto front

Analysing the environmental impacts in Figure 5.20, it is possible to verify that the increase

in the environmental impacts regards the fuel, not only from leased but also from owned vehicles.

The fuel production impact increase is not proportional to the increase in the environmental solu-

tion due to the existence of vehicles of different types. In fact, this increase affects ICE vehicle

emissions, but not the BEV. The horizontal axis in Figure 5.20 shows the 30 iterations performed

in each of the scenarios, considering the scenarios in ascending order.
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Figure 5.20: Fuel Production: Environmental impacts decomposition (excluding production)

The fuel production impact increase leads to an increase in the environmental solution while,

from a financial point of view, there are no relevant deviations to report regarding the tests per-

formed.

5.3.5 Homogeneous Fleets

One of the car rental strategies regarding the capacity-pricing problem is the offer of a vehicle

of a higher class for the price of the lower class, that is, offering upgrades. A very interesting

analysis to do is to test the model’s behavior when only homogeneous fleets are available, and

thus upgrades are no longer offered. In this analysis, four scenarios are tested:

1. Fleet containing only ICE vehicles;

2. Fleet containing only Hybrid vehicles;

3. Fleet containing only PHEVs;

4. Fleet containing only BEVs.

In financial terms, the results prove to be better when using a fleet with only ICE vehicles,

that is, the lowest level group, as shown in Figure 5.21. This was awaited since, as these vehicles

are cheaper than the other vehicle groups, it is possible to purchase more vehicles in this scenario

compared to the others. It is then possible to accept more rental requests, as will be shown later.
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Figure 5.21: Homogeneous fleets: Pareto front

Analysing the revenues in Figure 5.22 and the acceptance rate in Figure 5.23, it is possible to

conclude that revenues are higher in scenario 1 because, although ICE vehicles are cheaper (both

for the company when buying them and for the customer when renting them), the purchase of

vehicles by the company is highly limited by the available budget. More vehicles are bought and,

therefore, it is possible to accept more rental requests, thus achieving a higher profit. It is also

possible to lease vehicles - and that happens - but the model privileges the purchase of vehicles as

it is more profitable, as will be further explained in this chapter.

Figure 5.22: Homogeneous fleets: Revenues
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Figure 5.23: Homogeneous fleets: Acceptance rate

From an environmental point of view, scenario 4 (fleet containing only BEVs) proves to be

more polluting, as shown in Figures 5.24 and 5.25. The horizontal axis in Figures 5.24 and 5.25

shows values in the interval [1; 120] representing the 30 iterations performed in each of the scenar-

ios, considering the scenarios in ascending order. The electricity generation emissions regard the

average value of the World, therefore, this high value may justify these higher emissions verified

in scenario 4, although fewer vehicles have been purchased. Donateo et al. also verified this fact,

concluding that electric vehicles only become environmentally friendly if their energy comes from

renewable or cleaner sources [14]. The estimation of the impact value per liter of fuel produced

may also partly justify these differences.

Figure 5.24: Homogeneous fleets: Environmental impacts decomposition
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Figure 5.25: Homogeneous fleets: Environmental impacts decomposition (excluding production)

These tests sustain that the use of a homogeneous fleet containing only ICE vehicles is the

most profitable from a financial point of view. Since ICE vehicles are the lowest group vehicle,

they are also cheaper when comparing to the remaining vehicle groups. Therefore, there is a bigger

capacity to buy more vehicles. Thus, more vehicles are purchased and, consequently, more rental

requests are accepted. From an environmental standpoint, a fleet containing BEVs proves to be

more polluting due to the high emission values of electricity production even though it is a smaller

fleet when compared to the other scenarios.

5.3.6 Total Demand Variation

Demand plays an important role in this mathematical model as it is directly related to the price

level chosen and thus influences revenues. Five scenarios are tested in this analysis:

1. Decrease in demand: - 40%;

2. Decrease in demand: - 20%;

3. Demand according to original instance’s value;

4. Increase in demand: + 20%;

5. Increase in demand: + 40%.

Analysing the Pareto front in Figure 5.26, the results prove to be better, from a financial point

of view, with higher demand since it leads to greater price levels chosen and thus revenues are also

higher.
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Figure 5.26: Total demand variation: Pareto front

Figure 5.27 shows that more rentals are accepted as demand increases. Even so, this increase

in the number of accepted rental requests does not translate into a higher acceptance rate. In fact,

in general, the acceptance of the rental is lower as demand increases, as shown in Figure 5.28. The

justification for this is related to budget constraints. Due to the unavailability of more budget, the

fleet size does not increase in the same way that the rental requests do, causing a lack of offer.

Figure 5.27: Total demand variation: Rental requests
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Figure 5.28: Total demand variation: Acceptance rate

Tables 5.10 and 5.11 represent the environmental and financial solutions obtained in the last

iterations of each scenario, which aims to understand how a certain percentage change in demand

influences financial and environmental results. It is possible to verify that the environmental solu-

tion deviation is the closest to the deviation in demand, although the financial results also follow

this variation but not so precisely.

Table 5.10: Total demand variation: Emissions variation

Demand variation (%) Environmental solution (gCO2) Variation (%)

- 40 9.58E+11 - 41.33
- 20 1.28E+12 - 21.75

- 1.63E+12 -
+ 20 2.01E+12 + 23.31
+ 40 2.38E+12 + 45.81

Table 5.11: Total demand variation: Financial results variation

Demand variation (%) Financial solution (euros) Variation (%)

- 40 4.24E+06 - 32.59
- 20 5.29E+06 - 16.04

- 6.29E+06 -
+ 20 7.29E+06 + 15.80
+ 40 8.28E+06 + 31.47

The tests carried out in this section show that the increase in demand leads to better financial

results, as it influences the choice of higher price levels. The environmental impacts are higher
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when the demand increases since a greater number of rentals are performed, despite a lower ac-

ceptance rate. Both financial and environmental results tend to follow the variation in demand,

although with a more straightforward impact in the environmental solution.

5.3.7 Demand Variation by Group

Unlike in the previous analyses, the variation in demand may not be uniform for all types of

vehicles. Indeed, certain vehicles can be subjected to higher demand than others. Thus, in this

test, scenarios were created representing increases in demand by vehicle group and not globally.

The following scenarios are tested:

1. Demand according to original instance’s value;

2. Increase in demand for BEVs: + 20%;

3. Increase in demand for BEVs: + 40%;

4. Increase in demand for PHEVs: + 20%;

5. Increase in demand for PHEVs: + 40%;

6. Increase in demand for Hybrid vehicles: + 20%;

7. Increase in demand for Hybrid vehicles: + 40%;

From a financial standpoint, the increase in demand for Hybrid vehicles proves to be more

advantageous (Figure 5.29) since the financial solution is higher in scenario 7. These results are

interesting since it was expected that the increase in demand for higher-class vehicles would lead

to better financial results, as they are more expensive. However, the vehicle groups required are

not homogeneous. Regardless of the type of vehicle, the increase in demand always leads to better

financial results.
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Figure 5.29: Demand variation by group: Pareto front

Figure 5.30 shows the vehicle groups required. Hybrid vehicles are the most requested and,

thus, the increase in demand for this type of vehicle ends up being the most significant financially

because it affects a greater number of rental requests.

Figure 5.30: Demand variation by group: Groups required

Analysing Figures 5.31 and 5.32 it is possible to verify that emissions also increase according

to the increase in demand. The impacts are always greater the greater the demand for a specific

group of vehicles. The horizontal axis in Figures 5.31 and 5.32 shows the 30 iterations performed

in each of the scenarios, considering the scenarios in ascending order.
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Figure 5.31: Demand variation by group: Environmental impacts decomposition

Figure 5.32: Demand variation by group: Environmental impacts decomposition (excluding pro-
duction)

This analysis shows that demand influences financial results in a positive way (greater demand

for a certain type of vehicle leads to better financial results being achieved). The financial re-

sults emerging from the increase in demand for a certain group of vehicles are influenced by the

distribution of preferences for the required vehicle groups. In this analysis, the financial results

were better when greater demand occurred in Hybrid vehicles since these were already the most

required group in rental requests. Therefore, the increase in demand ends up affecting a greater

number of effective requests.

5.3.8 Market Competition

One of the most important decisions in this business is related to price setting. Its increase or

decrease can be quite decisive in the financial results of a company since a very high price can

drive customers away and a very low price may not be profitable. Thus, this analysis aims to study
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the effect on revenues and the respective environmental impacts of increasing or decreasing prices.

Three scenarios are tested:

1. Decrease in prices: -10%;

2. Prices according to original instance’s values;

3. Increase in prices: +10%.

Analysing the Pareto front in Figure 5.33 and the data in Table 5.12, it is possible to conclude

that this increase/decrease in prices has an approximately linear effect on financial results. The

data in Table 5.12 regards the last iteration of each scenario. Moreover, in all scenarios and for the

same environmental solution, the financial results prove to be better the higher the prices. This is

expected since, as prices are higher, fewer rentals will be needed to achieve the same profit that

would be achieved with lower prices. The fulfillment of fewer rentals then leads to a reduction in

environmental impacts, concerning the same financial result.

Figure 5.33: Market competition: Pareto front

Table 5.12: Financial results variations

Scenarios Financial solution (Euros) Variation (%)

1 72319.30 - 11.51
2 81395.60 -
3 90477.50 + 11.16

Analysing the financial component more deeply, it is also concluded that this increase in profit

is linked to the increase in revenues (Figure 5.34) since costs remain constant, as shown in Fig-

ure 5.35. The horizontal axis in Figure 5.35 shows the 30 iterations performed in each of the

scenarios, considering the scenarios in ascending order.
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Figure 5.34: Market competition: Revenues

Figure 5.35: Market competition: Costs decomposition

The analysis of the price variation shows that the financial results tend to follow the same

variation of the price. This similar variation occurred because the demand was maintained and

this led to a similar number of accepted rentals - Figure 5.36. The horizontal axis in Figure 5.36

shows the 30 iterations performed in each of the scenarios, considering the scenarios in ascending

order.



5.3 Analyses and Insights 57

Figure 5.36: Market competition: Rental requests

In this analysis, the variation was small (+/-10%) and this may have been relevant in the

proportional increase in profits. If the price increase was higher, demand would be expected to be

lower and the financial results would not follow the price increase the same way.

5.3.9 Available Budget

The available budget is a significant factor in any business and has been critical in most of the

previous analyses. Especially in the car rental capacity-pricing problem, the greater or lesser

capacity of a company to buy assets can be quite decisive in the financial profitability of the same

company. Thus, to test the influence of the budget, several scenarios are tested:

1. Lower budget (original budget×0.5);

2. Budget according to original instance’s value;

3. Higher budget (original budget×2);

4. Higher budget (original budget×3);

5. Hypothetical infinite budget (original budget×100).

Analysing the Pareto front in Figure 5.37, a positive correlation between the initial available

budget and the financial results is significant. From an environmental standpoint, the results prove

to be better, regarding the same financial result, the larger the available budget. Considering the

last iteration of each scenario, the environmental result is very similar in all scenarios except the

last one, which aims to represent a hypothetical infinite budget situation.
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Figure 5.37: Available budget: Pareto front

After a deeper look at the financial component, it is possible to see that, in general, revenues

increase when the available budget is higher, which means that more rental requests have been

accepted - Figure 5.38. Analysing the costs decomposition in Figure 5.39, they are successively

lower, except in the last scenario. Even so, there is a common factor in all scenarios: the model

gives preference to the purchase of vehicles and only then leases to fill the lack of fleet and thus

fulfill more rental requests. This is precisely the reason that leads to cost reduction over scenarios

1, 2, 3, and 4. The budget increases and allows the model to buy more vehicles. The larger own

fleet vehicles allow more rental requests to be accepted but, at the same time, allow a reduction in

costs since ownership costs are lower than the leasing ones.

Figure 5.38: Available budget: Revenues
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The horizontal axis in Figures 5.39, 5.40 and 5.41 shows the 30 iterations performed in each

of the scenarios, considering the scenarios in ascending order.

Figure 5.39: Available budget: Costs decomposition

The use of leased vehicles is practically residual in scenario 5 - Figure 5.40. It still occurs

because, despite having a higher budget to spend, a greater demand in a specific peak may not

justify the purchase of vehicles since it implies ownership costs throughout all time horizon and a

high one-time cost.

Figure 5.40: Available budget: Environmental impacts decomposition

It is also in the last scenario that the model has the highest environmental impact values,

justified by a greater capacity to purchase vehicles and the resulting receptivity to comply with

rental requests. In fact, in the last scenario, 100% of rental requests are fulfilled, a unique case in

all tests performed - Figure 5.41.
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Figure 5.41: Available budget: Rental requests

The tests carried out considering different budgets conclude that the financial results are better

the larger the budget available. This happens because, with a larger budget available, the model

favors the purchase of more vehicles rather than leasing them. Buying vehicles prove to be more

financially lucrative and thus, the profits obtained are greater. The environmental impact is con-

siderably higher in scenario 5, allowing to conclude that it depends essentially on the size of the

fleet and not so much on the operational optimization that can be made of its use.

5.4 Summary

Throughout this chapter, several topics were covered with a special focus on the conclusions and

insights retrieved from the analyses performed. However, before analysing the results, it was

important to understand what input data was used in the model - the instances - as well as how

this data was handled - the method. To do so, rental request analyses were performed for all

the considered instances. The analyses conclude that the rental requests are preferably short-

term as the check-out time period is highly concentrated at the beginning of the time horizon.

Then, the methodological tests were performed. The use of the epsilon constraint method with

a financial function as an objective function and an environmental function as a constraint was

defined. Furthermore, an epsilon size of 30 was also established.

Finally, all the analysis tests performed and respective results were discussed. Firstly, incen-

tives for using electric vehicles did not translate into an effective decrease in CO2 emissions. At

the same time, the source of electrical energy proved to be significant in the environmental results

due to its strong correlation with the production phase of the vehicle. Moreover, the increased

impact of disposal on electric vehicles has not been shown to affect the financial results obtained.

For the same environmental solution value, the financial result was lower the greater the impact of

disposal, as the model avoids the purchase of electric vehicles and redirects the available budget

for the purchase of other vehicle groups. However, in the final iterations of each scenario, where

the relaxation of the environmental constraint is greater, the model did not restrict the purchase of
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electric vehicles, therefore, all scenarios obtained very similar financial results. The use of electric

vehicles has proven that a reduction in environmental impacts is only achieved if the source of

electricity is renewable or cleaner.

From a more managerial standpoint, it is verified that the model results tend to follow changes

in demand: from an environmental point of view, it follows these changes in a very similar way

(a 40 % decrease in demand leads to a 41.33 % decrease in the environmental results) and from

a financial point of view, this variation is not so linear but it is also relevant (a 40 % decrease in

demand leads to a 32.59 % decrease in financial results). When considering a variation in demand

by vehicle groups, it is highly linked to the distribution of the percentages of vehicles required by

rental requests, which is an intrinsic characteristic of the instances. Moreover, the price variation

proved to have an almost linear influence on financial results (an increase of 10 % in prices leads

to an increase of 11.16 % in profits) showing that the prices currently set in the instances can be

increased (at least by 10 %) without causing a decrease in demand. Finally, the available budget

proved to be crucial in the financial results, since the larger the budget, the greater the profit

achieved. This test proved the model’s predisposition to buy vehicles instead of leasing, although

leasing also occurs on a residual basis. Furthermore, only with a hypothetically infinite budget,

the model proved to be able to accept all rental requests.

These analyses also proved that empty transfers are not very common, as already mentioned

in the literature review. Finally, it was possible to conclude that all Pareto fronts have the same

behavior: higher growth at the beginning with asymptotic growth at the final stage. That is, in the

final stage of all Pareto curves, its derivative is lower and tends to zero. Thus, profit increases little

even though with a significant increase regarding the emissions. Analysing all the Pareto fronts

studied, it is possible to conclude that, on average, with a decrease of 16.10 % of the financial
results, it is possible to obtain a decrease of 65.33 % in CO2 emissions.

All conclusions drawn are based on the model implemented and are therefore limited to the

model’s limitations. No model is a perfect reflection of reality. Nevertheless, they can be very

useful for drawing conclusions that are useful and applicable to real situations.
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Chapter 6

Conclusions and Future Work

In this work, environmental concerns were incorporated into a mathematical model related to

the capacity-pricing problem in the car rental business, resulting in a bi-objective model. The Life

Cycle Assessment method was applied not only to vehicles but also to fuel, to define environmental

parameters and the corresponding objective. Four types of vehicles were considered: internal

combustion engine vehicles, hybrids, hybrids plug-in, and electric vehicles. Several methods of

solving multi-objective problems were addressed and the epsilon constraint method is developed

and applied to this problem and to the bi-objective mathematical model. The results obtained

allowed us to conclude that the source of electric energy is significant in environmental results.

In addition to this, environmental and financial results tend to follow changes in demand and a

small variation in prices influences financial results almost linearly. The available budget proves

to be crucial in the model’s capacity to accept rental requests while environmental results depend

essentially on the size of the fleet. Moreover, the results show a predisposition to buy vehicles

instead of resorting to its leasing, while empty transfers are not very common.

Analysing the environmental impacts obtained in all the tests carried out, it is possible to

conclude the emissions related to the use of the vehicles is always practically negligible when

compared with the production or the impacts of the fuel. This is due to the relatively short time

horizon considered - 12 time units. Thus, the increase in the time horizon, although it may lead to

a higher computational effort required, will also lead to more consistent results.

Another important guideline regarding future work is related to the gases considered. CO2 is

the main gas emitted when considering the transport sector, but other gases should be the focus

of attention and concern as well. Nitrous oxide (N2O) is dangerous to human health. Moreover,

it is responsible for acid rain that also affects agriculture [15]. Each greenhouse gas has a global

warming potential (GWP) different over different time horizons. It is a measure of how much

energy the emissions of 1 ton of a gas will absorb over a given period of time, relative to the

emissions of 1 ton of carbon dioxide CO2. Table 6.1 shows the GWP of some greenhouse gases.

It is possible to verify that the N2O has a 100-year GWP of 298 while CO2 has a 100-year GWP

of 1.
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Table 6.1: GHGs global warming potential [21]

Greenhouse Gas 100-year GWP

Carbon dioxide (CO2) 1
Methane (CH4) 25

Nitrous oxide (N2O) 298

Table 6.2 contains the emissions associated with fuel combustion, over 100 km, considering a

petrol car with a consumption of 5.87 kg l/100km. Analysing the table, it is possible to notice that

emissions related to carbon dioxide represent the largest percentage of emissions while all others

are almost negligible.

Table 6.2: Emissions associated with fuel combustion, over 100 km [33]

Substance Quantity (kg)

Carbon dioxide (CO2) 20
Carbon monoxide (CO) 0.58

Nitrous oxide (N2O) 0.004
Sulfur dioxide (SO2) 0.0029

Nitrogen oxide (NOx) 0.13
Soot 0.0014

Volatile organic compound (VOC) 0.083

Table 6.2 shows that N2O emissions are much lower than CO2 emissions. However, combining

the data from the two tables, it is possible to verify that, even though N2O emissions are low, they

end up being relevant. For example, by multiplying the emissions in Table 6.2 with the GWP in

Table 6.1, we obtain the following:

Table 6.3: Multiplication of GWP by the emissions

Substance Quantity (kg) 100-year GWP Quantity (kg)×100-year GWP

Carbon dioxide (CO2) 20 1 20
Nitrous oxide (N2O) 0.004 298 1.192

Table 6.3 shows that emissions may seem negligible at the outset but can prove to be quite

important when considering the GWP. Therefore, if global emissions are analysed also considering

the GWP, the calculation of environmental impacts will be more realistic and will lead to more

consistent analyses and results.

Finally, the last guideline for future work is related to the method used. Testing NSGA-II, one

of the most recognized genetic algorithms and the most complex model of all addressed in the

literature review, can be interesting to validate the results of the epsilon constraint method.



Appendix A

Methodological Tests Results

In this appendix, the tables with the detailed results of the methodological tests are presented.

Table A.1 contains the general information of the instances used in both tests and the number

of iterations that will be used in each one.

Tables A.2 and A.3 contain the results of epsilon constraint with objective financial function,

while Table A.4 contains the results of epsilon constraint with environmental objective function.
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Table A.1: Instances data and number of iterations tested

Instance Rentals Groups (R×G) Scale factor Iterations

30 428 1 428 1 20
31 428 1 428 100 25
38 486 1 486 1 30
39 486 1 486 100 35
24 517 1 517 1 40
25 517 1 517 100 45
26 562 2 1124 1 15
27 562 2 1124 100 20
34 572 2 1144 1 25
35 572 2 1144 100 30
42 831 3 2493 1 10
43 831 3 2493 100 15
32 865 3 2595 1 20
33 865 3 2595 100 25
40 922 3 2766 1 30
41 922 3 2766 100 30
16 924 3 2772 1 35
17 924 3 2772 100 35
04 564 5 2820 1 15
05 564 5 2820 100 20
08 948 3 2844 1 40
09 948 3 2844 100 40
10 724 4 2896 1 10
11 724 4 2896 100 15
28 742 4 2968 1 15
29 742 4 2968 100 20
12 793 4 3172 1 20
13 793 4 3172 100 25
36 1046 4 4184 1 30
37 1046 4 4184 100 30
20 1141 4 4564 1 35
21 1141 4 4564 100 40
22 933 5 4665 1 25
23 933 5 4665 100 30
18 1182 4 4728 1 45
19 1182 4 4728 100 45
06 1234 5 6170 1 35
07 1234 5 6170 100 40
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Table A.2: Epsilon constraint method - financial objective function results (1)

Instance Avg. iteration time (sec) Total Time (sec) Optimal Optimal values (%)

30 298 5950 11 55.00
31 17 431 25 100.00
38 395 11848 12 40.00
39 19 681 35 100.00
24 289 11545 23 57.50
25 35 1561 45 100.00
26 273 4099 10 66.67
27 47 948 20 100.00
34 261 6531 18 72.00
35 47 1411 30 100.00
42 406 4057 6 60.00
43 319 4779 12 80.00
32 412 8244 14 70.00
33 153 3837 25 100.00
40 504 15112 19 63.33
41 184 5518 28 93.33
16 337 11783 30 85.71
17 161 5646 34 97.14
04 483 7241 6 40.00
05 169 3372 18 90.00
08 475 18989 26 65.00
09 297 11886 35 87.50
10 513 5127 4 40.00
11 119 1791 15 100.00
28 496 7443 9 60.00
29 240 4797 19 95.00
12 481 9614 10 50.00
13 189 4720 24 96.00
36 603 18096 1 3.33
37 293 8777 26 86.67
20 602 21069 1 2.86
21 310 12416 35 87.50
22 574 14343 3 12.00
23 300 9007 27 90.00
18 589 26498 3 6.67
19 407 18302 31 68.89
06 597 20879 2 5.71
07 493 19701 17 42.50
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Table A.3: Epsilon constraint method - financial objective function results (2)

Instance Avg. gap (%) Non optimal Non optimal avg. gap (%)

30 0.000396 9 0.000767
31 0.000087 0 -
38 0.000273 18 0.000399
39 0.000089 0 -
24 0.000308 17 0.000598
25 0.000088 0 -
26 0.000144 5 0.000273
27 0.000091 0 -
34 0.000186 7 0.000415
35 0.000083 0 -
42 0.000118 4 0.000163
43 0.000091 3 0.000159
32 0.000195 6 0.000426
33 0.000089 0 -
40 0.000221 11 0.000449
41 0.000092 2 0.000185
16 0.000118 5 0.000281
17 0.000098 1 0.000268
04 0.000523 9 0.000816
05 0.000102 2 0.000200
08 0.000132 14 0.000205
09 0.000096 5 0.000124
10 0.000205 6 0.000278
11 0.000092 0 -
28 0.000190 6 0.000337
29 0.000092 1 0.000118
12 0.000259 10 0.000422
13 0.000098 1 0.000195
36 0.000440 29 0.000452
37 0.000097 4 0.000147
20 0.000643 34 0.000659
21 0.000096 5 0.000136
22 0.000525 22 0.000584
23 0.000093 3 0.000148
18 0.000583 42 0.000618
19 0.000106 14 0.000173
06 0.000839 33 0.000884
07 574.9739411 23 999.9546154
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Table A.4: Epsilon constraint method - environmental objective function results

Instance Avg. it. time (sec) Total time (sec) Optimal Optimal values (%) Avg. gap (%)

30 477 9530 5 25.00 0.003285
31 226 5644 23 92.00 0.000113
38 478 14341 9 30.00 0.002840
39 316 11070 28 80.00 0.000118
24 523 20907 7 17.50 0.002744
25 439 19756 31 68.89 0.000210
26 559 8385 2 13.33 0.001492
27 499 9972 9 45.00 0.000267
34 559 13973 4 16.00 0.002355
35 562 16869 6 20.00 0.014897
42 605 6050 0 0.00 0.002060
43 602 9036 0 0.00 0.190747
32 569 11375 2 10.00 0.001522
33 599 14965 1 4.00 0.000782
40 586 17586 2 6.67 0.004399
41 603 18087 0 0.00 0.087132
16 523 18291 8 22.86 0.000717
17 602 21067 0 0.00 0.233307
04 563 8451 2 13.33 0.023421
05 521 10420 6 30.00 0.000562
08 582 23266 4 10.00 0.022792
09 593 23728 1 2.50 0.075959
10 566 5663 1 10.00 0.003236
11 605 9080 0 0.00 0.000598
28 584 8756 1 6.67 0.004508
29 606 12122 0 0.00 0.205274
12 581 11617 2 10.00 0.001938
13 605 15116 0 0.00 0.136815
36 579 17384 3 10.00 0.022441
37 602 18059 0 0.00 0.003276
20 594 20773 1 2.86 0.024545
21 598 23914 1 2.50 0.003082
22 596 14907 2 8.00 0.002902
23 605 18140 0 0.00 0.179312
18 597 26872 1 2.22 0.009025
19 600 27014 0 0.00 0.002211
06 583 20391 2 5.71 0.027618
07 600 24016 0 0.00 0.003840
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