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Resumo

A capacidade de um veículo autónomo submarino (AUV) se localizar no ambiente, bem como
de extrair características ambientais de relevo, é de grande importância para o sucesso da nave-
gação. No entanto, esta tarefa é particularmente desafiante em ambientes subaquáticos devido à
rápida atenuação sofrida pelos sinais de sistemas de posicionamento global ou outros sinais de
radiofrequência.

Os sonares são um dos dispositivos de sensorização mais comuns para localização e mapea-
mento subaquático, sendo usados para detectar e identificar características estruturais subaquáticas
através da aquisição de imagens acústicas. No entanto, apesar de ser uma tecnologia robusta, ainda
existem vários problemas que afetam o seu desempenho, como a presença de ruído de fundo e de
múltiplos ecos nas imagens adquiridas, o que aumenta o potencial de ocorrência de falsas deteções.

Este estudo explora o processamento e a análise de imagens acústicas, por meio dos dados
adquiridos por um sonar de varrimento mecânico (MSIS), a fim de extrair características ambi-
entais relevantes que possibilitem a estimação da localização do veículo. Para esse fim, foram
avaliados os desempenhos de diferentes algoritmos de extração de pontos de interesse de última
geração. Além disso, é proposta uma melhoria na etapa de correspondência de pontos de interesse,
a fim de adaptar este procedimento às propriedades das imagens acústicas. Os pontos de interesse
extraídos são utilizados para alimentar um estimador de localização composto por um algoritmo
de Localização e Mapeamento Simultâneo (SLAM), implementando um Filtro de Kalman Exten-
dido (EKF). Vários testes foram realizados em ambiente estruturado e são apresentados resultados
experimentais do processo de extração de pontos de interesse e do processo de localização e ma-
peamento.

Palavras-Chave: AUV, Correspondência de Pontos de Interesse, EKF, Extração de Pontos de
Interesse, Localização, Ponto de Interesse, SLAM, Sonar
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Abstract

The ability of an autonomous underwater vehicle (AUV) to locate itself in an environment as well
as to detect relevant environmental features is of key importance for navigation success. How-
ever, this task is particularly challenging in underwater environments due to the rapid attenuation
suffered by global positioning system or other radio-frequency signals.

Sonars are one the most common sensing devices for underwater localization and mapping,
being used to detect and identify underwater structural features through the acquisition of acoustic
images. Nevertheless, despite being a robust technology, there are still several problems affecting
its performance such as the presence of background noise and multiple echoes in the acquired
images, which increase the potential for false detections.

This study explores the processing and analysis of acoustic images, through the data acquired
by a mechanical scanning imaging sonar (MSIS), in order to extract relevant environmental fea-
tures that enable location estimation. For this purpose, the performances of different state-of-the
art feature extraction algorithms were evaluated. Furthermore, an improvement to the feature
matching step is proposed, in order to adapt this procedure to the characteristics of acoustic im-
ages. The extracted features are then used to feed a location estimator composed of a Simultaneous
Localization and Mapping (SLAM) algorithm implementing an Extended Kalman Filter (EKF).
Several tests were performed in a structured environment and experimental results of the feature
extraction process and localization and mapping process are presented.

Keywords: AUV, EKF, Feature, Feature Extraction, Feature Matching, Localization, SLAM,
Sonar
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Chapter 1

Introduction

1.1 Context

The majority of earth’s surface is covered by water, whether in the form of oceans, rivers or lakes.

These environment have a clear impact on human life, directly or indirectly. Therefore it is of

utmost importance to study them, in order to guarantee their safety against environmental pollution

and to allow for exploration of the available natural resources. For this purpose, underwater robotic

vehicles are, nowadays, a solution to always take into consideration.

The high risks and operational costs associated to the deployment of manned underwater ve-

hicles have led researches to an increasing set of solutions. In this context, unmanned underwater

vehicles (UUVs) are becoming increasingly popular, since they allow for navigation at greater

depths and extremely harsh conditions. Among the most common solutions, we shall outline the

following:

• Towed Vehicles - towed behind ships and boats, such that the vehicle itself is controlled

through a combination of on-board hydrodynamic actuators and the drag tether. Commonly

used in oceanographic data collection and surveying underwater cables or pipelines;

• Remotely Operated Vehicles (ROVs) - remotely controlled by a pilot (on a ship or plat-

form), usually via a tether. This tether is also used for supplying power to the vehicle and

can sometimes be used to retrieve said vehicle to the surface. Nevertheless, all these require-

ments make its use complex and expensive, mainly when larger size vehicles are required;

• Autonomous Underwater Vehicles (AUVs) - able to perform operations without any user

intervention or control. The pretended mission plan is programmed into the AUV’s system,

so that it is able to carry out the desired operations.

1.1.1 Autonomous Underwater Vehicles

The development of AUVs came as an improvement to the solution offered by ROVs, since these

vehicles require no tether or support ship and, therefore, are able to navigate autonomously, relying

1



2 Introduction

solely on their navigation algorithms and data acquired from sensors. Furthermore, as the authors

state in Sahoo et al., 2019, AUVs "have high manoeuvrability, can travel to remote locations,

narrow complex pathways, involve no human fatigue and operation cost is very less". Table 1.1

presents the most common applications for this type of vehicles.

Nowadays, AUVs can have up to six degrees of freedom and travel at speeds higher than

20m/s, while detecting obstacles and mapping their surroundings, as stated by Sahoo et al., 2019.

While more sophisticated and affordable, there are still some key aspects that need to be tackled

when it comes to sensing, navigation, guidance and control, underwater wireless communication,

batteries, manufacturing techniques or computational power.

Category Description
Military Surveillance

Anti-submarine warfare
Mine countermeasures
Inspection of wreckage
Payload delivery to ocean floor
Search and rescue
Air crash investigation

Scientific Ocean exploration and bathymetric study
Marine biology studies
Geological survey
Archaeological survey
Environment monitoring

Industry Repair and maintenance
Track and repair of underwater cables
Underwater structure inspection

Other Underwater video footage collection
Fishing
Entertainment and tourism

Table 1.1: Applications for AUVs. Adapted from Sahoo et al., 2019

1.2 Motivation

In order for an AUV to be able to perform properly and safely, a precise navigation is essential.

This objective is closely related to the performance of its localization estimation procedure and

capability to represent the surrounding environment.

According to the authors in Paull et al., 2014, AUV localization "is a challenging problem

due primarily to the rapid attenuation of higher frequency signals and the unstructured nature of

the undersea environment". At surface, most systems rely on radio or spread-spectrum commu-

nications and global positioning for localization purposes, which is unfeasible for AUVs since,

underwater, these signals can only propagate at short distances. Some localization solutions em-

ploy external devices such as acoustic beacons or sensors of higher accuracy. However both come

at higher costs. Cameras are also amongst the most common solutions to overcome this problem,

offering significantly lower costs than other typical solutions. Yet, these present fairly low area

coverage and its performance is heavily dependent on water visibility conditions.
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Sonars are amongst the most common sensing devices for underwater navigation, making use

of sound waves propagation for mapping purposes. Nevertheless, despite being a fairly mature and

robust technology, there are still several problems concerning its application, so studies continue

to be carried out in order to improve its performance.

The analysis of acoustic images acquired through a sonar allows the extraction of information

that is of great value not only to solve the localization problem but also to map the surroundings

of the vehicle. However, the presence of background noise or clutter, multiple echoes and multi-

path transmission puts severe challenges to these objectives, mainly due to the high potential for

false detections. Moreover, the motion of the AUV will result in the deformation of the acquired

features, presenting additional challenges to a correct identification and correspondence of these

throughout a series of acoustic images.

Image processing techniques, more precisely, feature extraction methodologies, have the po-

tential to form the basis of a solution that will allow the detection of environmental features in the

surroundings of the AUV. However, these procedures have been originally developed for optical

image analysis and its applicability to acoustic images requires further study and development.

Computation time constraints must also be taken into consideration since, when moving, the ve-

hicle will require quick but also reliable information regarding any obstacle in its vicinity.

1.3 Objectives

The purpose of this dissertation is to develop a system that allows the localization of a vehicle

and the mapping of its surroundings in underwater environments. This solution is based on a

mechanical scanning imaging sonar (MSIS) data acquisition process.

It is expected that the acquired acoustic images can be analysed through image processing

techniques in order to extract valuable environmental feature information. Therefore, a study

and evaluation of the applicability of feature extraction algorithms for acoustic image analysis is

required.

This information can then be fed to a state estimator, that will enable data fusion of the ve-

hicle’s position, as well as of the detected landmarks. Landmark association is intended to be

performed based on the comparison of feature descriptors.

1.4 Contributions

At the moment, the development of AUVs is one of the most active areas of scientific research.

The work carried out throughout this dissertation brings further contributions regarding the ap-

plication of MSIS for localization and mapping purposes and the challenges faced. Furthermore,

the analysis conducted on the application of common feature extraction algorithms to acoustic im-

age analysis presents valuable conclusions regarding the detected problems and possible required

adaptations to usual methods implemented for optical image analysis.
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It is also important to note that, despite the main focus of this dissertation being related to

AUV navigation, the work developed is not only relevant for this type of vehicles, since it can be

extended to others.

1.5 Document Structure

This document is composed of six more chapters, apart from the present one, and corresponding

sections.

Chapter 2 is focused on a review of the current state of AUV navigation, from common

methodologies to sensor technology employed. Furthermore, an overview of common feature

extraction algorithms is also introduced.

Chapter 3 introduces the structure of the developed solution in further detail and the logical

reasoning behind it. The work carried out for this purpose is more thoroughly detailed throughout

chapters 4, 5 and 6.

In chapter 7 a careful analysis of the results obtained for different scenarios is presented and

the solutions performance evaluated.

Lastly, chapter 8 highlights the main conclusions and contributions of this work, as well as

some considerations regarding future work.



Chapter 2

State of the Art

This section presents a review on underwater navigation. Common principles, sensors and algo-

rithms are presented, with especial focus on localization techniques. Due to the importance of

sonar technology for the developed solution, this sensing device in presented in greater detail.

Furthermore, an overview on environment representation techniques is also introduced. Then, an

introduction to feature detectors and descriptors is presented, as well as further detail on some of

the most common feature extraction algorithms.

2.1 Underwater Navigation

The rapid attenuation of higher frequency signals and the nature of underwater environments puts

significant challenges to AUVs navigation. Accuracy in position is crucial for an AUV to navigate.

Without external references and due to the AUV’s motion, this accuracy deteriorates over time.

Therefore, a number of methodologies, sensors and algorithms have been proposed in order to

overcome so called challenges and are presented hereafter.

2.1.1 Methodologies

Over time, different methods, making use of a number of different sensors and algorithms, have

been proposed to tackle AUVs localization problems. According to the authors in Paull et al.,

2014, these techniques can be grouped into three main categories:

1. Inertial/Dead Reckoning - Inertial navigation makes use of data acquired from inertial

sensors, such as accelerometers, gyroscopes or magnetometers, in order to estimate the

vehicle’s relative position, velocity and attitude. Nevertheless, all methods in this category

are subjected to unbounded position error growth.

2. Acoustic Transponders and Modems - acoustic navigation methods are based on the mea-

surement of the time of flight (TOF) signals that are sent to and received from external

acoustic beacons and modems.

5



6 State of the Art

Figure 2.1: AUV localization techniques categorization. Adapted from Paull et al., 2014

3. Geophysical - the methods in this category use different sensors and processing techniques

in order to detect, identify and classify environmental features. These features are then used

as references to estimate the AUV’s position.

Figure 2.1 presents a detailed categorization of existing AUV localization techniques.

2.1.1.1 Inertial/Dead Reckoning

Dead reckoning (DR) allows for an AUV to position itself autonomously without acoustic support

from a ship or acoustic transponders. Upon knowledge of its orientation and velocity or accel-

eration vector, the AUV is able to estimate its new position. DR methodology is not a primary

means of navigation, due to unbounded position error growth, but it is the basis for many modern

navigation systems.

An inertial navigation system (INS) aims at improving the DR pose estimation by integrating

data from motion sensors (accelerometers) and rotation sensors (gyroscopes). It is a compact,

inexpensive and self-contained solution that does not require any external references. However,

an INS can accumulate error over time since its position and velocity estimations are a result

of mathematical integration of sensor data (that are subjected to drift over time). Therefore, the

data provided by the INS must be combined with other navigation techniques for a more accurate

navigation.

2.1.1.2 Acoustic Transponders and Beacons

Acoustic navigation techniques measure ranges through TOF of acoustic signals for posterior po-

sition estimation. The most common methods are presented hereafter:
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• Ultra-Short Baseline (USBL) - the AUV is localized relatively to a surface vehicle that

carries an array of acoustic transducers. TOF allows the calculation of the distance to the

surface vehicle while orientation is acquired through the phase difference of the acoustic

signals received by each transducer;

• Short Baseline (SBL) - same working principle as USBL. However, the transducers are

positioned in the front and back of the surface vehicle, limiting the baseline to its length

and, consequently, the position accuracy of the AUV;

• Long Baseline (LBL) - several transducers are placed over the operation area, at seabed

level. AUV localization is performed by triangulation of the estimated range for each acous-

tic transducer;

• GPS Intelligent Buoys (GIBs) - utilization of transducers with GPS buoys in order to over-

come the limitations of LBL, by assuring a two-way communication between the buoys and

the AUV. The two way travel time of the acoustic signal is used to estimate the vehicle’s

position;

• Single Transponder - use of a single transponder to reduce the costs associated with mul-

tiple systems. The baseline is simulated by extending the range until the next signal is

received;

• Acoustic Modem - the employed modems allow the transmission of information along with

the signal used for range estimation. Therefore, before the mission, these need to be fixed

and located in the global frame.

Trilateration and Triangulation
Trilateration algorithms consist on determining the vehicle’s position based on the measure-

ment of several distances to external beacons, whose location is well-known in advance. When,

instead of distances, angles between beacons and the vehicle are involved, the approach is called

Triangulation. With this information, the AUV’s position can be calculated through a non-linear

optimization problem, by minimizing the error between the acquired measurements and the ex-

pected ones.

Trilateration and triangulation algorithms present satisfactory performances if sensors provide

data consistently. Nevertheless there are two major restrictions to these. Firstly, if less than three

beacons are visible, it is impossible to extract the vehicle’s position. Secondly, if vehicle and

beacons all lie in the same circumference, position extrapolation is also not possible.

2.1.1.3 Geophysical

Geophysical navigation encompass any methods that make use of external environmental tech-

niques for navigation purposes. The majority of these are able to achieve bounded position error
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implement some form of Simultaneous Localization and Mapping (SLAM) technique (Paull et al.,

2014). The main categories are:

• Magnetic - methods that make use of magnetic field maps for localization. It is the most

unexplored strand;

• Optical - these methods usually use a monocular or stereo camera to capture images of the

seabed. This information is the processed to help navigation;

• Sonar - their objective is to acoustically detect, identify and classify environmental features

that might be useful for navigation. In the case of bathymetric sonars, features can be

extracted almost directly from retrieved data. With sidescan (imaging) sonars, features have

to be extracted through image processing techniques;

• Chemical - such methods are able to identify specific substances in the water, whose source

is used as a reference point for navigation purposes.

2.1.2 Sensing

To deal with dynamical changes in the real world, AUVs make use of various sensors for local-

ization purposes. It is important to know and understand their characteristics in order to integrate

them in the desired systems and develop appropriated algorithms. Table 2.1 presents a summary

of the most common solutions utilized for underwater localization.

In order to extract relevant information from the sensor data acquired, a number of algorithms

have been purposed. Due to the wide range of different sensors used for underwater applications,

formulations of their corresponding algorithms vary accordingly.

Sensor Fusion
It is common, when an AUV carries multiple sensors, to fuse their data in order to attain

more accurate and robust information for navigation purposes than using solely the data from each

individual sensor. In underwater navigation, sensor fusion is typically related to INS.

The most common algorithms for sensor fusion are Kalman Filter and its variants (Chen et al.,

2013). Table 2.2 presents a brief review of said algorithms.

Scan Matching
Scan matching techniques aim at estimating the vehicle’s translation and rotation movements

through the overlapping of a scan contour with either a known map or a previous scan. These

techniques can be classified into three different categories: feature-based techniques, compact

data methods and point matching techniques. Furthermore, some algorithms have been purposely

developed for AUV navigation, as the MSISpIC (Chen et al., 2013).
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Sensor Description Performance Cost
Compass A compass provides an heading reference. Typical magnetic

compasses do so by measuring the magnetic field vector, which
will subject the sensor to bias in the presence of strong mag-
netic signature. Thus, in marine applications, is common to
resort to gyrocompasses, since they measure heading through
a fast spinning disc and the rotation of the earth. Therefore,
they are unaffected by metallic objects.

Accuracy
between 1o

to 2o for
mid-range
price units.

On the order
of hundreds
of euros.

Pressure Sensor Pressure sensors and barometers can be used for underwater
depth estimation.

Possible
accuracy on
the order
of a few
millimeters.

On the order
of hundreds
of euros.

Doppler Velocity Log The Doppler Velocity Log (DVL) makes use of acoustic mea-
surements to estimate the AUV’s surge, sway and heave veloc-
ities. It transmits acoustics pulses and measures the Doppler
shifted returns off the seabed.

Standard
deviation on
the order of
0.3cm/s to
0.8cm/s.

On the or-
der of tens of
thousands of
euros.

Global Positioning System Global Positioning Systems (GPS) are common solutions for
surface vehicles, since they estimate position using TOF of sig-
nals from synchronized satellites.

Typical
accuracy
between tens
of meters
and a few
centimeter.

From hun-
dreds to
thousands of
euros.

Sonar A device for remote detection and location of objects present
in the water through sound. There are two main types: passive
sonars, listening devices that record sounds emitted by objects
in the water, and active sonars, that produces sound waves of
specific frequencies and listens for the echoes of these returned
from objects in the water.

Resolutions
depends
on many
internal and
external
factors.

From tens to
hundreds of
thousands of
euros.

Inertial Measurement Unit Inertial Measurement Units (IMU) use a combination of ac-
celerometers and gyroscopes (sometimes, even magnetome-
ters) to estimate the AUV’s heading, velocity and gravitational
forces. The gyroscope is responsible for measuring angular
rates. The most widely used categories for underwater applica-
tions are Ring Laser (Fiber Optic) based and Microelectrome-
chanical Systems based. An accelerometer is able to measure
the force necessary to accelerate a given mass. The most com-
mon designs include pendulum, microelectromechanical sys-
tems and vibrating beam.

Gyroscope -
drift variable
between
0.0001o/hr to
60o/hr. Ac-
celerometer -
bias between
0.01mg to
0.001mg.

From hun-
dreds of
dollars to
hundreds of
thousands of
euros.

Table 2.1: Common onboard AUV sensors used for localization. Adapted from Paull et al., 2014

Algorithm Description
Bayes’ Filter Optimal but only computationally feasible for the simplest estimation problems.

Kalman Filter State distribution assumed to be Gaussian and parameterized by mean and covariance.

Extended Kalman Filter
(EKF)

Extension of the Kalman filter that allows dealing with non-linear processes or measurement mod-
els. Fast prediction operation but slower measurement update due to matrix inversion.

Unscented Kalman Filter
(UKF)

Through higher computation reduces the linearization errors of EKF. Besides mean and covariance,
also maps multiple sample points and re-parameterizes the output as Gaussian.

Extended Information Fil-
ter (EIF)

State distribution assumed to be Gaussian but parameterized by an information matrix and infor-
mation vector. It is possible to process multiple measurements at once through addition. Slow
prediction step due to matrix inversion, but faster measurement update. Calculating mean and
covariance can be time consuming.

Particle Filter (PF) Non-parametric representation of state distribution. Instead it makes use of discrete particles with
associated weights. Can encompass non-Gaussian distributions and non-linear models. Yet, com-
putational requirements scale with the number of particles.

Least Squares Regression State estimation formulated as a least squares optimization that can be solved analytically. Pasts
states are maintained which can be useful for navigation purposes.

Table 2.2: Common sensor fusion algorithms



10 State of the Art

2.1.2.1 Sonars and Data Interpretation

Sonars have been used for ocean mapping for decades now, even predating AUV technology. It is

a fairly mature technology and, therefore, one of the most preferable for underwater applications

(Sahoo et al., 2019), being used to detect and identify underwater structural features. A sonar

operates at a specific frequency, in function of the required range and resolution.

Sonars can be classified into two main categories, Imaging Sonars and Ranging Sonars. The

most common devices used for underwater navigation are presented in table 2.3.

Sonar Category Description Pros Trade-Off
Sidescan Imaging Sonar Multiple beams are emitted, perpendic-

ularly to travel direction. Intensity of the
returns is measured to create a 2D im-
age.

Works at high
speeds, providing
for an high area
coverage.

Resolution is
inversely pro-
portional to
range.

Forward
Looking

Imaging Sonar In principle is similar to a sidescan
sonar, but instead the beams are directed
forward.

Fit for obstacle
detection or as a
nadir gap filter.

Limited distance
to depth ratio
(maximum 6:1);
single angle of
view.

Synthetic
Aperture

Imaging Sonar Virtual array synthesized through coher-
ent processing of consecutive displaced
returns.

Range inde-
pendent form
resolution.

Optimal at low
speeds and deep
waters.

Mechanical
Scanning
Imaging
Sonar

Imaging Sonar Single beam transducer associated to ac-
tuator for swath scanning.

Cheaper than
multibeam.

Slow. Accuracy
depends on AUV
attitude.

Echo
Sounder

Ranging Sonar Transducer emits single, narrow beam.
Allows for depth measurement.

Yield represen-
tation of seabed
and possible ob-
stacle underneath
the AUV.

Point measure-
ments in one
direction.

Profiler Ranging Sonar Low-frequency echo sounders that are
able to penetrate the seabed.

Data on subsur-
face features.

Resolution
inversely pro-
portional to
penetration
depth.

Multibeam Ranging Sonar Reflection’s TOF used to assemble
bathymetric maps.

More efficient
data gathering
than single beam.

Resolution
inversely pro-
portional to
frequency. First
reflection might
not be captured.

Table 2.3: Main sonar imaging and ranging devices for underwater applications. Adapted from
Paull et al., 2014

The quality and efficiency of the localization algorithm is extremely dependent on the quality

of the acquired data. But, as with other acoustic sensors, sonars still suffer from many shortcom-

ings:

• low data rate, which constrains the amount of data that can be transmitted;

• high latency, due to the low sound speed in the water (only 1500m/s);

• variable sound speed due to different water temperatures and salinity, which will affect the

estimation of detection ranges;
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• multipath transmission that occur due to the presence of both an upper (water surface) and

lower (sea bottom) boundaries and highly variable sound speed, leading to the occurrence

of multiple echoes.

Furthermore, the major issue affecting geophysical navigation is related to the shortage of

unambiguous reference landmarks, of key importance for the accuracy of the navigation system

(Sahoo et al., 2019). Nevertheless, sonar underwater applications for navigation purposes is one

of the most active areas of research.

2.1.3 Environment Representation

An AUV’s navigation procedure is inherently linked to the robustness and accuracy of its landmark

detection and mapping procedures. For that, the vehicle’s object detection algorithms are funda-

mental and must overcome two main problems: being able to distinguish between landmarks and

false alarms and to accurately localize these in a frame of reference. It is with this information that

the vehicle will be able to make changes to its path plan.

The environment information acquired through the AUV’s onboard sensors must be compiled

in order to allow for the detection of possible obstacles. Typical approaches rely on mapping

techniques. For underwater applications, two solutions stand out: grid-based maps and feature-

based maps.

The first approach is based on the discretization of the environment into a grid-based view.

In Li et al., 2015 the authors make use of a forward looking sonar and a global occupancy grid

(Elfes, 1989) for environment mapping. The grid cells are updated through an implementation of

a Bayes’ filter. In Gao and Xu, 2013, the same type of sensor and mapping technique are used, but

the authors propose a pre-processing of the retrieved acoustic images through K-means clustering

segmentation, followed by morphological processing of said image, in order to remove noise.

Due to the high computational requirements of such algorithms, Ganesan et al., 2016 presents

an adaptation of it into a local occupancy grid, of smaller and fixed size, whose cells are update

through a measurement model (based on a Bayes’ filter) and the vehicle’s motion model.

Feature-based approaches focus on the collection of environmental features. Usually, such

techniques are avoided for unstructured environments such as oceans or lakes, due to a lack of un-

ambiguous features. Nevertheless, Dinuka and Bandara, 2017 is dedicated to the study of common

feature extractors for surface applications and their performance in underwater environments, with

a side-scanning sonar. Through the combination of different feature extractors, very interesting re-

sults were obtained. In Li et al., 2017 a simple thresholding technique is applied to the acoustic

images and, by making use of prior knowledge of the environment the AUV navigates, features are

extracted. In the context of image processing and analysis, Esrafilian and Taghirad, 2017 proposes

a feature-based monocular SLAM implementation for an autonomous flight system. Here, FAST

corner detector (Dinuka and Bandara, 2017) and ORB extractor (Mur-Artal et al., 2015) are used

for feature extraction. Furthermore, in Millar, 2015 the ranges returned by five ranging sonars are,
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upon validation, used to generate possible obstacles (each assigned a radius, position and proba-

bility factor). Additional returns inside of an object radius increased its probability factor. Only

those who exceed a certain probability value are considered.

2.1.3.1 SLAM

SLAM algorithms have been developed as a solution for solving localization and mapping prob-

lems all at once, that arises when vehicle does not have previous access to a map of the environment

it navigates, having only access to measurements and controls (Thrun, 2002). They allow a vehicle

to be placed at an unknown location in an unknown environment and to gradually build a map of

said environment, while simultaneously locating itself within this map. The most common SLAM

algorithms and their respective advantages and disadvantages are presented on table 2.4.

Nevertheless, there is a set of challenging issues associated to underwater SLAM, related to

the unstructured nature of underwater environments and the shortage of reliable features, which

are usually scale dependant and sensitive to viewing angle and scale. Furthermore, regarding the

map building procedure, problems also arises related to correspondence: when a environmental

feature is detected, the algorithm must infer concerning its relation to previously detected features

(Thrun, 2002), so as to find out which are the same.

SLAM Algorithm Advantages Disadvantages

EKF SLAM Good overall performance when features are
present and distinct.

Adding new features no state space requires
quadratic time.

SEIF SLAM Updates performed in constant time. Good
choice for multiple-robot SLAM.

Information matrix actively sparsified. Ma-
trix inversion required for map recovering.

FastSLAM No dependence on motion models
parametrization.

Particle set defines ability to close loops.

GraphSLAM Update of previous poses for data post-
processing.

Computationally heavier. Hard to recover
covariances.

AI SLAM More efficient. Trainning or parameter tunning is required.

Table 2.4: Advantages and disadvantages of common SLAM algorithms

EKF SLAM
One of the most influential SLAM algorithms in existence, the EKF SLAM algorithms em-

ployes the EKF algorithm in order to solve the SLAM problematic (Alcantarilla et al., 2010).

However, as it would be expected, is application is subjected to a number of approximations (Bai-

ley et al., 2006) and assumptions:

• Feature-based Maps - the maps built are composed of a number point landmarks, typically

less than 1000 (Thrun, 2002). The performance of the map building operation is heavily

linked to the employed feature detection methodology.

• Gaussian Noise - Gaussian noise assumptions are made regarding robot motion and per-

ception.
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• Positive Measurements - the EKF SLAM algorithm can only process measurements related

to the sighting of landmarks. It cannot process negative measurements that could occur due

to the sensor’s inability to detect landmarks. This comes as a natural consequence of the

Gaussian belief representation.

As any SLAM algorithm, EKF SLAM, besides estimating the vehicle’s pose xt , also estimates

the position of every detected environmental feature during an operation. This is achieved by,

primarily, extending the state vector yt to include landmark coordinates, as follows (Thrun, 2002):

yt =

[
xt

m

]
(2.1)

=
[
x y θ m1,x m1,y s1 ... mN,x mN,y sN

]T
, (2.2)

where N represents the number of observed landmarks, x, y and θ the vehicle’s coordinates at time

t, mi,x and mi,y the landmark’s coordinates, for landmarks i = 1...N and si its signature, resulting

in a vector of dimension 3+3N. This will also result in an extended state estimation vecto, µt .

As the vehicle moves, the state vector must be updated according to its motion function

g(ut ,yt−1), which must only affect the vehicle’s pose, as all landmarks are expected to remain

at stationary positions:

yt = g(ut , yt−1)+N (0, FT
x Rt Fx) , (2.3)

where ut represent the vehicle’s input controls at time t, yt−1 the state vector at time t−1, Rt the

motion noise covariance and Fx is a matrix that transforms a 3-dimensional vector into a vector of

dimension 3N +3, with only the first three columns different than 0, such that

Fx =

1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 1 0 . . . 0

 . (2.4)

As characteristic of the EKF algorithm, the motion function g is approximated trough a first

order Taylor expansion. So

g(ut , yt)≈ g(ut , µt−1)+Gt ·(yt − µt−1) , (2.5)

where the Jacobian Gt represents the Jacobian of g, with respect to µt−1, evaluated at µt−1 and

ut , which can be further decomposed into the sum of an identity matrix of dimension (3n+ 3) x

(3n+3) with a low-dimensional Jacobian gt , that characterizes the vehicle’s position change

Gt = I +FT
x gt Fx . (2.6)

The results of the motion update cycle are represented through the mean µ t and the covariance
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Σt of the state estimation at time t and computed as follows:

µ t = gt(ut , µt−1) (2.7)

Σt = Gt Σt−1 GT
t + FT

x Rt Fx . (2.8)

At this time, the integration regarding the acquired measurement zt is possible, which is per-

formed taking into account its corresponding measurement function h(yt , j):

z j
t = h(yt , j)+N (0, Qt) , (2.9)

where j represents the index of the observed landmark at time t and Qt the measurement noise

covariance. Once again, the measurement function is approximated via Taylor expansion

h(yt , j)≈ h(µ t , j)+H j
t (yt − µ t) , (2.10)

with H j
t representing the derivative oh h regarding the state vector yt , which factors into a low-

dimensional Jacobian h j
t and a matrix of dimension (3N +3) x 6, Fx, j, that extends the dimension

of h j
t to the dimension of the full state vector. So,

H i
t = hi

t Fx, j (2.11)

and

Fx, j =

[
I3×3 03×(3N−3) 03×3 03×(3N−3 j)

03×3 03×(3N−3) I3×3 03×(3N−3 j)

]
. (2.12)

It is important to note that, when a new landmark is observed, its initial position estimation is

initialized with its expected position, as follows:µ j,x

µ j,y

µ j,s

=

µ t,x

µ t,y

s j
t

+ r j
t

cos(φ t
j +µ t,θ )

sin(φ t
j +µ t,θ )

0

 . (2.13)

For each acquired measurement, a measurement estimation is calculated and, through that, the

corresponding Kalman gain, K j
t , is computed through:

K j
t = Σt H jT

t (H j
t Σt H jT

t +Qt)
−1 . (2.14)

This information is finally incorporated into the final state and covariance estimation:

µt = µ t + Σ
j
t (z

j
t − ẑ j

t ) (2.15)

Σt = Σt − K j
t H j

t Σt . (2.16)

It is important to note that, due to the Kalman gain being fully populated for every state
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variable, the observation of a landmark does not only improve the position estimation of this

landmark but also that of the remaining observed landmarks. This is a direct result of improving

the position estimation of the vehicle, since it will eliminate some uncertainty regarding preciously

detected landmarks.

2.2 Feature Extraction Algorithms

Feature extraction algorithms have been of great importance for many computer vision applica-

tions such as visual odometry, pose estimation, object recognition, object tracking, among others

(Tareen and Saleem, 2018). Their main goal is to determine key features on provided images

which remain locally invariant, so that is possible to detect these even in the presence of rotation

or scale changes (Dinuka and Bandara, 2017). These procedures present a robust solution to solve

problems in identifying reliable reference landmarks for position estimation, which affect geo-

physical navigation procedures and, more precisely, sonar acoustic images. They encompass two

main sub algorithms: feature detectors and feature descriptors.

Feature detectors enable the detection of feature-points (also called interest points or key-

points) in an image. Typically, the detected features take the form or corners, blobs, edges, junc-

tions or lines. These are subsquentely logically described through the unique patterns associated

to the pixels in their neighbourhood (Tareen and Saleem, 2018). This descriptor enables the fea-

ture effective recognition, which is of utmost importance for posterior matching. Some feature

detectors are made available with their proper feature descriptor, such as SURF, BRISK or ORB,

while others are designed individually and can be paired with a range of descriptors. The most

common methods are presented in table 2.5. Hereafter is presented a brief explanation of the

feature detectors and descriptors used in this study.

Detectors Laplacian of Gaussian (LoG)
Harris & Stephens corner detector

Difference of Gaussian (DoG)
Determinant of Hessian (DoH)

Salient Regions
SUSAN

Morphological Interest Points

Descriptors Local Binary descriptors
Spectra descriptor

Basic Space descriptor
Polygon Shape descriptor

Table 2.5: Most common techniques for feature detection and description
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2.2.1 SURF - Speeded UP Robust Features

The SURF algorithm (Bay et al., 2008) is composed of a feature detector and a descriptor. It is

inspired on the SIFT algorithm (Low, 2004), and takes advantage of integral images (Bay et al.,

2008) for better performance.

For better performance in computation time and accuracy, the SURF detector is based on the

computation of the Hessian matrix. Furthermore, we rely on the determinant of the Hessian for

location and scale selection. Therefore, for a given point x = (x,y), at scale σ , the Hessian matrix

H(x,σ ) is defined as follows

H(x,σ) =

[
Lxx(x,σ) Lxy(x,σ)

Lxy(x,σ) Lyy(x,σ)

]
, (2.17)

where Lxx(x,σ) represents the convolution of the Gaussian second order derivative, ∂ 2

∂x2 g(σ), such

as for Lxy(x,σ) and Lyy(x,σ). Since, in practice, the application of Gaussian filters does not

prevent the occurrence of aliasing, making them non-ideal, the SURF descriptor approximates

these with box filters (Bay et al., 2008), which allows for a faster processing of the image. Due

to the application of box filters and integral images, scale space is analyzed by simply up-scaling

filter size. Subsequently, a non-maximum suppression in a 3 x 3 x 3 neighbourhood is applied, in

order to localise interest points in the image and over scales.

The SURF descriptor implies two main operations. Firstly, a reproducible orientation is as-

signed to each previously detected interest point. Thus, Haar Wavelet (Dengsheng, Zhang, 2019)

responses are calculated in the x and y directions within a circular neighbourhood of the interest

point. Again integral images are employed for a faster filtering. Then, the descriptor is built by

firstly constructing a square region around the keypoint and oriented according to the calculated

orientation. Haar Wavelet responses are calculated for several sub regions of our initial square

region, which will compose the feature descriptor. Scale invariance is achieved by turning the

descriptor into a unit vector.

2.2.2 BRIEF - Binary Robust Independent Elementary Features

The BRIEF descriptor (Calonder et al., 2010) makes use of binary strings, in an effort, according

to the authors, to achieve more efficient computation times and memory storage by constructing a

shorter and simpler descriptor.

This algorithm was developed over the premise that image patches may be effectively classi-

fied through a relatively small number of pair-wise intensity comparisons. Therefore, by defining

a series of tests τ on a patch p of size S x S such as

τ(p;x,y) =

1 if p(x) < p(y)

0 otherwise
, (2.18)
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where p(x) represents the pixel intensity at x = (u,vT ), on a set of nd (x,y)-location pairs it is

possible to create a descriptor, which is presented as the following nd-dimensional bitstring

fnd = ∑
1≤i≤nd

2i−1
τ(p;x,y). (2.19)

The tests locations are selected through a sampling geometry based on a Gaussian distribution.

However, since the tests only take into account the information of single pixels, these are very

noise-sensitive. Therefore, a smoothing of the patch is performed before building the descriptor,

in order to reduce sensitivity and increasing stability and repeatability of these.

2.2.3 Harris Corner Detector

One of the most popular interest point detectors, the Harris Corner Detector (Derpanis, 2004) is

based on the local auto-correlation function of a signal. When applied to an image, it allows to

measure local changes with patches shifted by a small amount in different directions. So, for a

given shift (∆x,∆y) and a image point (x,y), the auto-correlation function is defined as follows:

c(x,y) = ∑
W
[I(xi,yi)− I(xi +∆x,yi +∆y)]2, (2.20)

where I(· , ·) represents the pixel intensity and (xi,yi) are points in the Gaussian window W cen-

tered on (x,y). By approximating the shifted image by a Taylor expansion, the auto-correlation

function can be expressed as:

c(x,y) =
[
∆x ∆y

][
∑W (Ix(xi,yi))

2
∑W Ix(xi,yi)Iy(xi,yi)

∑W Ix(xi,yi)Iy(xi,yi) ∑W (Iy(xi,yi))
2

][
∆x

∆y

]
(2.21)

=
[
∆x ∆y

]
C(x,y)

[
∆x

∆y

]
, (2.22)

where the matrix C(x,y) captures the intensity structure of the local neighbourhood. By analysing

its eigenvalues, it is possible to extract some conclusions regarding the analysed points. If both

eigenvalues are small, that indicates that the windowed region is of approximately constant inten-

sity. If one eigenvalue is high and the other low, that is indicative of an edge while a corner results

in simultaneous high eigenvalues.

2.2.4 FAST - Features from Accelerated Segment Test

The FAST detector (Rosten et al., 2010) is essentially a corner detector. Despite not being much

robust to noise, this algorithm is, in general, much faster than the other existing feature detectors

(Dinuka and Bandara, 2017).

For a corner candidate p, the detection procedure, by analysing the circular neighbourhood of

16 pixels around that point, classifies it as a corner if a set of n contiguous pixels, with all intensities

higher than the one of the candidate pixel, Ip, plus a threshold t, or lower than Ip minus the same



18 State of the Art

threshold, is detected. This analysis of the corner candidate’s neighbourhood is performed by

testing the intensity in each position x ∈ {1...16}, relative to p, denoted by p→ x, and classifying

it as follows

Sp→x =


d, Ip→x ≤ Ip− t (darker)

s, Ip− t < Ip→x < Ip + t (similar)

b, Ip + t ≤ Ip→x (brighter)

. (2.23)

After this initial assessment, the points are divided into three groups, according to the previous

classification results, and analysed through a decision tree, which validates the candidate as a

corner or not. This results are lastly subjected to a non-maximum suppression performed in a 3 x

3 mask.

2.2.5 BRISK - Binary Robust Invariant Scalable Keypoints

The BRISK algorithm (Leutenegger et al., 2011) was developed with the objective of achieving

high quality performance at lower computational costs than reference algorithms such as SURF

or SIFT (Leutenegger et al., 2011). For that purpose, it makes use of the FAST detector and

bitstring-based descriptor.

The BRISK detector presents an extension of the FAST detector. With the aim of achieving

invariance to scale, FAST is employed for scale-space analysis. Therefore, a scale-space pyramid

is constructed, whose layers consist of n octaves ci and n intra-octaves di, formed by progressively

half-sampling the original image. Afterwards, the FAST detector is applied to each octave and

intra-octave, using the same threshold, in order to identify possible interest points. Interpolation is

applied at the boundaries of the patch. Finally, the detected points are subjected to non-maximum

suppression in scale-space.

Figure 2.2: BRISK sampling pattern presented in Leutenegger et al., 2011
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For the descriptor building, the algorithm starts off by sampling the neighbourhood of each

interest point based on an unique pattern, shown in figure 2.2 (N location defined equally spaced

on circles concentric with the interest point). To avoid aliasing effects, a Gaussian smoothing

is applied to the points in the pattern. For each sampled point pair (pi, p j), the local gradient

g(p− i, p− j) is computed by

g(pi, p j) = (p j− pi)·
I(p j,σ j)− I(pi,σi)

||p j− pi||2
. (2.24)

Then, the overall characteristic pattern direction of the interest point is estimated through

g =

(
gx

gy

)
=

1
L
· ∑
(pi,p j)∈L

g(pi, p j), (2.25)

where L represents the subset of long-distance pairs.

The binary descriptor is afterwards built by re-sampling the interest point neighbourhood with

the sampling pattern oriented accordingly to the previously calculated direction. Each of the b

bits of the descriptor are determined by performing a series of intensities comparisons between all

point pairs.

2.2.6 ORB - Oriented FAST and Rotated BRIEF

As the name implies, the ORB algorithm (Rublee et al., 2011) makes use of a combination of the

FAST detector and the BRIEF descriptor, whilst proposing solutions to deal with these methods

limitations, such as the lack of an orientation component in FAST or the impossibility of comput-

ing oriented BRIEF features (Rublee et al., 2011).

The ORB interest point detection routine is focused on corner-like features. Therefore, firstly,

FAST interest points are extracted from each level of the scale pyramid of the analysed image

and, afterwards, a Harris corner measure is used to remove responses along edges. The orientation

assignment is then performed based on the calculation of the intensity centroid (Rublee et al.,

2011). For each interest point and associated neighbourhood, the corresponding moments are

given as:

mpq = ∑
x,y

xpyqI(x,y), (2.26)

which allows to calculate its centroid through

C =

(
m10

m00
,
m01

m00

)
. (2.27)

Therefore, the interest point orientation is given by

θ = atan2(m01,m10), (2.28)

where atan2 represents the quadrant aware version of the arctangent.
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Regarding the descriptor construction, the BRIEF descriptor is based on the performance of

a series of binary intensity tests on a smoothed version of the original image. In order to achieve

rotation invariance, a steered version of the BRIEF algorithm is employed. Here, for any set of n

binary intensity tests at location (xi,yi), S is defined as

S =

(
x1, ...,xn

y1, ...,yn

)
. (2.29)

Making use of the interest point orientation θ and the corresponding rotation matrix Rθ , a

steered version of S, Sθ is defined as follows:

Sθ = Rθ S, (2.30)

which defines the new rotation invariant test locations.

2.2.7 Feature Matching

Feature extraction algorithms are a valuable tool for applications related to image analysis. How-

ever, in a number of them, such as pose estimation or object tracking, the detection of key feature

points, by itself, does not provide sufficient information for accomplishing the intended goal.

Therefore, this procedure must be complemented with a mechanism that enables the association

of the the same feature point in different images, taking advantaged of the corresponding feature

descriptor. Thus, usually, a feature matching procedure is associated to the application of feature

extraction techniques. The general feature matching procedure is further detailed on figure 2.3.

Figure 2.3: The feature matching procedure
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Here, feature descriptors are compared and the points that present minimum deviations be-

tween their descriptors are taken as matches (Dinuka and Bandara, 2017). The matching proce-

dure can be carried out according to different strategies, such as nearest neighbour, threshold based

matching or nearest neighbour distance ratio (Tareen and Saleem, 2018). The comparison between

a given feature point and match candidates feature points is performed based on the computation

of L1 or L2 (Euclidean) norms, in the case of string based descriptors, or the Hamming distance,

in the case of binary descriptors, between their corresponding descriptors.

2.3 Summary

In this chapter, a review of the most common algorithms and sensors used for underwater naviga-

tion has been presented. Common localization principles have been introduced in greater detail,

making it possible to argue that one of greatest issues concerning this topic is the growing drift

in position estimation. A number of solutions employing different sensor technologies have been

purposed in order to solve this problem.

Sonars represent one of the most mature technologies for underwater localization and thus have

been more carefully analysed in the present chapter. However, these are affected by a number of

problems which pose significant difficulties to the identification of reliable environmental features

that would allow the estimation of the vehicle’s position. Therefore, a detailed overview of feature

extraction algorithms has also been presented, since these techniques are intended to address such

problems. Despite extensive performance comparisons for optical imaging being presented in lit-

erature, the same does not stand for acoustic imaging and, therefore, further information regarding

this topic is required.
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Chapter 3

System Overview

In this chapter, a more comprehensive overview of the developed solution is presented. Further

detail is given regarding the logical construction of the overall proposed solution and of each

specific block. Figure 3.1 presents the structure of this solution in the form of a block diagram.

Firstly, a more comprehensive analysis of the problems portrayed by acoustic images is in

order. Imaging sonars are able to emit acoustic beams and measure the intensity values of con-

Figure 3.1: Block diagram representation of the developed solution
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(a) Water tank structure used for testing

(b) An acoustic image from the water tank

Figure 3.2: Testing environment and corresponding acoustic representation

sequent echoes from particular places. This information can be subsequently used to generate

acoustic images of the surrounding environment. Figure 3.2 presents the testing environment for

the work carried out, an almost square water tank, and a acoustic image acquired from inside this

same structure. The arches observable in the image represent the water tank walls and the inter-

sections of these, its corners. These contrasting shapes are due to the nature of the sonar data,

since every detected reflection is represented by a detection angle and a detection range, thus, in

polar coordinates. Everything represented after these arches is the result of acoustic echoes and

multipath transmission. Also, as it can be observable, there is quite a deal of background noise

affecting these images. Further complications arise as the AUV starts it motion, since, again due to

the nature of the sonar’s data acquisition process, the structures visible in the images are affected

by geometric deformation.

The literature review carried out for the construction of chapter 2 allowed a deeper study of fea-

ture extraction algorithms. The robustness to noise and geometric deformation presented by each

detection and description procedure studied enable a satisfactory behaviour under the challenges

presented by optical imaging, at a significant reduced computation time cost. Furthermore, the as-

sociation performed between features in consecutive images by the matching procedure presents a

direct and simple solution for the correspondence problem in state estimation procedures (Thrun,
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2002).

As already pointed out in chapter 1, the developed solution is intended to be based on the

application of a MSIS for the collection of environmental data. This data consists of a series of

intensity measurements, which are organized in the form of intensity arrays of the emitted and

subsequently reflected acoustic signals. Therefore, for each scanning angle αi, an ordered set

of m intensities values, represented by 8-bit integers, is generated (Fula et al., 2018). The total

number of measurements bins, m, returned by the sonar, for each scanning angle, is a function

of the maximum range and the bin length for which the sonar is configured. The entirety of the

acoustic scan is composed through the rotation of the sonar’s head. Therefore, the first goal of the

Image Preparation module is the construction of the acoustic images for posterior analysis. This

procedure is further detailed in chapter 4, since the coordinate system considered in this procedure

requires a careful analysis. The second goal of this module is to perform a pre-processing of the

acoustic image generated, so as to remove some of the noise present and improve some of its

characteristics. So, the final goal of the Image Preparation module is to obtain a filtered acoustic

image, in order to enhance the performance of the Feature Extraction module and, consequently,

of the overall solution.

The Feature Extraction module development is based on the application of a feature extrac-

tion algorithm, making use of the characteristics of feature detectors and feature descriptors. The

selection of the methodology to employ requires further analysis of some of the most common

solutions for feature extraction, which is presented in chapter 4. The need for this comparison

arises from the diversity of solutions presented in literature and a lack of more comprehensive

studies regarding their applicability for the case of underwater acoustic imaging. This module is

also responsible for performing the association of previous and current detected features.

The set of matched features acquired through the Feature Extraction module requires further

processing so that a trustworthy AUV pose estimation may be retrieved, as well as a representation

of the environment the vehicle navigates. The objective of the Simultaneous Localization and
Mapping module is to perform this pose estimation, while also creating and constantly updating a

map of the vehicle’s surroundings. The development of this module is carefully detailed in chapter

6.

3.1 Tools and Methods

For the purpose of this dissertation, the SHAD AUV (Small Hovering AUV with Differential ac-

tuation) (Goncalves et al., 2016) was the robotic platform utilized. SHAD is a micro-sized AUV,

modeled on a torpedo-like geometry, designed for operations in indoor and outdoor environments.

Its dimensions (0.15m hull diameter and 1.2m length) and weight (16kg) make it a vehicle easy

to deploy and operate. Furthermore, it presents a modular design that allows expanding its struc-

ture making use of modules that are previously developed and tested in isolation. The thrusters

configuration grant SHAD four degrees of motion freedom (surge, heave, pitch and yaw).
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MSISs are of particular interest for AUV navigation due to the trade-off offered between cost

and performance. Moreover, they enable covering quite extensive areas, over a few dozen of me-

ters, at configurable sweeping angles. Therefore, in the context of this study, a Tritech Micron

sonar (International, n.d.) has been equipped on the vehicle, allowing the application of echo-

localization techniques. This sonar presents an operating frequency of 700kHz, associated to a

cone shaped beam of 35o vertical width and 3o horizontal width. Furthermore, it presents a con-

figurable scanning range, from a minimum of 0.3m up to a maximum of 75m, and a configurable

scanning resolution, of 0.45o, 0.9o or 1.8o. Lastly, the scanned sector may also be configured and

is variable up to 360o.

Regarding the data acquisition procedures and further tests performed in the context of this

dissertation, these were undertaken in the water tank presented in figure 3.2a, an almost square

shaped tank of 4.4m length, 4.6m width and 1.8m deep. Moreover, the acquisition of ground-truth

information in the several testing scenarios considered was performed through physical measure-

ment.



Chapter 4

Keypoint Detection and Description
Analysis

4.1 Introduction

Accurate navigation is fundamental for an AUV to be able to safely explore unknown environ-

ments. Therefore, sensors with high resolution and accuracy are desirable but the rapid attenuation

of higher frequency signals and the unstructured nature of the underwater environment pose great

restrictions to the range of solutions available. For their overall robustness, sonars emerge as one

of the most preferable technologies for this purpose. When deployed on an AUV, sonars are able

to generate acoustic images of the AUV’s surroundings through natural features present in this

environment, as shown in figure 4.1.

In image based navigation, natural features, depicted on the acquired images, are used for

localization and obstacle detection purposes. However, such constitutes no ordinary task, since

acoustic images are affected by a number of problems, such as the presence of acoustic shadow,

low resolution, distortion and range-varying attenuation (Tueller et al., 2019). Therefore, in recent

years, there has been increased research interest on this thematic, with especial focus on feature

extraction algorithms.

Figure 4.1: Acoustic image obtained through mechanical scanning imaging sonar
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However, most of the feature extraction algorithms available have been originally developed

for optical images (Dinuka and Bandara, 2017). Therefore, it is important to identify the most

suitable algorithms to face the challenges presented by acoustic images and the environment in

question. Some work has already been developed on this subject but the conclusions diverge. As

reported in the literature, for traditional optical images, ORB and BRISK are better in repeatability

than SURF or SIFT and, in addition, the most efficient ones (Tueller et al., 2019). Furthermore,

SURF and SIFT are found to be the ones with higher computational costs (Tareen and Saleem,

2018). FAST, Harris and Shi-Thomas are very susceptible to scale variations (Tareen and Saleem,

2018). SIFT is the most accurate algorithm (Tueller et al., 2019) while SURF presents itself as the

most robust one (Dinuka and Bandara, 2017). However, when it comes to acoustic imaging, these

premises do not hold true. In this scenario, Harris and FAST are able to extract the most number

of keypoints (Tueller et al., 2019) but present low matching ratings. SURF presents the highest

matching ratio and an overall robustness to changes in rotation, scale and brightness (Dinuka and

Bandara, 2017). BRISK returns the lesser number of keypoints (Dinuka and Bandara, 2017). Fur-

thermore, it has been noticed that, for acoustic images, the association between the same feature

in different images is troublesome, due to their properties.

Therefore, this chapter presents a performance analysis and comparison of the SURF, ORB,

BRISK and SURF-Harris algorithms applied to acoustic images, generated through a MSIS. This

analysis is based in the collection of typical statistics in image processing evaluation but also in

a more qualitative evaluation, since some aspects of each algorithm’s performance are quite to

laborious quantify.

4.2 Feature Extractors Performance Analysis

Feature extraction algorithms have proven to be an useful tool for visual odometry purposes.

Moreover, due to the characteristics of acoustic images and feature detectors capabilities, initial

studies point to the possibility of making use of these techniques for object detection purposes, at

low computational costs.

Therefore, since the success of sonar image processing based navigation heavily depends on

the performance of the employed feature extraction algorithm, a comparison of the SURF, BRISK,

ORB and SURF-Harris (proposed in Dinuka and Bandara, 2017, it combines the Harris detector

and the SURF descriptor) algorithms was executed and is presented hereafter, in order to assess

their adequacy to the proposed task.

4.2.1 Methodology

For the purpose of this study, MATLAB R2019a software was used, along with functions and

tools available in the Image Processing Toolbox, for image preparation and feature extraction and

matching. Furthermore, in order to gather the necessary data for the performance evaluation, the

SHAD AUV, equipped with a Tritech Micron Sonar was deployed. The sonar is mounted in the
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forward hull of the vehicle, orientated accordingly to its longitudinal axis. The comparison was

performed taking into account the image processing methodology presented in figure 4.2.

Figure 4.2: Image processing procedure for feature extraction comparison

4.2.1.1 Sonar Data Acquisition

Data surveys were carried out in an almost square water tank, using the SHAD AUV, both depicted

in figure 4.3. Furthermore, a floater was also deployed and moored close to the left bottom corner

of the tank, so as to provide for a more distinguishable obstacle for later studies.

During the deployment of SHAD, the installed sonar was able to collect acoustic data through

a series of 360o scans of the AUV’s surroundings. A total of 19 scans were performed, divided

into 2 sets, one with 8 scans and other with the remaining 11. For the first group, dataset1, the

AUV was kept immobile at surface, at the right top corner of the tank. The second scan, dataset2,

was collected with the vehicle still at surface but, in this case, moving, at almost constant velocity,

from the top right corner of the tank to the left one. This scenarios were designed in order to better

portray missions situations and preform an analysis in the light of the challenges presented by

these. Ground-truth measurements were performed regarding the AUV’s initial and final positions

and the floater’s position, for both datasets. The tank’s dimensions were also measured.

4.2.1.2 Acoustic Image Composition

For the purpose of this study, the sonar was calibrated for a maximum range of 5.0 meter, with a bit

length of 1.25x10−2 meters and an angle step of 1.8o. Therefore, each collected intensity array is

composed of 399 bins and a single scan comprises 200 arrays. The acquisition of a complete scan

Figure 4.3: The SHAD AUV and the Water tank structured used for testing procedures
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requires a total time of 8.0 seconds. These parameters are key for the construction of an acoustic

image. For this purpose, it is also important to take into consideration that acoustic images can be

presented according to a cartesian coordinate system or a polar coordinate system.

(a) Image composed based on polar coordinate
system

(b) Image composed based on
cartesian coordinate system

Figure 4.4: Results of different image composition techniques

As detailed above, each intensity value is associated with a detection position, represented, by

default, in polar coordinates, through the scanning angle αi and the bin position ρ j. Therefore,

an acoustic image Imp , as presented in figure 4.4a, can be constructed by concatenating the 200

intensity arrays of a scan as follows:

Imp =


i(α1,ρ1) i(α1,ρ2) · · · i(α1,ρ399)

i(α2,ρ1) i(α2,ρ2) · · · i(α2,ρ399)
...

... · · ·
...

i(α200,ρ1) i(α200,ρ2) · · · i(α200,ρ399)

 , (4.1)

where i(αi,ρ j) represent the intensity value at position j of the intensity array for the αi scanning

angle. Therefore, the obtained image presents a size of 399 x 200 pixels. Because of the sonar’s

configurations, the initial scanning angle is set to its 180o reference, aligned with the AUV’s

longitudinal axis. Note that only the bin position is used and not the corresponding detection

range since this information is sufficient for image composition.

The composition of an acoustic image considering a cartesian coordinate system presents a

more complex problem. Considering the sonar’s frame of reference, each intensity measurement

bin can be associated with an image pixel pxy, whose position (x,y) may be extrapolated by con-

verting the bin’s relative position information into cartesian coordinates through:

(x,y) =

x = xo +ρ j·cos(αi)

y = yo +ρ j·sin(αi)
, (4.2)

where (xo,yo) represent the central image pixel and referential origin. However, since the data

acquisition process is based on environment discretization, point density becomes smaller as the
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distance from (x0,y0) increases, which pose significant problems to a correct analysis of the image.

Therefore, instead of associating each intensity measurement with a single pixel, each bin is used

to update several pixels, by considering the sonar beam model presented in International, n.d.

Thus, each pixel intensity I(pxy) is calculated as

I(pxy) =
∑n i(αi,ρ j)

n
, (4.3)

where n is corresponds to the total number of intensity measurements associated with a given

image pixel. The final image has a size of 799 x 799, as the one presented in figure 4.4b.

A brief analysis of both composition processes was conducted. As it can be perceived through

the previous descriptions, the cartesian image composition algorithm is more computationally

demanding and has increased memory storage requirements, mainly due to the resulting image

size. Furthermore, as it is shown in figure 4.4, the position from which data is acquired has

significant impact on the portrayed features in the resulting image, posing additional challenge to

the efficient performance of feature extraction algorithms. This problem is much less noticeable

on polar based images. Therefore, for the purpose of this study, the polar coordinate based image

composition methodology was used.

4.2.1.3 Image Pre-processing

As it has been mentioned and is perceivable in figure 4.4, the obtained acoustic images present a

variety of environmental features, as well as several problems, such as background noise, multi-

path interference and multiple echoes. Therefore, an image preparation step was included, in order

to decrease the amount of clutter present in each image, which will help preventing the occurrence

of false-positives. Note that, in the context of this study, a false-positive refers to any point which is

classified as a feature-point but is in fact the result of noise or echoes. The proposed methodology

is divided in two sub-stages, the threshold stage and the filtering stage. The intermediate results

of each sub-stage are presented on figure 4.5, applied to image 6 of dataset2, as an example.

The presence of background noise of low intensity poses as one of the main reasons for the

occurrence of false-positives. To minimize its effects, a simple threshold operation is performed,

targeting lower intensity points. The results of this operation are exemplified on figure 4.5b. Since,

typically, the intensity difference between a point and its neighbourhood points is a key factor for

classifying it as an interest point, the effect of contrast enhancement techniques was also studied.

However, due to the overall feature ambiguity present in acoustic images, the achieved results

were not satisfying. By altering the brightness level of the image, many present features were

compromised and the performance of the feature extraction algorithms severely affected.

In the second sub-stage, the image is passed trough an average filter to remove the "salt and

pepper" noise generated in the previous stage, as shown in figure 4.5c. The most common solutions

in image processing rely on median filters, average filters or Gaussian filters. Median filters are

usually the best option for removing this type of noise. However, the amount of blurriness to which

the acoustic images are subjected compromises feature integrity. A similar problem is noticeable
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(a) Original image (b) Image after threshold operation

(c) Image after filtering operation

Figure 4.5: Intermediate results of image pre-processing routine applied to image 3 of dataset2

in the case of Gaussian filters. Average filters provide the most satisfying balance between noise

removal capabilities and image blurring. Furthermore, the insertion of some degree of smoothing

in the image contributes to an increasing stability and repeatability of feature descriptors (Calonder

et al., 2010). Also, image blurring allows feature extractors to focus on larger keypoints (Dinuka

and Bandara, 2017).

4.2.1.4 Feature Extraction

After being pre-processed, in this stage, the image is passed through the feature extraction al-

gorithms selected, in order to extract interest points and their respective descriptors. Depending

on the algorithm used, the type and overall shape of the feature varies. The main objective lies

on finding locally invariant points, so that, even in the presence of strong image transformations,

environmental features may be extracted and processed for navigation purposes.

As it has been presented in section 2.2, each of the studied feature detectors makes use of its

own metric, that henceforward will be referred to as detection score, for classifying a point as an

interest point or not.

However, contrary to what would be expected, there is not a clear relation between the detec-

tion threshold used and the number of false-positives that occur. This is due to the characteristics of

acoustic images, since, despite being generated by acoustic echoes or noise, false-positive points

are very similar to interest points generated by environmental features, fulfilling the detection

criteria. For this reason, the selected feature extractors’ accuracy is crucial.

Therefore, in order to achieve uniformity across all the methods compared, the detection

threshold of each one was set as to allow the detection of at least 50 interest points in each image
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of both datasets. Having collected the desired interest points, the corresponding descriptors are

calculated, stored and passed to the next stage.

4.2.1.5 Feature Matching

In this last step of the image processing procedure, feature matching is performed. For the purpose

of image based navigation, this step presents itself as of key importance for the overall success of

the employed methodology. Firstly, it is through this step that data which enables the application

of visual odometry techniques is extrapolated. Secondly, since false-positive points are extremely

volatile, it is expected that a vast majority of these are not possible to be matched throughout a

collection of scans. Therefore, the matching step acts as a filtering step in the current procedure,

improving the confidence on the used data.

In this step, only the interest points detected in each pair of consecutive images are taken

into account. For SURF and SURF-Harris, the sum of squared differences is used to perform the

required comparison, since their respective descriptors are string based. In the case of BRISK

and ORB, the feature comparison is performed through Hamming distance computation. These

metrics compose our matching score and allow the application of the nearest neighbour search

algorithm as a matching strategy. Furthermore, a matching threshold is employed in order to

remove any possible outliers, this is, any incorrect match. A feature is only matched if its closest

neighbour matching score is lower than this threshold. Otherwise, the feature is not matched. For

string based descriptors, the applied matching threshold was set to 5.0, whereas in the case of

binary descriptors, the corresponding threshold was set to 20.0. All in all, the robustness of the

feature descriptor used is of utmost importance for the successful navigation of the AUV.

4.3 Results and Discussion

As discussed in section 4.2.1, the pre-processed acoustic images are passed through the SURF,

ORB, BRISK and SURF-Harris feature extractors. Figure 4.6 presents an example of the obtained

results for each of these algorithms.

An initial qualitative assessment is ought to be made regarding these results. As it can be

perceived by an analysis of figure 4.6, it is clear that the distribution of the detected interest points

varies according to the employed algorithm. SURF points are typically more scattered throughout

the image. This is mainly due to the greater variety of feature shapes (blobs, edges, corners, ...) that

SURF is intended to be able to detect, along with its scale-space analysis methodology. SURF-

Harris presents a similar behaviour but it is notorious a tendency for this algorithm to generate

some point clusters in the presence of strong isolated features. In the case of ORB and BRISK,

the propensity to generating point clusters is even more notorious. Feature distribution takes key

importance especially during the position estimation procedure. The data that can be extracted

from points located very close to each other ends up being quite similar and not adding any real

value to our estimation.
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(a) Interest point detection with SURF algorithm

(b) Interest point detection with ORB algorithm

(c) Interest point detection with BRISK algorithm

(d) Interest point detection with SURF-Harris algorithm

Figure 4.6: Interest point detected in image 3 of dataset 2 with the algorithms under analysis
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Figure 4.7: Total number of detected interest points by each algorithm in each image of dataset1

Figure 4.8: Total number of detected interest points by each algorithm in each image of dataset2

For an initial feature detector analysis, the total number of features detected through each

method in each image was recorded. The results are presented in figures 4.7 and 4.8, where it is

possible to observe that ORB and Brisk are able to extract the most features in every single image,

while SURF and SURF-Harris are on the lower side of feature detection. It is also important to

note that, as it is shown in the presented results, the movement of the AUV has a small impact on

the algorithms’ performance.

In order to better assess each detector’s accuracy and corresponding descriptor robustness, only

the 50 best interest points detected, according to the associated detection score, in each image were

taken into account. This measure was taken in order to guarantee uniformity across the performed

evaluation. The chosen value was determined experimentally and found to be sufficient for a sound

representation of the algorithms’ performance.

Regarding detection accuracy, the best 50 interest points in each image were carefully analysed

and the number of false-positives among these was collected. As it can be observed in figures 4.9

and 4.10, ORB and SURF perform very similarly, producing less false-positives than BRISK or

SURF-Harris. Furthermore, it is possible to conclude that the motion of the AUV has no significant

effect on the algorithms’ accuracy. Although, as shown by the results for images 9, 10 and 11 of

dataset2, presented in figure 4.10, some viewpoints are less susceptible to the occurrence of false-

positives, due to the characteristics of the testing environment.

For the assessment of descriptor robustness, once again, only the 50 best interest points de-

tected in each image where taken into account. As detailed in section 4.2.1, during the matching

procedure interest points’ descriptors collected from consecutive images are compared. The pro-
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Figure 4.9: Number of false-positives detected amongst the 50 best interest points detected in
each image of dataset1

Figure 4.10: Number of false-positives detected amongst the 50 best interest points detected in
each image of dataset2

SURF ORB BRISK Harris-SURF
Image Pair Matches Outliers Matches Outliers Matches Outliers Matches Outliers

1-2 41 1 38 1 32 0 29 0
2-3 43 0 45 0 40 0 35 0
3-4 43 0 42 0 44 0 34 1
4-5 41 0 43 0 43 0 38 0
5-6 47 0 43 0 43 0 37 1
6-7 43 0 41 0 44 1 33 0
7-8 44 0 42 0 38 0 38 0

Table 4.1: Number of matches performed and corresponding number of outliers for dataset1

cedure was employed to both datasets and the number of matches per image pair, as well as the

number of outliers generated was tabulated and are presented in tables 4.1 and 4.2. Sample results

are presented in figure 4.11 An important conclusion can be made from these results. The move-

ment of the AUV has a great impact on the number of matches performed. It is possible to observe

significant decreases in the number of matched features as well as a rise in the number of outliers

from dataset1 results to dataset2 results.

Further observations can be made by an analysis of figures 4.12 and 4.13. Despite presenting

similar performances for dataset1, the algorithms behave differently in the case of dataset2. It is
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SURF ORB BRISK Harris-SURF
Image Pair Matches Outliers Matches Outliers Matches Outliers Matches Outliers

1-2 29 3 23 1 13 1 20 3
2-3 24 2 20 1 16 1 21 3
3-4 18 8 9 4 2 1 21 11
4-5 16 9 4 2 2 0 23 13
5-6 14 5 7 2 2 1 15 8
6-7 15 6 2 1 2 2 11 8
7-8 11 4 4 0 4 1 15 9
8-9 17 7 2 1 4 1 14 13
9-10 17 5 5 1 3 2 14 9
10-11 16 5 8 2 7 1 15 14

Table 4.2: Number of matches performed and corresponding number of outliers for dataset2

clear that both SURF and SURF-Harris are able to extract far more features in every image than

both BRISK and ORB. Furthermore, a strong decrease in matched features is observable from

image pair 2-3 to image pair 3-4. The reason for this is associated with the fact that image 2 is

acquired while the AUV is just starting its movement action, so feature deformation affecting this

image is not so intense. This decrease is far more notorious in the case of BRISK and ORB, whose

descriptors are binary, which indicates a greater inadequacy of such descriptors to the scenario in

study. However, it is also possible to observe that both SURF and SURF-Harris produce higher

numbers of outliers than BRISK and ORB.

SURF ORB BRISK Harris-SURF

Image
Pair

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)
1-2 0,1406 0,0049 0,1455 0,0203 0,0036 0,0239 0,5707 0,0035 0,5742 0,0329 0,0038 0,0367
2-3 0,1427 0,0034 0,1461 0,0185 0,0036 0,0220 0,5811 0,0032 0,5843 0,0453 0,0543 0,0996
3-4 0,1561 0,0036 0,1597 0,0315 0,0055 0,0371 0,5899 0,0023 0,5922 0,0823 0,0073 0,0895
4-5 0,1665 0,0032 0,1697 0,0339 0,0030 0,0369 0,6866 0,0024 0,6890 0,1032 0,0064 0,1096
5-6 0,1720 0,0036 0,1756 0,0198 0,0056 0,0254 0,8010 0,0023 0,8033 0,1319 0,0441 0,1760
6-7 0,1629 0,0029 0,1657 0,0173 0,0033 0,0206 0,8465 0,0026 0,8492 0,1132 0,0567 0,1699
7-8 0,1549 0,0035 0,1583 0,0213 0,0029 0,0242 0,8124 0,0023 0,8147 0,0582 0,0558 0,1141

Table 4.3: Computation time measurements results performed for each algorithm for dataset1

SURF ORB BRISK Harris-SURF

Image
Pair

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)

Detection
Time (s)

Matching
Time (s)

Total
Computation

Time (s)
1-2 0,1409 0,0029 0,1438 0,0154 0,0032 0,0186 0,5433 0,0186 0,5619 0,0938 0,0538 0,1476
2-3 0,1427 0,0029 0,1456 0,0122 0,0042 0,0164 0,5548 0,0025 0,5572 0,1204 0,0051 0,1255
3-4 0,1486 0,0031 0,1517 0,0121 0,0027 0,0149 0,5756 0,0031 0,5786 0,0734 0,0519 0,1252
4-5 0,1555 0,0026 0,1581 0,0169 0,0035 0,0204 0,5838 0,0294 0,6132 0,0778 0,0516 0,1295
5-6 0,1596 0,0052 0,1648 0,0196 0,0025 0,0221 0,5822 0,0114 0,5935 0,0791 0,0060 0,0851
6-7 0,1466 0,0029 0,1495 0,0200 0,0024 0,0224 0,5740 0,0023 0,5762 0,0676 0,0051 0,0727
7-8 0,1533 0,0032 0,1564 0,0176 0,0022 0,0198 0,5613 0,0026 0,5638 0,0680 0,0044 0,0724
8-9 0,1665 0,0036 0,1701 0,0153 0,0026 0,0180 0,5659 0,0028 0,5687 0,0505 0,0035 0,0540

9-10 0,1969 0,0039 0,2008 0,0179 0,0025 0,0205 0,5760 0,0026 0,5786 0,0596 0,0037 0,0634
10-11 0,2087 0,0032 0,2120 0,0191 0,0043 0,0234 0,6390 0,0023 0,6413 0,0728 0,0076 0,0803

Table 4.4: Computation time measurements results performed for each algorithm for dataset2

Due to the real time requirements of navigation procedures, computation time measurements

regarding feature extraction and feature matching routines were performed. These are presented
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(a) Feature matching with SURF algorithm

(b) Feature matching with ORB algorithm

(c) Feature matching with BRISK algorithm

(d) Feature matching with SURF-Harris algorithm

Figure 4.11: Feature points matched in image 3 of dataset2 with the algorithms under analysis

in tables 4.3 and 4.4. Note that, since these time measurements are presented for each consecutive

image pair, the tabulated feature extraction computation time is the result of the sum of the feature

extraction computation time of each image of the pair. These results reveal that ORB is the fastest

algorithm, whereas BRISK is the slowest. SURF-Harris presents shorter computation times than

SURF. These differences are mainly due to each algorithm’s feature extraction computation speed.

It is important to note that the time measurements obtained are heavily dependent on the tools and

computational capacity available.
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Figure 4.12: Number of matches performed for each image pair of dataset2

Figure 4.13: Number of outliers detected amongst the matched features in each image pair of
dataset2

Therefore, taking into account all the different aspects analysed, it is possible to conclude that

SURF is the algorithm best suited for the task at hands. Its required computation time, despite

not being the shortest, does not compromise real time applicability. It has proven to be one of the

most accurate algorithms and the one that is able to return the most matches. Furthermore, the

presented interest point distribution is ideal for localization purposes. Moreover, due to the nature

of its descriptors, the incorporation of additional information into it, that will allow for a decrease

in the number of registered outliers, can be performed more readily.

4.4 Summary

In this chapter, a comprehensive performance evaluation of the SURF, ORB, SURF-Harris and

BRISK feature extraction algorithms has been presented. The results obtained indicate that the

characteristics of acoustic images put significant challenges to all these algorithms. Nevertheless,

SURF and ORB have shown the most satisfactory behaviours under these constraints. However,

SURF presents valuable characteristics regarding the distribution of detected features and type of

feature it is able to detect. Therefore, it has been considered the most promising methodology for

the main objective of this work.
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Furthermore, it has been shown that the matching procedure, especially when acoustic images

are acquired with the AUV in movement, presents significant problems, due to the reduced number

of matches performed and high outlier ratios shown. It is then possible to conclude that the current

information portrayed by the studied feature descriptors is insufficient for acoustic images match-

ing. Therefore, further pertinent data must be incorporated into SURF’s descriptor. This necessity

was also pertinent in the choice of SURF as the solution to use throughout the remainder of this

work, since, due to its non-binary nature, it will allow a simpler integration of new information.



Chapter 5

Feature Matching

5.1 Introduction

The results presented in the previous chapter prove that the feature matching procedure is a chal-

lenging operation under the several constraints presented by acoustic images. In truth, the perfor-

mance of the feature descriptor and, therefore, of the matching procedure is highly related to the

combination detector-descriptor used (Dinuka and Bandara, 2017). Due to the nature of the acqui-

sition process, the acoustic images are highly susceptible to viewpoint variations or environment

changes such that, as portrayed by the results obtained for dataset1, even features extracted from

successive images of the same scenario, taken from the same viewpoint, may not be matched with

any other. Furthermore, the lack of unambiguous features in the underwater environment lead to a

number of incorrect matches between different interest points.

Due to the importance of the matching step on the navigation operation, it matters to improve

the robustness of SURF’s spectra descriptor, as well as the effectiveness of the matching proce-

dure. In this chapter, a solution is proposed, based on extending the existing descriptor, in order

to incorporate further information regarding the interest point. The modification of the feature de-

scriptor implied a redesigning of the matching procedure, so as to accommodate for this changes.

However, this initial solution has proved to be flawed and insufficient to overcome the problems

detected during the analysis presented in the last chapter. Therefore, further development of this

new procedure was carried out and is presented hereafter, along with representative results of its

performance.

5.2 SURF’s Spectra Descriptor

Although a brief summary of the SURF algorithm has already been presented, a more detailed

overview of its descriptor is in order, so as to better understand its building process. As it has been

stated, SURF’s descriptor building process is divided into two steps, the orientation assignment

step and the descriptor extraction step.
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In the first step, a reproducible orientation is identified for each interest point. For that purpose,

for each interest point, the Haar-wavelet responses in the x and y directions are calculated taking

into account a circular neighbourhood of radius 6s, where s represents the detection scale, around

the point. Due to the dimensions wavelets may reach, this operation is performed making use of

integral images. The resulting wavelet responses are then weighted with a Gaussian, of σ = 2.5s,

centered at the interest point. Finally, the assigned orientation is estimated by the sum of the

weighted responses within a sliding sector window of size π

3 .

Having calculated an orientation for each interest point, the description extraction procedure

starts by constructing a square region centered around the point and aligned with its orientation.

This region is then split into smaller 4 x 4 sub-regions. For each sub-region, its Haar-wavelet

responses in the horizontal direction, dx, and vertical direction, dy, are calculated and weighted

with a Gaussian of σ = 3.3s. These responses dx and dy are then summed up over each sub-

region, along with its absolute values, |dx| and |dy|. Hence, each sub-region is associated with a

descriptor vector vi, such that

vi =
[
∑dx ∑dy ∑ |dx| ∑ |dy|

]
, (5.1)

resulting in a final descriptor vector D, for each of the K detected interest points, of length 64, that

encompasses all the singular sub-region descriptors, as follows:

Dk =
[
v1 v2 · · · v64

]
. (5.2)

Invariance to scale is achieved by turning the final descriptor into an unit vector.

5.3 Proposed Solution

SURF’s Spectra Descriptor aims at describing an interest point by capturing and portraying its in-

tensity structure. It makes use of relative strengths and orientations of gradients in order to reduce

the effect of photometric changes. But, as it has been shown by the analysis presented in chap-

ter 4, this methodology is not sufficiently robust when applied to acoustic images. Furthermore,

image distortion resulting from viewpoint changes presents additional challenges to the selected

methodology. This statement relies on the fact that, in several cases, the same interest points are

indeed detected in consecutive images but not every point is correctly matched.

Taking this difficulties into consideration, it is reasonable to assume that, during the matching

procedure, restricting the number of candidate interest points that will be compared with a given

initial interest point can result in an improvement to the method’s performance. Since, between

consecutive images, it is not expected a feature point’s image localization to suffer great variations,

the intended goal can be achieved by incorporating such information into the existing descriptor,

which will take the following form:

Dk =
[
v1 v2 · · · v64 xk yk

]
, (5.3)
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where xk and yk represent the feature point’s image position coordinates. Thus, the resulting

matching score will reflect the distance between the candidate point and the initial feature point,

therefore allowing the rejection of candidates far form an expected detection region, depending

on the employed matching threshold. Note that, with the AUV in movement, since the analysed

acoustic images are generated based on its frame of reference, variations on features’ relative

localization are to be expected and accounted for when defining this threshold.

However, while introducing a dependency from feature localization into the matching proce-

dure, it is important to stress that the movement of the AUV will impact features’ image local-

ization differently, according to their respective detection range. This is mainly due to a loss of

detection resolution with the distance to the AUV. Therefore, features detected closer to the vehi-

cle will suffer greater variations in their image position than the ones detected further away. So,

it is possible to conclude that descriptor comparison must no longer be performed making use of

a fixed matching threshold, due to the feature descriptor being extended. Therefore, an adaptive

threshold methodology was developed.

The loss of detection resolution with increasing detection range implies that, for feature points

at lower detection ranges, the matching threshold should be higher than the one employed to

feature points at higher detection ranges, since higher relative positional drifts are expected for

the firsts, with the AUV in movement. With these constraints taken into account, a threshold

function is proposed, which allows determining a matching threshold according to the feature

point detection range, presented below:

fthreshold(r) = b+d·e
−r
Nb , (5.4)

where r the feature detection range, b represents an offset value that will act as the matching

threshold when the vehicle is stopped, Nb the total number of intensity bins, d an AUV’s velocity

related gain intended to adjust the matching threshold according to it and calculated as follows:

d = k·
√

v2
t +w2 , (5.5)

where vt represents the AUV’s translation velocity, w the AUV’s rotation velocity and k a simple

correction gain defined experimentally. Thus, the matching procedure still relies on a nearest

neighbour search algorithm but the matching score is now obtained through the computation of

the Euclidean Distance for feature descriptor comparison.

An initial evaluation of this first solution has shown a significant improvement in the number

of performed matches. However, despite restricting the number of feasible candidate points for a

correct match, through the inclusion of feature points’ image position information into the feature

descriptor, it is still notorious a number of incorrect associations. As exemplified in figure 5.1a,

extending the feature descriptor allows a correct differentiation between features significantly dis-

tant, but does not hold sufficient strength to enable the distinction between close similar features.

Therefore, a new filtering layer was inserted into the proposed solution, in order to make up for

the shortcomings of the initial solution.
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(a) Matching result example for initial proposed solution

(b) Matching result example for final proposed solution

Figure 5.1: Example of the correction introduced by a new filtering layer in the matching process

This new filtering layer is essentially based on the analysis of the original feature descriptor,

since it only focus on the feature point’s intensity structure. Thus, taking into account the already

developed methodology, after a possible match is performed, a new feature descriptor comparison

is performed between the matched points but, this time, making use of the only the original SURF’s

Spectra Descriptor, corresponding to the first 64 bytes of the extended descriptor. Therefore,

this additional feature comparison, again based on the computation of the Euclidean Distance

between the two descriptors, whose result constitutes the deformation score, will focus solely on

the feature point’s intensity structure. If this deformation score is below a predefined threshold, the

deformation threshold, the performed matched is kept. Otherwise, the second best possible match,

according to the matching score, is analysed, until a candidate point that fulfills both criteria is

found. If no candidate point is found, the initial point is not matched. This procedure is described

in figure 5.2.

So, by introducing this new sub-step in the matching procedure, the ability to better differen-

tiate close interest points is achieved, as exemplified in figure 5.1b. Further comparison results

between the initial and final proposed solutions are presented in section 5.4.

5.4 Results and Discussion

For a more comprehensive analysis of the proposed solution performance, both the initial version

and the final version were employed to dataset1 and dataset2 and compared with the results

obtained for the original matching procedure. To guarantee uniformity in the comparison, the



5.4 Results and Discussion 45

Figure 5.2: The final proposed solution procedure

same methodology presented in figure 4.2, back in chapter 4, was employed. Once again, only

the 50 best interest points detected, according to the associated detection score, were taken into

account for this analysis. The number of performed matches, the number of detected outliers and

the required computation time for the matching procedure were collected and are tabulated in table

5.1 and table 5.2.

Due to the extension of the feature descriptor, the employed matching threshold is required

to account for the corresponding increase in matching scores. Consequently, and due to the im-

plementation of a dynamic matching threshold methodology, the number of matched features is

higher for both the initial and final proposed solutions. This effect is even more notorious in image

regions associated with lower detection ranges, as depicted in figure 5.3, since these regions are

associated to higher matching thresholds. Note that, for dataset1, due to the absence of motion,

the matching threshold assumes a fixed value and, therefore, the difference between the obtained

results is not so accentuated.

However, as it has been stated in the previous section, the initial proposed solution is insuf-

ficient to distinguish feature points close to each other and thus, a significant high number of
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(a) Feature matching results with original procedure

(b) Feature matching results with initial solution

(c) Feature matching results with final solution

Figure 5.3: Feature point matching results for image 3 of dataset2

Original Matching Procedure Initial Proposed Solution Final Proposed Solution
Image Pair Matches Outliers Matching Time (s) Matches Outliers Matching Time (s) Matches Outliers Matching Time (s)

1-2 41 1 0,0049 45 0 0,0030 42 0 0,0044
2-3 43 0 0,0034 46 0 0,0055 45 0 0,0055
3-4 43 0 0,0036 46 2 0,0026 44 0 0,0026
4-5 41 0 0,0032 46 0 0,0026 45 0 0,0028
5-6 47 0 0,0036 47 0 0,0026 47 0 0,0024
6-7 43 0 0,0029 48 0 0,0032 47 0 0,0035
7-8 44 0 0,0035 48 0 0,0033 47 0 0,0025

Table 5.1: Number of matches performed and corresponding number of outliers and computation
time required for dataset1

outliers is registered with this procedure. This shortcoming is especially worrying when the AUV

is in motion, since, as depicted in figure 5.4, this initial solution produces the highest number of

outliers for the majority of the testing image pairs. Furthermore, for the case of image pair 9-10,
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Original Matching Procedure Initial Proposed Solution Final Proposed Solution
Image Pair Matches Outliers Matching Time (s) Matches Outliers Matching Time (s) Matches Outliers Matching Time (s)

1-2 29 3 0,0029 36 1 0,0024 30 0 0,0049
2-3 24 2 0,0029 39 2 0,0043 35 1 0,0051
3-4 18 8 0,0031 33 5 0,0028 29 3 0,0030
4-5 16 9 0,0026 21 9 0,0030 16 3 0,0029
5-6 14 5 0,0052 26 9 0,0026 17 4 0,0031
6-7 15 6 0,0029 23 7 0,0023 14 4 0,0035
7-8 11 4 0,0032 28 9 0,0025 22 4 0,0026
8-9 17 7 0,0036 20 8 0,0026 15 4 0,0024
9-10 17 5 0,0039 27 9 0,0026 19 4 0,0021
10-11 16 5 0,0032 29 8 0,0026 23 1 0,0034

Table 5.2: Number of matches performed and corresponding number of outliers and computation
time required for dataset2

this procedure results in a higher ratio of detected outliers than the one registered for the original

image, which accentuates the flaws already outlined.

Therefore, as also described in section 5.3, an additional filtering layer has been introduced

into the proposed solution. So, as it can be observed on both tables, despite the number of matched

features suffers a reduction, the same happens for the case of the number of detected outliers.

Further observations can be made by analysing figure 5.5, where it is clear that the final solution

achieves the lowest outlier ratios for every single image pair of dataset2, the most challenging

scenario depicted.

Figure 5.4: Number of outliers detected per image pair of dataset2

It is also important to exalt that, despite both the initial and final proposed solutions being

fairly more complex than the original matching procedure, the results acquired for the required

computation time are very similar. If the original solution fulfils the requirements for real time

applications, depending on the tools and computation capacity available, so should the proposed

solution.
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Figure 5.5: Outlier ratio per image pair of dataset2

5.5 Summary

This chapter presented the development of a solution for the matching procedure, based on extend-

ing the original SURF’s Spectra Descriptor and redesigning the actual process in order to account

for this changes. The new descriptor includes the feature location information, in an attempt to

further restrict the number of possible matches. However, as it has been shown, performing the

match association solely based on the computation of the matching score through this extended

descriptor proved to be inefficient to surpass the problems presented by the original procedure.

Therefore, a new filtering layer has been introduced, which allows a better trade-off between the

number of matched feature points and the number of consequent outliers and thus, achieving the

intended goal for this part of the work.

It matters to point out that high matching ratios are never to be expected with the AUV in

movement. This is due to possibility of occurrence of false-positives, caused by noise or acoustic

echoes, which are sensitive to viewpoint variations. This aspect further accentuates the importance

of the matching procedure, as these false detections are expected to disappear from one scan to

another and, so, being disregarded during this procedure.



Chapter 6

Simultaneous Localization and
Mapping

6.1 Introduction

The work developed and presented throughout chapters 4 and 5 had the purpose of studying and

providing a viable solution for landmark detection. This landmarks, that through the implementa-

tion of SURF’s feature extractor are represent by feature points, provide essential information for

the localization of the AUV and, additionally, to construct a map of the environment the vehicle

navigates. This objective is achieved through the implementation of an Extended Kalman Filter

Simultaneous Localization and Mapping algorithm.

Therefore, in this chapter, the development of the localization and mapping module is detailed,

taking into account the general algorithm for EKF SLAM presented in chapter 2. Here, further

details regarding the prediction cycle and the update cycle are introduced, with especial focus on

the implemented motion model and measurement model.

The study of acoustic images made it possible to observe that, due to the conditions of the

testing environment (a closed and structured environment), a number of acoustic echoes and re-

flections on the AUV’s own body were consistently portrayed. Therefore, in order to minimise

the effect of these problems on the final pose estimate and map built, the image pre-processing

routine has suffered further development. Furthermore, it was also noticed that the structure of the

testing environment has an impact on the distribution of the detected feature points. The analysis

of previous results has shown that a great number of features points are typically detected in image

regions corresponding to the water tank’s corners. Thus, the study of the application of clustering

techniques, that will enable reducing the number of features fed to the state estimator, is presented

in this chapter.
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6.2 System Integration

As mentioned throughout this document, the objective of the analysis of the acquired acoustic

images is to detect possible landmarks in the surroundings of the AUV, feeding this information

to the developed localization and mapping module, as represented by the block diagram in figure

6.1.

Figure 6.1: Developed solution module sequence

It comes without saying that the performance of the overall procedure is conditioned by the

output of each individual module, especially concerning the matched feature points that are fed

to the localization and mapping module. Taking this premise into consideration, it is possible to

conclude that the image pre-processing procedure presented in chapter 4 proves to be insufficient

for the intended objective. This is due to the characteristics of the testing environment, a closed

structure, which promotes the occurrence of more acoustic echoes than it would be expected in an

open area, resulting in an increased number of false detections. Furthermore, due to the shape of

the emitted acoustic beam and the sonar’s mounting position on the AUV, the image also portrays

acoustic reflections on the vehicle’s own body. Therefore, additional features were added to this

module, in order to tackle the enumerated problems.

(a) Original image with AUV body reflections
marked with red rectangles

(b) Image after background subtraction

(c) Image after acoustic echo removal

Figure 6.2: Intermediate results of the final image pre-processing routine applied to image 6 of
dataset2



6.2 System Integration 51

(a) Initial pre-processing procedure

(b) Final pre-processing procedure (background subtraction plus 1st

and 2nd echoes)

Figure 6.3: Image pre-processing procedure impact on feature detection applied to image 6 of
dataset2

Regarding the detected reflections on the AUV’s body, marked in figure 6.2a with red rectan-

gles, since these are stationary throughout both testing datasets, a solution based on background

subtraction (Grant, 1984) was implemented. Initially, through the acquired images, a representa-

tion of these segments of the image was created and stored. Thus, during the image pre-processing

routine, this representation is subtracted to each analysed acoustic image, which allows the re-

moval of the aforementioned segments. The results of such operation are represented in figure

6.2b.

With respect to acoustic echoes portrayed in the acquired images, it is important to take into

consideration that, due to the nature of these echoes, lower intensity values are usually associ-

ated with these. Therefore, higher intensity values are typically related to reflections on actual

landmarks. So, if the maximum intensity value in each intensity beam is found, intensity values

found in subsequent bins may be disregarded, since they will most probably be referent to acous-

tic echoes. A security margin must be taken into consideration, as detected landmarks present

thickness and, therefore, will generate reflections of different intensities.

However, for the case presented by the testing datasets, both the first and second maximum

intensity values of each retrieved sonar intensity beam are taken into consideration. This mea-
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surement is intended to account for the existence of an additional obstacle inside the water tank

and avoid the removal of part of the water tank’s wall located behind it. More precisely, if the

difference between the two maximum values is lower than a given threshold value and the second

maximum is detected at a higher detection range than the first one, then, echo removal is performed

from this point on, as it can be observed in figure 6.2c.

As it can be observed in figure 6.3, the improvements made to the image pre-processing routine

had a significant impact on the number of false-positives detected. Nevertheless, methodology

presents its shortcomings, since some acoustic echoes reflections are not removed, due to their

high intensity values. Furthermore, it is notorious that a few segments of the water tank have been

erased from the final image, due to the presence of prior higher intensity points.

6.3 State Estimator

The implemented state estimator follows the EKF SLAM algorithm presented initially in chapter

2, which makes use of new measurements z j
t , provided by the acquired matched features, and the

previous state vector yt−1 to estimate the current state vector yt . Since this state vector, besides the

vehicle’s pose, includes each matched feature estimated position, it will also allow the creation and

update of an environment map. Note that, to locate the vehicle in the environment, it is only taken

into account a two dimensional horizontal plane, assuming constant depth and that environmental

features are not affected by depth.

Common EKF SLAM algorithms encompass two major procedures during state estimation,

the prediction cycle and the update cycle. This section is focused in presenting further detail

regarding the EKF SLAM implementation and state estimation computation.

6.3.1 The Prediction Cycle

The prediction cycle takes place between the acquisition of two consecutive acoustic images. Dur-

ing it, the motion model presented hereafter is used to predict the AUV pose in the next image:x(t)

y(t)

θ(t)

=

x0 +
∫ t

0 v(t) · cos(θ0 +w(t)) dt

y0 +
∫ t

0 v(t) · sin(θ0 +w(t)) dt

θ0 +
∫ t

0 w(t) dt

 , (6.1)

where x0, y0 and θ0 represent the vehicle’s initial x and y position and heading, respectively, v its

translation velocity, w its rotation velocity and t the time reference.

In order to perform the intended state prediction, the model introduced in equation 6.1 is

further discretized as follows:xt

yt

θt

=

xt−1

yt−1

θt−1

+
vt−1 · cos(θt−1 +wt−1 ·∆t) ·∆t

vt−1 · sin(θt−1 +wt−1 ·∆t) ·∆t

wt−1 ·∆t

 , (6.2)
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where xt , yt and θt represent the vehicle’s predicted x and y position and heading at the current

iteration, xt−1, yt−1 and θt−1 represent the vehicle’s x and y position and heading at the previ-

ous iteration, vt−1 and wt−1 the translation and rotation velocities, respectively, at the previous

iteration and ∆t represents the time interval between each iteration. Note that, between each pre-

diction iteration, the vehicle’s motion is considered to be performed at constant velocity. Taking

this discretized model into consideration, the state prediction is performed accordingly, following

equation 2.7:

µ t = µt−1 + FT
x

vt−1 · cos(µt−1,θ + wt−1 ·∆t) ·∆t

vt−1 · sin(µt−1,θ + wt−1 ·∆t) ·∆t

wt−1 ·∆t

 , (6.3)

where µt−1,θ represents the vehicle’s heading estimate at t− 1. Moreover, the Jacobian Gt takes

the following form, due to the motion model employed:

Gt = I +FT
x

1 0 −vt−1 · sin(µt−1,θ +wt−1 ·∆t) ·∆t
0 1 vt−1 · cos(µt−1,θ +wt−1 ·∆t) ·∆t
0 0 1

Fx , (6.4)

which enables the computation of the covariance estimate Σt through equation 2.8.

6.3.2 The Update Cycle

The purpose of the update cycle is to fuse the measurements z j
t = (r j

t φ
j

t s j
t ) information, where

r j
t represents the feature’s detection range, φ

j
t its detection angle and s j

t its signature, associated to

each matched feature j, into the previous state estimation, reaching a final estimation. Note that

the feature’s signature, s j
t , is a term used to associate each input measurement to the corresponding

feature position estimation.

Therefore, the measurement update is performed based on the following measurement model:

z j
t =


√

(µ j,x − µ t,x)
2 + (µ j,y − µ t,y)

2

atan2(µ j,y − µ t,y, µ j,x − µ t,x) − µ t,θ

µ j,s

 , (6.5)

where µ t,x, µ t,y and µ t,θ represent the vehicle’s x and y position and heading estimates, respec-

tively, µ j,x and µ j,y the feature’s x and y position estimate and µ j,s the feature’s estimate signature.

The integration of the measurement information into the estimation is performed through the

computation of the Kalman gain K j
t , for each matched feature. As presented in equation 2.14, this

is performed through the Jacobian of the measurement model H j
t , which takes the following form,

due to the model presented in equation 6.5:

H j
t =

1
q


√

qδx −
√

qδy 0 −√qδx
√

qδy 0

δy δx −1 −δy −δx 0

0 0 0 0 0 1

 . (6.6)
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Finally, the update to the state vector and state covariance is performed for each acquired

measurement, through the expressions presented in equations 2.15 and 2.16.

During the AUV’s motion it is possible that some feature points are detected in one image and

not on the following one, due to the sonar’s limited range, for example. If this feature point is de-

tected again, its match will no longer be possible, which results in a loss of information. Therefore,

it matters to emphasize that, for the purposes of position estimation, not only features matched in

consecutive acoustic images are taken into account. Instead, a feature register, used to store every

detected feature point, corresponding descriptor and signature throughout a mission was created.

The matching procedure is then performed taking into account the feature points detected in the

most recent acoustic image and the points stored in this register. Once a feature is matched, their

corresponding feature descriptor is updated, to account for any geometric deformation it might

had suffered and to allow its correct association in future images. If a detected feature point is not

matched, it is simply added to the register.

6.3.3 Feature Point Clustering

Throughout the analyses performed during this work, regarding the application of feature extrac-

tion algorithms, it was possible to observe that the characteristics of the testing environment had

an impact on the distribution of the detected features. As it is represented in figure 6.4, the regions

portraying the water tank’s corners show a higher concentration of detected features.

Having such concentrations of feature points will result in similar information contributions

to the location estimation procedure, which leads to a reduced correction of the belief on this es-

timation. Furthermore, as it has been related on chapter 5, despite the new matching procedure

significantly reducing the number of occurred outliers, these are not completely avoided and typ-

ically occur in regions of higher concentration of feature points, where the distinction between

these points is more difficult.

Therefore, in order to reduce these concentrations of feature points and so, attenuating the

effects of possible outliers, a density-based clustering methodology (Kriegel et al., 2011) has been

employed. Clustering algorithms aim at finding groups of similar objects in a given data collection

Figure 6.4: Feature points detected in image 1 of dataset1
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(a) Feature point association during the clustering procedure

(b) Cluster centers and the remaining matched
features

Figure 6.5: Results of the clustering procedure employed to image 1 of dataset1

(Kriegel et al., 2011). The density-based approached makes use of the data localization informa-

tion to form this groups. A maximum distance between group points is defined, along with a

minimum number of points to assemble a cluster. So, for each given point, the euclidean distance

from it to the remaining points of the collection is calculated. The points located at distances lower

than the defined maximum are associated to the initial point and the process is performed for each

of these, until no new point can be added to the group. A cluster is created if the final number of

associated points is higher than the minimum required.

This methodology is directly employed to each set of matched features, making use of each

feature localization information, as portrayed in figure 6.5a. The created clusters are represented

through their clusters centers, which are computed by an average of the positions of the associated

feature points, as presented in image 6.5b. The resulting clusters centers are transformed into a

set of measurements zc
t = (rc

t φ c
t Sc

t ), where c represents the number of created clusters, and fed to

the state estimator. Therefore, the state vector has been redesigned to account for this changes, as

follows:

yt =

xt

m
M

 (6.7)

=
[
x y θ m1,x m1,y s1 ... mn,x mn,y sn M1,x M1,y S1 ... Mc,x Mc,y Sc

]T
,

(6.8)

where Mc,x, Mc,y and Sc represent the clusters’ x and y positions and signature, respectively, and
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Figure 6.6: Effect of the motion of the AUV on the clustering procedure

mn,x, mn,y and sn the x and y positions and signature of the detected features which have not been

associated with a cluster. The incorporation of the cluster measurements is performed as detailed

in section 6.3.

It is important to emphasize that the correspondence between detected clusters is performed

through the implementation of a cluster register. When a new cluster is created, its localization

information is stored in the register, along with the signatures of the feature points that compose

that cluster and its own signature. During the analysis of a new acoustic image, after the matching

and clustering procedures are performed, the features’ signatures associated with each detected

cluster are compared to the ones stored in the register, so that the cluster can be identified. This

association allows to determine the corresponding cluster signature Sc, key for the update cycle of

the state estimator. During this procedure, the feature points associated with each cluster are also

updated.

However, when this methodology was employed to the set of images acquired with the AUV

in motion it was possible to note the insufficiencies of this procedure. The motion of the AUV has
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a significant impact on the matching procedure, leading to a reduction of the matches performed.

As it can be observed in figure 6.6, this aspect leads to an impossibility to maintain the structure

of the created clusters throughout a series of acoustic images. Therefore, if the cluster information

was fed to the state estimator, it would be extremely difficult to update it, adding no significant

value to the state estimation. Furthermore, since the feature points that compose a cluster are not

fed to the state estimator individually, this would result in a loss of important information. This

problem is even more severe taking into consideration the reduction in the number of matches

performed with the AUV in motion. Thus, the developed clustering solution was not included in

the developed system.

6.4 Results and Discussion

In this section, a comprehensive analysis of the developed localization and mapping module is

presented, taking into account the solution structure presented in figure 6.1. Therefore, the feature

information extracted from both dataset1 and dataset2 is fed into the developed state estimator,

making use of the image pre-processing procedure introduced in section 6.2. Thus, to assess the

performance of this module, the vehicle’s pose and landmark’s localization estimations throughout

time have been collected. The prediction cycle is performed at time intervals of 0.4 seconds

while the update cycle at time intervals of 8 seconds. Further information regarding the evolution

of the covariance matrices associated to the vehicle’s pose estimation and landmark localization

estimation has also been extracted. Note that, for the purpose of localization, a cartesian coordinate

system was considered and the center of the water tank taken as its origin.

Since it was not possible to collect any information regrading the AUV’s velocities throughout

both datasets, a simple estimate of these is performed based on the difference between the ini-

tial and final vehicle’s pose estimations during the update cycle, which are then used during the

prediction cycle.

(a) Estimated AUV x (in blue) and y (in red)
position over time (in seconds)

(b) Estimated AUV heading over time (in
seconds)

Figure 6.7: AUV pose estimation evolution throughout dataset1
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(a) Estimated floater x position over time (in
seconds)

(b) Estimated floater y position over time (in
seconds)

Figure 6.8: Floater pose estimation evolution throughout dataset1

(a) Results after first update cycle (b) Results after last update cycle

Figure 6.9: Vehicle (filled blue circle) and landmarks estimated positions and associated
uncertainty ellipses (dataset1)

Regarding the application of the localization and mapping module to dataset1, it matters to

emphasize that this dataset portrays a scenario where the AUV is kept still. Therefore, the vehicle’s

initial velocities were set to 0 and the initial estimated pose was (0.1m,0.4m,180o). As it can be

observed in figure 6.7, the vehicle’s pose estimation does not diverge from the initial state, despite

some fluctuation around this value being observable, potentially due to the considered sound speed

not being equal to the real one. This effect is more notorious on the x and y positions but still

inferior to 2 centimeters. So, it is possible to conclude that the state estimator converges to a final

estimation.

This conclusion is furthermore supported by the example presented in figure 6.8. As it is

shown, the floater’s position estimation suffers slight oscillations, once again, due to variable

sound speed, but the corrections performed during the update cycle do not cause this estimation to

diverge from its initial value.

As time passes more feature information is incorporated into the state estimation, resulting in

changes to the associated covariance matrices, which reflect the uncertainty regarding this estima-
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(a) Estimated AUV x (in blue) and y (in red)
position over time (in seconds)

(b) Estimated AUV heading over time (in
seconds)

Figure 6.10: AUV pose estimation evolution throughout dataset2

(a) Estimated floater x position over time (in
seconds)

(b) Estimated floater y position over time (in
seconds)

Figure 6.11: Floater pose estimation evolution throughout dataset2

tion. These are represented as uncertainty ellipses, centered at the vehicle and landmarks estimated

positions, as presented in figure 6.9. At the initial estimation, the ellipses are large, which reflect

a higher degree of uncertainty in the estimation, as shown in figure 6.9a. The incorporation of

further information results in an increased belief on the state estimation, which is reflected onto

the smaller uncertainty ellipses presented in figure 6.9b, asserting the convergence of the filter.

With regard to the application of the localization and mapping module to dataset2, which was

acquired with the AUV moving on an horizontal trajectory, the initial vehicle velocities where kept

null and, again, the initial estimated pose was (0.1m,0.4m,180o).

Figure 6.10 portrays the vehicle’s pose estimation evolution through time. As it would be

expected, the vehicle’s x position estimate varies, resulting of the vehicle horizontal trajectory.

However, a drift in both its y position and heading estimations is notorious. This is a result of

the data acquisition process, since it was not always possible to maintain a perfectly horizontal

trajectory during the AUV’s motion.

However, a careful analysis of figure 6.11 makes it possible to observe that a clear deterioration
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(a) Results after first update cycle (b) Results after last update cycle

Figure 6.12: Vehicle (filled blue circle) and landmarks estimated positions and associated
uncertainty ellipses (dataset2)

of landmark position estimate occurs. This is further verified by the variation on landmark position

estimate that is observable between figures 6.12a and 6.12a. Such problem is most probably the

result of incorrectly performed matches and due to the fact that translation and rotation velocities

estimation is only performed during the update cycle, and, therefore, during the prediction cycle

these are considered constant.

Nevertheless, 6.12 clearly ascertains the convergence of the filter. While for the initial esti-

mation the uncertainty ellipses are larger, throughout time these have come to decrease in size.

However, after the last update cycle is performed, some landmarks still present large uncertainty

ellipses, which may result from incorrect matches or the occurrence of false detections.

6.5 Summary

In this chapter, the development of the localization and mapping module of the proposed system,

based on the implementation of the EKF SLAM algorithm, was presented. Further detail was given

regarding the employed motion model and measurement model and its incorporation into the state

estimator. Furthermore, the previous performance analysis of feature extraction algorithms have

shown that the testing environment, due to its complexity, presents additional challenges to the

performance of the AUV. Therefore, the initial image pre-processing procedure has been further

developed and a final solution based on background subtraction and the analysis of the first and

second higher intensity reflections is proposed to tackle these problems.

The incorporation of a clustering procedure, in order to condense the information portrayed by

features closely located and attenuate the effects of possible incorrect matches, was also presented.

However, despite interesting results have been obtained, this procedure was not included in the

developed system since it has shown several shortcomings when the vehicle is in motion, due to

the reduction of matched features.

A brief analysis of the developed state estimator performance was conducted and it was pos-

sible to observe that the evolution of the AUV’s pose matches the scenarios described for both
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dataset1 and dataset2, while the filter is able to converge to a final estimate. However, for the

case of dataset2, some deterioration the landmarks’ position estimation is notorious, mainly due

to effect of possible incorrect matches.
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Chapter 7

Results and Performance Analysis

7.1 Introduction

The present chapter is intended to introduce a thorough analysis of the developed system and of

the final results achieved. Therefore, further tests have been performed, in two different scenarios.

The sonar data relative to the first scenario was collected with the AUV kept steady and immobile

while the readings regarding the second scenario were collected with the AUV in motion. These

were performed in an square shaped water tank, with a length of 4.4m and width of 4.6m. Ground-

truth measurements were performed for comparison performances.

For data acquisition, the sonar was calibrated for a maximum range of 5.0 meters. The bit

length was set to 1.25x10−2 meters and the angle step to 1.8o.

Regarding system parameters, more precisely, the feature extraction and matching procedures,

the employed detection threshold was set to 2500 while the deform threshold was set to 0.35. Re-

garding the matching threshold function, the b value was set to 8 while the k value was set to 500.

For the state estimator, the initial covariance estimate, motion noise covariance and measurement

noise covariance were initialized as presented hereafter:

Σ0 =

0.2 0 0

0 0.2 0

0 0 0.09

 , (7.1)

R =


(0.2)2

35 0 0

0 (0.2)2

35 0

0 0 (0.09)2

35

 , (7.2)

Q =

r j
t · e−2 0 0

0 0.05 0

0 0 10x106

 , (7.3)

where the first term of matrix Q is computed according to each measurement range r j
t . For
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both scenarios, since the AUV’s initial pose was the same, the initial pose estimation used was

(0.1m, 0.4m, 180o). The initial translation and rotation velocities estimations were kept null.

7.2 Static Scenario

For the first test scenario, the AUV was kept immobile, at surface, almost at the center of the water

tank. Furthermore, a cross shaped floater was also deployed and moored close to the lower tank

wall. Further detail is depicted in figure 7.1, where the AUV’s position and the floater’s position

are depicted. A total of 8 acoustic images were acquired portraying this scenario, over 64 seconds

of operation time. Ground-truth measurements of the AUV’s position and heading and the floater’s

position were collected through physical measurement.

Figure 7.1: Scheme of the static scenario

The data collected was then fed to the developed system. Further information regarding the

total number of detected landmarks throughout time and the number of landmarks considered in

each iteration of the update cycle is presented in table 7.1. Here it is possible to observe that,

for the considered scenario, landmark detection is stable, since the majority of the total detected

features are taken into account in each update cycle.

Image Total Detected Current Detected
Pair Landmarks Landmarks
1-2 23 23
2-3 32 28
3-4 37 34
4-5 39 32
5-6 40 30
6-7 41 33
7-8 42 32

Table 7.1: Number of detected landmarks for the static scenario
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Figure 7.2: AUV estimated positions during the static scenario

Ground-truth (m,m,deg) Estimation Results (m,m,deg) Error (m,m,deg)
AUV [0.10,0.40,180]± [0.10,0.10,10] [0.11,0.39,180] [0.01,0.01,0]

Floater [0.48,−1.57,∼]± [0.10,0.10,∼] [0.47,−1.58,∼] [0.01,0.01,∼]

Table 7.2: Ground-truth measurements and estimated poses for the static scenario

Since no motion of the AUV is portrayed in this scenario, the vehicle’s position estimate does

not diverge as time passes, as presented in figure 7.2, where the previous position estimates are

marked in blue and the final position estimate is marked in red. Some fluctuation of the estimated

pose of the vehicle is visible, probably due to the considered sound speed being different from the

real one.

The final vehicle pose estimation is presented in table 7.2. By comparing the estimation re-

sults for the vehicle’s position with the collected ground-truth, it is possible to observe that the

associated error is minimum. This is due to initializing the vehicle pose estimation with the actual

ground-truth information.

Similarly, the error associated to the floater’s final estimated position is also minimum. A

Figure 7.3: Landmark estimated positions drift for the static scenario
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small variation of the landmarks’ estimated positions throughout time is noticeable in figure 7.3,

again, probably due to an error in the considered sound speed, which poses no obstacle to the

overall system performance.

7.3 Dynamic Scenario

For the second test scenario, the AUV was initially deployed in the same position as for the previ-

ous scenario, again at surface. A cross shaped floater was once more deployed and moored close

to the lower tank wall, but in this case, closer to the left tank wall. The data acquisition process

was initialized and, after a few seconds, the AUV was dragged as depicted in figure 7.4, where

the initial AUV position is represented by a blue circle and the final position by a red circle. A

total of 11 acoustic images were acquired throughout 88 seconds of operation time. Ground-truth

measurements regarding the AUV’s initial and final poses and the floater’s position were collected.

Figure 7.4: Scheme of the dynamic scenario

Again, the collected data is fed to the developed system. The estimated trajectory of the

vehicle is represented in figure 7.5, where the past AUV position estimates are represented in

Figure 7.5: AUV estimated positions during the dynamic scenario
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Image Total Detected Current Detected
Pair Landmarks Landmarks
1-2 15 15
2-3 21 18
3-4 25 15
4-5 26 8
5-6 29 5
6-7 41 12
7-8 45 8
8-9 52 12
9-10 60 15
10-11 68 24

Table 7.3: Number of detected landmarks for the dynamic scenario

blue and the final estimate in red. It is possible to observe that the estimated trajectory does

not completely match the one that was initially described, because of the occurrence of incorrect

matches that affect the state estimator and since the vehicle’s velocity is considered constant during

the prediction cycle.

The effects of the motion of the AUV are furthermore noticeable in the results presented in

table 7.3, where a great variation of the number of detected landmarks considered in each iteration

of the update cycle is observable. These results come as a consequence of the decrease in the

number of performed matches.

Ground-truth (m,m,deg) Estimation Results (m,m,deg) Error (m,m,deg)
AUV [−1.73,0.69,170]± [0.10,0.10,10] [−1.62,0.76,161] [0.11,0.07,9]

Floater [−1.05,−1.32,∼]± [0.10,0.10,∼] [−0.95,−1.33,∼] [0.10,0.01,∼]

Table 7.4: Ground-truth measurements and estimated poses for the dynamic scenario

It is possible to observe, through a brief analysis of table 7.4, that the resulting AUV and

Figure 7.6: Landmark estimated positions drift for the dynamic scenario
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floater position error is higher than the one registered for the static scenario. Still, the results are

very satisfying, despite the higher landmark estimated position drift that is presented in figure 7.6.

This results not only from the difference in sound speed and multiple echoes but, most of all, is

due to the occurrence of incorrect matches and to the vehicle’s velocity estimation performed.

7.4 Summary

The chapter presented an overview of the system performance under two different scenarios. For

the case of the static scenario, the achieved results are extremely satisfying, despite the positional

drift that is observable for the detected landmarks. However, some insufficiencies of the proposed

solution arise when the AUV is in motion, since the incorrect association of feature points during

the matching procedure presents a significant difficulty for state estimation. Furthermore, the vehi-

cle’s velocity estimation performed and the assumption of constant velocity during the prediction

cycle contribute to the drift in landmark position estimation.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In retrospective, the main proposed objectives were accomplished as a working solution for un-

derwater vehicles localization and mapping has been developed, based on the operating principles

of a MSIS. Its performance was further evaluated with experimental data and analysed in a series

of different scenarios.

The analysis and interpretation of sonar data was achieved through the application of image

processing techniques, with especial focus on feature extraction algorithms. A comprehensive

analysis of some of the most common algorithms presented in literature has been conducted, in

order to better understand the most suitable solution for the proposed objectives. Furthermore,

this comparison provides valuable information regarding the application of feature extraction al-

gorithms to acoustic images and its challenges.

Due to the insufficiencies of the common feature matching procedure, a solution adapted to

the characteristics of acoustic images has been developed, which allowed improving the number

of matches performed at lower outlier ratios. Therefore, it was proven that feature extraction

algorithms enable a consistent detection and association of environmental features of interest.

Finally, a state estimator based on the common EKF SLAM algorithm has been developed and

implemented in order to enable the estimation of the vehicle’s pose and mapping of the detected

environmental landmarks. Possible associations of close landmarks through clustering techniques

has been explored but disregarded due to the effects of the vehicle’s motion on the matching

procedure.

Despite the fulfilled objectives, the prevailing occurrence of incorrect matches have a negative

impact on both vehicle pose and landmark position estimation, which implies that further study

and adaptation of feature description methodologies to acoustic imaging is required. Furthermore,

it would be important to reduce the number of false detections that still occur and implement the

developed system in an actual vehicle, such as the SHAD AUV, to test its performance during

online missions.
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8.2 Future Work

In the short-term, it would be interesting to carry out further studies regarding the implementa-

tion of clustering techniques for feature point analysis. Despite the solution elaborated during this

study was not viable, clustering methodologies may allow the extraction of relevant information

regarding image regions cluttered with feature points, in order to determine which of the set are

more stable and portray more relevant information for position estimation. Furthermore, by re-

ducing the number of feature points fed to the state estimator, it would be possible to attenuate the

effects of incorrect matches.

Also, since noise suppression and image smoothing are vital for the performance of feature ex-

traction algorithms, further development of such techniques, focused on acoustic imaging, would

bring significant improvements to feature-based localization procedures.

The next step, after the implementation and test of this solutions in an actual vehicle, would

be the integration of path planning methodologies that would rely on the built feature map and

pose estimation to navigate. The integration of other sensor inputs into localization and mapping

procedure would also be of value.
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