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Abstract

Cancer is one of the leading death causes in the world, specifically, lung cancer. According to
the World Health Organization, at the end of 2020, around 2.2 million people were diagnosed
with lung cancer, and 1.8 million fatalities resulted from it. Correctly identifying its presence in
a patient and classifying its subtype and stage is fundamental for the appropriate target therapy
adoption.

One of the gold standards used to identify and classify cancer is the microscopic visual in-
spection of histopathological images i.e. small tissue samples excised from a patient. Expert
pathologists are responsible for this inspection. However, it requires a significant amount of time
and sometimes leads to non-consensual results.

With the growth of computational power and data availability, modern Artificial Intelligence
solutions can be developed to automate and speed up this process. Deep Neural Networks us-
ing histopathological images as an input currently embodies state-of-the-art in automated lung
cancer diagnostic solutions, with Convolutional Neural Networks achieving the most compelling
accuracies in tissue type classification. One of the main reasons for such results is the increasing
availability of voluminous amounts of data, acquired through the efforts employed by extensive
projects like The Cancer Genome Atlas.

Nonetheless, histopathological images remain weakly labelled/annotated. Most common pathol-
ogist annotations refer to the entirety of the image and not to individual regions of interest in the
patient’s tissue sample. Recent works have demonstrated Multiple Instance Learning as a success-
ful approach in classification tasks entangled with this lack of annotation, by representing images
as a bag of instances where a single label is available for the whole bag.

Thus, we propose a bag/embedding-level lung tissue type and subtype classifier using a Con-
volutional Neural Network in a Multiple Instance Learning approach, where the automated inspec-
tion of lung histopathological images determines the presence of cancer, and its possible subtype,
in a given patient. Furthermore, we employ a post-model interpretability algorithm to validate our
model’s predictions and highlight the regions of interest for such predictions.

Keywords: Artificial Intelligence, Deep Learning, Classification and Prediction, Lung Cancer,
Histopathology, Genetic Mutations
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Resumo

Nos dias de hoje, o cancro destaca-se como sendo uma das doenças responsáveis pelo maior
número de óbitos. Em particular o cancro do pulmão. De acordo com a Organização Mundial de
Saúde, no fim do ano de 2020, esta doença foi diagnosticada a cerca de 2.2 milhões de pessoas
e levou a 1.8 milhões de óbitos. O seu diagnóstico correto e atempado é extremamente crucial,
assim como a identificação do seu subtipo e estado de desenvolvimento. O sucesso deste diagnós-
tico permite a adoção de terapias especificas a cada paciente, aumentando a sua probabilidade de
sobrevivência.

Uma das ferramentas mais comuns no diagnóstico de cancro é a inspeção microscópica de
imagens histopatológicas. Estas imagens são pequenas amostras de tecido removido de pacientes
portadores de tumores suspeitos. A inspeção destas imagens não é simples e requer o esforço de
patologistas com formação muito especifica. Os patologistas responsáveis por esta análise tendem
a inspecionar um número elevado de amostras, com grande variabilidade entre elas. Este processo
torna-se então exaustivo e pode levar a diagnósticos pouco consensuais entre colegas.

Com o crescimento do poder computacional e da disponibilidade de dados, surgem soluções
modernas baseadas em Inteligência Artificial para automatizar e acelerar este processo. O estado-
da-arte desta automatização é dominado por Redes Neuronais Artificiais constituídas por múltiplas
camadas. Um especial destaque é atribuído às Redes Neuronais Convolucionais, capazes de atingir
os níveis de precisão mais elevados na literatura. Uma das grandes razões para o sucesso destas
soluções é a disponibilidade de enormes quantidades de dados, abertos ao público, gerados através
dos esforços de projetos como o The Cancer Genome Atlas.

Apesar de existirem estes enormes volumes de dados, as anotações dos mesmos e a sua cat-
egorização mantêm-se um pouco limitadas. No caso das imagens histopatológicas, as anotações
dos patologistas indicam maioritariamente o diagnóstico atribuído à amostra de tecido como um
todo. Contudo, não fazem referência às pequenas regiões das imagens que têm maior impacto
no diagnóstico. Multiple Instance Learning é uma corrente de investigação focada em contornar
esta limitação. Nesta corrente, as imagens originais são consideradas como quadro composto por
diversas peças. Esta formulação permite que as Redes Neuronais consigam utilizar as amostras
sem conhecer quais as regiões mais impactantes e mesmo assim sejam capazes de as prever.

Assim, propomos um classificador de imagens histopatológicas do pulmão, capaz de detetar
a presença de cancro, o seu subtipo e possíveis mutações genéticas, utilizando Redes Neuronais
Convolucionais num contexto de Multiple Instace Learning. Adicionalmente, integramos um al-
goritmo de interpretabilidade nos nossos modelos, com o objetivo de validar as suas capacidades
de classificação. Esta validação é feita através marcação das regiões das imagens que são consid-
eradas mais importantes para a sua classificação.

Palavras Chave: Inteligência Artificial, Deep Learning, Classificação e Previsão, Cancro do Pul-
mão, Histopatologia, Mutações Genéticas
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“The game of science is, in principle, without end.
He who decides one day that scientific statements do not call for any further test,

and that they can be regarded as finally verified, retires from the game.”

Karl R. Popper
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Chapter 1

Introduction

Recent numbers published by the World Health Organization and American Cancer Society show

that lung cancer was the second leading cancer diagnosed to patients in the year 2020. These

numbers also point out that lung cancer was the leading cause for cancer-related fatalities regis-

tered this year [27]. Limiting lung cancer’s impact starts with patients being correctly diagnosed

in early stages, allowing the application of proper target therapies, thus avoiding possible unneces-

sary side effects associated with standard practices such as chemotherapy and radiotherapy. Most

commonly reported side effects associated with lung cancer patients are toxicity, nausea, fatigue

and shortness of breath [28].

One of the gold standards used for the classification and characterization of a patients status is

the microscopic inspection of histological slides. These slides are obtained by thinly slicing a pre-

processed and thoroughly prepared paraffin-embedded sample of tissue excised from a patient’s

suspicious region. Pathologists look for many insights in these slides to aid them elaborating a

diagnosis. These insights can arise from cell count, cell shape, nucleus size and shape, necrosis

and many other features present in the tissue slide [54, 33]. However, the job of inspecting a

significant and diverse amount of these slides can be quite tiresome and time-consuming, leading

to potentially incorrect or non-consensual observations among colleagues [52]. Therefore the

research in speeding up and automating this visual inspection retains tremendous interest.

Artificial Intelligence (AI) has proven its strengths and benefits in aiding professionals over-

come issues present in situations like these by automating such tasks and processes, while demon-

strating an above-average accuracy and precision, and sometimes revealing insights that escape

the human eye. The automation of these processes is currently done through histopathological

image tiles as an input for the training process of Convolutional Neural Networks (CNN).
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2 Introduction

1.1 Motivation

The medical imaging field has dramatically benefited from AI and Machine Learning (ML). Such

advances include the development of Deep Learning solutions using CNN’s for image classifica-

tion tasks.

Research in the classification of lung histopathological images is not slim. Several tissue

type classifiers using CNN architectures have been developed to identify normal and cancerous

tissue. Additionally, further advances even lead to the development of subtype classifiers, capable

of discerning the lung cancer subtype present in the tissue, e.g. squamous cell carcinoma and

adenocarcinoma. However, most of these models function as "black box", and the rationale behind

the decision making is not passed onto the end-user. Thus, there is an increased need for a pipeline

capable of generating correct predictions and making them interpretable. Furthermore, a lack of

in-depth research is still present in the identification of genetic mutations through the inspection

of histopathological images. This lack of knowledge creates an excellent opportunity for novelty

research as pathologists cannot identify such gene mutations by solely visually inspecting a tissue

sample.

1.2 Objectives

Our works focal point is automating the visual inspection of lung histopathological images using

modern Deep Learning solutions based on CNN’s. This processes automation aims to speed up the

diagnosis process, reducing the time patients wait for their doctors’ response. Moreover, our work

aims at increasing consensus between pathologists by creating a framework capable of generating

predictions with high accuracy and interpretable insights.

Aware that lung cancer classification using histopathological images is not a novelty, our work

envisions expanding such research by identifying relevant advances and current limitations. More-

over, a significant effort is concentrated in introducing interpretability into the model’s predictions.

The developments in this research area allow the model’s performances validation and an increase

in trust from pathologists.

The gap between modern classification approaches and identifying a patient’s genetic muta-

tional status (identified in the previous subsection of this document) is bridged in the developed

application, informing pathologists of the mutation status of a set of genes, i.e. EGFR, TP53,

KRAS. The latter aids pathologist in the assignment of precise diagnosis and appropriate forms of

target therapy, thus increasing patients quality of life and survival.

1.3 Contributions

The contributions that surface from our work encapsulate three different classifiers, each one func-

tioning in a specific hierarchical level, from tissue type to subtype to genetic mutational status.
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These classifiers help pathologists visually inspect histopathological images by generating predic-

tions and highlighting the regions responsible for such predictions. The following items present

a succinct characterization of each level of classification in our hierarchy as well as an important

feature ensured throughout them:

• Tissue Type Classification Model — A Deep Convolutional Neural Network model using

a Multiple Instance Learning approach to distinguish normal and tumorous tissue in lung

cancer patients;

• Lung Cancer Subtype Classification Model — A Deep Convolutional Neural Network

model using a Multiple Instance Learning approach to identify the subtype of lung cancer

present in histopathological images;

• Lung Cancer Gene Mutation Classification Model — A Deep Convolutional Neural Net-

work model using a Multiple Instance Learning approach to identify the genetic mutations

associated with lung cancer histopathological images;

• Post-Model Interpretability Algorithm — Interpretability algorithm to validate models

performance and produce visual insights behind the predictions;

1.4 Document Structure

The present document is structured as follows. Chapter 2 presents a succinct description of the

background and history associated with the concepts debated such as lung cancer origins, types

and subtypes, histopathology and the visual inspection of histopathological images, neural net-

works and deep learning. Chapter 3 describes the state-of-the-art methodologies built to apply

deep learning techniques to automate histopathological images visual inspection, along with the

experimental results demonstrated by the authors. Chapter 4 lists and describes the datasets used

for the training, validation and testing processes for the developed models. Chapter 5 gathers the

proposed methodologies and workflows followed in developing our solutions. The last chapter,

Chapter 6, brings to light the main insights gathered from the literature review process and the

main lines of thought to guide future research and development.
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Chapter 2

Background

To tackle the proposed challenge and to be able to develop the proposed solution, a set of concepts

were reviewed and described in this section. This set of concepts reaches a broad spectrum of

fields, ranging from pathology to computer science.

2.1 Histopathology and Digital Histopathology

Histopathology is the medical speciality referent to the study of pathologies through the visual

inspection of tissue samples excised from patients’ suspicious areas. To this day, this practice

remains a gold standard in cancer diagnosis.

The patients considered here are referred for lung cancer, and thus, the primary locations

of acquisition of the tissue samples are the top and bottom parts of the lungs. The collected

samples follow a long and meticulous process of fixation, embedding, slicing and staining so that

pathologists can accurately probe them under a microscope. Figure 2.1 shows an example of

two images of processed excised tissue samples (histopathological images) from a patient in the

TCGA-LUAD cohort, diagnosed with Non-Small Cell Lung Cancer subtype adenocarcinoma.

Figure 2.1: Histopathological images from TCGA-LUAD dataset [45].

5



6 Background

Through the advances in hardware and technology, glass tissue slides can now be digitised

and stored in databases, creating an opportunity for pathologists to rapidly share these slides with

other colleagues generating more robust and consensual diagnostics. The largest and most com-

monly used publicly available databases, composed of hundreds of tissue slide specimens and

their patient’s genomic information, were built from the many studies conducted by The Cancer

Genome Atlas (TCGA) program. This program molecularly characterised primary cancer and

normal samples spanning over the many known cancer types. This panoply of information led to

many improvements in the field of oncology, including diagnosis, treatment and prevention.

2.2 Normal and Cancer Cell Features in Histopathological Images

When inspecting patients’ excised tissue samples under the microscope, pathologists look for sev-

eral insights that can aid them in diagnosing pathologies. These insights may come from different

levels of magnification/zoom. At the highest levels of magnification/zoom, pathologists can ob-

serve the cells composing the tissue sample. The visual features of these cells will determine

the elaborated diagnosis. For instance, cancer cells exhibit anomalies when compared to normal

cells [33]. Such anomalies include hyperchromatic nuclei and cytoplasm with variations in size

and shape, multiple nuclei and smudged chromatin. Figure 2.2 summarises these visual anomalies.

Figure 2.2: Summary of visual anomalies present in cancer cells, from LaMorte et al. [33].

2.3 Lung Cancer Types and Subtypes

Two main types of lung cancer have been identified and extensively studied to this day [54, 58].

The distinction between them originates in their location and physiological characteristics. Figure
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2.3, adapted from Yoshinori et al. [1], summarises the most common lung cancer types, subtypes

and their typical location in the lung.

Figure 2.3: Lung cancer locations summarized by types and subtypes, from Yoshinori et al. [1].

The most common lung cancer type is Non-Small Cell Lung Cancer (NSCLC), and it is re-

sponsible for 80% to 85 % of the diagnosed cases. It encapsulates a set of subtypes that arise

from different conditions but undergo similar treatment approaches and prognoses. This set is

composed of the following:

• Squamous Cell Carcinoma — Originates in the squamous cells in the lung airways (bronchi

and bronchioles) and is most commonly present in the central part of the lungs. Smokers

account for 90% of the diagnosed squamous cell carcinomas. Visual clues of its presence

include keratin pearl formation and keratin staining differentiation [54] (see Figure 2.4);

Figure 2.4: Visual clues for the presence of squamous cell carcinoma, from Travis et al. [54].

• Adenocarcinoma — Originates from the cells present in the lung alveoli and is most com-

monly present in peripheral zones of the lungs and pleura. Visual clues for its presence

include glandular differentiation, mucin production and formation of acinar and papillary

patterns [54] (see Figure 2.5);
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Figure 2.5: Visual clues for the presence of adenocarcinoma, from Travis et al. [54].

• Large Cell Carcinoma — Originates in epithelial cells in the lung. Also commonly present

in the peripheral part of the lung.

The second most common lung cancer type, Small Cell Lung Cancer (SCLC), is responsible

for the other 10% to 15% of diagnosis. Its fast growth and proliferation rate characterise this

type, generally being metastasised by the first diagnosis. Furthermore, this type has a relatively

positive response to therapy. However, it gravitates towards recurrence leading to reappearance in

previously treated patients.

2.4 Genetic Mutations

Non inherited cancers mainly occur when key genes, responsible for cell growth and division and

DNA repair, get mutated to a point where its functions are not correctly performed anymore, and

unintended cancer cells can grow and proliferate uncontrollably, spreading throughout the original

organ/tissue, or creating metastases in other distant parts of the body. Studies strive to identify the

relationships between these gene mutations and the patient’s cancer subtype, stage and prognosis.

For example, the two most common NSCLC subtypes demonstrate significant differences in the

most commonly mutated genes. Its proper identification can lead to a more robust diagnosis and

application of therapeutic drugs, increasing patients’ survival.

2.4.1 Squamous Cell Carcinoma

An extensive study conducted by The Cancer Genome Atlas Research Network [44] identifies

TP53 as one of the most commonly mutated genes in squamous cell carcinomas, with almost all

of the profiled cases exhibiting somatic mutations.

Somatic mutations of TP53 are prevalent among all types of cancer. This gene is responsible

for producing a tumour suppressor protein (p53) that regulates cell growth and division. Hence,

its mutation leads to an easier and faster proliferation of cancer cells as they grow and divide

uncontrollably. A particular insight related with TP53 mutations in squamous cell carcinomas

rises regarding prognosis. In other cancer subtypes, such as adenocarcinoma, somatic mutations

of this gene represent a bad prognosis for the patient. However, in the case of squamous cell
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carcinomas, the same does not apply [54]. Furthermore, a set of other commonly mutated genes

was summarised in Figure 2.6. The percentages represented in the left-most part of the figure

represent the percentage of cases exhibiting somatic mutations for each gene described in the

right-most part of the figure.

Figure 2.6: Commonly Mutated Genes in squamous cell carcinomas of the lung, from Cancer
Genome Atlas Research Network [44].

One final crucial insight rose from this extensive study, as a set of candidate genes for ther-

apeutic drug target were identified. These genes include PTEN, FGFR1, EGFR, PDGFRA, and

KIT. With further advances in research, these genes may lead to target therapies able to replace

chemotherapy.

2.4.2 Adenocarcinoma

In a similar fashion to that of squamous cell carcinoma, The Cancer Genome Atlas Research

Network conducted an extensive study on the characterisation of lung adenocarcinoma [45]. In

this study, TP53 gene mutations were also found to be the most common and were present in

46% of the profiled cases. As previously mentioned, in contrast to squamous cell carcinoma,

adenocarcinoma patients enduring TP53 mutations have a poorer prognosis/survival [54].

Moreover, while relatively rare in squamous cell carcinoma cases, KRAS somatic mutations

are commonly identified in 30% of adenocarcinoma patients. KRAS is also responsible for

cell growth and division, which means that when mutated, cell growth and division become un-

governed, leading to a favourable proliferation of cancer cells. One statistical insight related to the

mutation of this specific gene is its higher frequency amongst smokers.

Additionally, most commonly mutated genes include KEAP1, STK11, EGFR and BRAF as

displayed in Figure 2.7. The right side of plot (a) indicates the percentage of patients identified

with somatic mutations for each gene in the left-most side of the plot. Plot (b) indicates the number

of high and low transversion mutations. Transversion mutations refer to a specific type of point

in which purine compounds (A’s and G’s) get switched by pyrimidine compounds (T’s and C’s).

Finally, plot (c) presents some insights on the distribution of these mutated genes by gender.
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Figure 2.7: (a) Commonly Mutated Genes in lung adenocarcinoma patients; (b) Number of high
and low transversion mutations for each gene; (c) Distribution of commonly mutated genes by
gender, from Cancer Genome Atlas Research Network [45].

Contrary to the case of squamous cell carcinoma, this study does not summarise a set of candi-

date genes for therapeutic target. KRAS mutations remain primarily targeted with chemotherapy.

Nonetheless, EGFR mutations have been extensively studied, and there are already target drugs

ready to be administered in its treatment.

2.5 Artificial Neural Networks and Deep Learning

The rise of Artificial Neural Networks and Deep Learning applications is not recent. It is the

product of a long history of work from scientists trying to define how the human brain operates

and modelling its behaviours into computational systems.

The first characterisation of the human thought process had in its core the sequential associ-

ations we make when "thinking", theorising that thoughts were a specific list of sequential asso-

ciations between concepts and objects that lead to a specific conclusion or action. This human

cognition model is known as Associationism and was famously empirically demonstrated by Ivan

Pavlov, in an experiment were the Conditional Reflex is formulated [41].

With the growth in scientific and technological advances, instruments like microscopes saw

significant development and allowed the discovery of relevant insights on the human brain’s com-

position. Its mass is mainly composed of an enormous number of interconnected neurons gener-

ating electrical signals amongst them. This composition is the foundation for the Connectionist

models, introduced by Alexander Bain, in which the information is thought to be lodged in the

connections between neurons and not in its cores. These theoretical models gave birth to connec-

tionist machines, which paved the way for modern artificial neural networks.

Further in-depth inspection and research on the actual physiology of neurons extended these

foundations, and in 1943 McCulloch and Pitts mathematically formulated the first model of a
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logical-based neuron and later emulated boolean gates through the use of simple networks com-

posed with this new logical-based neuron [42]. The model appeared promising and demonstrated

relatively relevant capacities. However, it lacked a learning mechanism and could not infer new

information.

Donald Hebb introduced a conceptual formulation of a learning method when he proposed

the increase in neuron’s weight/significance with its usage frequency. Simply put, increasing the

rate at which a neuron A connects to a neuron B, will increase the neuron A ability to excite/ac-

tivate neuron B. Even though not entirely in the same way, this mechanism remains one of the

cornerstones of modern learning algorithms. Nonetheless, a significant flaw is inert to this model,

which is the ever-growing instability caused by the increase in neurons weight without ever being

possibly decreased, creating strength and belief in connections that were wrongfully formed.

The previously identified flaw was only tackled around 1958 when Rosenblatt unveiled the

Perceptron, which was, as the media put it, the solution for everything [48]. The proposed model

for the artificial neuron takes as an input the weighted sum of all the values from its connected

neurons and excites/activates the next neuron if that sum surpasses a given threshold. Its ability

to overcome the previously identified learning limitations comes from the updates conducted on

the weights of the neurons regardless of the correctness of path. This means that correct paths

increase the weights of neurons that lead to it, while incorrect paths decrease those same weights.

This model displayed its strengths by easily mimicking the boolean gates experiment introduced

by McCulloch and Pitts.

Still, a large wall remained unclimbed, as proven by Minsky and Papert [43]. The XOR,

exclusive or, boolean gate was impossible to emulate with Rosenblatt’s proposed model. With

the help of a miss interpretation of Minsky and Papert’s work, this constraint temporally stalled

the belief and investment in the Artificial Neural Networks Field. The primary claim disregarded

in this work was that the Perceptron model was not to be cancelled but used in a multi-layered

structure, allowing it to excel in modelling the XOR gate and any other complex boolean function.

This multi-layered structure, where more than one layer of stacked artificial neurons is used

instead of a single layer, is a pillar for the advances in Artificial Neural Networks and represents

one of the earliest uses of Deep Learning. Figure 2.8, adapted from Kinsley et al. [31] displays

the physiological inspiration for artificial neurons and the default architecture for Deep Learning

Neural Networks.

The concept of Deep Learning is relatively intuitive as is refers to Artificial Neural Networks

whose architecture is composed of more than two layers of stacked neurons. Several other layers

may be used between the initial input layer and the final output layer. These layers, denoted as

"hidden", turn the artificial neural network into a deep one as several levels of depth, i.e. several

layers, are used to create predictions.
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Figure 2.8: (a) Artificial Neuron inspired on the physiology of a human neuron; (b) Default archi-
tecture used in an Artificial Neural Network, from Kinsley et al. [31].

2.6 Convolutional Neural Networks

Convolutional neural networks are a type of deep artificial neural network characterised by con-

verting simple input features into more complex outputs trough the help of filters that convolute

adjacent regions of interest. Figure 2.9, adapted from the "Deep Learning Book" by Ian Goodfel-

low et al. [18], demonstrates the structure of convolution operations.

Figure 2.9: Convolution operation, from Goodfellow et al. [18].

In the example presented in this figure, the original 4x3 input image is convoluted with a 2x2

filter/kernel. At each step, the kernel window slides through different positions in the original

image. With each step, a new cell in the output is generated by calculating the product between a



2.6 Convolutional Neural Networks 13

2x2 region of the original input image and the 2x2 filter. The resulting output is denominated as

"response map", and it represents the response to the filter in different locations of the input. An

example of this response map can be found in Figure 2.10, where the input image is a data sample

from the MNIST dataset, and the generated result represents the locations of the original sample

where the filter is most "salient".

Figure 2.10: Convolution operation over a MNIST data sample, from Chollet et al. [9].

Convolutional Neural Networks are usually used in classification tasks where the input images

remain relatively complex, and a single filter does not suffice. Thus, the convolutional layers of

the model employ multiple filters and aggregate them in what is called a "feature map", a 3D space

of amalgamated response maps generated for each filter. This is what allows models to pick up

intricate patterns and form an idea of the relationships between them. This concept is particularly

relevant as it introduces an idea of hierarchical structure between the different patterns identified in

the images. Figure 2.11, adapted from the book "Deep Learning with Python" by François Chollet

et al. [9], depicts an interesting example of these by highlighting the patterns that compose an

image of a cat’s face.

Figure 2.11: Hierarchical relationship between pattern identified in a cat’s face, from Chollet et
al. [9].

Initially, a set of simple patterns is identified. When amalgamated we understand they repre-

sent features the human-eye uses to identify a cat, such as the eyes, nose and ears. LeCun et al.
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demonstrated one of the first significant applications of the potential of these neural networks in

recognition of handwritten digits. This model was to be famously known as the LeNet [34].

The growing interest in this field and the application of such models led to competitions where

researchers would prove their model’s novelty and accuracy. One of these competitions, Ima-

geNet, took place in December 2012 and Krizhevsky along with his colleagues demonstrated a

new winning model architecture named AlexNet [32]. The ImageNet challenge would be tackled

with significant improvements again in 2014 when Simonyan and Zisserman developed a 19-layer

model called OxfordNet. This model is commonly referred to as VGG19 [51]. The year of 2015

had two pivotal moments of significant improvement in the field of convolutional neural networks.

On the one hand, the ImageNet challenge of that year was won by He et al. with a new model archi-

tecture called ResNet [21]. On the other hand, an impressive 22-layer network named GoogleNet

was developed by Szegedy et al. [53], which benefitted from the use of inception-blocks, concep-

tualised by Lin and colleagues in 2013 [37].

Significant efforts from Google’s research teams have been moving Google’s Inception model

forward. After its first debut, second and third versions have been developed and widely used.

Improvements built on top of previous versions include batch normalisation. Google’s Inception

has been the number one go-to in the field of medical imaging, as it remains highly performant

under rigid memory constraints and highly complex problems.

2.7 Multiple Instance Learning Applied to Neural Networks

In ML tasks, supervision is one of the key steps for success and one of the main challenges.

Models can be divided into three main categories regarding this concept, fully supervised, fully

unsupervised and weakly supervised.

Multiple Instance Learning (MIL) is considered a supervised/weakly supervised ML technique

where the data we wish to comprehend and make predictions on gets regarded as an amalgama-

tion of smaller components [13, 6]. In the literature, data samples are denoted as bags, and its

components are denoted instances (see Figure 2.12).

Figure 2.12: Traditional supervised learning and Multiple Instance Learning, adapted from Di-
eterich et al. [13].
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In classification tasks using data sets comprised of images, a bag represents an entire image,

and its instances represent some or all of its patches. This approach is particularly relevant in tasks

where the classes of the data samples are known, while in contrast, the classes of its composing

parts are not, i.e. a single label is available for the entirety of the bag, and no labels get provided

for its instances.

MIL algorithms bifurcate into patch/instance-level classification and bag/embedding-level clas-

sification tasks. The former is concerned with the attribution of labels to the many individual in-

stances present in each bag. The latter approach is only concerned with attributing a single label to

each bag containing a set of instances, transforming our task into a fully-supervised classification

one.

2.8 Explainability and Interpretability in Machine Learning

Explainability and Interpretability are two concepts that have begun to rise in popularity in the field

of AI and ML. Researchers seek validation, transparency and trust for their models, envisioning

the demystification of the classical black-box concern in which models produce predictions, but

the end-user is unable to interpret its reasons and rationale. Achieving this goal can be done in

one of two ways. First, by creating a model that in itself is understandable by humans and is

capable of demonstrating the rationale behind its actions. This is the introduction of explainability

on a model. Second, by introducing interpretability. In this case, the model itself does not have

to be able to prove its rationale. Instead, it is concerned with generating outputs that can easily

be understood/interpreted. To do so, interpretable models highlight the relationship between the

inputs fed to the model and its predictions. In image classification tasks, using Deep Convolutional

Neural Networks, this concept generally represents the highlight of specific regions of interest that

the model uses as a foundation for its predictions.

A simple illustrative proof of concept is the animal image classification task using any CNN

architecture. In this task, the model is concerned with predicting animal classes present in input

images. Figure 2.13, adapted form Ramprasaath et al. [49] demonstrates an example of what the

model’s predictions could be, and the highlighted regions of interest that justify such predictions.

The introduction of this concept creates three possible levels of informational gain. The first

one regards the justification for failure. In this case, models under-performing or over-performing

in specific situations generate interpretable highlights that help the “user” understand what might

be missing or introducing bias. The second level of informational gain brought by the introduc-

tion of this transparency in models is the visual validation of predictions, which leads to “users”

increasing the trust they deposit in them. The third and final level is the most ambitious one and

allows models that outperform humans in classification tasks to generate insights that escape the

human eye and have the potential to become a new standard.
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Figure 2.13: Introduction of prediction interpretability with GradCam algorithm, highlighting the
regions significant to each class predicted by the model, from Ramprasaath et al. [49].

2.9 Summary

Visual inspection of histopathological images remains a gold-standard in lung cancer diagnosis.

Expert pathologists inspect these images under a microscope and look for specific morphologi-

cal features to give them insights related to the patients’ diagnosis. In lung cancer patients and

cancer patients in general, these features include cells with multiple, large and miss-shaped nu-

clei. Additionally, histopathological image inspection aids pathologists discerning the particular

cancer subtype in a patient. However, this inspection does not rely solely on the previous cellular

level morphological features. Each subtype of lung cancer must be probed for higher magnifica-

tion level patterns. A great deal of interest also resides in identifying patients’ genetic mutations

through the inspection of these patterns.

Artificial Intelligence and Machine Learning algorithms, specifically Artificial Neural Net-

works, have demonstrated their potential in automating the inspection of histopathological im-

ages. In particular, Convolutional Neural Networks demonstrate the state-of-the-art accuracy in

such task, by utilising various filters to identify the desired patterns in the original image and create

a hierarchical relationship between them.

Nonetheless, one significant constraint remains present in these solutions. Most image anno-

tations relate only to the whole tissue images cancerous status. Thus, no insights are provided

on the specific regions exhibiting morphological characteristics justifying the predictions gener-

ated. Multiple Instance Learning approaches tackle this issue by decomposing images into smaller

pieces and learning each one’s significance. Additionally, interpretability algorithms such as Grad-

Cam use the models’ internal parameters to identify and highlight pieces exhibiting morphological

features characterising predictions.
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Literature Review

This section presents the results obtained from a systematic literature review. This review process

includes research on many fields of interest crucial to the development of our work. Moreover,

these results encapsulate the accuracy and precision of traditional machine learning and modern

Deep Learning techniques in classifying images gathered from suspicious tumours located in a

set of organs or systems. Although lung cancer characterisation remains our research’s primary

interest, the innovation and breakthroughs achieved in classifying tissue from other organs and

systems remain incredibly insightful.

3.1 Cancer characterization models using histopathologic images

3.1.1 Machine Learning

Conventional Machine Learning techniques, such as Support Vector Machines (SVM’s), Random

Forests (RF’s), Naive Bayes and K-Nearest Neighbors, use quantitative features to formulate pre-

dictions. These features commonly represent tissue characteristics such as nuclei and cytoplasm

size, shape, and distance in histopathological image classification tasks. Beck et al. [4] conducted

a study in which this set of features was used to train a prognosis model to effectively analyse

breast histopathological images and generate patients 5-year survival prediction. However, this

work is limited to the use of small image cores from tissue samples. Thus, a significant amount of

information from the whole slide image is lost, and the model’s ability to deal with heterogeneity

is reduced. In addition to the previously mentioned features, additional quantitative information is

present in the textural characteristics of the tissue samples like contrast and homogeneity. Sertel

et al. [50] developed a multi-scale neuroblastoma classification model to identify stroma-rich and

stroma-poor regions in histopathological images, based on these textural features. With the use of

a multi-scale approach, the previously mentioned image size limitation is discarded, and the devel-

oped model reaches very compelling results. Nonetheless, a key limitation remained as no subtype

differentiation insights were generated. One pivotal study tackling this issue was conducted by Yu

17
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et al. in 2016 [57], where an extensive set of machine learning algorithms were employed and

compared. These algorithms included SVM and RF to predict NSCLC subtypes in H&E images,

acquired from TCGA and Stanford’s Tissue Microarray (TMA) publicly available datasets. To

do so, these algorithms used a set of previously selected quantitative features to distinguish each

class. The selection of said quantitative features was made with the aid of CellProfiller [7], which

employed the measurement of cell shapes and sizes, pixel intensity and object’s textures. The

results showed significant accuracy in subtype distinction, presenting an average AUC of 0.72 for

the TCGA dataset and an average AUC of 0.78 for the TMA dataset.

Altogether, Machine Learning methods have demonstrated compelling results in histopatho-

logical image classification. However, they remain relatively scarce in the literature. The main

reason for such scarcity is their heavy reliance on quantitative features. Modern research efforts

demonstrate a more generous amount of interest in methods capable of identifying visual patterns

and visual characteristics that can aid pathologists in their decision-making process, while also

increasing the trust in the developed models. Such research interest emerges in the continuous

development and extension of Deep Learning solutions.

3.1.2 Deep Learning

One of the earliest, and most significant, registers of medical imaging aid by Deep Learning tech-

nique comes from a lung nodule detection model for greyscale chest radiographs, developed by Lo

et al. in 1995 [40]. This model was an initial version of CNN’s which performed two-dimensional

convolutions on image regions. Figure 3.1 shows an example of the original chest radiograph im-

ages and the CNN architecture used. The results showed a significant increase in AUC when the

novelty model was compared to its contemporary regular neural networks.

Figure 3.1: Chest radiograph and CNN architecture used in lung nodule detection, from Lo et
al. [40].

Since then, AI and Deep Learning have become very popular in the medical imaging field, and

many new opportunities and future challenges have been identified [19]. Extensive development

has been applied in this field, across all specialities, as demonstrated by Litjens et al. [38] in their

review of the extraordinary efforts moving Deep Learning algorithms and architectures forward.
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The following subsections summarise some of the methods and findings surrounding the use of

Deep Learning for cancer characterisation in histopathological images acquired from different

organs (colon and rectum, skin, breast and lung).

3.1.2.1 Colorectal Cancer

Colorectal cancer is a grouped designation attributed to cancers originating in the colon or rec-

tum, both included in the large intestine. At the end of 2020, it was responsible for 10% of the

diagnosed cancers and around 10% of cancer-related fatalities. A Deep Learning solution for col-

orectal cancer characterization has been developed by Qaiser et al. [47], where they first combine a

CNN trained with whole slide H&E stained images, with the patient’s enhanced persistent homol-

ogy profiles (ePHP). Later, significantly better results rise from a multi-stage ensemble learning

strategy, combining the output of RF regression models attached to the ePHP and CNN (see Figure

3.3).

Figure 3.2: Pipeline for colorectal cancer classification, from Qaiser et al. [47].

Another study conducted by Bychkov et al. [5] shows that Deep Learning solutions can also

predict patients survival. In this study, the authors employ a pre-trained VGG16 model to ex-

tract features from the original H&E stained images and subsequently feed these features into a

Long Short Term Memory (LSTM) network. Such a method shows improvements in patients’

decease-specific-survival prediction compared to the most common traditional machine learning

classification algorithms, such as SVM, Logistic Regression and Naive Bayes. These results are

in line with Qaiser et al. by demonstrating the potential for Deep Learning solutions applied to

colorectal cancer when using histopathological images.

3.1.2.2 Breast Cancer

At the end of 2020, breast cancer was the most commonly diagnosed cancer, representing around

12% of all cases. Its staging and treatment decisions heavily rely on the detection of metastasis [2].

Yun Liu et al. [55] developed a metastases detection model using breast cancer histopathological

images. This model improved the previous work by Wang et al. [39], which already demonstrated
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significant results in detecting metastases. The new, improved model uses a CNN, specifically,

Google’s Inception V3 architecture, and its results show a close to pathologist-level accuracy, with

an AUC value of 0.99 in the Camelyon16 data set. Recently, Xie et al. [56] extended breast cancer

characterisation research by conducting a study in breast histopathological image classification. In

this study, two CNN architectures were compared in the task of classifying cancerous and normal

tissue images. The two chosen architectures were Inception ResNet V2 and Inception V3. The

former presented the most compelling results with an AUC of 0.996, a value significantly higher

than the previous works presented in the literature.

3.1.2.3 Skin cancer

Although not as common as the cancers mentioned above, skin cancer also holds a great deal of

concern, and Deep Learning solutions can considerably aid its diagnosis. Esteva et al. [16] de-

veloped a CNN using the Inception V3 architecture to classify skin cancer patients through the

inspection of photographic and dermoscopic images of skin lesions (see Figure 3.2). Experiments

demonstrated the models high capacity for classification tasks, with a maximum AUC of 0.96 for

both small and large data sets. These results show accuracy in classification close to that of pro-

fessional pathologists, even when the data sets informational size is quite large. Another use of

CNN’s has outperformed eleven pathologists in the classification of histopathological melanoma

images. The model developed by Heckler et al. [23] stood out in its testing phase, where it showed

a mean sensitivity, specificity and accuracy higher than the ones exhibited by the eleven patholo-

gists who classified the test data set.

Figure 3.3: Pipeline for skin cancer classification using Google InceptionV3, from Esteva et
al. [16].

3.1.2.4 Lung Cancer

The first significant concern in lung cancer characterisation is the detection of tumour tissue in

the lung or other organs when it has metastasised. Several Deep Learning solutions have been

developed to extend research on this concern. A recent study published by He et al. [22] proposed

a framework for lung cancer whole slide image classification and annotation, where the first phase

of the pipeline is characterised by a patch-based classification model using a CNN and the second
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phase, the inference one, generates the annotations based on the heatmap created with the predicted

probabilities for each patch. The proposed framework presented significantly compelling accuracy

results and was capable of generating annotations similar to the ones produced by professional

pathologists. As previously mentioned, one other way to identify the presence of lung cancer

in a patient is through the inspection of metastases in other organs, specifically in lymph nodes.

Another recent study published by Pham et al. [46] demonstrated significant results in lung cancer

detection through the inspection of lymph node histopathological images. The proposed solution

initially removed lymphoid follicles detected in the original images, which decreased and further

aided the classification process. Overall an AUC of 0.922 was achieved in the detection of cancer.

The second principal concern is the identification of the cancer subtype, allowing pathologists

to employ therapy solutions specific to each patient. In a set of studies aimed at correctly classify-

ing NSCLC subtypes present in histopathological images, Hou et al. [24] employed what is now

considered a state-of-the-art preprocessing technique for training data, where large images are split

into same-sized tiles. These tiles trained the first level of the classification model, in which every

patch was classified with a given probability of representing a subtype of NSCLC. This model’s

second level takes these probabilities and uses an SVM algorithm to label the whole image. With

this structure, a compelling classification accuracy of 0.798 was achieved. Similarly, Khosravi

et al. [29] developed an ensemble learning method capable of dealing with heterogeneous pop-

ulations to classify different NSCLC subtypes and identify the biomarkers present in the tissue

samples. To enhance the conducted studies informational gain, the authors underwent experi-

ments with a range of CNN architectures for which the best results presented belong to Google’s

Inception V3. Additionally, Li et al. [35] conducted a study on thirty-three lung cancer patients

where the whole slide images acquired from tumour tissue were classified into NSCLC subtypes.

In this study, a set of CNN’s was compared, when trained from scratch and fine-tuned. The re-

sults show that SqueezeNet [25], a relatively unknown smaller version of AlexNet that requires

fewer parameters and storage size, holds up quite exceptional accuracy levels in classification.

The authors demonstrate that the area under the ROC curve measure remains higher than the most

common AlexNet, ResNet and VGG models, with values of 0.91 and 0.87 for the trained from

scratch fine-tuned scenarios.

An analytical overview of these publications demonstrates the notable results obtained using

Deep Learning solutions over conventional Machine Learning. Nonetheless, these publications

lack to tackle research on the identification of genetic mutations, a concept that has gained a lot of

momentum and represents great innovation value.

3.2 Genetic Mutations identified in histopathologic images

Apart from determining if a patient has cancer or not, and which subtype of cancer it has, histopatho-

logical images can help identify the patients’ genetic mutations. This is critical to an appropriate

diagnosis and treatment choice. Many studies point out a set of candidate genes, whose mutation

commonly leads to precancerous lung lesions or invasive proliferation of advanced carcinomas.
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This set of genes includes EGFR, KRAS, TP53 and STK11 as the most prevalent ones, although

the incidence of some may be related to geographical and ethnic characteristics of the patients [8].

A recent study conducted by Nicolas Coudray et al. [10] shows unprecedented results on the

classification of tissue whole slide images from the TCGA data sets regarding type and subtype,

achieving pathologist-levels of accuracy. However, more importantly, the authors propose a deep

CNN model, with a Google Inception V3 architecture, to detect genetic mutations commonly

associated with the fast growth and development of lung cancers. Results show considerable

accuracy in this detection process and indicate that further research can improve this task. The

results also confirm the previously mentioned genes as the most common in lung cancer, as STK11,

EGFR, FAT1, SETBP1, KRAS and TP53 were identified and accurately classified through the

inspection of histopathological images. Another study published by Kim et al. [30] demonstrates

the results of applying the previously mentioned deep CNN model to identify the genes mutated

in histopathological images of melanomas (skin cancer). In this study, the two most commonly

mutated genes in melanomas, BRAF and NRAS, were predicted with AUC’s of 0.75 and 0.7,

creating significant interest and future work opportunities. In a similar fashion Liao et al. [36]

brings to light the strength of a less memory demanding deep CNN model identifying genetic

mutations present in histopathological images from liver cancer patients. An average AUC of 0.7

was achieved in the prediction of a set of seven different genes. This set includes ALB, CSMD3,

TNNB1, MUC4, OBSCN, TP53, and RYR.

The solutions presented in these publications are still unable to generate perfect predictions.

However, the results obtained are reasonably promising, and further research may help achieve

significant breakthroughs.

3.3 Summary

The literature review process gathers convincing evidence that Deep Learning solutions over-

perform conventional Machine Learning methods. Furthermore, CNN-based solutions are clearly

denoted as the most common in medical imaging classification tasks. This review process also

highlights the lack of research and development in models interpretability. Similarly, the tender

state of genetic mutation classification has been reported.

A summarised view of the identified limitations present in the current state of the art for

histopathological image classification is presented below:

• Data Availability — Publicly available cohort information containing histopathological im-

ages and genotype arrays remain slightly insufficient;

• Data Storage — Histopathological images tend to have high resolutions, thus, storing them

along with all the complementary genotyping can be very memory demanding;

• Class Imbalance — Public datasets tend to be imbalanced, either containing a larger num-

ber of tumour samples or a larger number of healthy samples. Furthermore, the information
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regarding mutated genes tends to be very sparse, increasing the difficulty in gathering a

balanced set of classes for each gene;

• Data Processing and Training Times — Computational advances keep on increasing the

speed at which machines process and use this data. However, it never seems fast enough,

and with future improvements, greater speeds will be achieved.

• Interpretability — Most models presented in the literature lack an explainability/inter-

pretability feature, as no insights on the model’s "thought process" are generated. The only

common tool used in this sense is the generation of heatmaps representing class prediction

probabilities.
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Chapter 4

Data Sets Characterization

A brief description of the publicly available datasets considered for the proposed work is provided

in this section. These datasets encapsulate hundreds of histopathological images and genomic

sequences acquired from lung cancer patients. Many of the state-of-the-art models for classifi-

cation tasks use these images and sequences to gather benchmark results. The characteristics of

the individual samples in the sets are also described including gender, the primary site of sam-

ple acquisition, disease type, patient’s vital status, the experimental strategy used for the acquired

samples and its type.

4.1 Histopathological Images

The primarily identified datasets come from The Cancer Genome Atlas (TCGA), a research pro-

gram born in 2005, aiming to molecularly characterize the genetic mutations present in cancer

cells. This program runs under the National Cancer Institute’s Center for Cancer Genomics and

the National Human Genome Research Institute which received its funding from the United States

government.

The program extensively gathered data on cancer patients through genomic sequencing a tu-

mour sample tissue excision. There is a vast amount of publicly available data on thirty-three

different types of cancers [3], affecting different organs or systems, cataloguing the different iden-

tified mutations for each case and the resulting diagnosis. Ultimately this data has moved research

forth and gave rise to many new improvements in the identification of new cancer target thera-

pies, drugs and biomarkers. The following datasets belong to the extensive study in lung cancer

characterization conducted by the TCGA program:

• TCGA-LUAD — Histopathological images and genomic sequences from lung adenocarci-

noma patients from the TCGA-LUAD project cohort (see Table 4.1 and Figure 4.1);
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• TCGA-LUSC — Histopathological images and genomic sequences from lung squamous

cell cancer patients from the TCGA-LUSC project cohort (see Table 4.2 and Figure 4.2).

Each one of these datasets contains hundreds of Hematoxylin and Eosin (H&E) stained slides.

This staining method allows the visual enhancement of different features in the tissue. Hema-

toxylin gives cell nuclei a blue colour, while eosin is responsible for staining cell cytoplasm with

a pink colour. With this aid pathologists get a clear view of the cells in the tissue and address

features that include size and shape, which are determinant for the diagnosis. The untrained eye

might be able to partially distinguish between healthy, and tumour tissue images, as healthy tissue

seems to be closer to a pink shade as nuclei remain relatively ordinary. Two examples of this

distinction are exhibited in Figures 4.1 and 4.2. Nonetheless, the distinction between each subtype

of cancer remains extremely difficult. Hence, the assessment of a trained pathologists remains

critical.

Tables 4.1 and 4.2 summarize the information from the patients in each cohort, along with the

experimental strategies used, sample type, and the identified commonly mutated genes. Moreover,

Figures 4.3 plots the H&E image width and height distribution. TCGA-LUAD image samples

have an average width of 50,000 pixels and an average height of 34,000 pixels. Similarly, TCGA-

LUSC image samples have an average width of 45,000 pixels and an average height of 32,000

pixels.

Table 4.1: TCGA-LUAD dataset characterization

Acronym Description
Cases 585
Gender Male(242) , Female(280)
Primary Site Bronchus and lung
Disease Type Adenoma and adenocarcinoma(549) , acinar cell neoplasms(22)

Cystic/mucinous/serous neoplasms(11)
Vital Status Alive(334) , Dead(188)
Experimental Strategy WXS(582) , Methylation Array(579) , Genotyping Array(518)

RNA-seq(515) , Tissue Slide(514) , miRNA-seq(513)
Diagnostic Slide(478) , ATAC-seq(22)

Sample Type Primary tumour(585), blood derived normal(424)
Solid tissue normal(274), ffpe scrolls(2), recurrent tumour(2)

Commonly Mutated Genes TP53, KRAS, EGFR, STK11, KEAP1
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Figure 4.1: Histopathological images from TCGA-LUAD dataset

Table 4.2: TCGA-LUSC dataset characterization

Acronym Description
Cases 504
Gender Male(373) , Female(131)
Primary Site Bronchus and lung
Disease Type Squamous cell neoplasms(504)
Vital Status Alive(284) , Dead(220)
Experimental Strategy WXS(502) , Methylation Array(503) , Genotyping Array(504)

RNA-seq(501) , Tissue Slide(495) , miRNA-seq(478)
Diagnostic Slide(478) , ATAC-seq(16)

Sample Type Primary tumour(504), blood derived normal(318)
Solid tissue normal(254), ffpe scrolls(3)

Commonly Mutated Genes TP53, MLL2, PIK3CA, CDKN2A, NF2L2, KEAP1

Figure 4.2: Histopathological images from TCGA-LUSC dataset
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Figure 4.3: Distribution of image width and height for TCGA-LUSC and TCGA-LUAD datasets.

4.2 Genetic Mutation Data

Patient’s whole genome sequence arrays compose another essential volume of information in

TCGA datasets. This information allows pathologists to get a more in-depth insight into the actual

subtype of cancer a patient has. From the original 585 patients belonging to TCGA-LUAD cohort,

448 ( 77%) exhibit at least one of the previously identified genetic mutations. On the other hand,

out of the 504 patients belonging to TCGA-LUSC cohort, 442 ( 88%) of them also endure such

genetic mutations. A slight increase in the percentage of patients with mutated genes is observed.

Figure 4.4 summarizes the number of patients associated with each mutation. The numbers

comply with the statistics presented in Chapter 2.4. In the case of TCGA-LUAD patients, close to

30% of them endure KRAS mutations, while very few TCGA-LUSC do.

Figure 4.4: Distribution of mutated genes by number of cases.
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4.3 Summary

The efforts conducted by research programs such as The Cancer Genome Atlas allow access to

datasets crucial to our work. These datasets include hundreds of histopathological images, stained

with H&E, which aids the distinction between normal and cancer samples, by giving the former a

pink colouration and the latter a purple like colouration.

Additionally, these datasets also contain genomic sequencing arrays, which give us the pa-

tients’ genetic mutation status. A statistical analysis of these data, allows us to formalize that

squamous cell carcinoma patients commonly exhibit TP53 genetic mutations, while, on the other

hand, adenocarcinoma patients tend to exhibit TP53, EGFR and KRAS mutations. This disparity

in mutated genes, can further aid pathologists in elaborating a subtype diagnosis.
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Chapter 5

Lung Cancer Characterization in
Histopathological Images

This chapter gathers and describes the set of methods employed in developing our solution and

its results and discussion. The solution we built works in three different levels of hierarchy, tissue

type, cancer subtype and genetic mutation classification. One of the main reasons for this hierar-

chical separation is the distinction in image magnification. Pathologists inspect the tissue samples

using various magnifications/zoom levels. Figure 5.1 demonstrates the distinction between 40x

and 5x magnification. The former displays the individual characteristics of each cell and the latter

displaying more general patterns in a broader overview of the tissue.

Figure 5.1: Comparison between tiles acquired from 40x and 5x magnifications.
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The following sections describe in detail all of the elements composing our pipeline. Fur-

thermore, experiment design and results are presented and discussed for each classification task,

identifying the benefits and limitations found.

5.1 Tissue Type Classification Model

The first hierarchical level is responsible for the distinction between normal and tumour tissue

through the inspection of preprocessed H&E stained histopathological images.

5.1.1 Data Gathering and Categorisation

The H&E slides used for training purposes in our classification models have been acquired from

the datasets previously identified and described in detail in Chapter 4. This acquisition was made

using the Genomics Data Commons (GDC) Data Transfer Tool, a client-based mechanism that

allows the download and submission of data from GDC. A set of queries was used to select and

download files specific to both TCGA-LUSC and TCGA-LUAD programs, including the associ-

ated H&E .svs whole slide images. Each of these images contains a specifically constructed file

name following the TCGA-Barcode format. In this format, the file name contains a set of fields

specifying the sample’s characteristics, including the original project, patient ID and sample type

as displayed by Figure 5.2.

Figure 5.2: TCGA-Barcode file name format example. The "Project" field designates the name
of the original project; "TSS" describes the tissues source site, 02 refers to MD Anderson Cancer
Center; "Participant" describes the patients’ alpha-numeric value, 0001 is the first patient of the
study; "Sample" describes the tissue type, 01 for Primary Solid Tumour; "Vial" describes the
sample order, C is the third sample from the same patient; "Portion" describes the portion order of
the sample, 01 is the first portion; "Analyte" describes the molecular type of analyte for analysis,
D is for DNA; "Plate" identifies the order of plate in a sequence of 96-well plates, 0182 is the
182nd plate; "Center" identifies the centre receiving the sample for analysis, 01 represents The
Broad Institute GCC.
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Once acquired, this file name format aided categorising the images in these datasets. The

sample type field in each image allowed us to separate them into cancerous and non-cancerous

groups accordingly. The reason for this is that cancerous samples are represented with sample

types ranging from 01 to 09, while on the other hand, normal samples have a sample type ranging

from 10 to 14. Moreover, files were also split and stored according to their original program and

lung cancer subtype, squamous cell and adenocarcinoma, TCGA-LUSC and TCGA-LUAD (see

Figure 5.3).

Figure 5.3: Folder structure used to store tissue type classification data.

5.1.2 Data Preprocessing

The original H&E whole slide images come in the .svs format and with infeasible dimensions to

feed the classification network. Therefore, a set of preprocessing steps were required to turn these

images manageable. The first step was to re-format them, and to this end, images were opened

with PIL framework, transformed into NumPy arrays and saved into new PNG files.

Afterwards, the new re-formatted images get divided into several same-sized tiles acquired

from a 40x magnification, whose dimensions were specified and set to 192x192. Only a few

get selected from these tiles to serve as an input for our classification task. This selection was

made with the aid of a scoring function introduced by Erikson et al.[15], where each tile gets

scored according to their tissue percentage, tissue colour and saturation. The scoring process will

attribute each tile a colour based on its utility. Green and red are the edges of the colour spectrum

used, where green represents the most informative tiles with score values ranging from 0.8 to 1

by exhibiting high tissue percentages and preferred staining characteristics. In contrast, red is

reserved for tiles with a score of 0, containing no tissue at all. Intermediate scores are represented

with orange and yellow, with the former ranging from 0 to 0.1 and the latter ranging from 0.1 to

0.8. (see Figure 5.4).
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Figure 5.4: Tilling and scoring process; green squares represent the most informative tiles and red
squares represent the least informative ones, adapted from Erikson et al.[15].

Inline with Erikson et al.[15], only the 50 highest scoring tiles of each image get selected and

retrieved to represent instances composing the image bag. Every bag previously formed is then

categorised into positive and negative classes. The positive class represents cancerous tissue, and

the negative one represents normal tissue samples.

5.1.3 Baseline Classifier

A set of experiments was conducted to lay the ground for further advances in developing our final

model, taking advantage of previously identified superior results present in the state of the art liter-

ature review. In this review, the most commonly used models, and the ones that displayed the best

accuracy values, were built using CNN architectures such as Google’s Inception V3. Likewise, we

built a set of preliminary models employing two different approaches using our previously labelled



5.1 Tissue Type Classification Model 35

and preprocessed images, firstly to fine-tune an Inception V3 model previously trained on the Im-

agenet dataset [12], and secondly to fully train an Inception V3 model from scratch. The former

produced slimmer results, with accuracy and AUC values around 0.9. The latter demonstrated the

previously identified potential for CNN’s in classification tasks such as the one herein discussed

by achieving accuracy and AUC values around 0.96. These values stand reasonably close to the

ones produced by the state-of-the-art approaches summarised in our literature review.

Nonetheless, these approaches introduced a somewhat famous theoretical issue in classifica-

tion tasks based in Machine Learning. The root of this issue is the labelling of the tiles used to train

our models. Data samples labelled as belonging to cancerous tissue vary on the extent and per-

centage of tumour tissue. This means that not every "piece" acquired in the previously described

tilling process represents actual cancerous tissue in the original whole slide image.

Considering this issue, the approaches mentioned above turn theoretically flawed, as the input

images used may be incorrectly labelled and thus may introduce error in the model. Because

this theoretical problem is not recent nor unusual, there is extensive research to formulate new

approaches able to deal with it.

5.1.4 Attention-Based Classifier

New experiments were then conducted using one of these approaches, specifically MIL (see Chap-

ter 2.6), using whole slide images as bags and the many tiles as instances to train a bag-level clas-

sifier. When employing this formulation, our model’s only concern is to classify the whole image

into a positive or negative class, thus never facing the problem identified in previous experiments.

To this extent, a new model was constructed using the MIL approach proposed by Ilse et

al. [26]. In this particular approach, the model’s convolutional layers are followed by a pair of

novelty attention mechanisms, proposed to substitute the regular MIL pooling layers commonly

used. The rationale behind this substitution is entangled with the "static" characteristics of classical

pooling layers. Maximum and mean operations represent the most commonly used pooling layer

operations, where the output is generated calculating the maximum or mean values for the inputs.

Although efficient, these operations turn the decision making strict, removing the ability to adapt

to cases exhibiting unique properties.

Figure 5.5, adapted from Ilse et al. [26] demonstrates the distinction between most common

pooling layers and the proposed attention mechanism. The first case, Figure 5.5 (a) represents the

instance-level approach, and the final MIL pooling layer aggregates the predictions generated for

each tile using the typical max or mean operators. The second case, Figure 5.5 (b), represents

the bag-level approach and the MIL pooling layer precedes the last fully connected layer. Lastly,

Figure 5.5 (c) represents the approach employed in our model, using the proposed attention mech-

anism before the last fully connected layer to attribute an attention value to each instance.
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Figure 5.5: Summary of classical pooling techniques (a,b) and the novelty attention mechanism
(c), from Ilse et al. [26].

The novelty attention mechanisms work by creating a weighted average of instances, where

the network determines the weights. Label prediction is formulated in Equation 5.1, where z is

the label attributed to the bag containing K instances and ak is the attention factor attributed to

instance hk. Equation 5.2 shows the formulation for the Default attention factor, where w and V

represent two trainable variables. Similarly, Equation 5.3 demonstrates how the Gated attention

mechanism is formulated, also containing three trainable weights, w, V , and U .

z =
K

∑
k=1

akhk (5.1)

ak =
exp{wT tanh(V hT

k )}
∑

K
j=1 exp{wT tanh(V hT

j )}
(5.2)

ak =
exp{wT (tanh(V hT

k )� sigm(UhT
k ))}

∑
K
j=1 exp{wT (tanh(V hT

j )� sigm(UhT
j ))}

(5.3)

The distinction between the two proposed attention mechanisms rises with the introduction

of the gating operation, �sigm(UhT
j )) in Equation 5.3. According to Ilse et al., the introduction

of this operation, initially proposed by Dauphin et al. [11], tackles the approximate linearity of

the tanh(x) function for x ∈ [−1,1] with the sigmoid function non-linearity. This conjugation
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creates a non-linear trainable pooling layer capable of capturing small subtleties characterising

each class. Additionally, the proposed pooling methods allow the identification of key instances for

the whole bag label attribution. Figure 5.6 shows the full pipeline of our solution, aggregating the

data collection, preprocessing and categorisation with the training of the Attention-Based model

detailed above and classification of new data.

Figure 5.6: Tissue Type Classification Model Pipeline: (i) TCGA data is downloaded (ii) images
are tiled and scored according to utility (iii) data is split into training, validation and testing subsets
(iv) MIL Attention-Based model, trained with the data (v) classification on test set.

5.1.5 Training, Validation and Testing

Our experiment design was delineated to employ a manual grid-search to fine-tune some of the

hyper-parameters composing the model. To this end, two hyperparameters were chosen, learning

rate and weight decay, and their values transited between 1e-4, 5e-4 and 1e-3 in each experiment.

All of these experiments employ the Nadam [14] optimizer, using the default values β1,β2 of 0.9

and 0.999.

Furthermore, the K-Fold Cross-Validation technique was used to resample our data. In this

resampling technique, the original dataset gets split into same-sized K folds/groups of samples. A

new array of K datasets is generated, with each one randomly selecting different folds for training,

validation and test phases. This method is particularly interesting as it does not introduce order bias

in the model and validates its performance using different test sets each time. Our preprocessed

data samples were split into the usual training, validation, test sets using a 3-Fold Cross-Validation

method (see Figure 5.6). Thus, we train and evaluate the model three times for each experiment,

assuring distinct training and testing samples. A general metric on the model’s performance is

generated by computing the mean bag-level prediction accuracy (Acc) and Area under the Curve

(AUC), using the results from the three runs.

5.1.6 Results

The following table summarises the best results acquired in the experimental process described

above. Table 5.1 displays the highest Acc and AUC values achieved using the Default Attention
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and Gated Attention mechanisms defined in Chapter 5.1.4 (Equations 5.2 and 5.3). Moreover, the

hyperparameters used in the top performant experiments are also detailed.

Table 5.1: Best tissue type classification results for each attention mechanism.

Attention Mechanism LR Weight Decay Accuracy AUC
Standard 1e-4 1e-4 0.900 0.939

Gated 1e-4 5e-4 0.912 0.945

The highest Acc and AUC values achieved belong to the experiments employing the Gated

Attention mechanism and using the learning rate and weight decay values of 1e-4 and 5e-4. More-

over, experiments employing the Default Attention mechanism also reached compelling Acc and

AUC values, although using a slightly smaller weight decay factor. The slight improvement in

results from the Gated Attention mechanism follows the original proposition by Ilse et al. [26]

5.1.7 Attention Maps

To discern the actual quality of our model’s predictions and further aid pathologists in the visual

inspection of our whole slide images, we adopted the Grad-Cam [49] algorithm. The Grad-Cam

algorithm highlights regions of interest in the original images by inspecting gradient information

generated through the network’s layers. Moreover, the gradient values tie each neuron to its rela-

tive significance in the predictions generated. With this information, a heatmap of "importance" is

generated and superimposed over the original image.

An experiment was conducted using a TCGA-LUSC whole slide image labelled as cancerous.

This image was then preprocessed and fed as an input to our model, which correctly classified it.

Later, the attention maps highlighting the regions contributing to this classification were generated

using the GradCam algorithm. Figure 5.7 summarises the experiment’s workflow, with the original

whole slide image represented on the left side. The scattered green squares represent the selected

tiles fed into our fully-trained model. On the right, the Grad-Cam algorithm’s superimposed image

highlights the regions with a larger contribution to the model’s prediction. Recalling the visual

features defining cancerous cells presented in Chapter 2.2, one might argue that the algorithm

has highlighted cells exhibiting the same anomalies, including variances in nuclei size and shape,

reduced cytoplasm and smudged chromatin.
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Figure 5.7: Attention Maps Generated with GradCam algorithm, with highlighted atypical cells
exhibiting large and abnormally shaped nuclei.

5.1.8 Discussion

The developed models exhibit significant potential in the tissue type classification of H&E stained

whole slide images, achieving an overall best AUC value of 0.945. Table 5.2 displays the compar-

ison between the results achieved with our models and the results present in the literature.

Table 5.2: Tissue type classification performance comparison.

Model AUC
Conventinonal Machine Learning, Yu et al. [57] 0.850

SqueezeNet, Li et al. [35] 0.911
HaloAi, Pham et al. [46] 0.922

Our model, default attention mechanism 0.939
Our model, gated attention mechanism 0.945

Inception V3, Coudray et al. [10] 0.993

Our models’ ability to distinguish normal and cancer tissue samples was able to surpass several

solutions presented in the literature and place it close to the previously described state-of-the-art

solution by Coudray et al. Although both attention mechanisms achieve compelling performances,

a slight improvement is observed in the employment of the Gated Attention mechanism. As previ-

ously mentioned, this insight follows the comparative proposition by Ilse et al. in their publication.
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We argue that this improvement is closely related to the introduction of the sigmoid() function

non-linearity mentioned in Chapter 5.1.4. This introduction allows the model to increase its abil-

ity to identify the small subtleties characterising normal and cancer tissue by reducing the range

of values attributed to features belonging to normal tissue. Furthermore, from the results produced

in our experimental process, we can gather that the developed models identify the morphological

features, mentioned in Chapter 2.2, characterising normal and cancer cells. This idea is further

enforced with the results produced by the GradCam algorithm, which highlighted such features in

the images that our model predicted as cancerous. These features included large and abnormally

shaped nuclei, smudged chromatin and reduced cytoplasm area.

Ultimately, these results enforce the idea that Deep Learning approaches can further aid pathol-

ogists in developing a diagnosis. Additionally, a great deal of interpretability is introduced, al-

lowing a more thorough validation and increasing trust in the models. Future work and further

research would benefit from the inclusion of new tests using independent cohorts from external

sources. Given that the classification is based on a cellular level, experimentation on tissues ex-

cised from other organs could also benefit the model’s validation, e.g. breast, colon or brain cancer

tissue. Moreover, on a technical perspective, better results could be achieved with future work us-

ing different complexities in model architectures and hyperparameterization techniques.

5.2 Lung Cancer Subtype Classification Model

The second level of the hierarchical model is concerned with the identification of the NSCLC

subtype present in histopathological images. To this extent, our solution employs the previously

formulated pipeline, changing only the input images and corresponding labels. Only the two most

common NSCLC subtypes, squamous cell carcinoma and adenocarcinoma, were selected for this

new classification task.

5.2.1 Data Gathering and Categorisation

The histopathological images used in this second classification task flow from the TCGA-LUSC

and TCGA-LUAD datasets previously gathered in the process described in Chapter 5.1. Only

cancerous samples are selected in this particular task, as displayed in Figure 5.8. Such selection

is employed as normal tissue samples do not carry the visual features characterising each subtype,

as previously detailed in Chapter 2.3.
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Figure 5.8: Folder structure used to store lung cancer subtype classification data.

5.2.2 Data Preprocessing

The preprocessing workflow used in the previous model demonstrated to be less valuable as it

specialised in generating tiles from the original images at a very high level of magnification/zoom.

The particular patterns characterising NSCLC subtypes cannot be observed at such high magnifi-

cations. Thus a new preprocessing workflow was developed using the OpenSlide framework [17]

to tile images at lower magnifications. The most commonly used low magnifications are 5x, 10x

and 20x, with the first exhibiting the pretended visual features in all of the samples. In contrast,

10x and 20x magnifications often miss these features in images with smaller sizes. Hence, all

samples were tiled at a 5x magnification, with each tile measuring 299 pixels in width and height

(see Figure 5.9). Similarly to the scoring function proposed by Erikson et al. [15], the percentage

of tissue in each tile holds considerable relevance. A threshold for tissue percentage was defined

at 0.75, and tiles containing less tissue percentage were discarded.

Figure 5.9: TCGA-LUAD sample tile acquired at 5x magnification exhibiting papillary patterns,
a visual clue for adenocarcinoma diagnosis.
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5.2.3 Attention-Based Classifier

No significant changes were applied to our classifiers’ pipeline or architecture, defined in section

5.1. However, small tweaks were necessary for the network to deal with the new tile dimensions.

These tweaks included the reshaping of input tensors, initially designed to hold 192x192 RGB

tuples, into 299x299 RGB tuples. Moreover, the classification model no longer tries to predict the

presence of cancer in input images. Instead, it tries to predict the presence of features belonging

to adenocarcinoma or squamous cell carcinoma.

5.2.4 Training, Validation and Testing

The experiment design employed in this second task was similar to the one employed in tissue type

classification, with all experiments following the same structure and employing the Nadam [14]

optimisation algorithm. In these experiments, the same manual grid-search approach is followed

to analyse the impact of different hyperparameters.

The 3-Fold-Cross-Validation resampling method mentioned in the previous section was also

employed to split samples into training, validation and test sets. The results for each experiment

gather a general metric, computed using the mean bag-level Acc’s and AUC’s achieved.

5.2.5 Results

The following table, Table 5.3, summarises highest mean Acc and AUC achieved in the many

experiments conducted using the two attentions mechanisms studied in our work.

Table 5.3: Best cancer subtype classification results for each attention mechanism.

Attention Mechanism LR Weight Decay Accuracy AUC
Standard 1e-4 1e-4 0.62 0.780

Gated 1e-4 5e-4 0.65 0.801

The highest classification performance was achieved using the Gated Attention mechanism,

with Acc values peaking around 0.65 and AUC value peeking around 0.8. Equivalently to the

tissue type classifier presented in the previous chapter, the proposition formulated by Ilse [26] is

confirmed with an increase in performance using the Gated Attention mechanism.

5.2.6 Attention Maps

In a similar fashion to the experiment described in 5.1.7, the GradCam algorithm was used to vali-

date our models’ performance. To do so, we initially fed an image from the TCGA-LUSC dataset

to our model, which then correctly predicted its label as squamous cell carcinoma. Afterwards, the

GradCam algorithm was used to generate the attention maps highlighting the regions in the image

corroborating the prediction.

Figure 5.10 summarises the experiment’s workflow, with the original whole slide image rep-

resented in the left side. The highlighted blue square in the original whole slide image represents
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one of the tiles fed into our model. In this tile, a red oval shape highlights what can arguably be

considered a keratin pearl. The formation of these pearls as been demonstrated to be characteristic

of squamous cell carcinomas (see Chapter 2.3). On the right side of Figure 5.10, the attention

map generated by the Grad-Cam algorithm highlights this pearl as the main contributor to the pre-

diction generated. This highlight enforces the models’ ability to discern morphological features

characteristic of each subtype of lung cancer.

Figure 5.10: Attention Maps Generated with GradCam algorithm, with highlighted keratin pearl
formation, (1) original tile; (2) attention map generated; (3) superimposed image.

5.2.7 Discussion

Our proposed subtype classification model demonstrated a significant decrease in performance

when compared to the previously described tissue type classifier. Nonetheless, it still achieves

compelling AUC values peaking around 0.8 and demonstrates its potential by correctly identifying

subtype morphological characteristics such as keratin pearls. Table 5.5 promotes a comparative

look between the results achieved with our solution and the solutions in the literature.

Table 5.4: Lung cancer subtype classification performance comparison.

Model AUC
Conventinonal Machine Learning, Yu et al. [57] 0.750
Our model, using default attention mechanism 0.780
Our model, using gated attention mechanism 0.801
Inception V1 Fine-Tuned, Khosravi et al. [29] 0.830

Inception V3, Coudray et al. [10] 0.950



44 Lung Cancer Characterization in Histopathological Images

Similarly to our tissue classification model, the results we obtain with our subtype classifiers

outperform the conventional Machine Learning solutions. On the other hand, our models are not

able to outperform the Deep Learning solutions developed by Khosravi et al. and Coudray et al.,

even though they are closer to the former than the latter.

A set of limitations may justify this performance gap. The first one is directly correlated

to the heterogeneity among images belonging to each NSCLC subtype. Aside from the visual

features identified in Chapter 2.3, squamous cell carcinoma and adenocarcinoma images remain

very similar. This similarity introduces a lot of noise in the network as only a few instances

contain the characteristic features with informational gain. Additionally, both solutions developed

by Khosravi et al. and Coudray et al. employ very complex CNN architectures, whereas our

models employ a relatively simple one. This distinction in architectures may also justify the

models’ inability to identify unique morphological features characteristic to each NSCLC subtype.

Furthermore, and in agreement with the original paper by Ilse et al., our model’s trainable pooling

layer may be learning the mean operator, which leads to very similar predictions in both classes,

and an inability to distinguish them.

Future work and research should be focused on the employment of novelty architectures, with

higher levels of complexity, and multiscale solutions, taking advantage of morphological features

at different levels of magnification/zoom [20], that we may not be able to identify when we fix the

5x magnification/zoom for every sample.

5.3 Lung Cancer Gene Mutation Classification Model

The third and final level of the hierarchical model is concerned with the identification of genetic

mutations in lung cancer patients through the inspection of histopathological images. Equiva-

lently to the previous hierarchical level, this solution employs the previously formulated pipeline,

changing only the input images and corresponding labels.

5.3.1 Data Gathering and Categorisation

The patients’ genome sequencing data mentioned in Chapter 4.2 was used to label their histopatho-

logical images according to their genetic mutations. However, only the mutational status informa-

tion of each patient was needed for this labelling process. This information was already bundled

and published in the GDC through the efforts of the TCGA program. Thus we were able to access

it using a set of queries similar to the ones used to acquire the original histopathological images,

described in Chapter 5.1.1. This set of queries resulted in a .json file containing each patient ID

and the mutational status of each gene. This information was then packed into a dictionary using

a Python script, which later labelled each image according to its patients mutational status. Figure

5.11 illustrates the formulated dictionary, with each key representing a patient ID and the associ-

ated values representing a set of genes and its mutations status, with 1 representing mutated genes

and 0 otherwise.
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Figure 5.11: Dictionary containing the genetic mutational status for each patient; each key rep-
resents a patients ID and the associated values represent the mutational status of each gene, 1
indicates mutated genes, 0 otherwise.

Using the information in this dictionary, the previously gathered histopathological images were

then labelled according to their patients mutated genes. To this end, only cancerous samples were

selected, as illustrated in Figure 5.12. The final folder structure allows the distinction between

histopathological images representing patients with genetic mutations and patients with no genetic

alterations.

Figure 5.12: Folder structure used to store genetic mutation classification data, e.g. TP53 gene
mutation data.

5.3.2 Data Preprocessing

Studies and research conducted on the identification of genetic mutations though the inspection

of histopathological images have yet to find specific morphological features characterising each

mutated gene and thus a correlation between the images magnification and the actual mutation

status. However, previous works by Coudray et al. [10] and Kim et al. [30], described in Chap-

ter 3.2, make use of data samples acquired at 20x magnifications. We argue that this level of

magnification and lower ones may have an impact on the observable morphological features we
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try to identify. Therefore, we followed a similar path, with our samples being collected at 5x

magnification, following the same preprocessing method described in Chapter 5.2.2.

5.3.3 Attention-Based Classifier

Equivalently to the previous classification task, no significant changes were necessary to employ

in our classifiers’ pipeline or architecture. As the tiles acquired from each histopathological image

remain in the 299x299 RGB tuple format, no further tweaks were necessary to accommodate the

new samples.

Nonetheless, this new classification task is distinct, and it must be noted that the classifiers fo-

cus is not the distinction of samples exhibiting morphological features characterising each NSCLC

subtype. Instead, the focus is centred on identifying morphological features characterising patients

with genetic mutations.

5.3.4 Training, Validation and Testing

The experiment design employed in this third task remained similar to the one employed in tissue

type and cancer subtype classification, using the same optimisation algorithm and employing the

same manual grid-search method to fine-tune hyperparameters.

A single distinction was present in this experiment design, as datasets and experiments were

built to accommodate each studied gene. The genetic mutation distributions in Chapter 4.2 were

used to select the genes for each dataset and experiment. As research remains slightly slim, we

favoured the genes selected by Coudray et al. [10], which were identified in the TCGA-LUAD

cohort. Thus, using this cohort, we conducted experiments on datasets comprising histopathologi-

cal images from patients exhibiting TP53 and KRAS mutations and patients with no alterations in

these genes.

For each experiment, the 3-Fold-Cross-Validation resampling method was also employed to

split samples into training, validation and test sets. The results for each experiment gather a general

metric, computed using the mean bag-level Acc’s and AUC’s achieved.

5.3.5 Results

The following tables summarise our models’ performances in the identification of genetic muta-

tions. Table 5.5 displays the results regarding TP53 mutations, and Table 5.6 displays the results

regarding KRAS mutations.

Table 5.5: Results from TP53 gene mutation prediction in TCGA-LUAD set.

Attention Mechanism LR Weight Decay Accuracy AUC
Standard 1e-4 1e-4 0.520 0.633

Gated 1e-4 5e-4 0.545 0.650
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Table 5.6: Results from KRAS gene mutation prediction in TCGA-LUAD set.

Attention Mechanism LR Weight Decay Accuracy AUC
Standard 1e-4 1e-4 0.600 0.654

Gated 1e-4 5e-4 0.610 0.671

The highest classification performance was achieved in the prediction of KRAS mutations.

This performance was achieved using the Gated Attention mechanism, with Acc values peaking

around 0.61 and AUC value peeking around 0.67.

5.3.6 Discussion

Our models’ manifested a significant decrease in performance when assigned with the task of

identifying patients genetic mutations through the inspection of their histopathological images.

This decrease in performance was not a surprise, as the previously conducted literature review

process pointed this task as very complex and with relatively slim research. In fact, regarding lung

cancer, only one major scientific publication has been made describing an approach to this task.

This publication was developed by Coudray et al., and in Table 5.7, we compare its results to ours.

Table 5.7: Genetic mutation classification performance comparison.

Model Gene AUC
Our model, using gated attention mechanism TP53 0.650
Our model, using gated attention mechanism KRAS 0.671

Inception V3, Coudray et al. [10] TP53 0.760
Inception V3, Coudray et al. [10] KRAS 0.733

In a similar fashion to the tasks previously described, the solution developed by Coudray et

al. achieves the state-of-the-art AUC values. However, the gap in results identified in this task is

significantly smaller than the one observed in subtype classification.

Furthermore, we argue that these narrow results derive from the lack of in-depth knowledge

of the morphological features characterising each genetic mutation. In both our solution and the

solution developed by Coudray et al., a set of patterns may have been identified to characterise

specific genetic mutations. However, as no visual insights can be recognised, not even by expert

pathologists, we cannot infer on improved ways to identify new patterns.

We theorise that our models’ complexity may also be a limitation. As mentioned before, the

solution developed by Coudray et al. uses the Google Inception V3 architecture, whereas our

models’ architecture is composed of only two convolutional layers.

Future work should be focused on the development of more complex model architectures

and hyperparameter optimization methods. Moreover, research would significantly benefit from

further experiments using other candidate genes, other cohorts, or other deceases, i.e. experiments

using the TCGA-LUSC cohort or experiments using histopathological images from breast cancer

patients. Additionally, multiscale solutions could be the origin of breakthroughs in this research,
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identifying different characteristic patterns at different magnification levels, something that cannot

be achieved in solutions like ours where we fix the magnification level tissue inspection.

5.4 Summary

The results achieved by the solutions we have developed demonstrate the excellent potential for

Deep Learning in the medical imaging field. Moreover, these results extend the research efforts

presented in the literature, leading to some improvements in performance and interpretability.

Furthermore, from the three classification tasks, the first, tissue type classification, as demon-

strated to be the one with the most significant potential to reach pathologist-like performances.

This potential is closely related to the advances in Deep Learning solutions, generating CNN ar-

chitectures capable of identifying the characteristic morphological features present in normal and

cancer cells. To a certain extent, this potential has also been identified in the classification of

specific NSCLC subtypes. However, the heterogeneity observed in histopathological images from

each one of these subtypes remains a significant limitation imposed in this task.

On the other end of the spectrum, identifying genetic mutations in histopathological images

has been demonstrated to be a problematical task with performance results standing relatively far

from precise. Nonetheless, the continuous research and development may eventually lead to better

results, generating new knowledge on the morphological features characterising patients enduring

genetic mutations, and displaying this knowledge in an interpretable way.



Chapter 6

Conclusions and Future Work

Deep Learning solutions’ promising strength has been verified to significantly benefit the med-

ical imaging field. Long and extensive research has led to notable advances and development,

including in the lung cancer diagnosis using histopathological images.

Our work expands this research by tackling the limitations found in the literature by employing

a Multiple Instance Learning approach, which proved to be theoretically relevant in classification

tasks like the ones discussed in our work. Additionally, our work introduces interpretability in our

model’s predictions, allowing pathologists to validate our models’ performance and aiding them

in diagnostics, redirecting them to specific regions of interest in the original images.

The experiments conducted throughout our work also allowed us to identify our pipelines’

limitations. The somewhat unfortunate results in subtype and genetic classification hold an excel-

lent discussion and research opportunity. For example, modern multi-scale MIL solutions hold a

great deal of potential in the field by introducing the ability to retain information from different

magnification/zoom levels, turning the model’s training and validation processes similar to that of

a pathologist.

49
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