
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Segmentation and detection of Woody
Trunks using Deep Learning for

Agricultural Robotics

Nuno Gonçalo Pinto Machado Namora Monteiro

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Prof. Armando Jorge Sousa

Second Supervisor: Dr. Filipe Neves dos Santos

July 30, 2020



c© Nuno Gonçalo Pinto Machado Namora Monteiro, 2020



Resumo

Os robôs agrícolas necessitam de algoritmos de processamento de imagem, que devem ser fiáveis
em todas as condições meteorológicas e ser computacionalmente eficientes. Além disso, podem
surgir várias limitações, tal como o overfitting no treino das redes neuronais que pode afectar o
desempenho. Paralelamente, a evolução dos modelos de Deep Learning tornou-se cada vez mais
complexa, exigindo uma complexidade computacional crescente. Assim, nem todos os proces-
sadores conseguem lidar de forma eficiente com tais modelos. Desta forma, o desenvolvimento
de um sistema com um desempenho em tempo real para processadores de baixa potência torna-
se exigente e é hoje um desafio de investigação e desenvolvimento pois há falta de datasets com
anotações e ferramentas de agilização para apoiar este trabalho.

Para apoiar a implantação de tecnologia de Deep Learning em robôs agrícolas, no decurso
deste trabalho foi desenvolvido o VineSet dataset, a primeira grande colecção pública de imagens
de troncos de videiras. O dataset foi construído de raiz, tendo um total de 9481 imagens e respeti-
vas anotações dos troncos da videira em cada um deles. O VineSet é composto por imagens RGB
e térmicas de 5 vinhas diferentes do Douro, sendo 952 inicialmente recolhidas pelo robô AgRob
V16, e as outras 8529 imagens resultantes de um vasto número de operações de augmentação.

Para verificar a validade e utilidade deste VineSet dataset, é apresentado neste trabalho um es-
tudo experimental, utilizando modelos de Deep Learning do estado da arte com o Google Tensor
Processing Unit. Para simplificar a tarefa de augmentação na criação de futuros datasets, propo-
mos um procedimento de anotação assistida - utilizando os nossos modelos treinados - reduzindo
o tempo de anotação num factor de dez vezes por frame. Esta dissertação apresenta resultados
preliminares para apoiar futuras pesquisas neste tópico, por exemplo, o VineSet permite formar
(usando transfer learning) redes neuronais profundas existentes com Average Precision (AP) su-
perior a 80% para detecção de troncos de vinhas. Por exemplo, foi alcançada uma AP de 84,16%
para o SSD MobileNet-V1. Além disso, os modelos treinados com o VineSet apresentam bons
resultados noutros ambientes, tais como pomares ou florestas. A nossa ferramenta de anotação au-
tomática prova-o, reduzindo o tempo de anotação em mais de 30% em várias áreas da agricultura
e em mais de 70% nas vinhas.

Nesta dissertação, propomos uma solução computacionalmente efeciente para a segmentação
dos troncos das videiras. Primeiro, foram utilizados modelos de detecção de objectos em conjunto
com o VineSet para efectuar a segmentação dos troncos. Para avaliar o desempenho dos diferentes
modelos, foi construído um script que implementa algumas métricas de segmentação semântica.
Os resultados mostraram que os modelos de detecção de objectos treinados com o VineSet não
só eram adequados para a detecção do tronco como também para a segmentação do tronco. Por
exemplo, foi atingido um DICE Similarity Index (DSI) de 70,78% para o SSD MobileNet-V1.
Finalmente, a segmentação semântica também foi brevemente abordada. Um subconjunto das
imagens do VineSet foi utilizado para o treino de vários modelos. Os resultados mostram que
a segmentação semântica pode substituir modelos de detecção de objectos baseados em Deep
Learning por modelos de classificação baseada em píxeis, se for fornecido um dataset para o

i



ii

treino adequado.
Desta forma, todo o trabalho realizado permitirá a integração de algoritmos de edge-AI em

sistemas de Simultaneous Localization and Mapping (SLAM), como o Vine-SLAM, que servirá
para a localização e mapeamento do robô, através de marcadores naturais nas vinhas.



Abstract

Agricultural robots need image processing algorithms, which should be reliable under all weather
conditions and be computationally efficient. Furthermore, several limitations may arise, such as
overfitting in the training of neural networks that may affect the performance. In parallel with this,
the evolution of Deep Learning models became more complex, demanding an increased computa-
tional complexity. Thus, not all processors can handle such models efficiently. So, developing a
system with a real-time performance for low-power processors becomes demanding and is nowa-
days a research and development challenge because there is a lack of real data sets annotated and
expedite tools to support this work.

To support the deployment of deep-learning technology in agricultural robots, this dissertation
presents a public VineSet dataset, the first public large collection of vine trunk images. The dataset
was built from scratch, having a total of 9481 real image frames and providing the vine trunks
annotations in each one of them. VineSet is composed of RGB and thermal images of 5 different
Douro vineyards, with 952 initially collected by AgRob V16 robot, and others 8529 image frames
resulting from a vast number of augmentation operations.

To check the validity and usefulness of this VineSet dataset, in this work is presented an
experimental baseline study, using state-of-the-art Deep Learning models together with Google
Tensor Processing Unit. To simplify the task of augmentation in the creation of future datasets,
we propose an assisted labelling procedure - by using our trained models - to reduce the labelling
time, in some cases ten times faster per frame. This dissertation presents preliminary results to
support future research in this topic, for example, with VineSet it is possible to train (by transfer
learning procedure) existing deep neural networks with Average Precision (AP) higher than 80%
for vineyards trunks detection. For example, an AP of 84.16% was achieved for SSD MobileNet-
V1. Also, the models trained with VineSet present good results in other environments such as
orchards or forests. Our automatic labelling tool proves this, reducing annotation time by more
than 30% in various areas of agriculture and more than 70% on vineyards.

In this dissertation, we also propose the segmentation of the vine trunks. Firstly, object detec-
tion models were used together with VineSet to perform the trunk segmentation. To evaluate the
performance of the different models, a script that implements some metrics of semantic segmen-
tation was built. The results showed that the object detection models trained with VineSet were
not only suitable for trunk detection but also trunk segmentation. For example, a DICE Similar-
ity Index (DSI) of 70.78% was achieved for SSD MobileNet-V1. Finally, semantic segmentation
was also briefly approached. A subset of the images of VineSet was used to train several mod-
els. Results show that semantic segmentation can substitute DL-based object detection models for
pixel-based classification if a proper training set is provided.

In this way, all the work done will allow the integration of edge-AI algorithms in Simulta-
neous Localization and Mapping (SLAM) systems, like Vine-SLAM, which will serve for the
localisation and mapping of the robot, through natural markers in the vineyards.

iii



iv



Acknowledgments

I would like to thank everyone that contributed to the concretization of this dissertation.
To Dr. Filipe Santos and Prof. Armando Sousa for the advice and support given all the way

and for believing in me.
To André Aguiar especially, for all the help given, patience and friendship being always present

in all moments of difficulty ensuring that problems were always overcome.
To my family for all the support, love, strength, and guide me always the best way during my

academic walk.
To my colleagues and friends for their support over the last few years.
To my girlfriend for all the love and for calming me down at the hardest times.

Thank you.

Nuno Namora Monteiro

v



vi



“The man who doesn’t make up his mind to cultivate
the habit of thinking misses the greatest pleasure in life.”

Thomas Edison

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Dissertation Rationale and Structure . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem Statement and Direction 5
2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Proposed System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Fundamentals 9
3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.5 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.5.1 Quantization-aware training . . . . . . . . . . . . . . . . . . . 12
3.1.5.2 Full integer post-training quantization . . . . . . . . . . . . . 13

3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Intersection Over Union . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 True Positive, False Positive, False Negative and True Negative . . . . . 14
3.2.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.5 Precision versus Recall curve . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.6 F1-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.7 Average Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 State of Art 19
4.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Convolutional neural networks for semantic segmentation . . . . . . . . 23
4.3.2 Object Detection using convolutional neural networks . . . . . . . . . . 24

ix



x CONTENTS

4.3.2.1 Region-based Convolutional Neural Network . . . . . . . . . . 24
4.3.2.2 Fast R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2.3 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2.4 You Only Look Once . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2.5 Single Shot Multibox Detector . . . . . . . . . . . . . . . . . 27

4.3.3 Comparison between Deep Learning Architectures . . . . . . . . . . . . 28
4.3.4 Comparison between Deep Learning Models . . . . . . . . . . . . . . . 28
4.3.5 MobileNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.6 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 Comparison between TPU, GPU and CPU . . . . . . . . . . . . . . . . . 33
4.4.2 Google Edge TPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 TensorFlow Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.3 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Deep Learning Applications in Agriculture . . . . . . . . . . . . . . . . . . . . 35

5 Implementation 37
5.1 VineSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Data annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.4.1 Architectures and Models selection . . . . . . . . . . . . . . . 42
5.1.4.2 Hyperparameter selection . . . . . . . . . . . . . . . . . . . . 42
5.1.4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.5 Real-time inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.6 Measuring and evaluating models performance . . . . . . . . . . . . . . 47

5.2 VineSet for Trunk Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Data annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.3 Modification in the model SSD MobileNet V1 . . . . . . . . . . . . . . 48
5.2.4 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.5 Real-time inference with segmentation and detection simultaneously . . . 50
5.2.6 Measuring and evaluating segmentation performance . . . . . . . . . . . 51

5.3 VineSet for Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Measuring and evaluating performance . . . . . . . . . . . . . . . . . . 54

5.4 Deep Learning-based Assisted Labelling . . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 Functionalities and Interface . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Measuring and evaluating performance . . . . . . . . . . . . . . . . . . 55

6 Results and Discussion 57
6.1 VineSet Trunk Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 VineSet Trunk Segmentation using object detection models . . . . . . . . . . . . 59

6.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



CONTENTS xi

6.4 Assisted Labelling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusion and Future Work 67
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Attachments 69
A.1 Submitted Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

References 83



xii CONTENTS



List of Figures

2.1 Global system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Set of three models that explicit the case of underfitting, generalisation and over-
fitting [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Learning process of transfer learning [2]. . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Tranferring parameters of a CNN [3]. . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 IOU for object detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Precision versus Recall curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 ML approach [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 McCulloch-Pitts model of a neuron[5] . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Generic object detection bounding boxes example [6]. . . . . . . . . . . . . . . . 21
4.4 Example of an CNN Architecture Model [7] . . . . . . . . . . . . . . . . . . . . 22
4.5 Semantic Segmentation mask example [6]. . . . . . . . . . . . . . . . . . . . . . 23
4.6 Encoder-Decoder Architectures with (a) no skip connections, and with (b) skip

connections [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Generic object detection [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 R-CNN Architecture [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Fast R-CNN Architecture [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.10 YOLO Model [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.11 SSD Architecture [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.12 Results on Pascal VOC2007 test [13] . . . . . . . . . . . . . . . . . . . . . . . . 28
4.13 Top-1 accuracy vs floating-point operations (FLOPs) [14] . . . . . . . . . . . . . 29
4.14 Top-1 accuracy vs. Top-1 accuracy density [14] . . . . . . . . . . . . . . . . . . 30
4.15 MobileNets convolution architecture. The standard convolution is divided into

two layers, a depthwise and a pointwise convolution, that combined result on the
depthwise separable convolution [15]. . . . . . . . . . . . . . . . . . . . . . . . 31

4.16 Different versions of Inception module, (a) the original Inception module and (b)
Inception module where 5× 5 convolution is replaced as two 3× 3 convolutions
[16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Vine trunk detection procedure flow. . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Set of different vineyards used in the VineSet data collection. . . . . . . . . . . . 38
5.3 Result of annotation process for trunk detection. . . . . . . . . . . . . . . . . . . 39
5.4 Set of several augmentation operations used to expand VineSet. . . . . . . . . . . 40
5.5 Result of an augmentation operation applying a 15 degree rotation on the (a) orig-

inal image, resulting on the (b) augment image. . . . . . . . . . . . . . . . . . . 41
5.6 Training procedure flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



xiv LIST OF FIGURES

5.7 Loss result of 50k iterations. Train loss (a) using transfer learning and (b) from
scratch. Validation loss (c) using transfer learning and (d) from scratch. . . . . . 44

5.8 Edge TPU model compilation scheme [17]. . . . . . . . . . . . . . . . . . . . . 45
5.9 Training procedure flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.10 Real-time inference using Edge TPU for trunk detection. . . . . . . . . . . . . . 46
5.11 Result of annotation process for trunk segmentation. . . . . . . . . . . . . . . . 48
5.12 Result of an augmentation operation applying a -15 degree rotation on the (a)

original image, resulting on the (b) augment image. . . . . . . . . . . . . . . . . 48
5.13 SSD MobileNet V1 and SSD MobileNet V1 modified by adding a feature map for

detections with a higher resolution (38x38). . . . . . . . . . . . . . . . . . . . . 49
5.14 Real-time inference using Edge TPU for trunk detection and segmentation simul-

taneously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.15 Set of 2 binary images of ground truth. . . . . . . . . . . . . . . . . . . . . . . . 51
5.16 Set of 2 binary images of prediction. . . . . . . . . . . . . . . . . . . . . . . . . 52
5.17 Set of 2 images with TP, TN, FP and FN. . . . . . . . . . . . . . . . . . . . . . . 52
5.18 TP represented with white pixels on original images. . . . . . . . . . . . . . . . 53
5.19 Information and instructions of our Assited Labelling interface. . . . . . . . . . . 55
5.20 Main steps of our Assited Labelling interface. . . . . . . . . . . . . . . . . . . . 55

6.1 Detection results using SSD MobileNet-V1 . . . . . . . . . . . . . . . . . . . . 58
6.2 Segmentation results using SSD MobileNet-V1 (512x512 input size), where the

white pixels are the True Positives. . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 TP, TN, FP and FN representation for trunk segmentation. . . . . . . . . . . . . 62
6.4 Semantic segmentation results using FC-DenseNet103, where the white pixels are

the True Positives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 Automatic annotations result in different areas of agriculture such as (a) hazelnut

orchard, (b) other vineyard and (c) forest. . . . . . . . . . . . . . . . . . . . . . 64



List of Tables

3.1 Classification of a detection with True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Advantages and disadvantages of using TPU. . . . . . . . . . . . . . . . . . . . 33

5.1 Set of several augmentation operations used to expand VineSet. . . . . . . . . . . 40
5.2 Operation log output of Edge TPU compiler for SSD MobileNet V1. . . . . . . 45
5.3 Binary operations applied to get TP, TN, FP and FN. . . . . . . . . . . . . . . . 51

6.1 AP (%), F1 Scores and average inference time per image (ms) using Coral Edge
TPU, with fine-tuning and from scratch training. . . . . . . . . . . . . . . . . . 57

6.2 DICE similarity index (DSI)(%), Jaccard similarity index (JSI) (%) and average
inference time per image (ms) using Coral Edge TPU, with fine-tuning and from
scratch training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 DICE similarity index (DSI)(%), Jaccard similarity index (JSI) (%) and average
inference time per image (ms) using Colab GPU, with fine-tuning and from scratch
training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 DICE similarity index (DSI)(%), Jaccard similarity index (JSI) (%) and average
inference time per image (ms) using Colab GPU with from scratch training. . . . 63

6.5 Automatic annotation percentage and time of manually and assisted labelling with
different agriculture areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xv



xvi LIST OF TABLES



Abbreviations and Symbols

AI Artificial Intelligence
AP Average Precision
API Application Programming Interface
AUC Area Under the Curve
CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep Learning
DNN Deep Neural Network
DSI Dice Similarity Index
DSSD Deconvolutional Single Shot Detector
F1 F1-Scores
FLOP Floating Point Operations Per Second
FN False Negative
FP False Positive
GPU Graphics Processing Unit
IoT Internet of Things
JSI Jaccard Similarity Index
mAP mean Average Precision
ML Machine Learning
NN Neural Network
VOC Visual Object Classification
R-CNN Region-based Convolutional Neural Network
ROI Region of Interest
RPN Region Proposal Network
SSD Simultaneous Localization and Mapping
SSD Single Shot Multibox Detector
SVM Support Vector Machine
TN True Negative
TP True Positive
TPU Tensor Processing Unit
YOLO You Only Look Once

xvii





Chapter 1

Introduction

1.1 Context

In the past few years, robotics has evolved exponentially, introducing itself as a vital tool in the

execution of repetitive tasks.

Robots appeared as a solution to many problems, among which stand out: on the one hand, the

possibility to supplant the direct interaction of man in tasks where, in times, it was unreplaceable,

contributing in this way to a marked decrease in work-related accidents; in other hand, robots gave

way to the elimination of “dead times”, due to their strong autonomy and ability to act for several

hours straight [18]. Therefore, it can be said that, in addition to solving various problems, they

ensure greater efficiency and accuracy in the tasks they perform. Thus, robotics has a definite

impact on the development of autonomous, independent, robust and efficient systems.

Since the productivity of agriculture, for most of history, is mainly the result of human action,

as it still is today, it is necessary to invest in new processes that face this problem.

In this sense, there has been an increase in the demand for robotic solutions to monitor and

supervise agricultural crops [19]. Thus, new scientific fields arise, such as farming precision, also

called digital agriculture, which boosts productivity and minimize environmental impact. As a

basis, we have Machine Learning (ML), a mechanism that enables the machine to learn without

being necessarily programmed, combined with new technologies and high-performance comput-

ing, which opens new horizons and makes work more efficient and effective [20].

In this context, one of the tremendous current challenges of robotics for agriculture is to

achieve image processing algorithms that are robust to conditions of variable brightness and, at

the same time, efficient and effective in order to be implemented in autonomous robots, of small

dimension and with limited energy capacity.

Combining the needs and desires identified by the main associations of Portuguese farmers,

the INESC TEC team from the Laboratory of the Center for Industrial Robotics and Intelligent

Systems, has been developing a research project in the field of robotics for agriculture since 2014,

called AgRob [21][22]. In the field of hillside agriculture, solutions have been developed for the

four phases of agricultural robotization: monitoring, precision spraying, pruning and selective

1



2 Introduction

harvesting. Over the years, the following robotic platforms have been created in this context:

AgRob V14, AgRob V15 and AgRob V16.

This dissertation is part of the AgRob V16 platform project, which aims to evaluate the per-

formance of machine intelligence algorithms for image processing and its automatic detection and

segmentation of trunks in vineyards.

1.2 Motivation

This robotic platform is inserted in agricultural environments, in which specific factors, such as the

changing light condition and the irregularities of high slopes of Douro Vineyards, are significant

challenges to overcome. Currently, it has an image processing algorithm already implemented to

detect elements that do not allow total accuracy and efficiency in all tests performed. In this way,

this dissertation intends to study several Deep Learning (DL) based algorithms to be implemented,

together with the most recent Google Tensor Processing Unit (Coral Edge TPU), in order to per-

form a comparative evaluation of the real-time performance of each of these. Also, this study will

provide input for Simultaneous Localization and Mapping (SLAM) algorithms, which will serve

for the location and mapping of the robot, through natural markers of vineyards.

The tests to be performed will be based on the dataset that will be created from the images

existing in AgRob V16, to obtain a more variable dataset and a better accuracy. In short, it is

intended that the study carried out will contribute to the development and improvement of current

solutions in agriculture.

1.3 Objectives

The main objectives to be achieved in this dissertation are to analyse and evaluate the performance

of the different DL-based algorithms, the respective benchmarking and the improvement of current

solutions. For this, the main tasks defined to achieve these objectives are:

• Creation of the first dataset available to the scientific community related to the detection of

trunks in the vineyards from the images captured by AgRob V16.

• Performance evaluation of the different DL-based algorithms for detecting vine trunks in

the vineyard.

• Performance evaluation of the different DL-based algorithms for segmenting vine trunks in

the vineyard.

• Implementation of the algorithms in Google’s TPU.

• Creation of an assisted labelling procedure to reduce the time spent on data annotation.



1.4 Contributions 3

1.4 Contributions

During this dissertation, the following contributions to the state of art were performed.

• VineSet dataset created accepted on the official ROS Agriculture community (http://

wiki.ros.org/agriculture).

• Submitted paper "VineSet: A Deep Learning-Oriented Woody Crops Trunk Image Col-

lection and an Assisted Labelling procedure" in Journal of Signal Processing Systems [in

reviewing process].

This dissertation’s main contributions constitute the creation of the first public large collec-

tion of vine trunk images, called VineSet. Moreover, this work provides a low-power and high-

performance Deep Learning models for detection and segmentation of vine trunks, capable of

executing real-time operations in agriculture robotics. Also, this work presents a creation of an

assisted labelling procedure that aims to reduce the manual annotation time in several areas of

agriculture.

1.5 Dissertation Rationale and Structure

In addition to this introductory chapter, the dissertation is composed of 6 other chapters. Chapter

2 intends to specify the problem description and the proposed solution. After that, Chapter 3

presents a brief introduction to the main concepts used in this work and chapter 4 presents the

literature review where DL concepts and applications in agriculture are aborded. The description

of the implementation comes in chapter 5. The work started by creating a dataset for vine trunks

due to the non-existence of public datasets related to the detection of trunks in the vineyards. Then

is aborded the implementation of various DL-based algorithms for detection and segmentation of

vine trunks and their integration with Coral Edge TPU. After that, the development of the assisted

labelling tool is addressed. This chapter is based on the article presented in the appendix A.

Finally, the results and their discussion are presented in chapter 6 and the conclusions in chapter

7.

http://wiki.ros.org/agriculture
http://wiki.ros.org/agriculture


4 Introduction



Chapter 2

Problem Statement and Direction

2.1 Problem Description

Some questions arise regarding the purpose of this dissertation:

• Question 1: How to deal with inherent problems such as overfitting in the training of neural

networks and conditions of outdoor environments, e.g., lighting and terrain?

• Question 2: How to deal with the size and compatibility of the deep learning models to be

implemented in the Google’s processor?

• Question 3: Is it possible to combine real-time performance object detection with a low

power processor?

• Question 4: Is it possible to use object detection models to preform segmentation?

• Question 5: How to deal with the high amount of time spent in manual annotations?

These five questions represent the main problems that this dissertation intends to answer. One

of the significant challenges of agricultural robotics today is to achieve image processing algo-

rithms that are robust to variable lighting conditions and at the same time efficient to be imple-

mented in small autonomous robots with limited energy capacity. At this moment, the existing

algorithm for trunk detection does not have the desired precision and do not use DL, sometimes

having flaws due to the instability of the terrain of the vineyards or because inconstant lightness.

2.2 Proposed System Architecture

In order to answer and solve the issues mentioned above, the first step to be taken in this disser-

tation will be to obtain knowledge through the state of the art of the various DL architectures and

the various DL models. Also, the respective benchmarks between them, present in the literature.

Thereby, it is possible to choose the different models to be implemented that will later be analyzed

as to their performance and to solve the different problems raised.

5



6 Problem Statement and Direction

• Question 1: Overfitting is one of the frequent problems in ML that consists of modelling

the data too well, learning only the expected output for each input instead of learning the

general distribution of the input data. Usually, one of the ways to detect overfitting is to see

if the validation loss rises during the train. In addition to this problem, we have conditions

such as lighting or the terrain of outdoor environments that may affect performance. In

order to solve and minimise this problem, two solutions are proposed. The first is the use of

data augmentation techniques, e.g., rotation and translation, in order to increase and make

the dataset as varied as possible. The second is to analyse and do an early stopping if the

validation loss rises during the train.

• Question 2: With the evolution of DL algorithms, they became more and more complex,

demanding an increased computational complexity. In order to find the appropriate solutions

to implement, it is necessary to analyze the different benchmarking of the DL models present

in the literature. Moreover, since Edge TPU is used, only TensorFlow Lite models that are

entirely 8-bit quantized are compatible. Thus, it is necessary to opt for models with greater

precision and model complexity supported by the processor.

• Question 3: Not all processors can handle the complexity of DL models. Thus, the combi-

nation of real-time performance object detection with a low power processor is not always

achieved. In order to solve this problem, it is necessary to choose a processor capable of

high-performance machine learning, in this case, the proposed processor will be the Coral

Edge TPU.

• Question 4: Usually, the object detection models have as main objective the detection of

the object itself. However, we propose the hypothesis of using these models to segment an

object. For that, the proposed solution is to make the annotations of the smaller bounding

boxes in order to fill the various pieces of the trunk structure. Additionally, a preliminary

approach is made to the use of semantic segmentation models to perform the segmentation.

• Question 5: One of the most expensive tasks in the creation of the datasets is the time

spent on manual annotations. In order to reduce this time, the solution proposed is to create

an assistance tool capable of using the models trained in object detection and through the

process of inference extract the respective annotations.

In summary, this dissertation consists of a system that combines a set of DL models and

architectures for both detection and segmentation that will be implemented in Coral Edge TPU

through the TensorFlow framework. Also, this work proposes the use of DL models to create an

assisted labelling tool. Figure 2.1 represents the described system architecture.



2.2 Proposed System Architecture 7

Figure 2.1: Global system architecture



8 Problem Statement and Direction



Chapter 3

Fundamentals

This chapter aims to introduce the main concepts that will be used to describe the processes used

in the implementation of this dissertation. Firstly, the main concepts for training Convolutional

Neural Networks (CNN) are aborded. Finally the metrics for object detection and semantic seg-

mentation are described.

3.1 Training

In DL the training phase is where the model parameters θ are optimised to minimise the cost

function. However, several concepts arise throughout the training and can interfere with the per-

formance and compatibility of the model. Thus several concepts are here briefly described.

3.1.1 Generalisation

Generalisation [1] refers to the capacity of an ML model to perform well on previously unseen

data.

In the training phase of the DL model, the measured error, called the training error, is used to

optimise the θ parameter to minimise the cost function. After the training phase is completed, a

different dataset is used than the training dataset, i.e. different from the training set, called the test

set. This will be used to measure how well the ML model can generalise to data not seen by the

model when it was learning. The error associated with this measurement is called generalisation

error, also called test error.

In this context, the main objectives for the ML algorithm to be successful is to minimise

the training loss during the training phase and to minimise the gap between training and test

loss. These two points correspond to two of the more significant challenges in machine learning,

underfitting and overfitting.

In one hand, underfitting occurs when the model is not complex enough to capture the pattern

in the training data, i.e., the model is not able to obtain a sufficiently low error value on the training

set. On the other hand, overfitting occurs when a model is too complex and learns the training data

9



10 Fundamentals

too well instead of learning the general distribution of the data, i.e., the difference between the

training error and test error is too high.

Overfitting, underfitting and appropriate model complexity are visualized in Fig. 3.1.

Figure 3.1: Set of three models that explicit the case of underfitting, generalisation and overfitting
[1].

3.1.2 Transfer Learning

In the training process, it is unusual to train a CNN from scratch, not only due to the need to have

a relatively large dataset to obtain good results, but also because days or weeks of training are

required in Graphics Processing Unit (GPU) clusters.

Thus, a commonly used solution is the concept of Transfer Learning (TL) that aims to ex-

tract knowledge from one or more domains and applies that knowledge to another domain [2], as

represented in Fig. 3.2.

Figure 3.2: Learning process of transfer learning [2].



3.1 Training 11

In this way, pre-trained networks are used as initialization or feature extractor for the task to

be implemented, enabling to utilize knowledge from previously learned tasks and apply them to

newer. Therefore, TL can be done in two ways, last layers-only retraining or full model retraining.

In one hand, as described in Fig. 3.3, the retraining of the last layers consists primarily of

using a pre-trained network that has been trained in the source task, e.g., ImageNet [23], which

consists of a large dataset of labelled images. In this way, this pre-trained network can be used as

a feature extractor, removing the last fully-connected layer and then treat the rest of the base CNN

as a fixed feature extractor for the new dataset. It is not only being transferred the parameters to

the target task but also the addition of an adaptation layer, the fully-connected layer, in order to

compensate for the different aspects of the images of the source and the target as described on the

figure. During the training, only the weights of the last few layers of the model will be updated,

where the final classification occurs. The rest of CNN remaining as a fixed extractor feature. This

approach can be made with a smaller dataset [3].

Figure 3.3: Tranferring parameters of a CNN [3].

On the other hand, retrain the full model consists of using the pre-trained network to initialise

all the weights adjusting all the weights of each layer during the train. This method requires a

dataset of a significant sample size to avoid overfitting [3].

3.1.3 Cost Function

The cost function can be viewed as the loss or error of the model and is used to evaluate the

performance of the model. The goal of training is to learn the parameters θ , i.e., the values of the

weights which can minimize the cost function and leads to improved model performance [1]. The

function cost generally decomposes as a sum over training data of some loss function, as described

in equation 3.1.

J(θ) = Ex,y∼p̂ L(x,y,θ) (3.1)



12 Fundamentals

Where J(θ) is the cost function and L is the loss function. One loss function for example is

the negative log-likelihood, also called cross-entropy loss. So in this case L =− log p(y|x;θ) , and

result on the following equation,

J(θ) =−Ex,y∼p̂ log pmodel(y|x) (3.2)

3.1.4 Hyperparameters

Controlling algorithm’s behavior can be done in the most of ML algorithms with hyperparameters.

Unlike the parameters that are updated by the learning algorithm itself, e.g., the parameter θ , the

values of hyperparameters are not optimized during the training phase but are configured before

the learning process begins [1].

One example of hyperparameter is the learning rate (η) for example in a mini-batch stochastic,

as described on equation 3.3, that specifies the speed of the weight (θ ) updates in the learning

phase.

θ = θ −η∇θ J(θ ;x(i:i+n);y(i:i+n)) (3.3)

Where J(θ ;x(i:i+n);y(i:i+n)) is the cost function between the training set observations x(i:i+n)

and the corresponding estimated response y(i:i+n).

Many more examples of hyperparameters exist. For example, the number of iterations of the

training, the input resolution of the images and the number of classes, i.e., how many different

types of objects exist. Other examples are the selection of the base network, the batch size, i.e.,

the number of samples that go through the network in each iteration, and the fine-tune for TL. Also,

the optimizer can be changed, for example, momentum, which is a gradient descent optimization

algorithm that aims to decrease oscillations represented as follows.

υt = γυt−1 +η∇θ J(θ)

θ = θ −υt

(3.4)

Where υt is the gradient vector,γ is the momemtum value,η is the learning rate and J(θ) is the

cost function.

3.1.5 Quantization

Model quantization [17] consists of converting all the 32-bit floating-point numbers, like weights,

to the closest 8-bit fixed-point numbers making the model smaller and more efficient. This process

makes the TensorFlow models compatible with Edge TPU, which uses 8-bit quantized models, and

can be done in two ways, quantization-aware training and full integer post-training quantization.

3.1.5.1 Quantization-aware training

This approach requires an initial modification to the network before the training simulating the

impact of 8-bit numbers throughout training by using quantization nodes in the neural networks



3.2 Metrics 13

(NN) graph. The fact that the 8-bit weights are learned during the training rather than being

converted later like post-training quantization results in a higher accuracy model. Besides, it

supports more operations [17].

3.1.5.2 Full integer post-training quantization

This second approach does not demand an initial modification to the NN structure and is applied

after training to convert a pre-trained network into a quantized model. Nevertheless, this implies

a representative dataset with the same data range that can be the dataset previously used for train-

ing, which is an essential point to identifying a precise 8-bit representation of each weight and

activation value [17].

3.2 Metrics

In order to evaluate the various DL models performance to detect and segment the trunks in vine-

yards, the PASCAL Visual Object Classes (VOC) Challenge [24] metrics and F1-Score [25] were

used and are here briefly described.

3.2.1 Intersection Over Union

Intersection Over Union (IOU), also known as the Jaccard Similarity Index (JSI), is an essential

metric in deciding the object prediction of deep learning models. This measure evaluates the

overlap between two bounding boxes [26], i.e., the area of ground truth and predicted area to the

total area as represented in equation 3.5.

JSI =
|A∩B|
|A∪B| (3.5)

This metric is commonly used in two different computer vision tasks of object recognition that

is object detection and semantic segmentation.

For object detection, IOU is given by the intersection area between the predicted bounding

box Bp and the ground truth bounding box Bgt divided for the area of union between them [26].

IOU =
area(Bp∩Bgt)

area(Bp∪Bgt)
(3.6)

The Fig. 3.4, illustrates the IOU between the ground truth bounding box, green, and detected

bounding box, red. Therefore, we can verify if a detection is valid, i.e, true positive, or, not valid,

i.e, false positive [26].

For semantic segmentation, the term JSI is more commonly used. However, the concept is

the same as the IOU. For this method, pixels are used, instead of bounding boxes. So, JSI metric

measures the intersection of the predicted segmentation pixels and the ground truth pixels, divided

by the union [24].



14 Fundamentals

Figure 3.4: IOU for object detection.

Another way to calculate IOU or JSI [24] is using True and False Positives and Negatives

definition in section 3.2.2, that results on follows equation:

JSI =
T P

T P+FP+FN
(3.7)

3.2.2 True Positive, False Positive, False Negative and True Negative

Metrics for detection and segmentation problems involve correct and incorrect decisions. The

terms true positive (TP), false positive (FP), true negative (TN) and false negative (FN) are fre-

quently used in the evaluation of detection and segmentation results for evaluation the agreement

or disagreement between the result of the prediction and the ground truth, as shown in table 3.1.

Usually is set a threshold greater than or equal to 50% to IOU in order to verify if it is a correct

detection or not [26].

Positive / Negative: refers to the decision made by the detection algorithm;

True / False: refers to how the decision agrees with the ground truth.

True Positive (TP): for object detection refers to a correct detection, for semantic segmenta-

tion refers to a correct association of a predicted pixel with the respective class, i.e, IOU≥Threshold;

False Positive (FP): for object detection refers to a wrong detection, for semantic segmentation

refers to a wrong association of a predicted pixel with the respective class, i.e, IOU≤Threshold;

False Negative (FN): for object detection refers to a ground truth not detected, for semantic

segmentation refers to a ground truth pixel with no associated prediction pixel;

True Negative (TN): for object detection refers to all bounding boxes that were correctly not

detected, for semantic segmentation refers to a pixel that is correctly identified as not belonging to

the given class.

Predicted
Positive Negative

Labeled Positive TP FP
Negative FN TN

Table 3.1: Classification of a detection with True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN).



3.2 Metrics 15

3.2.3 Precision

From the definition of true/false positives/negatives, several metrics emerge. One of them is pre-

cision, that is the ability of a model to identify only the relevant objects [26]. It measures the

fraction of predictions classified as positive that are really positive, and it is given by:

Precision =
T P

T P+FP
=

T P
all detections

(3.8)

3.2.4 Recall

Recall is the ability of a model to find only all relevant cases correctly classified, i.e, all ground

truth bounding boxes [26]. It measures the fraction of positive predictions that are correctly labeled

and its given by:

Recall =
T P

T P+FN
=

T P
all ground truths

(3.9)

3.2.5 Precision versus Recall curve

The Precision versus Recall curve [26] is a good way to evaluate the performance of an object

detector since it allows to observe how precision and recall alter as confidence changes with the

curve for each class of object. The x-axis of this curve represents the recall, and the y-axis rep-

resents the precision, where each point on the curve constitutes recall and precision for a specific

confidence value.

Figure 3.5: Precision versus Recall curve.

An ideal model would have high precision when recall increases, meaning that if the confi-

dence threshold varies, the precision and recall continue to be high. Otherwise, the model performs



16 Fundamentals

poorly. So, a weak object detector needs to enhance the number of detected objects, by reducing

the confidence threshold, to detect all ground-truth objects correctly [26].

However, this curve is typically noisy with a saw-tooth shape resulting from the trade-off

between precision and recall. Due to this fact, it is tough to evaluate the performance of the model

and compare various models with their precision versus recall curves crossing each other.

3.2.6 F1-Score

The F1-Score (F1), also known as the Sørensen–Dice coefficient or Dice Similarity Index (DSI),

aims to measure the harmonic mean between precision and recall and can range between 0 and

1 [27][28]. This metric reaches the best value at 1, implying a perfect precision and recall. So,

F1 summarizes model ability for a particular value of the threshold and is given by the following

equation:

F1 = 2× Precision×Recall
Precision+Recall

(3.10)

For semantic segmentation, the term DSI is more commonly used [29][30]. However, the

concept is the same. So, DSI described in equation 3.11 consists on two times the number of

pixels common between the prediction Pp and ground truth Pgt masks divided by the total number

of pixels in both masks.

DSI =
2|Pp∩Pgt |
|Pp∪Pgt |

(3.11)

The DSI equation 3.11 is very similar with the JSI equation 3.2.1, since they are positively

correlated through the following equations:

JSI =
DSI

2−DSI
⇔ DSI =

2 JSI
1+ JSI

(3.12)

Another way to calculate F1 or DSI is using True and False Positives and Negatives definition

in section 3.2.2, that results on follows equation:

DSI =
2T P

2T P+FP+FN
(3.13)

3.2.7 Average Precision

Precision versus Recall curves typically have a zigzag pattern and usually cross each other, which

makes it difficult to compare the different curves on the same plot. In this way, instead of com-

paring curves, it is beneficial to have just a number that describes the performance. So, a standard

metric is the Average Precision (AP) [26] that can be described at the following equation.

AP =
∫ 1

0
p(r)dr (3.14)

In a simple way, the AP can be described as the precision averaged over all recall values

between 0 and 1, i.e., the area under the curve (AUC).



3.2 Metrics 17

Primordially, the Pascal VOC Challenge used 11-point interpolation. However, the AP value

is currently calculated using all recall levels to improve the comparison with low AP score algo-

rithms, as stated in [24].

11-Point Interpolation
The AP 11-Point Interpolation summarises the shape of the precision versus recall curve

and is stipulated through an average of precision at a set of eleven equally spaced recall levels

[0,0.1, ...,1], through the following equation

AP =
1
11 ∑

r∈[0,0.1,...,1]
pinterp(r) = 1 (3.15)

Therefore, the AP is calculated by interpolating the precision merely at the 11 levels r by

taking the maximum precision measured where r̃ > r, as we can see in the equation 3.16, where

p(r̃) is the measured precision at recall r.

pinterp(r) = max
r̃,r̃≥r

p(r̃) (3.16)

Interpolating all points
On the other hand, interpolation through all points can be described by the following equation:

AP =
1

∑
r=0

(rn+1− rn)pinterp(rn+1) (3.17)

Now the AP value is accessed by interpolating the precision at each level r, by taking the

maximum precision measured where r̃ > rn+1 and p(r̃) is the measured precision at recall r, as we

can see on the equation 3.18.

pinterp(rn+1) = max
r̃,r̃≥rn+1

p(r̃) (3.18)

Thus, the AUC can now be calculated through all recall points. This area results in the sum of

all areas separated by a fall of precision at a particular recall r under the curve.



18 Fundamentals



Chapter 4

State of Art

This chapter presents the state of art of the main concepts present in the dissertation. Firstly, it

describes the main concepts of ML and its classes. Secondly, the various existing deep learning

architectures are addressed. Then, the various architectures and models of deep learning are ana-

lyzed and compared in order to solve the main problems in agriculture in terms of accuracy and

complexity to detect objects. Subsequently an approach is made to the platforms that will be used,

both in terms of hardware and framework. Finally, a brief description of the main DL applications

on agriculture is presented.

4.1 Machine Learning

Machine learning has arisen with big data technologies and high-performance computing to create

new horizons in the agriculture domain [4]. This leads to new concepts like precision farming and

smart farming [31], that improves production efficiency.

An ML model aims to solve problems in a repeatable way making autonomous decisions about

the information that is present in datasets by identifying patterns and getting knowledge from the

data available and predicting future instances under a task performed in previous observations.

Figure 4.1: ML approach [4]

19



20 State of Art

The methodology implemented by ML as represented in Fig. 4.1, implies a learning process

intending to learn from experience, i.e., training data, to perform a task with as minimum human

intervention as possible. The output is made after the learning process ends, that consists of

predictions of an ML that was not programmed explicitly. This ML model runs an algorithm that

adaptively improves its performance by learning from experience over time, like humans.

4.1.1 Deep Learning

Deep learning is a sub-field of machine learning, extending classical ML by adding more complex-

ity into the model [25], which attempts to learn high-level abstractions in data through hierarchical

architectures [7]. The popularity of DL techniques has increased and implemented in several agri-

cultural areas in the last years [32]. Kamilaris et al. [33][25] introduce some applications of DL

applications on agriculture, even though not considering hardware requirements imposed by the

complexity of the DL models. Convolutional Neural Networks (CNN) constitutes a class of DL,

and they are the preferred technique when it comes to feature extraction for images in DL.

DL and CNNs have been remarkably widespread in the field of computer vision. Therefore,

CNNs are commonly used for several computer vision tasks such as Object Detection and Se-

mantic Segmentation [8]. In the following sections, these topics and various DL models and

architectures will be briefly described, since they constitute a fundamental part of this dissertation.

4.1.2 Neural Networks

Neural Network (NN) is a class of models within the general ML literature. NNs are a biologically-

inspired programming paradigm which allows a computer to learn from observational data, while

DL is a robust set of techniques for learning in NN [34].

Figure 4.2: McCulloch-Pitts model of a neuron[5]

By observing Fig. 4.2, the neuron receives x j as input signal where j ∈ {1,2, ...,m}. Each

input has a corresponding weight of w j. Afterwards, the inputs and weights are linearly combined

to compute a weighted sum of this m inputs, followed by an activation function ϕ , that defines the

output of the neuron, as we can see on the following equation 4.1.



4.2 Object Detection 21

y = ϕ ∑(x jw j +b) (4.1)

4.2 Object Detection

Object detection aims to define the bounding boxes around each object of a specified class in an

image. The detection bounding box is set as a true positive if it overlaps more than the defined

threshold with the ground truth box, that is normally 50% [35]. As Fig. 4.3 shows, a bounding

box typically symbolize the location of an object.

Figure 4.3: Generic object detection bounding boxes example [6].

4.2.1 Convolutional neural networks

CNNs constitutes a class of DL, forming a variant of feed-forward neural networks [36], that is

used to resolve computer vision challenges [32]. Over time they have achieved great prominence

in the field of image classification since Krizhevsky et al. [37] won the ImageNet Large Scale

Visual Recognition Challenge in 2012. Thenceforward, they appear in numerous of the surveyed

papers as the technique used [25].

As explained in [9], CNN has multiple advantages over the traditional methods, some of them

are:

• The highly hierarchical structure;

• Deeper architectures provide a significant increase capability when compared with conven-

tional models;

• CNN architecture allows to improve related tasks together, combining classification and

bounding box regression into a multi-task on Fast R-CNN;

• From a different viewpoint can solve several traditional computer vision challenges recast

as high-dimensional data transform problems.

In addition to the advantages listed above, CNN allows parallelization as a result of learning

complex problems relatively rapid due to weight sharing [32].



22 State of Art

As Fig. 4.4 shows, the architecture is composed by the convolutional layer, the pooling layer

and the output layer that is normally a fully connected layer. Several convolutions are performed,

generating distinct representations of the dataset, starting more generic at the first larger layers and

ending more specific at the deeper layers [25].

Figure 4.4: Example of an CNN Architecture Model [7]

The convolutional layers apply the convolution operation, as the follow equation 4.2:

s(t) = (x∗w)(t) (4.2)

where ∗ represents the convolution operator and x can be represented as the input of the con-

volutional layer and w the output, designated by kernel or feature map. Adapting equation 4.2 to

convolution operation, if we use a two-dimensional image I as input at position (i, j) and also a

two-dimensional output kernel K, results on equation 4.3:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n) (4.3)

This operation is applied to the input, acting as feature extractors from the input images whose

dimensionality is reduced by the pooling layers [33]. The fully connected layers, placed in many

cases near the output of the model, is responsible for converting the two-dimensional feature maps

obtained from the previous layers into a one-dimensional vector and act as classifiers exploiting the

high-level features learned, with the purpose of classifying the input images into their respective

classes or to making numerical predictions [25].

Generally, providing an adequate large dataset, CNN can enhance the probability of correct

classifications. For that, data augmentation is a technique usually used to increase the dataset and

improve CNN accuracy. Making it robust even under challenging conditions such as orientation,

illumination, different resolutions or complex backgrounds, thus enabling increase the dataset by

implementing random transformations to the original images [25][32].



4.3 Semantic Segmentation 23

4.3 Semantic Segmentation

In contrast, semantic segmentation classifies each pixel in an image and estimate the probability

of that pixel belongs to a specific class [8]. However, the output does not distinguish between the

same class. Usually, the standard metric used to evaluate this type of models is the intersection

over union over all the predicted pixels and ground truth pixels of the entire dataset [35]. Fig. 4.5

represents an example of a semantic segmentation ground truth.

Figure 4.5: Semantic Segmentation mask example [6].

4.3.1 Convolutional neural networks for semantic segmentation

In CNNs for semantic segmentation [8], the initial layers are responsible for learning the low-level

concepts like edges and colours, and the last level layers learn the high-level concepts like the

shape and size, i.e., the different objects. So, initially, the neurons contain the information for a

small region of the image. As we move through the layers into the high-level neurons, the image

size keeps on decreasing, the channels keep on increasing, and the neurons contain information

for a vast region of the image. In this case, the pooling layers perform the downsampling.

In object detection, fully connected layers are needed since it is required to map the spatial

tensor from the convolution layers. However, it destroys the spatial information [8].

Conversely, in semantic segmentation, no fully connected layers are used, since we need to

retain the spatial information. In this way, the convolutional layers associated with downsampling

layers produce a low-resolution tensor containing the high-level information. So, taking the high-

level information, we have to produce high-resolution segmentation outputs by adding more layers

associated with upsampling layers. As the resolution increases, the number of channels decreases,

thus accessing low-level information [8].

This whole process is part of an encoder-decoder structure, as we can see in Fig. 4.6a, where

the layers that downsample the input belong to the encoder and the layers upsample to the decoder

[8].

To summarize, the encoder outputs a tensor containing information about the objects, and

then the decoder takes this information and produces the segmentation maps [8]. However, some

low-level information can be lost. Due to this, the decoder needs to access the low-level features



24 State of Art

(a) (b)

Figure 4.6: Encoder-Decoder Architectures with (a) no skip connections, and with (b) skip con-
nections [8].

produced by the encoder layers, and that is achieved by adding skip connections like Fig. 4.6b

describes.

4.3.2 Object Detection using convolutional neural networks

Generic object detection consists of two main topics, the region proposal based and the regres-

sion/classification based [9].

Figure 4.7: Generic object detection [9]

4.3.2.1 Region-based Convolutional Neural Network

The R-CNN was described in 2014 by Girshick et al. [10]. This model consists of 3 modules. The

first denominated as Region Proposal, generate and extract category independent region proposals,

these proposals establish the set of candidate detections, for example, candidate bounding boxes.

The second denominated as Feature Extractor is a large CNN that extracts features from each

candidate region. The third module denominated as Classifier, classify features using, for example,

linear Support Vector Machine (SVM), as one of the known class. This module can use different

classification methods. Since Regions of Interest (ROIs) are identified, a standard classification

can be used to identify and label different objects.

A method called Selective Search use propose candidate regions or bounding boxes of potential

objects in the image, combining the best intuitions of segmentation and exhaustive search. From



4.3 Semantic Segmentation 25

segmentation, the sampling process is used. In the other hand, exhaustive search is used to capture

all possible object locations. However, other region proposal methods are allowed due to the

flexibility of R-CNN [38].

The main goal is to take an image and correctly identify where the objects are through bound-

ing boxes in the image. R-CNN architecture is shown in Fig. 4.8.

Figure 4.8: R-CNN Architecture [10]

4.3.2.2 Fast R-CNN

Due to the limitations of R-CNN Girshick [11] in 2015 proposed an improvement to solve speed

problems resulting in the Fast Region-Based Convolutional Network (Fast R-CNN).

The main limitations of R-CNN can be summarized as follows:

• Training is a multi-step pipeline: preparation and operation of three separate models.

• Training takes up a lot of time and space: training with very deep networks on several region

proposals is very slow.

• Low speed of object detection using deep networks to provide predictions on several region

proposals is very slow.

For this, Fast R-CNN is used as a single model instead of a pipeline to learn and classify the

originate regions. Fast R-CNN architecture is illustrated in Fig. 4.9.

Figure 4.9: Fast R-CNN Architecture [11]



26 State of Art

The architecture takes as input an entire image a set of region proposals. The first step is

to process the whole image passed through a deep CNN. For feature, extraction is used a pre-

trained CNN. Then exists a layer called ROI Pooling Layer, that extracts a fixed-length feature for

a provided input candidate region. The fully connected layers are used to interpret the output of

the CNN, followed by a division into two outputs per ROI, one to predict the class of the proposed

region via softmax layer, the other to the bounding-box regression offsets [11].

4.3.2.3 Faster R-CNN

Ren et al. [39] proposed a new architecture that results in Faster R-CNN. Although it is a single

unified model, is composed of two modules. The first module, Region Proposal Network (RPN), a

CNN that proposes regions, and the second module is the Fast R-CNN that extracts features from

the proposed regions and makes the bounding box and respective class labels.

The main idea is that both modules work on the same output of the CNN, making the RPN

module tells the Fast R-CNN module where to look. To summarize, the Faster R-CNN is a com-

bination between the RPN and the Fast R-CNN architecture, both sharing the convolutional layers

between the two networks, minimizing the time spent identifying the ROIs with the selective

search method, replacing it with the RPN [39].

4.3.2.4 You Only Look Once

Redmon et al. [12] in 2015 proposed the YOLO architecture, a new approach for object detection.

Initially, divides the input image into a grid of cells, an SxS grid. If the centre of a bounding box

falls into a grid cell, that grid cell is responsible for detecting that object.

Each grid cell predicts B bounding boxes that involves the x, y coordinate, the width(w), the

height(h), the respective confidence scores for those boxes and predicts C class probabilities [40],

as described in Fig. 4.10,. All these predictions are encoded as a tensor that can be calculated as

follow equation 4.4.

S×S× (B∗5+C) (4.4)

Figure 4.10: YOLO Model [12]



4.3 Semantic Segmentation 27

Nevertheless, this method has some limitations. So, Redmon et al. [41] proposed some im-

provements in order to overcome these constraints. YOLO method use fully connected layers on

top of the extracted feature map to predict the coordinate of bounding boxes.

Instead of this, YOLOv2 [41] is inspired on the work done in Faster R-CNN in the RPN,

removing the fully connected layers and the bounding box prediction was made with the use

of anchor boxes. The same authors proposed an improvement in YOLOv2, thus increasing the

accuracy, giving rise to YOLOv3 [42].

4.3.2.5 Single Shot Multibox Detector

The SSD method, likewise to the YOLO method mentioned before, consists of predicting all the

bounding boxes at once and classify the result of those detections. Therefore, Redmon et al. [12]

say that YOLO imposes some limitations in dealing with small objects in groups due to spatial

constraints on bounding box predictions. Since each grid cell can only predict two boxes and can

only have one class, as we can see on Fig. 4.10. By that, this method has conflicts to generalize to

objects in new aspect ratios or configurations.

Liu et al. [13] aiming at these difficulties proposed a Single Shot MultiBox Detector (SSD), in

which most of the techniques were adopted from the MultiBox method [43]. The core idea of this

algorithm is to train a convolutional network that outputs the coordinates of the bounding boxes

directly, the height and width of the box. Simultaneously, it produces a vector of probabilities

corresponding to the confidence over each class of objects.

Figure 4.11: SSD Architecture [13]

The first architecture layers, as shown in Fig. 4.11 are based on a standard model used for

high-quality image classification, in this case, the VGG16 network was used as the backbone on

this SSD architecture, but other networks should also produce good outcomes. On the end of this

model, several feature layers are added to predict the several bounding boxes with different feature

maps resolutions, aspect ratios and respective confidences. The NN is trained with a weighted sum

of localization loss, like Smooth L1, which is the loss between the predicted box and the ground

truth, and confidence loss, like Softmax, which is loss over multiple classes confidences [9]. The

training step is crucial to have better accuracy, for this we need to choose a set of default boxes



28 State of Art

and scales for detection as well as hard negative mining and data augmentation strategies, thus

improving the performance of the SSD model.

To summarize, the SSD model is based on a feed-forward convolutional network that generates

a fixed-size of bounding boxes and rates them in conformity with the presence of object class

instances in those boxes. The final detection results by a non-maximum suppression step, keeping

the highest-rated bounding boxes [13].

4.3.3 Comparison between Deep Learning Architectures

The region proposal architectures R-CNN [10], Fast R-CNN [11] and Faster R-CNN [39] use a

two-shot approach, one to create the regions where objects are expected to be and the other shot

to detect objects in those regions. This approach usually has a better accuracy but a high inference

time. Contrarily, single-shot architectures like YOLO [12] and SSD [13] can find all objects within

an image in one shot, making them more efficient and has good accuracy.

Usually, all the works [10], [11]–[13] evaluate the efficiency of the different models through a

standard performance metric, the mAP, which is the mean Average Precision. Besides, they also

use PASCAL Visual Object Classification (PASCAL VOC) [24], this being one of several datasets

for object detection, classification and segmentation. This dataset is commonly used in object

detection competitions.

Figure 4.12: Results on Pascal VOC2007 test [13]

The results presented in Fig. 4.12 represents the performance reported in [13], demonstrate the

precision of the different models and their speed. With these results, the SSD algorithm stands out

as the better candidate for a real-time obstacle detector algorithm. However, other DL architectures

are evolving, giving rise to new solutions such as YOLOv3 [42] our DSSD [44].

4.3.4 Comparison between Deep Learning Models

Computational cost impacts on the recognition accuracy studies are not abundant in the literature,

Canziani et al. [45] in 2016 proposed an analysis of some DNN architectures by implementing

tests on an NVIDIA Jetson TX1 board. It was measured several performance indices like accu-

racy rate and model complexity, but the key of these analyses was the relationship between these



4.3 Semantic Segmentation 29

performance indices. Although it is a valuable work, it has been dedicated to a few numbers of

DNNs and only tested on NVIDIA Jetson TX1 board.

For that reason, Bianco et al. [14] in 2018 provided a more comprehensively study over 40

different DNN architectures for image recognition analyzing elements such as computational cost

and accuracy on two distinct hardware platforms, NVIDIA Jetson TX1 and NVIDIA Titan X.

Figure 4.13: Top-1 accuracy vs floating-point operations (FLOPs) [14]

As represented in Fig. 4.13, the size of each ball corresponds to the model complexity

Top-1 is the traditional accuracy, that means the model answer should be precisely the expected

answer, and Top-5 accuracy represent any model that gives five higher probability answers that

shall correspond to the expected answer [32]. So, by analysis of Fig. 4.13, we can see that the

DNN model reaching the highest accuracy is the NASNet-A-Large [46]. However, it also has the

highest computational complexity. Between all the models that have the lowest level of model

complexity, SE-ResNeXt-50 [47] has the highest accuracy and low level of model complexity.

From Fig. 4.14 we observe how efficient the parameters of each model are used and can notice

that SqueezeNets [48], ShuffleNet [49], the MobileNets [15] and NASNet-A-Mobile [46], are the

models that use their parameters more efficiently.



30 State of Art

Figure 4.14: Top-1 accuracy vs. Top-1 accuracy density [14]

From this study, we can extract the information that if the number of operations increase, does

not imply that the detection accuracy increases too. Also, not whole the DL models use parameters

with the same level of efficiency. Thus, this comparison among different DL models provides us

with knowledge for the right choice of architecture.

4.3.5 MobileNet

MobileNets [15] provides lightweight DL models oriented to use in embedded, low cost and power

systems, using depthwise separable convolutions that consists of factorising the standard convo-

lution into a depthwise convolution and a 1x1 convolution called pointwise convolution. So, the

first apply a single filter to each input channel and then is followed by a pointwise convolution to

combine the outputs of depthwise convolution.

The input of a CNN is a D f ×D f ×M feature map. After the convolution, produces a D f ×
D f ×N feature map, where D f is the spatial width and height of a square feature map, M is the

number of input channels (input depth), and N is the number of output channels (output depth).

The standard convolutional layer is parameterised by convolution kernel of size Dk ×Dk ×
M×N where Dk is the size of the kernel, as we can see on Fig. 4.15, where M and N have the



4.3 Semantic Segmentation 31

same meaning as described above.

Figure 4.15: MobileNets convolution architecture. The standard convolution is divided into two
layers, a depthwise and a pointwise convolution, that combined result on the depthwise separable
convolution [15].

Therefore, standard convolutions have the computational cost of:

Dk×Dk×M×N×D f ×D f (4.5)

The cost associated with depthwise separable convolution consists of the sum of the cost of

the two layers. The depthwise convolution has a cost of:

Dk×Dk×M×D f ×D f (4.6)

The pointwise convolution has a cost of:

M×N×D f ×D f (4.7)

In this way, the depthwise separable convolutions cost is:

Dk×Dk×M×D f ×D f +M×N×D f ×D f (4.8)



32 State of Art

Using 3x3 depthwise convolutions, MobileNet uses 8 to 9 times less computation than stan-

dard convolution, which is evident in inference time. In the task of object detection, the results for

MobileNet trained on the COCO dataset [6] prove that it remains the smallest and least compu-

tationally expensive base network compared to VGG and Inception for both the SSD and Faster-

RCNN framework while having similar or superior AP.

4.3.6 Inception

The Inception model [16] came with the same objective as MobileNet, reducing the model size and

the respective computational cost in low-power processors. So, this model scaled up by factorising

convolutions and adding regularisation.

(a) (b)

Figure 4.16: Different versions of Inception module, (a) the original Inception module and (b)
Inception module where 5×5 convolution is replaced as two 3×3 convolutions [16].

The Inception as the name implies uses Inception modules which uses convolutions with mul-

tiple filters sizes, executing these in parallel, and the outputs are concatenated and sent to the next

inception module. These modules are modified throughout the various versions of the model to

increase the speed of the network, where more extensive convolutions are replaced by multiple

smaller ones as seen in Fig. 4.16, which reduces the number of parameters due to the weight

sharing between adjacent tiles [16]. Comparing with MobileNet, the Inception use standard con-

volution instead of depthwise convolutions. This results in a lesser number of parameters in Mo-

bileNet. However, this results in sometimes in a slight decrease in the performance as well.

4.4 Platforms

In this dissertation, one of the main goals is to provide the robot artificial intelligence to recognize

vine trunks in a time-effective manner. So, the hardware platform used should provide high fre-



4.4 Platforms 33

quency inference with low power costs. In this way, the Coral Egde TPU1 was used as the main

platform and provides high-performance ML inferencing for low-power devices. A comparison

between the existing platforms is made, and Edge TPU is here briefly described.

4.4.1 Comparison between TPU, GPU and CPU

Wang et al. [50] propose a benchmark suite to compare three hardware platforms, Tensor Pro-

cessing Unit (TPU), Graphical Processing Unit (GPU) and Central Processing Unit (CPU) for DL.

In this study was used as hardware platforms the Google’s Cloud TPU, NVIDIA V100 GPU and

Intel Skylake CPU.

The main advantages and disadvantages of using TPUs that researchers presented in this paper

are represented on table 4.1.

Advantages Disadvantages
Have the highest training throughput,
and are exceedingly optimized for CNNs.

GPU demonstrates better programming
and flexibility for irregular computations

Speedup over GPU increases with larger
CNNs.

CPU supports the largest models due to
large memory capacity

Table 4.1: Advantages and disadvantages of using TPU.

4.4.2 Google Edge TPU

In 2018, Google announced the Coral Edge TPU2 that provides to developers to have high-

performance machine learning for low-power devices.

We can divide the development of machine learning into two stages. Initially, a model is

trained with a large dataset on a powerful machine. Then the trained network is inserted into an

application that needs to interpret real data. This “inference” stage is where Coral Edge TPU takes

action, providing the capability to run these trained networks “at the edge” closest to the data.

Thus, enabling the execution of deep-forward neural networks such as CNNs, making it ideal for

a variety of vision-based ML applications.

The supported framework for Coral is TensorFlow Lite, which means that for a created Ten-

sorFlow model it is necessary to convert to a fully 8-bit quantized TensorFlow Lite model which

is achieved by post-training quantization or quantization aware training.

1https://coral.ai/
2https://coral.ai/docs/edgetpu/faq/

https://coral.ai/
https://coral.ai/docs/edgetpu/faq/


34 State of Art

4.5 Frameworks

The most popular frameworks for DL are TensorFlow, Keras, Caffe, PyTorch. TensorFlow is, by

far the most widely used structure in the field of DL [25]. In this dissertation, TensorFlow3 and

TensorFlow Lite4, were the programming frameworks used to create, train and test the models

for the Edge TPU. In order to establish the interaction of DL models in robotics and real-time

inference, ROS5 is responsible for the communication between the different integrated systems

and the natural interaction between the hardware and the developed code. All frameworks are

here briefly introduced.

4.5.1 TensorFlow

TensorFlow is an open-source computing framework that uses data flow graphs, created by Google.

This framework has become increasingly popular for training machine learning models, because

of its high flexibility, rich algorithm library and support documentation, providing a good solution

to solve real-world problems that require fast decision-making software.

4.5.2 TensorFlow Lite

TensorFlow Lite is a set of tools that came to help implement TensorFlow models on Internet of

Things (IoT) and mobile devices, that consists of two essential elements:

• Interpreter: runs particularly optimized models in different hardware types.

• Converter: converts TensorFlow models in a simpler and more efficient format in order to

be used by the interpreter.

Since this is designed to make it easier to perform ML on devices, it can also help to improve

latency, privacy, connectivity and power consumption on-device.

4.5.3 ROS

ROS is an open-source framework for robotics and is commonly developed using C++ or Python

programming languages. It works similarly to an operating system by providing tools and libraries

that are easily implemented in real-time on robotic platforms. It provides hardware abstraction to a

large variety of sensors, powerful simulators and easy communication between processes. Mainly,

it works in a publisher-subscriber way to share messages over a network managed by a master.

3https://www.tensorflow.org
4https://www.tensorflow.org/lite
5https://www.ros.org/

https://www.tensorflow.org
https://www.tensorflow.org/lite
https://www.ros.org/


4.6 Deep Learning Applications in Agriculture 35

4.6 Deep Learning Applications in Agriculture

DL applications have been increasingly implemented in several areas of agriculture. At the best

of our knowledge, the detection of trunks in agriculture with DL, which is the main objective of

this dissertation, is an area that has not yet been very well explored, until research date.

Among the various sectors of agriculture, Artificial Intelligence (AI) has made it possible

to implement machines to perform tasks efficiently and effectively. Thus, computer vision al-

gorithms based on DL techniques have been increasingly implemented in agriculture because it

allows larger learning capabilities and thus, higher performance and precision [25]. In this way,

DL in agriculture is a recent, modern and promising technique that is being used in the context

of agriculture, such as fruit detection and counting, weed detection, plant disease detection, plant

recognition and others [25].

To detect fruit in orchards, Bargoti et al. [51] create an accurate image-based fruit detection

to support yield mapping and robotic harvesting. In this work, Faster-RCNN was used to detect

mangoes, almonds and apples. The dataset is constituted with images of these three fruits and was

increased using different data augmentation techniques resulting in a significant performance gain.

However, the use of TL initialising the CNN directly from ImageNet feature showed no significant

gains. This approach achieved an accuracy higher than 90% for apples and mangoes.

In the same context, to detect mango fruit Koirala et al. [28] made a new CNN architecture

called MangoYOLO, based on characteristics of YOLOv3 and YOLOv2(tiny), to achieve better

accuracy and speed. The training dataset is composed of more than 1300 tree images from five

different orchards. The overall accuracy of the network running with a GPU is 98.3% with infer-

ence time of 8 ms per 512x512 pixel image and in other orchards images an accuracy of 89% with

inference time of 70 ms per 2048x2048 pixel image (approximately 14 FPS).

Counting fruit with DL is also commonly used, for example, aiming to count tomato Rah-

nemoonfar et al. [52] propose a modified version of the Inception-ResNet architecture was used

to detect and count the tomato fruit. The network was trained with generated synthetic data and

tested on real data. The overall accuracy is 91% on real images and 93% on synthetic images.

Similarly, in [53] propose two CNNs with the objective of counting oranges and apples. The

first CNN extracts different candidate regions in the images. The other is responsible for estimates

the number of fruits in each region using a counting algorithm. The performance is analysed using

oranges images collected throughout the morning and green apple images at dusk. The overall

performance shows that better results are obtained with a limited dataset size and can perform on

occluded fruits.

Fuentes et al. [54] propose a comparison for different detectors architectures, e.g., SSD, with

different models, e.g., VGG net, in order to detect tomato plant diseases. In this work, Tomato

Diseases and Pests Dataset was created, aiming to identify several infections and symptoms. Data

augmentation techniques such as rotation, horizontal flipping, resizing and others were used in

order to avoid overfitting. Finally, a comparison between data augmentation with and without is

made, showing better results with data augmentation.



36 State of Art

Likewise, Liu et al. [55] propose a fresh architecture based on AlexNet to detect apple leaf

diseases. For this, a dataset with 13,689 images was created and used to train the network, in order

to identify some usual apple leaf diseases. The result of this new approach shows an accuracy of

97.62%.

To identify and detect plant species Ghazi et al. [56] use TL to fine-tune pre-trained popular

CNN architectures. The data was collected by using plant tasks datasets of LifeCLEF. In order to

avoid overfitting and have more data to training, data augmentation operations such as rotation,

translation, reflection and scaling, were applied to the original data. The system achieved an

overall accuracy of 80%.

DL techniques are also used for image segmentation. Smith et al. [57] propose to segment

roots in soil using U-Net. The time spent on labelling was extensive since the annotation needs

to be manually and need to labelling all pixels considered to be root which takes for each image

annotation approximately 30 min. Consequently, this work uses a dataset of 50 annotated images

for training and 867 images for evaluation. Results show an overall accuracy of 70% and show

that manual annotations are with less quality than the segmentation output.

This analysis of the literature leads us to the conclusion that DL techniques in agriculture are

increasing exponentially. However, detecting trunks in vineyards using DL algorithms is nowadays

a lack of state-of-the-art. Thus, this dissertation aims to overcome this gap with a low-power

and high-performance DL-based to detect and segment vine trunks, able to perform for real-time

operations in agriculture robotics.



Chapter 5

Implementation

In the implementation, various steps are delineated for the trunk detection, trunk segmentation and

the creation of DL-based Assisted Labelling. Firstly, a dataset of vineyards trunks is created with

the annotations for each image. Then, this dataset is used for the training of DL models for trunk

detection and segmentation to be implemented in the Coral Edge TPU for real-time inference. The

main steps are represented in Fig. 5.1.

Figure 5.1: Vine trunk detection procedure flow.

37



38 Implementation

5.1 VineSet

The detection of trunks in vineyards using DL algorithms is an area yet to be explored. Due to the

non-existence of public datasets related to the detection of trunks in the vineyards, a dataset was

created, called VineSet, an open-source dataset, was published in the Robotic Operating System

(ROS) Agriculture community (http://wiki.ros.org/agriculture). This dataset was

created using Agrob V16, a robotic platform for research and development of robotics technologies

for Douro vineyards, that captured images containing vine trunks in different contexts and in

different formats.

In the creation of VineSet, several steps were outlined. The first step went through by collect-

ing images of 5 different vineyards, then annotations were made in all images and, finally, data

augmentation was addressed to increase the dataset size.

5.1.1 Data Collection

In order to build the VineSet, our robotic platform, Agrob V16 collected several video streams in

5 different Douro Vineyards where 952 images were extracted from them, and some samples are

presented in Fig. 5.2.

Figure 5.2: Set of different vineyards used in the VineSet data collection.

The data gathering was done under different stages of crop process and different times of the

day, thus changing the lighting conditions. One of the most exclusive characteristics of VineSet

is the fact that it contains thermal images, which are not included in many other datasets. This

was possible since Agrob V16 is equipped with both an RGB and a thermal camera, which allows

collecting a larger sample, thus increasing, even more, the diversity of images to the training

http://wiki.ros.org/agriculture


5.1 VineSet 39

procedure. The advantage of using thermal images is the fact that they reduce the variability

of images under different lighting conditions, thus allowing the detection of trunks to be more

accurate.

5.1.2 Data annotation

From the data collection, trunks were manually annotated for all images. For this, LabelImg

(https://github.com/tzutalin/labelImg) was the graphical image annotation tool used,

which eases the process of labeling images with bounding boxes. The tool enables the user to

quickly draw bounding boxes and annotate each box with a pre-defined label. These annotations

are represented in a .xml file, using the PASCAL VOC annotation syntax, each of which repre-

sents a bounding box associated with the respective class and the four corners coordinates of each

trunk. This process resulted in approximately 4600 trunks manually annotated and is also publicly

available (http://wiki.ros.org/agriculture) together with the VineSet images.

In some cases, the vegetation in the vineyards causes obstructions in the identification of the

trunks. Therefore, trunks that are not clear to distinguish with the background were not included

in this annotation process. Thus, the trunks present in the vineyard corridor where the robot is

located are manually annotated. The result of this process is represented in Fig. 5.3.

Figure 5.3: Result of annotation process for trunk detection.

This process aims to label the class and location coordinates of each bounding box containing

the region of interest, which in this case are the trunks. In this way, we can have a ground truth

that allows us to evaluate the prediction results during the various tests.

5.1.3 Data Augmentation

Even though DL outperforms most traditional ML methods in terms of precision and real-time

application [32], one of the biggest challenges is to overcome overfitting. This is one of the

frequent problems in ML that consists of modelling the data too well, learning only the expected

output for each input instead of learning the general distribution of the input data.

https://github.com/tzutalin/labelImg
http://wiki.ros.org/agriculture


40 Implementation

Augementation operation Description Justification

Rotation Rotation of the image 15, -15 and 45 degrees.
Makes the dataset more robust to possible
irregularities of vineyards terrain.

Translation
Translate images by -30 to +30% on x- and y-axis
independently.

Gives more possible situations to generalise
the model avoiding overfitting.

Scale
Scale images to a value of 50 to 150% of their
original size.

Gives more data to the training by zoom in or
zoom out the image, giving a better train set.

Flipping Mirror input images horizontally.
Flip images vertically make no sense since that
hypothesis will never happen, so it has applied a flip
horizontally that gives more data to the training.

Multiply
Multiply all pixels in an image with a random value
sampled once per image. This augmenter can be
used to make images lighter or darker.

Gives more situations of different situations of
illumination due to the weather conditions.

Hue and Saturation

Increases or decreases hue and saturation by random
values. The augmenter first transforms images to HSV
colourspace, then adds random values to the H and S
channels and afterwards converts back to RGB.

Gives more situations of different colours of
the environment due to the different stations
of the year.

Gaussian Noise
Add noise sampled from Gaussian distributions elementwise
to images.

Gives to the robot the capability to be accurate
when some noise affects the camera.

Table 5.1: Set of several augmentation operations used to expand VineSet.

(a) Translation (b) Multiply (c) Hue and Saturation

(d) Horizontal Flip (e) Rotation -15 degrees (f) Rotation 15 degrees

(g) Gaussian Noise (h) Combination of 3 operations

Figure 5.4: Set of several augmentation operations used to expand VineSet.



5.1 VineSet 41

Furthermore, conditions such as variation of sunlight illumination during the day or the irregu-

larities of slope vineyards may affect performance. In this way, to avoid overfitting and generalise

the network, data augmentation is a usual method to enhance the variability of data for training by

enlarging the dataset using label-preserving transformations.

In order to increase the diversity and robustness of the VineSet, the collected images were

pre-processed with typical augmentation techniques used in DL works [37][54], resulting in an

expansion of 8529 images. In this way the VineSet have a total of 9481 images. For this, im-

gaug (https://imgaug.readthedocs.io/en/latest/) was the library used for image

augmentation. It supports a wide range of augmentation techniques such as horizontal flipping,

image re-scaling, rotation, translation, multiply, Gaussian noise, hue and saturation. The augmen-

tation operations performed are shown in Fig. 5.4 and described on table 5.1.

Besides, this library avoids the manual annotation process for the resulting images of aug-

mentation, since not only augment images but also bounding boxes. So, if an image is rotated,

the library can also rotate all bounding boxes on it correspondingly. This procedure allows to

automatically generate the annotations for the augmented images as represented on Fig. 5.5.

(a) (b)

Figure 5.5: Result of an augmentation operation applying a 15 degree rotation on the (a) original
image, resulting on the (b) augment image.

5.1.4 Training Procedure

In order to create a Coral Edge TPU compatible model suitable for real-time trunk detection, the

training procedure needs to meet some requirements. The Edge TPU supports only TensorFlow

Lite models that are fully 8-bit quantized and then explicitly compiled for it. In this way, it was

used TensorFlow as a framework because it supports deployment in embedded and mobile devices

with Tensorflow Lite enabling to convert Tensorflow models to the Lite version, as represented on

Fig. 5.9.

Firstly, to verify the performance of different models with VineSet, our dataset, has been

divided randomly into 90% training set and 10% testing set. These separated sets contain both the

images and corresponding .xml files with the annotations. Then all the .xml files were converted

https://imgaug.readthedocs.io/en/latest/


42 Implementation

into two .csv files, one for the train set and other for the test set, that contains all the annotations

for each trunk. This conversion is needed because TensorFlow only can convert .csv files into

TFRecords. So, the next stage is to serialise the ground truth bounding boxes. This serialisation

results in a TFRecord data type, which is a simple format for storing the data as a sequence of

binary records. All this with the purpose of Tensorflow can interpret the data efficiently. These

TFRecord files represent the input for the training of the different DL models. All of these steps

are shown in Fig. 5.6. The next step is to train different CNNs. However, not all architectures can

be used.

Figure 5.6: Training procedure flow.

5.1.4.1 Architectures and Models selection

The official TensorFlow Object Detection repository (https://github.com/tensorflow/

models), contains the object detection architectures SSD and Faster R-CNN built on top of Mo-

bileNet and Inception and other models. However, the Edge TPU only supports a variety of oper-

ations and is typically compatible with models designed for mobile devices, that uses SSD archi-

tecture. Another fact is if a model is not able to be quantized with the quantization-aware training

or full integer post-training quantization implies that is not compatible with Edge TPU. In [58],

shows that Inception and MobileNets can be quantized. In this way, we choose SSD MobileNet

V1, SSD MobileNet V2 and SSD Inception V2 that are available in TensorFlow object detection

library which meets the above requirements and is pre-trained on the COCO dataset [6]. Thereby,

it is possible to use TL in order to achieve the objective faster.

5.1.4.2 Hyperparameter selection

The task of choosing the hyperparameters is a crucial step to improve the performance. The

models chosen in section 5.1.4.1 had already hyperparameters values set, that had been analysed

https://github.com/tensorflow/models
https://github.com/tensorflow/models


5.1 VineSet 43

in order to reach the optimal performance for each model. These values are used as default in TL.

However, some of them should be modified. In this way, to modify the hyperparameters requires

editing the model configuration file that is available for each model.

The batch size is one of the hyperparameters. It represents the total number of training samples

present in a single batch, and smaller batch size implies less memory and faster training. However,

the smaller the batch, the less accurate. So, taking into account memory and time constraints,

hyperparameters have been adjusted. Thus, the batch size was set to 18. In order to obtain the

number of iterations required for the training, several tests were performed to observe when the

training error curve began to converge. For TL the number of training steps was 50,000, which

is approximately 95 epochs. For models trained from scratch the number of training steps was

increased to 100,000, which is approximately 185 epochs, since all parameters are initialise from

zero. Besides, all the images were resized to a resolution of 300x300 by the image_resizer

hyperparameter. The width and height of the resized image to the input can be chosen. Parameters

such as momentum, learning rate, resolution and others, have not been changed, being preserved

the values that came with the original model.

5.1.4.3 Training

During the training of DL models, was noticed that different GPUs have different times per iter-

ation. So, better GPUs leads to faster training. Along with this, not every GPU can handle with

large batch sizes since it exceeds the available memory. To solve this problem, the training proce-

dure was performed in an online platform, Google Colaboratory (https://colab.research.

google.com). This is a browser-based platform that allows us to train our models on machines

with an NVIDIA Tesla P100-PCIE for free, avoiding the restriction of reduced computational

power and produces results much faster when compared to the available hardware. However, the

fact being free has some limitation for long-running tasks. So, Colab provides a maximum GPU

runtime of 8 to 12 hours, ideally at a time. Though, this was not a problem, since it is possible to

retrain the model from the point where it previously ended.

Initially, the training was done using TL. So, fine-tuning consists of using the pre-trained

network to initialise all the weights. In this way, in order to train from a pre-trained model,

i.e., using TL, it is necessary to edit the parameter train_config in the model configura-

tion file adding a fine-tune checkpoint. Fine-tuning can be done in two ways. The first restore

all variables in the graph that are available in the model binary file, and the box predictor (last

layer) weights are also restored. The second way restores just the weights from feature ex-

tractor, i.e., all the layers in backbone networks, like MobileNet. Therefore, if the parameter

fine_tune_checkpoint_type=detection, then it restore all variables. In the other hand,

fine_tune_checkpoint_type=classification then it restore only the variables from

feature extractor. Since our dataset was reasonably large is recommended restoring all weights

from the checkpoint which implies that fine_tune_checkpoint_type=detection. So,

the checkpoint was used to initialise all the weights and other variables. During the training, all

https://colab.research.google.com
https://colab.research.google.com


44 Implementation

layers weights are adjusted, because unfrozen layers give better results than frozen. Train with TL

reaches faster the objective. Thus, the training steps was set to 50k.

Also, experiments were carried out training the models from scratch to analyse, which would

reach faster a satisfactory result. In this case, was necessary to eliminate from the parameter

train_config in model configuraton file the fine-tune checkpoint and the parameter that was

used before, the fine_tune_checkpoint_type=detection. In this way, the weights are

randomly initialised and adjusted during the train. Training from scratch implies more iterations

than fine-tune, and more time. For this, it was increased to 100k the training steps in order to get

the same or better result as TL.

In both cases, training with TL and from scratch, it was used the quantization-aware training

by adding to the model configuration file the quantization parameter, that simulates the

impact of 8-bit numbers in training using quantized nodes in the neural network graph.

So, the next step was to train the differents DL models with these two different approaches,

together with VineSet. In this manner, to train is only needed to use the training script from

TensorFlow repository (https://github.com/tensorflow/models), upload TFRecords

files, download the folder of the model chosen with the respective checkpoint and pipeline file,

and finally run the script.

(a) (b)

(c) (d)

Figure 5.7: Loss result of 50k iterations. Train loss (a) using transfer learning and (b) from scratch.
Validation loss (c) using transfer learning and (d) from scratch.

At the end of the training, the generalisation of our model was analysed from Fig. 5.7. It

is possible to see that the training loss decreases in the same way as validation loss decreases

https://github.com/tensorflow/models


5.1 VineSet 45

in both cases, using TL and from scratch. In the case of overfitting, the training loss decreases

while validation loss increases. Thus, our model does not suffer from overfitting, proving that our

dataset, VineSet, is robust. Besides, train loss converges faster in TL than from scratch, proving

that it is necessary to have more iterations in training from scratch.

After training and checking the model, we move on to creating a model that’s compatible with

the Edge TPU. Thus, a Tensorflow model is generated that can be later retrained or used to train

another’s models by using TL. However, this model is exported to a frozen graph. Then, the frozen

graph is converted into a TensorFlow Lite model that is entirely 8-bit quantized. Finally, the Edge

TPU compiler divides the different inference operations that run on the Edge TPU and the CPU,

as illustrated in Fig. 5.8.

Figure 5.8: Edge TPU model compilation scheme [17].

Table 5.2 shows the supported and unsupported executed by SSD MobileNet V1 on the Edge

TPU after the compilation. The operations that have the status of mapped to Edge TPU are the ones

that are supported operations and execute on the Edge TPU, everything else that is unsupported

is compiled into a custom operation that executes on the CPU. So, the more number operations

assigned to the Edge TPU the faster the inference is.

Operator Count Status
Depthwise 2D Convolution 34 Mapped to Edge TPU

Reshape 13 Mapped to Edge TPU
Logistic 1 Mapped to Edge TPU

Concatenation 2 Mapped to Edge TPU
2D Convolution 13 Mapped to Edge TPU

Custom 1 Unsupported data type
Table 5.2: Operation log output of Edge TPU compiler for SSD MobileNet V1.

At this point, a Edge TPU model is deployed to the Coral Edge TPU. All this process is

represented on Fig. 5.9.



46 Implementation

Figure 5.9: Training procedure flow.

5.1.5 Real-time inference

In order to test our models, an environment that simulates real-time inference is needed. For this,

ROS nodes were used together with Coral. This environment had been built before and is available

in the CRIIS repository (https://gitlab.inesctec.pt/agrob/agrob_vineset). This

consists of two packages, the edgetpu_cpp that contains the Edge TPU API for object detection,

and the detector that contains the ROS node to call the API on subscribed images. So, to run

a real-time inference with Coral is required to set up the detector node parameters. There

are three parameters: the image_topic, i.e., the name of the image topic to subscribe; the

model_path, i.e., the path to the model .tflite to use; and the labels_path, i.e., the path

to the label file.

After everything set up, the Coral Edge TPU needs to be plugged-in on the computer where

the ROS node is executed. Then, real-time inference occurs using the frames of a video stream.

In order to obtain this inference time to be later used as an evaluation metric for each DL model,

a clock in the std library already implemented earlier was used. In this way, the time between

the detector returning the resulting bounding boxes and the image reception is obtained. Fig. 5.10

shows the result of real-time inference for trunk detection.

Figure 5.10: Real-time inference using Edge TPU for trunk detection.

https://gitlab.inesctec.pt/agrob/agrob_vineset


5.2 VineSet for Trunk Segmentation 47

5.1.6 Measuring and evaluating models performance

In order to compare the performance of state-of-the-art DL object detection models for trunk

detection on VineSet dataset, it was necessary to have an evaluation method in order to con-

clude. So, the performance of our system is evaluated using the Average Precision (AP) based

on intersection-over-union (IOU) introduced in the PASCAL Visual Object Classes (VOC) Chal-

lenge [24] and the F1-Scores (F1) that is another popular metric used to evaluate object detection

algorithms [25]. In order to run these metrics, a Python program was used that is available to

the public at (https://github.com/rafaelpadilla/Object-Detection-Metrics).

This program allows us to measure the AP for each model trained. Additionally, the F1 metric

was added to the file by just getting the precision and recall already calculated and use the equa-

tion 3.10. Also, the speed of the DL model, together with VineSet in the detection performance,

was explored. Thus, the indicator chosen to evaluate the performance of the speed of each DL

model was the inference time, calculated in section 5.1.5.

Therefore, the input for this program is a .txt file for both ground truth and detection con-

taining the coordinates of the bounding boxes. In this way, a C++ program was used. This program

uses the Edge TPU API and runs the DL model trained to make the inference on the test set. This

test set composed of 641 images, with approximately 2000 trunks, was randomly extracted from

the dataset before training from a total of 9481 images. Then .txt files were generated with the

corresponding detection bounding boxes and confidences for each image. Then, IoU threshold

was set to 0.5 in order to compare the estimated results with the ground-truth.

After this, a Python script runs and compares all the corresponding bounding boxes between

the ground truth and the detection and gives as output the result of the above-mentioned metrics.

5.2 VineSet for Trunk Segmentation

In order for the robot to have a better notion of the trunk structure and provide better input for

locating and mapping, the trunk segmentation was proposed. This task was performed in precisely

the same way as trunk detection. However, in this procedure, the purpose was not to detect the

trunk as it was previously done. Instead, the goal is to detect the various pieces of the trunk in order

to segment it. Therefore, object detection models were used together with VineSet to segment the

trunk. It is worth noting that this is a practical way of emulating the pixel-based segmentation

performed by, for example, semantic segmentation models.

5.2.1 Data annotation

The data annotation previously performed do not serve for this procedure because this time, the

objective is to segment the trunk and not just detect it. In this way, it was necessary to make the

annotations again from scratch. As each annotation represents a bounding box, in order to segment

the trunks, it was necessary to place many bounding boxes to fill the trunk structure, as represented

on Fig. 5.11. In the annotation process, if it was not possible to clearly distinguish whether or not

https://github.com/rafaelpadilla/Object-Detection-Metrics


48 Implementation

Figure 5.11: Result of annotation process for trunk segmentation.

it was part of the trunk, then it was not annotated. In order not to affect the training, all these

details were taken into account by labelling only those parts that are really part of the trunk. So, a

new set of annotations was added to all the VineSet images, providing the user the ability to train

models for segment vine trunks.

5.2.2 Data Augmentation

In the same way as section 5.1.3, the same several data augmentation operations were applied in

order to make the dataset more diverse and robust. Fig 5.12 shows the result of data augmentation

for trunk segmentation.

(a) (b)

Figure 5.12: Result of an augmentation operation applying a -15 degree rotation on the (a) original
image, resulting on the (b) augment image.

5.2.3 Modification in the model SSD MobileNet V1

This entire segmentation process involves smaller bounding boxes so that the trunk structure is

filled. As SSD architectures are not the best for the detection of small objects as evidenced in the



5.2 VineSet for Trunk Segmentation 49

original paper [13], a modification has been made to the SSD MobileNet V1 model in order to see

if the result improves.

The SSD architecture uses a base network, in this case, MobileNet V1 as a feature extractor,

then the SSD adds six more auxiliary layers for object detection. However optionally base network

layers can be used, and that is what happens in our case. It is from these six feature maps that

the predictions are made. The lower the layer, the higher is the resolution of the feature map.

So, feature maps with a higher resolution can detect smaller objects, and feature maps with low

resolution detect larger objects. Besides, all the layers that have an arrow for the detections on the

Fig. 5.13, higher layers, are responsible to make predictions. On the other hand, lower layers are

responsible for the detection of low-level features like edges and colours.

Figure 5.13: SSD MobileNet V1 and SSD MobileNet V1 modified by adding a feature map for
detections with a higher resolution (38x38).

So, layers have different feature maps sizes, and they depend on the resolution of the input

image. With an input image resolution of 300x300, the layers 4 to 5 have a 38x38 feature map size,

the layers 6 to 11 have a 19x19 feature map size and layers 12 to 13 have a 10x10 feature map size.

In Fig. 5.13 the original SSD MobileNet-V1 only uses the layer 11 and 13 to make detections.

So, in order to improve the performance of SSD-MobileNet V1, in this work is proposed the

addition of a layer to the feature extractor, Conv5. This layer is a feature map with a resolution

of 38x38, higher than the original ones. To perform this creation, the original model was changed

using the available model configuration file from the TensorFlow framework. The name of this

model modified was set to SSD MobileNet-Vine in order to be easy to compare the results with

the original model.



50 Implementation

5.2.4 Training Procedure

The training procedure to trunk segmentation with object detection models was the same that was

used on section 5.1.4. All the hyperparameters for training are equal too. However, as it concerns

the detection of smaller bounding boxes, some recommendations described in the SSD architecture

article [13] were used in order to improve the detection of smaller objects. This way, two different

training configurations were used for each model. One train was with an input size of 300x300.

The other train with a 512x512 resolution in order to improve the final result. Along with this, the

model modified in section 5.2.3 was trained with both resolutions too.

Also, this work proposes the training of another architecture to see if it improves the detection

of small objects. So, looking at the pre-trained architectures available at TensorFlow Object De-

tection repository, it only rests the Faster-RCNN, so that was the chosen from state-of-the-art DL

architectures. Although not compatible with Edge TPU, the inference procedure was made using

a Colab GPU. This architecture is built on top of ResNet50 model [59]. All the hyperparameters

have not been changed, remaining the same as the original model. Since the batch size is 1 for this

architecture the number of iterations is necessary more than the used for SSD architectures.

5.2.5 Real-time inference with segmentation and detection simultaneously

After training all the object detection models for segmentation of trunks and compiling all the

models that have SSD architecture using Edge TPU compiler, the detector node parameters in

section 5.1.5 were duplicated in order to introduce the segmentation model. In this way, the node

can publish the detections of the images subscribed by using both models, one for trunk detection

and the other for trunk segmentation. Thus, the Edge TPU not only runs the model to detect the

trunks, as also runs simultaneously the model to segment the trunks. Fig. 5.14 shows the result of

real-time inference for trunk detection and segmentation simultaneously.

Figure 5.14: Real-time inference using Edge TPU for trunk detection and segmentation simulta-
neously.



5.2 VineSet for Trunk Segmentation 51

5.2.6 Measuring and evaluating segmentation performance

The metrics used previously in section 5.1.6 to detect the trunks are not suitable to evaluate the

segmentation of the trunks because they do not give us a precise result regarding the segmentation

of the trunk.

In order to measure and evaluate the performance of state-of-the-art DL object detection mod-

els for trunk segmentation on VineSet dataset, a Python program was built and is available at

CRIIS repository (https://gitlab.inesctec.pt/agrob/agrob_vineset). The pro-

pose of this program is to evaluate the several models using the Jaccard Similarity Index (JSI)

and the Dice Similarity Index (DSI), that are the most popular metrics used to evaluate semantic

segmentation algorithms [29][30]. Also, the inference time was explored, as in section 5.1.6.

The first step in the creation of this program was to read the two .txt files generated in the same

way as the section 5.1.6, for ground truth and for detection, that contains the coordinates of the

bounding boxes. Since the metrics verify if the pixel belongs to a certain class and does not use

bounding boxes, it was necessary to create binary images for both ground truth and detections.

This way, we started by creating a whole black image, i.e., with all pixels with value 0. Then, all

bounding boxes of both the ground truth and the prediction boxes were checked, and the values

of the pixels were modified within the limits of these bounding boxes with the value 255, i.e., by

white pixels, resulting on a binary image for ground truth represented on Fig. 5.15a and Fig. 5.15b

, and for prediction represented on Fig. 5.16a and Fig. 5.16b.

Operation
TP G AND P
TN (NOT G) AND (NOT P)
FP (NOT G) AND P
FN G AND (NOT P)

Table 5.3: Binary operations applied to get TP, TN, FP and FN.

(a) (b)

Figure 5.15: Set of 2 binary images of ground truth.

https://gitlab.inesctec.pt/agrob/agrob_vineset


52 Implementation

(a) (b)

Figure 5.16: Set of 2 binary images of prediction.

From the moment we have these binary images, it was possible to perform several binary

operations. These operations were done in order to obtain True Positives, True Negatives, False

Positives and False Negatives, as represented on table 5.3, where G is the ground truth binary

image and P is the binary prediction image.

From these operations, the TP, TN, FP and FN were used to calculate the metrics to evaluate

the performance of our models.

To do so, JSI and DSI can be calculated in two ways. The first is as described on the equation

3.7for JSI and equation 3.13 for DSI, where is used the TP, FP and FN. The second way is by using

the areas as described on the equation 3.5 for JSI and equation 3.11 for DSI, where all the white

pixels were counted on both ground truth and prediction binary images and used as the areas.

Also, in order to make the TP, TN, FP and FN more perceptible, an RGB image was created,

as represented on Fig. 5.17a and Fig. 5.17b, where the TPs were marked in green, the TN in black,

the FP in blue and the FN in red.

(a) (b)

Figure 5.17: Set of 2 images with TP, TN, FP and FN.



5.3 VineSet for Semantic Segmentation 53

(a) (b)

Figure 5.18: TP represented with white pixels on original images.

To see the pixels that were detected and that are in accordance with the ground truth, i.e. the

TP pixels, in the original image, all the pixels from TP binary image that are white were passed to

the original image, resulting on Fig. 5.18a and Fig. 5.18b.

5.3 VineSet for Semantic Segmentation

In this work, a brief introduction to the use of semantic segmentation models for trunk segmen-

tation was finally made. In this way, the repository (https://github.com/GeorgeSeif/

Semantic-Segmentation-Suite) is a way to train semantic segmentation models through

TensorFlow like FC-DenseNet103 [60] and DeepLabv3 [61]. These models, unlike the ones seen

above, generate as output a mask directly. Then, each pixel is classified to a particular class. Thus

it is pixel-level image classification.

To do this train, Colab was used once again. The first step in training our segmentation model

is to prepare the dataset. To do so, VineSet was used and has been divided randomly into 90%

training set and 10% testing set. The training requires as input RGB images and the corresponding

ground truth segmentation masks. These masks were the ground truth binary images obtained in

section 5.2.6. Thus, these images were placed in separated folders in the training/testing folder.

However, unlike object detection models that use .xml files that take up less space for their

annotations, the semantic segmentation models for each image require a ground truth segmentation

mask implying a larger file size. Thus, the upload of the train/test set images from VineSet was

limited. If all VineSet images were used for training, the training input would be huge and the

training time would increase dramatically. As this is a preliminary approach, it was chosen to use

only a portion of the VineSet.

Then, the hyperparameters are maintained as the original ones, the batch size is 1, and the

number of iterations was 40 epochs which is approximately 138,000 iterations, for both models

trained from scratch. Besides, during the training, semantic segmentation models take an input

image and break it into several crops of the same size. Each crop fed the CNN to get the classified

https://github.com/GeorgeSeif/Semantic-Segmentation-Suite
https://github.com/GeorgeSeif/Semantic-Segmentation-Suite


54 Implementation

category for that crop as an output. This crop size is defined initially and needs to be divisible by

2n, where n is the number of pooling layers. Since FC-DenseNet103 has five pooling layers and

DeepLabv3 has four pooling layers, the crop size chosen was 480x480.

5.3.1 Measuring and evaluating performance

In order to measure the performance of these models, the Python metrics program created in

section 5.2.6 was used. Since our program utilises the most used metrics in semantic segmenta-

tion,i.e., JSI and DSI, it was possible to evaluate all images of predictions images generated from

the test set. These prediction images were obtained through the inference process performed from

a prediction script available in the repository mentioned above, using a Colab GPU.

5.4 Deep Learning-based Assisted Labelling

Training a DL model involves several steps, one of the most important of which is data annotation.

Generally, this step is a long process, and the time spent depends on several factors, such as

the total number of images that the dataset has, the number of classes and the ease of manually

identifying the bounding box corresponding to each class. Thus, this dissertation proposes to

create an assisted labelling procedure that uses AI to help the annotation process in the detection

of trunks in the vineyards.

5.4.1 Functionalities and Interface

In this way, a python notebook is made available in the CRIIS repository (https://gitlab.

inesctec.pt/agrob/agrob_vineset), which is open to the general community. The pro-

cedure of this new solution consists of using an online platform, Google Colaboratory (https:

//colab.research.google.com), so that the user can save the resources of his machine.

This python notebook is an adaptation of a tutorial available at TensorFlow repository (https:

//github.com/tensorflow/models) that only allows us to see the inference result.

This tool provides a DL model for detecting vine trunks, trained in this dissertation with Vi-

neSet, capable of detecting trunks in other contexts such as orchards or forests. So, an essential

factor for automating this process is the use of the DL model. Taking into account the results ob-

tained on section 6.1, the SSD MobileNet-V1 trained with VineSet was the model chosen for the

detection of trunks in the images introduced in this tool. For that, the frozen graph file exported

in section 5.1.4.3 was used here to run the inference. The assisted labelling procedure uses this

model to pre-process the user dataset, automatically annotating the detected trunks and saving the

annotations in a .xml file with the Pascal VOC format for each image. The user can then load the

automatic annotations and complete them manually.

This entire process is summarized in the information and instructions, as represented in Fig.

5.19 that the user encounters when using our tool to have a simple and effective experience. All the

steps that the user needs to perform are separated by different topics making it easier to understand

https://gitlab.inesctec.pt/agrob/agrob_vineset
https://gitlab.inesctec.pt/agrob/agrob_vineset
https://colab.research.google.com
https://colab.research.google.com
https://github.com/tensorflow/models
https://github.com/tensorflow/models


5.4 Deep Learning-based Assisted Labelling 55

Figure 5.19: Information and instructions of our Assited Labelling interface.

the interface, as represented in Fig. 5.20. Summarizing, this tool, in addition to using the trained

DL model together with VineSet, is a way to expand VineSet faster and iteratively improve DL-

based object detection models performance. In this way, this tool provides feedback in the training

of DL models.

Figure 5.20: Main steps of our Assited Labelling interface.

5.4.2 Measuring and evaluating performance

To assess the performance of our assisted labelling procedure tests were carried out in which sev-

eral factors were analyzed in comparison with manual annotation. In order to make conclusions,

the average time to manually label a trunk was measured by the total time spent on noting the

trunks in 20 different VineSet images, divided by the total number of trunks in these images, re-

sulting in an average of 5 seconds per trunk. Thus, once this value is established, it will be essential

to calculate the total time spent on several images. For this, the percentage of annotations made



56 Implementation

automatically and the percentage of annotations made manually were calculated. In this way, the

total time spent with our tool is calculated by the equation 5.1.

tassisted +TOTALtrunks×%manual×5 (5.1)

Where tassisted is the time spent by our automatic annotation tool, TOTALtrunks the number of

total trunks and %manual the percentage of manual annotations.

In order to assess the scope of our tool in other areas of agriculture using VineSet, we organize

a range of images. These images are from different orchards and forests, where we evaluate the

performance of our assisted labelling compared to the manual one.



Chapter 6

Results and Discussion

In this chapter, the results for the performed work are shown and then analyzed in the discussion.

Firstly, the DL object detection models are evaluated to compare and analyze the performance

in real-time of trunk detection. Then, the same models used before and a modified model are

compared with different input resolutions (300x300 and 512x512) and evaluated for segment-

ing trunks. Additionally, an architecture not supported by Coral Edge TPU is evaluated for the

segmentation of trunks. Also, semantic segmentation is here introduced. Finally, our Assisted

Labelling Procedure is evaluated and compared with some state-of-the-art tools.

6.1 VineSet Trunk Detection Results

Model Resolution Inference time (ms)
Fine-tuning From scratch

50k 50k 100k
AP(%) F1 AP(%) F1 AP(%) F1

SSD MobileNet-V1 300 x 300 4.55 84.16 0.841 68.44 0.685 85.93 0.834

SSD MobileNet-V2 300 x 300 5.04 83.01 0.808 60.44 0.639 83.70 0.812

SSD Inception-V2 300 x 300 23.82 75.78 0.848 58.05 0.658 76.77 0.849

SSD MobileNet-Vine 300 x 300 6.22 - - 32.54 0.448 65.40 0.635

Table 6.1: AP (%), F1 Scores and average inference time per image (ms) using Coral Edge TPU,
with fine-tuning and from scratch training.

In order to evaluate DL models for trunks detection on top of Google’s Edge TPU the perfor-

mance of the three models, i.e., SSD MobileNet-V1, SSD MobileNet-V2 and SSD Inception-V2

is compared using all the evaluation data composed by 640 images with approximately 2000 vine

trunks. Also, the model for object detection created to the segmentation process, i.e., the SSD

MobileNet-Vine, is equally compared with the other models. Thus, the global performance of the

different detectors is evaluated. For this, as referenced in section 5.1.6, the AP and F1-Scores met-

rics were used with an IOU threshold defined to 0.5. Also, the speed of the models, together with

57



58 Results and Discussion

Edge TPU in the detection performance, was explored. Thus, the inference time is also evaluated.

Table 6.1 summarizes the AP, F1-Score and run time performance for all models.

Fig. 6.1 shows an example of detection for three different vineyards, provided by SSD MobileNet-

V1, that achieves the best result for AP metric and inference time.

(a) (b)

(c)

Figure 6.1: Detection results using SSD MobileNet-V1

6.1.1 Discussion

The comparison on table 6.1 for training with fine-tuning shows that the SSD MobileNet-V1 model

obtained the best AP result of 84.16%. Although the SSD MobileNet-V2 has a slightly lower AP

result than the SSD MobileNet-V1, they are very similar, which was expected, since they have a

very similar architecture. Also, they obtained the best time of inference, because Mobilenet uses

depthwise separable convolution, while Inception uses standard convolution, resulting in fewer

parameters on MobileNet compared to Inception V2. However, sometimes this results in a slight

decrease in performance as well, which in this case was not verified. Also, the inference time

was lower due to the high-performance ML inferencing of Edge TPU, which allowed to perform

in real-time. For example, an average inference time per image of 4.55 ms was obtained for

SSD MobileNet-V1, which results on a speed of 220 FPS, making this model ideal for real-time

performance. Considering that this work uses lightweight models oriented to embedded devices,



6.2 VineSet Trunk Segmentation using object detection models 59

the AP results revealed to be entirely satisfactory on the object detection procedure. In this way,

were obtained reliable detectors, suitable for execution on autonomous robotic platforms due to

low energy consumption. F1 scores show us that SSD Inception-V2 obtains the best result. This

conclusion is since it has higher precision and a slightly lower recall compared to other models.

Regarding training from scratch, the number of steps had to be doubled to achieve similar or

better results than fine-tuning. With only 50,000 steps, the performance obtained is significantly

lower, as shown in table 6.1. This approach leads to the conclusion that, when training from

scratch, the model needs to learn low and high-level semantics, so more iterations are needed to

converge correctly. Thus, more effort is required in order to achieve satisfactory results [62].

For the detection of the trunks, the modified model of the SSD MobileNet-V1 was also tested,

in this case, we gave a different name, SSD MobileNet-Vine, to be able to identify and compare

with the original model. The change added a higher resolution detection feature map that would

possibly improve the detection of smaller objects for trunk segmentation. However, as we can

see in the table 6.1, this modification do not improve the result, which was expected since we are

detecting trunks up to 3 meters away which compared to the image is still a large object.

In conclusion, this presents a solution to the non-existence of state-of-the-art works to detects

vine trunks on images using DL models on the Edge TPU that is yet not popular in the literature.

Also, the results obtained for SSD MobileNet-V1 shows that our dataset, VineSet, gives good

results for trunk detection and can be implemented in real-time applications. Thus, the detections

can be used both on mapping and localization task.

6.2 VineSet Trunk Segmentation using object detection models

Model Resolution Inference time (ms)
Fine-tuning From scratch

50k 50k 100k
JSI(%) DSI(%) JSI(%) DSI(%) JSI(%) DSI(%)

SSD MobileNet-V1
300 x 300 4.22 52.23 68.73 42.55 59.59 52.17 68.57

512 x 512 10.90 - - 43.75 60.87 54.77 70.78

SSD MobileNet-V2
300 x 300 4.65 50.56 67.23 49.15 65.90 50.76 67.34

512 x 512 11.59 - - 46.99 63.94 51.54 68.14

SSD Inception-V2
300 x 300 23.51 47.30 64.22 42.16 59.32 47.86 64.74

512 x 512 32.48 - - 48.39 65.22 49.27 66.01

SSD MobileNet-Vine
300 x 300 6.15 - - 42.07 59.23 52.46 68.82

512 x 512 13.81 - - 43.31 60.45 51.72 68.18

Table 6.2: DICE similarity index (DSI)(%), Jaccard similarity index (JSI) (%) and average infer-
ence time per image (ms) using Coral Edge TPU, with fine-tuning and from scratch training.

To evaluate DL models for trunks segmentation on top of Google’s Edge TPU the perfor-

mance of the four models, i.e., SSD MobileNet-V1, SSD MobileNet-V2, SSD Inception-V2 and

SSD MobileNet-Vine, with two different configurations (input size of 300x300 and 512x512) is

compared. Also, some models were not trained with transfer learning due to the non-existence of



60 Results and Discussion

pre-trained models with those configurations. For this, was applied the same evaluation data used

on section 6.1. However, with the annotations corresponding to the segmentation of the trunks.

Therefore, the performance of the different detectors is evaluated using the Jaccard Similarity In-

dex (JSI) and the Dice Similarity Index (DSI). As mentioned in equation 3.12 , DSI is very similar

to the JSI. They are positively correlated, meaning that if one says that model X is better than

model Y at segmenting a trunk, then the other says the same. So, these metrics show how good the

overlap is between two binary images, i.e., ground truth and detection binary images. Also, the

speed of the models, together with Edge TPU in the detection performance, was explored. Thus,

the inference time is also evaluated. Table 6.2 summarizes the JSI, DSI and run time performance

for all models configurations. Fig. 6.2 shows an example of trunk segmentation for three different

vineyards, provided by SSD MobileNet-V1 with an input resolution of 512x512, that achieves the

best performance.

(a) (b)

(c)

Figure 6.2: Segmentation results using SSD MobileNet-V1 (512x512 input size), where the white
pixels are the True Positives.

In order to evaluate the segmentation performance with another state-of-the-art architecture,

Faster R-CNN is trained with an input size of 1024x600 to use TL and because in Faster R-CNN

paper [39] is mentioned that with this resolution, the architecture achieves better performance.

However, this architecture is not compatible with Edge TPU since it is not quantized. Thus, it is

evaluated on top of the Colab GPU. The same metrics used before are used here too. Table 6.3

summarizes the JSI, DSI, and run-time performance for Faster R-CNN.



6.2 VineSet Trunk Segmentation using object detection models 61

Model Resolution Inference time (ms)
Fine-tuning From scratch

200k 200k 400k
JSI(%) DSI(%) JSI(%) DSI(%) JSI(%) DSI(%)

Faster-RCNN ResNet50 1024x600 102.70 60.70 75.54 48.39 65.22 59.97 74.98

Table 6.3: DICE similarity index (DSI)(%), Jaccard similarity index (JSI) (%) and average infer-
ence time per image (ms) using Colab GPU, with fine-tuning and from scratch training.

6.2.1 Discussion

The results on table 6.2 for a 300x300 resolution for both training with fine-tuning and from scratch

shows that SSD MobileNet-V1 model obtained the best result for DSI with 68.73% similarity to

the ground truth and JSI of 52.53% score. MobileNets achieve again together with Edge TPU the

best inference times, which was expected to because these use depthwise separable convolutions

and are lightweight models designed to run on mobile devices.

The input image dimension is an important parameter to take into consideration for the per-

formance of the network. In the original paper of SSD, they recommend using a resolution of

512x512 in order to improve the detection of small objects. So, with a higher input dimension, the

neural network has more spatial information about the image, as the produced feature maps have

a bigger dimension when compared to the ones produced when the input dimension is smaller.

With more spatial information, the network should be able to identify and extract the object fea-

tures more clearly. However, if the information size is expanded, more operations need to be

performed, leading to an increase in the inference time. In table 6.2 are present the values of the

performance of the object detector models for trunk segmentation while varying the input image

dimensions. The results confirm that with a higher input resolution, we have better results, increas-

ing approximately 2% for all models compared to 300x300 resolution. The SSD MobileNet-V1

model achieves the best results again, having obtained 54.77% for JSI and 70.78% for DSI. The

inference time increases as expected since a higher resolution input comes more operations, which

implies a longer inference time. Although this inference time is higher, it is still possible to per-

form real-time detection due to the high-performance ML inferencing of Edge TPU. So, Edge

TPU allows obtaining an excellent average inference time per frame of 10.90 ms for the SSD

MobileNet-V1 model with a 512x512 input size, which results in a speed of 92 FPS. Concluding

with this that it is possible to achieve good results segmenting the trunks together with real-time

performance.

As previously stated, one of the significant issues regarding the SSD architecture was its in-

accuracy in detecting and classifying small objects in an image due to spatial constraints. As

mentioned in section 5.2.3, to address this problem, a layer with an increased feature map was

added to the detection to improve this drawback. In table 6.2, we can see the results for SSD

MobileNet-Vine, that is the modified model of SSD MobileNet-V1. The result of the modified

model for an input resolution of 300x300 was slightly better than the original. However, compar-

ing this resolution with the original model with an input size of 512x512, the result was smaller.



62 Results and Discussion

Which was expected since in the original model with a 512x512 input resolution increase all fea-

ture maps size, in the SSD MobileNet-Vine we only added a layer for detection with an increased

feature map, keeping the size of the feature maps for input with a resolution of 300x300. The result

of the modified model for a resolution of 512x512 was very similar to the original model with an

input resolution of 300x300. However, comparing to the original model with an input resolution

of 512x512, the result is smaller. So, besides an additional layer with a large feature map size used

to make detections, all the feature maps size increase due to the higher input resolution, which

could be the reason for lower performance. Also, the inference time increases for both resolutions

not only because we have an additional layer with a large feature map size to make detections but

also as a result of a larger input resolution. Nevertheless, it is still possible to carry out real-time

detection with Edge TPU.

Looking at table 6.3 Faster R-CNN presents better results on smaller objects than SSD. The

authors of SSD [13], said that this is probably because the RPN-based approaches use two shots.

SSD only takes one single shot to detect multiple objects. However, RPN-based approaches such

as R-CNN use two shots, one to create region proposals and other for detecting each proposal’s

object. Besides, since the previously used architectures are lightweight and dedicated for embed-

ded and mobile devices, it is to be expected that this architecture will perform better on small

objects. As expected, the results on table 6.3 show an improvement of 4%. Since this architecture

is computationally more complex and is not compatible with Edge TPU, implies a high inference

time. The average inference time per image result was 102.70 ms, which caps speed to 10 FPS,

making it impossible for real-time performance due to the non-use of Coral Edge TPU.

Figure 6.3: TP, TN, FP and FN representation for trunk segmentation.

Analysing the results in more detail, the presence of several pixels classified as False Positive

can be seen in Fig. 6.3. However, many of these pixels should be detected as True Positive. This

lack of matching is not only since trunk segmentation using bounding boxes is not much precise,

leading to possible flaws in the complete trunk segmentation. But also due to a possible lack of

trunk annotation for the ground truth. Thus, this proves that detections produce segmentations of

trunks with higher quality than the manual annotations and the previous results could be improved

if the ground truth annotations for trunk segmentation were improved too.



6.3 Semantic Segmentation 63

In short, a higher input size improves the performance of all models. Globally SSD MobileNet-

V1 is the detector that achieves the best performance for trunk segmentation. Although the infer-

ence time is superior, the high performance of Edge TPU provides real-time performance. Fur-

thermore, this approach similarly to section 6.1 can be used both on mapping and localisation

task. However, this solution gives more details about the trunk, such as the shape. In this way, this

approach gives a better input for SLAM algorithms in vineyards.

6.3 Semantic Segmentation

This approach was the last procedure of this dissertation and was made to verify the application

of VineSet in semantic segmentation in possible future work. Initially, we have to reduce the

train set to only two vineyards due to the images number limitation of Colab. So, to evaluate

semantic segmentation models on top of Colab GPU the performance of two models, i.e., FC-

DenseNet103 and DeepLabV3, are compared using an evaluation data composed by 300 images

with approximately 850 vine trunks. For this, metrics of section 6.2 are used to here. The inference

time is not evaluated since the application of the semantic segmentation models in an environment

and configuration that supports real-time was left for future work. Table 6.4 shows the JSI and

DSI for the two models. Fig. 6.4 shows an example of semantic segmentation result for FC-

DenseNet103.

Model Crop size
From scratch

138k
JSI(%) DSI(%)

FC-DenseNet103 480x480 25.66 40.84
DeepLabV3 480x480 16.67 28.57

Table 6.4: DICE similarity index (DSI)(%), Jaccard similarity index (JSI) (%) and average infer-
ence time per image (ms) using Colab GPU with from scratch training.

(a) (b)

Figure 6.4: Semantic segmentation results using FC-DenseNet103, where the white pixels are the
True Positives.



64 Results and Discussion

6.3.1 Discussion

Analysing table 6.4, DenseNet model shows better results than DeepLabV3. Also, table 6.4 show

lower results than the obtained in section 6.2 using object detection models to segment the trunks.

However, the results obtained here are not viable to make a comparison due to the limitations. One

of the main reasons was that many fewer images were used for training due to the limitation of

imagens in Colab. Another was because binary images resulting from the ground truth annotations

of object detection models for trunk segmentation were used as ground truth segmentation mask.

This ground truth masks need to be obtained with a pixel-wise image labelling tool, thus giving

greater precision in the segmentation annotation, which improves the results.

In conclusion, although it is not possible to make a viable comparison, this step has been taken

in order to open the door to future work using VineSet.

6.4 Assisted Labelling Procedure

(a) (b)

(c)

Figure 6.5: Automatic annotations result in different areas of agriculture such as (a) hazelnut
orchard, (b) other vineyard and (c) forest.

In order to evaluate the performance of our Assisted Labelling procedure, four different datasets

from distinct areas of agriculture are used to compare the automatic annotations and the time spent



6.4 Assisted Labelling Procedure 65

with and without our tool for each dataset. Table 6.5 shows the number of images, number of

trunks, automatic annotations, time spent with assisted labelling and without for each dataset.

Dataset Number
of images

Number
of trunks

Automatic
annotations (%)

Time with
assisted labelling (min)

Time without
assisted labelling (min)

VineSet 640 3648 89.04 33.71 304
Others vineyards 11 75 72.32 1.74 6.25
Ochards images 20 139 48.34 5.99 11.58
Forest images 264 1647 28.05 101.97 137.25

Table 6.5: Automatic annotation percentage and time of manually and assisted labelling with
different agriculture areas.

Fig. 6.5 shows the result of our Assisted Labelling providing automatic annotations in different

areas of agriculture such as others vineyards, orchards and forests.

6.4.1 Discussion

The results obtained in the table 6.5, regarding the creation of the assisted labelling procedure,

show that VineSet, together with trained models, help in the detection and automatic labelling of

trunks in vineyards. Also, this tool can be implemented in other Woody Crop areas of agriculture

such as almond, apple, hazelnut and pistachio orchards or forests. However, we noticed that it was

more efficient in the initial cultivation phase and also in trunks relatively similar to those of the

vineyards. We can also see from the table 6.5 that the time spent using our labelling assistance

tool is much less compared to manual labelling, reducing the time spent by approximately 72%

in other vineyards, 52% in different orchards and 26% in forest images. So, our tool, in addition

to creating automatic trunk labels without the user having to insert a model, can be used on any

device, just having access to the Internet.

In conclusion, this approach presents a solution to reduce the time spent on the creation or

improvement of a dataset not only in vineyards but also in other areas of agriculture. Thus, the

benefit of using this tool is that it reduces the percentage of annotations taken manually, aiming to

significantly reduce the time it takes to insert labels into relatively large datasets. It is worth noting

that this procedure is iterative, in the way that the user can improve DL-based object detection

models performance, by iteratively annotating objects that the model fails to recognize.



66 Results and Discussion



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation is intended to respond to the lack of works carried out in the state-of-the-art to de-

tect and segment the trunks in the vineyards using DL. For this, a low-power and high-performance

DL-based to detect and segment vine trunks, capable of executing real-time operations in agricul-

ture robotics were implemented. Moreover, this work aims to give a response to the five main

questions initially raised in the problem description.

Firstly, in this work, we present the first dataset of trunk vineyards with the respective anno-

tations accepted and published in the Robotic Operating System (ROS) Agriculture community

(http://wiki.ros.org/agriculture), called VineSet. One of the innovations of VineSet

is that it aims to provide a data benchmarking to create DL-based detection models according to re-

alistic characteristics of the agricultural environment in vineyards. Taking into account Question
1 of problem description, the creation of VineSet, with different data augmentation operations,

shows that is robust to different conditions of outdoor environments and is capable of generalising

to other agriculture areas. Besides, by analysing the validation loss during the training shows that

the models avoid the overfitting. So, this approach solves the problem of Question 1.

The selection of the models to be trained was made taking into account the compatibility and

size supported by the Edge TPU. So, all the models used together with Coral are lightweight and

quantized. Even so, the results show that reliable detectors were obtained, suitable for execution

on autonomous robotic platforms due to low energy consumption. Thus, this approach gives a

response to the Question 2.

Furthermore, in order to achieve real-time performance object detection, Coral Edge TPU

demonstrates not only that is low-cost hardware but also reduce the inference time significantly,

showing that is possible to achieve real-time vine trunk detection. Therefore, due to the high-

performance ML inferencing, Edge TPU proves that it is possible to combine real-time perfor-

mance object detection with a low power processor. Thereby, this work allows the integration of

edge-AI algorithms in SLAM, improving the input for the localisation and mapping of the robot,

67

http://wiki.ros.org/agriculture


68 Conclusion and Future Work

through natural markers in the vineyards. Besides this, this approach gives a response to the

Question 3.

In addition to this, we present an assisted labelling tool, that uses a model trained with VineSet,

to reduce the time spent with manual annotation. The combination of automatic labelling tool with

VineSet present good results in other environments such as orchards or forests. Thus, contributing

to higher speed and efficiency in the annotation and implementation of future datasets for detecting

trunks not only in the vineyards but also in the several areas of agriculture. This approach gives a

solution to the Question 4.

Among this, DL-based object detection models, together with VineSet, also presents good

results for the segmentation of trunks. The analyses of the results show that the detections pro-

duce segmentations of trunks with higher quality than the manual annotations and also shows that

achieves real-time vine trunk segmentation, giving a good response to the Question 5.

Finally, semantic segmentation models were briefly addressed with the primary objective of

verifying the use of VineSet for future work. During implementation, some limitations raised,

therefore rendering any conclusion or comparison from results of semantic segmentation models

non-viable. It is, however, safe to assume that the results show a possible path for future im-

provement. Besides, semantic segmentation can substitute DL-based object detection models for

pixel-based classification if a proper training set is provided. Thus, overcoming these limitations

would need to be performed on the training process to obtain a consistent result.

In conclusion, the main goals of this dissertation were achieved through the implementation

process and results by giving response to the essential questions proposed by the problem defini-

tion present on this work and contributing for the implementation of DL in agriculture.

7.2 Future Work

In this dissertation, we took the first step to open a door in the use of semantic segmentation.

The results show that semantic segmentation can substitute DL-based object detection models for

pixel-based classification if a proper training set is provided. However, due to several limitations in

training and since the VineSet annotations should be improved for use in semantic segmentation

models, the results obtained did not allow us to make viable conclusions. As future work the

main focus would be to improve ground truth annotations, i.e., ground truth segmentation masks,

using tools that allow pixel-wise labelling, thus giving a better input for the training of the various

semantic segmentation models. This task will improve robot mapping and location in several

vineyards.

Another future task would be to create an online platform that would allow users to use our

assisted labelling tool for trunk detection created in this work. At the same time, retain all the

images inserted and respective annotations to a database, in order to extend VineSet even further.



Appendix A

Attachments

A.1 Submitted Papers

The following paper was submitted during this dissertation and is still in reviewing process.

69



VineSet: A Deep Learning-Oriented Woody
Crops Trunk Image Collection and an Assisted

Labelling procedure

Nuno Namora Monteiro3, André Silva Aguiar1,2, Filipe Neves dos Santos2, and
Armando Jorge Sousa1,3

1 INESC TEC - Institute for Systems and Computer Engineering, Technology and
Science, Porto, Portugal,

{andre.s.aguiar, fbsantos}@inesctec.pt
2 UTAD - University of Trás-os-Montes e Alto Douro, Vila Real, Portugal,
3 FEUP - Faculty of Engineering of University of Porto, Porto, Portugal,

{up201607764, asousa}@fe.up.pt

Abstract. Agricultural robots need image processing algorithms, which
should be reliable under all weather conditions and be computationally
efficient. Developing a system with a real-time performance for low-power
processors is nowadays a research and development challenge because the
lack of real data sets annotated and expedite tools to support this work.
To support the deployment of deep-learning technology in agricultural
robots, this paper presents a public VineSet (trunks dataset), the first
public large collection of vine trunk images. The dataset was built from
scratch, having a total of 9481 real image frames and providing the vine
trunks annotations in each one of them. VineSet is composed of RGB
and thermal images of 5 different Douro vineyards, with 952 originally
collected by AgRob V16 robot, and others 8529 image frames resulting
from a vast number of augmentation operations. To check the validity
and usefulness of this VineSet dataset, in this paper is presented an
experimental baseline study, using state-of-the-art Deep Learning mod-
els together with Google Tensor Processing Unit. To complement this
dataset and simplify the task of this dataset augmentation by other
groups, in this paper we propose an assisted labelling procedure - by
using our trained models - to reduce the labelling time, in some cases
ten times faster per frame. This paper presents preliminary results to
support future research in this topic, for example with VineSet leads
possible to train (by transfer learning procedure) existing deep neural
networks with Average Precision (AP) higher than 80%. For example,
an AP of 84.16% was achieved for SSD MobileNet-V1. Also, the models
trained with VineSet present good results in other environments such as
orchards or forests. Our automatic labelling tool proves this, reducing
annotation time by more than 30% in various areas of agriculture and
more than 70% on vineyards.

Keywords: Deep Learning · Agriculture · Image Processing.



2 Nuno Namora Monteiro et al.

1 Introduction

In the past few years, robotics as evolved exponentially, introducing itself as a
significant tool in the execution of repetitive tasks. Robots appeared as a solution
to many problems, among which stand out: on the one hand, the possibility to
supplant the direct interaction of man in tasks where, in times, it was unreplace-
able, contributing in this way to a marked decrease in work-related accidents;
in other hand, robots gave way to the elimination of “dead times”, due to their
substantial autonomy and ability to act for several hours straight [1]. Therefore,
it can be said that, in addition to solving various problems, they ensure greater
efficiency and accuracy in the tasks they perform. Thus, robotics has a definite
impact on the development of autonomous, independent, robust and efficient
systems.

Since the productivity of agriculture, for most of history, is mainly the result
of human action, as it still is today, it is necessary to invest in new processes
that face this problem. In this sense, there has been an increase in the demand
for robotic solutions to monitor and supervise agricultural crops [2]. Thus, new
scientific fields arise, such as farming precision, also called digital agriculture,
which boosts productivity and minimise environmental impact. As a basis, Ma-
chine Learning (ML) a subset of Artificial Intelligence (AI), is a mechanism
that enables the machine to learn without being necessarily programmed, com-
bined with new technologies and high-performance computing, which opens new
horizons and makes work more efficient and effective [3]. Along with this, Deep
Learning (DL) is a part of ML methods, that provides varied applications from
natural language to image processing. DL architectures have been increasingly
used in several research areas, including agriculture [4].

One of the tremendous current challenges of robotics for agriculture is to
achieve image processing algorithms that are robust to all-weather illuminations
conditions and at the same time, efficient and effective to be implemented in au-
tonomous robots of small dimension and with limited energy capacity. Further-
more, several limitations may arise, such as the characteristic vineyard terrain
irregularities or overfitting in the training of neural networks that may affect
the performance. In parallel with this, the evolution of DL models became more
and more complex, demanding an increasing computational complexity. Thus,
not all processors can handle efficiently such models, and so, the combination of
real-time performance with low power processing becomes demanding.

In this work, aiming to overcome the several limitations previous described
and due to the non-existence of vine trunk datasets, we present a new public
large collection of annotated vine trunks images called VineSet - collected using
AgRob V16 robot [5,6] and fully described in section 3.

To simplify the process of dataset augmentation and reduce the labelling
time, in section 4 is presented an assisted labelling procedure, build from the
trained models.

In short, this work contributes to the development and improvement of cur-
rent solutions in agriculture, since vision-based detectors provide complementary
and richer information to reach a trustworthy natural feature detector [7]. For



Title Suppressed Due to Excessive Length 3

example, will enable the integration of edge-AI in SLAM algorithms, like VineS-
LAM [5], which will serve for the localisation and mapping of the robot, through
natural markers in the vineyards.

2 Related work

DL applications have been increasingly implemented in several areas of agricul-
ture. However, because robotic platforms are typically electric and powered by
low batteries, there may be some limitations due to the demand for hardware us-
ing the DL. In order to optimize and get the best performance, it is convenient to
have as many information about the surrounding environment as possible. The
most popular areas where DL is applied are for example plant disease detection
[10,12,13], plant recognition [14], fruit counting [15,16], weed detection [17] and
crop yield estimation [11]. From these, different DL architectures are choosen
such as Convolutional Neural Network (CNN) [12,13,14,15][17], Faster R-CNN
[10,11][16] and Single Shot Multibox Detector (SSD) [10,11]. Along with this,
some of them used DL models like VGG, MobileNets, Darknet (YOLO), others
created their own model. From this works, we can observe that most created
their own dataset, others use dataset that are available to the public. Moreover,
data augmentation is a usual practice among the majority to increase the dataset
and enhance the results of the neural network. However, in most cases they have
restrictions imposed by the complexity of DL model, being mostly used GPUs
which impose large power requirements [18].

In order to provide better knowledge about complexity and efficiency of dif-
ferents DL models, Bianco et al. [9] provided study over 40 different DL model
for image recognition elements such as computational cost and accuracy on two
distinct hardware platforms, NVIDIA Jetson TX1 and NVIDIA Titan X. This
work shows that the recognition accuracy does not increase as the number of
operations increases and not whole the DL models use their parameters with
the same level of efficiency. We can also observe how efficiently each model uses
its parameter and can notice that the models that use their parameters most
efficiently are the SqueezeNets, ShuffleNet and the MobileNets. Besides that,
they conclude that the model reaching the highest accuracy is the NASNet-A-
Large, presenting, however, the highest computational complexity. Between all
the models that have the lowest level of model complexity, SE-ResNeXt-50, has
the highest accuracy and low level of model complexity.

Several tools for manual annotation in images are made available to the pub-
lic, however, not all of these tools make automatic labels since they do not use
AI. In [21], manual annotation software for image, audio and video is provided,
running in a web browser and does not require installation or configuration. How-
ever, it does not allow the user to use a pre-trained model. On the other hand,
tools such as DeepLabel (https://github.com/jveitchmichaelis/deeplabel)
and Label Studio (https://github.com/heartexlabs/label-studio) allow us
to label from a pre-trained model automatically, however, if the user has no
model, the annotation is done manually.



4 Nuno Namora Monteiro et al.

This work aims to fill a gap of the state-of-the-art, proposing the first public
vine trunk image collection, named VineSet. Besides being a vast image collec-
tion, VineSet is also diverse, providing images and annotations from five different
Douro vineyards, including RGB and thermal formats. This paper also presents
an assisted labelling procedure to reduce the time spent on traditional labelling
methods. To overcome one of the main obstacles of combining real-time per-
formance with a low power processor, the TensorFlow framework is combined
with the most recent TPU of Google, the Coral Edge TPU. This device provides
high-performance DL inference with low-power costs. Furthermore, we provide
an evaluation of the performance of different DL models on the detection of
trunks in vineyards using the VineSet.

3 VineSet

The detection of trunks in vineyards using Deep Learning algorithms is an
area yet to be explored. VineSet, an open-source dataset, was published in the
Robotic Operating System (ROS) Agriculture community (http://wiki.ros.
org/agriculture). This dataset was created using Agrob V16 (Fig. 1), a robotic
platform for research and development of robotics technologies for Douro vine-
yards, that captured images containing vine trunks in different contexts and in
different formats.

Fig. 1: AgRob V16 robotic platform.

In the creation of VineSet, several steps were outlined, due to the non-
existence of public datasets related to the detection of trunks in the vineyards.
The first step went through by collecting images of 5 different vineyards, and



Title Suppressed Due to Excessive Length 5

then annotations were made in all images and, finally, data augmentation was
addressed to increase the dataset size.

3.1 Data collection

The VineSet, contains images with several Douro Vineyards. The data gather-
ing was done under different stages of crop process and different times of the
day, thus changing the lighting conditions. One of the most exclusive charac-
teristics of VineSet is the fact that it contains thermal images, which are not
included in many other datasets. This was possible since our robotic platform
is equipped with both an RGB and a thermal camera, which allows collecting
a larger sample, thus increasing, even more, the diversity of images. The ad-
vantage of using thermal images is the fact that they reduce the variability of
images under different lighting conditions, thus allowing the detection of trunks
to be more accurate.

During the data collection procedure, Agrob V16 collected several video
streams in each vineyard. Since the training input is a set of images, 952 samples
were extracted from them.

(a) (b) (c)

(d) (e)

Fig. 2: Set of different vineyards used in the VineSet data collection.

3.2 Data annotation

From the data collection, trunks were manually annotated for all images, using
the PASCAL VOC format, each of which represented a bounding box associated
with the respective class. All of these annotations are included in VineSet. In



6 Nuno Namora Monteiro et al.

some cases, the vegetation in the vineyards causes obstructions in the identi-
fication of the trunks. Therefore, trunks that are not clear to distinguish with
the surrounding environment were not included in this annotation process. This
process aims to label the class and location coordinates of each of the bounding
boxes that contain the region of interest that in this case are the trunks. In this
way, we are able to have a ground-truth that allows us to evaluate the prediction
results during the various tests.

3.3 Data augmentation

Even though DL outperforms most traditional machine learning methods in
terms of precision and real-time application [4], one of the biggest challenges is
to overcome overfitting. This is one of the frequent problems in ML that consists
of modelling the data too well, learning only the expected output for each input
instead of learning the general distribution of the input data. In addition to this,
we have conditions such as variation of sunlight illumination during the day or
the terrain of outdoor environments that may affect performance. In this way,
to avoid overfitting and generalise the network, data augmentation is a usual
method to enhance the variability of data for training by enlarging the dataset
using label-preserving transformations.

(a) Translation (b) Multiply (c) Hue and Saturation

(d) Horizontal Flip (e) Rotation -15 degrees (f) Rotation 15 degrees

Fig. 3: Set of several augmentation operations used to expand VineSet.

In order to increase the diversity of the VineSet, the collected images were
pre-processed with typical augmentation techniques used in the computer vi-
sion, such as horizontal flipping, image re-scaling, rotation, translation, multi-



Title Suppressed Due to Excessive Length 7

ply, Gaussian noise, hue and saturation. Some of the augmentation operations
performed are shown in Fig. 3.

4 Deep Learning-based Assisted Labelling

Training a DL model involves several steps, one of the most important of which
is data annotation. Generally, this step is a long process, and the time spent
depends on several factors, such as the total number of images that the dataset
has, the number of classes and the ease of manually identifying the bounding
box corresponding to each class. Thus, this paper proposes to create an assisted
labelling procedure that uses AI to help the annotation process in the detection
of trunks in the vineyards. The layout of the created application is represented
in Fig. 4.

Fig. 4: Assisted labelling interface.

In this way, a python notebook is made available in the CRIIS repository
(https://gitlab.inesctec.pt/agrob/agrob_vineset), which is open to the
general community. The procedure of this new solution consists of using an on-
line platform, Google Colaboratory (https://colab.research.google.com),
so that the user can save the resources of his machine. This tool provides a DL
model trained for detecting vine trunks, but also capable of detecting trunks in
other contexts such as orchards or forests. So, an essential factor for automating



8 Nuno Namora Monteiro et al.

this process is the use of the DL model. Taking into account the results obtained
on section 5.1, the SSD MobileNet-V1 trained with VineSet was the model cho-
sen for the detection of trunks in the images introduced in this tool. The assisted
labelling procedure uses this model to pre-process the user dataset, automati-
cally annotating the detected trunks, saving the annotations in the Pascal VOC
format. The user can then load the automatic annotations and complete them
manually. One of the benefits of using this tool is that it reduces the percentage
of annotations taken manually, aiming to significantly reduce the time it takes to
insert labels into relatively large datasets. It is worth noting that this procedure
is iterative, in the way that the user can improve DL-based object detection
models performance, by iteratively annotating objects that the model fails to
recognize.

5 Results

To compare the performance of state-of-the-art DL models on VineSet dataset,
it is necessary to have an evaluation method in order to draw conclusions. In
this paper, the performance of our system is evaluated using the average pre-
cision (AP) based on intersection-over-union (IoU) introduced in the PASCAL
VOC Challenge [19]. Thus, the concept of IoU is fundamental in the use of
these metrics, that can be expressed as the overlap ratio between the ground-
truth bounding box (Bgt) and the predicted bounding box (Bp) result of neural
network as follows:

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(1)

As in the Pascal VOC Challenge, the AP is a set of eleven equally spaced
recall levels [0, 0.1, ..., 1], and the mAP is the AP computed over all classes, in
this case, the trunk class.

AP =
1

11

∑

r∈[0,0.1,...,1]
pinterp(r) (2)

pinterp(r) = max
r̃,̃r≥r

p(r̃) (3)

Another metric used was the F1-Score, which aims to measure the harmonic
mean between precision and recall.

F1 = 2× precsion× recall

precision + recall
(4)

In the other hand, to evaluate the performance of our assisted labelling proce-
dure, a series of experiments were conducted with some different dataset size
of different agriculture areas that contains unseen data, in order to verify the
efficiency and compare the time spent between the assisted labelling and manual
labelling.



Title Suppressed Due to Excessive Length 9

5.1 VineSet experimental deployment

To verify the performance of different models with VineSet, our dataset, has been
divided into 90% training set and 10% testing set. Also, experiments were carried
out training the models from scratch (random weight initialization) and using
transfer learning (initialized with pre-trained weights) to analyze which of these
would reach a faster satisfactory result. The detection models were trained on an
online platform, Colab, with an NVIDIA Tesla P100-PCIE. Taking into account
memory and time constraints, hyperparameters have been adjusted. Thus, the
batch size was set to 18, and the number of training steps was 50,000. To verify
the performance of models trained from scratch, the number of training steps
were increased to 100,000. Parameters such as momentum, learning rate and
others, have not been changed, being the same as the original model.

Fig. 5: Detection results using SSD MobileNet-V1

Then, we compared the estimated results with the ground-truth using an
IoU threshold set to 0.5. For this, metrics like AP and F1-Scores are used. Also,
the speed of the dataset in the detection performance was explored, and one of
the objectives of the creation of VineSet is to achieve an autonomous robotic
platform that is robust, efficient, and that has real-time performance. Thus, the
indicator chosen to evaluate the performance of the speed of each DL model was
the inference time. In order to improve the real-time performance, the Coral Edge
TPU was used. Compatibility and capacity of the Google accelerator were taking
into account while choosing the models. The detection performance evaluation
are shown in Table 1. Figure 5 shows three examples of the detections.



10 Nuno Namora Monteiro et al.

Model α Resolution Inference time (ms)

Fine-tuning From scratch

50k 50k 100k

AP(%) F1 AP(%) F1 AP(%) F1

SSD MobileNet-V1 1 300 x 300 4.55 84.16 0.841 68.44 0.685 85.93 0.834

SSD MobileNet-V2 1 300 x 300 5.04 83.01 0.808 60.44 0.639 83.70 0.812

SSD Inception-V2 1 300 x 300 23.82 75.78 0.848 58.05 0.658 76.77 0.849

Table 1: AP (%), F1 Scores and average inference time per image (ms) using
Coral Edge TPU, with fine-tuning and from scratch training.

5.2 Assisted labelling procedure

To assess the performance of our assisted labelling procedure tests were carried
out in which several factors were analyzed in comparison with manual annota-
tion. In order to draw conclusions, the average time to manually label a trunk
was measured over several experiments, resulting in 5 seconds per trunk. Thus,
once this value is established, it will be essential to calculate the total time spent
on several images. The time spent on assisted annotation was calculated from
the percentage of annotations made automatically and the percentage of anno-
tations made manually. In this way, the total time spent by the tool is calculated
through the time spent by the automatic annotation plus the offset created by
the missing annotations.

Dataset
Number
of images

Number
of trunks

Automatic
annotations (%)

Time with
assisted labelling (min)

Time without
assisted labelling (min)

VineSet 640 3648 89.04 33.71 304
Others vineyards 11 75 72.32 1.74 6.25
Ochards images 20 139 48.34 5.99 11.58
Forest images 264 1647 28.05 101.97 137.25

Table 2: Automatic annotation percentage and time of manually and assisted
labelling with different agriculture areas.

In order to assess the scope of our tool, which was trained using VineSet, it
was implemented in other areas of agriculture in addition to the vineyards. For
this, we organize a range of images from different orchards and forests, where
we evaluate the performance of our assisted labelling compared to the manual
one. The results obtained in table 2 and figures show that our tool together with
VineSet is able to cover some other areas of agriculture. Figure 6 shows two
examples of automatic labelling.



Title Suppressed Due to Excessive Length 11

(a) Hazelnut Orchard (b) Other Vineyard

Fig. 6: Automatic annotations in different areas of agriculture

5.3 Discussion

The results of VineSet deployment allowed us to make conclusions about the
different models trained with our dataset. The comparison on Table 1 for training
with fine-tuning shows that the SSD MobileNet-V1 model obtained the best
AP result of 84.16%. Although the SSD MobileNet-V2 has a slightly lower AP
result than the SSD MobileNet-V1, they are very similar, which was expected,
since they have a very similar architecture. Also, they obtained the best time
of inference, which is due to the fact that Mobilenet uses depthwise separable
convolution, while Inception uses standard convolution. This results in fewer
parameters on MobileNet compared to Inception V2. However, sometimes this
results in a slight decrease in performance as well, which in this case was not
verified. F1 scores show us that the best result is obtained by SSD Inception-
V2. This is due to the fact that it has higher precision and a slightly lower
recall compared to other models. Considering that this work uses lightweight
models oriented to embedded devices, the AP results revealed to be entirely
satisfactory on the object detection procedure. In this way, were obtained reliable
detectors, suitable for execution on autonomous robotic platforms due to low
energy consumption. Regarding training from scratch, the number of steps had
to be doubled to achieve similar or better results than fine-tuning. With only
50,000 steps, the performance obtained is significantly lower, as shown in Table
1. This leads to the conclusion that, when training from scratch, the model needs
to learn low and high-level semantics, so more iterations are needed to converge
correctly. Thus, more effort is required in order to achieve satisfactory results
[20].

The results obtained in the table 2, regarding the creation of the assisted
labelling procedure, show that VineSet, together with trained models, help in
the detection and automatic labelling of trunks in vineyards. Also, this tool
can be implemented in other Woody Crop areas of agriculture such as almond,
apple, hazelnut and pistachio orchards or forests. However, we noticed that it
was more efficient in the initial cultivation phase and also in trunks relatively



12 Nuno Namora Monteiro et al.

similar to those of the vineyards. We can also see from the Table 2 that the
time spent using our labelling assistance tool is much less compared to manual
labelling, reducing the time spent by approximately 72% in other vineyards, 52%
in different orchards and 26% in forest images. Compared to all other state-of-
the-art tools, ours, in addition to creating automatic trunk labels without the
user having to insert a model, can be used on any device, just having access to
the Internet.

6 Conclusion

In this work, we present the first dataset of trunk vineyards with the respective
annotations available to the scientific community, called VineSet. One of the
innovations of VineSet is that it aims at providing the data benchmark to con-
structing Deep Learning-based detection models according to realistic character-
istics of the agricultural environment in vineyards. To verify the performance of
different models with VineSet, the Coral Edge TPU was used, which in addition
to being low-cost hardware proved to reduce the inference time significantly. We
concluded that our dataset leads low-cost models to achieve high-performance
results. In addition to this, we present an assisted labelling tool, that uses a
model trained with VineSet, to reduce the time spent with manual annotation.
The combination of automatic labelling tool with VineSet present good results
in other environments such as orchards or forests. Thus, contributing to higher
speed and efficiency in the annotation and implementation of future datasets
for detecting trunks not only in the vineyards but also in the several areas of
agriculture.

For future work, we aim to expand further VineSet, including segmentation
of trunks to improve the robot’s performance and location in several vineyards.
Also, we plan to retain the images inserted in the automatic annotation platform
in a database for later insertion into VineSet.

References

1. Lyons, Siobhan. Death and the Machine, Intersections of Mortality and Robotics.
Palgrave Pivot, 2018. doi:https://doi.org/10.1007/978-981-13-0335-7 .

2. Duckett, Tom and Pearson, Simon and Blackmore, Simon and Grieve, Bruce. (2018).
Agricultural Robotics: The Future of Robotic Agriculture.

3. Royal Society. Machine learning : the power and promise of computers that learn
by example, volume 66. 2017.

4. Santos, Lúıs and Neves Dos Santos, Filipe and Moura Oliveira, Paulo and Shinde,
Pranjali. (2020). Deep Learning Applications in Agriculture: A Short Review.

5. Neves, Filipe and Neves Dos Santos, Filipe and Sobreira, Heber and Campos,
Daniel and Morais, R. and Moreira, A. and Contente, Olga. (2015). Towards a
Reliable Monitoring Robot for Mountain Vineyards. Proceedings - 2015 IEEE In-
ternational Conference on Autonomous Robot Systems and Competitions, ICARSC
2015. 10.1109/ICARSC.2015.21.



Title Suppressed Due to Excessive Length 13

6. Santos, L., Santos, F., Mendes, J., Costa, P., Lima, J., Reis, R., Shinde, P. (2020).
Path Planning Aware of Robot’s Center of Mass for Steep Slope Vineyards. Robot-
ica, 38(4), 684-698. doi:10.1017/S0263574719000961

7. J. Mendes, F. N. d. Santos, N. Ferraz, P. Couto and R. Morais, ”Vine Trunk De-
tector for a Reliable Robot Localization System,” 2016 International Conference on
Autonomous Robot Systems and Competitions (ICARSC), Braganca, 2016, pp. 1-6.

8. Canziani, Alfredo and Paszke, Adam and Culurciello, Eugenio. (2016). An Analysis
of Deep Neural Network Models for Practical Applications.

9. Bianco, Simone and Cadène, Rémi and Celona, Luigi and Napoletano, Paolo. (2018).
Benchmark Analysis of Representative Deep Neural Network Architectures. IEEE
Access. 6. 64270-64277. 10.1109/ACCESS.2018.2877890.

10. Fuentes, Alvaro and Yoon, Sook and Kim, Sang and Park, Dong. (2017). A Ro-
bust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests
Recognition. Sensors. 17. 2022. 10.3390/s17092022.

11. Heinrich, Kai and Roth, Andreas and Breithaupt, Lukas and Möller, Björn and
Maresch, Johannes. (2019). Yield Prognosis for the Agrarian Management of Vine-
yards using Deep Learning for Object Counting.

12. Rançon, Florian and Bombrun, Lionel and Keresztes, Barna and Germain, Chris-
tian. (2018). Comparison of SIFT Encoded and Deep Learning Features for the
Classification and Detection of Esca Disease in Bordeaux Vineyards. Remote Sens-
ing. 11. 1. 10.3390/rs11010001.

13. Mohanty, Sharada and Hughes, David and Salathe, Marcel. (2016). Using Deep
Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science. 7.
10.3389/fpls.2016.01419.

14. H. Yalcin and S. Razavi, ”Plant classification using convolutional neural net-
works,” 2016 Fifth International Conference on Agro-Geoinformatics (Agro-
Geoinformatics), Tianjin, 2016, pp. 1-5.

15. Koirala, Anand and Walsh, Kerry and Wang, Zhenglin and McCarthy, C.. (2019).
Deep learning for real-time fruit detection and orchard fruit load estimation: bench-
marking of ‘MangoYOLO’. Precision Agriculture. 10.1007/s11119-019-09642-0.

16. S. Bargoti and J. Underwood, ”Deep fruit detection in orchards,” 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA), Singapore, 2017, pp.
3626-3633.

17. Ferreira, Alessandro and Freitas, Daniel and Silva, Gercina and Pistori, Hemerson
and Folhes, Marcelo. (2017). Weed detection in soybean crops using ConvNets. Com-
puters and Electronics in Agriculture. 143. 314-324. 10.1016/j.compag.2017.10.027.

18. C. Lammie, A. Olsen, T. Carrick and M. Rahimi Azghadi, ”Low-Power and High-
Speed Deep FPGA Inference Engines for Weed Classification at the Edge,” in IEEE
Access, vol. 7, pp. 51171-51184, 2019.

19. Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J. and
Zisserman, A. International Journal of Computer Vision, 111(1), 98-136, 2015

20. Kaiming He, Ross Girshick, Piotr Dollar; The IEEE International Conference on
Computer Vision (ICCV), 2019, pp. 4918-4927

21. Abhishek Dutta and Andrew Zisserman. 2019. The VIA Annotation Software for
Images, Audio and Video. In Proceedings of the 27th ACM International Conference
on Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3343031.3350535



References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[2] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010. doi:10.1109/TKDE.
2009.191.

[3] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-
level image representations using convolutional neural networks. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 1717–
1724, 2014. doi:10.1109/CVPR.2014.222.

[4] Konstantinos G. Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pearson, and Dionysis
Bochtis. Machine learning in agriculture: A review. Sensors (Switzerland), 18(8):1–29,
2018. doi:10.3390/s18082674.

[5] Rodrigo M.S. De Oliveira, Ramon C.F. Araújo, Fabrício J.B. Barros, Adriano Paranhos Se-
gundo, Ronaldo F. Zampolo, Wellington Fonseca, Victor Dmitriev, and Fernando S. Brasil.
A system based on artificial neural networks for automatic classification of hydro-generator
stator windings partial discharges. Journal of Microwaves, Optoelectronics and Electromag-
netic Applications, 16(3):628–645, 2017. doi:10.1590/2179-10742017v16i3854.

[6] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in con-
text. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5):740–755, 2014.
arXiv:1405.0312, doi:10.1007/978-3-319-10602-1_48.

[7] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S. Lew. Deep
learning for visual understanding: A review. Neurocomputing, 187:27–48, 2016. doi:
10.1016/j.neucom.2015.09.116.

[8] D. Gupta. (2019). A Beginner’s guide to Deep Learning based Seman-
tic Segmentation using Keras. Accessed: May 30, 2020. [Online]. Avail-
able: https://divamgupta.com/image-segmentation/2019/06/06/
deep-learning-semantic-segmentation-keras.html.

[9] Zhong Qiu Zhao, Peng Zheng, Shou Tao Xu, and Xindong Wu. Object Detection with
Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Sys-
tems, 30(11):3212–3232, 2019. arXiv:1807.05511, doi:10.1109/TNNLS.2018.
2876865.

83

http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/CVPR.2014.222
http://dx.doi.org/10.3390/s18082674
http://dx.doi.org/10.1590/2179-10742017v16i3854
http://arxiv.org/abs/1405.0312
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1016/j.neucom.2015.09.116
http://dx.doi.org/10.1016/j.neucom.2015.09.116
https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html
https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html
http://arxiv.org/abs/1807.05511
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.1109/TNNLS.2018.2876865


84 REFERENCES

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 580–587, 2014.
arXiv:1311.2524, doi:10.1109/CVPR.2014.81.

[11] Ross Girshick. Fast R-CNN. Proceedings of the IEEE International Conference on Com-
puter Vision, 2015 Inter:1440–1448, 2015. arXiv:1504.08083, doi:10.1109/ICCV.
2015.169.

[12] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 2016-Decem:779–788, 2016. doi:
10.1109/CVPR.2016.91.

[13] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng Yang
Fu, and Alexander C. Berg. SSD: Single shot multibox detector. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 9905 LNCS:21–37, 2016. arXiv:1512.02325, doi:
10.1007/978-3-319-46448-0_2.

[14] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. Benchmark analysis
of representative deep neural network architectures. IEEE Access, 6:64270–64277, 2018.
arXiv:1810.00736, doi:10.1109/ACCESS.2018.2877890.

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. 2017. URL: http://arxiv.org/abs/1704.
04861, arXiv:1704.04861.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the Inception Architecture for Computer Vision. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2016-Decem:2818–2826,
2016. arXiv:1512.00567, doi:10.1109/CVPR.2016.308.

[17] Google. (2019). Tensorflow Models on the Edge TPU. Accessed: May 10, 2020. [Online].
Available: https://coral.ai/docs/edgetpu/models-intro/.

[18] Siobhan Lyons. Death and the Machine, Intersections of Mortality and Robotics. Palgrave
Pivot, 2018. doi:https://doi.org/10.1007/978-981-13-0335-7.

[19] Tom Duckett, Simon Pearson, Simon Blackmore, Bruce Grieve, Wen-Hua Chen, Grzegorz
Cielniak, Jason Cleaversmith, Jian Dai, Steve Davis, Charles Fox, Pål From, Ioannis Georgi-
las, Richie Gill, Iain Gould, Marc Hanheide, Alan Hunter, Fumiya Iida, Lyudmila Mihaly-
ova, Samia Nefti-Meziani, Gerhard Neumann, Paolo Paoletti, Tony Pridmore, Dave Ross,
Melvyn Smith, Martin Stoelen, Mark Swainson, Sam Wane, Peter Wilson, Isobel Wright,
and Guang-Zhong Yang. Agricultural Robotics: The Future of Robotic Agriculture. 2018.
URL: http://arxiv.org/abs/1806.06762, arXiv:1806.06762.

[20] Royal Society. Machine learning : the power and promise of computers that learn by
example, volume 66. 2017. URL: https://royalsociety.org/~/media/policy/
projects/machine-learning/publications/machine-learning-report.
pdf.

http://arxiv.org/abs/1311.2524
http://dx.doi.org/10.1109/CVPR.2014.81
http://arxiv.org/abs/1504.08083
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://arxiv.org/abs/1512.02325
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1810.00736
http://dx.doi.org/10.1109/ACCESS.2018.2877890
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1512.00567
http://dx.doi.org/10.1109/CVPR.2016.308
https://coral.ai/docs/edgetpu/models-intro/
http://dx.doi.org/https://doi.org/10.1007/978-981-13-0335-7
http://arxiv.org/abs/1806.06762
http://arxiv.org/abs/1806.06762
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf


REFERENCES 85

[21] Filipe Neves dos Santos, Heber Sobreira, Daniel Campos, Raul Morais, António Paulo Mor-
eira, and Olga Contente. Towards a Reliable Robot for Steep Slope Vineyards Monitor-
ing. Journal of Intelligent and Robotic Systems: Theory and Applications, 83(3-4):429–444,
2016. doi:10.1007/s10846-016-0340-5.

[22] Luís Santos, Filipe Santos, Jorge Mendes, Pedro Costa, José Lima, Ricardo Reis, and Pran-
jali Shinde. Path Planning Aware of Robot’s Center of Mass for Steep Slope Vineyards.
Robotica, 2019. doi:10.1017/S0263574719000961.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision, 115(3):211–252, 2015. URL: http://dx.doi.org/10.1007/
s11263-015-0816-y, arXiv:1409.0575, doi:10.1007/s11263-015-0816-y.

[24] Mark Everingham, Luc Van Gool, Christopher K.I. Williams, John Winn, and Andrew Zis-
serman. The pascal visual object classes (VOC) challenge. International Journal of Com-
puter Vision, 88(2):303–338, 2010. doi:10.1007/s11263-009-0275-4.

[25] Andreas Kamilaris and Francesc X. Prenafeta-Boldú. Deep learning in agriculture: A survey.
Computers and Electronics in Agriculture, 147(February):70–90, 2018. doi:10.1016/j.
compag.2018.02.016.

[26] Sergio Lima Netto Rafael Padilla and Eduardo A. B. da Silva. Survey on performance metrics
for object-detection algorithms. 2020.

[27] Yutaka Sasaki. The truth of the F-measure. Teach Tutor mater, pages 1–5, 2007. URL:
http://www.cs.odu.edu/{~}mukka/cs795sum09dm/Lecturenotes/Day3/
F-measure-YS-26Oct07.pdf.

[28] A. Koirala, K. B. Walsh, Z. Wang, and C. McCarthy. Deep learning for real-time
fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO’.
Precision Agriculture, 20(6):1107–1135, 2019. URL: https://doi.org/10.1007/
s11119-019-09642-0, doi:10.1007/s11119-019-09642-0.

[29] Aaron Carass, Snehashis Roy, Adrian Gherman, Jacob C. Reinhold, Andrew Jesson, Tal Ar-
bel, Oskar Maier, Heinz Handels, Mohsen Ghafoorian, Bram Platel, Ariel Birenbaum, Hayit
Greenspan, Dzung L. Pham, Ciprian M. Crainiceanu, Peter A. Calabresi, Jerry L. Prince,
William R.Gray Roncal, Russell T. Shinohara, and Ipek Oguz. Evaluating White Matter Le-
sion Segmentations with Refined Sørensen-Dice Analysis. Scientific Reports, 10(1):1–19,
2020. doi:10.1038/s41598-020-64803-w.

[30] Syed Furqan Qadri, Danni Ai, Guoyu Hu, Mubashir Ahmad, Yong Huang, Yongtian Wang,
and Jian Yang. Automatic deep feature learning via patch-based deep belief network for
vertebrae segmentation in CT Images. Applied Sciences (Switzerland), 9(1), 2018. doi:
10.3390/app9010069.

[31] Achim Walter, Robert Finger, Robert Huber, and Nina Buchmann. Smart farming is
key to developing sustainable agriculture. Proceedings of the National Academy of Sci-
ences of the United States of America, 114(24):6148–6150, 2017. doi:10.1073/pnas.
1707462114.

http://dx.doi.org/10.1007/s10846-016-0340-5
http://dx.doi.org/10.1017/S0263574719000961
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.0575
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://www.cs.odu.edu/{~}mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf
http://www.cs.odu.edu/{~}mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf
https://doi.org/10.1007/s11119-019-09642-0
https://doi.org/10.1007/s11119-019-09642-0
http://dx.doi.org/10.1007/s11119-019-09642-0
http://dx.doi.org/10.1038/s41598-020-64803-w
http://dx.doi.org/10.3390/app9010069
http://dx.doi.org/10.3390/app9010069
http://dx.doi.org/10.1073/pnas.1707462114
http://dx.doi.org/10.1073/pnas.1707462114


86 REFERENCES

[32] Luís Santos, Filipe Neves dos Santos, Paulo Moura Oliveira, and Pranjali Shinde. Deep
Learning Applications in Agriculture: A Short Review. Advances in Intelligent Systems and
Computing, 1092 AISC(January):C1, 2020. doi:10.1007/978-3-030-35990-4.

[33] A. Kamilaris and F. X. Prenafeta-Boldú. A review of the use of convolutional neural networks
in agriculture. Journal of Agricultural Science, 156(3):312–322, 2018. doi:10.1017/
S0021859618000436.

[34] Michael A. Nielson. Neural Networks and Deep Learning. Determination Press, 2015. URL:
http://neuralnetworksanddeeplearning.com/.

[35] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Simultaneous de-
tection and segmentation. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8695 LNCS(PART
7):297–312, 2014. arXiv:1407.1808, doi:10.1007/978-3-319-10584-0_20.

[36] G. Geetharamani and J. Arun Pandian. Identification of plant leaf diseases using a nine-
layer deep convolutional neural network. Computers and Electrical Engineering, 78:536,
2019. URL: https://doi.org/10.1016/j.compeleceng.2019.08.010, doi:
10.1016/j.compeleceng.2019.08.010.

[37] Alex Krizhevsky, Ilya Sutskever, and Geo Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. Handbook of Approximation Algorithms and Metaheuristics,
pages 1–1432, 2007. doi:10.1201/9781420010749.

[38] J. R.R. Uijlings, K. E.A. Van De Sande, T. Gevers, and A. W.M. Smeulders. Selective search
for object recognition. International Journal of Computer Vision, 104(2):154–171, 2013.
doi:10.1007/s11263-013-0620-5.

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6):1137–1149, 2017. arXiv:1506.01497, doi:
10.1109/TPAMI.2016.2577031.

[40] Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng, and Rong Qu.
A survey of deep learning-based object detection. IEEE Access, 7:128837–128868, 2019.
doi:10.1109/ACCESS.2019.2939201.

[41] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. Proceedings -
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-
Janua:6517–6525, 2017. arXiv:1612.08242, doi:10.1109/CVPR.2017.690.

[42] Joseph Redmon and Ali Farhadi. YOLO v.3. Tech report, pages 1–6, 2018. URL: https:
//pjreddie.com/media/files/papers/YOLOv3.pdf.

[43] Christian Szegedy, Scott Reed, Dumitru Erhan, Dragomir Anguelov, and Sergey Ioffe. Scal-
able, High-Quality Object Detection. 2014. URL: http://arxiv.org/abs/1412.
1441, arXiv:1412.1441.

[44] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg. DSSD
: Deconvolutional Single Shot Detector. 2017. URL: http://arxiv.org/abs/1701.
06659, arXiv:1701.06659.

http://dx.doi.org/10.1007/978-3-030-35990-4
http://dx.doi.org/10.1017/S0021859618000436
http://dx.doi.org/10.1017/S0021859618000436
http://neuralnetworksanddeeplearning.com/
http://arxiv.org/abs/1407.1808
http://dx.doi.org/10.1007/978-3-319-10584-0_20
https://doi.org/10.1016/j.compeleceng.2019.08.010
http://dx.doi.org/10.1016/j.compeleceng.2019.08.010
http://dx.doi.org/10.1016/j.compeleceng.2019.08.010
http://dx.doi.org/10.1201/9781420010749
http://dx.doi.org/10.1007/s11263-013-0620-5
http://arxiv.org/abs/1506.01497
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://arxiv.org/abs/1612.08242
http://dx.doi.org/10.1109/CVPR.2017.690
https://pjreddie.com/media/files/papers/YOLOv3.pdf
https://pjreddie.com/media/files/papers/YOLOv3.pdf
http://arxiv.org/abs/1412.1441
http://arxiv.org/abs/1412.1441
http://arxiv.org/abs/1412.1441
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659


REFERENCES 87

[45] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of Deep Neural
Network Models for Practical Applications. pages 1–7, 2016. URL: http://arxiv.
org/abs/1605.07678, arXiv:1605.07678.

[46] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning Transferable
Architectures for Scalable Image Recognition. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 8697–8710, 2018. arXiv:
1707.07012, doi:10.1109/CVPR.2018.00907.

[47] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation Networks. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 7132–
7141, 2018. arXiv:1709.01507, doi:10.1109/CVPR.2018.00745.

[48] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<0.5MB model size. pages 1–13, 2016. URL: http://arxiv.org/abs/1602.07360,
arXiv:1602.07360.

[49] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An Extremely Effi-
cient Convolutional Neural Network for Mobile Devices. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 6848–6856, 2018.
arXiv:1707.01083, doi:10.1109/CVPR.2018.00716.

[50] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking TPU, GPU, and CPU
Platforms for Deep Learning. 2019. URL: http://arxiv.org/abs/1907.10701,
arXiv:1907.10701.

[51] Suchet Bargoti and James Underwood. Deep fruit detection in orchards. Proceedings - IEEE
International Conference on Robotics and Automation, pages 3626–3633, 2017. arXiv:
1610.03677, doi:10.1109/ICRA.2017.7989417.

[52] Maryam Rahnemoonfar and Clay Sheppard. Deep count: Fruit counting based on deep
simulated learning. Sensors (Switzerland), 17(4):1–12, 2017. doi:10.3390/s17040905.

[53] Steven W. Chen, Shreyas S. Shivakumar, Sandeep Dcunha, Jnaneshwar Das, Edidiong Okon,
Chao Qu, Camillo J. Taylor, and Vijay Kumar. Counting Apples and Oranges with Deep
Learning: A Data-Driven Approach. IEEE Robotics and Automation Letters, 2(2):781–788,
2017. doi:10.1109/LRA.2017.2651944.

[54] Alvaro Fuentes, Sook Yoon, Sang Cheol Kim, and Dong Sun Park. A robust deep-learning-
based detector for real-time tomato plant diseases and pests recognition. Sensors (Switzer-
land), 17(9), 2017. doi:10.3390/s17092022.

[55] Bin Liu, Yun Zhang, Dong Jian He, and Yuxiang Li. Identification of apple leaf diseases
based on deep convolutional neural networks. Symmetry, 10(1), 2018. doi:10.3390/
sym10010011.

[56] Mostafa Mehdipour Ghazi, Berrin Yanikoglu, and Erchan Aptoula. Plant identification us-
ing deep neural networks via optimization of transfer learning parameters. Neurocomput-
ing, 235(January):228–235, 2017. URL: http://dx.doi.org/10.1016/j.neucom.
2017.01.018, doi:10.1016/j.neucom.2017.01.018.

http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012
http://dx.doi.org/10.1109/CVPR.2018.00907
http://arxiv.org/abs/1709.01507
http://dx.doi.org/10.1109/CVPR.2018.00745
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1707.01083
http://dx.doi.org/10.1109/CVPR.2018.00716
http://arxiv.org/abs/1907.10701
http://arxiv.org/abs/1907.10701
http://arxiv.org/abs/1610.03677
http://arxiv.org/abs/1610.03677
http://dx.doi.org/10.1109/ICRA.2017.7989417
http://dx.doi.org/10.3390/s17040905
http://dx.doi.org/10.1109/LRA.2017.2651944
http://dx.doi.org/10.3390/s17092022
http://dx.doi.org/10.3390/sym10010011
http://dx.doi.org/10.3390/sym10010011
http://dx.doi.org/10.1016/j.neucom.2017.01.018
http://dx.doi.org/10.1016/j.neucom.2017.01.018
http://dx.doi.org/10.1016/j.neucom.2017.01.018


88 REFERENCES

[57] Abraham George Smith, Jens Petersen, Raghavendra Selvan, and Camilla Ruø Rasmussen.
Segmentation of roots in soil with U-Net. Plant Methods, 16(1):1–13, 2020. arXiv:1902.
11050, doi:10.1186/s13007-020-0563-0.

[58] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 2704–2713, 2018. arXiv:
1712.05877, doi:10.1109/CVPR.2018.00286.

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2016-Decem:770–778, 2016. arXiv:1512.03385, doi:10.1109/
CVPR.2016.90.

[60] Simon Jegou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Bengio. The
One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmenta-
tion. IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, 2017-July:1175–1183, 2017. arXiv:1611.09326, doi:10.1109/CVPRW.
2017.156.

[61] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking
Atrous Convolution for Semantic Image Segmentation. 2017. URL: http://arxiv.org/
abs/1706.05587, arXiv:1706.05587.

[62] Kaiming He, Ross Girshick, and Piotr Dollar. Rethinking imageNet pre-training. Proceed-
ings of the IEEE International Conference on Computer Vision, 2019-Octob(ii):4917–4926,
2019. arXiv:1811.08883, doi:10.1109/ICCV.2019.00502.

http://arxiv.org/abs/1902.11050
http://arxiv.org/abs/1902.11050
http://dx.doi.org/10.1186/s13007-020-0563-0
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877
http://dx.doi.org/10.1109/CVPR.2018.00286
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1611.09326
http://dx.doi.org/10.1109/CVPRW.2017.156
http://dx.doi.org/10.1109/CVPRW.2017.156
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1811.08883
http://dx.doi.org/10.1109/ICCV.2019.00502

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Dissertation Rationale and Structure

	2 Problem Statement and Direction
	2.1 Problem Description
	2.2 Proposed System Architecture

	3 Fundamentals
	3.1 Training
	3.1.1 Generalisation
	3.1.2 Transfer Learning
	3.1.3 Cost Function
	3.1.4 Hyperparameters
	3.1.5 Quantization
	3.1.5.1 Quantization-aware training
	3.1.5.2 Full integer post-training quantization


	3.2 Metrics
	3.2.1 Intersection Over Union
	3.2.2 True Positive, False Positive, False Negative and True Negative
	3.2.3 Precision
	3.2.4 Recall
	3.2.5 Precision versus Recall curve
	3.2.6 F1-Score
	3.2.7 Average Precision


	4 State of Art
	4.1 Machine Learning
	4.1.1 Deep Learning
	4.1.2 Neural Networks

	4.2 Object Detection
	4.2.1 Convolutional neural networks

	4.3 Semantic Segmentation
	4.3.1 Convolutional neural networks for semantic segmentation
	4.3.2 Object Detection using convolutional neural networks
	4.3.2.1 Region-based Convolutional Neural Network
	4.3.2.2 Fast R-CNN
	4.3.2.3 Faster R-CNN
	4.3.2.4 You Only Look Once
	4.3.2.5 Single Shot Multibox Detector

	4.3.3 Comparison between Deep Learning Architectures
	4.3.4 Comparison between Deep Learning Models
	4.3.5 MobileNet
	4.3.6 Inception

	4.4 Platforms
	4.4.1 Comparison between TPU, GPU and CPU
	4.4.2 Google Edge TPU

	4.5 Frameworks
	4.5.1 TensorFlow
	4.5.2 TensorFlow Lite
	4.5.3 ROS

	4.6 Deep Learning Applications in Agriculture

	5 Implementation
	5.1 VineSet
	5.1.1 Data Collection
	5.1.2 Data annotation
	5.1.3 Data Augmentation
	5.1.4 Training Procedure
	5.1.4.1 Architectures and Models selection
	5.1.4.2 Hyperparameter selection
	5.1.4.3 Training

	5.1.5 Real-time inference
	5.1.6 Measuring and evaluating models performance

	5.2 VineSet for Trunk Segmentation
	5.2.1 Data annotation
	5.2.2 Data Augmentation
	5.2.3 Modification in the model SSD MobileNet V1
	5.2.4 Training Procedure
	5.2.5 Real-time inference with segmentation and detection simultaneously
	5.2.6 Measuring and evaluating segmentation performance

	5.3 VineSet for Semantic Segmentation
	5.3.1 Measuring and evaluating performance

	5.4 Deep Learning-based Assisted Labelling
	5.4.1 Functionalities and Interface
	5.4.2 Measuring and evaluating performance


	6 Results and Discussion
	6.1 VineSet Trunk Detection Results
	6.1.1 Discussion

	6.2 VineSet Trunk Segmentation using object detection models
	6.2.1 Discussion

	6.3 Semantic Segmentation
	6.3.1 Discussion

	6.4 Assisted Labelling Procedure
	6.4.1 Discussion


	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	A Attachments
	A.1 Submitted Papers

	References

