
OrchRecon A
Distributed System
for Reconnaissance
and Vulnerability
Scanning
Vítor Manuel Guedes de Oliveira Pinho
Mestrado em Segurança Informática
Departamento de Ciências dos Computadores
2020

Orientador
Rolando da Silva Martins
Professor Auxiliar
Faculdade de Ciências da Universidade do Porto

Coorientador
André Martins Carrilho Costa Baptista
Professor Assistente Convidado
Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

MASTERS THESIS

OrchRecon - A Distributed System for
Reconnaissance and Vulnerability Scanning

Author:

Vı́tor PINHO

Supervisor:

Rolando MARTINS

Co-supervisor:

André BAPTISTA

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Computer Security

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Ciências dos Computadores

January 8, 2021

mailto:example@fc.up.pt
mailto:example@fc.up.pt
mailto:name@host.com

Acknowledgements

I have a deep gratitude to my thesis supervisors, Professors Rolando Martins and

André Baptista, for their incentive, help and contributions, without which this work

would have been even more difficult. I am deeply grateful for welcoming my ideas and

for providing all the guidance they did. Their knowledge and experience have encour-

aged me to accomplish this goal.

I wish to thank to my master’s degree teachers as they provided some of the founda-

tions for this endeavour. I could not forget to mention Professor Luı́s Antunes as the main

responsible for putting this challenge among my plans.

I am also grateful to my colleagues for their support, help and for sharing their knowl-

edge in the most varied topics. Among them, I will never forget the invaluable help that

André Cirne gave me, far beyond what I could ask or expect. It was a precious help,

indeed.

To my family, without their understanding and support this achievement would have

been much more difficult. I am really grateful for all the encouragement that they contin-

uously have given me.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciências dos Computadores

MSc. Computer Security

OrchRecon - A Distributed System for Reconnaissance and Vulnerability Scanning

by Vı́tor PINHO

Nowadays there are a myriad of available tools to perform a penetration testing or a

vulnerability assessment. While some of them focus on doing a single task, others com-

bine the former in order to achieve better results. This approach, however more time-

consuming, provides a wider coverage of the attack surface and a better understanding

of a target’s public exposure.

The trend to combine tools has one of its origins in the standards and regulations

that focus on cyber security. As such, tool orchestration is a common practice and is

experiencing an increasing attention either from the open source community, as well as

from security companies that provide vulnerability assessment services. These tools aim,

essentially, to uncover a target’s assets dimension and public exposure and, after, check

for their possible vulnerabilities.

Although the number of tools is considerable, there seems to be a tendency to stop

maintaining the open source ones in the course of time. Additionally, each researcher has

his preferences and tends to work with tools that match his kind of approach, leading

to various possible combinations. Furthermore, most frameworks that combine multiple

single tools are closed solutions in nature, which results in an inherent lack of flexibility.

OrchRecon proposes a solution that gives to the user an higher flexibility to use the

tools of his choice, from a single bash script to those running inside a container, commu-

nicating through a distributed system conceived to take advantage of current cloud com-

putation solutions. With this work, we designed and implemented a message-oriented

middleware to support a tools framework for reconnaissance and vulnerability assess-

ment.

mailto:example@fc.up.pt

With penetration testing and vulnerability assessment in mind, OrchRecon enhances

the performance of the chosen tools, paralleling their execution and distributing the work-

load among the available resources, providing an optimised orchestration that, ultimately,

leads to time savings by security researchers.

The preliminary results obtained in the performance tests reinforce these assumptions,

even in scenarios of intensive use. Considering the Modules alone, we verified increases

in performance from 60% to almost 300% by adjusting the parallelism level and when

evaluating more intensive scenarios of simultaneous pipelines being performed, we mea-

sured increases from 60% on average to more than 100% when distributing the workload

to two or three instances, respectively.

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Ciências dos Computadores

Mestrado em Segurança Informática

OrchRecon - Um sistema distribuı́do para reconhecimento e identificação de

vulnerabilidades

por Vı́tor PINHO

Actualmente, existe uma mirı́ade de ferramentas disponı́veis para executar um Pene-

tration Testing ou a identificação de vulnerabilidades. Enquanto algumas se focam apenas

numa tarefa, outras combinam as primeiras de forma a obter melhores resultados. Esta

abordagem, embora mais demorada, possibilita uma cobertura mais ampla da superfı́cie

de ataque e uma melhor compreensão da exposição pública de um alvo.

A tendência para combinar ferramentas tem uma das suas origens nos standards e

regulamentações focadas na cibersegurança. Por isso, a orquestração de ferramentas é

uma prática comum e está a ser alvo de uma atenção crescente não só pela comuni-

dade open source, mas também por empresas de segurança que providenciam serviços

de análise de vulnerabilidades. Essas ferramentas têm essencialmente como função reve-

lar a dimensão dos activos e a exposição pública de um alvo e, posteriormente, verificar

as suas vulnerabilidades.

Embora o número de ferramentas seja considerável, parece existir uma tendência para

que as ferramentas open source deixem de ser mantidas com o passar do tempo. Acresce

ainda que cada investigador tem as suas preferências e tende a trabalhar com aquelas

que se adequam à sua forma de abordagem, possibilitando várias combinações possı́veis.

Além disso, e considerando os frameworks que combinam várias ferramentas, as soluções

fechadas são mais prevalentes, as quais podem sofrer de falta de flexibilidade.

A OrchRecon propõem uma solução que faculta ao utilizador uma elevada flexibili-

dade para usar as ferramentas da sua preferência, desde um simples script na bash até

outras ferramentas executadas dentro de containers, comunicando através de um sitema

mailto:example@fc.up.pt

distribuı́do concebido para aproveitar as vantagens de algumas soluções de computação

na nuvem. Com este trabalho, prototipámos um message-oriented middleware para possibi-

litar a execução de um framework de ferramentas para levar a cabo o reconhecimento e a

identificação de vulnerabilidades.

Com o penetration testing e a identificação de vulnerabilidades em mente, a OrchRecon

aumenta a performance das ferramentas escolhidas, paralelizando a sua execução e dis-

tribuindo as tarefas pelos recursos disponı́veis, oferecendo um uso optimizado destas e

um acréscimo na poupança de tempo dessas actividades.

Os resultados preliminares obtidos nos testes de desempenho reforçam essas hipóteses,

mesmo em cenários de utilização intensiva. Considerando os Módulos isoladamente, ve-

rificámos aumentos de desempenho de 60% até cerca de 300% ajustando o nı́vel de pa-

ralelismo e quando avaliámos cenários mais intensivos, no caso da execução de vários

pipelines em simultâneo, pudemos aferir incrementos de 60% em média até mais de 100%

ao distribuir o volume de execução por duas e três instâncias, respectivamente.

Contents

Acknowledgements iii

Abstract v

Resumo vii

Contents ix

List of Figures xi

List of Tables xiii

Listings xv

1 Introduction 1

2 State of the Art 3
2.1 Vulnerability assessment . 3

2.1.1 Legislation and Standards . 4
2.1.2 Security Controls Assessment . 7

2.2 Penetration Testing . 8
2.2.1 Pre-engagement Activities . 10
2.2.2 Discovery and Analysis Activities . 11
2.2.3 Attack Activities . 21
2.2.4 Reporting . 23

2.3 Web Vulnerabilities . 25
2.3.1 Injection . 25
2.3.2 Broken Authentication . 26
2.3.3 Sensitive Data Exposure . 27
2.3.4 XML External Entities (XXE) . 28
2.3.5 Broken Access Control . 30
2.3.6 Security Misconfiguration . 31
2.3.7 Cross-Site Scripting (XSS) . 32
2.3.8 Insecure Deserialization . 33
2.3.9 Using Components with Known Vulnerabilities 34
2.3.10 Insufficient Logging and Monitoring 35

ix

x
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

3 Supporting Background Work 37
3.1 Containerization . 37
3.2 Distributed systems . 38

3.2.1 Design issues . 39
3.2.2 Types of distributed systems . 41
3.2.3 Communication in distributed systems 42

3.3 Reconnaissance automation . 45

4 OrchRecon 49
4.1 Architecture overview . 50

4.1.1 Master . 52
4.1.2 Broker . 52
4.1.3 Pipeline Managers . 53
4.1.4 Database and Storage . 54
4.1.5 Module . 54
4.1.6 Scalability . 55

4.2 Implementation . 56
4.2.1 Setup . 56
4.2.2 Master . 57
4.2.3 Broker . 59
4.2.4 Pipeline Managers . 61
4.2.5 Database and Storage . 64
4.2.6 Module . 66
4.2.7 Distributed system . 69

5 Evaluation 73
5.1 Modules Performance . 73
5.2 Pipeline Performance . 77

6 Conclusion 83
6.1 Future Work . 84

Bibliography 85

List of Figures

4.1 OrchRecon Diagram . 51
4.2 Broker Diagram . 52
4.3 Class Diagram . 56
4.4 Dealer-Router pattern . 70

5.1 httprobe - 1 vCPU . 74
5.2 httprobe - 2 vCPU . 74
5.3 httprobe - 4 vCPU . 75
5.4 httprobe - Performance metrics . 75
5.5 nuclei - 1 vCPU . 76
5.6 nuclei - 2 vCPU . 76
5.7 nuclei - 4 vCPU . 76
5.8 Nuclei - Performance metrics . 77
5.9 Pipeline - 1 vCPU . 78
5.10 Pipeline - 2 vCPU . 78
5.11 Pipeline - 4 vCPU . 78
5.12 Pipeline Performance - 1 vCPU . 80
5.13 Pipeline Performance - 2 vCPU . 80
5.14 Pipeline Performance - 4 vCPU . 80

xi

List of Tables

2.1 Protection Mechanisms . 16

3.1 Transparency Types . 40
3.2 Reconnaissance Automation Tools . 48

5.1 httprobe - Test results . 75
5.2 Nuclei (Technologies) - Test results . 77
5.3 Pipeline Performance - Test results . 79
5.4 Pipeline - Test results . 81

xiii

Listings

2.1 Check cookie . 34
4.1 Module configuration example . 55
4.2 Master class . 57
4.3 Heartbeat function . 58
4.4 Master check liveness . 58
4.5 Socket interfaces . 59
4.6 ConnectedElement class . 60
4.7 check liveness method . 60
4.8 Pipeline Manager start . 61
4.9 Manager class . 62
4.10 Modules validation . 62
4.11 Breadth First algorithm . 63
4.12 Database class . 64
4.13 Target class . 64
4.14 Save Target Function . 65
4.15 Folder creation . 65
4.16 Bucket file upload . 66
4.17 Command building . 66
4.18 Module properties . 67
4.19 Parallel execution . 68
4.20 Request-Reply approach . 69
4.21 Message polling . 70
4.22 Message transformation . 71
4.23 Queue implementation . 72

xv

Acronyms

CEN European Committee for Standardization. 6

CENELEC European Committee for Electrotechnical Standardization. 6

CIS Center for Internet Security. 6, 7

CSC Critical Security Controls. 6, 7

CSIRT Computer Security Incident Response Team. 5

CSRF Cross-site Request Forgery. 27, 32, 33

CVE Common Vulnerabilities and Exposures. 11, 24, 73

CVSS Common Vulnerability Scoring System. 11, 24

CWE Common Weakness Enumeration. 11, 24

ENISA European Union Agency for Cybersecurity. 3, 5, 6

ETSI European Telecommunications Standards Institute. 5, 6, 8

EU European Union. 4–6

ICT Information and Communication Technologies. 4–6, 8, 9, 19

IDL Interface Definition Language. 43

ISMS Information Security Management System. 7

MOM Message-Oriented Middleware. 42, 44

NIST National Institute of Standards and Technology. 7–9

xvii

xviii
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

OS Operating System. 37–39, 41

OSINT Open Source Intelligence. 12, 13, 20, 45, 47, 49, 50

OWASP Open Web Application Security Project. 3, 8–10, 15, 19, 22, 25

PT Penetration Testing. 3, 8–12, 15, 17–21, 23–26, 28, 34, 36, 37, 49, 50

PTES Penetration Testing Execution Standard. 11, 16

RPC Remote Procedure Calls. 42–44

SDLC System Development Life Cycle. 8

Chapter 1

Introduction

OrchRecon is a reconnaissance and vulnerability assessment framework built on top of

distributed infrastructure. Written in Python, it presents a message-oriented middleware

that allows to integrate some chosen tools in a pipeline of tasks in order to do recon-

naissance about the selected targets. Once the reconnaissance phase can be quite time

consuming, there are several approaches to automate a series of tools that can produce re-

sults that will, after, feed the subsequent ones, reducing the human intervention as much

as possible.

Starting from an initial idea from André Baptista and Miguel Regala to a tool that

automates reconnaissance in a flexible way, we addressed this from the premise that a

scalable distributed infrastructure allows for an increase in the global performance of the

process of reconnaissance. Furthermore, current cloud computing solutions provide easy

accessible resources that can shift these time- and resources-consuming tasks to external

instances, providing a wide range of performance related options.

Driven by past experience, we assume that there are a set of well reputed tools to

perform specific tasks that can be interlinked, as far as they can pass data to each other.

Additionally, the choice of those tools should be kept flexible, as the criteria for it depends

of an individual judgement or even of any circumstantial option.

We began this work by focusing on the vulnerability assessment activities from an or-

ganizational point of view. Departing from regulations, once there is an ongoing effort

from national and international authorities to address cyber related problems, we under-

stood the need for a consistent and structured approach. As such, some regulations, stan-

dards and frameworks provide some of the foundations to, consistently, act for a more

secure environment.

1

2
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

We also reviewed the structure of penetration testings like their various phases and

how they shall be conducted. As such, we considered the pre-engagement, discovery

and analysis, attack and reporting activities. We deepened the discovery and analysis

activities by considering the OWASP top ten web vulnerabilities and how they can be

exploited.

In the supporting and background work, we wanted to contextualise some basics of

distributed systems and containerization solutions. We focused in the communication be-

tween processes, namely through remote procedure calls and through message-oriented

middleware. Furthermore, we analysed some similar applications from the perspective

of automation and tool orchestration in order to observe how these features were imple-

mented.

Concerning our solution, after providing an architecture overview, we present an in-

sight into its main components. We resorted to some specific libraries to implement the

messaging patterns and the database communication and used the Google’s cloud com-

puting resources to test it and to provide storage. Although its primary objective is to run

in a distributed form, OrchRecon can also run locally, although not presenting the same

performance increase.

At last we evaluated this prototype from a performance point of view. Although the

results are preliminary, they corroborate the idea that OrchRecon can bring some effi-

ciency to a time-consuming activity.

Chapter 2

State of the Art

Penetration Testing (PT) is an activity that occupies a prominent place in the context of

cybersecurity. Nevertheless, it should be contextualised within a broader concern of risk

management practices and controls and its role as a security control, by itself, should be

emphasised and approached as a structured and comprehensive activity.

In this chapter we depart from a legislative point of view and verify how standards

help to structure a response in accordance to it. Additionally, we detail how a PT may

be structured, observing the perspectives of some standards, and provide some focus on

OWASP Top Ten vulnerabilities.

2.1 Vulnerability assessment

Considering that a significant part of nowadays human interactions rely on technologi-

cal means, and that it materialises in several contexts such as social, business, industrial,

academic, among others, it seems obvious that there should be an important focus in de-

termining that the supporting infrastructures work as intended regarding privacy, confi-

dentiality, integrity or availability. Due to growing complexity, derived from the increased

interconnection of systems, the variety of different technologies that must be integrated

and also due to human errors, sometimes the outcomes are not as expected or anticipated.

These unexpected outcomes usually are the visible part of systems flaws.

As defined by ENISA, ”a vulnerability is a weakness an adversary could take advantage of

to compromise the confidentiality, availability, or integrity of a resource”, considering that, in

this context, ”a weakness refers to implementation flaws or security implications due to design

choices” [1]. Thus, the need for vulnerability assessments seems unquestionable, as it

3

4
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

provides a process to verify the assumptions made on systems behaviour, identifying and

quantifying the eventual vulnerabilities they might have [2].

To attest a growing focus on those concerns, we are confronted with cyber attacks

news, in an almost daily basis, ranging from systems unavailability to data breaches,

business disruption or ransomware events. As such, either due to legal or regulatory

obligations or due to reputational aspects, institutions have the need to assess risk expo-

sure as far as their ICT are concerned. Organizations shall, thus, implement a wide set of

actions to conform with cybersecurity best practices.

To guide them trough this process, they can find several international standards that

point to crucial actions that should be taken, such as ETSI TR 103 305: ”CYBER; Criti-

cal Security Controls for Effective Cyber Defence” [3], which mimics a previous version

of CIS Controls [4], ISO/IEC 27002:2013 ”Information technology, Security techniques —

Code of practice for information security controls” [5] or ISO/IEC 27007:2020 ”Informa-

tion security, cybersecurity and privacy protection — Guidelines for information security

management systems auditing”.

There is a general consensus that security assessments shall have some periodicity

in order to detect, in a timely way, changes from the security point of view, demanding

some pro-activity from organizations. These changes may appear for a variety of reasons,

like updates in software, patch releases to detected vulnerabilities in software, network

configuration changes or end of employee collaboration, among many others, although

there should be considered, also, items such as physical facilities or human resources

awareness.

Within the scope of this work, we will focus our attention in a fraction of this ecosys-

tem, services exposed to the web.

2.1.1 Legislation and Standards

Especially since 2016, we find a growing concern from European authorities regarding

cybersecurity. It has two main vectors: one, concerning personal data privacy, addressed

by GDPR [6]; a second one, regarding the economic effects of defective Information and

Communication Technologies (ICT) systems, as stated in EU NIS Directive [7]. Generi-

cally, it is recognised that networks, information services and systems have a vital role in

a contemporary society and, as such, they need special attention to be protected from ad-

versarial activities. These activities have no geographic boundaries, reason why European

2. STATE OF THE ART 5

authorities consider that, to tackle them, a common approach grounded on a common

level of technical and technological preparation is needed.

GDPR aims to ensure the protection of EU citizens personal data, respecting their fun-

damental rights and freedoms in what data processing is concerned. For its part, the NIS

Directive assumes the role of an European-wide cybersecurity legislation starting point,

providing the legal foundations for a high common level of network and information

security across all its countries. It establishes the requirements for each member state

concerning cybersecurity, like the existence of CSIRTs, and creates mechanisms for a joint

strategic and operational cooperation, imposing also security measures and security no-

tifications for essential services and for digital services providers. Although its focus lays

on these two groups, it sets the ground for good practices that shall be envisioned for

any organization. Concerning its scope, the NIS Directive points to auditing and testing

as means to certify that the organizations involved comply with the implementation of

adequate measures and policies to address the inherent risk of their activities (Articles 15

and 16).

This Directive attributed a central role to the European Union Agency for Cybersecu-

rity (ENISA) in supporting its implementation. With that goal in mind, it was published,

more recently, a new version of EU Cybersecurity Act [8] that reformulates ENISA at-

tributions, goals and organization, establishing also a framework for ICT cybersecurity

certification. Its base attribution is the promotion of a coherent application of EU regula-

tions in the cybersecurity field, grounded on a very high level of specialised knowledge

and on the quality of the information it provides to the various stakeholders. In order

to accomplish its role in the certification domain, ENISA is responsible to prepare candi-

date certification schemes on the request of the European Commission or the European

Cybersecurity Coordination Group, ensuring that they are ”non-discriminatory and based

on European or international standards, unless those standards are ineffective or inappropriate to

fulfil the Union’s legitimate objectives in that regard”. According to Cybersecurity Act, Eu-

ropean cybersecurity certification schemes shall be designed to achieve a set of security

objectives, including those that address vulnerability detection, to provide for the pos-

sibility of different assurance levels (articles 51 and 52) and shall include references to

international, European or national standards applied in the evaluation phase (article 54).

There are three European Standardization Organizations responsible for the recog-

nised European Standards: the European Telecommunications Standards Institute (ETSI),

6
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

the European Committee for Standardization (CEN) and the European Committee for

Electrotechnical Standardization (CENELEC). ETSI deals with those related to Commu-

nications, Internet, Cloud Computing, Artificial Intelligence and Internet of Things tech-

nologies and has a formal collaboration with ENISA through a memorandum of under-

standing. It is responsible for a broad collection of standards concerning ICT and, as an

European Standardization Organization, is also responsible for providing technical stan-

dards supporting EU directives and regulations. One of the standards, ETSI TR 103 456,

provides guidance to conform with the legal measures and the implicit technical require-

ments imposed by the NIS Directive. Amid the mentioned technical requirements is a

set of ”outcomes-focused cybersecurity risk management practices and controls to identify and

protect assets, detect anomalous analyses and potential incidents, and respond to and recover from

incidents that may impact network and information systems” [9].

This points directly to the aforementioned ETSI TR 103 305: ”CYBER; Critical Security

Controls for Effective Cyber Defence”, that establishes an implementable controls-based

approach. It maps the CIS Controls from the Center for Internet Security (CIS) whose

recognized industry best practices for securing ICT systems and data make it a reference,

specifically to governmental bodies. CIS Controls map a wide set of international cyber-

security industry frameworks and can be used as a stand-alone tool or together with other

frameworks [10, 11].

ETSI TR 103 305 [3] lists the top twenty Critical Security Controls (CSC) and includes

information like:

• the importance of each one and how its absence can be exploited by an adversary,

• actions that organizations shall take to implement, automate, and measure effective-

ness of each control,

• set of procedures and tools that enable implementation and automation,

• metrics and tests to assess implementation status and effectiveness.

These controls aim not only to avoid initial systems compromise or to prevent attacker’s

actions, but also to detect already-compromised systems and oppose to malicious running

actions. As a consequence of the CSC implementation, it is expected that an effective

cyber defence system is addressed observing five critical tenets: Offense informs defence,

Prioritization, Metrics, Continuous diagnostics and mitigation and Automation.

2. STATE OF THE ART 7

This technical report is complemented with several parts that are reviewed more fre-

quently. Part 1 [12] describes a set of technical measures to implement ETSI TR 103 305

and already refers to CSC version 7.0 released by CIS, which implies a minor change in

the order of the controls established in the original document. Here, the CSC are charac-

terized into ”Basic” (controls 1 - 6), ”Foundational” (controls 7 - 16) and ”Organizational”

(controls 17 - 20). The Basic controls are considered essential to a successful approach

of this implementation and should be addressed at the very beginning of the process.

Among them, is CSC 3: Continuous Vulnerability Management that envisions a set of

actions that ”continuously acquire, assess, and take action on new information in order to iden-

tify vulnerabilities, remediate, and minimize the window of opportunity for attackers”. Within

the Organizational controls we find CSC 20: Penetration Tests and Red Team Exercises

that relates to CSC 3, as it produces information upon some detected vulnerabilities that

should be addressed in the scope of the latter control. Its main purpose is to ”test the

overall strength of an organization’s defences (the technology, the processes, and the people) by

simulating the objectives and actions of an attacker”. [12]

There are other standards pointing to similar security controls, like ISO/IEC 27002,

Payment Card Industry Data Security Standard (PCI-DSS) or NIST SP 800-53, whose

posture about due diligence concerning a compliant implementation of security controls

stands out: ”Compliance is not about adhering to static checklists or generating unnecessary

FISMA reporting paperwork. Rather, compliance necessitates organizations executing due dili-

gence with regard to information security and risk management. Information security due dili-

gence includes using all appropriate information as part of an organization-wide risk management

program to effectively use the tailoring guidance and inherent flexibility in NIST publications so

that the selected security controls documented in organizational security plans meet the mission

and business requirements of organizations” [13].

2.1.2 Security Controls Assessment

The security and privacy controls implemented within the scope of an Information Se-

curity Management System (ISMS) are the safeguards or countermeasures understood as

the most appropriate to protect the confidentiality, integrity, and availability of an orga-

nization’s information system [14], chosen through the implementation of its risk man-

agement process. There seems to exist a broad consensus that the only way to verify the

appropriate implementation of security controls is through auditing and testing. Despite

8
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

the legally imposed security requirements and the compliance with standards, required

by industry, countries, or internationally, regarding information security or privacy to

some organizations, others also adhere to these practices as a mean to promote some dis-

tinctive feature on their services/products regarded as an added value when compared

to their competitors.

Standards like ISO 27002 or those from ETSI and NIST advocate the implementation of

procedures to ensure that adequate security controls are in place, validating their presence

through a set of other security controls focused in vulnerability management processes.

Penetration tests and red team exercises are included in that set and typify a specialised

assessment conducted against systems in order to identify vulnerabilities that may be

exploited by an adversary. Their purpose is to mimic adversarial and hostile actions to

get an in-depth evaluation of a target’s weaknesses or deficiencies. According to the cited

standards, these tests should occur with some periodicity and should be performed by

external entities, as well as by internal security teams (Red Teams) [3, 5, 14].

Additionally, the security controls assessment should also be understood as extended

to systems development. With regard to that, OWASP proposes the definition of testing

objectives through all the System Development Life Cycle (SDLC). Therefore, a set of

actions is proposed for each phase of the SDLC in order to integrate security tests in the

development workflows [15].

2.2 Penetration Testing

As already seen, Penetration Testing (PT) is a Security Control present among all the most

relevant standards in use, nowadays, concerning information security. Historically, it has

been used to verify the correct operation of the established defences, to validate the cho-

sen security controls adequacy and to produce evidence about existing vulnerabilities

through a set of actions that try to reproduce real-world attacks [12]. It can also be useful

for determining how resilient are system towards real attack patterns and how sophisti-

cated an attacker needs to be to successfully compromise a system or, from the defender’s

perspective, what should be the countermeasures to mitigate threats against a system and

how efficient to detect attacks and respond appropriately they can be [16].

Penetration Testing is a proactive and authorised process to find security flaws in

ICT systems, concerning applications, networks, configurations and human actions, that,

alone or combined, allow the exploitation of vulnerabilities which may compromise the

2. STATE OF THE ART 9

whole system or parts of it. Typically, this implies the identification of methods for cir-

cumventing implemented security mechanisms and is, essentially, an interactive manual

task, yet supported by a set of tools.

Performing a PT may be done with different approaching techniques, known as white

box or black box. The first implies that the agent performing the test has a wide knowledge

of the target, namely with access to the the source code, network topology or other in-

formation that may give him a previous insight. In a black box approach, sometimes the

only information that is given is a target’s name, leaving to the researcher all the work of

gathering related information. This type of PT is considered to be more similar to a real

world scenario, although less efficient and cost-effective than white box type. Sometimes,

an intermediate approach is used, combining some elements from the two referred tech-

niques, known as gray box. Additionally, NIST SP 800-115 proposes also that tests may

be performed from different viewpoints. Therefore, PT should be performed either from

an internal and an external perspective, considering the attacker within or outside the

target’s perimeter, as well as a scheduled event or as a covert process [16].

As such, the implementation of a PT poses, by itself, some risks like turning systems

inoperable or with a degraded performance, disclosure of personal or sensitive informa-

tion, among others. However, it is considered a valuable approach that provides insight

about an organization’s security posture, considering it is conducted after basic security

mechanisms are in place and in the context of a comprehensive information security man-

agement program [12]. It is, also, a mean to enhance an organization’s understanding of

its ICT system and allows an estimation of the level of effort required to adversaries in

order to breach the system safeguards [14]. Although there are several methodologies for

the execution of a PT, some of them stand out and are frequently pointed as industry ref-

erences: NIST Special Publication 800-115, PCI DSS Penetration Testing Guidance v. 1.1,

OWASP Web Security Testing Guide, Open Source Security Testing Methodology Manual

(“OSSTMM”), Penetration Testing Execution Standard and FedRAMP Penetration Testing

Guidance v. 2.0.

NIST Special Publication 800-115, from the National Institute of Standards and Tech-

nology, provides practical guidelines for designing, implementing and maintaining tech-

nical information about security testing and, although approaching it as an overview of

the key elements, it provides some emphasis on specific techniques [16]. PCI DSS Pen-

etration Testing Guidance, from the Payment Card Industry Security Standards Council,

10
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

presents general guidance and guidelines for PT, focusing on its principal components,

on the qualifications of a penetration tester, on its methodologies and on reporting guide-

lines [17]. OWASP Web Security Testing Guide is an initiative of the security community

to design a complete testing framework. It focus on web applications security assess-

ments throughout all phases of software development life cycle, as a strategic approach

to enhance cyber security, and addresses PT as an element of a balanced approach on

this subject. Its methodology results from industry experts consensus and details ev-

ery aspect that needs attention in a web application testing activity [15]. The OSSTMM,

from the Institute for Security and Open Methodologies, is developed in an open com-

munity effort, and subject to peer and cross-disciplinary review. Its purpose is to provide

a scientific methodology for operational security tests over all channels (Human, Physi-

cal, Wireless, Telecommunications and Data Networks), that may be adaptable to almost

any audit type, like PT, security assessments or vulnerability assessments among others,

analysing and measuring how well security works. Its security testing methodology is

grounded on the security of operations verification [18]. Penetration Testing Execution

Standard is pointed by OWASP as one of the PT methodologies. Developed by Iftach Ian

Amit, it proposes a structured approach in seven phases and is accompanied by techni-

cal guidelines, providing a rationale for testing activities and recommending appropriate

tools [19]. FedRAMP Penetration Testing Guidance, from the Federal Risk and Autho-

rization Management Program, provides guidance to PT with a standardized approach

to security assessment, authorization and continuous monitoring for cloud products and

services. This federal organization is responsible for authorizing cloud service providers

to sell their products to governmental agencies in USA [20].

Although using different grouping options or terminology, in general, these references

may be summarized in four major phases: (i) Pre-engagement Activities; (ii) Discovery

and Analysis Activities; (iii) Attack Activities; (vi) and Reporting.

2.2.1 Pre-engagement Activities

Pre-engagement activities encompass a set of steps leading to the preparation of a success-

ful PT. During this phase, the parts involved agree on the type of test to be performed,

how it will be done and what it will target. According to NIST SP 800-53A [14], the PT

scope should be defined in a clear way, considering topics like the environment subject to

test (e.g., facilities, users, organizational groups), the attack surface (e.g., servers, desktop

2. STATE OF THE ART 11

systems, wireless networks, web applications), the threat sources to simulate (e.g. internal

attacker, casual attacker, single or group of external targeted attackers, criminal organiza-

tion) or specific objectives for the simulated attacker, among others. Assets depending

on third parties should be clearly identified and a testing permission should be granted

from them. Furthermore, the organization being tested should provide appropriate doc-

umentation about the assets defined in the scope. Depending on the type of test to be

performed (white-box, black-box, gray-box), previous PT reports, software documenta-

tion or network diagrams may be provided.

Another crucial topic of this phase is the agreement on the Rules of Engagement without

which any test should not start. These rules provide detailed guidelines regarding the

execution of a PT, considering topics like times of day for testing, duration of tests, degree

of exploitation, evidence handling, communication channels during ongoing activities,

third-party or cloud environments permissions to test, identification of potential risks,

testing locations and reporting requirements. Furthermore, a success criteria should be

established for each environment subject to test, in order to prevent the possibility of

testing boundaries being exceeded [14, 17].

An important topic that must be considered in the Rules of Engagement is how the

vulnerabilities should be categorised and ranked. A common approach across industry is

to resort to the Common Vulnerability Scoring System (CVSS) framework and to listings

like Common Vulnerabilities and Exposures (CVE) and Common Weakness Enumeration

(CWE) [21–23].

Finally, a permission to test document acknowledging the awareness of the test, the

risk of system instability or inoperationality should be signed by the management, ad-

dressing the legal implications of the activities to perform.

2.2.2 Discovery and Analysis Activities

Intelligence Gathering is considered to be at the base of a successful PT and consists in

acquiring as much information as possible on a target, in order to map its cyber presence

and to set future steps for the subsequent phases. Taking into account certain real-world

constraints such as time, effort and access to information, among others, Penetration Test-

ing Execution Standard (PTES) defines three levels for intelligence gathering as it allows

to clarify the expected results according to the chosen approaches [24]:

12
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

• Level 1 - a compliance driven approach, obtained almost entirely with automated

tools;

• Level 2 - use of automated tools from Level 1 complemented with some manual

analysis in order to get a good understanding of the target, including information

such as physical location, business relationships, etc;

• Level 3 - in the context of a full-scope PT, comprising information obtained in Levels

1 and 2 and considering also relationships on Social Networking platforms, heavy

analysis and deep understanding of target’s cyber presence.

According to Faircloth [25], within intelligence gathering we may consider Reconnais-

sance and Scanning and Enumeration activities. While the first relies essentially in non-

intrusive methods, Scanning and Enumeration implies interaction with the systems be-

ing tested. However, and assuming the referred activities together in this process, we

will consider the following phases concerning discovery and analysis activities: (i) Open

Source Intelligence (OSINT) gathering, (ii) Network Footprinting, (iii) Application Iden-

tification, (iv) Protection Mechanisms Detection, (v) Human reconnaissance, (vi) Vulnera-

bility Analysis and (vii) Threat Modeling.

OSINT gathering

With reconnaissance methods, a “real-world” target (a company, corporation, govern-

ment, or other organization) is mapped into a cyberworld one, defined as a set of rele-

vant DNS names [25]. Publicly available resources are the main information source for it

and, sometimes, new assets, out of the established scope and rules of engagement, are re-

vealed, posing the need of clarification with the costumer before engaging into scanning

and enumeration activities.OSINT gathering aims to collect relevant information about a

target such as its organizational structure, its cyber presence or how it relates with other

organizations from publicly available resources. However, it may be outdated, incom-

plete or even manipulated, for what it should be confirmed and validated using different

sources.

Beyond organization level intelligence, related individuals information is also anal-

ysed, such as e-mail addresses or nicknames in Social Networks. On the organizational

level, the following topics should be investigated: physical locations, information re-

lated with organization activity (partners, clients, competitors), organizational charts,

2. STATE OF THE ART 13

electronic documents, infrastructure assets (owned network blocks, e-mail addresses, ex-

ternal infrastructure profile, used technologies, remote access, applications usage, defence

technologies, code in public repositories) and financial information. In parallel, employ-

ees information like their social networks profiles, personal history, internet presence,

physical location, contacts, mobile footprint and background checks shall also be gath-

ered. Essentially, the collected information with an adequate analysis can provide a set of

possible entry-points into the target.

To accomplish that, search engines are some of the most relevant tools and, when

used with search operators1, they can output much more granular information. Data

mining tools, like Maltego [26] or The Harvester [27] are also becoming more relevant

and turn data from sources like financial databases, business reports and web archives

into relevant information. Other common tools include Netcraft[28] and command-line

tools like WHOIS.

Network footprinting

Network footprinting derives IP/host name combinations from the DNS domains out-

putted from OSINT gathering. It already implies some interaction with the target and

consists also in probing for services or devices in order to get, at the end, a prioritised

set of possible entry-points. Among others, the main activities are Port Scanning, Fin-

gerprinting, Banner Grabbing, SNMP Enumeration, Zone Transfers, SMTP Mail Bounce,

DNS Discovery, Reverse DNS, DNS Bruteforce, Web Application Discovery and Virtual

Host Detection & Enumeration [24].

Port scanning probes an host for active services and open ports, allowing an attacker

to get a set of reachable resources. The most used tool to perform it is nmap [29] which

has several options that range from stealthy tests to highly ”noisy” ones.

After identifying active services, it is important to determine which operating systems

(fingerprinting) and applications version (banner grabbing) the attacker is facing. It con-

sists in sending packets to the target and analyse its responses, matching them with a set

of known services responses, with tools like Telnet, nmap or netcat.

Simple Network Management Protocol (SNMP) is a UDP based protocol for moni-

toring and managing a variety of systems, including network devices and servers. It is

widely deployed, controls some of the most important devices or systems on a network

1A search operator is a special keyword that extends the capabilities of regular search queries, and can
help obtain more specific results. They generally take the form of operator:query. Some commonly supported
search operators are: site, inurl, intitle, intext, inbody, filetype [15]

14
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

and, with the appropriate queries, returns considerable information that allows enumer-

ation of hosts and its services [30], making SNMP enumeration an important step to per-

form.

Although currently DNS zone transfer has a limited use, it should integrate a compre-

hensive information gathering process, as it may return a list of DNS entries for the target

domain. Also known as AXFR, it is a type of DNS transaction that may operate in two

modes, full (AXFR) and incremental (IXFR), and is usually done with tools like host, dig

or nmap.

Some additional DNS discovery should be tried concerning variations of the main do-

main. Described as Domain name expansion by Faircloth [25], it builds on two assumptions

to perform such step: (i) if a target has a certain domain name is expected it also owns

similar-sounding ones; (ii) if a target domain name exists in a certain top-level domain

(TLD) it may exist in a different TLD.

Another important step is to probe the already obtained IP for additional DNS, per-

forming a Reverse DNS query, in order to find valid server names belonging to the target.

This step is usually extended to probe entire netblocks and may lead to some conclusions,

considering the outputs: (i) a range is likely to belong to a target if there is a relative

density of hosts with similar DNS names in it; (ii) if other DNS names appear in a range

known to belong to the target, those domains may also be relevant targets and related to

the original [25].

Considering that hosts name in an organization usually conform with some kind of

convention, it turns DNS Bruteforce as a natural step during reconnaissance. It is per-

formed by querying DNS of a list of potential host names and observe if they are resolved.

This allows to discover host names that are not publicly known.

Another approach with limited success rate is SMTP mail bounce. An assumed non-

existent e-mail address in the target domain is used to send a normal e-mail message with

the expectation that it is rejected by the server. When it happens, a normal behaviour is an

automated message being sent back to the sender with some basic problem description.

However, sometimes this message retrieves also information about the SMTP server like

software and version or even the host names and IP addresses of the servers that handled

it, providing valuable information about target’s infrastructure, its architecture and how

critical services are hosted. Flemish ethical hacker, Inti De Ceukelaire, expanded this

topic to abuse some e-mail based services like support inboxes, billing systems, printing

2. STATE OF THE ART 15

services or ticket trackers in order to map e-mail aliases and retrieve sensitive information

[24, 25, 31, 32].

An important step in reconnaissance is to identify all the web applications exposed to

an external actor. A considerable number of applications have documented vulnerabilities

and attack strategies while others, intended for an internal use, end up being publicly

accessible and may present misconfigurations that could be exploited later. The existence

of vulnerable plugins shall also be investigated as they, often, contain more vulnerabilities

than the main application [15, 24].

One of the ways web hosting providers have for making web sites available is through

Virtual Hosting, which consists in using web servers to host more than one domain name

on the same machine. It can be done either in a name-based or in an IP-based virtual

hosting way, resulting in having several host names on the same IP address or having

separate IP addresses for each host, respectively. As such, Virtual Host Detection provides

insight about target’s hosting type at the same as it allows to check if all detected hosts

effectively belong to the target’s scope.

Application Identification

Sometimes, the scope of a PT is a web application by itself. The rationale underlying its

testing is the same with the appropriate adaptations. OWASP Testing Guide [15] provides

a very detailed framework concerning web applications security testing. As such, it pro-

poses also an information gathering phase intended to provide an understanding of the

application’s logic. During this step, beyond (i) identifying application entry points and

(ii) mapping execution paths, (iii) Search Engine Discovery Reconnaissance for Informa-

tion Leakage, (iv) Web Server Fingerprinting, (v) Web Server Metafiles review for Infor-

mation Leakage, (vi) Web Server applications enumeration, (vii) Webpage Comments and

Metadata review for Information Leakage, (viii) Web Application Framework fingerprint-

ing, (ix) Web Application fingerprinting and (x) application architecture mapping are the

other activities proposed.

Additionally, active testing is also prescribed, comprising a set of tests distributed by

10 sub-categories which address 91 controls:

• Configuration and Deployment Management Testing

• Identity Management Testing

• Authentication Testing

16
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

• Authorization Testing

• Session Management Testing

• Input Validation Testing

• Error Handling

• Cryptography

• Business Logic Testing

• Client Side Testing

The guide provides a structure for each test, including a summary, test objectives, how

to test and remediation sections. It also details, when applicable, different approaches

concerning the test type: white-box, gray-box or black-box.

Protection Mechanisms Detection

In order to maximize the effectiveness and efficiency of the exploitation phase, it is im-

portant to get a deep understanding of the implemented protection mechanisms. While

there are some indications to disable some of such protections during vulnerability as-

sessments, like in PCI DSS [17] concerning intrusion protection systems (IPS), intrusion

detection systems (IDS) and web application firewalls (WAF), deep knowledge of their

presence would allow to test target’s systems bypassing some of them, thus minimizing

the detection ratio.

Table 2.1 illustrates the mechanisms that PTES recommends to identify and map, ac-

cording to their context within the established scope [24]:

Network based Host Based Application Level Storage
Packet filters Stack / Heap Protections Application Protections Host Bus Adapter
Traffic shaping devices Application Whitelisting Encoding Options LUN Masking
Data Loss Prevention
(DLP) Systems

AV / Filtering / Behavioral
Analysis

Potential Bypass Avenues Storage Controller

Encryption / Tunneling DLP Systems Whitelisted Pages iSCSI CHAP Secret

TABLE 2.1: Protection Mechanisms

Human reconnaissance

Human reconnaissance is focused on obtaining extra information from the target organi-

zation through their employees rather than a social engineering approach, which will be

addressed later. One of the approaches is to identify places where people from the target

2. STATE OF THE ART 17

organization post information about themselves or where information related to them is

available. Relationships, contacts information, blog posts, social networks or any relevant

document are topics of interest. Beyond search engines or tools like Maltego, this step

usually needs direct interaction, either physical or verbal, in order to get relevant infor-

mation and, in parallel, establish an empathetic vector that may be more cooperative in

what privileged information is concerned.

Another approach, mainly on more sensitive targets, could involve direct observa-

tion or electronic surveillance as means to establish behavioural patterns such as working

routines, dress code, among others.

This step may confirm intelligence gathered previously and help to rank it according

to its relevance in topics like key employees, partners, suppliers, procedures, access paths,

among others.

Vulnerability Analysis

After the previous steps are accomplished, there is a need to turn the gathered informa-

tion into security intelligence in order to make informed decisions. OSSTMM presents

the concept of actionable intelligence, the final part of the analysis process, as information

extracted from facts that can be used to make decisions, which can influence risk analysis,

threat modeling or attack paths. To acquire such level of information, the analysis builds

on the information gathered, applying the concept of critical security thinking, referred

as the practice of resorting to logic and facts to form an idea about security [18]. OS-

STMM poses a great emphasis on the quality of the analysis process, applying a scientific

method approach, to avoid biased testing, and alerting for analysis errors derived from

incomplete and inconsistent testing.

During this step, an analyst will evaluate the services, applications, and operating

systems of scanned hosts and will confirm which results, alone or combined, may be

considered a vulnerability, comparing them with vulnerability databases or even with the

tester’s own knowledge or personal database. The analysis will categorize vulnerabilities,

determine their causes and identify false positives. This categorization, as proposed in

NIST SP 800-115, may be done according to the implemented security controls which

may facilitate vulnerability analysis, remediation and documentation. Another goal is to

immediately warn the organization about any critical vulnerabilities that shall be urgently

addressed, independently of when it was detected during the assessment [16]. Inclusive,

and depending on the Rules of Engagement, suspend the PT could be a measure to take.

18
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

Scanning and Enumeration activities rely, till some extent, on automated tools. Some

of these assessment tools, while scanning networks or web applications, compare the ob-

tained responses with known signatures of vulnerabilities, identifying their presence with

some degree of probability. However, because their high accuracy is not guaranteed all the

time, their results need to be cross-checked with the results of other tools and with manual

testing to ensure a proper validation and to isolate false positives. Although more time-

consuming, manual examination tends to provide more accurate results than comparing

results from multiple tools and, simultaneously, allows unknown or less researched vul-

nerabilities to be detected [16, 33].

Furthermore, after validating a vulnerability belonging to the scope of the PT, its po-

tential exploitability shall be investigated, in order to address it in the Attack phase. One

of the ways to analyse a potential vulnerability is to replicate the same environment in a

testing lab. Additionally, related documentation, manuals, vendor-issued information, se-

curity research and known exploits as well as default configurations or passwords, hard-

ening settings and common misconfiguration errors shall be taken into account. This kind

of approach has the potential to find more reliable exploits, decreasing inaccurate results

and the risk of disrupting target infrastructure [33]. Regardless the goal of a PT being the

identification of vulnerabilities, the identification of their root causes should also be ad-

dressed, in order to enhance the organization’s overall security posture, as it may expose

the lack of some security requirements or security controls that should have been putted

in place [16]. Some common root causes, as highlighted in NIST SP 800-115, include:

• Insufficient patch management, such as failing to apply patches in a timely fashion

or failing to apply patches to all vulnerable systems

• Insufficient threat management, including outdated antivirus signatures, ineffective

spam filtering, and firewall rulesets that do not enforce the organization’s security

policy

• Lack of security baselines, such as inconsistent security configuration settings on

similar systems

• Poor integration of security into the system development life cycle, such as missing

or unsatisfied security requirements and vulnerabilities in organization-developed

application code

2. STATE OF THE ART 19

• Security architecture weaknesses, such as security technologies not being properly

integrated into the infrastructure (e.g., poor placement, insufficient coverage, or out-

dated technologies), or poor placement of systems that increases their risk of com-

promise

• Inadequate incident response procedures, such as delayed responses to penetration

testing activities

• Inadequate training, both for end users (e.g., failure to recognise social engineering

and phishing attacks, deployment of rogue wireless access points) and for network

and system administrators (e.g., deployment of weakly secured systems, poor secu-

rity maintenance)

• Lack of security policies or policy enforcement (e.g., open ports, active services,

unsecured protocols, rogue hosts, weak passwords

Besides comparing applications responses with know signatures, vulnerability anal-

ysis shall test for all known kinds of potential threats, related to the context of the tar-

get. OWASP releases, periodically, a list of the most prevalent threats in web applica-

tions, whose latest version, OWASP Top Ten 2017 [34], will be analysed later. Common

approaches include fuzzing techniques, trying for unexpected inputs, discover injection

points of unsanitized inputs, testing for security misconfigurations or trying for faulty

access controls, among others.

Threat Modeling

With the information previously gathered, the following steps need to be prepared with

a cost/benefit relation in mind, prioritising the potential threats according to its inherent

risk. Threat modeling provides the necessary approach as it implies a process to construct

threat scenarios to be later explored in the exploitation phase. Although there are similar-

ities with a Threat Modeling process implemented in a typical information security risk

management program, on this context the focus is, essentially, on creating an adversary

profile, identifying plausible threat events and developing threat scenarios. This threat-

centric model is one of the purposes a cyber threat model can serve, namely for PT [35].

There are a significant number of threat modeling frameworks with different em-

phases or specific to certain ICT domains. From the analysis of Bodeau et al. [35], CBEST

approach is depicted as one of the most useful for the context of a PT. This framework

20
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

was developed by the Bank of England in 2016 and is focused on the identification of

specific threat actors and their common attack patterns using the available gathered in-

formation. Each threat actor is identified and characterized according to motivation, capa-

bilities, skill level and sophistication, persistence and risk sensitivity, among others and

its modus operandi is identified, when possible. CBEST approach allows the conception

of an assertive threat actors model in what predicting likely threat events is concerned.

However, despite the chosen framework, threat modeling should be consistent on the

representation of threats, their capabilities and their qualifications, aligned with the or-

ganization point of view, and must guarantee testing reproducibility in a consistent way

[36].

Regardless of the type of PT being performed, the threat model should always be

based on an attacker’s perspective, considering OSINT gathered [36] and other relevant

information like previous PT reports, regular vulnerability assessment reports or previous

security breaches, when appropriate. Thus, risk estimation shall evince the likelihood of

threat events or scenarios to materialise, concerning the assumptions made over the most

relevant vulnerabilities and their impact on target’s assets, as well as the costs it may bring

to the organization. To build such scenarios, attack trees or attack graphs are widely used

techniques, not only for cyber systems, but also for cyber-physical and physical systems,

providing a structuring framework [35]. They provide an easily understandable testing

path assuming that there is a deep knowledge of the system being tested and the related

threats

A well established threat model will help in prioritising tasks, enhance a strategic ap-

proach and will be meaningful for stakeholders as it gives support to resource allocation,

projects the attack surface reduction and addresses the value of the already implemented

security controls.

Limitations

Although a PT is, desirably, a structured and matured process, it still has some limitations.

The first one is related with the circumstance that a PT represents the reality of a target

at a certain moment in time. Furthermore, that representation is built by an individual,

or a group of individuals, that may overvalue some approaches at the expenses of others

and that rely on tools and methods, themselves with their own limitations. Additionally,

individuals and tools usually search for known vulnerabilities, by which unknown threats

may remain undetected.

2. STATE OF THE ART 21

Understanding these limitations should reinforce the idea that vulnerability manage-

ment shall be a permanent activity in an iterative improvement process. It shall incorpo-

rate a wide range of approaches, so the weaknesses of some of the approaches may be

mitigated by the others.

2.2.3 Attack Activities

Exploitation

Discovery and analysis activities should produce a set of vulnerabilities that must be

tested during this phase. This is a very dynamic process whose primary objective is to

circumvent the existing security controls and get access to the target system and its pre-

sumed secured assets. Since it can take several paths, a previous threat analysis must

exist, in order to prioritise found vulnerabilities and choose the appropriate approaches

as far as their exploitation is concerned [37]. Typical attack vectors include web applica-

tions, infrastructure vulnerable assets like misconfigured servers or vulnerable exposed

services, wireless access points or mobile devices like smartphones. Although they are

very diversified, the end goal of the exploitation phase is to get an improper access to

target’s resources included in the rules of engagement and try to maintain that access in

the future, which will be addressed in the post exploitation step.

In a wide scope PT, social engineering attacks shall be included in the rules of engage-

ment, as it is believed that the human factor is the weakest link in the security context

[38]. Its goal is to test the human factor, concerning users security awareness related to

the applicable security controls [16], and can be performed through several means, either

digital or not. In its simplest form, social engineering attacks try to mislead users into

revealing sensitive information or into installing malicious software on the target’s infras-

tructure, enabling the attacker to circumvent existing security controls that could block

his intentions. Phishing is one of the most prevalent social engineering attacks, where

the attacker attempts to deceive a user through an authentic-looking e-mail, requesting

information such as credit card numbers, Social Security numbers, user ID or passwords,

or trying to direct them to a bogus web site in order to collect some kind of information

or to make him install some kind of malware.

22
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

Other attacks need interaction with the target on a technological level, either against

the infrastructure or against some application. Based on the information previously gath-

ered, it is possible to find already known exploits that may be tried, although they could

need some costumization to successfully materialise the attack. Centering our analysis

on web applications, there is a baseline for vulnerabilities assessment established in the

OWASP, widely adopted by the industry, named Top Ten, which is detailed later (see sec-

tion 2.3). Despite a more recent version being in preparation, the current reference was

published in 2017 and highlights the most sensible vectors in a web application that need

to be assessed [34].

In this phase, an attacker validates his findings from the discovery and analysis ac-

tivities, exploiting the verified vulnerabilities, which demands a clear understanding of

the context to attack. The manual testing component is higher, mostly with web appli-

cations, and must consider the several components involved, how their vulnerabilities

can be chained in order to increase the exploitation degree or even existing exploits that

may be tailored according to the intended purposes [37]. As such, when a vulnerability

is found, the next step is try to leverage it to other attacks or to find extra information

about the target, reconciling these findings with the previously gathered information. In

this case, further analysis and testing is required. One of the main objectives for an at-

tacker is related to privilege escalation, as it will facilitate system takeover. In this con-

text, the extent of the system’s compromise must be determined, in order to address the

post-exploitation step [16, 38].

Post Exploitation

After a successful exploit, it is important to determine the relevance of the compromised

machine or application, identifying sensitive data, analysing infrastructure, assessing ex-

filtration viability, trying for persistence and for further penetration into the infrastruc-

ture. However, depending on the rules of engagement, not all actions may be allowed,

reason why the tester shall gird up to mutually agreed actions to avoid unnecessary risk

for the client’s systems and for himself, from a legal point of view [39].

From the new perspective of a compromised resource, additional information can

be gathered and analysed to determine the full extent of compromise. Information re-

lated to the network configuration of a compromised machine may reveal additional sub-

networks, servers or name servers, identifying new targets for further testing. Concerning

network services, it may be possible to detect previously unidentified services due to the

2. STATE OF THE ART 23

presence of filtering systems, identify VPN connections that interact with unknown sys-

tems as well as enumerate user accounts, services or hosts managed by directory services.

As much as possible, information regarding installed software or services like IDS, IPS,

database servers, certificate authority services, source code management servers, messag-

ing services, monitoring or backup systems, among others, shall be collected and analysed

concerning the new paths of attack they may reveal. Depending on the depth of the PT

as well as on the rules of engagement, additional sensitive data may be collected with

key-logging and screen capture software [39, 40].

At this step, the tester shall also try to leverage the possibilities uncovered with the

new information. Therefore, data exfiltration possibilities shall be tested, as well as ar-

bitrary code execution or even backdoor and rootkit installation as forms of acquiring

persistence for future compromise. Additionally, evasion techniques that cover malicious

actions like audit log manipulation shall be employed, as they will provide a perspective

on the maturity of the implemented security controls [38, 39].

When the PT is considered finished, the analyst shall clean up all the systems with

which he interacted, including user accounts created for testing, binaries, scripts, files

and folders. Furthermore, all the changed configurations shall be restored to original

values and any backdoor or rootkit must be removed. The collected information must be

treated in the terms specified in the rules of engagement considering, as a base rule, that

its storage shall be always encrypted [39].

2.2.4 Reporting

A PT becomes completed with a report delivery, as should be stated in the rules of en-

gagement. Although the structure of the report may be adjusted, considering its purpose,

it must describe the identified vulnerabilities, present a risk rating of each one and give

guidance about mitigation of the discovered weaknesses, although PCI DSS, FedRamp

and OSSTMM don’t consider it mandatory. The results of a PT may have several goals

and can be used as a reference for corrective actions, to access the implementations of

security requirements, to meet compliance requirements, to measure an organization’s

progress towards meeting security requirements or to define mitigation activities based

on a cost/benefit analysis, among others [16].

Usually, these reports begin with an executive summary stating the major findings

and presenting an high level view of the PT evincing, also, that the vulnerabilities and

24
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

their severity should be taken as an input to the organization’s risk management process.

The executive summary presents an explanation of the overall purpose of the test, stating

the targets considered in scope, the type of test performed and the testing goals. Addi-

tionally, it unveils the overall risk score, according to the scoring mechanism established

at the pre-engagement phase, justifying the rationale followed to reach it. It may conclude

with a recommendations summary that points to the steps needed to mitigate the iden-

tified risks and their respective priority with the associated level of effort. The intended

audience of this section is the organization’s management, therefore requiring a very con-

cise summary of the test’s findings that allows an informed decision about the steps to

take [15, 41].

The main part of the report addresses the PT from a technical point of view, presents

the testing narrative, detailing its scope, the selected targets, the methodologies used to

perform the test, the testing limitations, the tools used, the timeline of the test and the

vulnerabilities found. The extent of the organization’s information gathered should be

presented, specially those considered sensitive and publicly available. This information

may reveal the maturity of the overall security posture, namely the human resources. For

each finding a risk score has to be proposed, preferably according to Common Vulnera-

bility Scoring System (CVSS) framework [21], a relationship with known vulnerabilities

shall be established, based on CVE and CWE lists [22, 23], and a detailed description

on how to reproduce it must be presented. Additionally, all the identified attack paths

shall be reported, notably those that chain together some of the identified vulnerabilities,

pointing out the level of access acquired, the compromised assets, the required level of

skill to perform it and the required level of access to deploy the attack. Generically, the

information to provide has to clear out the steps needed to mitigate the vulnerabilities

found [15, 18, 20, 41].

There are some advantages to resort to standardised frameworks or lists like CVSS,

CVE or CWE, once they provide a clear reference for communicating the characteristics

and severity of software vulnerability. The use of these references, that shall be stated in

the rules of engagement, make possible to have a common reference that is meaningful

and easily understandable across industry to support a threat based analysis.

2. STATE OF THE ART 25

2.3 Web Vulnerabilities

Web applications may have a wide variety of vulnerabilities that can arise from factors

like insecure coding practices or from the use of vulnerable third-party libraries, among

others. To minimise the associated risks, OWASP has been developing the ”Top Ten”

project which, periodically, reviews the consensus based most critical web vulnerabilities

in order to provide effective first steps towards secure coding practices. Although the

2020 version is being prepared, the actual one reports to 2017 and lists the following Top

Ten application security risks: Injection, Broken Authentication, Sensitive data exposure,

XML external entities (XXE), Broken access control, Security misconfiguration, Cross-site

scripting (XXS), Insecure deserialization, Using components with known vulnerabilities

and Insufficient logging and monitoring.

Although the context of this project is within a broader effort of enhancing the security

of software, namely establishing a continuous application security testing throughout the

entire software development life cycle, the referred vulnerabilities shall be tested during

a PT.

2.3.1 Injection

Injection flaws occur when data provided by an user, or that can be tampered with, is

not properly validated, filtered or sanitized by an application at server side, therefore

allowing to relay malicious code through it to be executed at the backend. Although

client side validation is a current practice, either for functional or security reasons, it can

be easily bypassed, thus requiring another validation step at server side. This is a very

prevalent vulnerability that can affect applications that use interpreters or that implement

their functionalities resorting to operating system features or other external programs

combined with user-supplied data, particularly in legacy code [34, 42].

In order to detect such vulnerabilities, all the user-supplied data should be tested to

check if it is being validated, filtered or sanitized, used in non-parameterized queries,

used in Object Relational Mapping (ORM) search parameters or directly used or con-

catenated in any type of commands. They are frequently found in SQL, LDAP, XPath,

or NoSQL queries, OS commands, XML parsers, SMTP headers, expression languages,

and ORM queries. Additionally, vectors associated to code injection, template injection

or buffer overflows shall also be verified. Automated testing of all parameters, headers,

26
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

URL, cookies, JSON, SOAP, and XML data input points, associated with fuzzing tech-

niques, are one of the ways to detect vulnerable injection points and, in the case of a

white-box PT, source code analysis is an essential method to accomplish it [34].

To exploit these kind of vulnerabilities, the context where they occur must be analysed,

in order to produce a manipulated input that, when interpreted at server side, a different

action different from those intended may be executed. These kind of vulnerabilities may

have as a consequence data disclosure, corruption or loss as well as remote code execution

which, in certain cases, may enable a complete host takeover.

2.3.2 Broken Authentication

Authentication flaws emerge when protected content becomes accessible by other users

than the intended ones. Since the use of the pair username and password is the most

common authentication method and that, currently, there are a considerable amount of

leaked credentials from past data breaches, this data can be used in the context of some

attack methods to compromise some users access to an application. As such, there is an

ongoing effort to implement multi-factor authentication and to adopt more secure prac-

tices regarding the use of this method of authentication. Another concern is related with

session management implementation, namely in what is concerned with session or au-

thentication tokens life cycle (generation, storage, validity) [34].

There are some indicators that could point to the presence of such vulnerabilities.

Therefore, an analyst should verify issues like: transmission of credentials over an en-

crypted channel; use of default credentials; predictable default password generation; ac-

count lockout mechanisms; authentication schema bypass; vulnerable credential recover-

ing; browser cache weaknesses; password policies; password change or reset functionali-

ties; authentication over an alternative channel. Because some applications operate over

different channels, sometimes vulnerabilities that are not present in one of them may

show up in another, like in a mobile app or desktop application. Thus, even if those chan-

nels are out of the scope considered in the rules of engagement, they should be mentioned,

because their presence broadens the attack surface, impacting the degree of assurance of

the assessment [15].

To avoid continuous authentication, session management mechanisms provide the

needed functionality to maintain an user’s state towards the application. As such, it

2. STATE OF THE ART 27

should be tested considering: cookies that implement session management; cookies at-

tributes; session fixation; exposed session variables; Cross-site Request Forgery (CSRF);

session termination/logout; session timeout; session puzzling. Session tokens should

be tested concerning their randomness, uniqueness, resistance to statistical and crypto-

graphic analysis and information leakage as well as their tamper resistance, structure and

character set [15].

Resorting to breached data, an attacker has access to a considerable amount of user-

name and password combinations that may be tried using a credential stuffing attack.

Additionally, brute force or other automated attacks may also be tried, as well as default

or weak credentials testing, particularly if lock out mechanisms are not implemented. In

order to bypass authentication schemes, parameter modification, session token prediction

or even SQL injection may be tried. Another testing vector is the usual credential recovery

functionality or the ”forgot password” process that, alone or combined with other kind of

exploitation, may grant access to an user’s account.

Session management mechanisms should also be tested, namely for predictable ses-

sion or authentication tokens generation, tokens exposure in URL or lack of tokens invali-

dation after logout, idle or absolute session timeout [34]. Understanding cookies creation

and management must be the first step to a successful attack. Thus, tampering with ses-

sion tokens may provide a way to bypass authentication mechanism, allowing for a range

of effects like impersonation or privilege escalation. CSRF may provide an indirect way

of performing some malicious activities resorting to an authenticated user that, in an un-

noticed way, will materialise the attacker’s intents. In the case of successful attacks like

cross-site scripting, there is the possibility to exfiltrate a session or authentication token

from an user and, therefore, impersonate him towards the application, especially if ses-

sion logout or timeout functionalities are not properly implemented.

2.3.3 Sensitive Data Exposure

Some targets deal with sensitive data like personal health records, credit card numbers or

business information, among others, therefore being a potential target to attacks. These

kind of data should be protected either when at rest or in transit with the use of cryptog-

raphy, as established in legislation like GDPR or other standards like PCI-DSS. However,

there are still applications that don’t implement such security controls or that do it in an

improper way, allowing attackers to access sensitive data.

28
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

Therefore, verifying the traffic established with the application is important to reveal

if the data is being transmitted in clear text or not. When the protocol in use is HTTPS, a

downgrade to HTTP should be attempted, since some applications don’t enforce the use

of TLS. If cryptography is employed, the algorithms in use should be verified as well as

the protocols and the key length. Additionally, the existence of accessible cryptographic

keys should be verified, as it could be the only way to circumvent this security control.

Another important detail is to verify if the certificates are being validated [34]. When

performing a white-box PT, code and configurations review is the fastest way to identify

these vulnerabilities.

When data transit or storage is not encrypted, accessing it is trivial. In the case where

cryptography is employed, some approaches may be tried, like using stolen keys, attack

known vulnerabilities of some algorithms or protocols, test for the use of weak or reused

keys and even force the use of weaker ciphers or, in a worst case scenario, force the use of

no encryption. When there are other available services in separate tcp port, their eventual

vulnerabilities may provide an entry point to the target or, some times, could provide ac-

cess to private keys, allowing future decryption of transmitted data [15]. Possible attacks

against TLS include Heartbleed, BEAST, CRIME, TIME, BREACH, STARTTLS or Padding

Oracle attacks, among others, as well as those that explore faulty or insecure implemen-

tations [15, 43].

2.3.4 XML External Entities (XXE)

Some applications use XML format to exchange data between the browser and the server,

allowing the abuse of some of its features if the XML parser is weakly configured. This

format is very flexible and its structure, type of data values and other items may be de-

fined through the XML document type definition (DTD). The DTD contains or points to

markup declarations like element type, attribute-list, entity or notation declarations and

is declared within the optional DOCTYPE element at the start of a XML document. XML

entities are one of the ways to represent data inside a XML document which, due to the

flexible nature of XML, may be customised. External entities are one of such custom en-

tities and are declared with the SYSTEM keyword, specifying an URL from which the

entity’s value is retrieved from. When the the URL is accessed by the parser to process

the entity, it replaces its occurrences with the contents of the resolved URL, allowing for

the manipulation of the behaviour of the application. Additionally, the file:// URL schema,

2. STATE OF THE ART 29

and other protocols such as gopher:// may also be used instead of http://, providing several

attack paths ranging from accessing to private network resources, as the processing oc-

curs at server side, to injecting payloads through attacker controlled resources, once the

URL may point to an attacker controlled resource [44–46].

Applications accepting XML data through requests or file uploads may be vulnerable

to this kind of attack. Defining an external entity pointing to a system file may reveal

its contents in the server response. However, when the results aren’t returned with the

response, XXE may be verified using out-of-band techniques or through error messages

that leak sensitive data.

Therefore, XXE may be exploited to retrieve file content when XML data is modified

in order to define an external entity pointing to a file from the server’s file system that is,

then, returned in the application response. As an example, supposing that an application

checks for the existence of a product submitting a similar XML payload to the server:

<?xml version="1.0" encoding="UTF-8"?>

<productCheck><productId>1337</productId></productCheck>

If the application has no protections in place, an attacker could manipulate the request

submitting a modified version in order to retrieve the /etc/passwd file, sending the follow-

ing XML payload:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [<!ENTITY xxe SYSTEM "file:///etc/passwd">]>

<productCheck><productId>&xxe;</productId></productCheck>

The defined external entity &xxe; is resolved by the XML parser, including its content

inside the productID tag, and returning the file content in the application’s response.

Other attacks are also possible, like server-side request forgery, when the external en-

tity is defined with an URL pointing to a back-end resource, as well as data exfiltration

through an out-of-band channel, sending information from the application back-end to

an attacker controlled server, or data retrieving through error messages or even a denial-

of-service attack like Billion laughs attack1[34, 45].

1https://en.wikipedia.org/wiki/Billion laughs attack

30
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

2.3.5 Broken Access Control

Access control mechanisms try to enforce content and functionality access based on the

authorization that an user may have to perform it and, in the context of a web application,

it is dependent on authentication and session management mechanisms. When not prop-

erly in place, there is the opportunity for an attacker to have an improper access to data

or functionality, giving place to perform privileged actions or read reserved information.

Authorization may be implemented following one of two main approaches: Role Base

Access Control (RBAC) and Access Control Lists (ACL). Furthermore, some web applica-

tions build their access control mechanisms upon the concept of Model-View-Controller

(MVC) which allows for some flexibility, concerning the placement of security controls.

However, sometimes those controls are placed at the ”view” layer, behaving like filters to

the content that must be rendered. Thus, the authorization check may happen after some

previous actions have already taken effect, like changing database contents, although not

visible to the user [47–49].

Access control flaws are, mostly, detected using manual means as they manifest them-

selves at a functional level, depending on the application business logic. The assess-

ment for these vulnerabilities shall consider access control bypass via modifying requests,

namely detecting insecure direct object references (IDOR), path traversal possibilities, in-

secure access control tokens or cookies and, additionally, testing for the authorization

schema bypass with forced browsing or for privilege escalation possibilities. This kind

of testing requires a variety of user profiles and testing accounts and should be quite ex-

tensive in order to test all the application functionalities and its robustness concerning

proper authorization [34].

To exploit this kind of vulnerabilities, the main vector is request manipulation, either

on the URL or on its data section or headers, including also cookies that may be stored

on the browser. In general, if the user’s access rights or role information is placed at

location controllable by him, an attacker may tamper with that data. Detecting tampera-

ble parameters, thus, could be quite effective in enabling an attacker to access restricted

data or functionalities. To illustrate a parameter-based access control method bypass, let’s

consider the following URL to access an application:

https://nosecurity.com/login/home.jsp?admin=false

2. STATE OF THE ART 31

If there is no other mechanism to enforce authorization besides the admin parameter, an

attacker could grant access to administrator functionalities if the requests are tampered

with the following version:

https://nosecurity.com/login/home.jsp?admin=true

Other vectors of attack to consider are the identification of unprotected functionalities,

IDOR vulnerabilities or faulty multi-step authorization processes that fail to implement

access controls in every step, allowing to skip the protected ones and accepting request

submissions with the required parameters at the unprotected steps [34, 47].

2.3.6 Security Misconfiguration

When deploying web applications in a production environment, there should be an aware-

ness that what is really being exposed is an array of interconnected elements like hard-

ware, applications, third party libraries and their related security issues. As such, all

these elements need to be mapped and reviewed in order to get some degree of assur-

ance about their security. Security misconfigurations may occur at any of those elements,

including the network services, platform, web server, application server, database, frame-

works, custom code, and pre-installed virtual machines, containers, or storage services.

Additionally, the administrative tools used to manage all the referred elements should

also be considered as an attack vector [15, 34].

During the discovery and analysis activities, an appropriate mapping of the technolo-

gies and elements composing the web application should have been accomplished which,

resorting to vulnerabilities databases information, shall help to outline an initial testing

approach for each component of the application stack. The use of automated tools can be

helpful in detecting misconfigurations like the use of default accounts, credentials or con-

figurations, the presence of unnecessary services or the use of insecure options. Therefore,

an understanding of how different elements of the application interact is quite determi-

nant to a comprehensive assessment. Furthermore, some details may denote the presence

of this type of vulnerabilities, like error messages disclosing excessive information or ab-

sence of some security headers[34].

Exploiting such vulnerabilities may have several approaches, including taking advan-

tage of default configurations and credentials usage or abusing discrepancies in how el-

ements in the same data flow parse HTTP requests, among others. An example of the

last possibility is an HTTP Request Smuggling attack which exploits the discrepancies in

32
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

parsing HTTP requests when one or more HTTP ”devices/entities (e.g. cache server, proxy

server, web application firewall, etc.) are in the data flow between the user and the web server”

[50]. This attack relies on sending specially-crafted HTTP requests that are parsed differ-

ently by the involved devices, allowing for several kinds of additional attacks like web

cache poisoning, session hijacking, cross-site scripting and most importantly, the ability

to bypass web application firewall protection.

2.3.7 Cross-Site Scripting (XSS)

Cross-site scripting (XSS) is a vulnerability usually found in web applications where a ma-

licious agent successfully injects code, generally a browser script, that is executed when an

unsuspecting user accesses some web resource. XSS allows an attacker to perform actions

reserved to the legitimate user, since the malicious script is executed in the context of the

latter’s session. It has three types, Stored XSS (persistent), Reflected XSS (non-persistent)

and DOM Based XSS, related to the origin of the malicious scripts: storage system, http

request and client-side code, respectively. Generally, XSS may allow an attacker to imper-

sonate the victim user, perform actions that the user is able to do, read any data accessible

to the user, capture user’s credentials, perform virtual defacement of the web site or in-

ject trojan functionalities into the web site. When present, XSS makes CSRF protections

useless, unfolding worrisome paths of attack [34, 51].

XSS is a type of injection vulnerability, thus occurring when user supplied data, not

appropriately sanitised or escaped, succeeds in executing JavaScript and HTML in the

victim’s browser. This vulnerability is detected in a similar way to other injection vulner-

abilities, probing every data entry points, and can resort to automated tools to accomplish

it. The application responses are, therefore, analysed, searching for the test input in the

response and verifying if they have been, or not, sanitised, encoded or replaced. When

inputs are sanitised, bypassing XSS filters should be tried, once these mitigations could

be improperly implemented [15, 34].

Depending on the type of XSS present, the attacks are deployed in different ways.

Considering an application with a blog service where users post messages they could be

displayed to other users in the following way:

<p>Hi! This is a secure message.</p>

However, an attacker may submit the same message accompanied with a script that exe-

cutes JavaScript code in an unsuspected way:

2. STATE OF THE ART 33

<p>Hi! This is a secure message.<script>document.location=’https://

www.attackersite.com/?data=’+document.cookie</script></p>

In this example, the user’s session cookie is exfiltrated to the attacker’s server and can

be used to enter his running session at the application, bypassing the authentication step.

This method could also be leveraged to perform other actions on behalf of the legitimate

user, like changing his own data within the application context, bypassing eventual CSRF

protections or even accomplishing full account takeover [15, 34].

2.3.8 Insecure Deserialization

Data structures may be transformed in a byte stream representation that retains its proper-

ties, attributes and assigned values, providing a simpler way to store it in an inter-process

memory, a file or a database, as well as exchange it over a network between different el-

ements of an application. This transformation process is known as serialization and may

be reverted, in order to restore the byte stream to a replica of the original data structure,

maintaining the aforementioned characteristics. Deserialization may be insecure when

it is operated over user-controllable data, since an attacker can manipulate or replace a

serialized object, independently of the process to accomplish it, that may force the appli-

cation to execute unintended code at deserialization time, allowing for remote code exe-

cution in the worst case scenario. As such, deserialization of user-controlled data should

be avoided, even if additional verification is done, given that anticipating all verification

needs does not seem feasible in order to account for every tampering possibility. One of

the main problems lies in the fact that some of the attacks are, actually, executed before

the deserialization process is finished, making verification useless, once it happens after

the end of this process [34, 52, 53].

Insecure deserialization may be present in languages like C, C++, Java, Python, PHP,

Ruby and, probably, others. Therefore, knowing how objects are serialized in each lan-

guage is determinant to detect it. Some use string formats, with several degrees of human

readability, while others employ binary formats. The latter, may give a false sense of se-

curity, however, despite they could require more effort, the main problem persists. As an

example, PHP resorts to a string format where letters represent the data type and numbers

indicate each entry length. Considering a Client object with the following attributes:

$client->name = "Bob";

$client->isAdmin = false;

34
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

When serialized, it will be represented:

O:6:"Client":2:{s:4:"name":s:3:"Bob"; s:7:"isAdmin":b:0;}

As such, if some of the data being exchanged between the browser and the server presents

a similar structure, there should exist serialized objects, with a high degree of probability.

Additionally, when performing a white-box PT, some methods should be detected, like

serialize() and unserialize() in the context of PHP language [52, 54].

Deserialization vulnerabilities may be exploited in various ways like modifying object

attributes or data types, abusing applications functionalities, abusing constructor meth-

ods, injecting arbitrary objects or using gadget chains. As an example, if we consider the

object above as an user’s session data stored in a cookie, an attacker intending to escalate

his privileges, could try to change the attribute isAdmin to 1 (true). Therefore, he would

have to re-encode the object and overwrite the cookie with the new data:

O:6:"Client":2:{s:4:"name":s:3:"Bob"; s:7:"isAdmin":b:1;}

If the privileges are checked considering the cookie content, as in listing 2.1, the Client ob-

ject is deserialized and instantiated with the isAdmin attribute set to true, granting access

to the admin interface, if the authenticity of the serialized object is not verified. However,

if such verification was implemented, another kind of exploit could be considered, like

abusing constructor methods or injecting arbitrary objects [34, 54].

$client = unserialize($_COOKIE);

if ($client ->isAdmin === true) {

// allow access to admin interface

}

LISTING 2.1: Check cookie

2.3.9 Using Components with Known Vulnerabilities

Software development, with a high degree of probability, resorts to code re-use, either

open source, libraries or frameworks. Parallel to that, complex applications need to inte-

grate diverse technologies like web servers, application servers, load balancers, database

management systems, virtualization environments, other applications, APIs, with all of

these elements running on top of operating systems. Once any of these components may

2. STATE OF THE ART 35

present their own vulnerabilities, its determinant for the global security of an application

that each of the elements solely integrates it when is properly patched and has no con-

flicting configurations. Considering that, frequently, any of the components runs with

elevated privileges, when one of them is exploitable, a full compromise of the system

becomes easier [15, 34].

During the discovery and analysis activities, the application components have been

identified thus allowing to outline an initial testing approach for each one. Important de-

tails to consider are software versions which permit the comparison with vulnerabilities

databases information. Also, the presence of unsupported, not upgraded or unpatched

software increases the probability of vulnerabilities existence. Incompatible elements also

present risks, as the referred HTTP Request Smuggling attack illustrates (see section 2.3.6).

Therefore, exploiting an application with components with known vulnerabilities could

mean to build an attack path that leverages each of those vulnerabilities in order to com-

promise a system. The approach needs to be as varied as the technologies employed are.

2.3.10 Insufficient Logging and Monitoring

From a security perspective, logging and monitoring applications operation are important

controls operating on two levels: register relevant events for future analysis; checking if

the actions triggered are within the expected application usage. Usually are implemented

in a related way, where the monitoring tools act based on the logs collected. As such,

monitoring allows protection mechanisms to be triggered when, for example, an attacker

is trying to brute force a login form, while logging allows for a posterior analysis to de-

termine the attack provenance and the actions tried to perform it. Logging should regis-

ter security relevant events, including successful and failed authentication events, access

control failures, deserialization failures and input validation failures, providing relevant

information for a future forensic analysis, including the reconstruction of an attack time-

line. Thus, logs should be clear and easily monitored and analysed, and should follow

storage and protection good practices [15, 34].

While establishing if logging and monitoring controls are implemented could be dif-

ficult, there are some indicators that may evince that they may not be properly in place,

at least. One of such contexts is when rate limiting is not present, allowing for brute force

attacks. Assuming that most successful attacks begin with reconnaissance and vulnera-

bility testing, and that the latter implies interaction with the application, allowing such

36
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

testing without any kind of limitation will increase the likelihood of a successful exploita-

tion. In a white-box PT, checking for the existence and correct implementation of such

controls is simpler. However, later analysis of a Penetration Testing (PT) should include

attacks reconstitution based on logs information, to determine if logging mechanisms are

properly set [15, 34].

Chapter 3

Supporting Background Work

In this chapter we will approach central elements that give support to the implementa-

tion of OrchRecon. Distributed systems pose a set of challenges, namely those regarding

communication between several components, as well as others related to its design as far

as transparency, scalability or heterogeneity are concerned. As such, some of the related

core concepts were reviewed in order to support our architecture choices.

Additionally, we reviewed some of the open source tools to perform reconnaissance

in the context of a Penetration Testing that implement some level of automation, with a

special focus on those that better relate with our solution.

Once containerization was the chosen approach to our module implementation, we

also present a high level analysis of this technology, as it provides fully configured envi-

ronments to each tool without interfering with others’ dependencies.

3.1 Containerization

Containerization is an Operating System (OS) virtualization technique that allows for pro-

cess isolation and is particularly adequate for application management. It builds from the

concepts of namespaces and cgroups, kernel mechanisms in Linux distributions used to iso-

late processes on a shared OS, supported by the Linux kernel containment features, com-

monly known as LXC. Namespaces grant process isolation, preventing groups of processes

from seeing other groups resources like network interfaces, inter-process communication

and mount points. Additionally, cgroups enable limitation and management of process

groups, considering hardware resources like memory or CPU utilisation, allowing con-

tainers to share them [55].

37

38
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

Once containers share the same OS, they provide a smaller and lightweight form of

virtualization when compared with others like hypervisors, becoming a popular solu-

tion for delivering self-contained applications including, when necessary, middleware

and business logic implementations. Furthermore, containerization encapsulates the en-

vironment where applications are developed, bundling their code with other configura-

tion files, libraries and dependencies it may require, allowing for faster deployments with

fewer errors or bugs, at the same time as it provides consistent environments, isolation

and portability [55, 56].

Docker, the most popular container solution, extends LXC with a kernel- and application-

level API and provides a runtime engine which manages OS resources for containers. A

Docker container is an isolated, lightweight, executable package of software that includes

all the resources required for an application execution: code, runtime, libraries and set-

tings. They are built with layers of individual images on top of a base image, containing

all the required resources, ranging from OS fundamentals to a complex pre-built applica-

tion stack. This building process is implemented with a script, a Dockerfile, consisting of

various instructions that, incrementally, modify the base image [57, 58].

3.2 Distributed systems

Distributed systems give support to an increasing myriad of daily activities like web

search, e-mail, financial trading systems, mobile communications, multiplayer online gam-

ing or GPS location as well as corporate or industrial networks, just to name a few exam-

ples. One of the prime reasons to build a distributed system is resource sharing, here un-

derstood in a very broad sense, ranging from hardware components to software-defined

entities like databases, files or other kinds of data that are network connected [59]. Over

the years, several definitions have been established to characterise it of which that of

Steen et al. [60] presents it in a very broad perspective: ”A distributed system is a collection

of autonomous computing elements that appears to its users as a single coherent system”. This

perspective is compatible with others like that from Coulouris et al. [59] and identifies the

same kind of challenges that should be considered when developing such systems.

Considering computing elements as hardware devices or software processes, their in-

dependent operation is, however, tied to a common objective from the system’s perspec-

tive. Therefore, some questions arise concerning their synchronisation and coordination,

3. SUPPORTING BACKGROUND WORK 39

how they communicate, how their belonging to the system is managed, namely concern-

ing membership, registration and egress, and how these states are communicated to other

elements [60].

An apparently single coherent system, according to the author, is one that behaves

according to users expectations and hides the collection of computing elements that con-

stitute it. These characteristics present some other challenges concerning systems design,

such as distribution transparency, heterogeneity or failure recovery, as they are composed

of multiple networked elements, sometimes with different OS, and its eventual failure in

time that cannot be avoided.

To deal with heterogeneity due to OS, hardware or programming languages diversity,

distributed systems are, usually, developed on top of middleware. It presents a uniform

computational model for developers and is implemented on the application layer, provid-

ing a programming abstraction to manage the underlying heterogeneity in a networked

environment. Middleware manages resources across the network and provides services

like inter-application communication, security, accounting or masking of and recovery

from failures [59, 60].

3.2.1 Design issues

Developing a distributed system should be weighed in order to check if it is a justified

option. Steen et al. consider that such a system (i) should assure that resources are easily

accessible, (ii) should hide the fact that resources are distributed across a network, (iii)

should be open and (iv) should be scalable. Beyond these goals, Coulouris et al. refer

some additional challenges that should also be considered: heterogeneity, security, failure

handling, concurrency and quality of service.

As already referred, resource sharing is one of the main purposes for building a dis-

tributed system, whether they are facilities, storage, peripherals or data, files, applica-

tions, networks, among others. Economic reasons are some of the driving forces to such

an option which, also, facilitates collaborative work, teleconferencing or information ex-

change. Peer-to-peer networks are an example of a distributed system built for resource

sharing, making file sharing a very easy task [60].

Distributed systems feature of hiding resource distribution over a network is referred

as Transparency by the literature, so that a system looks to its users and applications as

40
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

a single coherent system rather than a set of independent elements, sometimes physi-

cally separated across multiple machines over large distances. According to the Reference

Model of Open Distributed Processing (RM-ODP), there are eight types of distribution

transparency, as depicted in Table 3.1 [61].

Transparency Type Description

Access Transparency
Masks differences in data representation and invoca-
tion mechanisms to enable interworking between ob-
jects

Failure transparency
Masks from an object the failure and possible recovery
of other objects (or itself) to enable fault tolerance

Location transparency
Masks the use of information about location in space
when identifying and binding to interfaces

Migration transparency
Masks from an object the ability of a system to change
the location of that object

Relocation transparency
Masks relocation of an interface from other interfaces
bound to it

Replication transparency
Masks the use of a group of mutually behaviourally
compatible objects to support an interface

Persistence transparency
Masks from an object the deactivation and reactivation
of other objects (or itself)

Transaction transparency
Masks coordination of activities amongst a configura-
tion of objects to achieve consistency

TABLE 3.1: Transparency Types

Scaling a distributed system is a central concern for developers and has become one of

the most important design goals. Steen et al. refer three dimensions to measure scalability:

• Size scalability

• Geographical scalability

• Administrative scalability

From the size perspective, a system can be scalable if there isn’t a noticeable performance

degradation when more users or other resources are added to it. Concerning geography,

a system is scalable if the distance between its components or users, with the associated

communication delays, is hardly observable. Analysing from an administrative point of

view, a scalable system is one that keeps an easy management despite it depends from sev-

eral independent administrative organizations. In this regard, one of the major problems

arises when there are conflicting policies concerning resource utilisation, management

and security [60].

Besides the referred design issues, Coulouris et al. pointed some additional challenges

concerning the implementation of distributed systems. Heterogeneity, here understood as

3. SUPPORTING BACKGROUND WORK 41

the variety and difference applied to networks, hardware, OS, progrmaming languages or

implementations by different developers, should be masked in a distributed system. As

such, there is the need to resort to a programming abstraction provided by a middleware.

Middleware provides an uniform computational model, operating at the software layer,

that deals with existing differences in hardware, OS or networks. These models may in-

clude remote object invocation, remote SQL or distributed transaction processing, among

others. Another solution to handle heterogeneity is through virtualization, either in the

form of process virtual machines, like Java virtual machine, or through the migration of a

collection of processes, including the underlying OS [60].

3.2.2 Types of distributed systems

Distributed systems can be quite different from each other, according to the services they

provide. From the distinction proposed by Steen et al. between distributed computing

systems, distributed information systems and pervasive systems, and considering several

types within each group, we will refer to the first two.

Distributed computing systems

Concerning distributed computing systems, the authors subdivide this group in two types,

according to the heterogeneity of the underlying infrastructure: cluster computing and

grid computing. Cluster computing is an approach in which a single compute-intensive

program runs in parallel on a set of interconnected machines that cooperate to deliver

a single high-performance computing capability. Its infrastructure is based on a set of

similar machines running the same OS.

On the other hand, when the system is constructed as a federation of computer sys-

tems, with different hardware, software, networks, programming languages and admin-

istrative domains, we are towards grid computing type. Grid computing enables the

sharing of such resources in order to address intensive computational tasks, resorting to

a middleware that provides resources from different administrative domains to users and

applications related to specific virtual organizations.

The evolution of the referred distributed computing system types led to a utility based

approach known as cloud computing. It is characterized by a dynamic and scalable util-

isation of a pool of accessible virtualized resources, often paid on a per-utilisation basis,

42
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

that enable outsourcing the entire infrastructure for compute-intensive services in a dy-

namic way [59, 60, 62].

Distributed information systems

Networked applications typify another class of distributed systems of which a server side

application, including a database, providing resources to client applications is an exam-

ple. This architecture presents challenges like how to implement communication between

application components and how to assure that the application stays in a consistent state.

Typically, clients send requests in order to perform an operation, or a group of oper-

ations, at server side, sometimes involving different servers. As an example, operations

on a database materialise through transactions which require a set of primitives supplied

either by the underlying distributed system or by the language runtime system. The avail-

able primitives depend on the kind of objects involved in the transactions of which READ

and WRITE are frequent examples. Furthermore, beyond the use of primitives, transac-

tions may also include Remote Procedure Calls (RPC). Transactions have a characteristic

property, either all of the involved operations are executed successfully or none is exe-

cuted, which together with three others constitute the ACID properties:

• Atomicity: a transaction either entirely succeeds or all the involved operations fail;

• Consistency: a transaction changes a system from a consistent state to other consis-

tent state;

• Isolation: concurrent transactions do not interfere with each other;

• Durability: a committed transaction performs a persistent change.

3.2.3 Communication in distributed systems

Communication between processes is a core subject for distributed systems, for which

some models where developed beyond the usual request-reply protocol. Two of the most

widely-used models for providing such resources are Remote Procedure Calls (RPC) and

Message-Oriented Middleware (MOM). While the first model is adequate for client-server

architectures, the latter is most suitable for applications that do not follow that kind of

interaction [60].

3. SUPPORTING BACKGROUND WORK 43

Remote Procedure Calls

The concept of RPC, attributed to Birrel and Nelson [63], proposes a mechanism to exe-

cute procedures in remote machines as if they were available locally, offering access and

location transparency while hiding details like encoding and decoding of parameters and

results, message passing, calling semantics or distribution. Generally, it is implemented

over a request-reply protocol associated with an invocation semantics. As such, some de-

sign issues arise: programming with interfaces, calling semantics and transparency [59].

Interfaces establish explicitly how interactions between different components of an

application can exchange data, namely specifying the procedures and variables that can

be remotely accessed, the requested parameters and the output results. Since there is a

clear separation between an interface and its implementation, they present some benefits:

programmers only have to deal with the offered abstraction, they do not need to know

the language or the platform in which it is implemented and there is room for software

evolution as far as any change adheres to the interface specification or, in the case of a

change in the interface, there is a backward compatibility. Interfaces are often specified

through an Interface Definition Language (IDL) which allow procedures implemented in

different languages to interact with each other. An IDL provides the means for defining

an interface considering the possible operations, their parameters and outputs and the

respective data types. Subsequently, an interface thus defined is compiled into a client

stub and server stub, building the appropriate run-time interface [59, 60]. An example of

an IDL use is Google Protocol Buffers, which provides a language-neutral mechanism for

serializing structured data and a compiler to generate source code that is invoked to deal

with the respective data structures [64].

Concerning the reliability of the remote interactions from the perspective of the client,

RPC provide a set of invocation semantics intended to deal with possible failures, namely

server crashes. Therefore, some types of semantics are considered: maybe, at-least-once and

at-most-once semantics. The first type arises when there are no fault-tolerance mechanisms

implemented and failures like lost of requests or replies or even remote server crashes are

not addressed. At-least-once semantics is an approach that guarantees that a RPC was

performed at least one time, but eventually more, returning to the client either a result

or an exception. In the last approach, at-most-once semantics, the client receives either a

reply or an exception, but has the guarantee that the RPC was performed not more than

one time [59].

44
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

Since one of the premises of RPC is to look like a local procedure call, its imple-

mentation shall hide a set of actions like data marshalling and unmarshalling, message

re-transmission or remote process location, providing a transparent approach from the

perspective of a programmer. However, some issues may have to be addressed, like net-

work latency or differences in parameter passing, for which some authors argue that the

transparency level should not completely hide such details, so they can be handled ap-

propriately [59].

Message-Oriented Middleware

There are circumstances where the use of RPC is not the most appropriate approach for

communication within a distributed system, namely when both connecting parties are not

guaranteed to be executing at the time of requests or replies. In these contexts, a message-

oriented communication is more adequate, as it allows for an asynchronous communica-

tion approach [60].

The Message-Oriented Middleware (MOM) programming model is based on the con-

cept of queues, through which processes can send or receive messages from other pro-

cesses, providing support for persistent asynchronous communication, once it offers an

intermediate-term storage capacity for messages. Assuming that each application has its

own associated queue, the communication is performed by inserting messages in the ap-

propriate queue which will then be forwarded to the destination, usually implementing a

first-in-first-out (FIFO) policy. The MOM guarantees that the message will be placed in the

recipient’s queue but does not guarantees either when or if it will be read by the recipient

[59, 60].

A message consists of a destination, metadata and the body of which the latter remains

unchanged by the queuing mechanism and is, normally, serialized. The queue systems

provide message persistence, storing messages indefinitely until they are read at the des-

tination, guaranteeing that they are delivered once, only. The message receiving process

may happen in three different ways: i) it blocks until an awaited message is received; ii)

it performs a poll operation, checking the queue status and returning a message when

available, in a non-blocking operation; iii) it issues a notification when a message is in the

respective queue [59].

Message queuing systems may have different kinds of implementation, either cen-

tralised approaches or distributed ones. A centralised approach brings simplicity to the

architecture of the messaging system but at the cost of being a single point of failure and,

3. SUPPORTING BACKGROUND WORK 45

in the case of heavy workloads, can become a bottleneck. As such, more distributed ap-

proaches have been developed, allowing for different topologies that can match require-

ments such as scalability and performance.

Many messaging applications may be organised according to a few communication

patterns like request-reply, pipeline or publish-subscribe that provide the resources to enable

various styles of communication like one-to-many, many-to-one or one-to-one. On a pro-

gramming level, several approaches have been made in order to provide such communi-

cation abstractions while dealing with connections management. One of those efforts is

provided by ZeroMQ, a high-performance asynchronous messaging library that supports

the common messaging patterns over a variety of transports, like TCP, inter-process, mul-

ticast, WebSocket among aothers. It provides a higher level of abstraction in socket-based

communication by pairing sending and receiving sockets according to their specific type

[60, 65].

3.3 Reconnaissance automation

Reconnaissance automation is a permanent quest for security analysis. It ranges from sin-

gle bash scripts to more sophisticated tools that try to automate repetitive tasks, bringing

the benefits of speed, accuracy and wider coverage. The concept of automation, as previ-

ously referred, is present in regulations and standards as a base approach to vulnerability

discovery and, although it does not provide error proof results, its benefits supersede

some of the limitations. In the context of OSINT gathering, automation is helpful as it can

produce a wide amount of data that, subsequently, must be narrowed to conform with the

existing rules of engagement. This breadth approach is common in many tools for what

there is also the need for an human factor to bring an appropriate insight.

There is an ongoing yearly installment about tools and techniques for bug hunters

and red teamers concerning, namely, OSINT gathering. This year, at DEFCON 28, Jason

Haddix presented an update to his The Bug Hunter’s Methodology where he makes an in

depth analysis of the reconnaissance methodology of a target and approaches several

kinds of tools [66, 67].

He proposes a segmentation of the tools in four tiers:

• C-Tier - automation built with scripting up other tools in bash or python, applying

a short number of techniques and without a proper workflow and extensibility.

46
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

• B-Tier - automation built with writing some of their own modules, applying a medium

number of techniques in the context of a workflow

• A-Tier - automation built with writing almost all of their own modules, with an

iterative workflow and data management through a database

• S-Tier - automation built with writing all their own modules, with an fast itera-

tive workflow and data management through database, scaling across multiple in-

stances and using novel techniques and features.

Despite of the distinctions made, sometimes we find tools with characteristics of an-

other tier. However, it provides an updated set of automation approaches that are actively

maintained. As such, we analysed some of the A and S-Tier tools in order to understand

their architecture, resorting to public repositories, when available.

Findomain (A-Tier)

This tool, written in Rust, is aimed at monitoring target domains to issue alerts when

new subdomains are found. It resorts to tools like Nmap, Amass, Sublist3r, Assetfinder

and Subfinder to keep an updated list of new exposed resources, gathering data like new

discovered subdomains, host IP, HTTP status, screenshots of the HTTP websites, open

ports and subdomains CNAME, among others. However, only some of the payed version

provides all the features, like continuous monitoring, screenshots or Nmap port checking

as well as data storage, while the free version basicaly provides subdomain enumeration

[68].

Rock-ON (A-Tier)

Rock-ON is a reconnaissance tool that automates a simple workflow in Ruby. Its features

include subdomain scraping, ASN, IP, Ports and virtual host enumeration among others.

To implement that, it uses tools like Sublist3r, Knock, Subfinder, Amass, AltDns, Nmap or

Vhost amid others. Essentialy, it resorts to a set of scripts that, explicitly, run each of the

embedded tools [69]. As such, it does not match the referred database criteria, common to

both top tiers, although it has an iterative workflow concerning subdomain enumeration.

recon-pipeline (A-Tier)

This reconnaissance tool, implemented in Python, approaches the concept of pipeline

3. SUPPORTING BACKGROUND WORK 47

in order to scan a target. As the other examples, this one also resorts to Amass, Gob-

uster, Massscan or Waybackurls, among others. It provides the possibility to run a single

tool but also presents wrappers around multiple commands to perform complete scans

through its own shell. The gathered data is stored in a SQLite database and can be queried

in various forms. It also offers the option of pipe each output to other commands, extend-

ing its use capabilities. Besides the command line interface it also provides a graphical

dashboard to visualise the scan results. Contrary to the previous applications, this one

has the possibility to add more tools, called scanners, as well as create more wrappers in

order to adapt the application to the user intents [70].

Intrigue Core (S-Tier)

As advertised by the owner company, Intrigue Core is an open framework for discover-

ing and enumerating the attack surface of organizations. It has an open source version,

written in Ruby and JavaScript, that implements an engine to perform about 150 tests

that enable the creation of a graph representation of the attack surface. It detects exposed

database and TCP/UDP services, as well as vulnerable application stacks or obsolete li-

braries. It can run individual tasks or in a fully automated mode to routinely collect

information about the organizations’ attack surface. It emulates the actions of an intelli-

gent actor to interactively map internet-facing systems, exposed services, and applications

[71, 72].

SpiderFoot (S-Tier)

SpiderFoot is an automation tool focused in OSINT gathering. Written in Python, it in-

tegrates with public data sources to extract information like IP addresses, domains, sub-

domains, hostnames, subnets, ASN, e-mail addresses, phone numbers, person’s names

and usernames as well as data leaks. With the collected data, it performs some analy-

sis, establishing correlations among the retrieved information. The user can select which

modules to run either through the GUI or through the command line interface. Addition-

ally, it gives the user the possibility to write his own modules and integrate them in the

application [73, 74].

Osmedeus (S-Tier)

Osmedeus is an automated framework for reconnaissance and vulnerability scanning

written in Python. As other frameworks, it resorts to tools like Subfinder, Httprobe,

48
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

Gospider, Gowitness, Aquatone among many others to perform subdomain enumeration,

take screenshots, perform port scanning or check for vulnerabilities as well as other tasks.

The user may run specific modules and also choose how fast the scans should be per-

formed. It may be operated either through a GUI or through the command line interface

and produces reports with the collected findings [75].

The table 3.2 summarises the characteristics of the analysed tools. As a conclusion, we

note that there is an emphasis in resorting to already known tools and in their combina-

tion, in order to widen the findings coverage. It is a common approach to have a pre-set

workflow and, in most cases, the tool selection is fixed, limiting the user’s choice to the

existent native modules.

Name Module’s origin Running Mode GUI Database Tier
Findomain Third-party Pre-set Workflow Yes Yes (paid version) A
Rock-ON Third-party Pre-set Workflow No No A
recon-pipeline Third-party Individual tool / Pre-set Workflow No Yes A
Intrigue Core Third-party / Proprietary Individual tool / Pre-set Workflow Yes Yes S
SpiderFoot Proprietary Tool selection Yes Yes S
Osmedeus Third-party Tool selection Yes Yes S

TABLE 3.2: Reconnaissance Automation Tools

Chapter 4

OrchRecon

As previously referred in 2.2.2, the main purpose of the reconnaissance process is to map a

target’s presence in the cyberworld as comprehensively as possible. Additionally, OSINT

gathering uncovers other relevant information that can enhance the effectiveness of the

attack phase. Therefore, some scenarios may illustrate a few of its benefits in the context

of a PT.

Assuming that social engineering attacks are within the scope of a given PT, knowing

details about a company employees, such as their hobbies, social network publications,

blog postings, relationships, among others, may favour a more successful approach. As

such, generic phishing attacks may evolve into spear phishing ones, which tend to be

more difficult to detect and, potentially, more effective [76].

OSINT about a specific target can prove to be quite fruitful. Querying a search engine

resorting to search operators may uncover files with usernames, passwords or other sen-

sitive information that may become useful later. Therefore, during the attack phase, the

researcher will have valuable information in scenarios where he has to bypass authenti-

cation procedures.

Regarding the exposed services that a target has, some of them may use unpatched

versions of a software with known vulnerabilities. Consequently, searching that kind of

information may save time and turn the attack phase more effective, considering that

some of the existing faults may already have an associated exploit.

In the context of application development, investigating a company’s code repository

or its employees comments on some public forums, may give some insight about soft-

ware architecture or related details. This kind of research may prove highly valuable as

49

50
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

it uncovers things like hardcoded credentials, private api keys or certificate private keys,

among other kinds of information, that may have been inadvertently left in the code.

From the examples above, reconnaissance worths a special attention in the context of a

PT as it may empower the researcher with intelligence that can be leveraged in the attack

phase. Therefore, and taking into account the benefits of orchestration [77], we approach

this phase of a PT with the help of OrchRecon.

OrchRecon elaborates from the concept of reconnaissance automation based on a cus-

tomised workflow. As other frameworks, it resorts to existing tools to perform specific

tasks, but giving the user the flexibility to choose those it considers more suitable and

building upon a distributed system approach in order to increase the overall performance

when compared with a typical workflow. OrchRecon is intended to be used in the context

of a Penetration Testing (PT) or a Bug Bounty program for Open Source Intelligence (OS-

INT) gathering. However, depending on the chosen tools, it may be leveraged to integrate

an attack path.

Considering the literature that refers to specific tools to be used during a PT, it is no-

ticeable that some of them are not maintained nowadays. Additionally, although some

tools are intended to perform some specific task, there is some user discretion that re-

lates to its effectiveness, usability or performance, for example. Furthermore, it is usual

to combine the output of more than one tool, in order to increase the information gath-

ering coverage. As Kritikos et al. pointed out, tools should be configured according to

the context and, if orchestrated with others, there is an increase of the overall coverage

level [77]. As such, OrchRecon presents a message-oriented middleware for a distributed

system and provides an open and customisable framework that allows for some degree of

paralleling, depending on the available computing resources. It enables a human-guided

PT with a high degree of automation amid the chosen tools.

This tool may be used either locally or in a cloud environment which, in the context of

this project, should be considered as Google Cloud Computing Services resources [78].

4.1 Architecture overview

OrchRecon is built as a distributed system that allows to chain a set of tools to perform

a desired set of tasks. It provides a message-oriented middleware to orchestrate the use

of the chosen tools and, to accomplish that, the user must guarantee that the output from

4. ORCHRECON 51

some tool can be used as input to another, establishing a pipeline of tasks. It is composed

by six main components: Master, Broker, Pipeline Manager, Daemon, Database and Mod-

ules, as illustrated in figure 4.1.

The Master component is responsible to receive tasks constituted by the target domain

to be tested and the pipeline of tools to chain. Afterwards, each task is dispatched to the

Broker component which is responsible for the communication between the Master and

the Pipeline Managers, queuing up the tasks if none of the managers is available. There-

fore, an available Pipeline Manager will receive a task and will manage the pipeline exe-

cution, launching each Module. It also keeps the Database updated about the execution of

the pipeline and manages file storage related to the tools output. In each running instance

there is a Daemon that connects to the Broker and sends information about resources us-

age. It starts up new Pipeline Managers upon request from the Broker, according to the

metrics sent. A Module is an abstraction for a specific tool. The user just has to ensure

that it is configured to receive the desired input and that it produces an adequate output

to the tool with which it is linked.

FIGURE 4.1: OrchRecon Diagram

52
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

4.1.1 Master

The Master component is the application entry point. It establishes a TCP connection

with the Broker and accepts tasks with the following structure: <domain > <module >

[<modules >]. It creates a record for the task in the Database, later associated to a Target

object, and returns to a waiting state. It also receives notifications concerning the tasks

state.

4.1.2 Broker

The communication between the Master and the Pipeline Managers is established through

the Broker component, as illustrated in figure 4.2. It works like a proxy, routing traffic be-

tween the Master and the managers, and queues tasks if there is no available Pipeline

Managers. It has a permanent connection with a Daemon present at every running in-

stance and receives CPU usage metrics to decide in which of them a new Pipeline Man-

ager should be started to accept an incoming task. This new Pipeline Manager will run in

the instance with the lowest CPU usage in a certain time window, reason why the Broker

acts also like a load balancer.

The communication between the components is done through a network connection

over which an asynchronous messaging scheme is implemented.

FIGURE 4.2: Broker Diagram

4. ORCHRECON 53

4.1.3 Pipeline Managers

The Pipeline Manager implements the core functionalities of the application. It is started

by the Daemon and, as soon as it receives a task, it validates its structure. If the validation

is successful, it creates a Target and a Pipeline objects.

A Target is an object mapped in the Database and has some properties like the submit-

ted domain for the task at hand. The Pipeline is the set of tasks abstraction and, among

its properties, it includes the set of tools (Modules) to run. As such, there is a validation

of the indicated Modules availability and if it is possible to establish a directed graph be-

tween them, considering that each connected edge is established by similar output and

input data types, respectively. For such, it resorts to a Breadth First search algorithm that

establishes the connected Modules and those that can not be reached, as illustrated in

Algorithm 1.

Algorithm 1: Breadth First Search Algorithm
Result: Directed Graph

queue = modules to run[0];

while queue do

vertex = queue.pop() ;

foreach module in modules to build pipeline do
if (module not in modules to run) and (vertex.out type = module.in type or

module.in type = ”target”) then

queue.append(module);

modules to run.append(module);

end

end

end

In the case of a successful validation, the Pipeline executes each Module, according to

its configurations. When the option for paralleling is enabled within a certain Module,

the Pipeline Manager splits the input data for the number of the established concurrent

processes and assembles the respective outputs to a single final results file. Addition-

ally, the Pipeline Manager updates the Target information in the database, concerning the

Modules execution in order to enable its consultation during the process.

54
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

4.1.4 Database and Storage

As referred, each task is submitted to the Database by the Master component, although

in a non validated state. Afterwards, and upon validation from the Pipeline Manager, it

is used to keep the state of each Target, mapping some of its properties. In the case of an

invalid task, the record is deleted.

Concerning Storage resources, the user may choose to use the instance hard-drive or

a Bucket in the cloud. The first possibility is adequate for the local running mode or for

the situations where the used instances persist after exiting the application. The second

approach should be used in the cases where we resort to a Managed Instance Group, once

the associated instances are eliminated at the end, being also an option to the other use

cases.

4.1.5 Module

The Module component is responsible to provide the user the flexibility it may need for

each tool. However, this implies a previous knowledge about their features. As previ-

ously referred, a Module is an abstraction for a specific tool that possesses a set of proper-

ties, as exemplified in listing 4.1, to control the latter’s execution, demanding a coherent

taxonomy in order to accomplish that. This coherence operates on two levels: (i) at the

type of data level and (ii) at the command level.

In the first case, the user may use a chosen taxonomy that allows establishing a relation

between the input and the output data from different Modules. As an example, if Module

ABC produces an output suitable for the use of Module XYZ, the output data type of the

first must adopt the exact reference of the second’s input data type. As is often the case,

a particular tool may have more than one functionality, either accepting different input

data types and/or producing different output data types. As such, the user may configure

several Modules based on the same particular tool, differentiating its input and/or output

data types, as needed.

At the command level, the taxonomy is strict, once it reflects code details. The user

needs to acquire some knowledge about it in order to properly configure the command

property of each Module. In general, those references are related with read and write

actions concerning tool’s configuration or input and output files.

Another feature is related with Module’s parallel execution. When the parallelism

level is set to a value greater than one, the application will run the according number of

4. ORCHRECON 55

Module instances, splitting the input data among the running Module instances and, at

the end, reassembling the output data.

1 {

2 "name" : "subfinder",

3 "in_type" : "target",

4 "out_type" : "url",

5 "command" : "docker run --rm -v _CONFIG_DIR_ :/root/. config/subfinder -it ice3man

/subfinder -d _TARGET_ -nW -silent > _PATH_/_OUTPUT_FILE_",

6 "module_dir" : "/ modules/subfinder",

7 "concurrency_level" : 0,

8 "parallelism_level" : 0

9 },

LISTING 4.1: Module configuration example

4.1.6 Scalability

The option for a distributed system architecture is linked to the foreseen need to scale

up computing resources once some reconnaissance and vulnerability tools can be quite

demanding or time consuming, allowing to scan several targets in parallel. It implements

an asynchronous messaging approach and a simple load balancing function. The Broker

has three interfaces, one connecting to the Master, which receives the tasks to perform,

a second one to the Daemons for receiving information about the running instances and

their CPU usage metrics, and the third to the Pipeline Manager(s) for routing the tasks

sent by the Master and for receiving status information about the execution.

The Broker keeps a list of available Pipeline Managers in a pool and dispatches the

incoming tasks to the first available one. In the case of unavailable managers, the tasks

are queued and will be forwarded as soon as any of them finishes its workload and returns

to the pool. It keeps also a list with the connected Daemons and the respective CPU usage

metrics in order to request the deployment of a Pipeline Manager to the lowest resource

usage instance.

Additionally, there is a heartbeat feature that allows for mutual connection acknowl-

edgement between the Broker and the Master, the Pipeline Managers and the Daemons.

The communication is made through TCP sockets and resorts to ZeroMQ, which pro-

vides a high-performance asynchronous messaging library [65]. ZeroMQ is at the core of

the application communication, for what it will be detailed later.

56
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

4.2 Implementation

OrchRecon is implemented in Python in order to easily prototype the system, as it allows

for an object-oriented approach and has a wide collection of third-party libraries to assist

in the development of such a project. Among those third-party libraries some stand out

because of the core functionalities they assure: ZeroMQ and SQLAlchemy, responsible for

implementing the messaging layer and the database interaction, respectively. There are

four main components, Master, Broker, Pipeline Manager and Daemon which are imple-

mented with the support of a set of classes, as illustrated in figure 4.3, where the most

relevant are referenced.

FIGURE 4.3: Class Diagram

4.2.1 Setup

To run OrchRecon in Google Cloud environment, there are some preliminary steps. First

of all the user should create service account credentials, store the generated file in creds

folder and update bucket.py with the appropriate file path and bucket name. Then, 2

4. ORCHRECON 57

instances shall be created: the first to run the Database and the Broker; the second to create

a base image for the Managed Instance Group (MIG). Both instances shall be deployed with

Ubuntu 18.04 LTS in a 20 GB disk and allow for HTTP and HTTPS connections. Taking

advantage of the internal network capabilities, namely DNS service, the Broker instance

should be named broker in the network interface properties.

After copying the application files to each of the instances, the user should run in-

stall requirements.sh script in each one to install all the necessary libraries and build the

necessary docker containers. It also creates a service in each of the instances to start

automatically the respective component: Broker and Daemon. Afterwards, the second

instance shall be used to create an image that will be the base of the MIG, which automat-

ically deploys or stops instances according to computation needs.

After finishing the installation, the user may connect to the application from his local

terminal running the script cloud.init which will start the Broker and will deploy a MIG

from the created base image. As they run the respective services on startup, OrchRecon is

ready to receive a pipeline to execute.

4.2.2 Master

At the present, the Master merely sends to the Broker new tasks to perform and listens to

incoming informative messages. It is built on top of the Master class that allows to abstract

all the communication details: connection to the Broker, message sending and receiving,

and heartbeating related parameters. This class implements also a thread no keep the

heartbeating messages flow.

On startup, an object Master is created, receiving as parameters an identifier and the

endpoint of the Broker interface (see Listing 4.2).

1 class Master:

2

3 def __init__(self , tag , broker):

4 self.name = tag # String: Broker ID

5 self.broker = broker # String: tcp endpoint

6 self.context = zmq.Context () # zmq Context

7 self.socket = None # zmq Socket

8 self.poller = zmq.Poller ()

9 self.broker_status = False # Broker connection status

10 self.broker_connection ()

11 self.next_heartbeat = None

12 self.queue_liveness = None

58
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

13

14 _thread.start_new_thread(heartbeat , (self ,))

15

16 def update_heartbeat_params(self):

17 self.next_heartbeat = time.time() + configs.HEARTBEAT_INTERVAL

18 self.queue_liveness = configs.HEARTBEAT_LIVENESS

LISTING 4.2: Master class

Then, a parallel thread is also started to keep the heartbeating message sending to the

Broker, as illustrated in listing 4.3, moment from which the Master is ready to receive a

task input or an incoming message from the Broker.

1 # Function to run in autonomous thread to keep

2 # Heartbeat

3 def heartbeat(master):

4 while True:

5 rep = [b’’, configs.HEARTBEAT]

6 master.send(rep)

7 time.sleep(configs.HEARTBEAT_INTERVAL)

LISTING 4.3: Heartbeat function

The Master accepts messages of the Task and Heartbeat types. When a new task mes-

sage arrives, it is displayed to the user.

Additionally, the Master checks the Broker’s heartbeat messages to validate its live-

ness, or to determine the connection is lost, after a waiting period of ten seconds (see

listing 4.4).

1 """

2 Check Broker liveness

3 """

4 if time.time() > master.next_heartbeat:

5 master.queue_liveness -= 1

6

7 if master.queue_liveness == 0:

8 print(f’[MASTER {ident}] {configs.B_NOT_CONNECTED} | Waiting 10 seconds for

reconnection ’)

9 time.sleep (10)

10

11 if master.queue_liveness < 0:

12 exit()

4. ORCHRECON 59

LISTING 4.4: Master check liveness

4.2.3 Broker

The Broker has the core role concerning the system communication, resorting to ZeroMQ

library to implement the socket interfaces with the Master, the Pipeline Managers and the

Daemons (see Listing 4.5). The chosen communication pattern is ZeroMQ’s Dealer - Router

in order to allow for a complete asynchronous communication. Therefore, when a Request

- Reply pattern is needed, it must be coded in the application logic.

1 # Prepare context and sockets

2 context = zmq.Context ()

3 frontend = context.socket(zmq.ROUTER)

4 frontend.bind("tcp ://*:5000")

5

6 backend = context.socket(zmq.ROUTER)

7 backend.bind("tcp ://*:6000")

8

9 daemon = context.socket(zmq.ROUTER)

10 daemon.bind("tcp ://*:9000")

11

12 poller = zmq.Poller ()

13 poller.register(frontend , zmq.POLLIN)

14 poller.register(backend , zmq.POLLIN)

15 poller.register(daemon , zmq.POLLIN)

LISTING 4.5: Socket interfaces

The Broker polls out these three interfaces periodically, according to an established

heartbeat interval, and processes messages according to its origin and type. At present

there are three types of messages: Task, Info and Heartbeat. Whenever a message reaches

the Broker, it is dispatched to the appropriate recipient, if applicable, after a transforma-

tion in order to keep its structure coherent through all the system. A message is a bytes

list with the following structure: [<sender address >, b”, <service type >, <service info

>, <payload >, ...].

60
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

Additionally, the respective dictionary that keeps track of each connected element is

updated. This feature is implemented through a class that is instantiated every time a

connection arrives the Broker(see Listing 4.6).

1 class ConnectedElement:

2 def __init__(self: object , address: str , status=None , load=None):

3 self.address = address

4 self.expiry = time.time() + configs.HEARTBEAT_INTERVAL * configs.

HEARTBEAT_LIVENESS

5 self.status = status

6 self.liveness = configs.HEARTBEAT_LIVENESS

7 self.load = load # Used with Daemons

LISTING 4.6: ConnectedElement class

Therefore, an updated record of every connected element is kept in order to check

its liveness. In the Daemons case, the CPU usage is also kept to provide the ground to

the instance’s choice where a new Pipeline Manager shall be deployed. Whenever a con-

nected element fails to communicate before the set expiry time, its liveness is decreased

and, as soon as it reaches zero, the Broker assumes the connection is lost, withdrawing

that element from the respective dictionary (see Listing 4.7).

1 def check_liveness(elements: ConnectedElement):

2 t = time.time()

3

4 for _, e in elements.items():

5 if t > e.expiry:

6 e.liveness -= 1

7

8 dead_elements = []

9 for adr , e in elements.items():

10 if e.liveness == 0:

11 dead_elements.append(adr)

12

13 for d in dead_elements:

14 elements.pop(d)

LISTING 4.7: check liveness method

This liveness check is performed periodically, aligned with the interfaces poll out,

depending on the settings for the heartbeat interval and for the tolerance for non respon-

siveness.

4. ORCHRECON 61

The Broker has also a queuing function in the event of unavailable Pipeline Managers.

Indeed, all the tasks go through the queue, in order to keep the messaging service simpler

and to deal with Pipeline Manager’s starting process. When a new task arrives to the

Broker, it causes the start of a new Pipeline Manager and the queuing of the respective

task (see listing 4.8).

1 # Process TASK messages

2 if service == configs.TASK:

3 info = request [3]

4

5 # Process NEW TASK messages

6 if info == configs.T_NEW:

7

8 # Ask Daemon for a new Pipeline Manager

9 # Find lowest CPU usage machine

10 low_cpu_deamon = find_lowest_load(daemons)

11

12 # Send START message

13 daemon_request = [low_cpu_deamon.address , b’’, configs.TASK , configs.

W_START]

14 daemon.send_multipart(daemon_request)

15

16 queue.append(request)

LISTING 4.8: Pipeline Manager start

4.2.4 Pipeline Managers

The Pipeline Manager component implements the core functionalities that materialise the

actions needed to carry out a certain task entered by the user. It is built on top of the

Manager class that allows to abstract all the communication details: connection to the

Broker, message sending and receiving, and heartbeating related parameters. This class

implements also a thread no keep the heartbeating messages flow. The application logic

depends on two other classes: Target and Pipeline. The first implements a Target object that

represents the domain being tested and is mapped in the Database. The latter implements

all the actions related to the Modules associated to the task, like pipeline validation or

their execution order.

On startup, an object Manager is created, receiving as parameters an identifier and the

endpoint of the Broker interface (see Listing 4.9). As referred, a parallel thread is also

62
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

started to keep the heartbeating process and, then, the Pipeline Manager waits for an

incoming message.

1 class Manager:

2

3 def __init__(self , tag , broker):

4 self.name = tag # String: Pipeline Manager ID

5 self.broker = broker # String: tcp endpoint

6 self.context = zmq.Context () # zmq Context

7 self.socket = None # zmq Socket

8 self.poller = zmq.Poller ()

9 self.broker_status = False # Broker connection status

10 self.broker_connection ()

11 self.next_heartbeat = None

12 self.queue_liveness = None

13

14 _thread.start_new_thread(heartbeat , (self ,))

LISTING 4.9: Manager class

The Pipeline Manager accepts messages of the Task and Heartbeat types. When a new

task message arrives, the task structure (<domain > <module > [<modules >]) is val-

idated in two steps: number of parameters and feasibility of the the chosen pipeline. A

Pipeline object is created and the requested Modules are validated (see Listing 4.10) for

which, on success, an execution path is determined through a breadth first algorithm (see

listing 4.11).

1 def validate_input_modules(self):

2

3 with open("modules.json") as f:

4 configured_modules = json.load(f)

5

6 check = False

7

8 for in_mod in self.input_modules:

9 check = False

10

11 for conf_mod in configured_modules:

12 if conf_mod[’name’] == in_mod:

13 self.modules_to_build_pipeline.append(create_module_instance(

conf_mod))

14

15 check = True

4. ORCHRECON 63

16 break

17

18 if not check:

19 self.modules_not_available.append(in_mod)

20 break

21

22 return check

LISTING 4.10: Modules validation

1 def bfs_pipeline_sequence(self):

2

3 queue = [self.modules_to_run [0]]

4

5 while queue:

6 vertex = queue.pop()

7

8 for node in self.modules_to_build_pipeline:

9 if node not in self.modules_to_run and (vertex.out_type == node.

in_type or node.in_type == ’target ’):

10 queue.append(node)

11 self.modules_to_run.append(node)

LISTING 4.11: Breadth First algorithm

To accomplish that, the Pipeline object requires a Module object that maps the Module’s

configurations, in order to have the information about their input and output types. When

an execution pipeline is determined, each Module it contains will be executed according

to its parallelism level. If the user sets a Module to run in parallel, the original input

file will be splitted according to that parallelism level and the execution will be done in

asynchronous parallel sub-processes. Otherwise, the Module is executed in a single sub-

process.

When an error is produced during a Module’s execution, there is a simple error recov-

ery mechanism that tries to repeat its execution a certain number of times, after which the

application flow continues. After the pipeline is completed or in the cases where an error

was produced by the validation steps the Pipeline Manager shuts down.

64
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

4.2.5 Database and Storage

Due to the application’s dual mode of execution, locally or in a cloud environment, the

approach to the Database and to the Storage resources followed a similar logic. Therefore,

when the application is executed locally, the MySQL service must be running at the ”lo-

calhost” and, when in a cloud environment, it should run in a defined instance, for which

there is the need to resort to the DNS services of the cloud infrastructure.

As referred, the Target object maps the information about a task in the Database, like

the domain under analysis, the task’s status or the Modules’ status, keeping it updated

through a set of methods that resort to SQLAlchemy library [79]. This library provides

an object-relational mapper (ORM) that allows to map classes to a database, providing an

object-oriented approach while abstracting from some of the SQL issues.

The Database class, as illustrated in listing 4.12 creates an object to establish a connec-

tion with the MySQL server, which will be used by the Target class to implement data

transactions with it.

1 class Database:

2 def __init__(self):

3

4 self.engine = sqlalchemy.create_engine(’mysql ://{}:{} @database/orchrecon

’.format(username , password))

5 Session = sessionmaker(bind=self.engine)

6 self.session = Session ()

LISTING 4.12: Database class

As illustrated in listing 4.13, this library allows to map an object into a record in the

database, favouring code readability and maintaining, at the same time, the control over

the implementation of the ORM.

1 from sqlalchemy.ext.declarative import declarative_base

2 from database import Database

3

4 [REDACTED]

5

6 # SQLAlchemy settings

7 Base = declarative_base ()

8

9 Column = sqlalchemy.Column

10 Integer = sqlalchemy.Integer

4. ORCHRECON 65

11 String = sqlalchemy.String

12 JSON = sqlalchemy.JSON

13

14 class Target(Base):

15 # Target object maps "target" in DB

16 __tablename__ = ’targets ’

17

18 id = Column(Integer , primary_key=True)

19 id_target = Column(String)

20 domain = Column(String)

21 url = Column(String)

22 target_status = Column(String)

23 finished_tasks = Column(JSON)

LISTING 4.13: Target class

At the present example, a Target object maps a record in the ”targets” table of the

database and any change in the first just needs to be commited to the latter (see listing

4.14).

1 def save_target(self):

2 try:

3 self.database_session.commit ()

4 print("[TARGET] Target updated into DB!")

5

6 finally:

7 self.database_session.flush ()

LISTING 4.14: Save Target Function

Concerning storage, all the produced data is stored locally in a folder named from the

identifier attributed to the task (see Listing 4.15).

1 def create_folder(self):

2 if not os.path.isdir(self.id_target):

3 os.mkdir(self.id_target)

LISTING 4.15: Folder creation

However, when the application is executed with the Bucket option enabled, the data

that must persist is stored in a cloud storage instance (Bucket) and the transient data

66
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

continues to be managed locally, following the same organization and naming principles

(see Listing 4.16).

1 if configs.BUCKET:

2

3 source_file_name = f’{MAIN_PATH }/{ target.id_target }/{ target.domain }.{ module.

out_type}’

4 destination_blob_name = f’{target.id_target }/{ target.domain }.{ module.out_type}’

5 bucket.upload_blob(source_file_name , destination_blob_name)

LISTING 4.16: Bucket file upload

As such, there is a Bucket class to implement the needed methods for uploading and

retrieving files, while managing the authentication towards the cloud storage service.

4.2.6 Module

As previously referred, a Module is an abstraction for a specific tool that possesses a set

of properties, as exemplified in listing 4.1. It is implemented through a Module object that

maps the mentioned properties and is referenced by the Pipeline and the Target objects.

The command property has a generalisation of the command to execute the respective

Module, which will be processed by a method at the Pipeline Manager, in order to convert

that generalisation into a concrete command. Therefore, a strict taxonomy is implemented

with self-descriptive terms like OUTPUT FILE , PATH , TARGET or INPUT FILE that

will be replaced by the aforementioned method, as illustrated in listing 4.17.

1 def build_command(target , module , input_file , output_file):

2 cmd = module.command.replace("_OUTPUT_FILE_", output_file)

3 cmd = cmd.replace("_PATH_", " ’%s’" % MAIN_PATH + "/" + target.id_target)

4 cmd = cmd.replace("_CONFIG_DIR_", "’%s’" % MAIN_PATH + module.module_dir)

5 cmd = cmd.replace("_TARGET_", target.url)

6 cmd = cmd.replace("_INPUT_FILE_", input_file)

7

8 return cmd

LISTING 4.17: Command building

The in type and the out type properties are related with the data consumed and pro-

duced by each Module. This data is represented by files and the mentioned out type prop-

erty is appended to the respective files to be recognised by the Modules that accept that

4. ORCHRECON 67

kind of data through their in type property. As depicted in listing 4.18, we may conclude

that the httprobe Module consumes the data produced by the subfinder one.

1 [

2 {

3 "name" : "subfinder",

4 "in_type" : "target",

5 "out_type" : "url",

6 "command" : "docker run --rm -v _CONFIG_DIR_ :/root/. config/subfinder -it ice3man

/subfinder -d _TARGET_ -nW -silent > _PATH_/_OUTPUT_FILE_",

7 "module_dir" : "/modules/subfinder",

8 "concurrency_level" : 0,

9 "parallelism_level" : 0

10 },

11 {

12 "name" : "httprobe",

13 "in_type" : "url",

14 "out_type" : "web.url",

15 "command" : "cat _PATH_/_INPUT_FILE_ | docker run --rm -i httprobe --prefer -

https > _PATH_/_OUTPUT_FILE_",

16 "module_dir" : "/modules/httprobe",

17 "concurrency_level" : 0,

18 "parallelism_level" : 4

19 }

20]

LISTING 4.18: Module properties

As is often the case, a particular tool may have more than one functionality, either ac-

cepting different input data types and/or producing different output data types. There-

fore, it is possible to configure several Modules based on the same tool just by adjusting

its input and/or output data types as well as the command generalisation.

Managing data with this approach gives the flexibility to run tools in multiple forms,

from command line scripts to container execution, provided that the data is consumed

from and produced to files. At present, our main approach resorts to docker containers as

it prevents conflicts between several tools’ dependencies.

The parallelism level property controls how the Module is executed. If the value is

greater than one, the application checks the input length and divides the data, if justi-

fiable, for a number of concurrent sub-processes not greater than the defined level (see

listing 4.19).

68
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

1 if ’_INPUT_FILE_ ’ in module.command and module.parallelism_level > 1:

2

3 if configs.BUCKET:

4 source_blob_name = f’{target.id_target }/{ target.domain }.{ module.in_type}’

5 destination_file_name = f’{MAIN_PATH }/{ target.id_target }/{ target.domain }.{

module.in_type}’

6 bucket.download_blob(source_blob_name , destination_file_name)

7

8 input_file = f’{MAIN_PATH }/{ target.id_target }/{ target.domain }.{ module.in_type}’

9

10 temp_file_path = f’{MAIN_PATH }/{ target.id_target }/’

11

12 # Split input file into temporary files , according to a split factor

13 splitter = FileSplitter(input_file , module.parallelism_level , temp_file_path)

14

15 tasks = []

16 temp_file_id = 1

17 temp_files = []

18

19 # Update module status

20 target.set_finished_tasks(module.name , module.status)

21

22 for temp_input_file in splitter.splitted_files:

23 """

24 Starts n parallel processes , according to a split factor

25 """

26 temp_output_file = f’{target.domain }.temp_{temp_file_id}’

27

28 # Build command to run

29 new_cmd = build_command(target , module , temp_input_file , temp_output_file)

30 tasks.append ((loop.create_task(run_cmd_2(new_cmd))))

31 temp_files.append(temp_output_file)

32 temp_file_id += 1

33

34 await asyncio.wait(tasks , return_when=asyncio.FIRST_EXCEPTION)

LISTING 4.19: Parallel execution

After all the sub-processes are finished, the temporary files are reassembled in a single

output file and deleted. These operations over the input and temporary files are imple-

mented through the methods in the FileSplitter class.

The parallelism level property should be set with some aspects in mind, namely the

overhead that multiple sub-processes may cause, which could not improve the overall

4. ORCHRECON 69

performance at all. Some fine-tuning is needed considering also that some tools are multi-

threaded and could be more efficient to adjust the number of threads on the tool’s settings.

4.2.7 Distributed system

The application here presented implements a message-oriented middleware to enable

easy scalability in order to enhance the chosen tools by the user. Although it works in

a local mode of execution, the scalability it pretends to reach is better obtained with the

use of cloud resources which, nowadays, are easily available and relatively affordable.

Therefore, it shall be assumed that we will be referring to that mode, unless otherwise

stated.

Infrastructure

Concerning the infrastructure, we resorted to Google Cloud Computing services [78]

to run a Broker and a Database in the same instance and a pool up to three instances to

run the Pipeline Managers. This pool of instances, designated a Managed Instance Group

(MIG) [80], may automatically scale up and down according to a CPU usage threshold

of 20%. All these instances are a clone of the same image that is already fully configured

with the necessary Modules and related dependencies.

The referred instances run in the same internal network and resort to its DNS services

to reach the Broker and Database instance. Additionally, the Broker exposes an external

IP that is obtained through the initialisation function to provide to the Master, so it can be

operated from an external machine.

Messaging service

As already referred, the messaging core functionality is assured by the Broker. It is

implemented over a Dealer - Router asynchronous communication pattern provided by

ZeroMQ [65]. Although this pattern is more demanding in terms of implementation, it

provides more flexibility than a simple Request - Reply as it does not block the execution.

As such, when this kind of communication is necessary, that must explicitly coded, as

illustrated in listing 4.20.

1 reply = self.receive ()

2

3 while not reply:

4 reply = self.receive ()

70
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

LISTING 4.20: Request-Reply approach

Dealer - Router enables an easy scaling approach as it just needs one ”fixed” point, the

Router IP, allowing for an arbitrary number of Dealers to connect. That approach was

followed to connect the Broker with the Master, the Daemons and the Pipeline Managers

as illustrated in figure 4.4.

FIGURE 4.4: Dealer-Router pattern

As stems from the image, the Broker needs three interfaces to communicate with these

three kinds of components, as already illustrated in listing 4.5. It polls incoming sockets

at a defined rate and, when receives messages from any of the interfaces, routes them

according to the service type, the service info and the payload, if present (see listing 4.21).

1 while True:

2

3 # Socket poller: Backend + Frontend + Daemons

4 socks = dict(poller.poll(configs.HEARTBEAT_INTERVAL * 1000))

5

6 """

7 Messages arrived from daemon

8 """

9 if socks.get(daemon) == zmq.POLLIN:

10

4. ORCHRECON 71

11 request = daemon.recv_multipart ()

12 service = request [2]

13 address = request [0]

14 load = request [3]

15

16 [REDACTED]

17

18 """

19 Messages arrived from the backend (Pipeline Managers)

20 """

21 if socks.get(backend) == zmq.POLLIN:

22

23 request = backend.recv_multipart ()

24 service = request [2]

25 address = request [0]

26

27 [REDACTED]

28

29

30 """

31 Messages arrived from the frontend (Master - may exist more than one)

32 """

33 if socks.get(frontend) == zmq.POLLIN:

34

35 request = frontend.recv_multipart ()

36 service = request [2]

37 address = request [0]

LISTING 4.21: Message polling

Thus, the messaging structure must be explicitly implemented, as there is the need to

keep record of the addresses where to reply. As already pointed, a message is a bytes list

with the following chosen structure: [<sender address >, b”, <service type >, <service -

info >, <payload >, ...]. Therefore, when a message must be forwarded by the Broker,

it must be transformed, so the recipient receives the same structure. These structures

are flexible, with the exception of the first two elements of the list: the sender’s address

and an empty byte. In order to keep compatibility with ZeroMQ message envelopes, the

empty byte works as a delimiter for the sender’s address in a coded message approach

like the one followed. The listing 4.22 illustrates the transformation operated in a message

received from a Pipeline Manager that is being forwarded to the Master.

1 # Process TASK messages

72
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

2 if service == configs.TASK:

3 info = request [3]

4

5 # Process FORMAT ERROR , FINISHED TASK and INVALID PIPELINE in TASKS service

6 if info == configs.P_TASK_FORMAT_ERROR or \

7 info == configs.T_FINISHED or \

8 info == configs.P_INVALID_PIPELINE:

9

10 [REDACTED]

11

12 task_sender = request [4]

13 task = request [5]

14 forward_reply = [task_sender , b’’, service , info , task]

15 frontend.send_multipart(forward_reply)

LISTING 4.22: Message transformation

In order to structure the messaging service, and considering future improvements and

enhancements, we conceived three types of services, Task, Info and Heartbeat, in which

each service has associated information messages that relate to the service or sender sta-

tus. In the present, only new Task messages are queued, as the others are, basically, status

messages that do not occur when the components are disconnected. The new tasks queue

is implemented in a first-in-first-out approach, as illustrated in listing 4.23.

1 # Process queued tasks

2 if queue:

3 popped_task = queue.pop (0)

4

5 # Check available Pipeline Manager

6 available_worker = check_available_element(workers , configs.P_READY)

7

8 if available_worker:

9 send_task_to_manager(available_worker , popped_task , backend , workers)

10 else:

11 # If there is none workers available , Task returns to queue

12 queue.append(popped_task)

LISTING 4.23: Queue implementation

Chapter 5

Evaluation

To evaluate this prototype we performed two kind of tests: (i) Module’s performance

related to the parallelism level and (ii) system’s performance related to simultaneous

pipelines execution. We resorted to Google Cloud services to run different kinds of in-

stances and chose a limited number of Modules to run against one target, acronis.com,

which has a public bug bounty program in HackerOne [81] with a wide scope concerning

its subdomains.

The selected Modules for the pipeline were Subfinder, httprobe and Nuclei. Subfinder

[82] gathers subdomains of a given target in a passive way, querying public sources. This

initial list is then tested with httprobe [83] to extract working servers. At last, Nuclei

[84] detects the technologies associated to the working servers. Although we used Nu-

clei only for detecting the exposed technologies, it has wider capabilities, like detecting

misconfigurations and a wide range of Common Vulnerabilities and Exposures (CVE).

Subfinder Module was never paralleled during the testing phase as it takes only a sin-

gle input, the target domain. However, as it resorts also to a word-list for testing, we

should envision for future work to have a similar mechanism for those Modules that, be-

yond the input from another tool, also have secondary inputs like the alluded word-list.

5.1 Modules Performance

In this test we ran httprobe and Nuclei with the default configurations in three instances of

1, 2 and 4 virtual CPU and with 3.75, 7 and 15 GB of RAM memory, respectively, which

refer to Google’s machine type n1-standard-1, n1-standard-2 and n1-standard-4. The CPU

platform was Intel Haswell and the Operative System was Ubuntu 18.04 LTS. Furthermore,

73

74
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

each Module was tested with several parallelism levels (1, 2, 4, 8, 16 and 32) in sets of ten

executions.

The graphics (5.1, 5.2, 5.3) illustrate the obtained results of httprobe per instance. On the

left axis we have the mean execution time in seconds, on the right the standard deviation

and on the bottom side the parallelism level.

FIGURE 5.1: httprobe - 1 vCPU

FIGURE 5.2: httprobe - 2 vCPU

The tool behaviour was stable, validating between 291 and 292 subdomains. As the

parallelism level increases we observe a reduction in the execution time until the level

of 16, although the performance gain is not linear. We also observe that the increase in

computation resources has a growing impact in the total execution time as the parallelism

level is increased as summarised in table 5.1.

5. EVALUATION 75

FIGURE 5.3: httprobe - 4 vCPU

Parallelism Level 1 2 4 8 16 32
Nbr. vCPU Time StdDev Time StdDev Time StdDev Time StdDev Time StdDev Time StdDev

1 102,68 0,42 60,74 0,34 45,27 0,47 34,55 0,24 31,60 0,23 39,36 0,59
2 102,64 0,70 59,98 0,65 43,41 0,17 33,52 0,36 28,17 0,30 33,40 0,21
4 100,47 0,39 59,45 0,59 41,83 0,25 31,52 0,17 25,17 0,09 27,25 0,14

TABLE 5.1: httprobe - Test results

Considering each testing instance in isolation, we observe performance gains for httprobe

ranging from 69% to almost 300%, assuming the base value at parallelism level 1 in each

instance, as illustrated in figure 5.4.

FIGURE 5.4: httprobe - Performance metrics

Concerning the tests with nuclei, the following graphics (5.5, 5.6, 5.7) illustrate the

results. From the previously validated subdomains, nuclei received a list of 291 to test

which technologies were present. Its behaviour was less stable, ranging from 513 to 580

detections, with 93.75% of the tests ranging between 540 and 580 detected technologies.

76
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

FIGURE 5.5: nuclei - 1 vCPU

FIGURE 5.6: nuclei - 2 vCPU

FIGURE 5.7: nuclei - 4 vCPU

As the parallelism increases, we observe a reduction in the execution till a certain

level. As with the other Module, the performance gain is not linear and the increase of

computation resources, although with an impact in the overall performance, has not the

same stable results, as illustrated in table 5.2

As can be observed from the results, we only succeeded to obtain data for parallelism

level of 32 with a 2 vCPU instance, fact for which we do not have an explanation, at the

5. EVALUATION 77

moment. Furthermore, those results are considerably worst than the ones for parallelism

level of 16. As we will see in the pipeline performance tests, a similar behaviour will be

observed, leading instances to a blocking state.

Parallelism Level 1 2 4 8 16 32
Nbr. vCPU Time StdDev Time StdDev Time StdDev Time StdDev Time StdDev Time StdDev

1 300,13 21,19 185,95 3,28 136,87 6,07 157,85 1,55 170,38 8,80
2 296,33 1,95 171,78 2,96 150,67 7,22 156,04 2,83 149,57 3,02 199,48 21,82
4 277,43 16,04 171,88 0,58 159,55 1,25 129,64 1,90 132,05 0,01

TABLE 5.2: Nuclei (Technologies) - Test results

Considering each testing instance in isolation, we observe some performance gains

for nuclei, although there is a shorter improvement margin when compared with httprobe.

Nevertheless, we still were able to record values ranging 61% to 120%, assuming the base

value at parallelism level 1 in each instance, as illustrated in figure 5.8.

FIGURE 5.8: Nuclei - Performance metrics

As previously referred, each Module was ran with its default configurations and, from

their public information, httprobe and Nuclei run with 20 and 10 concurrent processes by

default, respectively. Comparing results from both Modules, they suggest that each one

has a better parallelism level, independent from the other. However, further testing is

needed once the Modules were tested in isolation.

5.2 Pipeline Performance

This test intended to measure the application’s performance in the scenario of multiple

pipelines running simultaneously. We resorted to the same three types of instances and

executed the referred pipeline, Subfinder, httprobe and Nuclei, in sets of ten simultaneous

78
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

runs. Due to resources limitations imposed by Google, we could not have three 4 vCPU

instances operating simultaneously.

The graphics (5.9, 5.10, 5.11) illustrate the obtained results. On the left axis we have

the mean execution time, on the bottom axis the parallelism level and for each of these

levels we find the readings for each scenario: 1, 2 or 3 instances.

FIGURE 5.9: Pipeline - 1 vCPU

FIGURE 5.10: Pipeline - 2 vCPU

FIGURE 5.11: Pipeline - 4 vCPU

5. EVALUATION 79

From the results, we observe that there is a performance gain as we scale up to more

instances or when increasing computation resources. Furthermore, raising the parallelism

level contributed to a performance gain in 60,7% of the times.

As we can observe from the results (table 5.3) some tests did not succeeded as the

instances entered in a blocking state. When the parallelism level was set too high for

the available resources and the 10 pipelines were executing simultaneously, the instances

stopped processing and became unresponsive.

Nbr Instances 1 2 3
Nbr vCPU Parallelism level Time StdDev Time StdDev Time StdDev

1
1 1006,25 28,60 597,54 71,87 484,49 54,51
2 974,17 38,90 555,24 36,11 433,27 80,81
4 926,23 24,92 533,59 91,39 412,96 72,36
8 a) - 577,10 78,91 391,57 48,50
16 a) - a) - 436,86 59,40

2
1 823,36 29,24 509,15 34,88 425,56 31,13
2 828,05 29,61 480,85 90,75 379,01 57,19
4 805,93 40,38 485,23 59,58 569,61 159,67
8 856,44 25,72 456,80 86,31 362,15 72,81
16 a) - a) - 390,12 69,97

4
1 512,43 27,79 470,21 43,12 - -
2 530,20 47,20 376,46 65,67 - -
4 547,43 80,60 350,85 58,71 - -
8 481,11 28,59 329,53 37,14 - -
16 548,71 24,38 318,01 38,68 - -
32 a) - 395,51 74,91 - -

TABLE 5.3: Pipeline Performance - Test results
a) instance blocked

Considering the execution time for tests with the same parallelism level, we observe

a consistent reduction when adding instances, with one exception. The graphics 5.12,

5.13 and 5.14 illustrate the time reduction in the pipeline execution taking as a reference

the value of the same parallelism level with one less instance. The reduction range from

approximately 5% to almost 50%.

80
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

FIGURE 5.12: Pipeline Performance - 1 vCPU

FIGURE 5.13: Pipeline Performance - 2 vCPU

FIGURE 5.14: Pipeline Performance - 4 vCPU

5. EVALUATION 81

Departing from the conclusion of the previous section about a differentiated approach

concerning the parallelism level and the computation resources, we performed a new

group of tests setting the level to 16 in httprobe and to 4 in Nuclei to run sets of 10 simul-

taneous pipelines, based on the results obtained in the Module’s test. When testing on

instances with 1 virtual CPU, we could not finish the tests successfully. Once more, some

of the instances entered in a blocking state, even stopping to send the heartbeat at regular

intervals, which caused the broker to assume the connection was lost.

Nbr. Instances 1 2 3

Nbr. vCPU Time StdDev Time StdDev Time StdDev

1 a) - a) - a) -

2 899,17 33,01 542,03 115,62 395,84 130,88

4 498,85 33,98 287,66 53,48 - -

TABLE 5.4: Pipeline - Test results

a) instance blocked

Although not revealing a consistent improvement, the results on table 5.4 point to a

relative success in the setups with more available resources.

Chapter 6

Conclusion

The test’s results, although preliminary, point to a successful approach as far as the overall

system’s performance is concerned. Some points should, however, be considered:

• Network

• Computation resources

• Module startup overhead

• Task distribution

Network conditions are very relevant, mainly considering that almost all the tools

that an user may want to add will interact with the target through the network. As such,

a poor network connection will degrade significantly the system’s performance.

We can also infer that computational resources play a significant role. Comparing

httprobe with Nuclei, where the second has a processing phase of the responses to the

requests, we denote that the parallelism level has to be lower in order to avoid a resource

depletion.

Although not measured during these tests, we assume that there is some time elapsed

between a module call and the moment it actually starts processing requests. This elapsed

time may be sufficient to process a certain amount of requests, for which further testing

should be done calibrate the parallelism level according to this aspect.

Concerning task distribution, the created mechanism tied to CPU usage at a certain

moment in time should be improved. We realised that, sometimes, the task distribution

was not as balanced as expected and, although accepting the CPU metrics were correct

83

84
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

at the moment they were produced, the global task distribution may have been impaired

once it relies in just one element with a considerable amount of volatility.

The performed tests point to a real advantage, as far as the consumption of time is

concerned, when the workload is distributed by a pool of instances. Additionally, paral-

leling module’s execution increases the performance, although aspects like default con-

figurations, computing resources and processing needs shall be taken in account. Despite

the improvement needs identified, OrchRecon provides an efficient framework for recon-

naissance activities that helps to leverage the use of tools that a researcher may choose by

providing a way of orchestrating them in a pipeline approach.

6.1 Future Work

OrchRecon, at the present, is a prototype to approach a message-oriented framework that

enables tool orchestration, while maintaining a perspective in performance. Our option

for parallel execution seems aligned with that perspective, although some increase may

be obtained if we resort to another language like Go or Rust. Moreover, some architecture

options may be rethought, like performing the Module’s parallel execution in distinct

instances unlike the actual implementation.

Concerning the gathered data and its storage, some other approaches should be equated,

namely the implementation of a data structure that allows to an easier correlation between

all the collected elements and an appropriate database engine that supports it.

As far as error recovery is concerned, the actual mechanism is very incipient and shall

be improved. Although the majority of the incorporated tools have their own mechanism,

an effective approach must be outlined within the application logic.

As a prototype, some functionalities were not properly addressed, for which a GUI is

the next logical improvement, as well as reporting capabilities.

Bibliography

[1] ENISA, “Vulnerabilities and exploits,” last accessed 01/06/2020. [On-

line]. Available: https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/

vulnerabilities-and-exploits

[2] A. Kakareka, “Chapter 31 - what is vulnerability assessment?” in Computer and

Information Security Handbook, 3rd ed., J. R. Vacca, Ed. Boston: Morgan Kaufmann,

2013, pp. 483 – 494. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/B9780128038437000314

[3] ETSI, ETSI TR 103 305: CYBER; Critical Security Controls for Effective Cyber Defence,

ETSI Std., 2015. [Online]. Available: https://www.etsi.org/deliver/etsi tr/103300

103399/103305/01.01.01 60/tr 103305v010101p.pdf

[4] CIS Controls, Center for Internet Security Std., 2019. [Online]. Available: https:

//www.cisecurity.org/controls/

[5] J. T. C. I. J. . . I. technology — Subcommittee SC 27 — IT Security techniques, ISO/IEC

27002:2013, ISO/IEC Std., 2013.

[6] “Regulation (eu) 2016/679 of the european parliament and of the council of 27 april

2016 on the protection of natural persons with regard to the processing of personal

data and on the free movement of such data, and repealing directive 95/46/ec.”

[Online]. Available: http://data.europa.eu/eli/reg/2016/679/oj

[7] “Directive (eu) 2016/1148 of the european parliament and of the council

of 6 july 2016 concerning measures for a high common level of security

of network and information systems across the union.” [Online]. Available:

https://eur-lex.europa.eu/eli/dir/2016/1148/oj

85

https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/vulnerabilities-and-exploits
https://www.enisa.europa.eu/topics/csirts-in-europe/glossary/vulnerabilities-and-exploits
http://www.sciencedirect.com/science/article/pii/B9780128038437000314
http://www.sciencedirect.com/science/article/pii/B9780128038437000314
https://www.etsi.org/deliver/etsi_tr/103300_103399/103305/01.01.01_60/tr_103305v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103300_103399/103305/01.01.01_60/tr_103305v010101p.pdf
https://www.cisecurity.org/controls/
https://www.cisecurity.org/controls/
http://data.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/dir/2016/1148/oj

86
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

[8] “Regulation (eu) 2019/881 of the european parliament and of the council of

17 april 2019 on enisa (the european union agency for cybersecurity) and

on information and communications technology cybersecurity certification and

repealing regulation (eu) no 526/2013 (cybersecurity act).” [Online]. Available:

http://data.europa.eu/eli/reg/2019/881/oj

[9] ETSI, ETSI TR 103 456: CYBER; Implementation of the Network and Information Security

(NIS) Directive, ETSI Std., 2017. [Online]. Available: https://www.etsi.org/deliver/

etsi tr/103400 103499/103456/01.01.01 60/tr 103456v010101p.pdf

[10] “Center for internet security,” last accessed: 25/05/2020. [Online]. Available:

https://www.cisecurity.org/

[11] C. for Internet Security, “Mapping and compliance,” last accessed 02/06/2020.

[Online]. Available: https://www.cisecurity.org/cybersecurity-tools/mapping-

compliance/

[12] ETSI, ETSI TR 103 305-1: CYBER; Critical Security Controls for Effective Cyber De-

fence; Part 1: The Critical Security Controls, ETSI Std., 2018. [Online]. Avail-

able: https://www.etsi.org/deliver/etsi tr/103300 103399/10330501/03.01.01 60/

tr 10330501v030101p.pdf

[13] J. T. F. T. Initiative, NIST Special Publication 800-53 Revision 4: Security and Privacy

Controls for Federal Information Systems and Organizations, NIST Std., 2015. [Online].

Available: https://csrc.nist.gov/publications/detail/sp/800-53/rev-4/final

[14] ——, NIST Special Publication 800-53A Revision 4: Assessing Security and Privacy Con-

trols in Federal Information Systems and Organizations, NIST Std., 2014. [Online].

Available: https://csrc.nist.gov/publications/detail/sp/800-53a/rev-4/final

[15] R. M. Elie Saad, Matteo Meucci, OWASP Web Security Testing Guide, owasp.org Std.,

2020. [Online]. Available: https://github.com/OWASP/wstg/releases/download/

v4.1/wstg-v4.1.pdf

[16] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, NIST Special Publication 800-

115: Technical Guide to Information Security Testing and Assessment, NIST Std., 2008.

[Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-115/final

http://data.europa.eu/eli/reg/2019/881/oj
https://www.etsi.org/deliver/etsi_tr/103400_103499/103456/01.01.01_60/tr_103456v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103400_103499/103456/01.01.01_60/tr_103456v010101p.pdf
https://www.cisecurity.org/
https://www.cisecurity.org/cybersecurity-tools/mapping-compliance/
https://www.cisecurity.org/cybersecurity-tools/mapping-compliance/
https://www.etsi.org/deliver/etsi_tr/103300_103399/10330501/03.01.01_60/tr_10330501v030101p.pdf
https://www.etsi.org/deliver/etsi_tr/103300_103399/10330501/03.01.01_60/tr_10330501v030101p.pdf
https://csrc.nist.gov/publications/detail/sp/800-53/rev-4/final
https://csrc.nist.gov/publications/detail/sp/800-53a/rev-4/final
https://github.com/OWASP/wstg/releases/download/v4.1/wstg-v4.1.pdf
https://github.com/OWASP/wstg/releases/download/v4.1/wstg-v4.1.pdf
https://csrc.nist.gov/publications/detail/sp/800-115/final

BIBLIOGRAPHY 87

[17] P. S. S. C. Penetration Test Guidance Special Interest Group, PCI Data Security Stan-

dard — Information Supplement — Penetration Testing Guidance, PCI Std., 2017.

[18] M. Barceló and P. Herzog, “The open source security testing methodology manual,”

Institute for Security and Open Methodologies, Tech. Rep.

[19] I. I. Amit, The penetration testing execution standard, Std., 2014, last accessed

11/06/2020. [Online]. Available: http://www.pentest-standard.org/index.php/

Main Page

[20] Penetration Test Guidance, FedRAMP - Federal Risk and Authorization Management

Program Std., 2017. [Online]. Available: https://www.fedramp.gov/assets/

resources/documents/CSP Penetration Test Guidance.pdf

[21] Common vulnerability scoring system. [Online]. Available: https://www.first.org/

cvss/

[22] Cve - common vulnerabilities and exposures. [Online]. Available: https://

cve.mitre.org/

[23] Cwe - common weakness enumeration. [Online]. Available: https://cve.mitre.org/

[24] I. I. Amit, Intelligence Gathering - The penetration testing execution standard, Std., 2014,

last accessed 17/06/2020. [Online]. Available: http://www.pentest-standard.org/

index.php/Intelligence Gathering

[25] J. Faircloth, “Chapter 2 - reconnaissance,” in Penetration Tester’s Open Source Toolkit,

4th ed., J. Faircloth, Ed. Boston: Syngress, 2017, pp. 31 – 106. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/B9780128021491000026

[26] Maltego. Last accessed: 22/06/2020. [Online]. Available: https://

www.maltego.com/

[27] The harvester. Last accessed: 22/06/2020. [Online]. Available: https://github.com/

laramies/theHarvester

[28] Netcraft. Last accessed: 22/06/2020. [Online]. Available: https://

www.netcraft.com/

[29] Nmap. Last accessed: 22/06/2020. [Online]. Available: https://nmap.org/

http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Main_Page
https://www.fedramp.gov/assets/resources/documents/CSP_Penetration_Test_Guidance.pdf
https://www.fedramp.gov/assets/resources/documents/CSP_Penetration_Test_Guidance.pdf
https://www.first.org/cvss/
https://www.first.org/cvss/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.sciencedirect.com/science/article/pii/B9780128021491000026
https://www.maltego.com/
https://www.maltego.com/
https://github.com/laramies/theHarvester
https://github.com/laramies/theHarvester
https://www.netcraft.com/
https://www.netcraft.com/
https://nmap.org/

88
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

[30] J. Faircloth, “Chapter 3 - scanning and enumeration,” in Penetration Tester’s

Open Source Toolkit, 4th ed., J. Faircloth, Ed. Boston: Syngress, 2017, pp. 107

– 149. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

B9780128021491000038

[31] I. D. Ceukelaire. Abusing autoresponders and email bounces. Last ac-

cessed 17/06/2020. [Online]. Available: https://medium.com/intigriti/abusing-

autoresponders-and-email-bounces-9b1995eb53c2

[32] ——. Hundreds of internal servicedesks exposed due to covid-19. Last ac-

cessed 17/06/2020. [Online]. Available: https://medium.com/@intideceukelaire/

hundreds-of-internal-servicedesks-exposed-due-to-covid-19-ecd0baec87bd

[33] I. I. Amit, Vulnerability Analysis - The penetration testing execution standard, Std., 2014,

last accessed 30/06/2020. [Online]. Available: http://www.pentest-standard.org/

index.php/Vulnerability Analysis

[34] Owasp top ten 2017. Last accessed: 4/7/2020. [Online]. Avail-

able: https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%

2010-2017%20(en).pdf

[35] D. B. F. Deborah J. Bodeau, Catherine D. McCollum, “Cyber threat modeling: Survey,

assessment, and representative framework,” The Homeland Security Systems Engi-

neering and Development Institute, 2018. [Online]. Available: https://www.mitre.org/

sites/default/files/publications/pr 18-1174-ngci-cyber-threat-modeling.pdf

[36] I. I. Amit, Threat Modeling - The penetration testing execution standard, Std., 2014,

last accessed 25/06/2020. [Online]. Available: http://www.pentest-standard.org/

index.php/Threat Modeling

[37] ——, Exploitation - The penetration testing execution standard, Std., 2014, last accessed

09/07/2020. [Online]. Available: http://www.pentest-standard.org/index.php/

Exploitation

[38] S. A. Rahalkar, Certified Ethical Hacker (CEH) Foundation Guide. Springer, 2016.

[39] I. I. Amit, Post Exploitation - The penetration testing execution standard, Std., 2014,

last accessed 26/07/2020. [Online]. Available: http://www.pentest-standard.org/

index.php/Post Exploitation

http://www.sciencedirect.com/science/article/pii/B9780128021491000038
http://www.sciencedirect.com/science/article/pii/B9780128021491000038
https://medium.com/intigriti/abusing-autoresponders-and-email-bounces-9b1995eb53c2
https://medium.com/intigriti/abusing-autoresponders-and-email-bounces-9b1995eb53c2
https://medium.com/@intideceukelaire/hundreds-of-internal-servicedesks-exposed-due-to-covid-19-ecd0baec87bd
https://medium.com/@intideceukelaire/hundreds-of-internal-servicedesks-exposed-due-to-covid-19-ecd0baec87bd
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010-2017%20(en).pdf
https://github.com/OWASP/Top10/raw/master/2017/OWASP%20Top%2010-2017%20(en).pdf
https://www.mitre.org/sites/default/files/publications/pr_18-1174-ngci-cyber-threat-modeling.pdf
https://www.mitre.org/sites/default/files/publications/pr_18-1174-ngci-cyber-threat-modeling.pdf
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation

BIBLIOGRAPHY 89

[40] R. Messier, “Penetration testing basics,” Berkeley, CA: Apress, 2016.

[41] I. I. Amit, Reporting - The penetration testing execution standard, Std., 2014, last

accessed 27/07/2020. [Online]. Available: http://www.pentest-standard.org/

index.php/Reporting

[42] Injection flaws. Last accessed: 13/7/2020. [Online]. Available: https://owasp.org/

www-community/Injection Flaws

[43] Summarizing known attacks on transport layer security (tls) and datagram tls (dtls).

Last accessed: 19/7/2020. [Online]. Available: https://tools.ietf.org/html/rfc7457

[44] Xml external entity (xxe) processing. Last accessed: 19/7/2020. [Online].

Available: https://owasp.org/www-community/vulnerabilities/XML External

Entity (XXE) Processing

[45] Xxe injection. Last accessed: 19/7/2020. [Online]. Available: https:

//portswigger.net/web-security/xxe

[46] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible

markup language (xml) 1.0,” W3C, RFC, 2013. [Online]. Available: https:

//www.w3.org/TR/REC-xml/

[47] Access control vulnerabilities and privilege escalation. Last accessed: 21/7/2020.

[Online]. Available: https://portswigger.net/web-security/access-control

[48] Broken access control. Last accessed: 21/7/2020. [Online]. Available: https:

//owasp.org/www-community/Broken Access Control

[49] Code review guide. Last accessed: 21/7/2020. [Online]. Available: https:

//owasp.org/www-pdf-archive/OWASP Code Review Guide v2.pdf

[50] C. Linhart, A. Klein, R. Heled, and S. Orrin. Http request smuggling. Last accessed:

22/7/2020. [Online]. Available: https://www.cgisecurity.com/lib/HTTP-Request-

Smuggling.pdf

[51] Cross-site scripting. Last accessed: 22/7/2020. [Online]. Available: https:

//portswigger.net/web-security/cross-site-scripting

[52] Insecure deserialization. Last accessed: 24/7/2020. [Online]. Available: https:

//portswigger.net/web-security/deserialization

http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting
https://owasp.org/www-community/Injection_Flaws
https://owasp.org/www-community/Injection_Flaws
https://tools.ietf.org/html/rfc7457
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://portswigger.net/web-security/xxe
https://portswigger.net/web-security/xxe
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/
https://portswigger.net/web-security/access-control
https://owasp.org/www-community/Broken_Access_Control
https://owasp.org/www-community/Broken_Access_Control
https://owasp.org/www-pdf-archive/OWASP_Code_Review_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_Code_Review_Guide_v2.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/deserialization
https://portswigger.net/web-security/deserialization

90
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

[53] Deserialization of untrusted data. Last accessed: 24/7/2020. [Online].

Available: https://owasp.org/www-community/vulnerabilities/Deserialization

of untrusted data

[54] Exploiting insecure deserialization vulnerabilities. Last accessed: 24/7/2020. [On-

line]. Available: https://portswigger.net/web-security/deserialization/exploiting

[55] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2, no. 3,

pp. 24–31, 2015.

[56] Containerization explained — ibm. Last accessed: 18/08/2020. [Online]. Available:

https://www.ibm.com/cloud/learn/containerization

[57] What is a container? — app containerization — docker. Last accessed: 18/08/2020.

[Online]. Available: https://www.docker.com/resources/what-container

[58] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud

Computing, vol. 1, no. 3, pp. 81–84, 2014.

[59] G. F. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed systems: concepts

and design. Pearson Education, 2012.

[60] M. van Steen and A. S. Tanenbaum, Distributed Systems, 3rd ed. Pearson Education,

2018.

[61] J. T. C. I. J. . . I. technology — Subcommittee SC 33 — Distributed application services

and ITU-T, ISO/IEC 10746-1:1998, ISO/IEC Std., 1998.

[62] Cloud computing - statistics & facts — statista. Last accessed: 01/09/2020. [Online].

Available: https://www.statista.com/topics/1695/cloud-computing/

[63] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM Transac-

tions on Computer Systems (TOCS), vol. 2, no. 1, pp. 39–59, 1984.

[64] Protocol buffers — google developers. Last accessed: 05/10/2020. [Online].

Available: https://developers.google.com/protocol-buffers/

[65] 0mq - the guide. Last accessed: 06/10/2020. [Online]. Available: http:

//zguide.zeromq.org/

https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
https://portswigger.net/web-security/deserialization/exploiting
https://www.ibm.com/cloud/learn/containerization
https://www.docker.com/resources/what-container
https://www.statista.com/topics/1695/cloud-computing/
https://developers.google.com/protocol-buffers/
http://zguide.zeromq.org/
http://zguide.zeromq.org/

BIBLIOGRAPHY 91

[66] The bug hunter’s methodology. Last accessed: 12/10/2020. [Online]. Available:

https://www.youtube.com/watch?v=gIz yn0Uvb8

[67] Github - jhaddix/tbhm: The bug hunter’s methodology. Last accessed: 12/10/2020.

[Online]. Available: https://github.com/jhaddix/tbhm

[68] Github - findomain. Last accessed: 12/10/2020. [Online]. Available: https:

//github.com/Findomain/Findomain

[69] Github - silverpoision/rock-on. Last accessed: 12/10/2020. [Online]. Available:

https://github.com/SilverPoision/Rock-ON

[70] Github - epi052/recon-pipeline. Last accessed: 12/10/2020. [Online]. Available:

https://github.com/epi052/recon-pipeline

[71] Intrigue - intelligent attack surface management. Last accessed: 12/10/2020.

[Online]. Available: https://intrigue.io/

[72] Github - intrigueio/intrigue-core. Last accessed: 12/10/2020. [Online]. Available:

https://github.com/intrigueio/intrigue-core

[73] Documentation - spiderfoot. Last accessed: 12/10/2020. [Online]. Available:

https://www.spiderfoot.net/documentation

[74] Github - smicallef/spiderfoot. Last accessed: 12/10/2020. [Online]. Available:

https://github.com/smicallef/spiderfoot

[75] Github - j3ssie/osmedeus. Last accessed: 12/10/2020. [Online]. Available:

https://github.com/j3ssie/Osmedeus/

[76] What is Spear Phishing? Definitions and Risks. Last accessed: 19/10/2020. [On-

line]. Available: https://www.kaspersky.com/resource-center/definitions/spear-

phishing

[77] K. Kritikos, K. Magoutis, M. Papoutsakis, and S. Ioannidis, “A survey on vulnerabil-

ity assessment tools and databases for cloud-based web applications,” Array, vol. 3,

p. 100011, 2019.

[78] Cloud computing services — google cloud. Last accessed: 07/10/2020. [Online].

Available: https://cloud.google.com/

https://www.youtube.com/watch?v=gIz_yn0Uvb8
https://github.com/jhaddix/tbhm
https://github.com/Findomain/Findomain
https://github.com/Findomain/Findomain
https://github.com/SilverPoision/Rock-ON
https://github.com/epi052/recon-pipeline
https://intrigue.io/
https://github.com/intrigueio/intrigue-core
https://www.spiderfoot.net/documentation
https://github.com/smicallef/spiderfoot
https://github.com/j3ssie/Osmedeus/
https://www.kaspersky.com/resource-center/definitions/spear-phishing
https://www.kaspersky.com/resource-center/definitions/spear-phishing
https://cloud.google.com/

92
ORCHRECON - A DISTRIBUTED SYSTEM FOR RECONNAISSANCE AND VULNERABILITY

SCANNING

[79] Sqlalchemy - the database toolkit for python. Last accessed: 08/10/2020. [Online].

Available: https://www.sqlalchemy.org/

[80] Instance groups — compute engine documentation — google cloud. Last

accessed: 12/10/2020. [Online]. Available: https://cloud.google.com/compute/

docs/instance-groups/

[81] Acronis - bug bounty program — hackerone. Last accessed: 19/10/2020.

[82] projectdiscovery/subfinder. Last accessed: 19/10/2020. [Online]. Available: https:

//github.com/projectdiscovery/subfinder

[83] tomnomnom/httprobe. Last accessed: 19/10/2020. [Online]. Available: https:

//github.com/tomnomnom/httprobe

[84] projectdiscovery/nuclei. Last accessed: 19/10/2020. [Online]. Available: https:

//github.com/projectdiscovery/nuclei

https://www.sqlalchemy.org/
https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/compute/docs/instance-groups/
https://github.com/projectdiscovery/subfinder
https://github.com/projectdiscovery/subfinder
https://github.com/tomnomnom/httprobe
https://github.com/tomnomnom/httprobe
https://github.com/projectdiscovery/nuclei
https://github.com/projectdiscovery/nuclei

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 State of the Art
	2.1 Vulnerability assessment
	2.1.1 Legislation and Standards
	2.1.2 Security Controls Assessment

	2.2 Penetration Testing
	2.2.1 Pre-engagement Activities
	2.2.2 Discovery and Analysis Activities
	2.2.3 Attack Activities
	2.2.4 Reporting

	2.3 Web Vulnerabilities
	2.3.1 Injection
	2.3.2 Broken Authentication
	2.3.3 Sensitive Data Exposure
	2.3.4 XML External Entities (XXE)
	2.3.5 Broken Access Control
	2.3.6 Security Misconfiguration
	2.3.7 Cross-Site Scripting (XSS)
	2.3.8 Insecure Deserialization
	2.3.9 Using Components with Known Vulnerabilities
	2.3.10 Insufficient Logging and Monitoring

	3 Supporting Background Work
	3.1 Containerization
	3.2 Distributed systems
	3.2.1 Design issues
	3.2.2 Types of distributed systems
	3.2.3 Communication in distributed systems

	3.3 Reconnaissance automation

	4 OrchRecon
	4.1 Architecture overview
	4.1.1 Master
	4.1.2 Broker
	4.1.3 Pipeline Managers
	4.1.4 Database and Storage
	4.1.5 Module
	4.1.6 Scalability

	4.2 Implementation
	4.2.1 Setup
	4.2.2 Master
	4.2.3 Broker
	4.2.4 Pipeline Managers
	4.2.5 Database and Storage
	4.2.6 Module
	4.2.7 Distributed system

	5 Evaluation
	5.1 Modules Performance
	5.2 Pipeline Performance

	6 Conclusion
	6.1 Future Work

	Bibliography

