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Abstract 

Musculoskeletal diseases are the major cause of disability, being responsible for almost 30 

percent of all years lived with disability and affecting around 1.7 billion people worldwide. The 

combined annual incidence of the most common musculoskeletal disorders (low back pain, 

osteoarthritis and bone fractures) is about 3150/100 000 inhabitants. This translates into around 

230 million new cases annually, with a corresponding high demand on rehabilitation services. 

Evidence regarding motor rehabilitation highlights the need for high intensity, repetitive  

task-specific practice with feedback on performance, active patient involvement and adequate 

motivation. There is also evidence for the benefit of an early start in the rehabilitation process. 

Current rehabilitation models are highly dependent on specialized human resources. Whilst the 

clinical validity of this approach is clearly established, high economic costs and heavy logistics 

are major impediments in a day-to-day setting, limiting both the access to rehabilitation 

therapies and the intensity of these programs. Therefore, inertial sensors present a more 

suitable technique. They can be attached to different body segments to estimate joint 

kinematics and they represent a promising technology due to their usability in internal and 

external environments and fast donning becoming, then, an alternative to high-cost optical 

systems. 

The study of joints using inertial sensors presents a few challenges, such as variability in 

sensor placement, accumulation of integration errors of sensors themselves. Therefore, and as 

in part of the dissertation project of the Integrated Master in Bioengineering, it was proposed 

by SWORD Health, the development of an algorithm that will allow quality and repeatability in 

the analysis of joints in the context of motor rehabilitation. The algorithm developed was based 

on the work written by Seel et al, with some adjustments, in order to respond to the needs of 

motor rehabilitation. The algorithm proved to be able to converge correctly to the axis of the 

knee joint, regardless of the placement of the sensors in the human body. In addition, another 

extra algorithm was developed to, based on the previous convergence, find the position of the 

joint. 
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Resumo 

As doenças músculo-esqueléticas são a principal causa de incapacidade motora, sendo 

responsável por quase 30% de todos os anos vividos com deficiência e afetam cerca de 1,7 

bilhão de pessoas em todo o mundo. A incidência anual combinada dos distúrbios músculo-

esqueléticos mais comuns (dor lombar, osteoartrite e fraturas ósseas ) é de cerca de 3150/100 

000 habitantes. Isso traduz-se em cerca de 230 milhões de novos casos por ano, com alta 

procura aos correspondentes serviços de reabilitação. 

Pesquisas efetuadas na área da reabilitação motora realçam a necessidade de uma prática 

específica de tarefas repetitivas e de alta intensidade com comentários sobre desempenho, 

envolvimento ativo do paciente e motivação adequada. Também há evidências para o benefício 

de um início precoce no processo de reabilitação. Os modelos atuais de reabilitação são 

altamente dependentes de recursos humanos especializados. Embora a validade clínica desta 

abordagem seja claramente estabelecida, os altos custos económicos e a logística são 

impedimentos no contexto do dia-a-dia, limitando o acesso às terapias de reabilitação e a 

intensidade desses programas. Portanto, os sensores inerciais apresentam uma técnica mais 

adequada. Estes podem ser anexados a diferentes segmentos do corpo para estimar a 

cinemática articular e representam uma tecnologia promissora devido à sua usabilidade nos 

ambientes internos e externos e a colocação rápida tornando-se, então, uma alternativa aos 

sistemas óticos de alto custo. 

O estudo de articulações utilizando sensores inerciais apresenta alguns desafios, como 

variabilidade na colocação de sensores, acumulação de erros de integração dos próprios  

sensores. Assim, como parte do projeto de dissertação do Mestrado Integrado em 

Bioengenharia, foi proposto pela SWORD Health, o desenvolvimento de um algoritmo que 

permitisse a qualidade e repetibilidade na análise das articulações no contexto da reabilitação 

motora. O algoritmo desenvolvido teve por base o trabalho escrito por Seel at al, com alguns 

ajustes, de forma a responder às necessidades da reabilitação motora. O algoritmo provou ser 

capaz de convergir corretamente para o eixo da articulação do joelho, independentemente da 

colocação dos sensores no corpo humano. Além disso, um outro algoritmo extra foi 

desenvolvido para, com base na convergência anterior, encontrar a posição da articulação. 
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Chapter 1 

Introduction 

Within the scope of the dissertation project of the Integrated Master in Bioengineering, 

Biomedical Engineering, the student will carry out an internship at SWORD Health. This project 

aims to study and enhance/develop new algorithms that will ensure quality and repeatability 

in joint analysis using inertial sensors. Furthermore, these algorithms must be developed 

regarding human rehabilitation and they must give a real-time feedback. 

1.1- Motivation and Objectives 

Approximately 15% of the world population lives with a disability condition, of which 2-4% 

suffer substantial functional problems [7]. Hence, one of the major goals of neuromuscular  

rehabilitation is to regain function in order to promote more independent lives. The assessment 

of functional activities can help practitioners to determine the autonomy level of the patient 

and the optimal care they should receive [8]. Therefore, it is important to understand and 

characterize human motion as a mean to improve the diagnosis, enhance treatments and follow 

patients’ evolution. A fundamental part of this analysis is the estimation of joint angular 

displacement, which involves the detection of joint position and spatial orientation [9]. 

There are many available techniques to detect human movement and they can be divided 

in visual (camera-based) or non-visual (inertial sensors, for example). In contrast to camera-

based laboratory systems, wearable sensors, like inertial sensors, present many advantages, 

such as their lower cost, higher flexibility, portability and adaptability [10]. Inertial sensors are 

a multi-axial combination of accelerometers, gyroscopes and, in some cases, magnetometers. 

They can be attached to different body segments to estimate joint kinematics and they 

represent a promising technology due to their usability in internal and external environments  

and fast donning becoming, then, an alternative to high-cost optical systems [5]. 

The study of joints using inertial sensors presents a few challenges, such as the variability 

in sensor placement and the accumulation of integration errors of sensors themselves. These 

errors may cause a significant decrease in quality of the measures, thus, biomechanical models  
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are a way to overcome this issue. These models take into consideration the restrictions 

associated with degrees of freedom in joints and allow correcting observed deviations. 

Nevertheless, there are also other challenges inherent in the context of motor rehabilitation, 

for example, patient with limited mobility may difficult the calibration movements  or other 

techniques that facilitate the implementation of these models. 

Therefore, the objectives of this thesis include the study of algorithms and biomechanical 

models for human motion analysis. Also, the development of algorithms that will allow qualit y 

and repeatability in the analysis of joints in the context of motor rehabilitation. 

1.2- SWORD Health 

SWORD Health is a healthcare startup that is reinventing physical rehabilitation through the 

combination of science-driven therapeutic methods with effective technologies that facilitate 

dissemination of care. To solve the dependence of current rehabilitation models on specialized 

human resources, which are costly and scarce, SWORD Health has developed SWORD Phoenix, 

a system that combines small, portable motion sensors and powerful software allowing a more 

efficient and cost-effective approach to rehabilitation. SWORD Health has been endorsed by 

the European Commission as one of the most innovative companies in Europe, and has already 

established partnerships with several major rehabilitation institutions in Europe and in the US. 

In the latter, SWORD Health has partnered with Genesis Rehab Services, the largest 

rehabilitation chain in the US. As a result, SWORD Phoenix is already being piloted in several 

institutions in Europe and China, with pilots in the US about to start. 

1.3- Document Structure 

The following documented is organized in 7 chapters, each one referring to the different 

parts of the problem resolution and validation. 

In the first one, is presented the main goals of the study as well as a description of the 

document. 

The second chapter, gives a notion of the human anatomy and explains the meaning of 

human rehabilitation. Furthermore, this chapter provides a socio-economical perspective of 

human rehabilitation in today’s society and two different scenarios are specified: stroke and 

Parkinson’s disease. For each, rehabilitation techniques and prevalence and incidence are 

provided, in order to raise the reader’s awareness of human disabilities and how they affect 

daily lives. Further, a detailed description of constitution and principles of operation of inertial 

sensors is given and the usage of such sensors for human motion capture. Besides, it is presented 

an historical reference of the first work done in this context. Then, a survey on human motion 

capture techniques is provided as well as their advantages and disadvantages regarding the 

project’s intent. 
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In the third chapter is presented the algorithm that will support this thesis. First, a brief 

explanation of the same is given, with the essential equations and assumptions and then a step 

by step tutorial of the algorithm is specified. 

Chapter four describes the method used for the simulated data validation and then the 

results obtained, as well as a discussion of such results. 

The fifth chapter shows the results obtained for the experimental trials performed by a 

subject and provides its corresponding discussion. 

The initial objective of this thesis was to develop of a robust algorithm capable to identify 

the vector defining the knee articulation joint (its axis). However, this work went further and 

a new algorithm was is developed to find the joint position based on the joint axis achieved 

with the algorithm described in the fifth chapter. This extra work can be found in chapter six, 

in which the new algorithm is described with detail and its validation is shown and discussed.  

Lastly, in chapter seven a summary of the work produced is provided, along with the final 

relevant conclusions and remarks. This final chapter also mentions some limitations  

encountered through this work and some possibilities for future works.



 

 

 

 

 



 

 

 

Chapter 2 

Background and Literature Review 

2.1- Human Motion 

Biological musculoskeletal system (MSK), composed of numerous bones, cartilages, skeletal 

muscles, tendons, ligaments etc., provides form, support, movement and stability for human 

or animal body. As the result of million years of selection and evolution, the biological MSK 

evolved to be a nearly perfect mechanical mechanism to support and transport the human 

body. Additionally, it provides enormously rich resources inspiring engineers to innovate new 

technology and methodology and to develop robots and mechanisms as effective and 

economical as the biological systems [11]. In addition, development of predictive 

musculoskeletal models, capable of predicting body kinematics and kinetics, will be one of the 

major future research directions due to their great potential in clinical diagnosis, rehabilitation 

engineering and surgical planning [12]. 

 

2.1-1. General Anatomic Description 

The skeleton, formed by bones and joints, is the supporting structure of the human body. 

The bones give rigid support to the soft tissues of the body and form levers which move due to 

muscle contractions, whereas the muscles form the locomotor and weight-bearing apparatus  

together with the bones and their joints (figure 2.1)[13]. 

Regarding the skeletal system, it includes over 200 bones, 85 of which are paired. Bone 

consists of cells and extracellular matrix, and its specific composition allows mineralization, 

which is a specific feature of bone[14]. According to shape, bones can be divided in long bones 

and flat [13]. The first ones, consist of the epiphyses, which are protrusions at the ends of the 

long bones [15], the diaphysis (constituting its shaft [16]) and the metaphyses, which are 

located between the epiphysis and the diaphysis [17]. The external shape of bones is formed 

by a dense cortical shell (cortical or compact bone), which is particularly strong along the 

diaphysis, where the bone marrow is located. On the other hand, trabecular bone (or cancellous  

bone) is a sponge-like network consisting of countless highly interconnected bony trabeculae 
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[14]. Although cortical and trabecular bone are composed of the same cells and same matrix 

components, cortical bone almost exclusively consists of mineralized tissue (up to 90%), 

allowing it to fulfill its mechanical requirements. In contrast, only 20% of trabecular bone is 

mineralized tissue. As a consequence, this bone shares a vast surface with the nonmineralized 

tissue, which is the basis for the metabolic function of bone, necessitating a high level of 

communication between the bone surface and the nonmineralized tissue [14]. 

Human joints provide the structures by which bones join with each other, and are classified 

according to histology features of the union and range of joint motion: fibrous joints and 

synovial joints. These two types of joints differ in the degree of mobility that they provide for 

the bones and in the capacity of bearing mechanical loads  [13]. Synovial joints, which articulate 

with free movement, have a synovial membrane lining the joint cavity and containing synovial 

fluid [18]. Furthermore, this joint can also be classified according to their shapes, including 

ball-and-socket (hip), hinge (interphalangeal), saddle, and plane joints. The various designs 

permit flexion, extension, abduction, adduction or rotation. Certain joints can act in one 

(humeroulnar), two (wrist) or three (shoulder) axes of motion [14]. Fibrous joints provide 

uninterrupted union of bones, by means of connective tissues, permitting limited motion [13]. 

Ligaments play a major role in the passive stabilization of joints, aided by the capsule and, 

when present, the menisc. Moreover, they provide a stabilizing bridge between bones, 

permitting a limited range of movement [19]. 

The muscle form the locomotor and weight-bearing apparatus together with bone and 

respective joints. There are more than 660 skeletal muscles in the human body and they 

constitute up to 40% of the body mass [14]. Functionally, muscles are united to form a working 

group, responsible for motor activity. Each axis of rotation at a joint possesses its own pair of 

functional working groups: uniaxial joints have one pair, diaxial joints have two pairs and 

triaxial joints have three pairs of working groups [13]. Muscles accomplishing a single type 

action are called synergists, and the ones that act in opposition to another are called 

antagonists. Muscle is a use-dependent tissue, meaning that increasing muscle activity through 

physical exercise leads to adaptation in muscle fibers, fortifying the muscle. On the other hand,  

when activity is reduced, the cross-section of the fiber decreases, leading to muscle weakening. 

After significant periods of disuse, loss of muscle strength and endurance can progress to the 

point that patients are unable to accomplish daily activities. Although younger and healthy ones 

tend to regain muscle size and function with exercise rehabilitation, older individuals and those 

with chronic diseases cannot fully recover from muscle disuse [20]. Normal individuals exhibit 

an approximately 30% decrease in total muscle mass between the ages of 30 and 80 [14]. 
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Figure 2.1- Representation of the human musculoskeletal system [21]. 

2.1-2. Motor Rehabilitation 

Rehabilitation, from the Medieval Latin root word rehabilitare, literally means "to restore 

to a rank, it is similar to other types of physical conditioning. Rehabilitation is the process of 

applying stress to healing tissue in accordance with specific stresses that the tissue will face 

on returning to a particular activity. Thus, rehabilitation involves reconditioning injured tissue, 

and, essentially, body systems respond to physical stress by undergoing adaptations that 

ultimately improve their functioning [22]. When the healing tissue is mature, the emphasis 

moves to more aggressive conditioning in preparation to a specific task. 

Musculoskeletal conditions are without doubt a major burden on individuals, health systems 

and social care systems [23]. In 2011, an estimated 37.9 million people, 12.2% of the U.S. 

population, were living with a disability [24]. Furthermore, according to the World Health 

Organization (WHO), there are 4 million people with Parkinson’s disease (PD) worldwide, 

specifically, in Europe, prevalence rate estimates range from 65.6 per 100,000 to 12,500 per 

100,000 [25]. According to the National Heart, Lung, and Blood Institute, annually in USA, 

795,000 strokes occur, with 610,000 being first-time strokes and 185,000 related to a 

recurrence [26]. The American Heart Association also estimated an overall stroke prevalence 

of 6.8 million Americans, accounting for 2.8% of the population, based on National Health and 

Nutrition Examination Survey (NHANES) data from 2007 to 2010 [27]. 

 

Stroke 

Stroke occurs due to interruption of blood supply to the brain or a result of ischemia 

bleeding and has a prevalence of approximately 795,000 new or recurrent events in the United 

States each year [28]. A common problem experienced by these populations is impaired upper 

extremity function. About 70% of stroke survivors lose motor skills of the paretic arm and hand, 

even mild impairment results in significant daily function limitations and has a negative impact 
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on the quality of life [29][30]. During rehabilitation, a process of relearning how to move to 

carry out their needs successfully, patients improve their activity by either developing  

compensatory strategies or by reacquisition of the pre-lesion patterns, defined as recovery 

[31]. 

Motor learning is fundamental for improvement of affected motor skills following brain 

lesion. When designing a rehabilitation training, it is very import to select appropriate outcome 

measures for patients’ evaluation. According to the stroke survivors, the additional practice 

they seek must be meaningful. In some cases, the problem may simply be tasks for which the 

explanation of the biological basis of the therapy or the training intent is inadequate [32]. Goal 

setting in stroke rehabilitation has been identified as important for recovery, positive influence 

on patients’ perceptions of self-care ability and engagement in rehabilitation [33]. 

The economic burden of stroke is impacted by initial hospitalization, medications, 

continuing medical care, including rehabilitation, and work limitations. In the United States, 

the average cost of a stroke hospitalization in 2005 was 8600 € per patient [34]. Over a lifetime, 

the cost of an ischemic stroke in the same country is more than 127,000 € per patient, including 

inpatient care, rehabilitation, and long-term care for lasting deficit [35]. Whereas, in Europe, 

the cost per subject are illustrated in the figure below, where direct healthcare costs include 

hospitalization, pharmaceuticals and rehabilitation, direct non-medical costs include social 

services and special accommodation and indirect costs concern los t production due to work 

absence or early retirement [36]. 

Table 2.1- Annual cost per subject with stroke in Europe, in euros (n.a: not available) [36]. 

Country Direct healthcare costs Direct non-medical costs Indirect costs Year 

Germany 18,518 n.a. n.a. 2004 

Ireland 18,571 710 2821 2007 

Italy 12,222 9012 1982 2005 

Netherlands 19,511 n.a. n.a. 2000 

 

Parkinson’s Disease 

Parkinson's disease (PD) is among the most common neurodegenerative diseases. It is 

characterized by bradykinesia, tremor, rigidity and postural instability. Comorbidities such as 

mental disorders, autonomic dysfunction, difficulties in swallowing and speech as well as sleep 

impairment may occur during the course of the disease. In Europe, the prevalence is 

approximately 160 per 100,000 among those aged 65 and older and this number will 

considerably increase in the coming years. The number of persons and subsequently the burden 

of Parkinson's disease is expected to increase over time due to the aging European population 

[37]. 
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Growing evidences suggest that exercise has positive effects on the quality of life of elderly 

people and subjects with neurodegenerative disorders. Exercise has been consistently shown 

to improve both motor and non-motor features of PD [38]. Moreover, exercise has been 

associated with a reduced risk of developing Parkinson's disease [39]. General physiotherapy 

(stretching, muscle strengthening, balance and postural exercises), occupational therapy, and 

treadmill training, are frequently adopted to improve specific aspects of mobility [40]. When 

designing a rehabilitative program for PD, exercise should be “goal based” that is targeted to 

practicing and learning specific activities in these core areas that are impaired (for instance, 

balance and gait control) thus leading to improved performance in daily living activities  [41]. 

The admission rate ranged from 6% to 21% of patients, with highest rates found in Austria. 

Costs for inpatient days (hospitalization and rehabilitation) ranged from EUR 100 (95% CI: 50–

150) to EUR 1600 (95% CI: 890–3020) [37]. In Portugal, inpatient costs represented a major cost 

component of the direct costs, including hospitalization and rehabilitation, consisted of EUR 

770 (95% CI: 230–1940) for hospitalization and EUR 90 (95% CI: 6–430) for rehabilitation. The 

lowest inpatient costs were found in Eastern European countries where they comprised 5% of 

the total direct costs as compared to 13%–42% in Western European countries. 

Table 2.2- Selected unit costs adjust to 2008, per country [37]. 

  Austria Czech 

Republic 

Germany Italy Portugal Russia 

 Type of costs (per 

drug package/per 

visit) 

€ € € € € € 

Medication Levodopa/ 

benserazide 250 mg 

40 58 80 18 7 40 

Dopamine-agonist 240 292 356 66 168 72 

Inpatient 

Care 

Rehabilitation 

(daily charge) 

253 10 172 496 268 410 

Hospitalization 298 70 441 3773 638 410 

2.2- Inertial Sensors 

Inertial sensors were mainly used in aeronautics and maritime applications until the nineties 

because of the high cost associated with the high-accuracy requirements. With developments  

in micro-electro-mechanical systems (MEMS), the availability of small, lower-cost, medium-

performance inertial sensors has opened up new possibilities for their use, such as the  

recognition of daily activities [42] physical therapy and home-based rehabilitation [43], 
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biomechanics [44], detecting and classifying falls, shock and vibration analysis, navigation of 

unmanned vehicles, and state estimation and dynamic modeling of legged robots [45]. 

Inertial measurement units (IMUs) typically contain gyroscopes  and accelerometers , 

sometimes used in conjunction with magnetometers. Each device can be sensitive around a 

single axis or multiple axes (usually two or three). An accelerometer detects specific force, 

which is proportionate to the acceleration of the sensor relative to an inertial reference frame 

along its axis of sensitivity. A gyroscope senses the angular rate about an axis of sensitivity with 

respect to an inertial reference frame[46]. Magnetometers measure the magnetic field strength 

at a given location superposed with the Earth’s magnetic field [47]. 

Currently, there are many inertial sensors available on the market with different 

specifications. In order to choose the best one that fits the problem’s needs, there are certain 

specifications that need special attention, such as, range, interface, axes, power requirements  

and price. The price of an inertial sensor may vary from 10€ up to 400€, this discrepancy is 

reflected in the already mentioned specifications. 

 

2.2-1. Accelerometers 

Accelerometer is a sensor dedicated to measure its own linear acceleration. There are 

several classes of commercial accelerometers such as fluid, reluctive, servo, and magnetic [48]. 

However, classes that are more common to the investigation of human motion are strain gauge, 

piezoresistive, capacitive, and piezoelectric. The basic mechanism underlying acceleration 

measurement is often described in terms of a mass –spring system, which operates under the 

principles of Hooke’s law, 𝐹 = 𝑘𝑥, and Newton’s 2nd law of motion, 𝐹 = 𝑚𝑎. When a mass–

spring system is submitted to a compression or stretching force due to movement, the spring 

will generate a restoring force proportional to the amount of compression or stretch. Given 

that mass, and the stiffness of the spring can be controlled, the resultant acceleration of the 

mass element can be determined from characteristics of its displacement: 

 

𝐹 = 𝑘𝑥 = 𝑚𝑎 (2.1) 

 

Thus, 

 

𝑎 =
𝑘𝑥

𝑚
 (2.2) 

 

In practice, acceleration is quantified using a number of techniques depending on the 

accelerometer class. For example, in a capacitive accelerometer, a silicon mass element is 

surrounded by an array of paired capacitors on opposite sides of the accelerometer housing. As 

the mass element reacts to movement, an imbalance is created between opposing capacitors  

that produce an electrical output signal proportional to the magnitude of the applied  
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Figure 2.2 – Accelerometer principle[49]. 

acceleration. Regardless of accelerometer class, the relationship between the electrical output 

and a corresponding reference value of acceleration must be determined by calibration 

procedures performed under specific conditions [50]. 

In the literature, two categories of measurement errors are distinguished: stochastic errors 

(noise) and deterministic errors (calibration defects). Firstly, electronic sensors are disturbed 

by noise [51]. Thermal noise has the main influence on data collected from electronic sensors. 

As it is usually modeled with a Gaussian white noise, it has an impact over the entire frequency 

domain such that it cannot be filtered. Furthermore, the definition of the link between raw 

output signals and estimated acceleration can be a factor of loss  of accuracy. Unlike noise, this 

error can be corrected by defining an adapted measurement model and following an accurate 

calibration process [52]. 

Usually, accelerometers are calibrated by using angular position-control or centrifuge 

machines. In the first, the accelerometer is placed and held stationary at various known 

reference orientations throughout the test. This is  known as the multi-position or the 1g test. 

Calibration parameters are estimated based on the acquired sensor measurements  and the 

reference accelerations associated with the reference orientations (i.e., the local gravity 

vector 𝑔) [47]. However, this procedure has a limitation: the reference acceleration inputs  

applied to the sensors are restricted to the [−g, +g] interval, which may result in inaccurate 

calibration outside this interval. On the other hand, when centrifuge machines are used, 

reference acceleration inputs are not necessarily restricted to the [−g, +g] interval and higher 

acceleration values are sustainable [53]. Deterministic error components can then be identified 

in the same way as in the former procedure. 

 

2.2-2. Gyroscope 

A gyroscope is a device that measures angular rate around a certain axis of rotation. In 

order to do this, they rely on the physical principle of the Coriolis force. An object with a 

certain velocity 𝑣 and an angular rate Ω around an axis orthogonal to the vector 𝑣, is subject 

to a Coriolis acceleration [54]: 

 

𝑎𝑐𝑜𝑟 = 2Ω × 𝑣 (2.3) 
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A corresponding Coriolis force acts on the object, with a direction orthogonal to the plane 

of both the axis of rotation and the direction of velocity, and with the following modulus:  

 

𝐹𝑐𝑜𝑟 = 2𝑚Ω𝑣 (2.4) 

 

Typically, MEMS gyroscopes are specialized vibrating accelerometers that measure Coriolis 

forces (figure 2.3). A basic vibratory gyroscope consists of a proof mass mounted on a suspension 

that allows the proof mass to move in two orthogonal directions. To generate a Coriolis force, 

the proof mass must be in motion. To this end, the proof mass is electronically forced to 

oscillate in a direction parallel to the chip surface. If the gyroscope chip is rotated about the 

axis perpendicular to the chip surface, then a Coriolis force causes the proof mass to be 

deflected in the second direction.  

The amplitude of this oscillatory deflection is proportional to the rate of rotation, so that 

capacitive sensing, as in the case of the accelerometer discussed above, can be used to produce 

a voltage proportional to the angular rotation rate [55]. 

An angular velocity sensor with two or three axes is also possible. The triaxial micro-angular 

velocity sensor is mainly fabricated by the silicon-on-insulator technique, and it operates to 

detect the three-axes angular velocities. The outer ring is driven by the rotational comb 

electrodes to rotate, counterclockwise and clockwise alternatively, around the z-axis. Once 

the gyroscope is perturbed by Coriolis acceleration resulting from external rotation excitation 

around the y-axis, the outer ring responds to tilt in the direction of the x-axis. On the other 

hand, the inner-disc is forced to oscillate about the y-axis if the external rotation excitation is 

about the x-axis. All the tilts along x-axis or y-axis will result in the change of voltage output 

across the corresponding capacitors [56]. 

Figure 2.3 – The Coriolis force [57]. 
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The calibration of gyroscopes depends on its precision. High-precision gyroscopes are 

capable of measuring the Earth’s angular velocity, enabling the use of multi-position tests [46]. 

Gyroscopes can be positioned at reference orientations and the calibration parameters  can be 

estimated by comparing the sensor measurements with the reference angular rate at these 

positions [47]. However, lower-grade MEMS gyroscopes need to be exposed to different 

reference angular velocities that can be provided by an angular position-control machine or a 

single-axis rate table [58]. The latter allows accurate calibration over a broader operation range 

compared to the former. The calibration parameters can be estimated by comparing the sensor 

measurements with the reference angular rates [59]. If the reference angular rates are not 

available, alternative techniques are required: 

i. Calibrated accelerometers and/or magnetometers, embedded in the sensor unit 

together with the gyroscope, can be used to provide the reference information. If 

accelerometers are employed, measurements at stationary positions are compared 

with the gravity projected onto the sensor sensitivity axes by an angular 

transformation computed using gyroscopic measurements [60]. However, 

accelerometers only detect the two angles between the sensor and the local 

horizontal direction. Therefore, their measurements cannot resolve the rotation 

about the local vertical direction. Alternatively, it can be used embedded 

magnetometers that project the Earth’s magnetic field onto the sensor’s sensitivity 

axes as reference information [61]. Calibration is commonly performed by simply 

rotating the sensors by hand on a flat surface. 

ii. When there is no additional sensor embedded in the sensor, the gyroscope can be 

fixed to one of the contact surfaces of a right-angled plate and rotated by hand on 

a flat surface. In this case, the attitude computed by gyroscope measurements is 

compared with the reference attitude associated with the plate’s configuration  

[62]. 

 

2.2-3. Magnetometer 

There are many different methods to sense a magnetic field, depending on the intensity of 

the signal to be measured. Given the large number of potential applications, there is a growing 

interest in developing miniaturized and low power magnetic field sensors  [63]. 

The most promising approaches for the implementation of a magnetometer in MEMS 

technology, is based on the Lorentz force principle with capacitive readout [63], because it 

does not require the integration of magnetic materials in the realization process [54]. 
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Figure 2.4 - Representation of a MEMS magnetometer. (a) View of the suspended frame with a schematic 

of the working principle based on the Lorentz force arising in presence of a current 𝐼(𝑡) and a magnetic 
field oriented in the z direction; (b) view of the full device[54]. 

As can be seen in figure 2.4, a pair of longitudinal springs of length 𝐿 holds a suspended 

shuttle that, with suitable stators, forms a set of differential capacitors 𝐶1 and 𝐶2. Suppose 

that a current 𝐼(𝑡) is induced in both springs. In the presence of a component 𝐵𝑍  of the magnetic 

field in the direction orthogonal to the plane of the figure, a force arises which has a total 

intensity: 

 

|𝐹𝐿 (𝑡) | = 𝐵𝑍𝐼(𝑡)𝐿 (2.5) 

 

The force is orthogonal to the plane of both 𝐵𝑍  and 𝐼(𝑡). As a mean to amplify the 

displacement obtained from such a force, the device can be operated at resonance, with a 

displacement amplification given by the quality factor. Assuming that the current has the 

expression: 𝐼(𝑡) = 𝐼0sin(2𝜋𝑓0 𝑡), where 𝑓0  is the device resonance frequency. If the device is 

packaged at low pressure, the displacement is amplified by the quality factor Q and is: 

 

𝑥(𝑡) =
|𝐹𝐿 |

2𝑘
𝑄 =

𝐵𝑍𝐼(𝑡)𝐿

2𝑘
𝑄 (2.6) 

 

Other advantage of this modulation is that it modulates the signal at a large frequency, 

possibly out of the 1/𝑓 noise of the readout electronics. Consideration should be given here to 

the maximum 𝑄 that can be used; as the measurement bandwidth after the signal demodulation 

turns out to be equal to 𝐵𝑊 = 𝑓0/2𝑄, in order to cope with typical required bandwidths for 
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consumer and automotive applications, the quality factor should not exceed a value which is 

100 times lower than the resonance frequency. 

Therefore, there are only a few ways to increase, the mechanical sensitivity of Lorentz 

force capacitive magnetometers: the maximization of the device length 𝐿; and increasing the 

driving current 𝐼(𝑡) , which is however limited by power dissipation constraints. 

Magnetometers are also calibrated based on data acquired during multi-position tests. The 

reference input is the Earth’s local magnetic field vector [64][65][66]. These devices need to 

go through testing on the platform on which they will be used, and their calibration parameters  

need to be estimated specifically for this platform. The orientation of the platform is  often 

controllable and it is capable of producing the motions required for the multi-position test 

[64][67]. When this is the case, the interior effects of the platform can be modeled as constant 

time-invariant distortion since there is no relative motion between the platform and the 

magnetometer. However, the platform and the magnetometer are usually not isolated from the 

environment. External magnetic sources, such as electric motors or transformers, may affect 

the magnetometer measurements [64] and contribute additional time-varying distortion 

components [68]. Nevertheless, in most of the earlier studies, external distortion components  

are assumed to be constant for a given calibration platform. 

2.3- Segment-to-sensor Alignment 

When estimating joint kinematics using inertial sensors, a sensor-to-segment axis alignment 

is a crucial factor that has to be taken into account and it is needed for the sake of the 

functional readability of the measured or derived information content. In order to be called 

“joint kinematics”, it has to be the relative orientation between the anatomical axes of two 

adjacent body segments rather than solely the relative orientation between the axes of two 

adjacent body-fixed sensors [69] 

To estimate a functionally 3D joint kinematics using inertial sensors, for each involved body 

segment, the orientation of the axes of the anatomical reference system representing the 

orientation of the body segment has to be known with respect to the orientation of the sensor-

embedded reference system. This relationship is assumed to be time-invariant and once it is 

known, it will be sufficient solely to record the time-varying orientation of the sensor-

embedded system of reference [69]. In the next chapter, a deeper development of this topic 

will be exposed. 

2.4- Human Motion by Inertial Sensors 

Cappozzo and colleagues defined human movement analysis as  “gathering quantitative 

information about the mechanics of the musculo-skeletal system during the execution of a 

motor task”[70]. A large variety of kinematic variables and parameters may be used for 
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characterizing this motor task [71]. Furthermore, a number of indices can be retrieved from 

joint kinematics for characterising what is called interjoint or interlimb coordination: an 

altered coordination pattern indeed characterises numerous musculoskeletal [72][73] and 

neurological diseases [74][75]. 

The human movement analysis consists in sensor-based measurement techniques aimed to 

objectively describe and quantitatively assess the motor functions and the motor abilities of a 

subject. Usually, a standard laboratory of human movement analysis is composed of multi-

camera motion capture systems via the kinematics and kinetics of body joints . However, this 

technique requires specialized laboratories, expensive equipment, and long set-up and post-

processing times. Nevertheless, technology advances in the field of motion measurement 

techniques have allowed to measure the kinematics of body segments with wearable inertial 

sensors such as accelerometers and gyroscopes instead of optoelectronic systems. This 

technique has many advantages over the first one, such as: low cost, small dimensions and light 

weight, and the absence of limitation of the testing environment to a laboratory[57]. 

 

2.4-1. A Brief “Historical” Perspective 

The first studies that estimated segment orientation date back to 1973, when Morris used  

six uniaxial accelerometers coupled on a rigid bar for solving the equation regarding the motion 

of a rotating rigid body and determining its angular acceleration [76]. Then, angular velocity 

and displacement were computed by first and double integration of angular acceleration, 

respectively. Actually, the direct measurement of the angular velocity was carried out by Bortz 

two years before, using a gyroscope, while the orientation of the object was estimated by the 

numerical integration of the measured angular rate [77]. 

Regarding joint kinematics using inertial sensors, the first study took place in 1990 by 

Willemsen [78]. Since then, over the past 25 years, a variety of methodological approaches  

have been presented to estimate 2D and 3D joint kinematics using wearable inertial sensors. A 

list of methodological contributions and their relevant specifications can be found in table 2.3. 
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Table 2.3 - Main Characteristics of the methodological approaches, in chronological order, proposed to 
estimate joint angular kinematics. 

Study What Devices/ 

Segment 

How Drift 

Correction 

Alignment 

Willemsen 

1990 

Knee flex-
ext 

2 (biaxial 
accel) 

By comparing the equivalent 
accelerations of proximal and 
distal body segment at the 
connecting hinge joint; joint’s 
acceleration from rigid body 
angular motion equation 
different between the planar 
orientation of 3 adjacent body 
segments; segment’s 
orientation computed by 
numerical of angular velocity 
as Willemsen 

Not required Manual 

Tong 1999 Knee flex-
ext 

1 
(uniaxial 
gyro) 

Kinematic 
reset 

Not 
necessary 

Dejnabadi 

2005 

Knee flex-
ext 

1 (biaxial 
accel + 
monoaxial 
gyro) 

Not required Picture 

O’Donovan 

2007 

3D ankle 
kinematics 

1 (mag-
aided 
IMU) 

Relative orientation between 
the proximal and distal 
segment’s 3D frames 

Sensor fusion Functional 

Findlow 

2008 

Hip knee 
ankle flex-
ext 

1 (IMU) Neural networks-based 
prediction from measured 
segmental linear acceleration 
and angular velocities 

Not required Not 
necessary 

Picerno 

2008 

Hip knee 
ankle 3D 
kin. 

1 (mag-
aided 
IMU) 

Relative orientation between 
the proximal and distal 
segment’s 3D frames 

Sensor fusion Anatomical 

Favre 2009 3D knee 
kin. 

1 (IMU) Sensor fusion Anatomical 

Takeda 

2009 

Knee flex-
ext & abd-
add 

1 (IMU) As Dejnabadi Not required Functional 

Cooper 

2009 

Knee flex-
ext 

1 (IMU) As Tong Sensor fusion 
+ joint 
constrains 

Not 
necessary 

Cutti 2010 Hip knee 
ankle 3D 
kin. 

1 (mag-
aided 
IMU) 

Relative orientation between 

the proximal and distal 

segment’s 3D frames 

Sensor fusion Functional 

Djuric-

Jovicic 

2011 

Knee flex-
ext 

2 (biaxial 
accel) 

As Tong; segment’s 
orientation is computed by 
double numerical integration 
of the angular acceleration 
determined from rigid body 
angular motion equation 

High-pass 
filtering 

Not 
necessary 

Seel 2014 Knee flex-
ext 

1 (IMU) Knee flexion-extension angles Weighted 
average of the 
two estimates 

Functional 

 

2.4-2. Human Motion Tracking Techniques 

Human motion tracking systems are expected to generate real-time data that dynamically 

represents changes of human segments, or a part of it, based on well-developed motion sensor 

technologies [79]. In general, a tracking system can be non-visual, visual-based or a 
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combination of both. A classification of the available sensor techniques is illustrated in figure 

2.5. 

 

Figure 2.5 - Classification of human motion tracking using sensors technology [80]. 

Table 2.4 - Performance comparison of different motion tracking systems according to figure 4.2 [80]. 

Systems Accuracy Compactness Computation Cost Drawbacks 

Inertial High High Efficient Low Drifts 

Magnetic Medium High Efficient Low Ferromagnetic materials 

Ultrasound Medium Low Efficient Low Occlusion 

Glove High High Efficient Medium Partial posture 

Marker High Low Inefficient Medium Occlusion 

Marker-free High High Inefficient Low Occlusion 

Combinatorial High Low Inefficient High Multidisciplinary 

Robot High Low Inefficient High Limited motion 

For non-visual tracking, sensors engaged with these systems adhere to the human body in 

order to collect movement information. They are commonly categorized as mechanical, 

inertial, acoustic, radio, or microwave and magnetic based, and some of them have such small 

footprints that they can detect small amplitudes, for example finger or toe movements [80]. 

Regarding visual based tracking systems, they use optical sensors, for example cameras, to 

improve accuracy in position estimation. The further classification as marker or marker-free 

depends on whether or not indicators need to be attached in the body. Visual marker based 

systems, like VICON or Optotrack, use cameras to track the movement with identifiers placed 

upon the human body. On the other hand, marker-free tracking systems only exploit optical 

sensors to measure movements. 
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Robot-aided tracking systems are a subset of therapeutic robots. The rendering 

position/orientation of limbs is a necessary requirement in order to guide limb motion. There 

are a wide variety of rehabilitation systems driven by this strategy, such as MIT-MANUS [81], 

MIME [82] and ARM Guide [83]. 

In the recent years, inertial sensors have been an alternative to visual capture systems 

regarding motion tracking research. These devices are cost-effective and can be successfully 

used for accurate, non-invasive and portable motion tracking [84]. The big interest in these 

devices is mainly motivated by the fact that they overcome many issues raised by optical 

systems and mechanical trackers. Inertial sensors, indeed, do not suffer from occlusions and 

have theoretically unlimited workspace compared to optical motion tracking systems, and 

despite the accuracy of mechanical trackers, IMUs are much more affordable and far less 

intrusive. However, a fundamental problem of the IMUs is how to define an appropriate 

measurement protocol and provide a sensor-to-body calibration procedure [84]. Because IMUs’ 

local frames are not aligned with anatomically defined frames, different approaches in the 

literature have presented different methods to determine the sensor frame’s orientation with 

respect to the body segment frame. 

 

2.4-3. Quaternions 

A quaternion is a four-dimensional complex number that can be used to represent the 

orientation of a rigid body or coordinate frame in three-dimensional space. An arbitrary 

orientation of frame 𝐵 relative to frame 𝐴 can be achieved through a rotation of angle 𝜃 around 

and axis �̂�𝐴  defined in a frame 𝐴. This is presented in figure 2.6, where the mutually orthogonal 

unit vectors 𝒙𝐴, 𝒚𝐴 and �̂�𝐴, and 𝒙𝐵, 𝒚𝐵 and �̂�𝐵 define the main axis of coordinate frames 𝐴 and 

𝐵, respectively. Equation 4.1 describes the quaternion orientation �̂�𝐵
𝐴 , in which 𝑟𝑥 , 𝑟𝑦  and 𝑟𝑧  

define the components of the unit vector �̂�𝐴  in frame 𝐴 axis 𝑥, 𝑦 and 𝑧, respectively. A notation 

system of leading super-scripts and sub-scripts is used to denote the relative frames of 

orientations and vectors. Quaternion arithmetic often requires that a quaternion describing an 

orientation is first normalized. It is therefore conventional for all quaternions describing an 

orientation to be of unit length. A quaternion with unity norm is referred to as unit quaternion 

and can be used to represent the attitude of a rigid body [85]. Therefore, the unit quaternion 

is represented by: 

 

�̂� = [𝑞1 𝑞2 𝑞3 𝑞4]𝐵
𝐴 = [cos

𝜃

2
−𝑟𝑥 sin

𝜃

2
−𝑟𝑦sin

𝜃

2
−𝑟𝑧sin

𝜃

2
] (2.7) 

 

The quaternion conjugate, denoted by *, can be used to swap the relative frames described 

by an orientation. Thus, the conjugate of �̂�𝐵
𝐴  is: 

 

𝒒∗ = �̂�𝐴
𝐵 =𝐵

𝐴 [𝑞1 −𝑞2 −𝑞3 −𝑞4] (2.8) 
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The quaternion product, denoted by ⊗, can be used to define compound orientations. For 

example, for two orientations described by �̂�𝐵
𝐴  and �̂�𝐶

𝐵 , the computed orientation 𝒒𝐶
𝐴  is defined 

by: 

 

𝒒𝐶
𝐴 = �̂�𝐶

𝐵 ⊗ 𝒒𝐵
𝐴  (2.9) 

 

For two quaternions, 𝒂 and 𝒃, the quaternion product can be determined using the Hamilton 

rule and defined as equation (2.10). Furthermore, a quaternion product is not commutative, 

that is 𝒂⊗ 𝒃 ≠ 𝒃⊗ 𝒂. Being, 

 

𝒂⊗ 𝒃 = [𝑎1 𝑎2 𝑎3 𝑎4 ]⊗ [𝑏1 𝑏2 𝑏3 𝑏4] = [

𝑎1𝑏1− 𝑎2𝑏2 − 𝑎3𝑏3 − 𝑎4𝑏4
𝑎1𝑏2+ 𝑎2𝑏1+ 𝑎3𝑏4 − 𝑎4𝑏3
𝑎1𝑏3− 𝑎2𝑏4+ 𝑎3𝑏1+ 𝑎4𝑏2
𝑎1𝑏4+ 𝑎2𝑏3− 𝑎3𝑏2+ 𝑎4𝑏1

] 
(2.10) 

 

A three dimensional vector can be rotated by a quaternion using the relationship described 

in equation (2.11)[86]. 𝒗𝐴  and 𝒗𝐵  are the same vector described in frame 𝐴 and frame 𝐵 

respectively where each vector contains a 0 (zero) inserted as the first element to make them 

4 element row vectors. 

 

𝒗𝐵 = �̂�𝐵
𝐴 ⊗ 𝒗𝐴 ⊗ �̂�∗𝐵

𝐴  (2.11) 

 

The orientation described by 𝒒𝐵
𝐴  can be represented by the rotation matrix 𝑹𝐵

𝐴 : 

 

𝑹𝐵
𝐴 = [

2𝑞1
2 − 1 + 2𝑞2

2 2(𝑞2 𝑞3 + 𝑞1 𝑞4 ) 2(𝑞2 𝑞4 − 𝑞1 𝑞3 )

2(𝑞2 𝑞3 − 𝑞1 𝑞4 ) 2𝑞1
2 −1 + 2𝑞3

2 2(𝑞3 𝑞4 + 𝑞1 𝑞2 )

2(𝑞2 𝑞4 + 𝑞1 𝑞3 ) 2(𝑞3 𝑞4 − 𝑞1 𝑞2 ) 2𝑞1
2− 1 + 2𝑞4

2

] 
(2.12) 

 

Regarding orientation of a sensor and this explanation, with equation (2.11), a 3D vector 

that could be the IMU output, described in sensor frame 𝐴, can be rotated by a quaternion, 

giving the same vector but described in the earth reference frame 𝐵. 

Therefore, quaternions are used to represent orientation to improve computational 

efficiency and avoid singularities. Besides, the use of quaternions eliminates the need for 

computing trigonometric functions [87]. The major disadvantages of using unit quaternions are: 

that the four quaternion parameters do not have intuitive physical meanings, and that a 

quaternion must have unity norm to be a pure rotation. The unity norm constraint, which is  

quadratic in form, is particularly problematic if the attitude parameters are to be included in 

an optimization, as most standard optimization algorithms cannot encode such constraints [88]. 
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Figure 2.6 - The orientation of frame 𝑩 is achieved by a rotation, from alignment with frame 𝑨, of angle 

𝜽 around the axis 𝒓𝑨  [85]. 

Human body tracking using inertial sensors requires an attitude estimation filter capable of 

tracking in all orientations. Singularities associated with Euler angles make them unsuitable for 

human body tracking applications. So, quaternions are an alternative method of orientation 

representation and its rotation is more efficient than the use of rotation matrices and does not 

involve the use of trigonometric functions [89]. 

Let 𝒒(𝑡) be a unit quaternion function and 𝜔(𝑡) be the angular velocity determined by 𝒒(𝑡). 

The time derivative of 𝒒(𝑡) is given by: 

�̇� =
1

2
𝜔𝒒. (2.13) 

 

At 𝑡 + ∆𝑡, the rotation is described as 𝒒(𝑡 + ∆𝑡), after some extra rotation during ∆𝑡 is done 

on the frame that as already undergo a rotation described by 𝒒(𝑡). The supposed extra rotation 

is about the instantaneous axis �̂� = 𝝎/‖𝝎‖ through the angle ∆𝜃 = ‖𝝎‖∆𝑡. It can be described 

by a quaternion: 

∆𝒒 = cos
∆𝜃

2
+ �̂� sin

∆𝜃

2
= cos

‖𝝎‖∆𝑡

2
+ �̂�sin

‖𝝎‖∆𝑡

2
. (2.14) 

 

The rotation at 𝑡 + ∆𝑡 is, therefore, described by the quaternion sequence 𝒒(𝑡), ∆𝒒, 

implying: 

𝒒(𝑡 + ∆𝑡) = ∆𝒒𝒒(𝑡). (2.15) 

 

In order to obtain the derive �̇�(𝑡), first, it is necessary to obtain the difference: 

 

𝒒(𝑡 + ∆𝑡) − 𝒒(𝑡) = (cos
‖𝝎‖∆𝑡

2
+ �̂�sin

‖𝝎‖∆𝑡

2
) 𝒒(𝑡) − 𝒒(𝑡)

= −2 sin2
‖𝝎‖∆𝑡

4
𝒒(𝑡) + �̂� sin

‖𝝎‖∆𝑡

2
𝒒(𝑡). 

(2.16) 
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Since the first term in the above equation is of higher order than ∆𝑡, thus its ratio to ∆𝑡 

goes to zero as the latter does. Consequently, 
 

�̇�(𝑡) = lim
∆𝑡→0

𝒒(𝑡 + ∆𝑡) −𝒒(𝑡)

∆𝑡
= �̂� lim

∆𝑡→0

sin
‖𝝎‖∆𝑡

2
∆𝑡

𝒒(𝑡) = �̂�
𝑑

𝑑𝑡
sin

‖𝝎‖𝑡

2
|
𝑡=0

𝒒(𝑡)

= �̂�
‖𝝎‖

2
𝒒(𝑡) =

1

2
𝝎(𝑡)𝒒(𝑡). 

(2.17) 

 

Often, the angular velocity is in terms of the rotated frame, denoted by 𝜔′, thus, 𝜔′ =

𝒒∗𝜔𝒒. Then, the following expression is obtained: 

�̇� =
1

2
𝒒𝜔′. (2.18) 

 

If �̇� is known, the angular velocity can be achieved from equation 2.13 by right multiplying 

its both sides with 𝒒∗: 
𝜔 = 2�̇�𝒒∗ . (2.19) 

 

2.4-4. Joint Reference 

In order to specify the position of the body, segment, or object, a reference system is 

necessary for describing motion when motion has occurred. The reference frame or system is 

arbitrary and may be within or outside of the body. The reference frame consists of imaginary 

lines (axes) that orthogonally intersect each other at a common point (origin). The origin of the 

reference frame is placed at a designated location, such as a joint center. The axes are 

generally given letter representations to differentiate the direction in which they are pointing. 

Any position can be described by identifying the distance of the object to each of the axes. In 

a three-dimensional movement, there are three axes, two horizontal axes that form a plane 

and a vertical axis. It is always necessary to identify the frame of reference used in the 

description of motion. 

For describing human movement, is used a method based on a system of planes and axes. 

A plane is a flat, two-dimensional surface. Movement is supposed to occur in a specific plane if 

it is along that plane or parallel to it. Movement in a plane always occurs about an axis of 

rotation perpendicular to the plane (see figure 2.7). These planes allow full description of a 

motion. 

The movement in a plane can also be described as a single degree of freedom (DOF). This 

terminology is commonly used to describe the type and amount of motion structurally allowed 

by the anatomical joints. Joints with one DOF indicate that the joint allows the segment to 

move through one plane of motion. Moreover, a joint with one DOF is also termed uniaxial 

because one axis is perpendicular to the plane of motion about which movement occurs. 
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Figure 2.7 - The plane and axis. Movement takes place in a plane about an axis perpendicular to the 
plane.[90] 

Therefore, anatomical movement descriptors should be used to describe segmental 

movements. This requires the knowledge of the starting position (anatomical), standardized 

use of segment names (arm, forearm, hand, thigh, leg, and foot), and the correct use of 

movement descriptors (flexion, extension, abduction, adduction, and rotation)[90]. 

2.5- Tracking Algorithms 

A review of the literature was performed, in order to understand and find already developed 

algorithms for human rehabilitation using inertial sensors. Some of the algorithms described in 

the literature are present below. 

 

2.5-1. Daniel Roetenberg, Henk Luinge and Per Slycke [91] 

The MVN motion capture system consists only of body worn sensors, it estimates body 

segment orientation and position changes by integration of gyroscope and accelerometer 

signals, which are continuously updated by using a biomechanical model of the human body. 

The initial pose between the sensors and body segments is unknown, and the assessment of 

distances between body segments is difficult to obtain by numerical integration of acceleration 

because of the unknown initial position. Therefore, to express segment kinematics in the global 

frame, the kinematics of the sensors must be subjected to a step of calibration, in which the 

orientation of the sensor module with respect to the segment and the relative distances 

between joints are determined (see figure 2.8). 
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Figure 2.8 - Sensor to segment alignment. Adapted from[91]. 

In order to find the sensor alignment, this system combines several steps. The first one, the 

subject is asked to stand in a T-pose (upright with arms horizontally and thumbs forward) or N-

pose (arms neutral besides body). The rotation from sensor to body segment 𝒒𝐵𝑆  is obtained by 

matching the orientation of the sensor in a global frame 𝒒𝐺𝑆  with the know orientation of each 

segment 𝒒𝐺𝐵  in this pose. 

 

𝒒𝐺𝐵 = 𝒒𝐺𝑆 ⊗ 𝒒∗𝐵𝑆 , (2.20) 

 

where ⊗ denotes a quaternion multiplication and * the complex conjugate of the quaternion. 

The second optional step consists in performing a certain movement that is assumed to 

correspond to a certain axis. The measured orientation and angular velocity are used to find 

the sensor orientation with respect to the segment’s functional axes . 

The final step in the calibration procedure, comprises the sensor to segment alignment and 

segments lengths can be re-estimated by using a priori knowledge about the distance between 

two points in a kinematic chain (see figure 2.9). This closed kinematic chain can be solved, 

which will improve the calibration values. 

 

 
Figure 2.9 - Hand touch calibration.  

Gyroscopes measure angular velocity ω, and when integrated over time provide the change 

in angle with respect to a known angle: 

Sensor to 

segment 
orientation 

and position 
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�̇�𝑡
𝐺𝑆 = 𝒒𝑡

1
2
𝐺𝑆

⊗Ω𝑡 , (2.21) 

 

where 𝒒𝑡
𝐺𝑆  is the quaternion that describes the rotation from the sensor, 𝑆, to global frame, 

𝐺, at time 𝑡. The quaternion representation on angular velocity 𝝎𝑡  is given by Ω𝑡 =

(0, 𝜔𝑥, 𝜔𝑦 , 𝜔𝑧)
𝑇 . 

Accelerometers measure the vector of acceleration 𝒂 and gravitational acceleration 𝒈 in 

sensor coordinates, and the sensor signal can be expressed in the global frame if the orientation 

𝒒𝑡
𝐺𝑆  is known: 

 

𝒂𝑡
𝐺 − 𝒈=𝐺 𝒒𝑡

𝐺𝑆 ⊗ ( 𝒂𝑡 − 𝒈)⊗𝑆𝑆 𝒒𝑡
∗𝐺𝑆  (2.22) 

 

When the gravitational component is removed, the acceleration 𝒂𝑡 can be integrated, in 

the global frame, once to velocity 𝒗𝑡and twice to position 𝒑𝑡: 

 

�̈�𝑡
𝐺 = 𝒂𝑡

𝐺  (2.23) 

 

Joint origins are determined by anatomical frame and are defined in the center of the 

functional axes with directions X, Y and Z being related to functional movements (see figure 

2.10). 

When it is known the position of joint origin 𝒑𝑈0, the orientation 𝒒𝑈
𝐺𝐵  and the length 𝑠𝑈 

of the segment 𝑈, then, the position 𝒑𝑈1 in the global frame is given by: 

 

𝒑𝐺 𝑈1 = 𝒑𝐺 𝑈0+ 𝒒𝐺𝐵
𝑈 ⊗ 𝒔𝑈

𝐵 ⊗ 𝒒𝑈
∗𝐺𝐵  (2.24) 

 

For 𝑡 = 0, the origin of segment 𝐿 with point 𝒑𝐿0, is connected to point 𝒑𝐿1 of segment 𝑈, 

as illustrated in figure 2.11. 

In cases where there is no sensor attached, the kinematics are estimated based on the 

biomechanical model incorporating stiffness parameters between connecting segments. 

Figure 2.10 - Definition of segment axes and determination of its length. Adapted from [91]. 

Definition 

of joint 

centers 
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Figure 2.11 - Left: relation of segment with global frame; right: relation of two connecting segments at 
t=0. Adapted from [91]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.12 - Increasing of uncertainty about the joint position due to integration of acceleration. 
Adapted from [91]. 

After each inertial and segment kinematic prediction step, the uncertainty of the joint 

position and rotation will grow due to sensor noise and movement related errors (see figure 

2.12), which will be corrected using the joint measurement updates. 

Furthermore, for each joint, the position relation can be obtained as a linearized function:  

 

𝒚𝑡 = 𝑪𝒙𝑡 + 𝒘𝑡 , (2.25) 

 

where 𝒙𝑡 denotes the state vector at time 𝑡, containing the position of segments 𝑈 and 𝐿. 𝑪 is 

the measurement matrix relating 𝒙𝑡 to 𝒚𝑡 and 𝒘𝑡 is measurement noise. Then, when two 

segments are connected, the matrix 𝑪 is given by: 

 

𝑪 = [𝑰3 −𝑰3], (2.26) 

 

in this expression, 𝑰3 represents the 3 by 3 identity matrix. 
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This system relies on a Kalman filter to estimate the state using the joint relation and the 

state prediction by the segment kinematic integration step: 

 

𝒙𝑡
+ = 𝒙𝑡

− + 𝐾(𝒚𝑡 − 𝐶𝒙𝑡
−), (2.27) 

 

where 𝒙𝑡
− and 𝒙𝑡

+ are the states before and after the Kalman filter, respectively, and 𝐾 is the 

Kalman gain. This gain is computed based on stochastic parameters about positional and 

rotational characteristics for each joint and propagation of errors by the integration step based 

on the sensor noise. The Kalman filter will correct the kinematics for drift and the uncertainty 

of the joint position is reduced (see figure 2.13). 

The integration drift of each segment in relation to another segment is eliminated by the 

assumptions about joints in an articulated body, while the detection of external points on the 

segment with the global frame (world) is used to limit the boundless integration error of the 

assembled body model in the global frame. Therefore, under most circumstances, one can 

assume that the body must be in contact with an external physical world and is subject to 

gravity. 

Joint rotation can be defined as the orientation of a distal segment 𝒒𝐿
𝐺𝐵  with respect to a 

proximal segment 𝒒𝑈
𝐺𝐵 , then: 

 

𝒒𝑈𝐿
𝐵 = 𝒒𝑈

∗𝐺𝐵 ⊗ 𝒒𝐿
𝐺𝐵  (2.28) 

 

 

 
Figure 2.13 - Correction of kinematics and reduction of uncertainty, after joint update. Adapted from 
[91]. 
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In order to describe joint angles, there are a few parameterizations, such as the 

Cardan/Euler representation, joint coordinate system and helical angle. All of these 

representations are based on the same quaternion or rotation matrix, they only differ in how 

the angles are extracted from this rotation. However, in many cases, joint angles are directly 

measured with sensors. 

 

2.5-2. Eduardo Palermo, Stefano Rossi, Francesca Marini, Fabrizio Patanè and 

Paolo Cappa [92] 

The aim of this paper was developing a novel two phase functional calibration procedure 

for lower-limb kinematics evaluation, designed to obtain the body-to-sensor alignment 

independently for each sensor and without requiring a skilled experimenter. 

The estimation of joint angles consists in the evaluation of joint rotations between two 

body segments and, therefore, in the calculation of joint rotation matrices. The rotation matrix 

𝑹𝑏𝑗

𝑏𝑖  between two coordinate systems (𝐶𝑆𝑏𝑖 and 𝐶𝑆𝑏𝑗) relative to the body frames 𝑏𝑖 and 𝑏𝑗 can 

be computed as: 

 

𝑹𝑏𝑗

𝑏𝑖 = ( 𝑹𝑏𝑖
)

g 𝑇 𝑹𝑏𝑗

g
, (2.29) 

 

where the 𝐶𝑆g is the ground fixed coordinate system. Introducing the coordinate systems 𝐶𝑆𝑆𝑖, 

associated to the 𝑖-𝑡ℎ sensor: 

 

𝑹𝑏𝑖
= 𝑹𝑆𝑖

g
𝑹𝑏𝑖

𝑆𝑖g
, (2.30) 

 

where 𝑹𝑆𝑖

g
 represents the output of the 𝑖-𝑡ℎ inertial sensor placed on the 𝑖-𝑡ℎ body segment 

and 𝑹𝑏𝑖

𝑆𝑖  is the related body-to-sensor rotation matrix. The rotation matrix of the joint between 

𝑖-𝑡ℎ and 𝑗-𝑡ℎ body segment is, therefore, equal to: 

 

𝑹𝑏𝑗
= ( 𝑹𝑆𝑖

g
𝑹𝑏𝑖

)
𝑆𝑖 𝑇𝑏𝑖 𝑹𝑆𝑗

𝑹𝑏𝑗

𝑆𝑗𝑔
 (2.31) 

 

The 𝑹𝑏𝑖

𝑆𝑖  matrix depends on the biomechanical convention chosen to define the 𝐶𝑆𝑏𝑖. In the 

present work, 𝐶𝑆𝑏𝑖 is defined, while the subject is in standing position, as following: 𝒛𝑏𝑖 axis 

coincident with the vertical one 𝒛𝑔 and the plane 𝑦𝑧𝑏𝑖  parallel to the sagittal plane with 𝒚𝑏𝑖  

pointing forward. This coordinate system is not an anatomical frame, but a technical frame 

also referred to in the following as TF. The paper refers that TF can be evaluated by means of 

both IMU with magnetometer, or MIMUs, (TF_MIMU) and an optoelectronic system (TF_OS), 

which represents the reference technical frame. For the purpose of the present work, only 

TF_MIMU will be presented. 
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Figure 2.14 - Functional calibration procedure, FC. Vertical axis gathered in: (a) standing upright posture, 
FC(A); (b) sitting position while the trunk backwards inclined and the legs stretched, FC(B)-C; (c) lying on 
the table, FC(B)-T. 

The TF_MIMU can be evaluated by means of a functional calibration procedure (FC) that 

consists in the gathering of the sensor outputs for five seconds with the subject keeping still 

during two consecutive phases (see figure 2.14). Phase A (FC(A)), is conducted while the subject 

is in a standing upright posture. Phase B (FC(B)), can be carried out while the subject is in a 

sitting position with the trunk backwards inclined and the legs stretched, addressed as FC(B)-

C, or alternatively, while the subject is lying on a table, addressed as FC(B)-T. Thus, two 

alternatives for phase B to permit the FC conduction for patients with different pathology 

severity are proposed. Also it was hypothesize that irrelevant differences in the body-to-sensor 

rotation estimation are obtained by the combination of FC(A) & FC(B)-C or FC(A) & FC(B)-T. 

The subject was asked only to maintain the sagittal planes of each body segment parallel 

between FC(A) and FC(B), avoiding rotations of body segments in frontal and transverse planes. 

In order to make the procedure easy to be performed by the subject autonomously, additional 

tools and/or procedures devoted to limit rotations of body segments in frontal and transverse 

planes were avoided, despite it represents a possible source of uncertainty in the evaluation of 

body-to-sensor rotation matrices. Thus, one of the aims of this study was the evaluation of 

accuracy and repeatability of the procedure, including also the above mentioned source of 

uncertainty. 

In FC(A) the 𝑧-axis 𝒛
𝑆𝑖

𝑏𝑖
 of 𝑖-𝑡ℎ body frame is defined parallel to the vertical axis 𝒛𝑔, which 

is coincident to 𝒛𝑔𝑖 measured by the MIMU sensor in the local frame: 
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𝒛
𝑆𝑖

𝑏𝑖
= 𝒛

𝑆𝑖
𝑔𝑖

 (2.32) 

 

In FC(B), the sagittal plane (𝑦𝑧-plane) is defined parallel to 𝒛
𝑆𝑖

𝑏𝑖
 and 𝒛𝑔𝑖, with 𝒚𝑔𝑖 pointing 

forward, which is again measured by the MIMU sensor locally: 

 

𝒙
𝑆𝑖

𝑏𝑖
=

𝒛
𝑆𝑖

𝑏𝑖
× 𝒛

𝑆𝑖
𝑔𝑖

| 𝒛
𝑆𝑖

𝑏𝑖
× 𝒛

𝑆𝑖
𝑔𝑖
|
, 𝒚

𝑆𝑖
𝑏𝑖
= 𝒛

𝑆𝑖
𝑏𝑖
× 𝒙

𝑆𝑖
𝑏𝑖

 (2.33) 

 

Finally, the rotation matrix 𝑹𝑏𝑖

𝑆𝑖  is obtained grouping the three unit vectors: 

 

𝑹𝑏𝑖

𝑆𝑖 = [ 𝒙
𝑆𝑖

𝑏𝑖
 𝒚
𝑆𝑖

𝑏𝑖
𝒛

𝑆𝑖
𝑏𝑖
] (2.34) 

 

2.5-3. H.J. Luinge, P.H. Veltink and C.T.M. Baten [93] 

This algorithm aims to determinate a method of the orientation of the 2 arm segments using 

inertial sensors and anatomical elbow constrains. 

The orientation of the IMU coordinate frame 𝑆 to the segment coordinate frame 𝐹 is given 

by a rotation matrix containing the 3 unit vectors of the forearm: 

 

𝑹𝑆𝐹 = [ 𝒙𝐹𝑆 𝒚𝐹𝑆 𝒛𝐹𝑆 ] (2.35) 

 

In this case, the coordinate system, in which the vector is expressed, is indicated by the 

left superscript and the segment under analysis is given by the right superscript. 𝑈 represents  

upperarm segment and 𝐹 is used for forearm. 

The angular velocity during pronation (𝝎𝑃𝑟𝑜𝑛 ) determinates the direction of the forearm 𝑦-

axis, or the opposite direction of the angular velocity during supination (𝝎𝑆𝑢𝑝): 

 

𝒚𝐹 =
𝝎𝑃𝑟𝑜𝑛

|𝝎𝑃𝑟𝑜𝑛 |
= −

𝝎𝑃𝑟𝑜𝑛

𝝎𝑆𝑢𝑝

𝑆  (2.36) 

 

Similarly, the 𝑧-axis can be obtained by measuring the direction of gravity at the start and 

the end of trial: 

 

𝒛𝐹− =
−𝒈𝑠𝑡𝑎𝑟𝑡

|𝒈𝑠𝑡𝑎𝑟𝑡 |

𝑆  (2.37) 

 

The minus sign is used to represent a first guess, as the 𝑧-axis is later recomputed. 

Moreover, the 𝑥-axis can be found by making an orthogonal coordinated system. Since 𝒚 and 𝒛 

of the segment are defined by measurements, orthogonality may not be obtained due to errors  
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in measurements. The direction of 𝑧-axis is difficult to measure because it is hard to keep the 

forearm horizontal, therefore, this axis is recomputed using the y and x axes: 

 

𝑹 = [ 𝒚𝐹𝑆 × 𝒛𝐹−𝑆 𝒚𝐹𝑆 ( 𝒚𝐹 × 𝒛𝐹−𝑆 ) × 𝒚𝐹−𝑆𝑆 ]𝑆𝐹  (2.38) 

 

The orientation of the sensor with respect to the upper-arm was found with 2 movements. 

First, placing the elbow on the top of a table and performing endorotation/exorotation 

movement, assuming that the 𝑦-axis is the rotation axis. Then, flexing the elbow 90º and abduct 

the upper-arm while kipping the elbow fixed. The direction of rotation gives the 𝑧-axis. 

The procedure used to compute the orientation of the upper-arm with respect to the IMU 

is the same as for the forearm, except for the determination of the z-axis of the segment. The 

direction of the z-axis can be found using the gravity at the start and end of the abduction 

movement: 

 

𝒛𝑈− =
𝒈𝑆𝑡𝑎𝑟𝑡
𝑆 × 𝒈𝐸𝑛𝑑

𝑆

| 𝒈𝑆𝑡𝑎𝑟𝑡
𝑆 × 𝒈𝐸𝑛𝑑

𝑆 |
𝑆  (2.39) 

 

The gravity vector was measured using the 3D accelerometer. 

It is assumed that the coordinate systems that are identified by the segment calibration can 

be used to describe the constraint axis inherent to joint DOF. Here it was assumed that the 𝑦-

axis of the forearm will always be in the 𝑧𝑦-plane of the upper arm. The adduction angle 𝛾 is 

here defined as the angle between the 𝑥-axis of the upper-arm and the 𝑦-axis of the forearm 

−90°. In radians this can be approximated using the dot product: 

 

𝛾 = 𝒙𝑈 • 𝒚𝐹  (2.40) 

 

An estimate of 𝒙𝑈can be obtained by taking the first column of the upper arm rotation 

matrix. Likewise 𝒚𝐹  is the second column of the forearm rotation matrix. 

A least-squares filter was designed to use a constraint forcing the adduction angle to be 

zero. This enforcement allows to improve the orientation estimation generated using only 

gyroscopes and accelerometers. Each time step, the orientation of the upper-arm and the 

forearm is estimated using gyroscopes, accelerometers and the previous orientations according 

to [94] yielding 2 orientation estimates �̂�𝑡
−𝐺𝑈  and �̂�𝑡

−𝐺𝐹  with their variances given by error 

covariance matrices 𝑸𝜃,𝑡
𝑈  and 𝑸𝜃,𝑡

𝐹 , respectively. The least-squares filter estimates the 

orientation errors 𝜃𝐹𝐺  and and 𝜃𝑈𝐺  in a way that sets the adduction angle to zero. Finally, the 

estimated orientation error is used to correct the orientations �̂�𝑡
−𝐺𝑈  and �̂�𝑡

−𝐺𝐹  to obtain �̂�𝑡
+𝐺𝑈  

and �̂�𝑡
+𝐺𝐹 , the input of the next step. 

In order for the least-squares filter to correct the orientation in a way that sets the 

adduction angle to zero, a function will be derived that relates the orientation error to the 
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adduction angle. An orientation is described by a rotation matrix. The orientation error is 

expressed using 𝜃, which has the direction and smallest magnitude that the real orientation of 

a segment has to rotate in order to coincide with the estimated orientation. For small angles 

an error of the unit x-axis of the upper-arm can be described using the cross product [77]: 

 

 

𝒙 = 𝒙 − 𝒙× 𝜃 (2.41) 

 

Using the relation: 

 

𝒙 × 𝜃 • 𝒚 = 𝒚 • 𝒙 × 𝜃 = 𝒚 × 𝒙 • 𝜃 = (𝒚 × 𝒙)𝑇 .𝜃, (2.42) 

 

and neglecting products of errors, the relation was found describing the estimated adduction 𝛾 

as a function of the real adduction 𝛾 and orientation errors: 

 

𝛾 = �̂�𝑈𝐺 • �̂�𝐹𝐺 = ( 𝒙𝑈+𝐺 𝒙𝑈 × 𝜃𝑈𝐺𝐺 ) • ( 𝒚𝐹 +𝐺 𝒚𝐹 × 𝜃𝐹𝐺𝐺 )

= 𝛾 + �̂�𝑈 • �̂�𝐹 ×𝐺𝐺 𝜃𝐹𝐺 + �̂�𝑈𝐺 × 𝜃𝑈𝐺 • �̂�𝐹𝐺

= 𝛾 + ( �̂�𝑈× �̂�𝐹𝐺𝐺 )
𝑇
. 𝜃𝐹 +𝐺 ( �̂�𝐹 × �̂�𝑈𝐺𝐺 )

𝑇
. 𝜃𝑈𝐺  

(2.43) 

 

A small dot is used to describe a matrix multiplication and a larger dot to indicate the dot 

product. To obtain the orientation errors using a linear least-squares technique, the above 

equation was written as a matrix multiplication and the real g was set to zero: 

 

𝛾 = [( �̂�𝑈𝐺 × �̂�𝐹)𝐺 𝑇( �̂�𝑈𝐺 × 𝒚𝐹)𝐺 𝑇 ]{
𝜃𝐹𝐺

𝜃𝑈𝐺
} = 𝐻. {

𝜃𝐹𝐺

𝜃𝑈𝐺
} (2.44) 

 

According to [95], the optimal estimate of such an equation can be obtained by: 

 

{
𝜃𝐹𝐺

𝜃𝑈𝐺
} = 𝐾. 𝛾, (2.45) 

 

where 𝐾 is defined as: 

 

𝐾 = 𝑸.𝑯𝑇 . [𝑯. 𝑸.𝑯𝑇 + 𝑹]−1 (2.46) 

 

𝑯 and 𝛾 can be entirely calculated using 𝒙𝑈𝐺  and �̂�𝐹𝐺 , obtained from from the a priory 

orientation estimates. 𝑹 is the variance of the adduction angle, a measure of the error that is 

made by the assumption that the adduction angle is zero. 𝑸 is the covariance matrix describing 

the covariances of the a priori estimated orientation errors: 
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𝑸 = [
𝑄𝜃,𝑡
𝑈 0

0 𝑄𝜃,𝑡
𝐹
] (2.47) 

 

The estimated orientation errors were expressed as a rotation matrices , found in [77], and 

used to correct the orientation. 

 

2.5-4. Manon Kok, Jeroen D. Hol and Thomas B. Schön [96] 

This paper introduces an optimization-based approach for inertial motion capture. The 

problem of estimating the relative position and orientation of each body segment is formulated 

as a constrained estimation problem. Given 𝑁 measurements 𝒚1:𝑁 = {𝑦1, … , 𝑦𝑁}, a point estimate 

of the variables 𝑧 can be obtained as a constrained maximum a posteriori (MAP) estimate, 

maximizing the posterior density function: 

 

𝑚𝑎𝑥𝑧 𝑃(𝑧|𝑦1 :𝑁) 

𝑠. 𝑡.𝑐𝑒(𝑧) = 0, 
(2.48) 

 

where 𝑐𝑒(𝑧) represents the equality constraints. In this paper, 𝑧 consists of both static 

parameters 𝜃 and time-varying variables 𝑥1:𝑁. Using this together with the Markov property of 

the time-varying variables and the fact that the logarithm is a monotonic function, we can 

rewrite the above equation as:  

 

𝑚𝑖𝑛𝑧={𝑥1:𝑁 ,𝜃}  − 𝑙𝑜𝑔𝑝(𝑥1|𝑦1 ) − 𝑙𝑜𝑔𝑝(𝜃) 

                   𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  

−∑ 𝑙𝑜𝑔𝑝(𝑥𝑡|𝑥𝑡−1 ,𝜃)

𝑁

𝑡=2

−∑ 𝑙𝑜𝑔𝑝(𝑦𝑡|𝑥𝑡 ,𝜃)

𝑁

𝑡=1

 

                                    𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙     𝑏𝑖𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙/𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑜𝑑𝑒𝑙 

 

(2.49) 

𝑠. 𝑡.𝑐𝑏𝑖𝑜 (𝑧) = 0 (2.50) 

 

Relevant coordinate frames are the: local coordinate frame 𝐿, which is aligned with the 

local gravity vector, with the 𝑧-axis pointing up; body segment coordinate frame 𝐵 fixed to the 

bone in the body segment 𝐵𝑗 and its origin can be anywhere, usually it’s the center of rotation 

of a joint; sensor coordinate frame 𝑆𝑖 of the moving IMU 𝑆𝑖 and its origin is located in the center 

of the accelerometer triad. 
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Figure 2.15 - Definition of variables and coordinated frames. Adapted from[96]. 

 

In setting up the optimization problem, the first step was to define the set of sensors 𝒮, 

the set of body segments ℬ and the set of joints 𝒥 in the problem. Each inertial sensor needs  

to be mounted on the body, and sensor 𝑆𝑖 is assumed to be placed on body segment 𝐵𝑆𝑖. The 

distance vector 𝒓𝑆𝑖
𝐵𝑖 and orientation 𝒒

𝐵𝑆𝑖
𝑆𝑖 of sensor 𝑆𝑖 with respect to body segment 𝐵𝑆𝑖 are 

without loss of generality assumed to be known from calibration. 

Previous knowledge of the human body can be used to identify which body segments are 

connected by which joints. To express the location of the joint in the body frames of the 

connected body segments, the distance vectors 𝒓
𝑘

𝐵𝑗
 from the body frame 𝐵𝑘  to joint 𝑘, need to 

be defined for all joints 𝐽𝑘 ∈ 𝒥 and all 𝐵𝑗 ∈ ℬ𝐽,𝑘. It was assumed that they are known from 

calibration. Here, all joints are assumed to be ball-and-socket joints, but it was incorporated 

additional knowledge about a subset of the joints, denoted by ℋ, which we assume to be hinge 

joints. 

Furthermore, it was defined the set of time steps in the optimization as 𝒯 rather than 

explicitly summing over all time steps 𝑡 = 1 …𝑁. The variables in the optimization problem are 

then given by, with respect to local frame 𝐿 for ∀𝑡 ∈ 𝒯: 

 The position 𝒑𝑆𝑖,𝑡
𝐿  and velocity 𝒗𝑆𝑖,𝑡

𝐿  of sensor 𝑆𝑖, ∀𝑆𝑖 ∈ 𝒮  

 The orientation 𝒒𝑡
𝐿𝑆𝑖 of sensor 𝑆𝑖, ∀𝑆𝑖 ∈ 𝒮 

 The position 𝒑𝐵𝑗,𝑡
𝐿  of the body segment 𝐵𝑗, ∀𝐵𝑗 ∈ ℬ 

 The orientation 𝒒
𝑡

𝐿𝐵𝑗
 of body segment 𝐵𝑗, ∀𝐵𝑗 ∈ ℬ  

Defining the number of sensors as 𝑁𝑆 and the number of body segments as 𝑁𝐵, the number 

of variables in the optimization problem is 𝑧 ∈ ℝ
(9𝑁𝑆+6𝑁𝐵+3)𝑁+3𝑁𝑆 . When the optimization 

problem was solved, it was encoded the rotation states using a three-dimensional state vector. 

Throughout the paper, typically, interchangeably make use of the unit quaternion 𝒒𝐿𝑆 and the 

rotation matrix 𝑹𝐿𝑆 as representations of the orientation. The quaternion conjugate, 
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representing the inverse rotation will be represented by (𝒒𝐿𝑆)𝑐 = 𝒒𝑆𝐿. Similarly for the rotation 

matrix, (𝑹𝐿𝑆 )𝑇 = 𝑹𝑆𝐿 . 

Based on the biomechanical model it is possible to derive relations between the different 

variables, which can be categorized in three classes: 

i. Joints between the body segments 

The constrains 𝒄𝑏𝑖𝑜 (𝑧), originate from a biomechanical model, enforce the body segments 

to be connected at the joint locations at all times: 

 

𝒄𝑏𝑖𝑜 (𝑧) = 𝒑𝐵𝑚,𝑡
𝐿 + 𝑹𝑡

𝐿𝐵𝑚𝒓𝑘
𝐵𝑚 − 𝒑𝐵𝑛,𝑡

𝐿 − 𝑹𝑡
𝐿𝐵𝑛𝒓𝑘

𝐵𝑛 ,{𝐵𝑛 ,𝐵𝑚} ∈ ℬ𝐽𝑘
, (2.51) 

 

for all 𝐽𝑘 ∈ 𝒥 and 𝑡 ∈ 𝒯. Thus, will result in 𝑁𝐽(number of joints) constrains at each time step 𝑡. 

ii. Placement of the sensors on the body segments 

The position and orientation of the sensor can be expressed in terms of its position and 

orientation on body segment. Since it is impossible to place the sensor directly on the bone, it 

has to be placed in soft tissue, resulting in slightly movements with respect to the bone. 

Therefore, the position and orientation of sensor 𝑆𝑖 on the body segment 𝐵𝑆𝑖 can be obtained 

by: 

 

𝒑𝑆𝑖,𝑡
𝐿 = 𝒑𝐵𝑖 ,𝑡

𝐿 + 𝑹
𝑡

𝐿𝐵𝑠𝑖 (𝒓
𝑆𝑖

𝐵𝑆𝑖 + 𝒆
𝑝,𝑡

𝐵𝑆𝑖 ), 

 

(2.52) 

𝒒𝑡
𝐿𝑆𝑖 = 𝒒

𝑡

𝐿𝐵𝑠𝑖𝒒
𝐵𝑆𝑖

𝑆𝑖 exp(
1

2
𝒆𝑞,𝑡
𝑆𝑖 ), (2.53) 

 

where 𝒆
𝑝,𝑡

𝐵𝑆𝑖~𝒩(0, Ʃ𝑝) and 𝒆𝑞,𝑡
𝑆𝑖 ~𝒩(0, Ʃ𝑞). 

iii. Rotational freedom of the joints 

Some joints are limited to one or two axes, for example, the knee. Minimizing: 

 

𝒆𝐽𝑘,𝑡 = [
𝒏1
𝑇

𝒏2
𝑇
] (𝑹𝑡

𝐿𝐵𝑚 )𝑇𝑹𝑡
𝐿𝐵𝑛𝒏2,{𝐵𝑛 ,𝐵𝑚} ∈ ℬ𝐽𝑘 , (2.54) 

 

where 𝒏1, 𝒏2  and 𝒏3  represent the different axis directions and  𝒆𝐽𝑘,𝑡~𝒩(0, Ʃ𝑘), will minimize 

the rotation around any but 𝒏2 -axis. 

The sensor's position, velocity and orientation at each time instance can be related by a 

dynamic model in which the accelerometer and gyroscope measurements are used as inputs. In 

this work a slightly different approach was implemented to reduce the number of variables in 

the optimization problem. To achieve high update rates using a relatively small number of 

variables, an approach similar to the one discussed by [97] was used. Hence, strapdown inertial 

integration, in which the accelerometer and gyroscope signals are integrated, is run at high 

update rates. This leads to accelerometer measurements ∆𝒑 and ∆𝒗 representing a difference 

in position and velocity and gyroscope measurements ∆𝒒 representing a difference in 
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orientation. These are integrated for 
𝑇𝑆

𝑇
 times, where 𝑇𝑆 is the sampling time of the inertial 

sensors and 𝑇 is the sampling time used in the optimization problem. 

The position, velocity and orientation of each sensor 𝑆𝑖 are related from time t to time 𝑡 +

𝑇 using the accelerometer measurements ∆𝒑𝑡
𝑆𝑖 , ∆𝒗𝑡

𝑆𝑖 and the gyroscope measurements ∆𝒒𝑡
𝑆𝑖 The 

position and velocity states at each time step are modeled according to: 

 

𝒑𝑆𝑖 ,𝑡+𝑇
𝐿 = 𝒑𝑆𝑖,𝑡

𝐿 + 𝑇𝒗𝑆𝑖,𝑡
𝐿 + 𝑹𝑡

𝐿𝑆𝑖 (∆𝒑𝑡
𝑆𝑖 + ∆𝒘𝑝 ,𝑡

𝑆𝑖 )+
𝑇2

2
𝒈𝐿 (2.55) 

 

𝒗𝑆𝑖,𝑡+𝑇
𝐿 = 𝒗𝑆𝑖,𝑡

𝐿 + 𝑹𝑡
𝐿𝑆𝑖 (∆𝒗𝑡

𝑆𝑖 + ∆𝒘𝑣,𝑡
𝑆𝑖 ) + 𝑇𝒈𝐿  

 

(2.56) 

 

where   ∆𝒑𝑡
𝑆𝑖  and  ∆𝒗𝑡

𝑆𝑖  denote the inputs based on the accelerometer measurements. The noise 

terms are modeled as 𝒘𝑝,𝑡~𝒩(0, 𝑄𝑉). The earth gravity is denoted by 𝒈𝐿. The orientation states 

are modeled as: 

 

𝒒𝑡+𝑇
𝐿𝑆𝑖 = 𝒒𝑡

𝐿𝑆𝑖∆𝒒𝑡
𝑆𝑖 exp(

1

2
𝒘𝑞,𝑡
𝑆𝑖 ), (2.57) 

 

where ∆𝒒𝑡
𝑆𝑖 denotes the gyroscope measurements, corrected for the estimated gyroscope bias, 

and  𝒘𝑞,𝑡
𝑆𝑖 ~𝒩(0, 𝑄𝑞). 

Since the dynamic model above presented states in terms of their value at the previous 

time step, the state at the first time instance needs to be treated separately. The orientation 

𝒒1
𝐿𝑆𝑖 of each sensor 𝑆𝑖 is estimated using the first accelerometer and magnetometer sample of 

that sensor. Note that this is the only place in the algorithm where magnetometer 

measurements are used. The variables 𝒒1
𝐿𝑆𝑖 are then initialized around this estimated 

orientation with additive noise 𝒆11
𝑆𝑖 ~𝒩(0, Ʃ𝑞1). The position 𝒑𝑆𝑖,1

𝐿  of one of the sensors is without 

loss of generality initialized around zero with additive noise 𝒆𝑝1~𝒩(0, Ʃ𝑞1 ).This defines the 

origin of the local coordinate frame 𝐿. 

 

2.5-5. Algorithm Analysis 

Regarding the algorithm developed by Palermo et al. [92], they proposed a calibration 

procedure specifically for gait analysis, which may have some restrictions when applied to 

upper limb segments. Nevertheless, this algorithm was design to be easy for the subject to 

perform autonomously. In fact, the calibration protocol needs neither a precise sensor 

positioning, nor the performance of specific and accurate movements. This is an advantage 

when applied to motor rehabilitation performed, for example at home, by individuals with low 

mobility.  

Both H.J. Luinge et al. [93] and Daniel Roetenberg et al. [91] described a method that 

required a set of movements by the individuals, in order to calibrate the sensors. This can 

present a drawback, because healthy can easily perform the supposed movements, in contrast, 



37 
Tracking Algorithms 

 

individuals with motor disabilities may present difficulties performing those movements, 

resulting in a poor calibration.  

Finally, Schön et al. [98] described an optimization approach to inertial human body motion 

capture. This method is capable of estimating the relative position and orientation of the body 

segments. Their experimental results show that the algorithm works well, quickly converging 

to a feasible solution and resulting in drift-free joint angle estimates which match the joint 

angles from an optical reference system.



 

 

 



 

 

 

Chapter 3 

Joint Axis Estimation 

A major problem in IMU-based human motion analysis is that the local coordinate axes of 

the IMUs are not aligned with any physiologically axes  (figure 3.1). In some publications this 

issue is not addressed, it is assumed that the IMUs can be mounted precisely in a predefined 

orientation toward the joint [99]. In the more realistic case of arbitrary mounting orientation, 

it is essential to identify the sensor-to-segment orientation placement of the sensors attached 

to both ends of the joint. As illustrated in Figure 3.11, these mounting orientations are 

characterized by the local coordinates of the joint axis. It can be measured manually, but in 

three-dimensional space, this is a troublesome task that yields low accuracy results [93]. 

Calibration postures and/or calibration movements are a common method to estimate these 

vectors. Besides static postures, predefined calibration motions can be used to identify the 

coordinates of physically axes sensor coordinate system [99]. The protocol used by Roetenberg 

et al.[91] solves a closed kinematic chain to refine joint axis and position coordinates that have 

been acquired from a combination of calibration postures, predefined motion and manual 

measurements of body dimensions. However, both in calibration postures and calibration 

motions, the accuracy is limited by the precision with which the subject can perform the 

postures or motions. 

Therefore, there is high demand for methods that enable accurate es timation of joint axes 

with respect to the local sensor frames. In his contribution, Seel et al. [100] demonstrate how 

this information can be extracted from the measured data of almost arbitrary movements by 

exploiting the kinematic constraints of the respective joints.  

This chapter describes the implemented algorithm for joint axis estimation, based on the 

work developed by Seel, for knee joint. Thus, the algorithm is explained in the following 

sections, as well as all changes, adjustments and enhancements included in the scope of this 

thesis. The complete methodology described in this chapter was implemented in Python. 
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Figure 3.1 - Arbitrary placement of the inertial sensors on the human segments. The coordinates of the 

joint axis direction (green arrows) in the local coordinate system of the sensors (labels 𝒙− 𝒚 − 𝒛) 
characterize the sensor-to-segment mounting. 

3.1- Constrains induced by hinge joints 

First, let’s consider two rigid segments that are connected by a hinge joint and are free to 

rotate and move in space (figure 3.2). These segments are called first and second segment, and 

each of them shall be equipped with a three-axial gyroscope attached to the segment in some 

unknown arbitrary orientation. The unit joint axis vector with respect to the local coordinate 

system of the gyroscope attached to the first and second segment shall be referred to as 𝒋1 and 

𝒋2, respectively. Furthermore, let the angular velocities measured by the gyroscopes in the 

coordinates of their local frames be 𝒈1(𝑡) and  𝒈2(𝑡) for the first and second segment, 

respectively. Then, it is a geometrical fact that  𝒈1(𝑡) and  𝒈2(𝑡) differ only by the joint angle 

velocity and a (time-variant) rotation matrix [100]. Consequently, their projections into the 

joint plane, the one which the joint axis is the normal vector, have the same lengths for each 

instant in time: 

 

||𝒈1
(𝑡) × 𝒋1||2 − ||𝒈2

(𝑡) × 𝒋2||2 = 0∀𝑡, (3.1) 

 

where ||. ||2 denotes the Euclidean norm. This constrain holds for every moment in time 

regardless of where and in which orientation the sensors are mounted on the segments [100]. 
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Figure 3.2 - Representation of two rigid segments that are connected by a hinge joint, each one equipped 
with a three-axial gyroscope (represented by its local coordinate system). The orientations of the sensors 
toward their segments are assumed to be unknown[100]. 

This fact turns out to be very useful when identifying the hinge joint axis in case the 

orientation of the sensors toward the segments is unknown. A large set of measured gyroscopic 

data is acquired from both sensors and search for the joint axis coordinates that satisfy equation 

(3.1) for all time instants. More precisely, consider the joint axis candidates �̂�1 and �̂�2 in the 

spherical coordinates 𝜙1,𝜙2 ∈ [−
𝜋

2
,
𝜋

2
], 𝜃1 , 𝜃2 ∈ [0, 2𝜋] with: 

 

�̂�1 = (cos(𝜙1
)cos(𝜃1) , cos(𝜙1

) sin(𝜃1 ) , sin(𝜙1
))𝑇, (3.2) 

 

�̂�2 = (cos(𝜙2
) cos(𝜃2 ) , cos(𝜙2

) sin(𝜃2 ) , sin(𝜙2
))𝑇, 

 

(3.3) 

 

where   𝜙𝑖 and  𝜃𝑖  are the inclination and azimuth (figure 3.3), respectively, of 𝑗̂𝑖 in the 𝑖𝑡ℎ 

sensor coordinate system (𝑖 = 1, 2).  

 

Figure 3.3 – Representation of the inclination and azimuth. 

Furthermore, in the context of rehabilitation, the 𝑥-axis of the sensor can be assumed to 

always be aligned with the bone, that is, 𝜃1 , 𝜃2  are always  
𝜋

2
, since the sensors are attached 

with elastic straps and is assume that they do not move along the exercise. Thus, one can re-

write equations (3.2) and (3.3): 

 

�̂�1 = (0, cos(𝜙1
) , sin(𝜙1

))𝑇 , (3.4) 

 

�̂�2 = (0, cos(𝜙2
) , sin(𝜙2

))𝑇 . 

 

(3.5) 

 

In these reduced coordinates, the error can be defined by: 

Inclination Azimuth 
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𝑒 = ||𝒈1
(𝑡0 + 𝑘𝑡𝑠) × �̂�1||2 − ||𝒈2

(𝑡0 + 𝑘𝑡𝑠) × �̂�2||2, ∀𝑡. (3.6) 

 

The proposed approach only yields the true joint axis coordinates when a motion is 

performed while data is recorded. For instance, if the joint angle remained constant, i.e. the 

two segments were rigidly connected, then 𝒈1
(𝑡) = 𝑹𝒈2

(𝑡), ∀𝑡, where 𝑹 is the constant rotation 

matrix from the second to the first sensor frame. Therefore, (3.1) would hold for any 

combination (𝒋1, 𝒋2):𝒋1 = 𝑹𝒋2, no matter what movements the connected segments perform. 

Thus, motions during which the joint angle remains constant are not suitable for joint axis 

estimation. Instead, the motion of the segments should be such that the kinematic constrain of 

the joint axis becomes evident in the measured angular rates. 

3.2- Algorithm Implementation 

Assuming that 𝑁 data sets, precisely {𝒈1
(𝑡𝑘), 𝒈2(𝑡𝑘)}𝑘=1

𝑁 , 𝑁 ≫ 4 were measured. Restricting 

the joint axis estimates to unit length leads to a two-dimensional problem. Hence, the 

estimation of the joint axis vector are denote by �̂�1 and �̂�2 using the parameterization by 

spherical coordinates, as mentioned above: 

 

𝜉 = [𝜙1, 𝜙2], (3.7) 

 

�̂�1 = [0, cos(𝜙1
) , sin(𝜙1

)]𝑇, 
(3.8) 

 

�̂�2 = [0, cos(𝜙2
) , sin(𝜙2

)]𝑇. 

 

Therefore, a Gauss-Newton algorithm is implemented and to this end, the following 

gradients of the left-hand side of equation (3.1) with respect to  𝒋1 and 𝒋2 are derived: 

 
𝑑(‖𝒈𝑖

(𝑡) × 𝒋𝑖‖2)

𝑑𝒋𝑖
=
(𝒈𝑖

(𝑡) × 𝒋𝑖 × 𝒈𝑖(𝑡))
𝑇

‖𝒈𝑖
(𝑡) × 𝒋𝑖‖2

∈ ℝ1×3, 𝑖 = 1,2. (3.9) 

 

From equation (3.8), the derivatives 
𝑑𝑗𝑖

𝑑𝜉𝑖
, 𝑖 = 1,2, can be easily obtained, allowing the 

calculation of the Jacobian matrix 

 

𝑱𝑎𝑥𝑖𝑠 ∶=
𝑑𝒆𝑎𝑥𝑖𝑠

𝑑𝜉𝑎𝑥𝑖𝑠
∈ ℝ𝑁×4, (3.10) 

 

of the error vector 𝒆𝑎𝑥𝑖𝑠 ∈ ℝ𝑁×1. Its   𝑘𝑡ℎ entry, which is denoted 𝒆𝑎𝑥𝑖𝑠 ,𝑘, is defined in  the 

equation  (3.6). Thus, the  𝑘𝑡ℎ row of the Jacobian is defined by: 
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𝑑𝒆𝑎𝑥𝑖𝑠,𝑘

𝑑𝜉𝑎𝑥𝑖𝑠
=
(𝒈1

(𝑡) × 𝒋1× 𝒈1
(𝑡))𝑇

‖𝒈1(𝑡) × 𝒋1‖2

𝑑𝒋1

𝑑𝜉𝑎𝑥𝑖𝑠
−
(𝒈2

(𝑡) × 𝒋2 × 𝒈2
(𝑡))

𝑇

‖𝒈2
(𝑡) × 𝒋2‖2

𝑑𝒋2

𝑑𝜉𝑎𝑥𝑖𝑠
∈ ℝ1×4 . (3.11) 

 

Thus, the Gauss-Newton algorithm is implemented as below. First, random initial values for 

𝜉𝑎𝑥𝑖𝑠  are generated and then, the following update loop is performed repeatedly: 

1. Calculation of �̂�1 and �̂�2 from 𝜉𝑎𝑥𝑖𝑠  , as in equation 3.8. 

2. Calculation of the error vector 𝒆𝑎𝑥𝑖𝑠 ∈ ℝ𝑁×1 and the Jacobian 𝑱𝑎𝑥𝑖𝑠. 

3. Update 𝜉𝑎𝑥𝑖𝑠  by  𝜉𝑎𝑥𝑖𝑠 − (𝑱𝑎𝑥𝑖𝑠
𝑇 𝑱𝑎𝑥𝑖𝑠 )

−1𝑱𝑎𝑥𝑖𝑠
𝑇 𝒆𝑎𝑥𝑖𝑠 . 

4. Calculation of the tolerance by 𝜉𝑎𝑥𝑖𝑠
𝑛𝑒𝑤 − 𝜉𝑎𝑥𝑖𝑠

𝑜𝑙𝑑 = �⃗⃗⃗�𝑑𝑖𝑓𝑓  and repeat from 1. 

Notice that the loop only stops when ‖�⃗⃗⃗�𝑑𝑖𝑓𝑓‖ is lower than a fixed value. In the next chapter, 

results are obtained and assessed for distinct ‖�⃗⃗⃗�𝑑𝑖𝑓𝑓‖ values. 

This proposed methodology, an adaptation of the one presented in [100], is much simpler 

to implement than other techniques available in the literature. In addition, as already 

mentioned in [100], this technique allows faster convergences and more accurate results.



 

 

 



 

 

 

Chapter 4 

Simulated Data Validation 

Before evaluating the previous method in subjects, a kinematic simulation model of the leg 

was developed. This model consisted of two-segments (thigh and shank) connected by a hinge 

joint, which represents the knee. Each simulated inertial measurement unit is rigidly attached 

to the body segment. 

This simulation was divided in two major steps: 

i. Random placement of the sensors in both segments,  within the range 𝜙1, 𝜙2 ∈

[−
𝜋

2
,
𝜋

2
]; 

ii. Specific orientation of the sensors in both segments. 

4.1- Data Simulation Method 

In order to validate the algorithm, an exact expression of a movement was required. Thus, 

the exact expression reproducing a squat movement was deducted, allowing to define for each 

time instant the exact global position of the joint and the exact vector defining the joint axis. 

This acquired data is the theoretical exact data. Then, it was possible to assess the robustness 

and accuracy of the implement algorithm by adding noise to the theoretical exact data and 

challenging the algorithm to find the correct joint axis.  

Thus, assuming that an individual does the squat movement with constant velocity, the 

supposed movement can be described as a parabola opening to the top (see figure 4.1 left), 

that has as equation: 𝑠(𝑡) = 𝑎𝑡2 +𝑏𝑡 + 𝑐. If it is considered that the sensor can read 200 samples  

per second, then, its rate is 0.005. Therefore, the above expression was used to reproduce the 

exercise with 1 second of duration. The discrete values of 𝑠 for each time instant considered 

were listed in an Excel file. 

For a male measuring 1.80𝑚, its thigh, 𝐿1, measures about 0.4428 𝑚 and its shank, 𝐿2, 

0.4410 𝑚, which  means both segments have approximately the same length. Thus, an 

arithmetic mean can be calculated in order to obtain the total length of both segments, yielding 
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𝐿 = 0.4419𝑚. The amplitude 𝐴 of the parabola is equal to half of the length of the leg. In order 

to find the parameters 𝑎, 𝑏 and 𝑐, the following equations can be defined: 

 

𝑠(0) = 0 = 𝑐, 

 

(4.1) 

𝑠 (
𝑡𝑓

2
) = 𝑎 (

𝑡𝑓

2
)
2

+ 𝑏 (
𝑡𝑓

2
) + 𝑐 = 𝐴, 

 

(4.2) 

𝑠 ′ (
𝑡𝑓

2
) = 2𝑎 (

𝑡𝑓

2
) + 𝑏 = 0, (4.3) 

 

where 𝑠(𝑡) represents the squat function and 𝑠′(𝑡) the corresponding derivative. Now that the 

parameters are known, the graph for the squat displacement and velocity can be achieved 

(figure 4.1 right). 

Figure 4.1 - Representation of a squat. On the left is the displacement over time and on the right is the 
velocity over time. 

In order to find the angular velocity of a squat exercise, with the above specifications, the 

following scheme was drawn.  
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Figure 4.2 – Representation of a squat. 

 

By observing the figure, one can easily perceive that: 

  

𝐿1 sin𝜃(𝑡) = 𝐿2 sin𝛽(𝑡) . (4.4) 

 

As already mentioned, if it is considered that both segments have approximately the same 

length (𝐿1 = 𝐿2), then a simplification can be applied: 

 

sin𝜃(𝑡) = sin𝛽(𝑡), 

 

(4.6) 

𝜃(𝑡) = −𝛽(𝑡) . (4.7) 

 

Considering another variable, 𝛾(𝑡) = 𝜃(𝑡) = −𝛽(𝑡), to simplify calculations: 

 

2𝐿 = 𝑠(𝑡) + 𝐿 cos𝛾(𝑡) + 𝐿 cos 𝛾(𝑡), 

 

(4.8) 

𝛾(𝑡) = arccos (
𝐿 − 𝑠(𝑡)

𝐿
), 

 

(4.9) 

�̇�(𝑡) = −

�̇�(𝑡)
𝐿

√1 − (
𝐿 − 𝑠(𝑡)

𝐿
)
2

. 
(4.10) 

𝑠(𝑡) 

𝐿1 

𝐿1 

𝐿2 

𝐿2 

𝐿
1
+
𝐿
2
−
𝑠(
𝑡)

 

𝐿
1
co
s
𝜃
(𝑡
) 

𝐿
2
co
s
𝛽
(𝑡
) 

𝐿1 sin 𝜃(𝑡) 

𝐿2 sin 𝛽(𝑡) 

𝛽(𝑡) 

𝜃(𝑡) 

Hip 

Knee 

Ankle 
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Thus, one can find the angular velocity associated to the simulated squat exercise, and it 

is represented in figure 4.3. Finally, in order to obtain the angular velocity in the three 

directions, the three components of 𝑗1 and 𝑗2 are multiplied (equation 3.4 and 3.5) by 𝜃(𝑡)  and 

𝛽(𝑡), respectively. 

In order to make the simulation as close to reality as possible, a random number was added 

to the acceleration data, between -1 and 1, multiplied by a noise error. Further, to evaluate 

how the increment of noise influence the results, two different values of noise were considered 

(10% and 20%).  

Moreover, for each of the above steps, three different values for the algorithm tolerance, 

‖�⃗⃗�𝑑𝑖𝑓𝑓 ‖, were assessed: 0.05, 0.01 and 0.001. Furthermore, the orientation of the sensor was 

fictitiously varied, in order to understand how the algorithm behaves in situation in which both 

sensor are not perfectly aligned. Thus, two cases were assumed. One in which the initial 

orientation of each sensor is completely random, and another in which the orientation of each  

sensor is defined by figure 4.3. In this second case, the orientation of sensor 1 is fixed and the 

orientation of sensor 2 varies between -90º and 90º, allowing 25 combinations. 

A scheme of the considered combinations is represented in figure 4.4 for a better 

understanding. In figure 4.5 through 4.10, a representation of some of the signals that will feed 

the algorithm are illustrated, one can find in Annex A the rest of the signals. In these figures, 

it is possible to observe how the clean exact acceleration of figure 4.3 becomes erratic with 

the introduced error (10% or 20%), reproducing a real case scenario. Note that the term sensor 

1 and sensor 2 are used to describe the sensor placed in the thigh and shank, respectively. 

 
 

Figure 4.3 - Angular velocity of the simulated exercise. 
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Figure 4.4 - Illustration of the different evaluations performed with the simulated data. It should be 
noted that 10% and 20% correspond to the added signal noise to data and the next column corresponds to 
the algorithm tolerance.  

 

 

 

 

 

 

 

 

 

 
Figure 4.5 – Input signal for random placement of the sensors, with 10% noise. 
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Figure 4.6 - Input signal for random placement of the sensors, with 20% noise. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.7- Input signal for sensor1 and sensor2 placed at 0°, with 10% noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.8 - Input signal for sensor1 and sensor2 placed at 0°, with 20% noise. 
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Figure 4.9 - Input signal for sensor1 and sensor2 placed at 45°, with 10% noise. 

 

Figure 4.10 - Input signal for sensor1 and sensor2 placed at 45°, with 20% noise. 

 

 

 

 

 

 

 

 

 

 
Figure 4.11 - Input signal for sensor1 and sensor2 placed at 90°, with 10% noise. 
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Figure 4.12 - Input signal for sensor1 and sensor2 placed at 90°, with 10% noise. 

Figure 4.13 – All possible combinations for both sensors.  

Notice that here are not presented all of the 25 possible combinations, see Annex A for 

further consult and in the figure below is demonstrated such combinations. 

4.2- Simulation Results 

For the random placement of the sensors, 50 runs were performed for each value of 

tolerance in each noise value. On the other hand, for fixed values, 10 runs were performed for 

each of the 25 combinations of sensors, also in each noise value. In the end, it was performed 

300 runs for random placement and 1500 runs for fixed placement. 

Let 𝜙1
𝑡𝑟𝑢𝑒 , 𝜙2

𝑡𝑟𝑢𝑒 be the true values of 𝜙1 and 𝜙2, respectively, and 𝜙1
𝑠𝑖𝑚 , 𝜙2

𝑠𝑖𝑚  be the final 

values which the algorithm converged to. Then, it will the assessed the difference between 

𝜙𝑖
𝑠𝑖𝑚  and 𝜙𝑖

𝑡𝑟𝑢𝑒 for each run, in the end an arithmetic mean is applied. 

Concerning the random placement of sensors, the results are exhibited below. 
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Table 4.1 – Summary of the results obtained for the random placement of sensors. 

Noise 10% 20% 

Tolerance 0.05 0.01 0.001 0.05 0.01 0.001 

Mean difference 𝜙1 (°) 0.91173 0.86295 0.74518 1.46716 1.58024 1.45685 

Std difference 𝜙1 1.06479 0.75288 0.67196 1.35706 1.26367 2.33721 

Mean difference 𝜙2 (°) 0.89793 0.88199 0.85751 1.70131 1.64038 1.39668 

Std difference 𝜙2 0.79312 0.82909 0.56456 1.45919 1.26027 1.28166 

Mean iterations 3.0 4.0 6.0 4.0 5.0 7.0 

Std iterations 0.77643 0.84610 2.06712 1.18559 1.96685 2.00940 

 

Figure 4.14 – Graphic illustration of the results obtained for the random placement of sensors. 

The table and figure above allow to take relevant conclusions. First, as tolerance increases, 

the number of iterations decreases as expected, since a higher value of tolerance means that 

the algorithm will stop sooner. This fact is valid for both values of noise, being that for a noise 

of 20%, the number of iterations is higher because the signal was more contaminated and so 

the algorithm needed to performed more iterations to converge. 

Regarding the difference between 𝜙1
𝑠𝑖𝑚  and 𝜙1

𝑡𝑟𝑢𝑒 , for 10% noise, the difference was less 

than 1.0°, and for 20% noise less than 1.6°. For the same reason above mentioned, it was 

expected that as the noise increases, the difference was higher. Nevertheless, both values are 

0

2

4

6

8

10

0 0.01 0.02 0.03 0.04 0.05

M
e
a
n
 n

u
m

b
e
r 

o
f 

it
e
ra

ti
o
n
s

Tolerance

10% 20%

0

0.5

1

1.5

2

2.5

3

0 0.02 0.04

M
e
a
n
 D

if
fe

re
n
ce

 o
f 
φ

2
(°

)

Tolerance

10% 20%

-2

-1

0

1

2

3

4

0 0.01 0.02 0.03 0.04 0.05

M
e
a
n
 D

if
fe

re
n
ce

 o
f 
ϕ

1
(°

)

Tolerance

10% 20%



54 
Simulated Data Validation 

 

 

quite acceptable. Concerning the difference between 𝜙2
𝑠𝑖𝑚  and 𝜙2

𝑡𝑟𝑢𝑒 , a similar conclusion can 

be drawn, however, for a 20% noise the difference is less than 1.8° and for a tolerance of 0.05, 

the mean is slightly higher than for 0.01 which was not expected. Nonetheless, the difference 

is not significant and it can be explained, for example, by the initial estimations for 0.01 were  

worse than the ones for 0.05, and so, the algorithm needed a few more iterations to converge. 

Regardless, both are very satisfactory and prove that the algorithm is capable of a reliable 

convergence, independently of the amount of noise added to data analyzed in this project. 

The following six tables present the results obtained for the fixed placements of sensors. 
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Table 4.2 – Mean of the obtained results for tolerance of 0.05 and noise 10% and corresponding standard 
deviation. 

 

 

 

 𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 0.70297 0.43605 0.24508 0.35143 0.59202 

Std difference 𝜙1 0.07655 0.38399 0.14814 0.36262 0.09430 

Mean difference 𝜙2 (°) 0.47078 0.55416 1.18276 1.56429 1.28558 

Std difference 𝜙2 0.45185 0.20245 0.83166 0.38431 0.29579 

Mean iterations 3.0 4.0 3.0 3.0 3.0 

Std iterations 0.40000 0.64031 0.60000 0.74833 0.60000 

-45° 

Mean difference 𝜙1 (°) 0.57086 0.25423 1.95845 1.00574 0.72201 

Std difference 𝜙1 0.38425 0.21999 0.48933 0.57260 0.86210 

Mean difference 𝜙2 (°) 0.46765 1.27897 0.45543 1.19398 1.32955 

Std difference 𝜙2 0.94390 1.05669 0.55940 0.65878 0.95514 

Mean iterations 4.0 3.0 3.0 3.5 4.0 

Std iterations 0.64031 0.74833 1.01980 0.78102 0.80000 

0° 

Mean difference 𝜙1 (°) 0.33789 1.87022 0.38317 0.93493 0.59021 

Std difference 𝜙1 0.42776 0.55137 0.22196 0.60625 0.58762 

Mean difference 𝜙2 (°) 0.53932 1.60851 1.07745 0.95580 0.46659 

Std difference 𝜙2 0.46702 1.10357 0.65995 0.54120 0.64272 

Mean iterations 3.0 3.0 4.0 3.0 3.0 

Std iterations 0.94340 0.45826 0.89443 0.63246 0.94340 

45° 

Mean difference 𝜙1 (°) 0.49997 0.51188 0.40608 1.90704 0.81703 

Std difference 𝜙1 0.60832 0.34505 0.69065 0.46996 0.74050 

Mean difference 𝜙2 (°) 1.50019 1.17420 0.12226 0.78353 1.72238 

Std difference 𝜙2 0.43279 0.71927 0.08838 0.59663 0.38285 

Mean iterations 4.0 3.0 3.0 3.0 3.0 

Std iterations 0.74833 0.91652 0.74833 0.70000 0.63246 

90° 

Mean difference 𝜙1 (°) 1.11728 1.68935 0.41323 0.20719 0.61222 

Std difference 𝜙1 0.45405 0.47289 0.37642 0.67451 0.39244 

Mean difference 𝜙2 (°) 0.77364 0.74238 1.23685 0.83157 0.55345 

Std difference 𝜙2 0.48109 0.64283 0.82876 0.40747 0.76007 

Mean iterations 3.0 3.0 3.0 3.0 3.5 

Std iterations 0.77460 0.60000 0.77460 0.48990 0.66332 
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Table 4.3 – Mean of the obtained results for tolerance of 0.05 and noise 20% and corresponding standard 
deviation. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 1.88865 0.41113 0.77914 1.55443 1.65129 

Std difference 𝜙1 0.49164 0.22124 1.65016 0.60459 0.85624 

Mean difference 𝜙2 (°) 1.14051 3.50534 1.12546 1.36180 0.78398 

Std difference 𝜙2 1.13473 1.69243 0.90441 0.39944 0.40217 

Mean iterations 3.0 4.0 3.0 4.0 3.0 

Std iterations 0.40000 1.18322 1.00499 0.74833 0.92195 

-45° 

Mean difference 𝜙1 (°) 2.94131 1.34479 3.77264 0.62544 1.09890 

Std difference 𝜙1 0.55908 1.54807 1.13338 2.90597 1.29081 

Mean difference 𝜙2 (°) 0.60640 2.57153 1.41319 2.82436 1.45361 

Std difference 𝜙2 0.27091 0.66352 0.65794 1.63894 0.99595 

Mean iterations 3.0 3.0 4.0 4.0 4.5 

Std iterations 0.90000 1.18322 1.00000 1.40000 0.78102 

0° 

Mean difference 𝜙1 (°) 2.50084 1.36730 1.90251 1.23925 1.61046 

Std difference 𝜙1 1.42174 1.64542 1.21390 0.68021 0.80511 

Mean difference 𝜙2 (°) 2.49804 1.37504 2.29288 2.11012 2.99269 

Std difference 𝜙2 1.93221 1.80747 2.03669 1.48776 1.62991 

Mean iterations 3.5 3.0 4.0 4.0 3.5 

Std iterations 0.97980 1.96214 0.80623 0.89443 0.66332 

45° 

Mean difference 𝜙1 (°) 3.91229 0.89486 0.78974 0.28058 2.41381 

Std difference 𝜙1 0.23636 0.50420 0.67311 0.64838 1.96283 

Mean difference 𝜙2 (°) 0.59656 0.94489 2.34979 3.06485 1.58185 

Std difference 𝜙2 0.43631 2.05006 0.42503 0.49825 1.30100 

Mean iterations 4.0 3.0 3.5 4.0 4.0 

Std iterations 1.07703 0.83066 0.66332 1.00000 0.87178 

90° 

Mean difference 𝜙1 (°) 0.60289 0.42934 2.17507 1.21679 1.45300 

Std difference 𝜙1 1.04994 0.43557 0.95701 1.42198 1.09319 

Mean difference 𝜙2 (°) 1.50249 0.86052 2.13171 1.95193 1.57088 

Std difference 𝜙2 0.45759 1.36931 1.11525 1.20089 0.49219 

Mean iterations 4.0 3.5 3.0 3.0 3.0 

Std iterations 0.30000 1.07703 0.30000 1.37477 0.45826 
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Table 4.4 – Mean of the obtained results for tolerance of 0.01 and noise 10% and corresponding standard 
deviation. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 0.35109 1.08445 0.97436 0.52392 0.66617 

Std difference 𝜙1 0.38582 0.34656 0.53192 0.40291 0.44936 

Mean difference 𝜙2 (°) 0.20598 0.50642 0.44582 0.90422 0.88009 

Std difference 𝜙2 0.41424 0.17095 0.72343 0.26055 0.74983 

Mean iterations 4.0 5.0 4.0 4.0 4.0 

Std iterations 0.70000 1.11803 1.28452 0.60000 0.66332 

-45° 

Mean difference 𝜙1 (°) 0.69696 1.42140 0.45609 1.21940 0.24898 

Std difference 𝜙1 0.24778 0.09988 0.41801 0.34811 0.41476 

Mean difference 𝜙2 (°) 0.35530 0.42429 1.48287 0.33292 0.99856 

Std difference 𝜙2 0.31366 0.07011 0.65606 0.44967 0.41925 

Mean iterations 5.0 4.0 4.5 4.5 4.0 

Std iterations 0.60000 0.92195 0.91652 1.20000 0.80000 

0° 

Mean difference 𝜙1 (°) 0.38805 0.95422 0.74295 0.74909 0.18045 

Std difference 𝜙1 0.43991 0.67640 0.44381 0.77056 0.56145 

Mean difference 𝜙2 (°) 0.69556 0.90330 1.15343 1.25055 0.73174 

Std difference 𝜙2 0.63781 0.70373 0.56743 0.66272 0.52286 

Mean iterations 4.5 3.5 5.0 4.0 4.0 

Std iterations 1.20000 1.04403 0.92195 1.55242 0.80000 

45° 

Mean difference 𝜙1 (°) 0.75694 0.32176 0.74711 0.92789 1.37019 

Std difference 𝜙1 0.53074 0.29429 0.32948 0.38976 0.48776 

Mean difference 𝜙2 (°) 1.06025 0.52628 0.21223 0.96864 0.64814 

Std difference 𝜙2 0.52077 0.18240 0.50751 0.47583 0.41942 

Mean iterations 4.0 4.0 4.5 4.0 4.5 

Std iterations 0.53852 1.00000 1.02470 0.74833 0.87178 

90° 

Mean difference 𝜙1 (°) 0.16033 0.48101 0.78465 0.86625 0.38451 

Std difference 𝜙1 0.38032 0.23698 0.57184 0.72917 0.28753 

Mean difference 𝜙2 (°) 0.06866 0.17958 0.46130 0.98738 0.56344 

Std difference 𝜙2 0.73811 0.14968 0.64476 0.69927 0.75477 

Mean iterations 4.0 5.0 4.0 4.0 4.0 

Std iterations 0.94340 0.70000 0.94340 0.45826 0.94340 
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Table 4.5 – Mean of the obtained results for tolerance of 0.01 and noise 20% and corresponding standard 
deviation. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 2.27720 2.68221 1.31863 2.59522 1.69349 

Std difference 𝜙1 0.09878 0.72338 0.10991 0.83420 0.04515 

Mean difference 𝜙2 (°) 0.30900 0.98383 1.03044 2.86667 2.23126 

Std difference 𝜙2 0.65201 0.15574 0.02831 0.87152 1.09159 

Mean iterations 5.50 7.00 4.00 5.50 5.00 

Std iterations 0.90000 1.40000 0.66332 1.68819 0.74833 

-45° 

Mean difference 𝜙1 (°) 2.62635 0.94877 0.78558 2.55256 1.21675 

Std difference 𝜙1 0.78530 1.54608 0.08355 2.42569 0.02928 

Mean difference 𝜙2 (°) 0.76265 2.51926 0.65241 2.39378 2.67069 

Std difference 𝜙2 1.04924 1.36549 0.03781 0.70700 0.94941 

Mean iterations 5.0 5.0 4.0 5.0 4.5 

Std iterations 0.87178 0.87178 1.28062 0.83066 0.94340 

0° 

Mean difference 𝜙1 (°) 2.45694 0.84428 0.72416 4.08383 0.17000 

Std difference 𝜙1 1.57629 0.28401 0.20681 0.20644 0.01063 

Mean difference 𝜙2 (°) 1.56720 3.04753 2.92875 2.20902 0.65657 

Std difference 𝜙2 1.68866 0.53258 1.11361 0.11786 0.22760 

Mean iterations 4.50 5.50 6.00 4.00 5.00 

Std iterations 1.64012 1.41774 1.67631 1.72047 0.90000 

45° 

Mean difference 𝜙1 (°) 1.14021 3.04241 1.12828 0.88703 1.07126 

Std difference 𝜙1 1.68110 0.62078 0.04626 0.69436 0.31771 

Mean difference 𝜙2 (°) 0.25125 0.62774 1.82208 0.55036 0.55328 

Std difference 𝜙2 0.41038 0.41329 0.00720 1.80469 0.01049 

Mean iterations 4.5 6.0 5.0 5.0 5.0 

Std iterations 1.30000 0.70000 1.48324 1.16619 1.24900 

90° 

Mean difference 𝜙1 (°) 3.83111 0.89492 0.89273 2.40007 0.93231 

Std difference 𝜙1 0.04066 0.08647 0.80251 0.40604 0.69360 

Mean difference 𝜙2 (°) 0.37185 0.50149 0.57008 0.23826 0.97988 

Std difference 𝜙2 0.19307 0.13616 0.58050 1.14409 1.37934 

Mean iterations 5.0 4.5 5.0 5.0 4.0 

Std iterations 0.97980 0.91652 0.97980 0.64031 1.04403 
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Table 4.6 – Mean of the obtained results for tolerance of 0.001 and noise 10% and corresponding standard 
deviation. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 1.41491 0.69313 0.22224 0.56785 0.74301 

Std difference 𝜙1 0.44097 0.94006 0.40515 0.43784 0.30500 

Mean difference 𝜙2 (°) 1.52925 0.78872 0.79570 1.05580 0.64616 

Std difference 𝜙2 0.43187 0.93125 0.26487 0.32300 0.47731 

Mean iterations 6.5 6.0 5.0 6.0 5.0 

Std iterations 1.50000 2.15639 1.28452 2.10713 1.55242 

-45° 

Mean difference 𝜙1 (°) 0.79624 0.98427 0.34377 0.93550 0.45308 

Std difference 𝜙1 0.60258 0.72783 0.24636 0.33479 0.07982 

Mean difference 𝜙2 (°) 0.54032 1.20600 1.13490 1.68465 0.66324 

Std difference 𝜙2 0.32042 0.72759 0.39532 0.42716 0.38431 

Mean iterations 6.0 7.0 6.0 6.5 6.0 

Std iterations 2.10713 2.37487 2.30000 2.14709 1.13578 

0° 

Mean difference 𝜙1 (°) 0.65953 0.92233 0.70974 0.90300 0.05297 

Std difference 𝜙1 0.33591 0.19884 0.35109 0.19536 0.01078 

Mean difference 𝜙2 (°) 1.19061 0.73377 0.40639 0.21559 0.06550 

Std difference 𝜙2 0.40895 0.65035 0.17633 0.47131 0.02430 

Mean iterations 6.5 8.0 8.0 7.5 6.0 

Std iterations 2.11896 1.40000 1.81384 2.82843 1.28062 

45° 

Mean difference 𝜙1 (°) 1.28145 0.58295 0.84620 0.38007 0.50593 

Std difference 𝜙1 0.74334 0.84432 0.52743 0.22251 0.09681 

Mean difference 𝜙2 (°) 0.13743 0.90962 1.28534 0.87270 0.30046 

Std difference 𝜙2 0.28738 0.23931 0.82916 0.32449 0.04430 

Mean iterations 6.0 6.0 7.0 6.5 7.0 

Std iterations 0.45826 1.44568 1.30000 2.50799 1.95959 

90° 

Mean difference 𝜙1 (°) 0.57077 0.43807 0.56909 0.38109 0.80413 

Std difference 𝜙1 1.11031 0.43900 0.06775 0.71407 0.28818 

Mean difference 𝜙2 (°) 0.87084 1.07142 0.09177 0.56099 0.93443 

Std difference 𝜙2 0.61836 0.61504 0.95304 0.02417 0.20618 

Mean iterations 7.0 6.0 6.0 6.0 5.0 

Std iterations 1.42829 2.07123 1.42829 0.83066 0.97980 
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Table 4.7 – Mean of the obtained results for tolerance of 0.001 and noise 20% and corresponding standard 
deviation. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 0.76407 1.92040 1.92136 1.96659 1.06854 

Std difference 𝜙1 1.17928 1.40852 0.69724 0.58595 0.38014 

Mean difference 𝜙2 (°) 0.37125 1.54709 0.82594 2.64599 0.51332 

Std difference 𝜙2 0.25144 1.20025 0.86890 1.28278 0.28346 

Mean iterations 6.0 7.0 6.5 6.5 6.0 

Std iterations 4.06940 2.13542 1.16619 1.16619 1.00000 

-45° 

Mean difference 𝜙1 (°) 1.86008 1.81108 2.65092 0.67651 2.32524 

Std difference 𝜙1 0.83308 1.80178 0.60832 0.77818 0.94671 

Mean difference 𝜙2 (°) 1.37756 1.75043 1.86217 0.57948 0.61364 

Std difference 𝜙2 0.75421 1.51211 0.74075 0.48977 2.13511 

Mean iterations 9.0 7.0 7.0 7.0 7.5 

Std iterations 2.60960 2.34307 2.08806 1.75784 2.64764 

0° 

Mean difference 𝜙1 (°) 0.34867 1.61462 0.36656 1.45707 0.80166 

Std difference 𝜙1 0.54067 0.46656 1.01137 1.66723 1.63335 

Mean difference 𝜙2 (°) 0.94192 0.96011 0.31882 0.68285 0.91466 

Std difference 𝜙2 0.36739 0.95462 1.14183 1.72517 0.24840 

Mean iterations 6.5 6.5 9.0 7.5 7.0 

Std iterations 0.66332 2.62488 1.72047 2.41039 4.72123 

45° 

Mean difference 𝜙1 (°) 1.53858 1.77272 0.08953 0.98264 2.05052 

Std difference 𝜙1 2.01859 0.78034 1.56550 0.35092 1.51445 

Mean difference 𝜙2 (°) 0.77130 0.88273 0.99012 1.17358 1.45141 

Std difference 𝜙2 0.69499 0.56455 0.56001 1.27904 1.22453 

Mean iterations 7.0 9.5 7.5 6.0 7.5 

Std iterations 2.37487 5.04083 1.02470 0.92195 1.62788 

90° 

Mean difference 𝜙1 (°) 0.33626 0.17431 1.47653 2.84905 0.95679 

Std difference 𝜙1 0.82932 0.79718 1.05780 1.37363 0.37614 

Mean difference 𝜙2 (°) 1.40386 0.96144 1.75144 1.56886 0.20888 

Std difference 𝜙2 1.42486 0.08065 0.58600 1.62542 0.32919 

Mean iterations 7.0 6.5 6.0 7.0 7.0 

Std iterations 1.16619 1.35647 1.16619 2.06155 0.70000 
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First, just focusing on results for 10% noise, increasing the tolerance, decreases the number 

of iterations, similar to the previous results. Moreover, with increasing tolerance, the 

difference between  𝜙𝑖
𝑠𝑖𝑚  and 𝜙𝑖

𝑡𝑟𝑢𝑒, 𝑖 = 1,2, also increases, which was expected since a  higher 

tolerance means that the  algorithm will converge for higher values of difference. It is 

noteworthy that the larger difference for 𝜙1 is 1.95845°, 1.42140° and 1.41491° for 0.05, 0.01 

and 0.001, respectively. On the other hand, for 𝜙2 the higher difference is 1.72238°, 1.48287° 

and 1.68465° for 0.05, 0.01 and 0.001, in that order. 

Regarding the results for 20% noise, once can come to similar conclusions concerning the 

decreasing number of iterations and increasing values of difference for both 𝜙1 and 𝜙2, with 

increasing tolerance. Comparing the results for both values of noise, its increment implies a 

higher number of iterations for each value of tolerance and higher values of difference for both 

𝜙1 and 𝜙2. As already mentioned, this was expected because for 20% of noise, the signal is 

more contaminated and so it takes more iterations to converge and  𝜙1
𝑠𝑖𝑚  and 𝜙2

𝑠𝑖𝑚  are further 

from their true values. 

Summarizing, regardless the placement of the sensor, whether it is randomly placed or in 

fixed orientations, the algorithm can converge to very satisfactory values of  𝜙1 and 𝜙2 with 

less than 10 iterations, with simulation data.



 

 

 



 

 

 

Chapter 5 

Experimental Validation 

As a final step of algorithm assessment, an experimental validation was performed. Wireless 

inertial sensors, provided by SWORD Health (figure 5.1), are attached to the right thigh and 

shank using elastic straps. Four different exercises were analyzed: gait, squat, sitting knee 

flexion and sitting knee flexion with hip flexion (see figure 5.2 through 5.4). These exercises 

were chosen, in order to reproduce real cases of patients with different mobility of the lower 

limbs and to proof that the algorithm converges independently of the prescribed exercise. 

 

Figure 5.1- Sensor provided by SWORD Health. 

 

 
Figure 5.2 – Sitting knee flexion with hip flexion exercise. 

𝑥 

𝑧 
𝑦 
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Figure 5.3 – Squat exercise. 

 

Figure 5.4 – Sitting knee flexion exercise. 

Similar to simulated data validation, five positions for each sensor were considered: -90°, -

45°, 0°, 45° and 90°, producing in the end 25 combinations and for each combination, and 10 

runs were performed, yielding 250 runs for each exercise (figure 5.5 through 9). The true 

orientation of the local sensor frame are roughly determined using manual measurements: two 

circular wires, perimeter equal to each member, were built. In each one, with the aid of a 

protractor, the five positions were marked, and the positions 0° for both sensors was aligned 

with the knee (see figure 5.10). Let 𝜙1
𝑡𝑟𝑢𝑒 , 𝜙2

𝑡𝑟𝑢𝑒  be the true values of 𝜙1 and 𝜙2, respectively, 

and 𝜙1
𝑒𝑥𝑝 , 𝜙2

𝑒𝑥𝑝  be the final values to which the algorithm converges to. Then, it will the 

assessed the difference between 𝜙𝑖
𝑒𝑥𝑝  and 𝜙𝑖

𝑡𝑟𝑢𝑒 for each run, in the end an arithmetic mean 

is applied. 

All of the trials were performed by the same individual and the tolerance applied was 0.01 

for all exercises. 
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Figure 5.5 – Sensor placement: 𝜙1 = −90° and 𝜙2 = −90°,−45°,0°,45° and 90° (right to left). 

Figure 5.6 - Sensor placement: 𝜙1 = −45° and 𝜙2 = −90°,−45°,0°,45° and 90° (right to left). 

Figure 5.7 - Sensor placement: 𝜙1 = 0° and 𝜙2 = −90°,−45°,0°,45° and 90° (right to left). 
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Figure 5.8 - Sensor placement: 𝜙1 = 45° and 𝜙2 = −90°,−45°,0°,45° and 90° (right to left). 

Figure 5.9 - Sensor placement: 𝜙1 = 90° and 𝜙2 = −90°,−45°,0°,45° and 90° (right to left). 

 

Figure 5.10 – Method used to place the sensor in fixed positions, for thigh (right) and shank (left). 
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5.1- Experimental Results 

The following four tables exhibit the results obtained for the four different exercises 

performed. 

Table 5.1 – Mean Results obtained for gait. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 6.16569 6.06058 3.70908 9.30295 5.95940 

Std difference 𝜙1 4.67283 6.05288 2.74804 8.03744 3.27336 

Mean difference 𝜙2 (°) 10.79066 7.95375 9.11622 6.64533 13.73589 

Std difference 𝜙2 6.33422 4.21472 3.92824 7.03387 3.62221 

Mean iterations 5.5 5.0 8.5 4.5 5.5 

Std iterations 1.00499 3.82230 2.99333 1.70000 1.80278 

-45° 

Mean difference 𝜙1 (°) 7.83136 6.58090 2.55293 16.14445 10.89599 

Std difference 𝜙1 9.27505 4.38601 4.81504 8.07604 5.47310 

Mean difference 𝜙2 (°) 17.95196 15.99401 17.25602 17.76944 10.89599 

Std difference 𝜙2 2.25055 4.97366 4.56861 2.14580 5.47310 

Mean iterations 5.0 5.5 6.0 4.5 5.0 

Std iterations 0.70000 4.16653 1.77764 1.20000 2.10000 

0° 

Mean difference 𝜙1 (°) 11.62555 3.23654 5.97828 10.78824 5.63522 

Std difference 𝜙1 5.08945 4.62417 4.47389 5.97258 4.13423 

Mean difference 𝜙2 (°) 13.66826 8.55514 8.46943 6.14044 8.00034 

Std difference 𝜙2 4.24464 5.27896 4.46503 5.67096 7.43498 

Mean iterations 5.0 5.5 7.0 5.0 5.0 

Std iterations 1.51327 2.40832 3.80132 1.43178 1.28062 

45° 

Mean difference 𝜙1 (°) 4.86398 6.63870 5.62814 7.32671 5.32402 

Std difference 𝜙1 8.78925 4.68410 3.09983 7.23685 2.03903 

Mean difference 𝜙2 (°) 14.02631 13.69110 12.23662 2.48324 10.86846 

Std difference 𝜙2 4.14848 2.68884 2.93250 7.96482 5.21284 

Mean iterations 6.0 4.0 8.0 5.0 4.5 

Std iterations 2.08806 3.25730 3.98121 2.36854 1.98997 

90° 

Mean difference 𝜙1 (°) 9.36322 6.98764 8.79794 5.89077 8.92996 

Std difference 𝜙1 9.31346 5.36820 7.70716 7.27236 5.15905 

Mean difference 𝜙2 (°) 12.31198 11.85872 14.70445 9.74145 3.93813 

Std difference 𝜙2 5.29945 2.91273 3.99397 4.93039 4.96851 

Mean iterations 5.0 4.5 4.0 5.0 5.5 

Std iterations 4.07431 2.19317 3.00167 1.84662 1.74642 
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Table 5.2 – Mean results obtained for sitting hip flexion with knee flexion. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 8.38324 10.44092 6.18288 9.98703 8.69625 

Std difference 𝜙1 4.12013 4.39262 3.42841 4.46005 4.18479 

Mean difference 𝜙2 (°) 11.79090 2.77592 7.97632 6.39412 2.05543 

Std difference 𝜙2 7.09446 4.72511 5.50429 1.75946 6.55688 

Mean iterations 5.5 5.0 4.5 4.0 4.0 

Std iterations 2.77308 2.02237 1.48324 1.56205 1.09545 

-45° 

Mean difference 𝜙1 (°) 0.69437 6.73541 7.08633 1.65537 4.84456 

Std difference 𝜙1 1.66135 2.85807 4.20860 1.27650 3.88971 

Mean difference 𝜙2 (°) 9.42488 3.42142 2.90537 4.31645 4.84456 

Std difference 𝜙2 3.27664 3.88785 3.46540 2.13544 3.88971 

Mean iterations 4.0 3.5 5.5 4.5 4.5 

Std iterations 0.92195 2.58650 2.08806 0.91652 1.43178 

0° 

Mean difference 𝜙1 (°) 5.31096 8.46125 7.08196 7.32132 14.28125 

Std difference 𝜙1 6.55130 5.14395 4.95861 5.51449 4.82682 

Mean difference 𝜙2 (°) 13.77842 14.12213 9.98318 11.58833 6.79843 

Std difference 𝜙2 3.71426 4.75505 6.45279 6.70249 8.39489 

Mean iterations 4.5 6.5 5.0 5.0 4.0 

Std iterations 1.93907 2.56905 1.61555 3.07409 2.85657 

45° 

Mean difference 𝜙1 (°) 4.64517 9.51959 9.10177 5.55792 9.25601 

Std difference 𝜙1 4.38351 3.06735 3.32475 4.26681 3.72975 

Mean difference 𝜙2 (°) 10.57865 8.75709 2.87092 4.02123 7.70777 

Std difference 𝜙2 3.74938 2.77325 1.55683 2.80889 2.45435 

Mean iterations 6.0 6.5 4.0 5.0 5.0 

Std iterations 4.43734 2.22711 3.38378 1.54919 2.30000 

90° 

Mean difference 𝜙1 (°) 9.83841 7.08674 12.68303 1.47351 4.65061 

Std difference 𝜙1 5.60425 4.53903 4.50548 5.56333 7.42683 

Mean difference 𝜙2 (°) 10.68933 8.57865 14.58718 3.69626 4.58508 

Std difference 𝜙2 3.29663 3.55470 6.56177 2.40894 8.51027 

Mean iterations 6.0 6.0 3.5 6.0 7.0 

Std iterations 2.14709 2.13542 2.31517 2.05183 2.60960 
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Table 5.3 – Mean results obtained for squat exercise. 

 

 

 

 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 1.95745 5.83705 4.84338 3.22343 1.98584 

Std difference 𝜙1 3.55990 2.88241 3.42777 5.18630 2.62796 

Mean difference 𝜙2 (°) 56.41426 31.94214 54.01912 33.18733 40.90003 

Std difference 𝜙2 19.62979 19.94060 23.92985 13.92367 11.09975 

Mean iterations 9.5 8.0 14.5 6.0 9.5 

Std iterations 87.86899 57.72876 75.05198 77.85506 57.01973 

-45° 

Mean difference 𝜙1 (°) 6.68097 9.70133 8.42181 4.86821 9.45701 

Std difference 𝜙1 4.53515 1.84851 3.95204 3.45688 4.25315 

Mean difference 𝜙2 (°) 67.04785 24.33137 39.86177 37.80232 9.45701 

Std difference 𝜙2 30.36165 32.59309 20.52791 12.59382 4.25315 

Mean iterations 10.0 6.5 5.5 11.0 8.5 

Std iterations 5.26878 3.84187 1.10000 57.07364 76.85337 

0° 

Mean difference 𝜙1 (°) 4.79337 5.41542 7.28117 0.88034 4.75547 

Std difference 𝜙1 2.68933 2.10007 6.04304 3.65186 2.26218 

Mean difference 𝜙2 (°) 47.34474 44.16369 38.76352 37.91226 18.27480 

Std difference 𝜙2 30.32630 19.23812 13.50166 14.00222 22.43078 

Mean iterations 48.5 9.5 5.0 9.0 8.5 

Std iterations 90.05337 75.28373 1.28062 76.52189 50.11746 

45° 

Mean difference 𝜙1 (°) 7.55144 7.71769 9.00244 7.40066 3.81630 

Std difference 𝜙1 2.69868 3.25548 11.31671 2.65399 2.09741 

Mean difference 𝜙2 (°) 54.16290 34.11635 40.11031 37.27955 38.90441 

Std difference 𝜙2 16.85694 26.17256 23.39936 7.30645 16.04115 

Mean iterations 8.0 6.5 12.0 7.5 4.0 

Std iterations 1.41774 2.70000 90.06294 57.47521 1.55242 

90° 

Mean difference 𝜙1 (°) 3.35846 1.60621 13.50639 3.90306 6.27919 

Std difference 𝜙1 1.88946 3.06496 6.96862 2.45414 3.60070 

Mean difference 𝜙2 (°) 30.18564 33.23157 46.97396 35.71157 52.55203 

Std difference 𝜙2 18.13555 16.27617 13.43274 6.29632 19.65417 

Mean iterations 6.0 5.5 6.0 5.0 5.5 

Std iterations 2.00998 1.73494 2.63818 1.95959 2.05913 
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Table 5.4 – Mean results obtained for sitting knee flexion. 

  
𝜙2 

-90° -45° 0° 45° 90° 

𝜙1 

-90° 

Mean difference 𝜙1 (°) 64.63712 71.95399 61.67620 65.44963 64.49053 

Std difference 𝜙1 20.75168 19.68838 25.95599 14.37611 23.61421 

Mean difference 𝜙2 (°) 5.41402 2.25078 1.87604 1.55148 5.17709 

Std difference 𝜙2 2.59700 1.07413 1.04243 1.21812 1.10170 

Mean iterations 11.0 13.0 13.0 200.0 200.0 

Std iterations 87.16473 93.77932 75.45303 86.23943 88.16241 

-45° 

Mean difference 𝜙1 (°) 22.23790 28.19276 40.17578 25.88095 36.48371 

Std difference 𝜙1 24.39160 24.12437 19.89755 11.83217 22.61197 

Mean difference 𝜙2 (°) 5.57278 5.01032 4.51748 2.14293 5.99182 

Std difference 𝜙2 3.70970 1.76435 1.90909 1.23813 2.83790 

Mean iterations 16.0 14.5 7.0 11.0 124.5 

Std iterations 93.06283 75.13162 76.29443 86.09669 92.63201 

0° 

Mean difference 𝜙1 (°) 16.07005 27.10381 25.66656 25.88861 24.81329 

Std difference 𝜙1 17.28476 23.48812 14.69294 18.59049 25.21637 

Mean difference 𝜙2 (°) 5.10223 6.12580 5.34754 1.07304 11.93294 

Std difference 𝜙2 3.09614 3.09206 2.33550 0.87751 4.15674 

Mean iterations 5.5 7.5 8.0 4.5 5.0 

Std iterations 2.10000 57.61389 76.67177 58.64034 58.14465 

45° 

Mean difference 𝜙1 (°) 41.20323 24.18660 19.70350 40.48047 23.69114 

Std difference 𝜙1 9.47505 7.86676 6.17134 15.29094 8.28160 

Mean difference 𝜙2 (°) 5.14782 2.20597 5.94599 0.92570 4.50052 

Std difference 𝜙2 1.77470 3.34143 2.66074 2.24094 4.40109 

Mean iterations 6.0 5.5 4.0 5.0 7.0 

Std iterations 3.84708 0.94340 2.45153 0.40000 58.05170 

90° 

Mean difference 𝜙1 (°) 70.17170 73.92445 67.76123 67.16629 55.06015 

Std difference 𝜙1 24.85173 19.38396 23.02276 33.29202 25.50127 

Mean difference 𝜙2 (°) 6.55654 5.81089 9.07704 8.01476 6.59298 

Std difference 𝜙2 1.41621 2.40280 2.22787 1.69255 2.85838 

Mean iterations 7.0 5.0 6.5 9.0 5.0 

Std iterations 4.10000 2.00000 58.29717 57.69133 14.71734 
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First, for the walking exercise, the higher difference for 𝜙1 and 𝜙2 found was 16.1445°, for 

a placement of 𝜙1 in -45° and 𝜙2 in 45° and 17.95196° for 𝜙1 in -45° and 𝜙2 in -90°, 

respectively. On the other hand, the smallest difference found was 2.55293° for 𝜙1 in -45° and 

𝜙2 in 0° and 2.48324° for 𝜙1 and 𝜙1 in 45°. Besides, the algorithm converged with less than 9 

iterations. 

Regarding the hip flexion with knee flexion exercise, the larger difference for 𝜙1 was 

14.28125° for 𝜙1 in 0° and 𝜙2 in 90° and for 𝜙2 was 14.58718° for a 90° and 0° combination of 

𝜙1 and 𝜙2. While the smallest difference of 𝜙1 was 0.69437° for 𝜙1 in -45° and 𝜙2 in -90°, and 

for 𝜙2 was 2.05543° for a combination of -90° and 90°, 𝜙1 and 𝜙2. In this exercise, the 

algorithm converges with less than 7 iterations. 

As it can be perceived, for both exercises, the algorithm achieves very good results in a few 

iterations. Apparently, there are no relation between the sensors placement and the smallest 

difference, which can lead to the assumption that the placement is not relevant to improve the 

performance of the algorithm. 

Now focusing, on the squat exercise and sitting knee flexion. For the first, the major 

difference for 𝜙1 and 𝜙1 was 13.50639° for a combination of 90° and 0°, for 𝜙1 and 𝜙2, and 

for 𝜙2 was 67.04785° for a combination of -45° and 90°, in the same order. Whereas, the 

smallest difference was 0.88034° for 𝜙1 in 0° and 𝜙2 in 45° regarding 𝜙1, and for 𝜙2 the smallest 

difference was 9.945701° for a combination of -45° and 90°. For the latter, the higher difference 

for 𝜙1 and 𝜙2 found was 73.92445° in 90° and -45°, and for 𝜙2 was 11.93294° for 𝜙1 in 0° and 

𝜙2 in 90°. Finally, the smallest difference found for  𝜙1 was 16.07005° for 𝜙1 in 0° and 𝜙2 in -

90°, and for 𝜙2 was 0.92570 for 𝜙1 in 45° and 𝜙2 in 45°. Once more, it does not seem to exist 

a relation between the placement of the sensors and the smallest difference. However, in both 

exercises, the 𝜙 values are always very different from the true values (the cases where this 

happens are highlighted as dark grey in the tables), 𝜙2 in the squat exercise and 𝜙1 in the 

sitting knee flexion. In order to clarify what is occurring in these cases, the magnitude of 

angular velocities of each body segment were analyzed. Thus, five cases in which this happened 

were selected, for each exercise, and let 𝜏 be the ratio between the magnitude of the angular 

velocity of the shank and thigh: 

 

𝜏 =
||𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠ℎ𝑎𝑛𝑘||2

||𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑡ℎ𝑖𝑔ℎ||2
 (5.1) 

 

For a squat, 𝜏 is 0.24 and for sitting knee flexion is 6.29 (table 5.5). 
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Table 5.5 – Results for τ obtained in both exercises. 

 𝜏𝑆𝑞𝑢𝑎𝑡 𝜏𝑆𝑖𝑡𝑡𝑖𝑛𝑔 𝑘𝑛𝑒𝑒 𝑓𝑙𝑒𝑥𝑖𝑜𝑛  

Trial 1 0.26473 7.21067 

Trial 2 0.25215 5.09854 

Trial 3 0.24090 6.51717 

Trial 4 0.27509 5.09906 

Trial 5 0.20860 7.37476 

Mean 0.24829 6.26004 

For the second exercise this is very perceptible since in this exercise the subject is sitting 

and only moving the shank back and forward. This leads to a very small angular velocity of the 

thigh and as this is the quantity that is introduced into the algorithm, if it is not rich enough 

the algorithm will not converge. Regarding the squat, the sensor placed in the shank does not 

converge correctly because the perfect squat is not a natural human movement as the one 

simulated in the previous chapter. For example, when squatting, the hip is not perfectly aligned 

with the ankle: on one hand, the angular velocity of the thigh will be mostly around the 𝑦𝑦 

axes, in sensor coordinates, while the angular velocity of the shank will not have a preferred 

axis, leading to a poor convergence. 

Therefore, in order to predict such phenomena and increasing the algorithm robustness and 

accuracy, an extra condition was added to the algorithm: if 𝜏 < 0.25, the 𝑗 of the knee is the 𝑗 

of the thigh, if 𝜏 > 6, the 𝑗 of the knee is the 𝑗 of the shank, otherwise both 𝑗 can be considered.  

Moreover, highlighted as light grey in tables 5.3 and 5.4, are marked the standard deviation 

of the number of iterations higher than 50, in squat and sitting knee flexion.  As above 

mentioned, in some cases the convergence is weak for only one sensor, and in those cases the 

algorithm enters an infinite loop since the angular velocity of such body segment was not rich 

enough to converge properly. To overcome this situation, an additional condition was  

implemented in the algorithm: the algorithm will stop if  ‖�⃗⃗�𝑑𝑖𝑓𝑓‖ is smaller than 0.01 or if the 

number of iterations is greater than 200, to prevent the algorithm entering an infinite loop. A 

specific case where this occurred for a squat is illustrated in figure 5.1. Observing such figure, 

the algorithm entered an infinite loop since it was undecided between two pairs of 𝜙1 and 𝜙2. 

For 𝜙1, the two values are very similar and both are good convergence, whereas for 𝜙2 both 

are very different from each other and both are poor convergences, because it is known for a 

fact that a movement with angular velocity around the 𝑦𝑦 axis, 𝜙1 and 𝜙2 must be close to 0, 

according to equation 3.4 and 3.5. 
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Figure 5.11 – Results obtained in an infinite loop case. Right: all values for the 200 possible iterations; 
left: zoom of right. 

Thus, with the above adjustments, it was observed that the algorithm is now capable to 

converge with very satisfactory results to the true values of 𝝓𝟏 and 𝝓𝟐, leading to a correct 𝒋 

of the knee joint. 

It is necessary to reinforce the idea that without the introduced modifications (the two 

conditions above mentioned) the data from the human movement have to be rich enough in 

order to achieve a successful convergence, which is not always possible in individuals with 

physical limitations. With the included modification, the algorithm becomes more robust and 

allows to obtain always a very accurate estimation of the knee joint axis.  
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Chapter 6 

Joint Position Estimation 

Joint orientation and position are two quantities that need to be address when it comes to 

IMU-based human motion analysis. As already mentioned, one major problem is that the local 

coordinates axes of the IMUs are not aligned with the body segment axes . Both quantities can 

be measured manually, but in a three-dimensional space, it can lead to low accuracy results  

[99]. Besides the need to know joint axis, some joint angle algorithms require additional 

information of the joint position in local sensor coordinates [91][99]. Previous methods rely on 

the accuracy of the joint orientation to improve the position of the joint if the kinematic 

constrains are exploited, and vice versa [91][93]. 

In this chapter, it is presented a method to improve the joint position estimation based on 

the joint orientation, obtained by the previous algorithm. It must be mentioned that this part 

of the thesis goes beyond the proposed work by SWORD Health. Although this is a real problem 

and adds an extra feature to the previous developed algorithm, it will also improve the 

company’s software for visualization of the avatar and it can also be the first step for a future 

work. The algorithm was also implemented in Python, using PyCharm. As a final step, it was 

added a graphic visualization of results in real-time using VPython tool. 

7.1- Algorithm Implementation 

After the orientation of the joint axis is obtained, 𝒋𝑖 , 𝑖 = 1, 2, in the local coordinates, one 

can find the joint position of the knee. First, let �⃗⃗⃗�𝑖 be the vector that determines the positions 

of the knee in coordinates of sensor 1 (thigh) and sensor 2 (shank), respectively (figure 6.1). If 

one assume that the sensors are placed in the middle of the body segment, then, the position 

of the joint, �⃗⃗⃗�𝑖 , 𝑖 = 1, 2, is positioned halfway (figure 6.2 and 6.3), locally in the coordinates of 

sensor 1 and 2, 𝐿1 and 𝐿1, respectively. 
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Figure 6.1 – Representation of the leg. In each body segment is placed a sensor with its own coordinated 

system, 𝑭𝒊, 𝒊 = 𝟏,𝟐. 

 

Figure 6.2 – Representation of half the thigh. 

 

Figure 6.3 – Representation of half the shank. 
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Thereby, the positions can be defined as: 

 

�⃗⃗⃗�1
𝐿 = [

𝐿1

2
0
0

], (6.1) 

  

�⃗⃗⃗�2
𝐿 = [

−
𝐿2

2
0
0

]. (6.2) 

 

Since each sensor has its own coordinates, it is not possible to perform any operations with 

both (local) positions. This is only possible if they are both expressed in a global frame. 

Therefore, the matrix described in 2.12, will be applied to transform {𝒐𝑖 , 𝒋𝑖 , }, 𝑖 = 1,2, in global 

coordinates: 

 

�⃗⃗⃗�𝑖
𝐺 = [𝑹]𝐺

𝐿 �⃗⃗⃗�𝑖
𝐿 , 𝑖 = 1,2, (6.3) 

  

𝒋𝑖
𝐺 = [𝑹]𝐺

𝐿 𝒋𝑖
𝐿 , 𝑖 = 1,2, (6.4) 

 

where  [𝑹]𝐺
𝐿  represents the rotation matrix from local coordinates to global ones. Now, the 

estimated joint axis can be used to correct the joint position coordinates along the 

corresponding sensor segment: 

 

𝒐1,𝑝𝑟𝑜𝑗 = 𝒐1 − �̂�1
𝒐1. �̂�1 + 𝒐2. �̂�2

2
, (6.5) 

 

𝒐2,𝑝𝑟𝑜𝑗 = 𝒐2 − �̂�2
𝒐1. �̂�1+ 𝒐2. �̂�2

2
, (6.6) 

 

In other words, the point that is described by 𝒐𝑖 , 𝑖 = 1,2, is projected into the plane that is 

perpendicular to the joint axis �̂�𝑖 , 𝑖 = 1,2 by the expression: �̂�𝑖
�̂�1.�̂�1+�̂�2.�̂�2

2
. Then, the position of 𝒐𝑖 

is corrected in order to meet the plane defined by �̂�𝑖. In figures 6.4 and 6.5, a graphical 

representation is provided to clarify the explanation. 
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Figure 6.4 – Representation of the projection for the thigh. 

Figure 6.5 – Representation of the projection for the shank. 

The algorithm is then implemented as follows: 

1. Calculation of the rotation matrix provided in 2.12; 

2. Calculation of �⃗⃗⃗�1 and �⃗⃗⃗�2 in local coordinates; 

3. Transformation of �⃗⃗⃗�1, �⃗⃗⃗�2, 𝒋1 and 𝒋2 in global coordinates using the results of step 1; 

4. Achievement of �⃗⃗⃗�1,𝑝𝑟𝑜𝑗 and �⃗⃗⃗�2,𝑝𝑟𝑜𝑗  using 6.5 and 6.6; 

Similar to the algorithm for joint axis estimation, the above algorithm is easy to implement, 

when compared with other algorithms described in the literature for position estimation. 

7.2- Experimental Results 

Concerning the experimental validation, results were obtained from an individual walking 

at normal pace for approximately 4 seconds, in a straight line. An avatar was assembled, 

representing the leg, where green corresponds to the thigh and the blue to the shank. Further, 

these positions were represented graphically for a better assessment of the variation of position 
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over time. Moreover, it is also presented an avatar for hip flexion with knee flexion and knee 

flexion. The results achieved were not compared with the real position of the knee over time. 
 

Figure 6.6 – Sequence of avatars obtained for gait. Left to right: standing phase, toe-off, midstance and 
terminal stance. 

 

Figure 6.7 – Position of the hip, knee and ankle for walking for distinct time instants. 
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Figure 6.8 – Avatar obtained for sitting knee flexion. 

Figure 6.9 – Avatar obtained for knee flexion. 

As it can be perceived by the graph of figure 6.7, considering that the hip is always in a 

fixed position, then over time the position of the knee and ankle will vary over time but in a 

proportional manner. In other words, when the 𝑦 coordinate of the knee rises, the same 

coordinate of the ankle rises the same way, making the length of the leg constant. It is 

noteworthy that in both ends of the graph the three joints are not aligned, which is consistent 

with the human pace. 

With these preliminary results, it can be concluded that the developed algorithm was 

successfully implemented and it is capable to provide sufficiently accurate knee joint positions. 

 

 



 

 

 

Chapter 7 

Conclusions and Future Work 

The hereby thesis consisted of developing an algorithm capable of finding accurately the 

knee joint axis, independently of the sensor placement on the body segment. This project was 

purposed by the SWORD Health, a startup company focused on physical rehabilitation through 

the combination of science-driven therapeutic methods with effective technologies. A major 

problem in IMU-based human motion analysis is that the local coordinate axes of the IMUs are 

not aligned with any physiologically axes. Calibration postures and/or calibration movements 

are a common method to estimate these vectors, but in the context of rehabilitation, this is 

not appropriate for the patients because they may not be physically able to perform such 

movements. Therefore, there is high demand for methods that enable accurate estimation of 

joint axes with respect to the local sensor frames. Seel et al. [100] demonstrates in their work, 

how this information can be extracted from the measurement data of almost every arbitrary 

movements by exploiting the kinematic constraints of the respective joints. The algorithm 

explained in the present thesis is an adaptation of the first, with some adjustments to improve 

its robustness and accuracy and, at the same time, to be more suitable for the proposed 

problem. 

In order to evaluate the algorithm, two types of validation were performed: one with 

simulated known data (an exact equation of the movement is considered) and another with real 

data acquired from the sensors. The parameter taken into consideration was the difference 

between 𝜙𝑖
𝑇𝑟𝑢𝑒 and 𝜙𝑖

𝑆𝑖𝑚  (for simulation known data) or 𝜙𝑖
𝐸𝑥𝑝

(experimental data). Furthermore, 

for the simulated known data, it was evaluated the influence of noise (10% and 20%), the 

influence of the relative positions of the sensor and, also, the influence of tolerance (0.05, 

0.01 and 0.001). In the random placement of the sensors, 300 runs were performed: 50 runs for 

10% noise and 50 for 20% in each value of tolerance. On the other hand, for fixed placement of 

sensors, 25 combinations of sensors were evaluated and for each 10 runs were executed, 

yielding 1500 runs. Both validations demonstrated that the algorithm is capable to find the knee 
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joint axis for random and fixed placement of sensors. Further, it appears that there is not any 

relation between the smallest difference of 𝜙 and a preferred sensor placement. 

Regarding the simulated known data, for both 10% and 20% noise, increasing tolerance 

implies a smaller number of iterations. In addition, the difference between 𝜙𝑖
𝑇𝑟𝑢𝑒 and 𝜙𝑖

𝑆𝑖𝑚 , 𝑖 =

1,2 is less than 2° for both cases of noise, which represents quite satisfactory results. Also, 

when the tolerance of the algorithm increases, the difference is higher, as expected. 

Concerning the experimental data, four different exercises were performed by a female 

individual: walking, sitting knee flexion with hip flexion, squat and sitting knee flexion. In this 

validation, only fixed combinations of sensors were evaluated. In the walking and sitting knee 

flexion with hip flexion, results were similar. As in the simulation, a correlation between the 

smallest difference and a preferred sensor placement was not found. For walking exercise, the 

higher difference obtained was less than 18° and the algorithm converged with less than 9 

iterations. Regarding the latter exercise, the higher difference found was less than 15° , 

obtained for an average of less than 7 iterations. Concerning the squat and sitting knee flexion 

some limitations of the algorithm were encountered. Since the algorithm relies of the angular 

velocities of both body segments to properly converge, when one of the segments does not 

have this physical quantity well defined, the algorithm will not arrive to a correct value. 

Nevertheless, for the body segment with a significant angular velocity, the algorithm is capable 

of a very satisfactory convergence. For the squat exercise, the thigh has angular velocity and 

so the higher difference obtained was less than 14° and for the second exercise the shank was 

the body segment that converged properly with a difference less than 12°. In order to overcome 

this situation, the angular velocities of both body segments were analyzed in both exercises. 

This search led to the creation of ratio 𝜏, which translates the relation between the angular 

velocity of the thigh and shank. Therefore, a final condition was implemented to the algorithm: 

if 𝜏 < 0.25, the 𝑗 of the knee is the 𝑗 of the thigh, if 𝜏 > 6, the 𝑗 of the knee is the 𝑗 of the 

shank, otherwise both 𝑗 can be considered. Still regarding this last two exercises, due to this 

poor convergence for one of the body segments, occasionally, the algorithm entered an infinite 

loop. To prevent such, another condition was added: the algorithm will stop if  ‖�⃗⃗�𝑑𝑖𝑓𝑓‖ is smaller 

than 0.01 or if the number of iterations is greater than 200. Thus, it is concluded that the 

algorithm is capable of a reliable convergence to the knee joint axis, independently of the 

sensor placement. 

Some limitations were found throughout the study, namely, data must be rich enough in 

order to provide a good convergence. In exercises that do not have a well-defined movement 

of both segments, squat for instances, this issue was overcome but in exercises like hip 

abduction, this is impossible to solve (since it is relative rigid body motion, both segments 

present exactly the same angular acceleration, thus it is not possible to obtain the joint axis). 

In these cases, the algorithm will assume that the leg consists in only one segment and, thereby, 

convergence is unlikely. Another limitation encountered is that the sensors are not able to 
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provide information of quaternions and angular velocities at the same time. Thus, quaternions  

were used to obtain the angular velocities and, since the data was subjected to mathematical 

calculations, the angular velocities may be subjected to round errors. 

In the future, it could be interesting to continue the work here started to improve the 

developed methodology. First, it could be performed a more comprehensive validation of the 

joint position estimation, in order to understand if the algorithm developed represents the true 

joint position. Also, implement the algorithm to the upper limbs, creating an algorithm for the 

whole human body and allowing, likewise, a random placement of sensors for the upper limbs. 

This is a very useful feature in the context of motor rehabilitation, especially when it is 

performed at home autonomously, since the patients do not need to concern about placing the 

sensors in a specific position. Furthermore, it would be important to extend the algorithm to 

other types of joints, not only hinge joints, then the placement of all sensors would not be an 

issue. Finally, it could be important to find a connection between the movement performed by 

the patient and the muscles involved in such movement. Through this information, reaction 

forces may be studied, allowing to perform computational mechanics analyses combining body 

motion with finite element analysis. This enhancement would allow to predict the stresses and 

strains in real-time in bone and muscles, permitting to avoid overload and to prevent lesions. 
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The following figures represent the input signals for the algorithm in the simulated data 

validation chapter, for all possible combinations and for the two values of noise considered. 
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Figure A.1 – Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = −45°, noise 10%. 
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Figure A.2 - Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = −45°, noise 20%. 
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Figure A.3 - Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = 0°, noise 10%. 
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Figure A.4 - Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = 0°, noise 20%. 
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Figure A.5 - Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = 45°, noise 10%. 
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Figure A.6 - Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = 45°, noise 20%. 
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Figure A.7 - Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = 90°, noise 10%. 
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Figure A.8 - Input signal for the simulated data validation. 𝜙1 = −90°,𝜙1 = 90°, noise 20%. 
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Figure A.9 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = −90°, noise 10% 
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Figure A.10 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = −90°, noise 20% 
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Figure A.11 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = 0°, noise 10% 
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Figure A.12 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = 0°, noise 20% 
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Figure A.13 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = 45°, noise 10% 
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Figure A.14 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = 45°, noise 20% 

-15

-10

-5

0

5

10

15

0 0.5 1

A
n
g
u
la

r 
V
e
lo

c
it

y
 (
ra

d
/
s)

Time (s)

Angular Velocity - sensor 1

x y z

-20

-15

-10

-5

0

5

10

15

0 0.5 1

A
n
g
u
la

r 
ve

lo
c
it

y
 (
ra

d
/
s)

Time (s)

Angular Velocity - sensor 2

x y z

Figure A.15 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = 90°, noise 10% 
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Figure A.16 - Input signal for the simulated data validation. 𝜙1 = −45°,𝜙1 = 90°, noise 20% 
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Figure A.17 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = −90°, noise 10% 
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Figure A.18 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = −90°, noise 20% 
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Figure A.19 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = −45°, noise 10% 
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Figure A.20 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = −45°, noise 20% 
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Figure A.21 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = 45°, noise 10% 
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Figure A.22 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = 45°, noise 20% 
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Figure A.23 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = 90°, noise 10% 
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Figure A.24 - Input signal for the simulated data validation. 𝜙1 = 0°,𝜙1 = 90°, noise 20% 
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Figure A.25 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = −90°, noise 10% 
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Figure A.26 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = −90°, noise 20% 
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Figure A.27 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = −45°, noise 10% 
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Figure A.28 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = −45°, noise 20% 
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Figure A.29 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = 0°, noise 10% 
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Figure A.30 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = 0°, noise 20% 



104 
Appendix A: Simulated signal for all different combinations of sensors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-15

-10

-5

0

5

10

15

0 0.5 1

A
n
g
u
la

r 
V
e
lo

c
it

y
 (
ra

d
/
s)

Time (s)

Angular Velocity - sensor 1

x y z

-20

-15

-10

-5

0

5

10

15

20

0 0.5 1

A
n
g
u
la

r 
ve

lo
c
it

y
 (
ra

d
/
s)

Time (s)

Angular Velocity - sensor 2

x y z

Figure A.31 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = 90°, noise 10% 
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Figure A.32 - Input signal for the simulated data validation. 𝜙1 = 45°,𝜙1 = 90°, noise 20% 
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Figure A.33 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = −90°, noise 10% 
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Figure A.34 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = −90°, noise 20% 
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Figure A.35 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = −45°, noise 10% 
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Figure A.36 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = −45°, noise 20% 
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Figure A.37 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = 0°, noise 10% 
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Figure A.38 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = 0°, noise 20% 
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Figure A.39 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = 45°, noise 10% 
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Figure A.40 - Input signal for the simulated data validation. 𝜙1 = 90°,𝜙1 = 45°, noise 20% 


