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A NEW PRODUCT INTEGRATION APPROACH FOR A
WEAKLY SINGULAR HAMMERSTEIN EQUATION

Abstract. A new product integration scheme is proposed to solve Hammerstein equations
which are weakly singular. The standard way of implementing the product integration method
to a nonlinear equation is to transform the functional equation to an nonlinear finite dimen-
sional algebraic system by the product integration scheme and then linearize the system to
solve it. In this paper, we propose to treat the nonlinearity first. We construct a Newton
sequence in the infinite dimensional functional space. Then we approximate the Newton it-
erates by the product integration method. We prove that the iterates, issued from our method,
tend to the exact solution of the nonlinear Hammerstein equation when the number of New-
ton iterations tends to infinity, whatever the mesh size can be. This is not the case when the
discretization is done first: in this case, the accuracy of the approximation is limited by the
mesh size.

1. Introduction

The general framework of this paper is the following. Let X be a complex Banach
space and K : O X X a nonlinear Fréchet differentiable integral operator of the
Hammerstein type defined on a nonempty open set O of X :

K x s :
b

a
H s, t L s, t F t,x t dt, for all x O,(1.1)

where H is the singular part of the kernel, L is the regular part of the kernel and F ,
the nonlinear part of the operator, is a real-valued function of two variables : t,u
a,b R F t,u R, with enough regularity so that K is twice Fréchet-differentiable

on O.
The problem is a nonlinear Fredholm integral equation of the second kind: for a given
function y X ,

find ϕ O : ϕ K ϕ y,(1.2)

Let T : K denote the Fréchet derivative of K, i.e., for all x O,

T x h s
b

a
H s, t L s, t

F
u

t,x t h t dt, h X ,s a,b .(1.3)

In the following, X will be the space of the real valued continuous functions over a real
interval a,b , C0 a,b ,R , equipped with the supremum norm . .
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If we consider a singular kernel such as H s, t : log s t or s t α, 0 α
1, an approximation based on standard numerical integration is a poor idea. The prod-
uct integration method consists in performing a piecewise polynomial interpolation of
the smooth part of the kernel times the function involving the unknown. This method
is called product trapezoidal rule when the interpolation is linear. The solution of a
second kind Fredholm integral equation with weakly singular kernel is typically nons-
mooth near the boundary of the domain of integration. In order to obtain a high order
of convergence, taking into account the singular behavior of the exact solution, poly-
nomial spline on graded mesh can be developed (e.g., Brunner [4], Pedas and Vainikko
[12], Schneider [14]). In [9], Kaneko, Noren and Xu discuss a standard product inte-
gration method with a general piecewise polynomial interpolation for weakly singular
Hammerstein equation and indicate its superconvergence properties.

In [1], Chapter 6, Anselone studies the Newton method to approximate the so-
lution of nonlinear equations P x 0, where P is a nonlinear differentiable operator
from a Banach space into itself. When dealing with the convergence of approximate
solutions these are defined as the solution of Pn x 0, where Pn is an approximation
of P. The Newton method is then applied to the functional equation Pn x 0. The
philosophy of most of the papers dealing with the numerical approximation of nonlin-
ear integral operator equation consist in defining an approximate operator Pn to P and
then to apply the Newton method (e.g. [3], [4], [6], [9], [10] and [12]).

We propose to apply the functional version of Newton’s method directly to the
operator equation P x 0 and to discretize the linear operator equations, issued from
the Newton’s iterations, after, using a product integration method. We will prove that
the approximate iterates tend to the exact solution of the operator equation as the num-
ber of iterations tends to infinity. The important fact is that the convergence holds what-
ever the discretization parameter, defining the size of the linear system to be solved, can
be.

The paper is organized as follows. Section 2 is devoted to the description of our
method (linearization via Newton’s method followed by discretization by the product
integration method). In Section 3 the convergence result is proved. In the last section,
the classical – discretization followed by linearization – method is recalled and we
compare it with our method through a numerical example.

2. Description of the new method

For a given function y in C0 a,b ,R , the application of the Newton method to the
equation ϕ K ϕ y leads to the sequence ϕ k

k 0 O:

(2.4) ϕ 0 O, I T ϕ k ϕ k 1 ϕ k ϕ k K ϕ k y, k 0.

Then we discretize this equation with the product integration method associated with
the piecewise linear interpolation. Let ∆n, defined by

(2.5) a : tn,0 tn,1 tn,n : b,
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be the uniform grid of a,b with mesh hn :
b a

n
.

Let πn denote the piecewise linear interpolation. If

fx t :
F
u

t,x t ,

s a,b , i 1, . . . ,n:

πn L s, . fx . h . t :
1
hn

tn,i t L s, tn,i 1 fx tn,i 1 h tn,i 1

1
hn

t tn,i 1 L s, tn,i fx tn,i h tn,i

for t tn,i 1, tn,i .

We define the approximate operator Tn by

Tn x h s :
b

a
H s, t πn L s, . fx . h . t dt, h X ,s a,b .(2.6)

Then the approximate problem is:

Find ϕ k 1
n X : I Tn ϕ k

n ϕ k 1
n ϕ k

n ϕ k
n K ϕ k

n y.(2.7)

We have

Tn x h s :
n

j 0
wn, j s L s, tn, j fx tn, j h tn, j ,

wn,0 s :
1
hn

tn,1

tn,0

H s, t tn,1 t dt,

wn,n s :
1
hn

tn,n

tn,n 1

H s, t t tn,n 1 dt,

and for 1 j n 1,

wn, j s :
1
hn

tn, j

tn, j 1

H s, t t tn, j 1 dt
1
hn

tn, j 1

tn, j

H s, t tn, j 1 t dt.

Hence (2.7) can be rewritten as

ϕ k 1
n s

n

j 0
wn, j s L s, tn, j fk tn, j ϕ k 1

n tn, j

K ϕ k
n s y s

n

j 0
wn, j s L s, tn, j fk tn, j ϕ k

n tn, j ,
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where
fk tn, j :

F
u

tn, j,ϕ k
n tn, j .

Setting
x k 1

n j : ϕ k 1
n tn, j ,

from the evaluations of equation (2.8) at the nodes of the grid, it is straightforward that
the vector x k 1

n is the solution of the linear system

(2.8) I A k
n x k 1

n b k
n ,

where

A k
n i, j : wn, j tn,i L tn,i, tn, j fk tn, j ,

b k
n i : K ϕ k

n tn,i y tn,i A k
n x k

n .

Finally, ϕ k 1
n is recovered with the following formula :

ϕ k 1
n s

n

j 1
wn, j s L s, tn, j fk tn, j x k 1

n tn, j x k
n tn, j

K ϕ k
n s y s .

3. Convergence property of the new method

Existence, uniqueness and regularity properties of the solution of equation (1.2) have
been already considered (for example by Kaneko, Noren and Xu [8] or Pedas and
Vainikko [13]). In this section, we focus on the proof of the convergence of ϕ k

n to-
wards ϕ when k and whatever n can be.
Hypotheses:

(H0) F , defined in (1.1), is twice continuously differentiable on a,b R.

(H1) L C0 a,b a,b ,R .

(H2) H verifies:

(H2.1) cH : sup
s a,b

b

a
H s, t dt .

(H2.2) lim
h 0

ωH h 0, where

ωH h : sup
s τ h, s,τ a,b

b

a
H s, t H τ, t dt.
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(H3) ϕ O is an isolated solution of ϕ K ϕ y.

(H4) I T ϕ is invertible.

These assumptions ensure that equation (1.2) is uniquely solvable (see [2]).

The existence of the Newton iterates defined by (2.7) depends on the domain of
inversibility of the operator

x I Tn x .

Let us treat this question first.
Let a 0 such that B ϕ,a O, where B ϕ,a denotes the open ball in C0 a,b ,R

centered in ϕ and of radius a. Let us define the following constants:

M2 a : sup
t a,b , u a ϕ

2F
u2 t,u .(3.9)

cL : max
s,t a,b

L s, t .(3.10)

From the mean value theorem applied to
F
u

we get, for all x B ϕ,a ,

T x T ϕ x ϕ sup
s a,b

b

a
H s, t L s, t sup

t a,b , u a ϕ

2F
u2 t,u dt

cHcLM2 a x ϕ .

We have

I T x I T ϕ I I T ϕ 1 T ϕ T x .

Let 0 r a be such that r
1

2µcHcLM2 a
. Then, for all x B ϕ,r ,

I T ϕ 1 T ϕ T x µ T ϕ T x µcHcLM2 a r
1
2
,

where
µ : I T ϕ 1 .

Then I T x is invertible and its inverse is uniformly bounded on B ϕ,r . In fact

I T x 1 I I T ϕ 1 T ϕ T x 1 I T ϕ 1,

so that

I T x 1 µ
k 0

I T ϕ 1 T ϕ T x k 2µ.
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The function s, t L s, t
F
u

t,x t is in C0 a,b a,b ,R . Hence, according
to [2] or [1], Tn x tends to T x pointwise and the sequence Tn x n 0 is collectively
compact. For all x B ϕ,r , Tn x is a collectively compact approximation of T x (see
[1]). Hence for n large enough, I Tn x is invertible and I Tn x 1 is uniformly
bounded in n. This means that there is a constant cx such that for n large enough,

I Tn x 1 cx.

We just proved that, there exists r 0 such that, for all x B ϕ,r , I Tn x is invertible.
So that the following operator An is defined on B ϕ,r :

An x : x I Tn x 1 K x y x .(3.11)

For simplicity, Sn x will denote I Tn x 1. Notice that (2.7) is equivalent to

ϕ k 1
n An ϕ k

n(3.12)

and that the solution ϕ of ϕ K ϕ y solves

ϕ An ϕ .(3.13)

The problem is now a fixed point problem that we will treat with a successive approxi-
mations convergence result (see [10] Theorem 2.3. pp 21).

THEOREM 1. Under assumptions (H0) to (H4), there exists r 0 such that, for
a fixed n large enough to have

ρn : ρ An ϕ 1,

and for any ε 0 with ρn ε 1, there exists B ϕ,rn,ε B ϕ,r and B ϕ,rn,ε

B ϕ,r such that the sequence ϕ k
n k 0, with ϕ 0

n B ϕ,rn,ε , solution of

ϕ k 1
n An ϕ k

n ,

is well defined, belongs to B ϕ,rn,ε and

ϕ k
n ϕ as k .

Moreover, the following estimation holds:

(3.14) ϕ k
n ϕ rn,ε ρn ε k .

Proof. The operator An is Fréchet differentiable at ϕ and

An ϕ I Sn ϕ I T ϕ .(3.15)
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We have

ρ I Sn ϕ I T ϕ inf
n

I Sn ϕ I T ϕ n 1
n

I Sn ϕ I T ϕ 2 1
2 .

Since I Sn ϕ I T ϕ Sn ϕ T ϕ Tn ϕ ,

I Sn ϕ I T ϕ 2 Sn ϕ T ϕ Tn ϕ Sn ϕ T ϕ Tn ϕ
Sn ϕ T ϕ Tn ϕ Sn ϕ T ϕ Tn ϕ

cϕ T ϕ Tn ϕ Sn ϕ T ϕ Tn ϕ .

As Sn ϕ is uniformly bounded and (T ϕ Tn ϕ ) is collectively compact, the closure
of the set S : n Sn ϕ T ϕ Tn ϕ x, x 1 is compact so that

I Sn ϕ I T ϕ 2 cϕ sup
x S

T ϕ Tn ϕ x 0 as n .

Then

ρ An ϕ 0 as n

Therefore, for n large enough,
ρ An ϕ 1.

The conditions needed to apply the successive approximation result of [10] (Theorem
2.3. pp 21) to the operator An are satisfied. We thus get the convergence result. !

4. Numerical Evidence

4.1. The standard product integration method

The standard product integration approximation ψn solves the nonlinear equation

ψn s
b

a
H s, t πn L s, . F .,ψn . t dt y s ,

which leads, by collocation at the grid points tn,i, i 0, . . . ,n, to the algebraic nonlinear
system

(4.16) Xn AnF Xn Yn,

where
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Yn i : y tn,i , An i, j : wn, j tn,i L tn,i, tn, j ,

Xn :
ψn tn,0

...
ψn tn,n

,

F Xn :
F tn,0,ψn tn,0

...
F tn,n,ψn tn,n

.

This system is solved by the classical finite dimensional Newton method, leading to a
sequence ψ k

n satisfying

ψ k
n ψn as k .

Notice that these Newton iterates tend to ψn and not to the exact solution ϕ. It
means that the accuracy of the standard solution is limited by n which is not the case
for our method.

4.2. Numerical Illustration

Numerical experiments are now carried out to illustrate the accuracy of our method.
Let us consider in X : C 0 0,1 ,R the operator

K ϕ s :
1

0
κ s, t,ϕ t dt, ϕ O X , s 0,1 ,

with the real valued kernel function κ :

s, t,u 0,1 0,1 R κ s, t,u : log s t sin πu

and the right hand side is y : 1.
The standard product integration method can provide accurate solutions when-

ever the grid size is fine enough. Indeed, for large values of n, ψn is sufficiently close
to the exact solution ϕ. In order to illustrate the benefit of our new approach, a coarse
grid must be considered. To address this point, a small grid of size n 10 is chosen.

Table 1 shows the convergence history in terms of relative errors, for the stan-
dard and the new methods. With such a small grid the new proposed approach can
reach almost machine precision within a small number of iterations.

The disadvantage of our method is its computational cost. It is worth mention-
ing that the computation of K ϕ k

n is not easy due to its singularity and it has to be
approximate at each iteration. Implementation details are however hidden from the pre-
sentation but include a careful treatment of K ϕn . The handling of this term deserves
however further research, which may include different evaluation strategies according
to the accuracy of the iterate.
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Table 1: Convergence history for the standard method and the new approach

relative error
iteration standard new

1 3.89 10 01 4.24 10 01

2 3.89 10 01 1.72 10 01

3 3.87 10 01 5.43 10 02

4 3.87 10 01 1.16 10 02

5 3.85 10 01 4.06 10 03

6 3.74 10 01 1.83 10 07

7 3.19 10 01 2.82 10 15

8 1.48 10 01 –
9 9.77 10 03 –
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