
Automated standard
based security
assessment for IoT
André Nuno de Pinho Tavares Gurgo e Cirne
Mestrado em Segurança Informática
Departamento de Ciência de Computadores
2020

Orientador
Luís Filipe Coelho Antunes
Professor Catedrático
Faculdade de Ciências da Universidade do Porto

Coorientador
Patrícia Raquel Vieira Sousa
Professora Assistente Convidada
Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

MASTERS THESIS

Automated standard based security
assessment for IoT

Author:

André CIRNE

Supervisor:

Luı́s ANTUNES

Co-supervisor:

Patrı́cia SOUSA

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Information Security

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

January 4, 2021

mailto:andre.cirne@fc.up.pt
mailto:lfa@fc.up.pt
mailto:patricia.sousa@fc.up.pt

Acknowledgements

I want to thank Professor Luı́s Antunes and Professor Patrı́cia Sousa for this opportu-

nity, all the support given and guidance during this work.

For the ideas given and the never-ending interest in this thesis, I want to thank to

Professor João Resende.

I want to thank my friends and colleagues on C3P, Ana, Inês, Luı́s and Simão, for

the friendly environment that was created, and many suggestions that were given for my

work.

To my family for their support at all times, and the patience in the bad ones. Also,

a special thanks to my sister, Joana, for their motivational speeches when the motivation

was low.

I also want to thank all my friends that support me during this step of my life.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

MSc. Information Security

Automated standard based security assessment for IoT

by André CIRNE

The Internet of Things (IoT) is changing the way we interact with the world around us.

The number of IoT devices is increasing exponentially, and, as a result, the information

exchanged on the network also increases. Much of that information often have personal

and confidential content. This new paradigm brings security challenges, mainly due to

the dynamic and heterogeneous nature of IoT-enabled environments. There are different

types of attacks on different IoT layers, such as unauthorized access, device cloning, Sybil

attack, sinkhole attack, denial of service attack, code injection, and man in the middle

attacks. Traditional security proposals are not feasible in these scenarios, therefore, it is

necessary to promote the adoption of security measures.

IoT certifications have emerged in recent years as they play a key role in adopting uni-

form security policies on IoT devices and systems. Meanwhile, the European Union ap-

proved the Cybersecurity Act to unify and regulate security certifications in the member

states. The Cyber Security Act also introduced the European Cyber Security Certification

Framework (ECSCF), which establishes a framework to unify the structure of cybersecu-

rity certifications in member states.

Cybersecurity certifications require the use of methods to test compliance with de-

fined security requirements. Test methods have limitations in the IoT environment be-

cause they are complex, dynamic, change quickly, have limited resources, and traditional

test methods cannot keep up with these changes, delaying the product’s release date and

increasing the certification’s cost. One solution to this problem is to create systems capable

of auditing a device automatically and continuously.

mailto:andre.cirne@fc.up.pt

Our work collects the requirements that different IoT environments and application

scenarios impose on certifications. We analyze the current state of development of au-

tomatic IoT security tests, and, finally, we propose a new evaluation system that auto-

matically and continuously evaluates IoT environments. At the same time, our proposal

meets the requirements to be eligible as an assessment method for certification following

the ECSCF.

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Mestrado em Segurança Informática

Análise de segurança automática para dispositivos IoT

por André CIRNE

Internet of Things (IoT) está a mudar a forma como interagimos com o mundo à nossa

volta. O número de dispositivos IoT estão a aumentar exponencialmente e, com isso, a

informação trocada na rede também aumenta. Esta informação contém, muitas vezes,

conteúdo pessoal e confidencial. Este novo paradigma traz desafios de segurança, prin-

cipalmente devido à natureza dinâmica e heterogênea dos ambientes IoT. Existem dife-

rentes tipos de ataque em diferentes layers do IoT, nomeadamente acessos não autoriza-

dos, ataques de sybil ou man-in-the-middle. As soluções de segurança tradicionais não são

viáveis nestes cenários e é necessário adoptar novas medidas de segurança para resolver

estes problemas.

As certificações para IoT têm surgido ao longo dos últimos anos, uma vez que de-

sempenham um papel fundamental na adoção de polı́ticas de segurança uniformes em

dispositivos e sistemas IoT. A própria União Europeia aprovou a Lei de Segurança Ci-

bernética para unificar e regular as certificações de segurança nos estados membros. A Lei

da Segurança Cibernética, da Comissão Europeia também introduziu a ECSCF, que esta-

belece uma estrutura para unificar a estrutura de certificações de segurança cibernética

nos estados membros.

As certificações de segurança exigem o uso de métodos para testar a conformidade

com os requisitos de segurança definidos. Os métodos de teste têm limitações no am-

biente IoT porque são complexos, dinâmicos, mudam rapidamente, têm recursos limita-

dos e tradicionalmente não conseguem acompanhar essas mudanças, atrasando a data de

lançamento do produto e aumentando o custo da certificação. Uma solução para esse pro-

blema é criar sistemas capazes de auditar um dispositivo de forma automática e contı́nua.

mailto:andre.cirne@fc.up.pt

O nosso trabalho faz uma recolha dos vários requisitos impostos a ambientes IoT,

certificações, e cenários de aplicação. Analisámos o estado atual de desenvolvimento de

testes automáticos de segurança de IoT e, por fim, propomos uma nova metodologia que

avalia de forma automática e contı́nua os ambientes de IoT. Ao mesmo tempo, a nossa

proposta tem de cumprir os requisitos para ser elegı́vel como um método de avaliação

para certificação, de acordo com o ECSCF.

Contents

Acknowledgements i

Abstract ii

Resumo iv

Contents vi

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Motivation . 2
1.2 Proposed Solution . 3

1.2.1 Objectives . 4
1.2.2 Features . 4

1.3 Contributions . 5
1.4 Outline . 5

2 Background 6
2.1 Security certifications . 6

2.1.1 Certification characteristics . 7
2.2 European guidelines for certification schemes 8

2.2.1 Scheme owner responsibility . 9
2.2.2 Core components . 9
2.2.3 ENISA qualification system . 10
2.2.4 Indicators of Confidence and Security 10
2.2.5 Common language . 11

2.2.5.1 Certification flow with the ECSCF 12
2.3 IoT Concept and Application Domains . 13

2.3.1 IoT Concept and Application Domains 13
2.3.2 General requirements . 15

2.3.2.1 Security assessment . 15
2.3.2.2 Privacy Impact Assessment 17
2.3.2.3 Standard re-utilization . 17

vi

CONTENTS vii

2.3.2.4 Certification time . 17
2.3.2.5 Laws and regulations context 17
2.3.2.6 Update policy . 18
2.3.2.7 IoT context aware . 18
2.3.2.8 Access to Guidelines . 18

2.3.3 Context aware requirements . 19
2.3.3.1 Personal and home domain 19
2.3.3.2 Enterprise domain . 19
2.3.3.3 Utility domain . 20
2.3.3.4 Mobile domain . 20

2.3.4 ECSCF and IoT . 20
2.4 Security Certifications . 21

2.4.1 DSPSMA . 22
2.4.2 ARMOUR certification . 23
2.4.3 ICSA Labs certification . 24
2.4.4 UL-2900 . 24
2.4.5 BSI Kitemark for Internet of Things devices 25
2.4.6 IoTAA Security and Privacy Trustmark 26
2.4.7 Eurosmart IoT Security Certification 27

2.5 Fulfillment of IoT and EU requirements . 28
2.5.1 Reflection on certifications . 28
2.5.2 Reflection on domains . 31
2.5.3 ECSCF and existent certifications . 33

2.6 Future research directions for certifications 33

3 Related work 35
3.1 IoT security testing . 37
3.2 Technical Specification of Security Requirements 40

4 System design 42
4.1 Architecture . 42

4.1.1 Security Testing . 44
4.1.2 Security Evaluation . 44

4.2 Requirements . 45
4.3 Components . 47

4.3.1 Assumptions . 48
4.4 Summary . 49

5 Implementation 50
5.1 Security Testing . 50

5.1.1 aecsa-external-analysis . 50
5.1.1.1 Packet Sniffing . 52
5.1.1.2 Deep packet inspection . 53
5.1.1.3 Device discovery . 54
5.1.1.4 Plugins . 55
5.1.1.5 HTTP traffic analysis . 55
5.1.1.6 Packets workflow . 56

CONTENTS viii

5.1.2 aecsa-watchtower . 56
5.1.3 aecsa-firmware . 58
5.1.4 FACT . 59

5.2 Security Evaluation . 59
5.2.1 Representation and evaluation of a profile 60
5.2.2 Web application . 61

5.3 Summary . 63

6 Evaluation 65
6.1 Test environment . 65
6.2 Phase 1 . 67

6.2.1 Technical Specification of Security Requirements 68
6.2.2 Profile development . 69

6.3 Phase 2 . 76
6.3.1 Unit testing . 76
6.3.2 System testing . 77

6.4 Phase 3 . 79
6.5 Reflection on the results . 80

7 Conclusion 81
7.1 Research Summary . 81
7.2 Current Limitations . 82
7.3 Future Work . 82
7.4 Conclusions . 83

A ETSI TS 103 645 - Analysis for automation 85

B Security profiles 87
B.1 Default profile . 87
B.2 Server profile . 89

C ETSI EN 303 645 - Analysis for automation 91

Acronyms 94

Bibliography 95

List of Figures

2.1 Certification characteristics . 7
2.2 Certification flow with the ECSCF . 13

4.1 Architecture of our proposal . 43
4.2 System components . 47

5.1 Packets workflow . 56
5.2 Web app homepage . 62
5.3 Device summary . 62
5.4 Device report . 63
5.5 Policies manager . 63

ix

List of Tables

2.1 Requirements for each application domain 20
2.2 Certification caracteristics . 28
2.3 Security assessment comparation . 29
2.4 Certification requirements . 30

3.1 Relations between tests and attacks that they try to prevent 36
3.2 Security assessments for IoT . 39
3.3 Security controls organised by type of attack 41

5.1 Independent components that were developed during this thesis 64

6.1 Devices on the network . 67
6.2 Relation between tests and security requirements 76

x

Chapter 1

Introduction

Internet of Things (IoT) is a buzzword of the 21st century, and there is no consensus on

its definition. Depending on the services provided, goals, and architecture, the definition

differs [1]. This generalized heterogeneity is one of the characteristics of IoT. Currently,

there is an effort to overcome this situation with standardization [2]. There are different

standards from a variety of organizations, such as the Institute of Electrical and Elec-

tronics Engineers (IEEE) [3], National Institute of Standards and Technology (NIST) [4],

European Telecommunications Standards Institute (ETSI) [5] to define what is IoT.

Nevertheless, IoT is often considered the concept of interconnecting objects that gather

information from the environment and interact with the physical world and take advan-

tage of an Internet connection to reach a common goal [6].

Nowadays, the number of IoT devices is continuously increasing. These systems are

taking responsibilities in different domains and becoming increasingly essential for their

operation. As a result of the intense adoption of IoT devices, new security matters arise.

The demand for more inexpensive systems produces heterogeneity between devices and

a lack of standards [7]. Along with this, the typical IoT architecture contributes to con-

straints for developing a first-class security and privacy system.

The architecture of an IoT system is composed of sensors, aggregators, communication

channels, external utilities, and decision triggers [4]. These devices usually have limited

resources, so it is impossible to apply standard security measures to them in the same way

as a full-size computer [8].

IoT systems have dynamic and temporary communication channels between devices,

leading to wireless communications preference [9]. This option introduces new attacks,

1

1. INTRODUCTION 2

such as jamming and tampering information [8]. Besides that, due to the choice of pro-

tocols only regarding power consumption, bandwidth requirements, and interoperabil-

ity [10], these protocols usually do not offer great security mechanisms, resulting in more

serious threats [11].

Asides from the architecture of these systems, their context also influences its security.

The environment where the system operates, the costs that a security failure or privacy

breach might induce, the physical location of each system’s element, and its topology at a

specific instant of time defines the system context [12]. Depending on these variables, the

importance of a system and the likelihood of an attack can be assessed, and with this, the

necessary security requirements can be defined [13].

With the emergence of new attacks and vulnerabilities, automated monitoring, test-

ing, and mitigation tools are essential to address the risks arising from such threats or

configuration failures. Device manufacturers must be increasingly involved in the pro-

motion of automated solutions that guarantee each device’s intended operation and the

management and secure deployment of IoT devices [14]. Also, not automated solutions

results in higher costs and delays in the production time [15]. By itself, most manufac-

turers are not creating solutions with security and privacy by design, leading to a lack

of security measures on the IoT devices. The solutions for this issue can be government

grants, awards, or the enforcement through laws and regulations [16].

1.1 Motivation

The certification of IoT systems is an urgent need, as it is the most effective solution to

improve the security mechanisms of this type of system [17]. There are already some

certifications on the market, and the academic community is actively working on new

ones. Additionally, the creation of new certifications is being encouraged and regulated

by different countries and international organizations [18].

To follow this trend and as a way to standardize new certifications that may arise,

the European Union (EU) established the European Cyber Security Certification Frame-

work (ECSCF) that defines a structure and methodology to be used by certifications in

all member states. The Cybersecurity Act, a legislation that aims to strengthen European

capabilities in cybersecurity, reinforces this scheme [19].

Existing certification schemes are described by the industry as not being agile or scal-

able, too expensive, delaying the release date of products, or requiring that everything is

1. INTRODUCTION 3

perfectly documented to a level that does not add anything further to the security [20].

Moreover, assessment methods used in these certification processes might affect its ef-

fectiveness. Classical security assessments are performed periodically, and IoT systems

change quickly, so the likelihood of a new device emerging between periodic assessments

will be high. Thus, the effectiveness of the assessment and, consequently, the certification

might be compromised [12].

Several authors point out one way to mitigate these problems. Jeffrey Voas [21] states

in his work that one possibility is to constantly audit a device with an auditing system

that, ideally, could operate independently of any IoT vendor. Jason Nurse et al. [12] also

reinforces this statement, saying that it is necessary to create automated and continuous

risk assessment approaches for inter-dependent systems.

New emergent IoT certifications should depend on automatic assessment techniques

to be able to fulfill the necessities of IoT [12]. Therefore, to support this trend, it is neces-

sary to research existent automatic assessment techniques and methodologies, to identify

their limitations and develop new solutions.

Beyond that, certifications aiming the European market should respect ECSCF guide-

lines. Thus, assessment methodologies need to facilitate the integration with these guide-

lines.

1.2 Proposed Solution

The work detailed in this thesis aims to provide ways to automate a compliance evalu-

ation of a security standard in an IoT environment, at the same time, we fulfill the re-

quirements imposed by IoT to security assessments. We also expect to identify which

characteristics are more difficult to automate in a standard, which would be beneficial

for developing new standards focused on IoT. The development of a tool capable of this

would be useful for certification scheme owners as a new evaluation method adapted

to different security requirements or directly by the system administrator to indicate the

level of compliance of an environment regarding a specific standard.

Furthermore, we also intend to fulfill the European Union Agency for Cybersecurity

(ENISA) guidelines to ease the integration of our solution in a cybersecurity certification.

Therefore, our work will focus on combining existing open-source technologies to per-

form testing and continuous monitoring to an IoT environment in an automatic way that

can keep up with the constant changes in the environment.

1. INTRODUCTION 4

We called our solution Automatic External and Continuous Security Assessment (AECSA).

1.2.1 Objectives

The main goals that we pretend to reach with our proposal are:

• Goal 1 - Creation of a test procedure that meets the ENISA best practices to be eligi-

ble as an evaluation method for a technical specification of security requirements.

• Goal 2 - An evaluation methodology that targets an agnostic vendor IoT environ-

ment with a specific use case.

• Goal 3 - Provide an automatic and continuous assessment method.

1.2.2 Features

The main features of our proposal are as follows:

• Modular: The platform can change the tests being executed and add new ones with

minimal effort. This feature allows our solution to be adapted to different standards.

• Customizable: Users can customize the evaluation policy for a specific device.

• Vendor agnostic: The platform can evaluate a device without requiring a privilege

access to it.

• Open Source: Do not depend on closed-source solutions.

• Device detection: The platform can automatically recognize new devices on the

network.

• Security score: The platform incorporates a score associated with each device to

express the evaluation results better.

• Automatic assessment: The tests are performed with minimal human interaction.

• Continuous assessment: The evaluation results are updated over time and accord-

ing to the changes of the IoT environment.

1. INTRODUCTION 5

1.3 Contributions

During this work, a survey was submitted to the journal Computers & Security from

Elsevier. At the time of this publication, we are waiting for the submission result.

1.4 Outline

This thesis is organized in the following chapters: Chapter 2 describes the current de-

velopment state of cybersecurity certifications in the European Union (EU) and the re-

quirements that IoT impose to these certifications. In the Chapter 3 explores the current

work on security assessments for IoT and analyzes existent technical security require-

ments specifications. Chapter 4 details the system design of our proposal and Chapter 5

presents the implementation details and approaches used on our system. In the Chapter

6, we evaluate a virtualized IoT environment with our system. In the Chapter 7, we lay

down some ideas for future work and we mention some final remarks.

Chapter 2

Background

With the Cybersecurity Act, the EU intends to establish a European cybersecurity certifi-

cation scheme that defines a structure and methodology used in all member states. This

legislation does not limit its application to a specific domain but aims all types of cyber-

security certifications.

Our proposal aims to create a new test procedure that meets the requirements of the

Cybersecurity Act. Besides that, our solution must also fulfill the specific requirements

for IoT. In this section, we will describe what a security certification scheme is, according

to the main guidelines of the European bodies and how it should be structured. Next, we

will detail the requirements for a security certification focused on IoT and finally, evaluate

existing IoT security certifications regarding the EU and IoT requirements. We will also

analyze the current development state of this field.

This background information will be important to understand our decisions in the

design process.

2.1 Security certifications

A security certification is an assessment to determine if specific controls are correctly im-

plemented, operating as intended, and producing the desired outcome to meet the secu-

rity requirements [22]. Moreover, certifications should enforce the necessary controls. So

that security risks to which the target is subject are properly mitigated.

6

2. BACKGROUND 7

These certifications are designed by the scheme owner, who should keep the certifi-

cation updated according to the industry’s needs, and are carried out by Conformity As-

sessment Body (CAB)s, who are expected to conduct applicable conformity assessments

and generate an evaluation report to grant the certification.

2.1.1 Certification characteristics

In any security certification, there are three fundamental characteristics: a context, a tar-

get, and an audience (Fig. 2.1). These attributes will define in which cases a given certifi-

cation can be applied.

This set of attributes was inspired by the ECSCF, the ENISA classification system for

security certifications [23] and the characteristics of the EUROSMART certification [24].

Certification
characteristics

Target Context Audience

Product/
Component

Service

Organisation

Infrastructure

Person

Generic

Application do-
main

Specific

Manufacturer

Product vendor

Service provider

Owner/Operator
of a product

FIGURE 2.1: Certification characteristics

The certification target is the aim of the evaluation. This could be a unique product

or component (for example, a smart bulb), a service (for instance, an assessment to a

complete system that includes a smart bulbs, an IoT gateways, and Web API) and an

organization or its infrastructure [25].

The context is the type of environment used during the certification procedure, which

can vary from a general use case, where only the generic characteristics of that environ-

ment are known, or a specific application scenario, such as smart cities. The certification

effectiveness will vary depending on the type of context, the scope assessed, the threats

considered, and the assumptions made. A more precise context definition will result in a

more precise listing of security requirements, resulting in a more secure device [12].

2. BACKGROUND 8

These two characteristics will affect the target audience of the certification. The audi-

ence of a certification could be divided into two groups: the sponsors and consumers. The

sponsor is the organization financing the certification of the target, and the certification

consumer is the entity for which the certification intends to prove that it complies with

the security requirements. The main actors for these two groups are the manufacturer,

product vendor, service provider, and device owner.

This wide range of characteristics causes a great diversity among certifications. This

heterogeneous landscape is the one that the Cybersecurity Act wants to regulate and

unify.

2.2 European guidelines for certification schemes

With the Cybersecurity Act, the EU intends to create an ECSCF that defines a structure

and methodology to harmonize cybersecurity evaluations across the EU.

To achieve this goal, the ENISA and European Cyber Security Organization (ECSO)

have published several recommendations. ECSO created the ECSCF [20], which is a meta-

scheme for standardization, certification, labeling and supply chain management. Thus,

this is not a certification but a structure that new certification schemes should follow.

The creation of this framework focus on the challenges stated by industry members

of ECSO. These members realized that existing schemes assess the security of products,

services, and systems with excellent results, but are not agile and require a lengthy certi-

fication process.

ECSCF meta-scheme allows the combination of different certifications to take advan-

tage of its benefits. This framework is not intended to meet specific domain requirements,

but rather to support creating a certification framework independent of the application

scenario.

To support the ECSCF, ENISA created documents to clarify the way the Cybersecurity

Act can be implemented [23], and a list of existing certifications grouped by application

domain [26].

Every three years, the European Commission defines a work program with the prior-

ities for future European cybersecurity certification schemes.

ENISA, according to these orientations, must prepare candidate schemes or review

existent schemes to answer the conditions of the European Commission. These schemes

must follow the ECSCF structure [27].

2. BACKGROUND 9

In the following subsections, we will summarize the significant guidelines that a cer-

tification must comply with.

2.2.1 Scheme owner responsibility

The owner of a cybersecurity certification is responsible for keeping the certification up-

dated according to the industry’s needs. To do this, it must maintain a working relation-

ship with relevant stakeholders [23].

Besides, the owner must set up a structure for the operation and management of the

scheme, including mechanisms to ensure transparency and trust, such as ways to deal

with vulnerabilities discovered after the certification was issued.

Trust in certification must also go through the CABs involved in the process; everyone

involved in the process must have the technical skills and competencies required to certify

a target [27].

2.2.2 Core components

Article 54 of the Cybersecurity Act [27] lists components that candidates for EU cyberse-

curity certification must-have. From this list, we highlight three central elements that we

consider mandatory for a certification to meet the organization proposed by the ECSCF.

Technical Specification of Security Requirements

The document contains a collection of requirements that describes the desired security

features that must be implemented and covered by the certification scheme.

Assessment Methodology

The document precisely defines the validation procedures to assess the target against the

technical security requirements, including documentation review, test procedures, and

the level of automation that can be taken. It should also indicate the expected results of

the assessment, such as a report or score.

Conformity Assessment Specification

The document describes all the policies and processes that govern the certification scheme,

2. BACKGROUND 10

covering the certification scheme’s scope, the surveillance of certified products, and labo-

ratories responsible for the evaluation.

Without these components, it is impossible to meet the structure proposed by ECSCF.

The Cyber Security Act also states that these elements should be reused based on existing

standards when applicable and whenever possible.

2.2.3 ENISA qualification system

The ENISA, based on the Cybersecurity Act’s principles, proposes a qualification system

to support the owner of the certification scheme in choosing the right components for his

needs and to identify the assurance level of existent security certifications. This system

introduces criteria to evaluate each one of the core elements (Subsection 2.2.2) [23].

The technical specification of security requirements is evaluated according to the ac-

curacy defining the security requirements, namely if it aims a generic category of devices

or a precise type of device.

The classification system defines four parameters to classify an assessment methodol-

ogy: the assessment style, evaluation formalism, produce comparable results and level of

objectivity in the evaluation.

The assessment style distinguishes whether the evaluation is done by a third-party or

self-assessment. The evaluation formalism verifies if the assessment methodology uses

formal and structured language to specify the technical requirements and evaluation pro-

cedures. Beyond that, the qualification system assesses whether the assessment method-

ology produces comparable results and how much the evaluation depends on the evalu-

ation team’s discretional assessment (objectivity level).

The conformity assessment specification is evaluated according to the measures in-

stalled to monitor the audited devices, the laboratories that issue the certification, and the

capacity to update the security requirements according to the appearance of new threats.

2.2.4 Indicators of Confidence and Security

There are some schemes, like Common Criteria [28], which have an Evaluation Assurance

Level, a numerical assessment that describes the depth and rigor of an assessment.

2. BACKGROUND 11

The assurance level dictates the level of access and the amount of information required

to evaluate a target. Generally, the assessment is limited by the publicly available infor-

mation and the final product (black-box approach) on the low assurance level. Whereas at

higher levels, the evaluator has access to privileged information about the product, such

as source code or design information (white-box approach).

ECSCF borrows the assurance level notion from the Common Criteria with some

adaptations. The ECSCF states that with higher assurance levels, the Common Criteria

solution does not guarantee that the certification context is extensive enough to identify

the target’s risks properly. Thus, it proposes an additional condition in the assurance level.

It requires that with a higher assurance level, the context is more specific. The evaluation

will have more available information about the target, mitigating the issue mentioned

before.

The ECSCF introduces a structure for assurance levels divided into two groups: the

base group, in which a black-box type evaluation is carried out, and the advanced group

in which the target underwent a deep assessment where the context of the product is

included.

The base-level includes two levels of assurance, the Entry Level (Level E), which is

based on self-assessment, and the Basic level (Level D), which is the same as Entry, but a

third party makes the assessment.

The advanced group holds three assurance levels: Enhanced basic (Level C), where the

assessment goes beyond the black-box assessment, and the target context requirements

are included in the evaluation. This level requires that the target withstands basic attacks;

Moderate (Level B), where is given to the evaluator some privileges information, but not

full access (grey-box approach) and it requires the resistance against medium complexity

attacks; High (Level A), a white-box assessment where the context of the product is fully

understood and the products needs to resist to high complexity attacks.

In the moment of designing a security certification, the scheme owner must adapt this

structure according to its use case and choose an evaluation methodology suitable for

each assurance level[20].

2.2.5 Common language

One of the goals of the ECSCF is to reuse existing parts, such as standards or other certifi-

cations, as much as possible. A common structure across different certification schemes is

2. BACKGROUND 12

necessary to be able to combine them. This section will describe the structures introduced

by the ECSCF to facilitate the combination of different schemes.

The ECSCF sets three structures to ease the utilization of different components in the

same certification: the Generalized Protection Profile (GPP), the Generalized Security Tar-

get (GST) and the European Cyber Security Certificate (ECSC).

GPP defines a security problem from a previous risk assessment and security objec-

tives expected from the target. It must also describe the features that need to be im-

plemented to meet the security objectives and the assurance levels used to evaluate the

device. The notion of GPP was borrowed from the Common Criteria [28].

A group of experts creates each GPP due to the need for a deep technical knowledge

in the target’s domain and threat landscape.

Based on the GPP, a GST is generated for the certification target. GST has all the

requirements defined in the GPP and additional security requirements defined by the

certification sponsor.

The certification results must be in a unified format the ECSC. It must include a label

with the assurance level and a way to obtain detailed information more efficiently, such

as a QR-code or NFC-tag pointing for an online version of the ECSC. The detailed version

of the ECSC must contain the main attributes of the evaluation, such as the name of the

product, the GPP used, the scope of the certification, and the results of the evaluation

process.

2.2.5.1 Certification flow with the ECSCF

ECSCF denotes a certification scheme divided into four phases. First, the expert group

designs a GPP for a type of certification target based on a Technical Specification of Se-

curity Requirements. Then, a GST is created for the certification target, based on a GPP,

with the inclusion of the vendor’s security requirements. The target is then assessed by

a CAB tester according to GST and an evaluation report is generated. The CAB certifier

reviews the report and makes the decision to grant an ECSC [23] (Figure 2.2).

2. BACKGROUND 13

FIGURE 2.2: Certification flow with the ECSCF

2.3 IoT Concept and Application Domains

In the previous sections, we presented the requirements that a certification that wishes

to comply with the European guidelines need to fulfill. These requirements are domain

agnostic. Next, we will describe different application domains for IoT technologies, and

then we will introduce some specific requirements to IoT environments.

2.3.1 IoT Concept and Application Domains

Nowadays, different environments have devices that can communicate with each other

and collect data from their surroundings. Its owners are taking advantage of IoT systems’

new possibilities, giving them a more intelligent and responsive planet.

Users can have a car, a home refrigerator, and even the vacuum cleaner connected,

with the ability to collect and transmit data. The car shows the GPS map in real-time;

the refrigerator can show the validity of the products and the shopping list for the next

month, and the vacuum cleaner can be programmed to start cleaning the room even if the

user is not at home. An irrigation monitor for large plantations can be activated remotely.

In public transport, delays and lack of information disturb many people who need to get

to work or class. Users can receive on the smartphone or see the exact location on the

screens installed at the points.

These devices communicate with each other, giving users the possibility of more com-

fort, productivity, and information. The use of these devices can include health monitor-

ing, providing real-time information about city traffic or the number of spaces available

in a parking lot, what direction they are in, and even recommending activities.

2. BACKGROUND 14

These are just a few of the numerous examples of IoT that already exist and are being

created.

To better understand how IoT applications and devices are increasingly present in

everyday life, we can divide them into two main areas: day-to-day and market areas,

both industrial and infrastructure.

There are some distinct categorization models in the literature. Atzori et al. [9] divides

the applications of IoT in four domains: transportation, healthcare, smart environments,

and personal domains. Gubbi et al. [6] also categorizes the applications in four domains.

However, they differ from the previous ones, dividing the domains into personal/home,

enterprise, utility, and mobile. Another possible classification is presented by P.P. Ray [29],

in which the environments divide into nine different domains: RFIDs, service-oriented

architectures, wireless sensor networks, supply chain management and industry, health-

care, smart societies, cloud service and management, social computing and security.

Considering an IoT security certification, the categorization needs to group different

environments with similar security requirements, to maximize the effectiveness of secu-

rity measures applied to each environment in the application domain. So, the Atzori et

al.’s approach is restrictive in a sense that does not differentiate environments with very

distinctive security requirements. For instance, smart homes and industrial plants are

in the same category, while, in terms of privacy concerns, a smart home demands more

privacy requirements than an industrial plant. P.P. Ray’s categorization scheme is very

detailed compared with the others, but it is focused on the technologies used and not on

the security requirements. Thus, during our research, we will guide us by Gubbi et al. cat-

egorization scheme, because it is capable of grouping different applications with similar

security requirements. It was designed based on the scale of the environment: individual,

community, and national, since they tend to have equivalent security and privacy needs.

Therefore, the categories that we will utilize during this work are: personal and home

domain, enterprise domain, utility domain, and mobile domain.

• Personal and home domain This domain represents all IoT systems that are used

at the scale of an individual or home. It is included smart home systems and also

healthcare systems. This technology is presented in the broad concept of automa-

tion, ranging from the lighting system to the security system. One of these benefits

2. BACKGROUND 15

is the saving on domestic expenses, for example, on the electricity bill. Home au-

tomation can greatly improve the quality of life at the management level, but even

for older people or mobility impairments.

• Enterprise domain The enterprise domain includes IoT systems within a work en-

vironment. Usually, these systems provide monitoring capabilities and process au-

tomation, allowing owners to reduce their costs. Examples of environments of this

domain are enterprises, industrial and agriculture facilities.

• Utility domain The utility domain focuses on applying IoT technologies to a wide

area, such as a system that is spread by a nation or region. This domain includes all

kinds of smart meters, smart grids, and smart cities. Usually, these applications aim

to optimize services, so the normal consumer for this type of technology is supply

companies like electricity, water and communications, or public institutions.

• Mobile domain The significant characteristic of the mobile domain is the constant

dynamism of the system over time. Examples of these domains are smart trans-

portation and smart logistics. Transportation facilities are now with sensors and

actuators. Besides that, also, the transportation infrastructure is being monitored.

All the data that has been gathered allows owners and companies to monitor their

assets and help them diagnosing and preventing problems.

2.3.2 General requirements

From the different literature available on the security requirements of IoT devices and

systems, we have collected a list of resources that, ideally, a security certification focused

on IoT needs to meet, namely security assessment, privacy impact assessment, pattern

reuse, short time certification, attention to laws and regulations and application of an

updated policy.

Any certification that aims to appraise IoT systems or devices must follow these re-

quirements.

2.3.2.1 Security assessment

A security assessment is the process of determining how effectively a subject meets its

security objectives [30]. There are different security assessments, such as risk analysis,

2. BACKGROUND 16

vulnerability assessments, penetration testing, and audits, that are relevant for IoT envi-

ronments.

Risk assessment is a way to identify threats and assess their likelihood of happening [31].

Depending on the type of context, this analysis will more accurately represent the risks to

which the system will be subject, and as a result, it is possible to adapt the other certifi-

cation processes to the specific requirements of a subject [32]. Each security certification

must have a risk assessment because it can express a certification target’s specific security

requirements. Without it, the assessment will not adapt to the context of the device [33].

Vulnerability assessment is essential to minimize the problem of security vulnerabilities

on IoT devices. This analysis aims to identify known vulnerabilities present in the sys-

tem [30]. For the IoT environment, it has the advantage of being a lightweight process that

can be automated. However, it only looks for known vulnerabilities. Therefore, when a

certification only applies a vulnerability assessment, it cannot discover unknown vul-

nerabilities. Penetration testing is a technical assessment that attempts to simulate an at-

tacker’s actual behavior. This assessment differs from a vulnerability assessment, looking

for known vulnerabilities and trying to discover unknown vulnerabilities and put the vul-

nerabilities found into practice to discover their real impact. For IoT environments, this

analysis should be improved using automated tests to increase coverage while decreasing

the execution time [34].

Audit is an assessment that compares an existing system configuration to a standard. De-

pending on the pattern, this may include other assessments, such as vulnerability assess-

ments or penetration tests. This type of assessment is commonly used for the application

of security guidelines.

Risk assessment is a mandatory analysis for a security certification, without which it

will not pay attention to the system’s context. Vulnerability assessment is an essential step

in reducing IoT vulnerabilities; however, it has a limited scope when applied alone, as-

sessing only known vulnerabilities. The penetration test is a robust assessment, although

it must be kept in mind that this process is long and tends to be manual. The efficiency of

an audit will always depend on the standard chosen. It is up to the certification to choose

the type of security assessment that best suits its needs.

2. BACKGROUND 17

2.3.2.2 Privacy Impact Assessment

Currently, IoT certifications cannot be limited to security assessments and must also have

a Privacy Impact Analysis (PIA). PIA is an analysis of how information is handled, to

determine the risks of personal processing data and to assess safeguards to mitigate po-

tential privacy risks [35].

Due to the proximity of these systems to human activities, mainly in healthcare and

smart home systems, these systems can be a single point of failure for the environment’s

privacy. The privacy requirements will be different depending on the type of system we

are dealing with. However, basic privacy requirements must be guaranteed [33].

2.3.2.3 Standard re-utilization

By itself, the IoT world is a heterogeneity source, with many different devices, protocols,

and a lack of standards in general. Therefore, IoT certifications must combine different

existing standards. Besides, this combination of existing standards increases confidence

and respect for a new certification, as it inherits part of it from reused standards [20].

2.3.2.4 Certification time

The certification process’s duration is often a factor in the non-certification of a product.

Long certification processes increase production time, increasing costs and making the

product financially unprofitable [16]. This situation must be avoided because the cer-

tification process must be as quick and light as possible to reduce certification time and

minimize costs.

2.3.2.5 Laws and regulations context

Ideally, certification needs to include different laws and regulations that a given system

must comply with. These obligations vary depending on the country in which the system

will be installed, requiring certification to be modular and adapt to the system’s context.

The laws and regulations must be inserted in the certification as a way to promote it.

For example, if the security certification evaluates compliance with applicable laws and

regulations, the certification owner will know that he will not be subject to possible fines,

thereby encouraging the use of the certification.

2. BACKGROUND 18

2.3.2.6 Update policy

One of the problems with IoT systems is the lack of security updates. When a vulnerability

is discovered on a device, it is likely never to be fixed, even if it is publicly known [36].

Therefore, the certification authority needs to be aware of this situation and encourage

the manufacturer to support their devices longer. If the certification authority does not

implement an update policy, security vulnerabilities can be found on a certified device,

discrediting certification.

2.3.2.7 IoT context aware

As we mentioned earlier, an IoT system is marked by its context. The system context is

defined by different variables, of which we highlight the physical location of each element

of the system, the topology of the system network, and the type of elements at a given

time. These variables, in an IoT environment, generally vary over time.

This dynamic context is why many traditional security methodologies fail because

classic security assessments are carried out periodically, and IoT systems change quickly,

so the likelihood of a new device emerging between periodic assessments will be high.

The security assessment will not predict and consider the possible changes that may occur

before the next periodic assessment [12]. Thus, the effectiveness of certification can be

compromised. Any security certification for IoT needs to be aware of this evolution in the

system’s context and assess the risks arising from this dynamism.

This requirement is only valid when a certification has a specific context, because,

without it, we cannot monitor any change in an IoT environment.

2.3.2.8 Access to Guidelines

In addition to all the requirements mentioned above, we also propose a new requirement

called Access to guidelines that should not exclude the possibility of systems that are not

certified, but comply with certification. We mean that it is preferable that access to the cer-

tification guidelines is free and that only the certification process has costs. That way, we

can minimize the problem of cheap IoT products that are not profitable for certification.

2. BACKGROUND 19

2.3.3 Context aware requirements

The application domain where an IoT system is inserted affects the importance given to

each of the requirements mentioned in the subsection 2.3.2. To select the most suitable

certification for each domain, it is necessary to detail the crucial aspects of a certification

to evaluate a target in a specific domain effectively.

2.3.3.1 Personal and home domain

The focus of these systems is always the personal environment. The key requirement for

personal and home domain is a data-driven security assessment due to being the most

capable of endangering their users’ privacy [37, 38].

In this type of domain, the cost of certification is essential. Context-specific certifica-

tions are expensive, so owners in a small-environments are unwilling to pay for this type

of service. Therefore, these certifications are typically supported by manufacturers.

This domain also includes healthcare devices. Certifications for these devices must

cover privacy requirements and specific regulations (for instance, the HIPAA regula-

tion [39]), but besides that, it is also necessary to ensure that devices are fault-tolerant

as failure could put in risk a patient’s life [40].

2.3.3.2 Enterprise domain

The enterprise domain includes IoT systems within a work environment. Usually, these

systems provide monitoring capabilities and process automation, allowing owners to re-

duce their costs. Examples of environments of this domain are enterprises, industrial and

agriculture facilities.

Similar to the personal and home domain, the certification cost will be essential for

this domain. The budget for an IoT certification in an enterprise domain will not be as

low as the home domain but will not be the main focus. Depending on the importance of

the IoT system for the company’s primary revenue, it is advisable to evaluate the system

with a specific context.

2. BACKGROUND 20

2.3.3.3 Utility domain

The utility focuses on the application of IoT technologies in a wide area. In this domain,

all types of smart meters, smart grids, and smart cities are included. Typically, these appli-

cations are intended to optimize services, so the average consumer of these technologies

are electricity, water, communications companies, or public institutions.

This domain contains the most critical IoT systems and is, therefore, the main target for

attackers. The security assessment should be as complete as possible. Also, this domain

certification should ensure that these systems are fault-tolerant, as essential services, such

as water and electricity, depend on them [41].

2.3.3.4 Mobile domain

This domain has a continuous creation and destruction of communication channels and a

constant movement of devices. This characteristic contributes to one of the most dynamic

context. Thus, a certification for this domain needs to be prepared for a frequently chang-

ing system.

Finally, to sum up, the special requirements imposed by each application scenarios are

summarized in the Table 2.1.

Domain Important Requirements

Personal

• Privacy Concerns
• Low Certification Cost
• Healthcare Devices Regulations
• Fault Tolerance in healthcare

Enterprise
• Low/medium certification cost
• Specific context for critical systems

Utility
• Most complete security assessment
• Ensure fault tolerance

Mobile • Adapt to a dynamic environment

TABLE 2.1: Requirements for each application domain

2.3.4 ECSCF and IoT

ECSCF does not try to meet a specific area’s requirements, but creates a framework that

mitigates common problems in security certifications.

2. BACKGROUND 21

Some of the requirements mentioned in the subsection 2.3.2 are already present in the

ECSCF, as they are not particular problems of IoT environments.

The concern about reuse existing parts is present throughout the ECSCF. This frame-

work tries to unify security certifications. So, it also wants to reduce heterogeneity in

security certifications and its heterogeneity marks IoT. Therefore, the ”re-utilization of

standards” requirement is ensured by the ECSCF.

IoT systems lack security updates, and this is one of the problems that must be mini-

mized with security certifications. In the subsection 2.3.2, we stated that security certifi-

cations for IoT must enforce the implementation of updated policies. The ECSCF shares

this concern and creates mechanisms at the certification level to monitor certified systems.

Thus, ensuring that security vulnerabilities found in certified systems do not discredit the

certification.

We also described the problem with cheap IoT products that are not profitable for

certification, but it can be minimized by the ECSCF with different assurance levels and

allowing self-assessment in some of these levels. The cost and duration of lower certifica-

tion levels will be lower than higher levels.

In brief, even though the ECSCF is a generic approach, some problems affect any se-

curity certification. The concern about reuse existing parts, the time and monetary impact

that a certification process produces in the production costs, and the enforcement of up-

date policy is shared by both ECSCF and IoT literature. Thus, the legislative vision is not

far from the IoT reality.

2.4 Security Certifications

Certifications for IoT systems and devices are beginning to emerge. This section will

describe five certifications focused on IoT. From these certifications, two were designed

by academic researchers (DSPSMA [42], ARMOUR certification [43]) and the other five

were created by the industry (ICSA Labs certification [44], UL-2900 [45], BSI Kitemark for

Internet of Things devices [46], IoTAA Security and Privacy Trustmark [47] and Eurosmart

IoT Security Certification [48]).

2. BACKGROUND 22

2.4.1 DSPSMA

Dynamic Security and Privacy Seal Model Analysis (DSPSMA) [42] is a certification scheme

that combines a real-time monitoring system and the existing certification model, where

an audit is performed at a specific point in time. This certification is materialized in a

dynamic seal applied to the system that can be updated over time. Currently, this certifi-

cation does not have implementation yet.

Due to the attempt to combine a standard certification and a monitoring system, the

DSPSMA is structured in two phases: the initial certification phase and the monitoring phase.

In the initial certification phase, although it is mentioned the possibility to adapt to other

normative environments, the system is assessed according to the normative environment

of the European Union, such as GDPR and e-privacy directive. Different technical stan-

dards and recommendations are also assessed. For instance, the ISO/IEC Information

Security Management Systems standards will assure that security, privacy, and risk anal-

ysis will be performed to the system. This application of different standards in the same

certification process minimizes the possibility of blind spots in the certification, as each

standard has its limitations and, together, will cover each other’s limitations. Due to the

diversity of standards and regulations against which the system will be assessed, auditors

and technical experts will conduct this part of the certification.

In the monitoring phase, the certified system will be continuously monitored. From this

process, if a potential breach of system privacy and security is detected, the owner and

the DSPS organization will be notified. The notification triggers an evaluation process by

the customer for the system and an obligation to report the evaluation results to the DSPS

organization. Depending on the severity of the breach, a system re-certification may be

required. This mechanism guarantees the validity of the certification over time.

The monitoring part of this certification fulfills different functions, depending on the

different types of users. For a generic end-user, DSPS acts as a user-friendly tool for check-

ing the certified system’s overall status. Advanced users, such as system owners and ad-

ministrators, will have access to more advanced tools to view and analyze problems. The

DSPS organization will serve as a surveillance mechanism to monitor the certified sys-

tem, dynamically update the certification, and as probes to detect new threats from the

IoT world.

Finally, an interesting point of the proposed architecture for this certification is ap-

plying a blockchain as a solution for log storage. The blockchain maintains the historical

2. BACKGROUND 23

records of each certification and guarantees the authenticity of the data.

Existing standards support this certification. However, a crucial point is missing. It

fails to provide quick unified guidance for the audition phase. In the technical certification

report, this problem is recognized and identified as future work. This certification also

uses general security standards, such as ISO 27001, which may not be prepared for specific

requirements of IoT environments [12].

2.4.2 ARMOUR certification

The European Union’s ARMOR project aims to address security and trust issues in the

Internet of Things, providing automated and simplified testing, benchmark, and certifi-

cation processes for many devices. One of the project results is the proposal for a cyber-

security certification (ARMOR Certification) [43].

This certification’s design follows the main guidelines of ECSO, including ECSCF, but

it also includes some additional components to accommodate the dynamic context where

IoT devices are deployed.

This certification is divided into an initial security risk assessment and a continuous

security testing phase. These two phases are based on the main European Telecommuni-

cations Standards Institute guidelines for risk-based security assessment and test method-

ologies (ETSI EG 203 251) [49].

The certification is divided into six phases, the last one being continuous over time.

Initially, a context is established, where the objective is to understand the device’s business

and regulatory environment. A risk analysis is then performed, resulting in identifying

the different vulnerabilities that can affect the subject. For each vulnerability, if the asso-

ciated test does not exist, it needs to be created. Finally, the device is configured in the

monitoring, and test structure and tests are performed on it.

The device is monitored continuously, and the tests are repeated in two situations:

when a new vulnerability is found or when a new firmware update is released. If a new

vulnerability is found, the tests are repeated after adding a test that assesses whether a

particular device is vulnerable or not. Thus, the certification is updated when the device

is unsafe, but the manufacturer has the opportunity to resolve it and recover the initial

certification results.

One of the fundamental characteristics of this certification scheme is the labeling sys-

tem, through which the result of the certification is transmitted to users. A QR code tag is

2. BACKGROUND 24

attached to each device containing a link to a page. This page displays the updated cer-

tification status of the device. It can also contain the certification result for more specific

contexts, such as when a device is used in a domestic environment [50].

This certification process aims to ensure that a device is not vulnerable to known vul-

nerabilities. However, it has no process for discovering new vulnerabilities that are spe-

cific to the device being scanned. Besides, IoT vulnerability databases are missing, which

can limit the efficiency of this certification. Another problem is the scarcity of an analysis

aimed at user privacy. Standard approaches tend to bind to GDPR requirements only if

appropriate for the device and not as a general rule.

2.4.3 ICSA Labs certification

ICSA Labs is an independent company that provides product certification and testing to

end-users and business entities. Among the different certifications offered, ICSA Labs

offers one for IoT devices.

The certification is based on its IoT Security Testing Framework, a lightweight secu-

rity guideline for IoT devices and their communications. The framework defines several

security requirements grouped into seven domains, more precisely: encryption, commu-

nications, authentication, physical security, platform security, and alerting. In the case

of encryption requirements, it is also important to note that they require a device to be

compliant with the NIST and FIPS recommendations [44].

A device is certified if it meets the different security framework requirements men-

tioned above [51].

When certification is carried out in its guidelines, the device cannot be affected by any

known vulnerability. However, it has no mechanisms to enforce security updates after

the certification is issued. Besides, this certification is issued without an expiration date.

Therefore, it is possible to have a device certified and affected by a vulnerability.

2.4.4 UL-2900

We will now cover the UL-2900 [45]. We did not have access to the UL-2900 certification

guideline due to paid access. Thus, the information presented was based on the public

information available.

The UL-2900 family is a group of standards developed by Underwriters Laboratories

(UL) [52] for the security of network-connectable products and systems. This standard

2. BACKGROUND 25

and related certification are intended to provide manufacturers with testable and mea-

surable criteria for assessing product weaknesses and vulnerabilities and implementing

risk controls. The American National Standards Institute has already recognized some of

these standards [53].

This family of standards comprises three different groups: general requirements, in-

dustry requirements, and, finally, general process requirements.

In the industry requirements group, guidelines for a specific application domain are

defined. For example, for healthcare products, UL 2900-2-1 details the basic principles

used in healthcare devices.

In terms of product evaluation, certification is divided into different phases. Initially,

documentation is gathered about its production process and functional requirements. Af-

ter that, the product moves to the risk control and management phase, where different

risks are assessed. A product security assessment is then carried out, confirming whether

the necessary measures have been taken to minimize previously identified risks. The

product is checked for known vulnerabilities, diffusion tests, and penetration tests. Fi-

nally, the certification authority issues a certification and a report with different tests,

assumptions, and results [54].

As we were limited to public information about this certification and standard, we

could not discover some characteristics. These include whether the certification has taken

any steps to ensure that the manufacturer maintains secure updates or for how long the

certification remains valid. However, from what we have recovered, it is essential to high-

light that the security assessment is complete, as it includes fuzzing tests and penetration

tests, allowing the assessment of more intrinsic characteristics of the subject. Although,

because of this range of tests, it is also a very heavy certification. As a way to alleviate this

problem, the certification authority allows the subject to be partially certified.

2.4.5 BSI Kitemark for Internet of Things devices

The British Standards Institution (BSI) is the UK’s national standardization organization.

It provides testing and certification services for several products, including IoT devices.

When it comes to IoT, it has a certification for IoT devices that offers three levels of

guarantee: Residential (for residential environments), Commercial (for commercial envi-

ronments) and Advanced (for high risk residential and commercial environments).

2. BACKGROUND 26

The certification will include ISO 9001 compliance tests, vulnerability testing, and pen-

etration testing. The penetration test is designed to adapt to the attack’s complexity ac-

cording to the level of assurance. For example, at the Residential level, the techniques

used to test the target will be less complicated than those used to test at the Advanced

level. The device is also tested against the requirements of the ETSI technical specification

for consumer IoT security (ETSI TS 103 645) [46].

BSI regularly monitors certified devices, repeating security tests to ensure that the

devices remain secure.

It is also important to mention that ETSI TS 103 645 enforces the device measures to

ensure user data privacy, regardless of the regulatory context. These measures are under

the GDPR.

2.4.6 IoTAA Security and Privacy Trustmark

The IoT Alliance Australia (IoTAA) [47] is an Australian organization made up of different

IoT companies and individuals, intending to promote good security practices.

One of their plans is to create an IoT certification for devices. Currently, certification

is not formulated yet. However, its guidelines are now available under the name ”IoTAA

Security Guideline”.

These guidelines consist of thirty mandatory requirements and seven recommenda-

tions. Manufacturers can choose not to implement, if it is not suitable, or to adapt the

mandatory requirements concerning application.

The requirements address the security needs of IoT devices and privacy requirements,

concerning alignment with Australia’s Privacy Principles, an Australian regulation that

guarantees protection.

This guideline has the particularity of enumerating standard protocols and advis-

ing on the appropriate configurations to guarantee the security of devices [55]. This

fact presents a possible problem for this guideline, as the configuration will change over

time, and the owner of the guideline needs to continually monitor these changes. Typi-

cally, other certifications delegate this type of recommendation to other specific guidelines

for that matter. For example, most certifications delegate the recommended Transport

Layer Security (TLS) configuration for the National Institute of Standards and Technol-

ogy (NIST) guidelines.

2. BACKGROUND 27

2.4.7 Eurosmart IoT Security Certification

The Eurosmart IoT Security Certification Scheme (e-IoT-SCS) was created with the ECSCF

requirements in mind. This certification focused on IoT devices as part of a typical IoT

infrastructure, evaluating them with a Basic or Substantial assurance levels (Subsection

2.2.4).

In terms of target audience, this certification is designed to be sponsored by the IoT

product vendor and answer to the necessities of an IoT service provider or device owner.

Because of these design options, the evaluation procedure is dependent on privileged

access to the device [24].

This certification scheme has Security Profiles for each type of IoT product, defining

the security requirements and assurance activities for each specific security problem. The

Security Profile considers the asset’s sensitivity and the environment where it is operating,

allowing to scale the necessary security controls following the identified risks. It also tries

to cover the full attack surface from physical attacks up to cloud infrastructure attacks [48].

The evaluation procedure is also driven by a risk approach and includes a vulnerability

assessment and a testing phase to demonstrate if the device implements the necessary

security features. Depending on the assurance level, this could include a penetration test

and fuzzing [56].

The e-IoT-SCS includes a phase of surveillance after the certification is issued. In this

phase, the CABs involved in the certification process need to frequently re-inspect prod-

uct samples. The Security Profile defines the frequency of these activities. Moreover, the

CABs must monitor EU CSIRT sources for security alerts impacting the evaluated prod-

uct [48].

Its security profile includes a wide range of stakeholders, including the device owner

and a possible security operator/administrator, which may or may not have the necessary

skills depending on the type of environment [57]. This type of premise is important to IoT

environments because there are environments like smart homes where the user is a non-

expert and expects a simple setup processes. On the other hand, in an environment like a

smart city, there could be fully capable security operators to respond to threats.

This certification accepts self-assessment in the supply-chain evaluation and checks

that security goals and assumptions are correct.

2. BACKGROUND 28

2.5 Fulfillment of IoT and EU requirements

We created three tables to make it easier to compare the certifications described in the

Section 2.4. The Table 2.2 has the characteristics of each certification, the Table 2.3 includes

the different security assessments employed by each certification and finally, Table 2.4

describes the fulfillment of the requirements that we defined in the Section 2.3.2.

2.5.1 Reflection on certifications

In the subsection 2.1.1, we mentioned that certifications have three fundamental char-

acteristics: context type, scope, and audience (the audience is divided into sponsor and

target). Table 2.2 exhibits the characteristics of the certifications mentioned throughout

this work.

Context type Scope Sponsor Target

DSPSMA Specific System System owner System owner
ARMOUR General Device Product Ven-

dor
User

ICSA Labs General Device Product Ven-
dor

User

UL-2900 Application
domain

Device & sys-
tem

Product Ven-
dor

User

BSI
Kitemark

Application
domain

Device Product Ven-
dor

User

IoTAA Specific System Unknown Unknown
ECSCF Application

domain
Device Product Ven-

dor
User

TABLE 2.2: Certification caracteristics

Most certifications are carried out concerning an application domain or general con-

text, as they often perform during the production process, making it impossible to define a

precise context for the system. For this reason, the DSPSMA is the only one with a specific

context, as the target is certified when it is already deployed and not during production

time.

Most certifications are sponsored by the product supplier and target the User/Con-

sumer. The purpose of these certifications is to build trust among consumers of IoT de-

vices.

2. BACKGROUND 29

DSPSMA is the only certification that sees the system owner as the sponsor and tar-

get of the certification. This certification targets critical IoT systems that require security

evaluations for the actual deployment of IoT devices in a specific environment.

The sponsor and the certification target influence the scope of certification. Certifica-

tions sponsored by a product vendor will evaluate devices, while certifications sponsored

by an end-user will target a complete IoT system.

Throughout the subsection 2.3.2, we identified the requirements for an IoT certifica-

tion. Table 2.3 lists the different security assessments that are applied to the subject during

the certification process, and in Table 2.4, we summarize how certifications implement the

remaining requirements.

Risk
assessment

Vulnerability
assessment

Penetration
testing

DSPSMA Yes Yes No
ARMOUR Yes Yes No
ICSA Labs No Yes No
UL-2900 Yes Yes Yes

BSI Kitemark No Yes No
IoTAA No Yes No
ECSCF Yes Yes Yes

TABLE 2.3: Security assessment comparation

Security assessments based on an audit is a common way to determine the security

of a subject. These audits include other types of analysis. ICSA Labs and IoTAA certifi-

cations use a list of security requirements created especially for the certification, and in

addition to that, they require a vulnerability assessment. BSI kitemark also applies a list

of security requirements, but this list is a European technical specification. As part of the

audit, the BSI kitemark also conducts a vulnerability assessment and penetration testing.

DSPMA employs a risk assessment and vulnerability assessment in its audit. ARMOUR

certification does a risk assessment to find the device’s right assurance level and a vul-

nerability assessment. UL-2900 and e-IoT-SCS are complete security audits, performing a

risk assessment, vulnerability assessment, and penetration testing.

All certifications implement vulnerability assessments. On the other hand, penetra-

tion testing is the less common, with only three certifications featuring this method. This

preference for vulnerability assessments is due to automating this type of assessment,

making the certification process lighter than one with a penetration testing.

2. BACKGROUND 30

Relying only on a vulnerability assessment can put the device’s security at risk, as this

analysis looks only for known vulnerabilities. If the device has customized software that

has never been analyzed, this method will not find them even if it has vulnerabilities.

Penetration testing is the only way to discover unknown vulnerabilities. However, it has

the disadvantage that it is mainly a manual process.

The number of tests and whether they are manual or not are the main factors for

the certification process duration. Certifications attempt to overcome this problem with

different assurance levels that will include additional testing with an increase in assurance

levels.

PIA
Standard

re-utilisation
Access to

guidelines
Laws and

regulations
Update
Policy

IoT context
aware

DSPSMA Yes

ISO 27001
ISO 29190
ISO 15408

NIST SP 800-122

Free
Depends on
the country

Constant
monitoring
for threats

-

ARMOUR No
ETSI EG 203 251

ISO 15408
ECSCF

Free
Depends on
the country

Constant
monitoring
for threats

N.A.

ICSA
Labs

No
ICSA Labs Security
Testing Framework

Free - - N.A.

UL-2900 No UL-2900 Standard Payed
Depends on
the country

Unknown Unknown

BSI
Kitemark

Yes
ETSI TS 103 645

ISO 9001
Free -

Vulnerability
report

program and
regular

surveillance

N.A.

IoTAA Yes
IoTAA

Internet of Things
Security Guideline

Free
Australian

laws

Vulnerability
report

program
N.A.

e-IoT-SCS Yes ECSCF Free
Depends on
the country

Active
surveillance

N.A.

TABLE 2.4: Certification requirements

In the subsection 2.3.2, we mentioned the importance of a PIA, which was placed as

a requirement to improve privacy concerns regarding user data, even when this is not

mandatory by regulation. Therefore, during our analysis of the certifications, we only

2. BACKGROUND 31

considered those that perform a PIA independently of the regulatory context. Certifica-

tions that carry out privacy analysis only if the subject is forced to do it by the law will

be considered as not having a PIA. By this principle, the DPSMA, BSI Kitemark, IoTAA,

and e-IoT-SCS have PIA’s. The others have no privacy concerns or only have them when

it is required by regulation. This lack of PIA’s may be due to these certifications aim to

make an automatic assessment of the certification target, but PIA’s are done manually and

interviewing the manufacturers, which would imply a delay in the certification process.

Generally, access to guidelines is free, except the UL-2900. DPSMA is a particular case

where the certification guideline is free but refers to paid standards, such as ISO 27001.

Most certifications include the assessment of applicable laws and regulations. The

only one that does not do this is the ICSA Labs certification. BSI Kitemark exclusively

includes the GDPR.

From the certifications analyzed, we could identify two approaches to address the IoT

update issue. One is the constant monitoring of the subject after the certification phase.

If the certification authority detects a vulnerability, it will automatically update the cer-

tification report (DSPSMA, ARMOUR, BSI Kitemark and e-IoT-SCS). The other solution

is creating a vulnerability report program, which includes public disclosure and patch

of vulnerabilities found (BSI Kitemark and IoTAA). BSI Kitemark is the only certification

that enforces these two types of control.

The requirement of awareness regarding the dynamic context in which the system is

inserted is only applicable to the DSPSMA. Unfortunately, this certification does not have

any attention to the constant change of the system’s environment. The dynamic environ-

ment associated with IoT technologies is a known characteristic of IoT and is pointed out

as one of the open research opportunities.

2.5.2 Reflection on domains

This section will analyze the certifications we have collected throughout this work, ana-

lyzing their adaptation for each application domain. We select those that meet the domain

requirements and describe their advantages and disadvantages.

Personal and home domain

For the personal and home domain, the certification that most closely matches the re-

quirements is e-IoT-SCS. It aims to certify devices in an application domain, charging the

2. BACKGROUND 32

manufacturer with the cost of certification. The user receives a label indicating the level of

certification with which the product was generated. In terms of privacy issues, e-IoT-SCS

has well-established requirements to ensure the privacy of its users.

Another certification that can be used for this domain is the BSI Kitemark. However,

this certification has the disadvantage that it is not compliant with ECSCF.

Due to its regulations and possible effects in case of failure, the healthcare devices

sub-domain needs a certification as complete as possible based on healthcare regulations.

Accordingly, the UL-2900 family is advised to this domain, especially as it has a specific

standard for this type of devices (UL 2900-2-1).

Enterprise domain

The enterprise domain shares the low-cost certification requirement with the personal and

home domain, so the e-IoT-SCS and BSI Kitemark can be an option for this domain.

In this case, the BSI Kitemark assumes a privileged position because it has an assur-

ance level dedicated to the enterprise domain.

For IoT systems that perform a critical function on a company, there is no perfect

certification. The DSPSMA is the closest candidate because it is the only one that evaluates

a specific context. However, it is excessively heavy for small environments.

Utility domain

DSPSMA meets the utility domain requirements. This certification aims to evaluate a sys-

tem applied to a specific domain. The possibility of supporting the systems’ owners by

monitoring their assets is an asset, especially when these systems are considered primary

attackers’ primary targets. Besides, during the audit phase, the system is inspected to

verify that it is fault-tolerant, an essential feature for critical environments.

Mobile domain

There is still no security certification prepared for a fully dynamic system to meet the

mobile domain requirements. For system assessment at the device level, the best option

is to get involved in a certification, such as Armor. This certification is applied to each

device, enabling the detection of vulnerabilities that can affect the system. If the owner

opts for system-level certification, DSPSMA offers the possibility to assess specific subject

requirements. However, it is unpredictable how certification monitoring will react to an

2. BACKGROUND 33

extremely dynamic system. As we mentioned earlier, there is not any certification prepa-

ration for the IoT system with a dynamic context.

2.5.3 ECSCF and existent certifications

Only two of all certifications we reviewed are compliant with the ECSCF, the ARMOUR

certification, and e-IoT-SCS.

Naturally, certifications that do not target the European market will not be interested

in implementing the ECSCF. Four certifications target the European market, and only two

are compliant.

e-IoT-SCS is the most recent certification and is compliant with ECSCF. ARMOUR

certification was being developed when ECSCF was published and also implements EC-

SCF. DSPSMA is not compliant with ECSCF, because it was released before the ECSCF.

BSI Kitemark is the only certification released after ECSCF that is not compliant with it.

However, this certification was launched just six months after the release of ECSCF, so

probably this is why it does not follow the ECSCF recommendations.

To sum up, new certifications are trying to be compliant with ECSCF. DSPSMA and

BSI Kitemark are not compliant with ECSCF, probably because they were released around

the same time as ECSCF and, to be compliant, they would need to be redesigned.

2.6 Future research directions for certifications

Throughout this research, we analyzed the existing certifications and identified some ar-

eas that are not sufficiently developed to meet the requirements imposed by IoT and,

therefore, there are still open research opportunities in this field.

Security certifications that assess risks regarding user privacy are increasingly com-

mon. However, half of the certifications assessed here consider only the subject’s privacy

when required by law and not as a general rule. Therefore, certifications must continue to

encourage privacy by design on their subjects, regardless of the regulatory context. An-

other area that needs to be developed in this field is how we can automate PIA’s so that

this type of evaluation is more easily integrated with automatic assessments.

There is currently a notable lack of attention to IoT systems that have a dynamic con-

text in security certifications. Most of the certifications evaluate devices only, not the entire

2. BACKGROUND 34

system. Therefore, there is a need for a new certification that focuses on IoT systems with

a specific context to assess the IoT dynamic context better.

Another missing point is that most security certifications evaluate devices based only

on security checklists and vulnerability scans, sufficient to know if a specific security mea-

sure is being implemented, but fails to check for unknown vulnerabilities software. It is

necessary to find a way to test for unknown software vulnerabilities without compromis-

ing the certification duration.

We can also detect a trend that certifications are aimed at manufacturers and not en-

tirely at users. The certifications we analyzed (except DSPSMA) see the user as a pure

consumer of the final report and not as the certification process’s initiator. Most certifica-

tions are requested by the manufacturer, probably due to the costs involved. DSPSMA is

user-focused, but too heavy for small environments. There is still no light certification for

small system owners who need assurance that their IoT system is secure.

Chapter 3

Related work

As we mentioned in the section 1.2, one of our goals is to develop an automatic assessment

tool capable of evaluating an IoT environment without being dependent on privileged

access to the device and capable of adapting to different security requirements.

Security assessments in IoT require new tools and techniques due to their heterogene-

ity, many devices, and resource constraints. The majority of these processes are manual,

which is a barrier to enhancing the IoT security [12].

Security assessment tools should apply principles of modularization to provide flex-

ibility to test various devices. The security assessments can be divided into three cate-

gories: interface testing (test interfaces used to communicate with the exterior, such as

a web interface), transportation testing (test the network infrastructure, associated cryp-

tographic schemes and communication protocols), and system testing (test the operating

system that runs on a IoT device). We can list specific problems for each type of assess-

ment and possible solutions for those problems.

Interfaces are commonly affected by physical, authorization, and account attacks due

to weak security practices [58]. Interface testing tries to check if the target is vulnerable to

these attacks. These tests are conceptually similar. They all crawl the entry points and

submit a test payload. So, modular tests would facilitate creating frameworks that tests

for different vulnerabilities and enables faster tests by removing setup delays. Another

solution is fuzzing techniques, not only with random generated payloads, but also by

creating payloads from the mutation of real interactions with the target [34].

The great challenge that IoT imposes to transportation testing is the existence of het-

erogeneous networks in the same system. It is common for the coexistence of multiple

35

3. RELATED WORK 36

communication stacks, such as using TCP/IP and Zigbee at the same time. These dif-

ferent technologies make security testing difficult and increase the attack surface of the

system. As each technology suffers from different network attacks and to access to these

networks, it is necessary for different hardware. The evaluation methods must be pre-

pared to deal with these different technologies.

In the system testing, the manual analysis of binaries is infeasible, given the large num-

ber of IoT devices to test and a big diversity of system attacks. Therefore, static analysis

technologies and symbolic execution of binaries allow the automation of simpler tasks

and assist the tester’s work. Equivalent to these solutions, the virtualization of the whole

system can also assist the system’s analysis, allowing us to perform dynamic analysis of a

system, even when we do not have privileged access to the device. In all these techniques,

it is important to design them being agnostic in terms of CPU architecture because of the

variety of architectures existing in IoT devices [59].

In addition to the mentioned attacks, there are two common attacks to multiple types

of testing. Cryptanalysis attacks can be prevented through transport and system testing.

Side-channel attacks are a more broadly type of attack, as they do not depend on attacking

a specific implementation error, but rather leverage the information gained from a device

to impact a component on the target. Examples of this type of attack are power analysis

and timing attacks.

Each type of assessment checks the device for specific security controls. The goal

of these controls is to mitigate a threat. Thus, the Table 3.1 describes the relationship

between the different threats and the tests that checks the controls that are able to mitigate

these attacks.

Interface testing Network testing System testing

Physical attacks •
Accounts/authorization attacks •

Network attacks •
Crypto attacks • •

Software attacks •
Sidechannel attacks • • •

TABLE 3.1: Relations between tests and attacks that they try to prevent

In the Section 3.1, we review the literature on IoT security testing and next, in the

Section 3.2, we examine existent technical specification of security requirements for IoT.

3. RELATED WORK 37

3.1 IoT security testing

The challenges we mentioned at the beginning of this chapter are beginning to be ad-

dressed by the academy. This section will review the existing work on IoT security testing

and compare them with our proposal.

V. Sachidananda et al. [60] proposes a security testbed fully automated and designed

for IoT devices. It intends to simulate real-world conditions to test the IoT devices in

different contexts, and defines an architecture that enables the easy addition of new tests

and automatic generation of reports. The security analysis phase uses open-source tools

to port scan, fingerprint, and scan for vulnerabilities. However, it depends on a closed-

source application for the orchestration of the tests (NI TestStand), which runs only on

the Windows operating system. Moreover, another disadvantage of this approach is that

it only focuses on the device’s network attack surface. So, it does not detect problems

like hardcoded credentials or other problems intrinsic to the device’s operating system or

hardware side.

O. A. Waraga et al. [61] also developed a security testbed for IoT devices. However, this

security assessment is fully constructed with open-source tools. This testbed’s peculiar

feature is that it monitors the device’s outgoing connections to detect connections related

to known IoT malware. This can be an interesting feature to analyze devices that have

been in a production environment because they may already be compromised.

G. Chu et al. [62] developed a process for penetration testing, based on the OWASP re-

search’s necessities, that facilitates the integration with automatic assessments. The pro-

cess is divided into three stages: information gathering, analysis, and exploitation. Each

stage is organized in tasks for each one of the IoT attack surface. These tasks involve

running common penetration testing tools, such as nmap, nikto and openvas.

The automation of this process is done by modeling it in a belief–desire–intention

(BDI) software model. The BDI model is characterized by three logic components: belief,

desire, and intention. The model describes the actions that an agent should take, guided

by the information collected in the previous assessment phases. This model tries to mimic

the behavior of a penetration tester. Given the information known about the device, the

automation process can perform a specific set of actions, which would be the actions that

a penetration tester would do. This solution was not tested in a real environment.

O. Alrawi et al. [63] focused on the evaluation of IoT devices for a home environment

and proposed a methodology that researches can employ to analyze this type of devices.

3. RELATED WORK 38

The methodology was based on a threat model that identifies the attack vectors in four

different areas: device, mobile, cloud, and communication. Each of these areas was an-

alyzed with open-source and closed-source security assessment tools. The evaluation

results were systematized in a group of security scores, each one for the attack vectors

considered. With this type of score, it is possible to identify the strong and weakest attack

vectors in IoT product. During their research, they analyzed forty-five devices. The re-

sults from these tests and the respective scores can be found on an online portal ∗. These

analyses were made without any automation process.

Another assessment procedure was proposed by J. Chen et al. [64], which created an

automatic black-box fuzzing framework. Usually, IoT devices have a mobile application

to control it. This assessment technique’s unique property is that it uses the information

extracted from the control application to guide the fuzzing of the device. This process

is done by performing a dynamic analysis of the application, identifying the messages

delivered to the device, and modifying them before they are sent. This was proven to be

effective even in the presence of encryption. During the test phase of a prototype, they

discovered eight new vulnerabilities with this technique by testing nine devices. These

solutions have the advantage of being completely vendor-agnostic and do not require any

privileged access to the IoT device.

Other authors, due to the need to be proactive in detecting new devices and moni-

toring changes in IoT environments, have created a more active system that, in addition

to detecting security issues, also automatically takes actions to minimize their impact on

security.

One example is the IoT Sentinel [65], which is an automated system capable of identi-

fying the types of IoT devices connected to a network and automatically enforcing rules

that minimize the impact of vulnerable devices on a network. The identification of the

device-type is made using network traffic profiling and extracting device-specific finger-

prints mapped to device-types with machine-learning. The vulnerability assessment is

done by searching Common Vulnerabilities and Exposures (CVE) databases for vulner-

ability reports related to the device-type previously identified. According to the results

of the vulnerability assessment, the level of network isolation is assigned. A device-type

without reported vulnerabilities will be assigned to a trusted level, and, on the other hand,

a vulnerable device is segregated from the network. This solution has two fundamental

∗The evaluation portal is available online at: https://yourthings.info.

https://yourthings.info

3. RELATED WORK 39

limitations: there is no mention of how often the vulnerability assessment is done, and

there was no evaluation of the measures’ effectiveness.

V. Sachi

-dananda

et al.[60]

O. A.

Waraga

et al.[61]

G. Chu

et al.[62]

O. Alrawi

et al.[63]

J Chen

et al.[64]

M.

Miettinen

et al.[65]

Our

solution

Modular X X X X 7 X X

Customizable X X X X X X X

Vendor

agnostic
7 X - X X 7 X

Open

Source
7 X X X X X X

Device

detection
X 7 7 7 7 X X

Security

score
7 7 7 X 7 X X

Automatic

assessment
X X X 7 X X X

Continuous

assessment
7 7 7 7 7 7 X

X = Implemented;

7 = Not implemented;

- = Not applicable

TABLE 3.2: Security assessments for IoT

The Table 3.2 summarizes the findings of our research on IoT security assessments

and compares them with our assessment solution. The requirements utilized during this

comparison are the features that we intend to implement on our solution.

3. RELATED WORK 40

3.2 Technical Specification of Security Requirements

Our testing methodology will be based on a technical specification of security require-

ments. The effectiveness of our tests will depend on the requirements set out in the tech-

nical specifications.

A technical specification of security requirements is a document composed of multiple

requirements. Each security requirement mitigates a type of attack.

The certifications analyzed throughout Section 2.4 are based on several technical spec-

ifications for the definition of security requirements. Some of them use general-purpose

standards (such as ISO27001 or Common Criteria [28]) and others use specific standards

created for IoT.

In this section, we will focus on the technical specifications that target IoT devices,

and we will evaluate their effectiveness according to the types of attacks mentioned in the

Table 3.1.

There are four standards that are currently being used by security certifications to

assess IoT devices, ICSAlabs Security Testing Framework, ETSI TS 103 645, IoTAA Security

Guideline and UL-2900. Unfortunately, it was not possible to evaluate the UL-2900 stan-

dard, due to the lack of public information available.

In the Table 3.3, we organized the security requirements of each technical specification

by the type of attack they are trying to mitigate. From this, we retrieved the following

conclusions.

ICSA Labs Security Testing Framework has principles covering all categories. However,

they are too broad and, therefore, can lead to ambiguities during a certification process.

The strengths of this standard are its principles regarding physical security and access

controls.

ETSI TS 103 645 lacks in the prevention of physical attacks, but has many principles for

minimizing the risk of software attacks. Besides, this standard addresses each principle

in a very detailed manner, to eliminate possible uncertainties that may arise from more

simplified descriptions.

IoTAA Security Guideline fails to prevent side-channel attacks, as it has no requirement

to avert this kind of attack. This standard also addresses the different technologies and

their configurations, such as which cryptographic algorithms should be used. This detail

in a security standard requires the standard author to update the technical specifications

to comply with best practices constantly.

3. RELATED WORK 41

Security
assessment

Physical
attacks

Software
attacks

Side
channel
attacks

Crypt-
-analysis
attacks

Network
Attacks

Authorisation
and

accounts
attacks

ICSAlabs
Security
Testing

Framework

B.6,
D.1,
D.2,
D.3

E.1,
E.2,
E.3,
E.4

A.3,
A.5

A.1,
A.2

B.1,
B.2,
B.3,
B.5

A.4,
B.4,
C.1,
C.2,
C.3,
C.4,
C.5,
C.6

ETSI TS 103 645 4.6-2

4.2-1,
4.2-2,
4.2-3,
4.3-1,
4.3-2,
4.3-3,
4.3-4,
4.3-5,
4.3-6,
4.3-7,
4.3-8,
4.3-9,
4.6-1,
4.6-3,
4.6-4,
4.7-1,
4.7-2,
4.13-1

4.4-1,
4.5-2

4.5-1

4.5-1,
4.9-1,
4.9-2,
4.9-3

4.1-1,
4.6-5

IoTAA Security
Guideline

9, 34

4,
5,
6,
9

1

2,
31,
32,
33

10,
11,
12,
13

TABLE 3.3: Security controls organised by type of attack

To summarize, there is no perfect technical security specification; each one has its

strengths and weaknesses. Even though, ICSA Labs Security Testing Framework has se-

curity requirements that mitigate each type of attack, they are too generalized and may

create doubts during the implementation of the security requirements. ETSI TS 103 645

and IoTAA Security Guideline maintain a balance between general application security re-

quirements and clear instructions for its implementation.

Chapter 4

System design

During our analysis of existent certifications (Subsection 2.6), we realize that the major-

ity of the certifications aim the manufacturer to be its sponsor and the user to be the

consumer of the certification. This interaction type is the most common because, for a

non-interconnected system, the vendor is liable when the system fails. Thus, he certifies

his system as a way to reduce possible risks [21]. However, when different IoT systems

are connected, a common reality in critical environments, the vendor’s evaluation does

not consider this additional attack surface. To rectify this problem, it is necessary to cre-

ate new certifications that aim to certify complex systems in their specific context and are

sponsored by the system owner. Our proposal is an assessment methodology that aims

to support the creation of these new certifications.

As we stated in the Section 1.2, we have three main goals for our proposal:

1. Creation of a test procedure that meets the ENISA best practices to be eligible as

an evaluation method for a technical specification of security requirements.

2. An evaluation methodology that targets an agnostic vendor IoT environment with

a specific use case.

3. Provide an automatic and continuous assessment method.

4.1 Architecture

Our assessment system has two main tasks to perform. One is to run the security tests

and the other is to analyze the results and generate the report and security score. Each

42

4. SYSTEM DESIGN 43

one of these tasks, can be seen as an independent component, so we will refer to them as

functional units.

The Figure 4.1 is the blueprint for the architecture of our proposal. In it, we can ob-

serve the two functional units, the Security Testing, which is responsible for executing the

security tests, and the Security Evaluation that generates the report and security score. In

the ECSCF certification flow (subsection 2.2.5.1), this graph can be interpreted as the cer-

tification test phase.

FIGURE 4.1: Architecture of our proposal

In the rest of this chapter, we will describe the components of each functional unit.

Then, we will translate our goals into requirements and consider how we will meet each

requirement, and finally, we will explore the limitation of our architecture.

4. SYSTEM DESIGN 44

4.1.1 Security Testing

The security test unit is responsible for testing and monitoring devices on a specific net-

work. It also updates the test results according to changes in the environment, such as the

appearance of a new device or changes in a device’s firmware. The core element in this

functional unit is the packet sniffer. The packet sniffer runs continuously, sniffing network

packets and feeding the rest of the testing process. This component must be configured on

a separate network and receives a copy of the packets with mechanisms, such as SPAN ∗,

as it does not need to interact directly with the traffic. This is a great advantage, as it

does not impact the network performance. As we analyze a copy of the traffic, any delay

introduced by the analysis process will not affect the real traffic.

The packet sniffer will feed the Transportation Testing module. This module performs

Deep Packet Inspection (DPI) to each network flow and identifies the underlying protocol.

With the protocol identified, the packet is forwarded to the plugin associated with this

protocol, which will run the necessary tests.

The sniffed packets are also used to discover new devices on the network. This in-

formation is shared with the Interface Testing module, which schedules periodic network

vulnerabilities scans to each device.

The Transportation Testing module will identify possible firmware files from unen-

crypted traffic and send them to the System Testing module. The System Testing module is

based on a framework that extracts the different components of a firmware image. This

framework exposes a plugin API that can be used to implement different tests to the

firmware.

Each of these test modules will produce results stored in a database for later use by the

security evaluation unit. This also facilitates our system’s adaption to different network

topologies, as we can have several security testing units spread over the network that will

send their results to a centralized database.

4.1.2 Security Evaluation

The security evaluation unit is responsible for translating the different tests’ results into

a unified report and score. The score may vary depending on the profile selected for the

∗SPAN is a feature present in some network switches that allows us to mirror two network ports or
vlans [66]

4. SYSTEM DESIGN 45

device. These profiles represent the security requirements that the device must meet and

are created in the previous certification phase.

When a new device is discovered, it is associated with a default security profile. The

user can later change this association for the most appropriate profile.

The security profile is a structured document defining the relationship between tests

and security requirements. Beyond that, the profile also defines the weight of each re-

quirement in the security score.

The result aggregator has constant access to the most up-to-date test results. When

the user requests a report and score, the result aggregator processes the latest information

(security events with less than a day old and the latest results from a firmware analysis)

and generates an updated security score and detailed report. This will serve as evidence

for the next certification phase, conformity assessment.

Depending on the certification scheme’s approach, this result aggregator can be adapted

to generate a report and score every time there is a change in the security score of a de-

vice, at the same time, it notifies other systems of this change. This feature was not imple-

mented.

4.2 Requirements

Given the architecture described above (Section 4.1) and the goals listed in the Section 1.2,

it is important to explain how we are going to fulfill these goals. Therefore, in this section

we will introduce the necessary requirements to meet our goals and then we will explain

how these requirements are implemented by our architecture.

During this section, we will follow the approach of Nicole Viola et. al. [67] to define

system requirements from the system objectives. The following enumeration will describe

our goals and the requirements that are necessary to reach them.

1. Goal - Creation of a test procedure that meets the ENISA best practices to be eligible as an

evaluation method for a technical specification of security requirements.

As we mentioned in the Section 2.2, the European Union established a European cy-

bersecurity certification scheme, which defines some characteristics for new security

certifications. We are not proposing a new certification scheme, but rather an assess-

ment methodology. The following requirements are extracted from documentation

supporting the ECSCF.

4. SYSTEM DESIGN 46

(a) Allow different assurance levels [20]. The ECSCF introduces the idea of dif-

ferent assurance levels depending on the context of the device. A customizable

security profile for each device enables the implementation of different assur-

ance levels, as it can define different weights for each requirement and different

requirements according to the assurance level.

(b) Be modular [20]. The architecture of our system allows several of our com-

ponents to be adapted according to certification needs. All tests are designed

with an API plugin that allows the addition of new tests according to the envi-

ronment’s needs. Another advantage is that the security profile is not linked to

a single set of technical requirements or assessment tests. Therefore, tests can

be reused by various security profiles.

(c) Structured representation of the technical requirements and evaluation pro-

cedure [23]. The security policy, where security requirements and tests are

declared, is represented as an XML file with a defined structure.

(d) Produce comparable results [23]. The detailed report generated allows an easy

comparison between devices regardless of the chosen security profile, when

they share the same set of tests. Scoring can also be used to compare devices.

However, we can only compare scores with the same assurance level, as the

score varies with the security profile used.

(e) Objectivity in the evaluation [23]. The ECSCF mandates that the evaluation

should be non-dependent on discretional assessments and always produce re-

peatable results. As our evaluation is an automatic process, it is objective and

reproducible.

2. Goal - An evaluation methodology that targets an agnostic vendor IoT environment with

a specific use case. During our analysis of existent certifications (Subsection 2.6), we

realize that the majority of the certifications aim to be sponsored by the manufac-

turer and therefore do not assess the specific context of the IoT system. This security

assessment procedure intends to promote new certifications that can evaluate the

specific context of a IoT system.

(a) Vendor agnostic [Subsection 2.3.2]. During a vendor-agnostic evaluation, there

is no privilege access to the device. Our assessment does not require any privi-

leged access, as the majority of the tests are network-based and the firmware’s

4. SYSTEM DESIGN 47

evaluation is done outside of the real system, with intercepted Over-the-air

(OTA) updates.

(b) Context aware [Subsection 2.3.2]. Many times, certifications use generalized

criteria to evaluate each device. This type of evaluation is not able to meet

completely the specific requirements imposed by its actual context. With the

owner’s security profiles, we can reach the security necessities of the device

according to its actual function and environment where it is inserted.

3. Goal - Provide an automatic and continuous assessment method.

(a) Automatic. The assessment procedure does not require user interaction.

(b) Continuous. One of the challenges raised during our research on security as-

sessments in IoT was that, with frequent changes in these environments, the

effectiveness of the assessment is compromised. As our system will be contin-

uously monitoring the network, a new device that appears on the network will

be automatically considered in the evaluation results.

4.3 Components

The architecture introduced in the Figure 4.1 represents the high-level architecture of our

system. It does not mean that it translates directly into the actual layout of the compo-

nents. The Figure 4.2 describes the layout of the components of our system.

FIGURE 4.2: System components

4. SYSTEM DESIGN 48

In total, we have five components that communicate through a shared database. aecsa-

webapp corresponds to the Security Assessment functional unit. The Security Test func-

tional unit is divided into four different software. This division was made based on the

existing software that we chose to do the tests and facilitate our solution’s scalability.

Each of these components is designed to be deployed as a Docker container. This

allows us to deploy and share our software [68] easily. We provide a docker-compose file

to create and configure all components of our system. However, these containers can be

run on any platform compatible with OCI images [69].

aecsa-external-analysis is responsible for transportation testing, packet sniffing, and de-

vice discovery. As it is self-contained software, it is possible to have multiple replicas of

this component on the same network to facilitate analysis in a complex network topology.

aecsa-firmware receives, from a plugin in aecsa-external-analysis, objects that were ex-

tracted from the Hypertext Transfer Protocol (HTTP) communications. The aecsa-firmware

analyses these objects and identifies if there is any OTA update and if there is, sends it to

FACT.

The FACT is an automated tool for analyzing IoT firmware, developed by Fraunhofer

FKIE [70].

aecsa-watchtower performs interface tests periodically and is also responsible for re-

trieving the test results from FACT and storing them in the same format as the other test

results.

aecsa-webapp is how the user can interact with the analysis procedure. On this plat-

form, the appropriate profile can be selected for each device found and where the updated

results for the analysis can be accessed.

A fundamental part of our systems is that all data is stored in a database, and the

database is used to share information between different components. For this role in our

system, we will use a MariaDB SQL Server [71].

4.3.1 Assumptions

During the development of our project, we decided that we will only analyze Ethernet

networks. This option was chosen to facilitate the implementation of a prototype.

Adapting this configuration to other networks based on the IP stack, such as Wi-Fi [72]

or 6LoWPAN [73], should be relatively simple with the right hardware to capture net-

work traffic [74]. However, networks using Z-Wave [75], ZigBee [76], Bluetooth Low

4. SYSTEM DESIGN 49

Energy [77] and other technologies that are not based on the IP protocol stack will be

more difficult to adapt. The tests need to be adapted to the reality of the transport stack.

For example, Bluetooth Low Energy uses the GATT protocol, which has a totally different

structure from the IP protocol stack [78]. Therefore, testing Bluetooth communications

requires important changes to our network packet processing system.

4.4 Summary

To sum up, our security assessment system performs two main tasks, continuously testing

each device on a network and analyzing the results of those tests, generating reports and

security scores.

Each one of these tasks is divided into smaller tasks, performed by independent com-

ponents. This type of architecture division facilitates the adaption of our system to differ-

ent network topologies and, at the same time, eases its scalability. We have four compo-

nents for testing and one component for evaluating the results and generate reports. Each

one of these components is deployed as an independent container and communicate with

each other through a shared database.

Chapter 5

Implementation

In the Section 4.3, we described the components that make up our system. Many of these

components needed to be implemented from scratch. This chapter describes the imple-

mentation process and the problems that emerged during the implementation.

This chapter follows the organization presented in the Subsection 4.1. First, we will

describe the components belonging to the Security Testing functional unit, and then the

implementation of the Security Evaluation components.

5.1 Security Testing

The components of the Security Testing are responsible for testing the devices and moni-

toring the network for changes in its topology. In this section, we will describe the imple-

mentation process of each one of these components.

5.1.1 aecsa-external-analysis

aecsa-external-analysis is responsible for sniffing packets, discovering new devices, identi-

fying the protocol for each network flow, and performing the appropriate tests.

The aecsa-external-analysis needs to handle much traffic. As mentioned in Section 4.1.1,

our system takes advantage of port mirroring to avoid introducing network delays. Even

so, if we are slow-processing packets, the network interface will begin to drop packets.

Therefore, a balance is needed between performance and ease of implementation. The

choice of the programming language used for this component is based on these condi-

tions. The language must also provide a way to capture network data and run DPI, either

natively or with a library.

50

5. IMPLEMENTATION 51

Given these conditions, we had three possibilities for the programming language: Py-

thon [79], Go [80] and C [81].

Python

Python is an interpreted language with garbage collection and can call native libraries

using CPython. This language is not focused on performance, but it provides a simple

prototyping environment that is not affected by low-level security vulnerabilities (buffer

overflow and heap overflow).

The Python language has two modules that are capable of decoding packages and

performing DPI: the scapy [82] and nfstream [83]. scapy is written in Python and allows

the developers to sniff and dissect network packets (its only external dependency is the

libpcap to sniff network packets). nfstream is a library designed to work with online and

offline network data. This library is based on the nDPI library, which is a C library for

deep-packet inspection.

Using Python for this component would allow us to develop on a high-level program-

ming language. Therefore, the development of the component would be facilitated. In

terms of performance, the Python language is known as slow [84], but the nfstream is de-

signed to be fast and with a small CPU and memory footprint. From previous experiences

that we had with scapy, we know that it does not perform well with live network traffic.

C

C is a low level compiled language with manually managed memory. C is known for

its performance, but it is also susceptible to various memory vulnerabilities due to its

memory management.

The C language has two libraries able to capture network packets and perform deep-

packet inspection: the libpcap and nDPI. The overhead of using these libraries is minimal

because they are native to C, and in terms of performance, the C language offers the best

performance compared to our two other options. Despite that, C is a complex program-

ming language, requiring a high level of knowledge to avoid introducing vulnerabilities

in the code.

Go

Go is a compiled language with a garbage collector, and it is known for its intuitive syntax

5. IMPLEMENTATION 52

and is optimized for performance and concurrency operations. The Go has two libraries

that do what we need: the gopacket [85] and go-dpi [86]. The gopacket is a library imple-

mented in Go, capable of sniffing and decoding network packets. The go-dpi is a wrapper

library for the nDPI library.

In terms of security, as this language is a high-level language, it abstracts many of the

memory management features, so it is not affected by memory security vulnerabilities

introduced by the programmer.

Due to these facts, we decided to use Go in the development of aecsa-external-analysis,

as it provides us with the balance between ease of development and performance.

5.1.1.1 Packet Sniffing

The base of aecsa-external-analysis is the packet sniffer. The gopacket library offers multiple

ways to capture packets from the wire libpcap, af packet socket and libpfring.

Initially, due to the amount of documentation available, we implemented the packet

sniffer using libpcap on gopacket.

libpcap [87] is a library independent of the operating system and allows the capture

of packets at the user level. The libpcap is used in most of the well known network tools,

such as tcpdump and wireshark. Using this library to capture network traffic with gopacket

is very well documented in the gopacket’s documentation.

Our prototype was able to sniff packets. However, during the tests, we discovered

an issue. We downloaded a file of 20MB while the program was sniffing and writing to

a pcap file. Then, with wireshark, we tried to extract the original file and we were unable

to extract the original file without it being corrupted. So, we concluded that we were

suffering from packet drops somewhere in our setup.

First, we try to use tcpdump to redo our tests, because it also uses libpcap for sniffing and

we want to understand if the error was on the implementation that we done or something

in the host configuration. From this, we deduce that the error was in our implementation

and not in a misconfiguration of the host machine.

We tried to find out if someone already had this error and discovered several men-

tions of this type of issue on Github, in which users complain about packet losses with

libpcap [88]. This problem is not directly related to libpcap, but due to the way Go interacts

5. IMPLEMENTATION 53

with native C libraries. To call a function in a C library, Go uses cgo calls. This type of calls

is a major performance overhead, due to memory duplication operations.

Therefore, this issue leave us two options, using libpfring or af packet.

libpfring [89] and its associated kernel module pf ring are a framework developed to

process packets at high-rates, while providing a consistent Application Programming In-

terface (API) for packet processing applications. The libpfring introduces the concept of a

circular buffer of packets (ring), allowing to buffer a fixed number of packets while the

application does not process them. This implementation also allows multiple applications

to read packets simultaneously and ensure that packets from the same flow will always

end up being read by the same application. These are the features that make libpfring used

by applications that need to process high traffic rates [90]. Unfortunelly, libpfring is also

affected by the overhead of cgo calls [91].

So, we opted to use AF PACKET, as it only calls cgo during its setup and not with each

packet it receives [92]. af packet sockets are used to receive or send raw packets in the

device driver, so this is the native way on a Linux system to capture network data [93].

When we change the libpcap sniffer to an AF PACKET based one, we were able to

retrieve our original file from the pcap file.

In the packet sniffing, to decrease the amount of traffic that we need to analyze, we

used a capture filter to capture only packets from the target subnet and filter packets

without a network layer, because go-dpi analyses only packets that have a network layer.

The capture filters are applied directly to incoming traffic, at the kernel level, just after

the raw data is received from the network card driver [94]. This way, we will increase our

performance by parsing only the packets that will be used by the application.

5.1.1.2 Deep packet inspection

The DPI is performed by the go-dpi library in the aecsa-external-analysis. This library iden-

tifies the application layer protocols and also aggregates traffic to network flows.

In terms of use, this library is elementary. The library maintains a set of current net-

work flows. When it receives a new packet, it identifies the flow to which the packet

belongs and whether it is new. Then, with the packet flow, we can use this library to

classify the flow protocol.

5. IMPLEMENTATION 54

This library is based on the gopacket library for packet structure and definition of net-

work flows. Before implementing this part, we analyzed go-dpi library to understand the

underlying architecture, and we found a bug in the identification of network flows.

gopacket introduces two types of flows at two different levels: the network level flow

(source and destination IP) and transport-level flow (source and destination network

port). The go-dpi notion of flow is the conjunction of the two (IP’s and network ports).

However, due to an implementation error, the go-dpi was using only the network ports to

identify the network flow. This issue has been reported to the go-dpi development team

and has been fixed [95].

Each application protocol will have associated protocol handlers. These handlers are

configured in the application as plugins. When the classification algorithm identifies

a protocol, our application associates the network flow with a packet handler, and the

packet handler analyzes every packet in that flow. Further packets of an already identi-

fied flow will be sent directly to the packet handler.

In these protocol handlers, we can implement security requirements tests.

5.1.1.3 Device discovery

Throughout this project, each device is identified by its MAC address. This design deci-

sion was made because IP addresses change over time, and the MAC address is unique

and does not change.

Device discovery is also based on MAC addresses. This process happens once for each

network flow. When a new network stream is identified, aecsa-external-analysis checks

whether the source or destination IP address belongs to the network being analyzed and

then retrieves its MAC address to verify that the MAC address was already seen. If the

MAC address has never been seen, the device discovery will create a new entry device in

the database.

For known devices, aecsa-external-analysis will update if the IP address changes.

The device discovery process is implemented with a hash table, which provides quick

value searches and caches the database information not to query the database each time

a new flow is detected. The program’s hash table and database are synchronized periodi-

cally.

5. IMPLEMENTATION 55

5.1.1.4 Plugins

The goal of having plugins is that we can develop new tests using our system. These

plugins are developed with the native Go plugin API [96] and must have two methods

that are called by the aecsa-external-analysis: ApplicableProtocols and PacketHandler. Applica-

bleProtocols returns a list of strings with the protocols to which this handler applies, while

PacketHandler is the method that executes the security test.

The first limitation is based on the plugins’ restricted access to the aecsa-external-analysis

global variables. The arguments and return of functions limit the communication between

the plugin and the parent program. Thus, to a plugin communicate with the database, it

would need to connect himself to the database and re-implement many of the already

available functions in the main program. So, to maintain lightweight and self-contained

plugins, our plugins will log the security events using a REST API hosted by the aeca-

webapp.

The other limitation of Go plugins is more a development limitation than a feature

limitation. The versions used by the plugin libraries must be the same as those used by

the main program.

5.1.1.5 HTTP traffic analysis

To connect the aecsa-external-analysis to the aecsa-firmware, we developed a plugin that

analyzes HTTP traffic and sends the results to the aecsa-firmware.

This plugin analyses network flows that were identified as HTTP flows. It reassembles

the Transmission Control Protocol (TCP) stream and extracts the HTTP bodies. These

bodies are sent to the aecsa-firmware to be analyzed. The reassemble of the TCP stream

uses the tcpassembly and http package to decode the HTTP protocol.

The communication between the aecsa-external-analysis and the aecsa-firmware is made

using gRPC [97]. gRPC is a high performance remote procedure call framework and works

across multiples languages, including Go and Python.

For this plugin, we choose to use gRPC, because the implementation of communi-

cations across multiple languages is simple. We only need to define a function that we

pretend to share, and gRPC automatically generates the client and a server code in the

necessary languages. Also, as we need to share binary data between the two services,

the gRPC is ideal because it uses Protocol Buffers [98], which is a serialization method for

structured data that allows serialize binary data.

5. IMPLEMENTATION 56

5.1.1.6 Packets workflow

To summarize, the packet sniffer filters out all unnecessary network traffic and sends the

remaining packets to the DPI phase. In the DPI phase, the packet flow will be identified.

If the protocol flow was previously identified, the packet would be passed to the packet

handler; otherwise, the protocol identification algorithm will analyze all packets belong-

ing to the flow. If the protocol identification algorithm successfully identifies the protocol

flow, the result is stored to decrease future packets’ processing time in this flow (Figure

5.1).

FIGURE 5.1: Packets workflow

5.1.2 aecsa-watchtower

aecsa-watchtower is responsible for scheduling interface tests periodically for each device.

Its base component is an implementation of cron in Go [99]. The aecsa-watchtower checks

the database for new devices every 5 minutes. If a new device is found, a new cron entry

is created to run interface tests once a day. The aecsa-watchtower has three types of inter-

face testing: port scanning, default credential scanning and vulnerability scanning. Port

scanning is implemented using the nmap scanner [100], while the default credential and

vulnerability scanning uses the Open Vulnerability Assessment Scanner (OpenVas) [101].

Nmap is a utility for network discovery and security auditing. This tool allows tasks,

such as network inventory and monitoring hosts. In our case, we will use this tool to scan

the open ports of a device and identify which operating system the device is running. To

integrate nmap with our tool, we used the Go library called nmap [102] that allows to have

bindings for the nmap scanner.

5. IMPLEMENTATION 57

OpenVas is an open source vulnerability scanner, developed by the Greenbone com-

pany. Normally, the OpenVas is available inside the Greenbone’s complete solution for

vulnerability assessment and asset management.

The integration of OpenVas with Go was more difficult than the integration of nmap.

The OpenVas has an API that enables remote management of the scanner, but there is only

libraries to communicate with this API in Python. Moreover, the OpenVas is usually pro-

vided within the Greenbone stack (the integration of OpenVas scanner with a complete set

of tools for management). Thus, to include OpenVas in our solution, we need to develop

a Go library that is able to communicate with the OpenVas API and create an independent

OpenVas installation to maintain a small footprint.

The API that is available to manage the OpenVas is the Open Scanner Protocol (OSP) [103].

OSP is a protocol developed by Greenbone that allows to manage a great diversity of scan-

ners in a unified way. The OSP is based on XML objects exchanged through a TLS socket.

The TLS connection uses client and server certificates for authentication on both sides.

Go offers a native TLS client and XML parser implementation. To implement a library

capable of managing OpenVas, we created a representation of the different OSP XML ob-

jects in Go and developed functions to abstract the interactions with the server. The de-

veloped library is available on Github ∗.

To create a small footprint OpenVas, we built a minimal container with an OpenVas

installation, an OSP server and a set of scripts to download and update vulnerabilities

metadata. This container is available on Github and Dockerhub †.

Thus, the aecsa-watchtower uses go-osp to manage a minimal OpenVas docker. The use

of osp to create new scans in OpenVas was not straight forward. The OpenVas uses Nessus

Attack Scripting Language (NASL) scripts to test vulnerabilities. These scripts are orga-

nized by their function or the type of vulnerability they are trying to test. For instance,

if we want to scan for default credentials on a service, we need to select the ”Default

Credentials” family. However, these scripts have dependencies; for instance, it will only

check the default credentials for a telnet service if it knows that the device is running

this service. OpenVas does not automatically select these dependencies, so to create any

scan for a device, we first need to select the ”Port Scanner” family and then the type of

vulnerability we want to test.

∗https://github.com/MrSuicideParrot/go-osp
†https://hub.docker.com/r/cirne/openvas-light

https://github.com/MrSuicideParrot/go-osp
https://hub.docker.com/r/cirne/openvas-light

5. IMPLEMENTATION 58

In addition to the interface tests, the aecsa-watchtower is also responsible for aggregat-

ing the results of the firmware testing. As we mentioned earlier, the FACT performs the

firmware testing, and its output needs to be imported for our system.

As the main functionality of the aecsa-watchtower is to run periodic tasks, we used this

component to regularly check the FACT for new reports and import them to our system.

5.1.3 aecsa-firmware

Firmware analysis relies on OTA updates and assumes that these updates are not en-

crypted. Most manufacturers use custom ways to update their devices. It would be im-

possible to support all this diversity. So, we will focus on a standard for OTA updates.

For our system, we choose the Software Updates for Internet of Things (SUIT) specifi-

cations [104], because the Internet Engineering Task Force (IETF) is developing it, and

usually, their standards have a great acceptability by the community [105].

The SUIT working group specifies a manifest which provides information about the

firmware and security mechanisms to protect the integrity of the manifest and firmware [106].

There are many custom ways to update IoT devices, but if a system does not follow

this guideline, we will consider the OTA update as insecure.

To verify if the OTA update is secure according to the SUIT specification, we imple-

mented a parser for the SUIT manifest and stored the information until we receive the

firmware. We cannot verify the cryptographic signature of the manifest because we do

not know which key was used to sign it, but we are checking if the firmware hash avail-

able in the manifest matches any of the received firmware.

The development of the parser for the SUIT manifest was made using the SUIT spec-

ification [106] and the previous work made in this topic by Koen Zandberg et al. [107],

which created a demo update server to test the SUIT specification.

Thus, when the aecsa-firmware receives bodies of HTTP requests, it verifies whether it

is a CBOR payload [108]. If it is a CBOR payload, the application will try to decode it as a

SUIT manifest and then stores the hash algorithm and firmware’s hash. If it is not a CBOR

payload, the application will check if the payload is a firmware image using binwalk. If

receiving a firmware image, it will calculate its hash and then check if it matches any

previous hash extracted from manifests.

5. IMPLEMENTATION 59

aecsa-firmware, after identifying a firmware, will submit it to the FACT and register in

the database the ID assigned by the FACT to the firmware. This ID will later serve to

retrieve the results of the analysis.

5.1.4 FACT

FACT is a firmware analysis and comparison tool intended to automate the firmware

analysis process. It can unpack many of the common formats of firmware and analyze

the resulting content.

This system provides a plugin API to facilitate the development of new unpacking

and analysis methods. It also offers a REST API that allows us to submit new analysis

and retrieve its results. These two characteristics were the key to the integration of this

system on our automated testing system.

By default, FACT includes several plugins. The majority of these plugins can be

adapted to evaluate security requirements.

The main disadvantage of FACT is its minimum requirements. It is necessary to have

at least 4 cores and 8 GB of RAM. These specs make it unprofitable to have a machine

dedicated to this task, when it is used only to analyze firmware updates, and these up-

dates are not that frequent. These high requirements are due to the security static analysis

done to each binary found in the firmware.

It is possible to disable this plugin, but we lost the ability to analyze unknown binaries’

security. A solution for this problem would be to put this machine in a VPS and turn it on

when necessary or share it among different deployments.

5.2 Security Evaluation

The security evaluation was developed as part of a web app. This web app allows the user

to manage the existent security profiles and obtain the most updated evaluation results.

In this section, we will first describe how a security profile will be represented and

evaluated. Then, we will explain the features that have been developed to control our

evaluation system.

5. IMPLEMENTATION 60

5.2.1 Representation and evaluation of a profile

A security profile is defined by the ECSCF as a document that states the security problems

that we are trying to solve, the objectives that we intend to reach, and the security features

that need to be implemented to fulfill these objectives [20].

To automatize the evaluation of a profile is necessary to translate these security fea-

tures into security requirements. These requirements are then organized in a security

policy, represented as a XML file.

Therefore, to evaluate a security profile in our system, it is necessary to create a secu-

rity policy on a XML file. This file has two parts: a header and a body.

The header is identified by the metadata tag and it has two fields: the name of the

profile (name tag) and the profile’s unique identifier (uuid tag).

The body has tests organized by their category (category tag). Each test has a standard

id, a reference for the standard used to define the profile, and the points that this test can

contribute to the overall security score (check tag). A test is a query to a database where

events are stored from the evaluation point of view. Each check tag can have other tags

inside, which will influence how the score is calculated.

If the check tag does not have any sub-tag, the evaluator will check if the database has

any event of non-compliance with this requirement, and if not, the points associated with

the test will be added to the score of the device.

There are three possible sub-tags: vuln, range and check. If a check has sub-tags, they

must all be of the same type.

The sub-tag vuln is used when it is necessary to evaluate the results of a vulnerability

scan. This type of test will decrease the device’s points according to the severity of the

vulnerabilities found. This is done using the field multiplier, which is present in each

vuln tag. The multiplier field can vary from 0 to 1, and for each vulnerability found, we

multiply the current points of the test by the multiplier value (Equation 5.1). For instance,

in a test that can give 1 point, if we find two vulnerabilities classified as low and the

multiplier associated with low severity vulnerabilities is 0.75, the result of this test will be

0.5625, because, for the first vulnerability, we multiply 1 by 0.75, and then we multiply

the result of this operation again by 0.75.

SRq(x) = points(x).
critical

∏
s=low

multiplier(s)n∗ (Equation 5.1)

∗SR: Score of the requirement

5. IMPLEMENTATION 61

The sub-tag range is used to assign points according to the number of events registered.

To each range tag, there is a multiplier value and a range of numbers. To evaluate range

tags, the number of events related to a security requirement is counted, then the points of

the security requirement are multiplied by the multiplier value assigned to the matched

range. This type of tag could be used to evaluate the number of network ports open on a

device.

A check can also have other checks as sub-tags. In this case, each test result will con-

tribute to the overall score of the parent test. So, if the parent test has 3 points and three

sub-checks, each sub-checks will count 1 point (Equation 5.2).

SRq(x) =
n

∑
i=0

(
SRq(i).

n
points(x)

)
(Equation 5.2)

In addition to these tags, there is also the if tag, which allows us not to evaluate part of

the security profile if it is not applicable. For instance, if we have TLS configuration test,

and the device does not have TLS traffic, the points referring to this test will not enter the

device’s score.

The overall score (S) is generated from evaluating each of the tags and counting the

number of points obtained. The final result is shown as a percentage between the points

counted and the maximum number of points that a device can get. The if tag influences

this maximum number of points. Points that are within an if tag are counted only if they

are applicable (Equation 5.3).

S =
∑x

i=0 SRq(i)
∑x

i=0 points(i)
.100 (Equation 5.3)

5.2.2 Web application

The web app was developed using Flask [109], which is a lightweight Web Server Gate-

way Interface (WSGI) web application framework. Flask supports the creation of web-

pages using Jinja [110] templates. When the user requests a webpage, the template is ren-

dered with the most updated results. Thus, whenever a user intends to access a device’s

results, the score and report are generated with the most recent information.

The web application has three main pages: the home page, the device summary, and

the device report.

The web app’s home page features a summary of all the devices detected and their

security scores (Figure 5.2).

5. IMPLEMENTATION 62

FIGURE 5.2: Web app homepage

The device summary displays a summary of the device’s information, including their

security score identified operating system, and captured firmware. This page also gives

access to the device report (Figure 5.3).

FIGURE 5.3: Device summary

In the device report, the user can explore each security requirement’s results, with par-

tial scores for each security requirement category and access to the detailed information

about each requirement, namely the security events that influenced this score (Figure 5.4).

Besides, the web application has a page that allows the user to upload security pro-

files. By default, the application uses a default profile for each new device that discovers.

5. IMPLEMENTATION 63

FIGURE 5.4: Device report

However, the user can assign a specific profile to a device or change the default profile

(Figure 5.5).

FIGURE 5.5: Policies manager

The Flask application also has a REST API to register security events. This API is used

by the plugins that have no connection to the database to register their events.

The web application is currently not hardened in terms of security, all the users have

the same permissions, and the REST API for plugins does not have any authentication.

5.3 Summary

During the implementation of our system, we implemented multiple components that

can be reused by other projects. These components were made available on Github as

5. IMPLEMENTATION 64

independent projects (Table 5.1).

Name Description

go-osp A client implementation for the Open Scanner Protocol in Go lang
openvas-light A dockerized version of openvas, independent of the greenbone stack

FACT-search-secrets A FACT plugin to search secrets in firmware
Yara-Secrets Yara rules to detect secrets like passwords, api keys, and tokens.

TABLE 5.1: Independent components that were developed during this thesis

Moreover, our main project is also available on Github (https://bit.ly/3ecgGzZ).

https://github.com/MrSuicideParrot/go-osp
https://github.com/MrSuicideParrot/openvas-light
https://github.com/MrSuicideParrot/FACT-search-secrets
https://github.com/MrSuicideParrot/Yara-Secrets
https://bit.ly/3ecgGzZ

Chapter 6

Evaluation

Our proposal goal is to create a test procedure that respects best practices from ENISA,

targets IoT environments, and can test them automatically and continuously.

To evaluate if our goals have been met, we tested with a virtualized IoT environment.

The tests were divided into three phases.

In the Phase 1, we create different security profiles from a security requirements tech-

nical specification. With this, we can check if we can represent a technical security speci-

fication as an automatic security assessment (Requirement 1.c, 1.e, and 3.a).

Then, we perform the Phase 2 that focus on evaluating our IoT environment against

the security profiles created before. In addition to assessing whether the devices are being

correctly evaluated, we will also check if the results can be compared (Requirement 1.d)

and does not require privileged access to evaluate the device (Requirement 2.a). In this

phase, we also tested if the assessment methodology can adapt to changes in the IoT

environment (Requirement 2.c and 3.b).

Finally, in the Phase 3, we evaluate the difficulty of adapting to an existing security

profile for a new version of a technical security specification (Requirement 1.b).

This chapter describes the IoT environment used to test our system, all the phases

mentioned above, and a reflection on our tests’ results.

6.1 Test environment

The tests were performed on a fully virtualized network with eight virtual machines. The

hypervisor used was QEMU 4.2.0 on a server with Ubuntu 20.04 LTS. In terms of specs,

65

6. EVALUATION 66

this machine has a i7-9700K CPU, which supports VT-x extension for virtualization, 32GB

of RAM and 1Tb of NVMe storage.

QEMU can virtualize machines with architectures beyond the hypervisor CPU archi-

tecture [111]. However, to facilitate the test environment’s setup, we decided to have only

x86-64 architecture machines.

Our network will simulate an enterprise network with four IoT devices, a server that

is responsible for monitoring the other components of the system (InfluxDB sever) and a

centralized server to deliver OTA updates (firmware-update server).

The IoT devices will run different versions OpenWrt [112], inclusive an OpenWrt ver-

sion built specifically to be deliberately insecure, the IoTGoat [113].

OpenWrt is a Linux operating system targeting embedded devices where its main focus

is consumer-grade routers. However, there is a large amount of IoT devices that use this

firmware because it is commonly distributed as a Software Development Kit (SDK) from

the System on a Chip (SoC) vendor to the product developer. The Philips Hue Bridge

2.0∗ is an example of this, which is a ZigBee gateway that uses OpenWrt as an operating

system [114].

Each IoT device has a telegraph [115] agent that collects metrics about the device and

sends them to a server that stores them. The data is stored in a InfluxDB database and can

be accessed in the same server using Grafana.

Beyond that, IoT devices regularly connect to a server to check if there is any security

update. If an update is available, the server will provide a SUIT manifest containing a

link for the HTTP server, where the image can be downloaded.

Additionally, this network will have two more servers to host our testing system —

one server dedicated to the FACT-core and the other for the rest of the components. As

we mentioned earlier, the FACT-core does not need to be in the network that it is being

analyzed. However, as our hypervisor server has available space to host this server, we

opted to host the server on the same network. The other server will have two network

interfaces, one for management and the other to sniff the network traffic, configured to be

in a port mirroring. This server will run our services using docker.

To test our TLS plugin, we also put in the network a web server. This server will have

a nginx service with several virtual hosts configured with different TLS configurations.

The information presented above is systematized in the Table 6.1.

∗Philips Hue Bridge 2.0 is a smart switch that allows users to control all of their Philips Hue products
through an app.

6. EVALUATION 67

Name OS CPU RAM Purpose

AECSA Ubuntu 20.04 4 4GB

This machine hosts the
containers of our test system,

using docker. It has
two network interfaces, one
for management and other

to sniff the network packets.

FACT Core Ubuntu 20.04 4 8GB

An installation of FACT core
with the minimal requirements.

As we mentioned earlier, this
component could be in other

network or in the cloud.

firmware-update Alpine linux 1 768 MB
Server providing OTA

updates to devices

InfluxDB Ubuntu 20.04 2 2GB
This server collects

metrics from the devices
in the network

IoTGoat OpenWRT 1 1GB

IoTGoat is a deliberately insecure
OpenWRT machine created by
OWASP, to exemplify common
vulnerabilities of IoT devices.

openwrt-15.05 OpenWRT 15.05.0 1 256MB Generic openwrt installation
openwrt-18.06 OpenWRT 18.06.0 1 256MB Generic openwrt installation
openwrt-19.07 OpenWRT 19.07.2 1 256MB Generic openwrt installation

TABLE 6.1: Devices on the network

6.2 Phase 1

The security policies influence the evaluation of the environment that we are assessing.

Normally, during the certification process, a GST was already created when evaluating a

device, and the evaluation will follow this security profile. To evaluate a device with our

system, the GST should be converted to a common language accepted by our system and

enable us to evaluate a device according to any GST.

In our case, we are only developing and testing an evaluation methodology, so we

did not develop a GST. Thus, to test our evaluation methodology, we will need to choose

a Technical Specification of Security Requirements and create our own profiles based on

these requirements. Since we are only developing these profiles to evaluate our system,

we will not follow all the certification phases of the ECSCF, but we will only develop

6. EVALUATION 68

the profile directly from the Technical Specification of Security Requirements and in the

format accepted by our system.

In the following subsections, we will describe the Technical Specification of Security

Requirements we choose and then develop the security profile and the associated compli-

ance tests to each security requirement.

6.2.1 Technical Specification of Security Requirements

Before creating a security profile, we need a set of security requirements. According to

the ECSCF, these requirements should be based on existing standards.

As a foundation for our security profile, we choose the ETSI TS 103 645 because, when

we plan this thesis, it was the only European standard for IoT, and it was already in use

by a security certifications (BSI kitemark).

The ETSI TS 103 645 is an Technical Specification (TS) aiming for the security of con-

sumer IoT devices. The standard specifies high-level requirements for the actual security

of a IoT device and the services associated with it. This document is divided into provi-

sions. In the provisions, there are mandatory and non-mandatory security requirements.

If any of the requirements is considered not applicable to the device, the justification must

be recorded.

In total, there are 37 provisions divided into 13 groups. These provisions focus on the

different IoT attack vectors, as hardware attacks maintain the data’s privacy. The groups

of provisions are written below:

• No universal default passwords

• Implement a means to manage reports of vulnerabilities

• Keep software updated

• Securely store credentials and security-sensitive data

• Communicate securely

• Minimize exposed attack surfaces

• Ensure software integrity

• Ensure the protection of personal data

6. EVALUATION 69

• Make systems resilient to outages

• Examine system telemetry data

• Make it easy for consumers to delete personal data

• Make installation and maintenance of devices easy and Validate input data.

6.2.2 Profile development

To develop a security profile that could feed our system, we analyzed the different secu-

rity requirements and designed the necessary test to verify if the requirement is fulfilled.

In the Appendix A, it is detailed our initial analyses, where we survey which require-

ments were mandatory to be implemented and if they can be tested with an automatic

test.

We concluded that it was possible to automate 11 from the 37 proposed security re-

quirements by the standard from this process. This means that only 30 percent of the

requirements were possible to automate. However, these results are due to the number of

requirements that are only possible to test with the device manufacturer’s human inter-

action or inquiry. The requirements that were not possible to automate include all tests

related to General Data Protection Regulation (GDPR), processes involving company poli-

cies (such as the device update policy), and the relation between the vendor and the user.

These types of requirements will always require some user input to test.

To better explain this limitation, we can analyze one of these requirements. The re-

quirement 4.12-2, which was considered impossible to automate, states that ”Consumers

should also be provided with guidance on how to set up their device securely.”. Without

a manual analysis of the user’s documentation, it is impossible to attest to this correct

implementation requirement.

Based on the requirements that we considered to be able to automate, we develop

15 tests. The number of tests is superior to the number of security requirements be-

cause some were divided into multiple tests to evaluate their fulfillment properly. For

instance, the requirement 4.2-3, which establishes that all software components in IoT

devices should be updated, is divided into three tests: network vulnerabilities, software

vulnerabilities, and vulnerabilities detected by static analysis of the firmware.

We will now describe the requirements that we can test with our system and the asso-

ciated tests. We implemented all the tests using the external analysis plugin architecture.

6. EVALUATION 70

On the other hand, the FACT core plugins, except the test number 10, were developed by

the developers of FACT and reused in our system.

Provision 4.5-1 dictates that any security-sensitive information should be encrypted in

transit. This security requirement was divided into two tests: the general protocol testing

and TLS protocol testing.

The idea behind this division is to evaluate how secure is the communication, and

with the TLS protocol testing, we can evaluate the settings used in the secure channel.

These two tests were developed as an External analysis plugin.

• Test 1 - General protocol testing

This test is executed with each network flow (flow means the source and destina-

tion IPs and network ports). It has a list of protocols considered insecure, and if

the protocol identified in the flow matches any of this list, the plugin will log the

situation.

With this test, we can identify if the device is not secure and uses protocols that may

transport security-sensitive information.

• Test 2 - TLS protocol testing

This external analysis plugin is responsible for analyzing each TLS stream.

The library that we used to develop our packet analysis does not support decod-

ing protocols above the transport layer. So, as TLS is above the transport layer, the

gopacket does not decode TLS packets [116]. To overcome this problem, we devel-

oped a solution using the existent Go lang native TLS implementation [117] and the

gopacket’s tcpassembly. The tcpassembly will assemble the TCP stream and then, using

the Go TLS implementation, it decodes TLS packets.

Go is able to decode TLS packets, however this is done with internal components

(Go’s unexported functions, variables and structs), so we are not able to use them.

We tried to find ways to access these features, but the methods we found only

allowed us to access unexported functions and not structs or variables [118, 119].

Thus, we were forced to copy the code of the TLS implementation into the plugin.

This approach has a limitation. The Go TLS implementation only supports TLS 1.2

and 1.3, so if a device communicates with an older version of the protocol, the de-

coding of the protocol may fail.

6. EVALUATION 71

The majority of the technical specifications do not define what is considered a se-

cure connection. To do that, we will utilize the NISTSP800-52REV.2 [120], which is

the NIST guidelines for the configuration of TLS communications. All these best

practices were represented in a XML file ∗, which is parsed by the plugin and en-

able us to switch its settings easily. This policy’s representation considers that if

the observed setting does not appear on the list, it means that this setting is inse-

cure. Additionally, NIST also defines some configurations as acceptable and others

as recommended. To include this in our policy, there is a field representing if the

configuration is recommended or not, and this will influence the moment of assign-

ing points for this security requirement. If the configuration is acceptable, it will be

assigned a partial score of this requirement’s total score.

To test the implementation of these guidelines, we will test four things in the TLS

stream: the security of the version of the TLS, the security of the agreement protocol,

if the certificate being used is for the correct server, and finally, if the certificate is

valid.

TLS 1.3 has a restriction for this test. During TLS 1.3 handshake, the TLS certificates

are encrypted, so we cannot check its validity. However, we can still analyze the

rest of the TLS specifications on the secure channel [121]. This problem affects every

application that does this type of testing and forces applications to become more

intrusive to test this type of information, such as transparent proxies to monitor

TLS connections. With our goals for this project, this is not an option because to

configure a TLS proxy, the device must trust our certificate authority, and to do this,

we need privileged access to the device (which does not respect the Requirement 2.a).

Provision 4.6-5 mandates that software should run with the least necessary privileges.

This requirement could be evaluated with two tests: check if the software is running with

few privileged-users and exploit mitigations.

• Test 3 - Init analysis

The Init analysis plugin detects files of auto-start services.

To transform this plugin into a test, it can check if the services are running with few

privileged-users. According to the auto-start system in use, we need to analyze the

plugin results and identify if there is any form of user-defined in the service.
∗https://github.com/MrSuicideParrot/AECSA-analysis-plugins/blob/master/SSL/tlspolicy.

xml

https://github.com/MrSuicideParrot/AECSA-analysis-plugins/blob/master/SSL/tlspolicy.xml
https://github.com/MrSuicideParrot/AECSA-analysis-plugins/blob/master/SSL/tlspolicy.xml

6. EVALUATION 72

This plugin identifies five types of auto-start services system: SystemD, rc, initscript,

UpStart and SysVInit. From these systems, only rc does not have a standard way to

run a program with a specific user.

Thus, when we analyze this plugin’s results, and according to the type of auto-start

service system, we consider that the security requirement is met if there is a service

running with other users than root.

This approach has a limitation, as it does not detect if the software changes the

user id when it is running. To overcome this limitation, there are two possibilities:

having privileged access to the device and observing the user id with which the

programs are running or analyzing software in search of setuid operations. Due to

the Requirement 2.a, it is impossible to analyze the programs when they are running,

so they can only develop a new plugin to search for setuid operations.

• Test 4 - Exploit mitigations

Exploit mitigations plugin analyses each ELF binary and reports the state of each

exploit mitigation technique, namely PIE, NX, RELRO, and Canary stack. Ideally,

binaries should have all these exploit mitigations enable.

To evaluate devices in this test, we assign a score according to the number of exploit

mitigations implemented by the device. So, if the device implements all techniques,

it will have the maximum score, and if the device only implements half of the tech-

niques, it will have half of the maximum score.

It is possible that, depending on the binary, there are different exploit mitigations

implemented. So, we consider that a mitigation technique is implemented when the

majority of binaries implement it.

Provision 4.5-2 defines that all cryptographic keys should be securely managed. This

includes its operation and storage.

• Test 5 - Crypto material - 4.5.2

The crypto material is a FACT plugin that searches the firmware for SSH, PGP, and

SSL private keys. If we find any of these secret keys, we will consider that the

security requirement 4.5.2 is not met.

Provision 4.3-1 dictates that all software components in consumer IoT devices should

be updated. We divided the evaluation of this requirement into three separate tests: a

6. EVALUATION 73

network vulnerability scan, a software vulnerability scan, and a software vulnerability

scan by static analysis.

• Test 6 - Network Vulnerability Scan - 4.2-3.1

This test uses the builtin OpenVas scanner of our architecture to scan devices for

known network vulnerabilities.

The score of this requirement is assigned according to the number of vulnerabilities

and their severity.

• Test 7 - Software Vulnerability Scan - 4.2-3.2

Software Vulnerability Scan uses the cve lookup plugin from FACT, which identifies

software components in the firmware and searches for known CVE’s.

The score of this requirement is assigned according to the number of vulnerabilities

and their severity.

• Test 8 - Software Vulnerability Scan by static analysis - 4.2-3.3

Software Vulnerability Scan by static analysis uses the Common Weakness Enu-

meration (CWE) checker plugin from the FACT. This plugin performs to ELF bi-

naries statically analysis and searches for weakness in the code (CWE). Internally,

this plugin uses the Binary Analysis Platform [122], which currently supports ARM,

x86/x64, PPC, and MIPS.

CWE’s do not have a score of severity associated with it because a weakness may not

translate to a vulnerability, and beyond that, it is necessary to know the assets that

may be compromised to evaluate its severity. This process needs human interaction.

Therefore, we use this test to evaluate a device for unknown vulnerabilities, the

existence of a CWE is a sign of poor code quality and possible vulnerabilities, and

the requirement will be considered not met.

Provision 4.6-1 states that unused network ports should be closed to minimize ex-

posed attack surface.

• Test 9 - Nmap port scanner

Nmap port scanner is built-in in our architecture. To test this security requirement,

we will scan the device for open ports and assign a score according to the number

of exposed services. A device with more open ports will have the worst score in this

test.

6. EVALUATION 74

Provision 4.6-3 states that software should only be available if it is in use.

This type of statement is difficult to automate without knowledge about the behavior

of the device. However, we can detect the software present in the device and evaluate the

number of installed software.

• Test 10 - Software components

The software components plugin identifies software that is installed in the device.

For instance, if a device has debug tools in its firmware, the number of installed

software will be high, and this requirement’s score will be lower.

Provision 4.1-1 states that IoT devices passwords must be unique and without univer-

sal default passwords. We created two tests for this requirement: one that tries default

password against exposed services and others that tries to extract credentials from cap-

tured firmware.

• Test 11 - User and passwords - 4.1-1

FACT user and passwords plugin searches the firmware by Unix, and httpd pass-

word files and tries to crack them with known credentials. If we can crack any of

the credentials found, this requirement will be considered not fulfilled.

Test 12 - Default credentials scanner - 4.1-1

The default credentials scanner is the scanner mode of the OpenVas vulnerability

scanner that it is built-in in our system. This scan attempts to authenticate itself

with default credentials in the exposed services. If this process is successful, we will

consider the requirement 4.1-1 is not fulfilled.

Provision 4.4-1 defines that security-sensitive data should be stored securely.

• Test 13 - Search secrets Search secrets is a plugin that we develop to search the

firmware files for API secrets. FACT core offers an analysis plugin sub-type called

YaraPlugin. This type of plugin uses YARA pattern matching [123] to identify pat-

terns in the firmware files.

The development plan for these plugins was to search for existent collections of

API tokens regex rules, rewrite them into YARA rules, and then develop our plugin

using these rules. The project that we use to extract the regex rules of API tokens

was the gitleaks [124], which is a program used to scan git repositories for leaks of

6. EVALUATION 75

API tokens. We also analyze other projects, but we concluded that everyone was

using the same set of regex expressions [125].

The YARA rules and the plugin that we developed are available on Github[126, 127].

Provision 4.3-7 states that when a device is updated, it must be delivered over a secure

channel.

• Test 14 - Firmware Suit

Firmware Suit is a test built-in in our system that checks if OTA updates follow the

SUIT standard.

Provision 4.13-1 defines that user input must be proper validated. A way to automate

these tests is fuzzing the different services of the device.

There are different types of fuzzing, depending on the access to the device. As we

do not have privileged access to the device, we can infer some information from the port

scanner and DPI.

This information allows us to approach this problem with two techniques, grammar-

based fuzzing and mutation fuzzing [128].

We can use the port scanner results to identify the ports open in the device and fuzzing

this ports with grammar-based fuzzing according to the identified protocol. The other

option is to capture real traffic from the device and perform mutation fuzzing based on

this network traffic.

Regardless, fuzzing in a production environment is a risky operation. It can compro-

mise the reliability of the system and also consume bandwidth necessary for other ser-

vices. Because of this, the execution of a test like this could not be totally automated. This

needs to be controlled or configured by an operator not to compromise the IoT system’s

reliability.

Unfortunately, due to the time constraint of this thesis, we did not develop this test.

To summarize, the Table 6.2 lists each test, the security requirement that it aims, and

each type of plugin it was implemented.

We develop two security profiles with all these requirements and security tests: the

default profile and the server profile (Appendix B). The default profile has all the require-

ments and tests mentioned above. The server profile aims servers on the same network

of the IoT devices and has no requirements regarding firmware and OTA updates.

6. EVALUATION 76

Test number Name Requirements Plugin type

1 General protocol testing 4.5-1.1 External analysis
2 TLS protocol testing 4.5-1.2 External analysis
3 Init analysis 4.6-5.1 FACT core
4 Crypto material 4.5-2 FACT core
5 CVE lookup 4.2-3.2 FACT core
6 CWE checker 4.2-3.3 FACT core
7 Exploit mitigations 4.6-5.2 FACT core
8 Software components 4.6-3 FACT core
9 User and passwords 4.1-1 FACT core
10 Search secrets 4.4-1 FACT core
11 Firmware suit 4.3-7 Built-in test
12 Network vulnerability scanner 4.2-3.1 Built-in test
13 Default credentials scanner 4.1-1 Built-in test
14 Nmap port scanner 4.6-1 Built-in test
15 Fuzzing 4.13-1 -

TABLE 6.2: Relation between tests and security requirements

6.3 Phase 2

The goal of this phase is to verify the effectiveness of each test and the overall system.

To achieve this, we evaluate each test (Unit testing) and the system’s overall effectiveness

(System testing) individually.

6.3.1 Unit testing

Unit testing ensures that our tests have been implemented correctly. To assess these tests,

IoT devices on the network must create specific traffic to verify that the test detects non-

compliant behavior. Thus, our tests will need to remotely control IoT devices to initiate

vulnerable behaviors and then verify that they have been detected.

We created a script that uses Ansible [129] to control each IoT device in the test environ-

ment and makes SQL queries to the database to check if the tests were detected correctly.

Ansible is a software of provisioning, configuration management, and application-

deployment that uses existing remote administration protocols, such as SSH, to run a

script programmatically on one or more machines. This software was used to execute

commands remotely more easily, as it allows us to abstract the configuration of a con-

nection with a simple alias and execute several commands simultaneously on different

machines. Ansible requires an SSH server and a Python installation on each machine. By

default, each OpenWrt machine has an SSH server, and it is possible to install Python from

6. EVALUATION 77

the OpenWrt repositories. Therefore, the process of installing and configuring Ansible was

simple.

The testing procedure is as follows: First, the database is cleared of all previous events,

then a command is executed on the device IoT, which causes the device to behave in an

insecure manner. Finally, we query the database to verify that this event was correctly

identified and recorded.

The Unit test script is available on the project repository. In total, there are 16 unit

tests, at least one for each security requirement test (test 15 does not have a Unit Test

because it has not been implemented). Tests 2 and 11 were evaluated with more than one

test because it was necessary to ensure that they did not identify secure communications

as unsafe.

Our system passed all tests successfully. However, during the results analysis, we

discovered a limitation mentioned in other certification schemes, namely the ARMOUR

certification.

The quality of the CVE report limits the effectiveness of our automated vulnerability

scan. If the CVE details were filled incorrectly, it would compromise our scan.

An example that we observe in our tests was CVE-2017-3209. This vulnerability affects

a specific drone model with an insecure FTP server, allowing anonymous files as root. Our

vulnerability scan identifies this on all IoT devices in our test environment, because those

devices have busybox in their firmware, and the vulnerability reporting states that affects

all the installations of busybox, regardless of the version installed.

This type of mistake can be detected with a human review of the test results. However,

for systems that intend to be fully automated, this is not a solution.

6.3.2 System testing

System testing has the goal of testing the overall effectiveness of our system. This test

lasted a week, in which our system constantly monitored the test environment.

During this test, we turned off the telegraph agent, as we intended to evaluate the IoT

devices with their default configurations.

We use two security profiles: the default profile and the server profile. The virtual ma-

chines running different versions of OpenWrt were evaluated with the default profile. The

remaining ones used the server profile. During these tests, we simulate a secure OTA up-

date to each OpenWrt device to analyze their firmware.

https://github.com/MrSuicideParrot/AECSA/blob/master/tests/tests.sh
https://nvd.nist.gov/vuln/detail/CVE-2017-3209

6. EVALUATION 78

The four OpenWrt devices have different versions of the operating system, and with-

out any security patch, it is expected that more recent systems have a better score than

older ones. Moreover, IoT Goat is based on OpenWrt 18, but was created to be insecure.

Thus, it should have the worst security score.

Our system assigns a score of 74.35 to openwrt-19.07, 71.53 to openwrt-18.06, 67.27 to

openwrt-15.05, and 61.12 to IoTGoat.

The results were what we were expecting; more recent installations have a better score

than older ones.

By analyzing the reports, we noticed that openwrt-18.06 and openwrt-19.07 have simi-

lar security reports. There are different vulnerabilities registered in each operating system

(Test 5), due to different software versions (Test 8). Additionally, the openwrt-18.06 regis-

tered a CWE in one of their binaries. The rest of the report was equivalent in the two

machines.

The default credentials on openwrt-15.05 (Test 13) were detected. This was predictable

because before the version openwrt-18.06, all devices have default credentials, and after

that version, the user is required to define a unique password to set up the device (Test

13).

IoTGoat was the device with the worst score. This device has the biggest attack surface

with 5 exposed services (Test 14), multiple vulnerabilities (Test 5 and 6), and its firmware

had sensible information (Test 10).

We also confirmed that it was possible to compare the different devices (Requirement

1.d).

As we mentioned above, the devices that were not based on IoT devices were eval-

uated with a security policy that does not have firmware related tests. The system was

able to evaluate the devices according to the assigned security policy. Moreover, it was

possible to change the security policy on the fly (Requirement 1.a).

During this phase, we tested the effectiveness of the continuous assessment. Initially,

the servers that we were running did not have any security vulnerability. During the

tests, a new vulnerability for the SSH server was discovered (CVE-2020-15778), the Test 12

discovered multiple machines affected by this vulnerability, and the score of these servers

was updated (Requirement 3.b).

6. EVALUATION 79

6.4 Phase 3

During the development of our initial policy, a new standard emerged, the ETSI EN 303

645 [130]. The ETSI EN 303 645 was created at the request of the European Commission.

This new European Standard (EN) is based on the ETSI TS 103 645 and shares most of its

security requirements but in greater detail.

The biggest difference between these two documents is their impact on the governance

of the EU countries. An EN needs to be transposed to a national standard, and the ETSI

TS 103 645 does not require this [131, 132].

The ETSI EN 303 645 was considered by the ENISA as the standard that fulfills the

requirements of the Cybersecurity act for the application on IoT environments [26]. Due to

this, we tested the modular capability of our framework by adapting our existing security

policy to a new Technical Specification of Security Requirements, the ETSI EN 303 645.

ETSI EN 303 645 shares the same provision groups of the ETSI TS 103 645. However,

it has in total 60 provision, more 23 than the ETSI TS 103 645. From these 60 provisions,

we can automate 18, which means 30 percent of all requirements (Appendix C).

To evaluate a device according to the requirements of the ETSI EN 303 645, it would be

necessary to adapt 3 of our existent tests and create a new test for one of the requirements.

Test 8 needs to check the number of software installed to verify if there is any installa-

tion of a known implementation of cryptographic operations (Requirement 4.5.2).

Test 13 checks for available default credentials. To verify the compliance with the

Requirement 4.1-5, it needs to also check for protection against brute force attacks.

Test 14 that performs a port scan of the device, needs to evaluate the amount of

security-relevant information that can be retrieved from this type of scan. The require-

ment 4.6-2 states that a ”device should minimize the unauthenticated exposure of security-

relevant information”.

Finally, it is necessary to create a new test to evaluate the technologies used in the

authentication mechanisms to ensure they use the best practice cryptography according

to the technology, risk, and usage (Requirement 4.1-3).

The ETSI EN 303 645 is an extension of the ETSI TS 103 645. It approaches the same

topics of the ETSI TS 103 645, but now in a more detailed way, with descriptions and ex-

amples. This way, there are fewer doubts about the implementation of the requirements.

We were able to plan a test methodology capable of partially evaluating compliance

with the ETSI EN 303 645. This task was made easier because ETSI EN 303 645 shares

6. EVALUATION 80

much of its essence with ETSI TS 103 645. Nevertheless, if we needed to adapt our

framework to another set of security requirements, many of the tests developed could

be adapted to other standards.

6.5 Reflection on the results

Throughout this section, we evaluated the testing framework that we developed against

the initial goals that we set. We were able to accomplish all the goals set for this project.

However, we also identify some challenges that limit this type of assessment.

As already mentioned in the previous work, an automatic vulnerability assessment’s

success depends on the vulnerability database’s quality. Existent databases are not pre-

pared to be run with fully automated systems. Sometimes, information is missing or

incorrect about the vulnerabilities, which compromises an automatic scan’s effectiveness.

Moreover, there are no databases focused on IoT vulnerabilities.

The most restrictive requirement that we set on our project was to evaluate the device

without the product vendor’s support. This condition did not allow us to evaluate some

of the security requirements with precision that we would like to have (Test 3). This is the

biggest disadvantage that a vendor-agnostic evaluation has when compared with other

types of assessments.

Finally, the academic community is currently working on automated security assess-

ments, and automated security assessments during a certification process are a desirable

possibility for certifications [12]. However, due to the way current technical security spec-

ifications are constructed, there is no possibility to fully evaluate a device according to a

standard without some manual assessment.

Chapter 7

Conclusion

Currently, there is a need for automatic certifications and assessments for IoT environ-

ments. Existing certifications are described as not being agile or scalable, and classic

security assessments are carried out periodically. Therefore, the dynamic nature of IoT

undermines the effectiveness of these methods. Besides, these limitations lead to a lack of

certifications that meet the IoT environment needs.

Our work addresses these challenges by analyzing how to create an automated com-

pliance assessment of a security standard and mitigate these issues.

7.1 Research Summary

Before creating our proposal, we started by analyzing the needs of IoT certifications and

the current work on automatic security testing. With that, we defined the requirements to

develop an automated assessment that could be used for a certification process. Besides,

we also realize that there are still IoT application domains without a certification that

meets all their needs. Thus, we decided to focus our approach on one of these domains:

environments that require evaluating an IoT environment in its specific context.

With these requirements in mind, we developed our system with three types of tests:

interface testing, network testing, and system testing. The system was designed with

existing open source security tools and adapted to create a modular automatic assessment

system that assesses different security requirements.

To test our system’s effectiveness, we set up a virtualized test environment and as-

sessed its compliance with ETSI TS 103 645. From that test run, we were able to automate

the assessment of thirty percent of security requirements.

81

7. CONCLUSION 82

7.2 Current Limitations

This percentage of compliance is due to the goals we set for our project. We expected

that our system would not require any privileged access to the device and be automated.

However, due to the way current technical security specifications are built, there is no

possibility to fully evaluate a device against a standard without any manual evaluation.

Besides, during testing, we also noticed that many vulnerability databases have miss-

ing or incorrect information, compromising a fully automated vulnerability assessment’s

effectiveness.

Therefore, we were able to automate a conformity assessment of a technical security

specification successfully. However, our results were restricted due to the current way in

which these specifications are built. The academic community is working on automated

security assessments, but there is a need to connect automated security assessments to

technical security specifications. Technical security specifications are not prepared to be

evaluated by automatic assessments. Thus, the applicability of these new assessment

techniques is limited until this gap is filled.

7.3 Future Work

During this thesis’s development, some tasks were not possible to accomplish due to time

constraints, and we were also unable to explore some of the ideas that emerged. Thus, in

this chapter, we describe the tasks, improvements, and ideas that have been left for the

future due to lack of time.

In evaluating our automatic assessment system, we state that fuzzing the device’s in-

terfaces allows us to test whether the user’s input is appropriately validated. However,

we were not able to develop this test. Although this test only applies to a single security

requirement, fuzzing tests, as we mentioned in Chapter 3, are considered one of the so-

lutions to automate tests in IoT. Fuzzing allows us to discover unknown vulnerabilities

on a device without the need for manual work; simultaneously, the device’s resilience is

evaluated. Therefore, developing a fuzzing test component in our system would improve

the Technical Security Requirement Specification coverage.

We noticed that many technical security requirement specifications require that any

security-sensitive information should be encrypted in transit. Currently, our implementa-

tion has a list of secure and insecure protocols to transport information. However, a device

7. CONCLUSION 83

can use custom protocols, and it is necessary to evaluate them, namely if they carry any

information and whether these communications are encrypted. One way to analyze these

protocols is to use compression and entropy analysis to verify any information retrieved

from these communications [133]. The implementation of this type of test would allow us

to evaluate unknown protocols more correctly.

The firmware analysis of our system depends on the detection and occurrence of OTA

updates. Many device vendors make firmware available on their websites to update de-

vices manually. Our system’s firmware analysis component can be expanded to allow

manual submission of firmware files for analysis.

The web application developed to control this evaluation system does not have any

security hardening, there is no authentication in the report event endpoint, and there is no

granular access control in the web application. The web application needs to be improved

with authentication between external-analysis plugins and web applications and multiple

users’ permissions.

In addition to the improvements proposed above, which are related to our current

goals, we also want to explore this assessment system with less restrictive objectives to

increase the number of security requirements that we can test. Instead of having a fully

automated testing system, we can better evaluate the devices if we create a hybrid assess-

ment technique with human-in-the-loop.

7.4 Conclusions

During our research, we addressed the main limitations of existing certifications. To

bridge the gap between the heterogeneity of IoT environments and the automation of se-

curity testing, we contributed to a different security testing approach with an automated

compliance assessment of a standard of security.

Our proposed solution called AECSA is an automatic assessment system that updates

the assessment results over time, according to changes in the IoT environment, and can

be adapted to multiple technical specifications of security requirements.

This approach mitigates the problems identified as limitations for standard security

assessment methods when applied to IoT environments. The mitigated issues were also

the reason why some IoT environments have a certification that inadequately meets their

requirements.

7. CONCLUSION 84

In brief, AECSA bridges the gap by providing a security assessment approach that

helps certifications assess evolving IoT environments and require constant monitoring.

Appendix A

ETSI TS 103 645 - Analysis for

automation

ETSI TS 103 645 Type of test Mandatory Automatic test

4.1-1 Interface testing Yes Yes

4.2-1 Procedure testing Yes No

4.2-2 Procedure testing Yes No

4.2-3 Procedure testing No Yes

4.3-1 Interface testing No Yes

4.3-2 Procedure testing No No

4.3-3 Procedure testing Yes No

4.3-4 Procedure testing Yes No

4.3-5 Procedure testing No No

4.3-6 Procedure testing No No

4.3-7 Network/System testing No Yes

4.3-8 Procedure testing No No

4.3-9 Procedure testing No No

4.4-1 System testing Yes Yes

4.5-1 Network testing No Yes

4.5-2 System testing No Yes

4.6-1 Interface testing No Yes

85

A. ETSI TS 103 645 - ANALYSIS FOR AUTOMATION 86

4.6-2 Interface testing No No

4.6-3 System testing No Yes

4.6-4 System testing No No

4.6-5 System testing No Yes

4.7-1 Procedure testing No No

4.7-2 Procedure testing No No

4.8-1 Procedure testing Yes No

4.8-2 Procedure testing Yes No

4.8-3 Procedure testing Yes No

4.9-1 Procedure testing No No

4.9-2 Procedure testing No No

4.9-3 Procedure testing No No

4.10-1 Procedure testing No No

4.10-2 Procedure testing No No

4.10-3 Procedure testing Yes No

4.11-1 Procedure testing No No

4.11-2 Procedure testing No No

4.11-3 Procedure testing No No

4.12-1 Procedure testing No No

4.13-1 Interface testing Yes Yes

Appendix B

Security profiles

In this appendix, we will present the security profiles that were developed during this

thesis.

B.1 Default profile

<?xml version="1.0" encoding="utf -8" ?>

<policy >

<metadata >

<name>Default Policy </name>

<uuid>1</uuid>

</metadata >

<category >

Network

<check standard_id="4.1-1" points="1">

No default credentials

</check>

<check standard_id="4.2 -3.1" points="1">

Network vulnerabilities

<vuln multiplier="0">Critical </vuln>

<vuln multiplier="0.25">High</vuln>

<vuln multiplier="0.50">Medium </vuln>

<vuln multiplier="0.75">Low</vuln>

</check>

<check standard_id="4.3-7" points="1">

Secure OTA

</check>

<check standard_id="4.5-1" points="1">Secure communication

87

B. SECURITY PROFILES 88

<check standard_id="4.5 -1.1" points="1">Use of secure protocols </check >

<if standard_id="4.5 -1.2">

TLS checks

<check standard_id="4.5 -1.2.1" points="1">TLS version </check >

<check standard_id="4.5 -1.2.2" points="1">Agreement algorithm </check >

<check standard_id="4.5 -1.2.3" points="1">Valid domain </check>

<check standard_id="4.5 -1.2.4" points="1">Valid certificate </check>

</if>

</check>

<check standard_id="4.6-1" points="1">

Reduced number of exposed services

<range multiplier="1" >0,2</range >

<range multiplier="0.70" >3,4</range>

<range multiplier="0.30" >5,6</range>

<range multiplier="0" >6+</range>

</check>

</category >

<category >

Software

<check standard_id="4.2 -3.2" points="1">

Software vulnerabilities firmware

<vuln multiplier="0">Critical </vuln>

<vuln multiplier="0.25">High</vuln>

<vuln multiplier="0.50">Medium </vuln>

<vuln multiplier="0.75">Low</vuln>

</check>

<check standard_id="4.2 -3.3" points="1">

Software vulnerabilities by static analysis

<range multiplier="1" >0=</range>

<range multiplier="0.70" >1=</range>

<range multiplier="0" >2+</range>

</check>

<check standard_id="4.6-3" points="1">

Reduce installed software

<range multiplier="1" >5-</range>

<range multiplier="0.70" >6,8</range>

<range multiplier="0" >9+</range>

</check>

<check standard_id="4.6-5" points="1">

Running software with reduced privileges

<check standard_id="4.6 -5.1" points="1">Low privilige user on init processes </check>

<check standard_id="4.6 -5.2" points="1">Exploit mitigations in place</check >

</check>

</category >

<category >

Firmware

<check standard_id="4.4-1" points="1">

B. SECURITY PROFILES 89

Sensible information

</check>

<check standard_id="4.5-2" points="1">

Cryptographic keys

</check>

</category >

</policy >

B.2 Server profile

<?xml version="1.0" encoding="utf -8" ?>

<policy >

<metadata >

<name>Server Policy </name>

<uuid>2</uuid>

</metadata >

<category >

Network

<check standard_id="4.1-1" points="1">

No default credentials

</check>

<check standard_id="4.2 -3.1" points="1">

Network vulnerabilities

<vuln multiplier="0">Critical </vuln>

<vuln multiplier="0.25">High</vuln>

<vuln multiplier="0.50">Medium </vuln>

<vuln multiplier="0.75">Low</vuln>

</check>

<check standard_id="4.5-1" points="1">Secure communication

<check standard_id="4.5 -1.1" points="1">Use of secure protocols </check >

<if standard_id="4.5 -1.2">

TLS checks

<check standard_id="4.5 -1.2.1" points="1">TLS version </check >

<check standard_id="4.5 -1.2.2" points="1">Agreement algorithm </check >

<check standard_id="4.5 -1.2.3" points="1">Valid domain </check>

<check standard_id="4.5 -1.2.4" points="1">Valid certificate </check>

</if>

</check>

<check standard_id="4.6-1" points="1">

Reduced number of exposed services

<range multiplier="1" >0,2</range >

<range multiplier="0.70" >3,4</range>

<range multiplier="0.30" >5,6</range>

<range multiplier="0" >6+</range>

</check>

B. SECURITY PROFILES 90

</category >

</policy >

Appendix C

ETSI EN 303 645 - Analysis for

automation

EN 303 645 Type of test Mandatory Automatic test

4.1-1 Interface testing Yes Yes

4.1-2 Procedure testing Yes No

4.1-3 Interface testing/Network testing Yes Yes

4.1-4 Procedure testing No No

4.1-5 Interface testing Yes Yes

4.2-1 Procedure testing Yes No

4.2-2 Procedure testing No No

4.2-3 Procedure testing No No

4.3-1 Procedure testing No Yes

4.3-2 Network/System testing Yes Yes

4.3-3 Procedure testing Yes No

4.3-4 Procedure testing Yes No

4.3-5 Procedure testing Yes No

4.3-6 Procedure testing No No

4.3-7 Procedure testing No No

4.3-8 Procedure testing Yes No

4.3-9 Procedure testing No No

91

C. ETSI EN 303 645 - ANALYSIS FOR AUTOMATION 92

4.3-10 Procedure testing No No

4.3-11 Procedure testing No No

4.3-12 Procedure testing No No

4.3-13 Procedure testing No No

4.3-14 Procedure testing No No

4.4-1 System testing Yes Yes

4.4.2 System testing Yes No

4.4-3 System testing Yes Yes

4.4-4 System testing Yes No

4.5-1 Network testing Yes Yes

4.5-2 Network testing No Yes

4.5-3 Procedure testing No No

4.5-4 Interface testing No Yes

4.5-5 Procedure testing Yes No

4.5-6 Network testing No Yes

4.5-7 Network testing Yes Yes

4.5-8 Procedure testing No No

4.6-1 Interface testing Yes Yes

4.6-2 Interface testing No Yes

4.6-3 Interface testing Yes No

4.6-4 System testing Yes Yes

4.6-5 System testing Yes No

4.6-6 System testing Yes Yes

4.7-1 System testing Yes No

4.7-2 Procedure testing Yes No

4.8-1 Procedure testing Yes No

4.8-2 Procedure testing Yes No

4.8-3 Procedure testing Yes No

4.8-4 Network testing No No

4.8-5 Network testing Yes No

4.9-1 Procedure testing No No

4.9-2 Procedure testing No No

C. ETSI EN 303 645 - ANALYSIS FOR AUTOMATION 93

4.9-3 Procedure testing No No

4.10-1 Procedure testing No No

4.10-2 Procedure testing No No

4.10-3 Procedure testing Yes No

4.11-1 Procedure testing Yes No

4.11-2 Procedure testing No No

4.11-3 Procedure testing No No

4.11-4 Procedure testing No No

4.12-1 Procedure testing No No

4.12-2 Procedure testing No No

4.12-3 Procedure testing No No

4.13-1 Interface testing Yes Yes

Acronyms

API Application Programming Interface 53, 55, 57

BDI belief–desire–intention 37

CAB Conformity Assessment Body 7, 9, 12, 27

CVE Common Vulnerabilities and Exposures 38, 77

CWE Common Weakness Enumeration 73, 78

DPI Deep Packet Inspection 44, 50, 51, 53, 75

e-IoT-SCS Eurosmart IoT Security Certification Scheme 27, 29–33

ECSC European Cyber Security Certificate 12

ECSCF European Cyber Security Certification Framework 2, 3, 7–12, 20, 21, 23, 27, 30, 32,

33, 43, 45, 46, 60, 67, 68

ECSO European Cyber Security Organization 8, 23

EN European Standard 79

ENISA European Union Agency for Cybersecurity 3, 4, 7, 8, 10, 42, 45, 65, 79

EU European Union 5, 6, 8, 79

GDPR General Data Protection Regulation 69

GPP Generalized Protection Profile 12

GST Generalized Security Target 12, 67

HTTP Hypertext Transfer Protocol 48, 55

94

BIBLIOGRAPHY 95

IETF Internet Engineering Task Force 58

IoT Internet of Things 1–7, 13–21, 23, 26–30, 33–40, 42, 46–48, 58, 65, 66, 68, 69, 72, 74–84

NASL Nessus Attack Scripting Language 57

NIST National Institute of Standards and Technology 26, 71

OSP Open Scanner Protocol 57

OTA Over-the-air 47, 48, 58, 66, 75, 77, 83

PIA Privacy Impact Analysis 17, 30, 31, 33

SDK Software Development Kit 66

SoC System on a Chip 66

SUIT Software Updates for Internet of Things 58, 66, 75

TCP Transmission Control Protocol 55, 70

TLS Transport Layer Security 26, 57, 61, 66, 70, 71

TS Technical Specification 68

WSGI Web Server Gateway Interface 61

Bibliography

[1] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition of the Internet of Things

(IoT),” IEEE Internet Initiative, vol. 1, pp. 1–86, 2015. [Cited on page 1.]

[2] P. Kess, H. Kropsu-Vehkaperä et al., “Standardization with IoT (Internet-of-

Things),” in Managing Innovation and Diversity in Knowledge Society Through Turbu-

lent Time: Proceedings of the MakeLearn and TIIM Joint International Conference 2016.

ToKnowPress, 2016, pp. 1069–1076. [Cited on page 1.]

[3] O. Logvinov, B. Kraemer, C. Adams, J. Heiles, G. Stuebing, M. Nielsen, and B. Man-

cuso, “Standard for an architectural framework for the Internet of Things (IoT) ieee

p2413,” 2016. [Cited on page 1.]

[4] J. Voas, “Networks of ‘things’,” NIST Special Publication, vol. 800, no. 183, pp. 800–

183, 2016. [Cited on page 1.]

[5] T. ETSI, “102 689 v1. 1.1,“,” Machine-to-Machine communications (M2M), pp. 1–34,

2010. [Cited on page 1.]

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A

vision, architectural elements, and future directions,” Future generation computer sys-

tems, vol. 29, no. 7, pp. 1645–1660, 2013. [Cited on pages 1 and 14.]

[7] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R. Chaudhry, “IoT archi-

tecture challenges and issues: Lack of standardization,” in 2016 Future Technologies

Conference (FTC). IEEE, 2016, pp. 731–738. [Cited on page 1.]

[8] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of Things (IoT): Taxonomy

of security attacks,” in 2016 3rd International Conference on Electronic Design (ICED).

IEEE, 2016, pp. 321–326. [Cited on pages 1 and 2.]

96

BIBLIOGRAPHY 97

[9] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer

networks, vol. 54, no. 15, pp. 2787–2805, 2010. [Cited on pages 1 and 14.]

[10] S. S. I. Samuel, “A review of connectivity challenges in IoT-smart home,” in 2016

3rd MEC International conference on big data and smart city (ICBDSC). IEEE, 2016, pp.

1–4. [Cited on page 2.]

[11] S. Deshmukh and S. Sonavane, “Security protocols for Internet of Things: A sur-

vey,” in 2017 International Conference on Nextgen Electronic Technologies: Silicon to

Software (ICNETS2). IEEE, 2017, pp. 71–74. [Cited on page 2.]

[12] J. R. Nurse, S. Creese, and D. De Roure, “Security risk assessment in Internet of

Things systems,” IT Professional, vol. 19, no. 5, pp. 20–26, 2017. [Cited on pages 2, 3,

7, 18, 23, 35, and 80.]

[13] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and S. Shieh, “IoT

security: ongoing challenges and research opportunities,” in 2014 IEEE 7th inter-

national conference on service-oriented computing and applications. IEEE, 2014, pp.

230–234. [Cited on page 2.]

[14] J. Hernández-Ramos, J. Martinez, V. Savarino, M. Angelini, V. Napolitano,

A. Skarmeta, and G. Baldini, “Security and Privacy in Internet of Things-Enabled

Smart Cities: Challenges and Future Directions,” IEEE Security and Privacy Maga-

zine, vol. PP, 08 2020. [Cited on page 2.]

[15] J. Hearn, “Does the common criteria paradigm have a future?[security and pri-

vacy],” IEEE Security & Privacy, vol. 2, no. 1, pp. 64–65, 2004. [Cited on page 2.]

[16] C. W. Axelrod, “Enforcing security, safety and privacy for the Internet of Things,”

in 2015 Long Island Systems, Applications and Technology. IEEE, 2015, pp. 1–6. [Cited

on pages 2 and 17.]

[17] J. Voas and P. A. Laplante, “IoT’s certification quagmire,” Computer, vol. 51, no. 4,

pp. 86–89, 2018. [Cited on page 2.]

[18] H. Badran, “IoT Security and Consumer Trust,” in Proceedings of the 20th Annual

International Conference on Digital Government Research, ser. dg.o 2019. New York,

NY, USA: ACM, 2019, pp. 133–140. [Online]. Available: http://doi.acm.org/10.

1145/3325112.3325234 [Cited on page 2.]

http://doi.acm.org/10.1145/3325112.3325234
http://doi.acm.org/10.1145/3325112.3325234

BIBLIOGRAPHY 98

[19] Legroju, “The eu cybersecurity act,” Jun 2019. [Online]. Available: https:

//ec.europa.eu/digital-single-market/en/eu-cybersecurity-act [Cited on page 2.]

[20] E. C. S. Organisation, “European Cyber Security Certification,” Tech. Rep.,

Dec 2017. [Online]. Available: https://www.ecs-org.eu/documents/publications/

5a3112ec2c891.pdf [Cited on pages 3, 8, 11, 17, 46, and 60.]

[21] J. Voas and P. A. Laplante, “The IoT Blame Game,” Computer, vol. 50, no. 6, pp.

69–73, 2017. [Cited on pages 3 and 42.]

[22] R. S. Ross, S. W. Katzke, and L. A. Johnson, “Minimum security requirements for

federal information and information systems,” Tech. Rep., 2006. [Cited on page 6.]

[23] S. Górniak, R. Atoui, J. Fernandez, J.-P. Quemard, and M. Schaffer, “Stan-

dardisation in support of the cybersecurity certification,” Dec 2019. [On-

line]. Available: https://www.enisa.europa.eu/publications/recommendations-

for-european-standardisation-in-relation-to-csa-i [Cited on pages 7, 8, 9, 10, 12,

and 46.]

[24] R. Atoui. (2019, jun) Iot device certification scheme. [Online]. Avail-

able: https://www.eurosmart.com/wp-content/uploads/2019/06/e-IoT-SCS-

Eurosmart IoT Device Certification v1.0 RELEASE.pdf [Cited on pages 7 and 27.]

[25] E. C. S. Organisation, “Overview of existing Cybersecurity standards and

certification schemesv2,” Tech. Rep., Dec 2017. [Online]. Available: https:

//www.ecs-org.eu/documents/uploads/updated-sota.pdf [Cited on page 7.]

[26] I. Barreira, H. Dettmer, M. Masi, L. O. Echevarria, and

A. Sfakianakis, “Standards supporting certification,” Dec 2019. [On-

line]. Available: https://www.enisa.europa.eu/publications/recommendations-

for-european-standardisation-in-relation-to-csa-ii [Cited on pages 8 and 79.]

[27] Council of European Union, “Regulation (eu) 2019/881 of the european

parliament and of the council of 17 april 2019,” 2019. [Online]. Available:

https://bit.ly/3jffXiW [Cited on pages 8 and 9.]

[28] ISO/IEC, “ISO/IEC 15408-1: Information technology — Security techniques —

Evaluation criteria for IT security,” Tech. Rep., Dec 2009. [Cited on pages 10, 12,

and 40.]

https://ec.europa.eu/digital-single-market/en/eu-cybersecurity-act
https://ec.europa.eu/digital-single-market/en/eu-cybersecurity-act
https://www.ecs-org.eu/documents/publications/5a3112ec2c891.pdf
https://www.ecs-org.eu/documents/publications/5a3112ec2c891.pdf
https://www.enisa.europa.eu/publications/recommendations-for-european-standardisation-in-relation-to-csa-i
https://www.enisa.europa.eu/publications/recommendations-for-european-standardisation-in-relation-to-csa-i
https://www.eurosmart.com/wp-content/uploads/2019/06/e-IoT-SCS-Eurosmart_IoT_Device_Certification_v1.0_RELEASE.pdf
https://www.eurosmart.com/wp-content/uploads/2019/06/e-IoT-SCS-Eurosmart_IoT_Device_Certification_v1.0_RELEASE.pdf
https://www.ecs-org.eu/documents/uploads/updated-sota.pdf
https://www.ecs-org.eu/documents/uploads/updated-sota.pdf
https://www.enisa.europa.eu/publications/recommendations-for-european-standardisation-in-relation-to-csa-ii
https://www.enisa.europa.eu/publications/recommendations-for-european-standardisation-in-relation-to-csa-ii
https://bit.ly/3jffXiW

BIBLIOGRAPHY 99

[29] P. P. Ray, “A survey on Internet of Things architectures,” Journal of King Saud

University-Computer and Information Sciences, vol. 30, no. 3, pp. 291–319, 2018. [Cited

on page 14.]

[30] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, “Technical guide to informa-

tion security testing and assessment,” NIST Special Publication, vol. 800, no. 115, pp.

2–25, 2008. [Cited on pages 15 and 16.]

[31] G. Purdy, “Iso 31000: 2009—setting a new standard for risk management,” Risk

Analysis: An International Journal, vol. 30, no. 6, pp. 881–886, 2010. [Cited on

page 16.]

[32] Y. Klochkov, S. Odinokov, E. Klochkova, M. Ostapenko, and A. Volgina, “Devel-

opment of certification model,” in 2016 5th International Conference on Reliability, In-

focom Technologies and Optimization (Trends and Future Directions)(ICRITO). IEEE,

2016, pp. 120–122. [Cited on page 16.]

[33] A. Jacobsson, M. Boldt, and B. Carlsson, “A risk analysis of a smart home automa-

tion system,” Future Generation Computer Systems, vol. 56, pp. 719–733, 2016. [Cited

on pages 16 and 17.]

[34] C.-K. Chen, Z.-K. Zhang, S.-H. Lee, and S. Shieh, “Penetration testing in the IoT

age,” Computer, vol. 51, no. 4, pp. 82–85, 2018. [Cited on pages 16 and 35.]

[35] O. Memo, “M-03-22,” OMB Guidance for Implementing the Privacy Provisions of the

E-Government Act of 2002. [Cited on page 17.]

[36] H. Lin and N. Bergmann, “IoT privacy and security challenges for smart home en-

vironments,” Information, vol. 7, no. 3, p. 44, 2016. [Cited on page 18.]

[37] A. Jacobsson and P. Davidsson, “Towards a model of privacy and security for smart

homes,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 2015,

pp. 727–732. [Cited on page 19.]

[38] P. Gope and T. Hwang, “BSN-Care: A secure IoT-based modern healthcare system

using body sensor network,” IEEE Sensors Journal, vol. 16, no. 5, pp. 1368–1376,

2015. [Cited on page 19.]

[39] A. Act, “Health insurance portability and accountability act of 1996,” Public law, vol.

104, p. 191, 1996. [Cited on page 19.]

BIBLIOGRAPHY 100

[40] S. T. U. Shah, H. Yar, I. Khan, M. Ikram, and H. Khan, “Internet of Things-Based

Healthcare: Recent Advances and Challenges,” in Applications of Intelligent Tech-

nologies in Healthcare. Springer, 2019, pp. 153–162. [Cited on page 19.]

[41] A. Bartoli, J. Hernández-Serrano, M. Soriano, M. Dohler, A. Kountouris, and

D. Barthel, “Security and privacy in your smart city,” in Proceedings of the Barcelona

smart cities congress, vol. 292, 2011, pp. 1–6. [Cited on page 20.]

[42] A. Q. Rodriguez, B. B. AS, M. Menon, S. Ziegler, A. M. P. H. AS, E. K. DG, and

S. Bianchi, “Dynamic Security and Privacy Seal Model Analysis.” [Cited on pages 21

and 22.]

[43] S. N. Matheu, J. L. Hernandez-Ramos, and A. F. Skarmeta, “Toward a Cybersecurity

Certification Framework for the Internet of Things,” IEEE Security & Privacy, vol. 17,

no. 3, pp. 66–76, 2019. [Cited on pages 21 and 23.]

[44] I. Labs, “Internet of Things (IoT) Security Testing Framework,” ICSA

Labs website, ICSA Labs, Tech. Rep., Octo 2016. [Online]. Avail-

able: https://www.icsalabs.com/sites/default/files/body images/ICSALABS

IoT reqts framework v2.0 161026.pdf [Cited on pages 21 and 24.]

[45] “News: Announcing ul 2900 outlines,” acessed: 2019-11-27. [Online].

Available: https://ulstandards.ul.com/downloads/news-announcing-ul-2900-

outlines/ [Cited on pages 21 and 24.]

[46] “Testing and certification for IoT connected devices.” [Online]. Avail-

able: https://www.bsigroup.com/en-GB/industries-and-sectors/Internet-of-

Things/IoT-Assurance-Services/ [Cited on pages 21 and 26.]

[47] “About,” 2016. [Online]. Available: https://www.iot.org.au/ [Cited on pages 21

and 26.]

[48] EUSOSMART, “[tr-e-iot-scs-part-1] process & policy v1.2,” EUSOSMART, Tech.

Rep., oct 2019. [Cited on pages 21 and 27.]

[49] ETSI EG 203 251, Methods for Testing & Specification Risk-based Security Assessment and

Testing Methodologies v1.1.1, 2016. [Cited on page 23.]

https://www.icsalabs.com/sites/default/files/body_images/ICSALABS_IoT_reqts_framework_v2.0_161026.pdf
https://www.icsalabs.com/sites/default/files/body_images/ICSALABS_IoT_reqts_framework_v2.0_161026.pdf
https://ulstandards.ul.com/downloads/news-announcing-ul-2900-outlines/
https://ulstandards.ul.com/downloads/news-announcing-ul-2900-outlines/
https://www.bsigroup.com/en-GB/industries-and-sectors/Internet-of-Things/IoT-Assurance-Services/
https://www.bsigroup.com/en-GB/industries-and-sectors/Internet-of-Things/IoT-Assurance-Services/
https://www.iot.org.au/

BIBLIOGRAPHY 101

[50] S. N. Matheu-Garcı́a, J. L. Hernández-Ramos, A. F. Skarmeta, and G. Baldini, “Risk-

based automated assessment and testing for the cybersecurity certification and la-

belling of IoT devices,” Computer Standards & Interfaces, vol. 62, pp. 64–83, 2019.

[Cited on page 24.]

[51] “IoT Security & Privacy,” Nov 2015. [Online]. Available: https://www.icsalabs.

com/technology-program/iot-testing [Cited on page 24.]

[52] U. Laboratories, “About: Underwriters Laboratories,” Accessed: 2020-05-03.

[Online]. Available: https://ul.org/about [Cited on page 24.]

[53] “Food and Drug Administration Modernization Act of 1997: Modifications

to the List of Recognized Standards, Recognition List Number: 049,” Jun

2018. [Online]. Available: https://www.federalregister.gov/documents/2018/

06/07/2018-12222/food-and-drug-administration-modernization-act-of-1997-

modifications-to-the-list-of-recognized?linkId=52763286 [Cited on page 25.]

[54] J. Heyl, “Overview of ul 2900,” Octo 2017. [Online]. Avail-

able: https://cybersecuritysummit.org/wp-content/uploads/2017/10/4.00-

Justin-Heyl.pdf [Cited on page 25.]

[55] W. . Security and N. R. of the IoTAA, “Internet of Things Security Guideline V1.2,”

nov 2017. [Cited on page 26.]

[56] EUSOSMART, “[tr-e-iot-scs-part-3] evaluation methodology v1.2,” EUSOSMART,

Tech. Rep., oct 2019. [Cited on page 27.]

[57] EUSOSMART, “[e-iot-scs-part-2] gpp v1.2,” EUSOSMART, Tech. Rep., oct 2019.

[Cited on page 27.]

[58] T. Alladi, V. Chamola, B. Sikdar, and K.-K. R. Choo, “Consumer IoT: Security vul-

nerability case studies and solutions,” IEEE Consumer Electronics Magazine, vol. 9,

no. 2, pp. 17–25, 2020. [Cited on page 35.]

[59] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow, “IoT-

POT: analysing the rise of IoT compromises,” in 9th {USENIX} Workshop on Offen-

sive Technologies ({WOOT} 15), 2015. [Cited on page 36.]

https://www.icsalabs.com/technology-program/iot-testing
https://www.icsalabs.com/technology-program/iot-testing
https://ul.org/about
https://www.federalregister.gov/documents/2018/06/07/2018-12222/food-and-drug-administration-modernization-act-of-1997-modifications-to-the-list-of-recognized?linkId=52763286
https://www.federalregister.gov/documents/2018/06/07/2018-12222/food-and-drug-administration-modernization-act-of-1997-modifications-to-the-list-of-recognized?linkId=52763286
https://www.federalregister.gov/documents/2018/06/07/2018-12222/food-and-drug-administration-modernization-act-of-1997-modifications-to-the-list-of-recognized?linkId=52763286
https://cybersecuritysummit.org/wp-content/uploads/2017/10/4.00-Justin-Heyl.pdf
https://cybersecuritysummit.org/wp-content/uploads/2017/10/4.00-Justin-Heyl.pdf

BIBLIOGRAPHY 102

[60] V. Sachidananda, S. Siboni, A. Shabtai, J. Toh, S. Bhairav, and Y. Elovici, “Let the

cat out of the bag: A holistic approach towards security analysis of the Internet of

Things,” in Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust,

and Security, 2017, pp. 3–10. [Cited on pages 37 and 39.]

[61] O. A. Waraga, M. Bettayeb, Q. Nasir, and M. A. Talib, “Design and implementation

of automated IoT security testbed,” Computers & Security, vol. 88, p. 101648, 2020.

[Cited on pages 37 and 39.]

[62] G. Chu and A. Lisitsa, “Penetration testing for Internet of Things and its automa-

tion,” in 2018 IEEE 20th International Conference on High Performance Computing and

Communications; IEEE 16th International Conference on Smart City; IEEE 4th Interna-

tional Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 2018,

pp. 1479–1484. [Cited on pages 37 and 39.]

[63] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security evaluation

of home-based IoT deployments,” in 2019 IEEE Symposium on Security and Privacy

(SP). IEEE, 2019, pp. 1362–1380. [Cited on pages 37 and 39.]

[64] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,

and K. Zhang, “IoTFuzzer: Discovering Memory Corruptions in IoT Through App-

based Fuzzing.” in NDSS, 2018. [Cited on pages 38 and 39.]

[65] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma, “IoT

sentinel: Automated device-type identification for security enforcement in IoT,” in

2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

IEEE, 2017, pp. 2177–2184. [Cited on pages 38 and 39.]

[66] “SPAN and RSPAN,” Accessed: 2020-09-24. [Online]. Avail-

able: https://community.cisco.com/t5/networking-documents/understanding-

span-rspan-and-erspan/ta-p/3144951 [Cited on page 44.]

[67] N. Viola, S. Corpino, M. Fioriti, and F. Stesina, “Functional analysis in systems engi-

neering: Methodology and applications,” in Systems engineering-practice and theory.

InTechOpen, 2012. [Cited on page 45.]

[68] D. Merkel, “Docker: lightweight linux containers for consistent development and

deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014. [Cited on page 48.]

https://community.cisco.com/t5/networking-documents/understanding-span-rspan-and-erspan/ta-p/3144951
https://community.cisco.com/t5/networking-documents/understanding-span-rspan-and-erspan/ta-p/3144951

BIBLIOGRAPHY 103

[69] “Open Container Initiative,” Accessed: 2020-06-24. [Online]. Available: https:

//opencontainers.org/ [Cited on page 48.]

[70] “Firmware Analysis and Comparison Tool,” Accessed: 2020-08-4. [Online].

Available: https://github.com/fkie-cad/FACT core [Cited on page 48.]

[71] “Mariadb,” Accessed: 2020-08-4. [Online]. Available: https://mariadb.org/ [Cited

on page 48.]

[72] “Wi-Fi Alliance,” Accessed: 2020-08-3. [Online]. Available: https://www.wi-fi.org/

[Cited on page 48.]

[73] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-Power

Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem

Statement, and Goals,” Internet Requests for Comments, RFC Editor, RFC

4919, August 2007. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4919.txt

[Cited on page 48.]

[74] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone, and M. A. Spirito, “An IDS

framework for internet of things empowered by 6LoWPAN,” in Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security, 2013, pp. 1337–

1340. [Cited on page 48.]

[75] Z.-W. Alliance, “The Internet of Things is powered by Z-Wave.” 2020. [Online].

Available: https://z-wavealliance.org/ [Cited on page 48.]

[76] Z. Alliance, “Zigbee alliance,” Jun 2020. [Online]. Available: https://zigbeealliance.

org/ [Cited on page 48.]

[77] B. SIG, “Mesh Networking Specifications,” 2020. [Online]. Available: https:

//www.bluetooth.com/specifications/mesh-specifications/ [Cited on page 49.]

[78] S. Pallavi and V. A. Narayanan, “An Overview of Practical Attacks on BLE Based

IOT Devices and Their Security,” in 2019 5th International Conference on Advanced

Computing & Communication Systems (ICACCS). IEEE, 2019, pp. 694–698. [Cited on

page 49.]

[79] “Python,” Accessed: 2020-06-24. [Online]. Available: https://www.python.org/

[Cited on page 51.]

https://opencontainers.org/
https://opencontainers.org/
https://github.com/fkie-cad/FACT_core
https://mariadb.org/
https://www.wi-fi.org/
http://www.rfc-editor.org/rfc/rfc4919.txt
https://z-wavealliance.org/
https://zigbeealliance.org/
https://zigbeealliance.org/
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.bluetooth.com/specifications/mesh-specifications/
https://www.python.org/

BIBLIOGRAPHY 104

[80] “The go programming language,” Accessed: 2020-08-4. [Online]. Available:

https://golang.org/ [Cited on page 51.]

[81] I. ISO, “IEC 9899: 2011 Information technology—Programming languages—C,” In-

ternational Organization for Standardization, Geneva, Switzerland, vol. 27, p. 59, 2011.

[Cited on page 51.]

[82] “Scapy,” Accessed: 2020-08-4. [Online]. Available: https://scapy.net/ [Cited on

page 51.]

[83] “Nfstream,” Accessed: 2020-08-4. [Online]. Available: https://pypi.org/project/

nfstream/ [Cited on page 51.]

[84] J. M. Perkel, “Programming: pick up Python,” Nature News, vol. 518, no. 7537, p.

125, 2015. [Cited on page 51.]

[85] “Gopacket,” Accessed: 2020-08-2. [Online]. Available: https://github.com/

google/gopacket [Cited on page 52.]

[86] “Identification of flows based on network ports,” Accessed: 2020-08-2. [Online].

Available: https://github.com/mushorg/go-dpi [Cited on page 52.]

[87] “Tcpdump/libpcap public repository.” [Online]. Available: https://www.

tcpdump.org/ [Cited on page 52.]

[88] “Issues 329,” Accessed: 2020-06-25. [Online]. Available: https://github.com/

google/gopacket/issues/329 [Cited on page 52.]

[89] “Pf ring dev documentation,” Accessed: 2020-08-4. [Online]. Available: https:

//www.ntop.org/guides/pf ring/get started/index.html [Cited on page 53.]

[90] “Pf ring documentation,” Accessed: 2020-06-25. [Online]. Available: https:

//www.ntop.org/guides/pf ring/index.html [Cited on page 53.]

[91] “Pull 553,” Accessed: 2020-06-25. [Online]. Available: https://github.com/google/

gopacket/pull/553 [Cited on page 53.]

[92] “Performance difference between af packet and libpcap,” Accessed: 2020-08-2.

[Online]. Available: https://discuss.elastic.co/t/performance-difference-between-

af-packet-libpcap/69766/2 [Cited on page 53.]

https://golang.org/
https://scapy.net/
https://pypi.org/project/nfstream/
https://pypi.org/project/nfstream/
https://github.com/google/gopacket
https://github.com/google/gopacket
https://github.com/mushorg/go-dpi
https://www.tcpdump.org/
https://www.tcpdump.org/
https://github.com/google/gopacket/issues/329
https://github.com/google/gopacket/issues/329
https://www.ntop.org/guides/pf_ring/get_started/index.html
https://www.ntop.org/guides/pf_ring/get_started/index.html
https://www.ntop.org/guides/pf_ring/index.html
https://www.ntop.org/guides/pf_ring/index.html
https://github.com/google/gopacket/pull/553
https://github.com/google/gopacket/pull/553
https://discuss.elastic.co/t/performance-difference-between-af-packet-libpcap/69766/2
https://discuss.elastic.co/t/performance-difference-between-af-packet-libpcap/69766/2

BIBLIOGRAPHY 105

[93] “packet(7) — linux manual page,” Accessed: 2020-06-25. [Online]. Available: https:

//www.man7.org/linux/man-pages/man7/packet.7.html [Cited on page 53.]

[94] G. Insolvibile et al., “The linux socket filter: Sniffing bytes over the network,” Linux

Journal, vol. 86, 2001. [Cited on page 53.]

[95] “Identification of flows based on network ports,” Accessed: 2020-08-2. [Online].

Available: https://github.com/mushorg/go-dpi/issues/53 [Cited on page 54.]

[96] “Package plugin,” Accessed: 2020-08-2. [Online]. Available: https://golang.org/

pkg/plugin/ [Cited on page 55.]

[97] “grpc,” Accessed: 2020-08-3. [Online]. Available: https://grpc.io/ [Cited on

page 55.]

[98] “Protocol buffers,” Accessed: 2020-08-3. [Online]. Available: https://developers.

google.com/protocol-buffers/ [Cited on page 55.]

[99] “Go cron,” Accessed: 2020-08-2. [Online]. Available: https://github.com/robfig/

cron [Cited on page 56.]

[100] “nmap,” Accessed: 2020-08-3. [Online]. Available: https://nmap.org/ [Cited on

page 56.]

[101] “OpenVAS - Open Vulnerability Assessment Scanner,” Accessed: 2020-08-3.

[Online]. Available: https://openvas.org/ [Cited on page 56.]

[102] “Ullaakut/nmap,” Accessed: 2020-08-3. [Online]. Available: https://github.com/

Ullaakut/nmap [Cited on page 56.]

[103] “Open Scanner Protocol,” Accessed: 2020-08-3. [Online]. Available: https:

//docs.greenbone.net/API/OSP/osp.html [Cited on page 57.]

[104] B. Moran, M. Meriac, and H. Tschofenig, “Firmware Manifest Format,” Working

Draft, IETF Secretariat, Internet-Draft draft-moran-suit-manifest-01, January

2018. [Online]. Available: http://www.ietf.org/internet-drafts/draft-moran-suit-

manifest-01.txt [Cited on page 58.]

[105] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli, “Secure

firmware updates for constrained IoT devices using open standards: A reality

check,” IEEE Access, vol. 7, pp. 71 907–71 920, 2019. [Cited on page 58.]

https://www.man7.org/linux/man-pages/man7/packet.7.html
https://www.man7.org/linux/man-pages/man7/packet.7.html
https://github.com/mushorg/go-dpi/issues/53
https://golang.org/pkg/plugin/
https://golang.org/pkg/plugin/
https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/robfig/cron
https://github.com/robfig/cron
https://nmap.org/
https://openvas.org/
https://github.com/Ullaakut/nmap
https://github.com/Ullaakut/nmap
https://docs.greenbone.net/API/OSP/osp.html
https://docs.greenbone.net/API/OSP/osp.html
http://www.ietf.org/internet-drafts/draft-moran-suit-manifest-01.txt
http://www.ietf.org/internet-drafts/draft-moran-suit-manifest-01.txt

BIBLIOGRAPHY 106

[106] B. Moran, M. Meriac, H. Tschofenig, and D. Brown, “A Firmware Update

Architecture for Internet of Things Devices,” Working Draft, IETF Secre-

tariat, Internet-Draft draft-ietf-suit-architecture-05, April 2019. [Online]. Available:

http://www.ietf.org/internet-drafts/draft-ietf-suit-architecture-05.txt [Cited on

page 58.]

[107] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli, “Secure

Firmware Updates for Constrained IoT Devices Using Open Standards: A Reality

Check,” IEEE Access, vol. 7, pp. 71 907–71 920, 2019. [Cited on page 58.]

[108] J. Schaad, “CBOR Object Signing and Encryption (COSE),” Internet Requests for

Comments, RFC Editor, RFC 8152, July 2017. [Cited on page 58.]

[109] “Flask,” Accessed: 2020-07-23. [Online]. Available: https://github.com/pallets/

flask [Cited on page 61.]

[110] “Jinja,” Accessed: 2020-07-23. [Online]. Available: https://jinja.palletsprojects.com

[Cited on page 61.]

[111] “qemu,” Accessed: 2020-09-15. [Online]. Available: https://www.qemu.org/

[Cited on page 66.]

[112] “Openwrt,” Accessed: 2020-09-15. [Online]. Available: https://openwrt.org/

[Cited on page 66.]

[113] “Owasp/iotgoat,” Accessed: 2020-09-15. [Online]. Available: https://github.com/

OWASP/IoTGoat [Cited on page 66.]

[114] C. O’Flynn, “Getting root on philips hue bridge 2.0,” as accessed on, vol. 2, no. 8,

2019. [Cited on page 66.]

[115] “Telegraf Open Source Server Agent,” Accessed: 2020-09-15. [Online]. Available:

https://www.influxdata.com/time-series-platform/telegraf/ [Cited on page 66.]

[116] “question Tls example,” Accessed: 2020-08-21. [Online]. Available: https:

//github.com/google/gopacket/issues/687#issuecomment-532591699 [Cited on

page 70.]

[117] “Package tls,” Accessed: 2020-09-09. [Online]. Available: https://golang.org/pkg/

crypto/tls/ [Cited on page 70.]

http://www.ietf.org/internet-drafts/draft-ietf-suit-architecture-05.txt
https://github.com/pallets/flask
https://github.com/pallets/flask
https://jinja.palletsprojects.com
https://www.qemu.org/
https://openwrt.org/
https://github.com/OWASP/IoTGoat
https://github.com/OWASP/IoTGoat
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/google/gopacket/issues/687#issuecomment-532591699
https://github.com/google/gopacket/issues/687#issuecomment-532591699
https://golang.org/pkg/crypto/tls/
https://golang.org/pkg/crypto/tls/

BIBLIOGRAPHY 107

[118] “Adventures in Go: Accessing Unexported Functions,” Accessed: 2020-03-3. [On-

line]. Available: https://www.alangpierce.com/blog/2016/03/17/adventures-in-

go-accessing-unexported-functions/ [Cited on page 70.]

[119] “spance/go-callprivate,” Accessed: 2020-03-3. [Online]. Available: https://github.

com/spance/go-callprivate [Cited on page 70.]

[120] T. Polk, K. McKay, and S. Chokhani, “Guidelines for the selection, configuration,

and use of transport layer security (TLS) implementations,” NIST special publication,

vol. 800, no. 52, p. 32, 2014. [Cited on page 71.]

[121] F. Andreasen, N. Cam-Winget, and E. Wang, “TLS 1.3 Impact on Network-Based

Security,” 2017. [Cited on page 71.]

[122] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis plat-

form,” in International Conference on Computer Aided Verification. Springer, 2011, pp.

463–469. [Cited on page 73.]

[123] “Yara,” Accessed: 2020-08-24. [Online]. Available: https://virustotal.github.io/

yara/ [Cited on page 74.]

[124] “zricethezav/gitleaks,” Accessed: 2020-08-24. [Online]. Available: https://github.

com/zricethezav/gitleaks [Cited on page 74.]

[125] “odomojuli/regexapi,” Accessed: 2020-08-15. [Online]. Available: https://github.

com/odomojuli/RegExAPI [Cited on page 75.]

[126] “Mrsuicideparrot/yara-secrets.” [Online]. Available: https://github.com/

MrSuicideParrot/Yara-Secrets [Cited on page 75.]

[127] “Mrsuicideparrot/fact-search-secrets,” Accessed: 2020-08-24. [Online]. Available:

https://github.com/MrSuicideParrot/FACT-search-secrets [Cited on page 75.]

[128] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for software security

testing and quality assurance. Artech House, 2018. [Cited on page 75.]

[129] “ansible,” Accessed: 2020-09-12. [Online]. Available: https://www.ansible.com/

[Cited on page 76.]

https://www.alangpierce.com/blog/2016/03/17/adventures-in-go-accessing-unexported-functions/
https://www.alangpierce.com/blog/2016/03/17/adventures-in-go-accessing-unexported-functions/
https://github.com/spance/go-callprivate
https://github.com/spance/go-callprivate
https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
https://github.com/zricethezav/gitleaks
https://github.com/zricethezav/gitleaks
https://github.com/odomojuli/RegExAPI
https://github.com/odomojuli/RegExAPI
https://github.com/MrSuicideParrot/Yara-Secrets
https://github.com/MrSuicideParrot/Yara-Secrets
https://github.com/MrSuicideParrot/FACT-search-secrets
https://www.ansible.com/

BIBLIOGRAPHY 108

[130] Cyber Security for Consumer Internet of Things, Nov 2019. [Online]. Avail-

able: https://www.etsi.org/deliver/etsi en/303600 303699/303645/02.00.00 20/

en 303645v020000a.pdf [Cited on page 79.]

[131] “Etsi types of standard,” Accessed: 2020-09-1. [Online]. Available: https:

//www.etsi.org/standards/types-of-standards [Cited on page 79.]

[132] “ETSI and Uk government,” Accessed: 2020-09-1. [Online]. Avail-

able: https://www.gov.uk/government/publications/etsi-industry-standard-

based-on-the-code-of-practice [Cited on page 79.]

[133] J. S. Resende, P. R. Sousa, R. Martins, and L. Antunes, “Breaking mpc implemen-

tations through compression,” International Journal of Information Security, vol. 18,

no. 4, pp. 505–518, 2019. [Cited on page 83.]

https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.00.00_20/en_303645v020000a.pdf
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.00.00_20/en_303645v020000a.pdf
https://www.etsi.org/standards/types-of-standards
https://www.etsi.org/standards/types-of-standards
https://www.gov.uk/government/publications/etsi-industry-standard-based-on-the-code-of-practice
https://www.gov.uk/government/publications/etsi-industry-standard-based-on-the-code-of-practice

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Proposed Solution
	1.2.1 Objectives
	1.2.2 Features

	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Security certifications
	2.1.1 Certification characteristics

	2.2 European guidelines for certification schemes
	2.2.1 Scheme owner responsibility
	2.2.2 Core components
	2.2.3 ENISA qualification system
	2.2.4 Indicators of Confidence and Security
	2.2.5 Common language
	2.2.5.1 Certification flow with the ECSCF

	2.3 IoT Concept and Application Domains
	2.3.1 IoT Concept and Application Domains
	2.3.2 General requirements
	2.3.2.1 Security assessment
	2.3.2.2 Privacy Impact Assessment
	2.3.2.3 Standard re-utilization
	2.3.2.4 Certification time
	2.3.2.5 Laws and regulations context
	2.3.2.6 Update policy
	2.3.2.7 IoT context aware
	2.3.2.8 Access to Guidelines

	2.3.3 Context aware requirements
	2.3.3.1 Personal and home domain
	2.3.3.2 Enterprise domain
	2.3.3.3 Utility domain
	2.3.3.4 Mobile domain

	2.3.4 ECSCF and IoT

	2.4 Security Certifications
	2.4.1 DSPSMA
	2.4.2 ARMOUR certification
	2.4.3 ICSA Labs certification
	2.4.4 UL-2900
	2.4.5 BSI Kitemark for Internet of Things devices
	2.4.6 IoTAA Security and Privacy Trustmark
	2.4.7 Eurosmart IoT Security Certification

	2.5 Fulfillment of IoT and EU requirements
	2.5.1 Reflection on certifications
	2.5.2 Reflection on domains
	2.5.3 ECSCF and existent certifications

	2.6 Future research directions for certifications

	3 Related work
	3.1 IoT security testing
	3.2 Technical Specification of Security Requirements

	4 System design
	4.1 Architecture
	4.1.1 Security Testing
	4.1.2 Security Evaluation

	4.2 Requirements
	4.3 Components
	4.3.1 Assumptions

	4.4 Summary

	5 Implementation
	5.1 Security Testing
	5.1.1 aecsa-external-analysis
	5.1.1.1 Packet Sniffing
	5.1.1.2 Deep packet inspection
	5.1.1.3 Device discovery
	5.1.1.4 Plugins
	5.1.1.5 HTTP traffic analysis
	5.1.1.6 Packets workflow

	5.1.2 aecsa-watchtower
	5.1.3 aecsa-firmware
	5.1.4 FACT

	5.2 Security Evaluation
	5.2.1 Representation and evaluation of a profile
	5.2.2 Web application

	5.3 Summary

	6 Evaluation
	6.1 Test environment
	6.2 Phase 1
	6.2.1 Technical Specification of Security Requirements
	6.2.2 Profile development

	6.3 Phase 2
	6.3.1 Unit testing
	6.3.2 System testing

	6.4 Phase 3
	6.5 Reflection on the results

	7 Conclusion
	7.1 Research Summary
	7.2 Current Limitations
	7.3 Future Work
	7.4 Conclusions

	A ETSI TS 103 645 - Analysis for automation
	B Security profiles
	B.1 Default profile
	B.2 Server profile

	C ETSI EN 303 645 - Analysis for automation
	Acronyms
	Bibliography

