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Resumo

Paredes de domínio são um tipo de defeito topológico que se pode formar durante transições
de fase no Universo primordial e, visto poderem sobreviver até hoje, é importante desenvolver
e aperfeiçoar modelos que consigam recriá-las para que possamos também perceber melhor
como observá-las. Historicamente esta análise tem sido feita evoluindo um campo escalar
confinado num potencial quártico com dois poços de potencial, mas avanços em técnicas
de física computacional e em hardware (especificamente GPGPUs) permitem-nos correr um
numero maior de simulações para condições diferentes mais facilmente. O objetivo desta tese
é tirar proveito destes avanços em computação para estudar a evolução de paredes de domínio
noutros tipos de potencial.

No primeiro capítulo estabelecemos as fundações teóricas para o nosso trabalho revendo
o modelo cosmológico atual que servirá de quadro para as nossas simulações e examinamos
o mecanismo por trás da formação de paredes de domínio, assim como o modelo VOS que é
tipicamente usado para modelar a sua evolução.

O segundo capítulo espicifica os passos numéricos que tomámos de forma a realizar simu-
lações de teoria de campo consistentes ao longo da tese. Serve também para testar o nosso
código num potencial quártico com o intuito de validar o nosso método.

A primeira implementação para um caso diferente de φ4 é feita para um potencial sinusoidal
no terceiro capítulo onde é observada e discutida a formação the novos tipos de paredes exóticos
e onde interpretamos os desvios em relação ao modelo prototípico e às previsões analíticas.

No quarto capítulo investigamos a formação de defeitos topológicos num potencial com
três poços de potencial e extendemo-lo para interpolar entre φ6 e φ4. Através da introdução de
um mecanismo de arrefecimento para dissipar os elevados gradientes presentes nos primeiros
instantes da simulação, observa-se um decaimento do vácuo que depende da diferença de
potencial, da taxa de expansão do Universo e do tempo em que deixámos o sistema "arrefecer".

Por fim, no sexto capítulo, é feita uma análise sistemática a todo o trabalho feito rela-
cionando os vários modelos e é discutido de que forma esta análise pode ser aperfeiçada em
trabalhos futuros.

Palavras-chave: Cosmologia, Física computacional, Defeitos topológicos, Paredes de domínio
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Abstract

Domain walls are a category of topological defect that can form during phase transitions in
the early Universe and, since they can be long-lived, it’s important to develop and refine models
that can produce them so we can better understand how to probe them. Historically this has
been done by evolving a scalar field confined in a quartic potential with a double well, but
advances in techniques for computational physics and hardware (specifically GPGPUs) have
made it easier to perform a larger amount of simulations for different conditions. Our goal in
this thesis is to take advantage of these advances in computation to study the evolution of
domain walls in other types of potentials

In the first chapter we set the theoretical foundations for our work by reviewing the current
cosmological model that will serve as the framework for our simulations and go over the
mechanism behind the formation of domain walls, as well as the VOS model that typically
used to model their evolution.

The second chapter details the numerical steps that we took to make consistent field theory
simulations throughout this thesis. It also serves to test our code for a quartic potential in
order to validate our method.

The first implementation beyond φ4 is done for a sinusoidal potential in the third chapter
where we observed and discussed the formation of new exotic types of walls and interpret the
deviations from the prototypical model and analytical predictions.

In the fourth chapter we investigate the formation of defects in a triple well potential
and extend it to interpolate to between φ6 and φ4. By introducing a cooling mechanism to
dissipate the large gradients of the initial time steps, we observe that the field undergoes a
vacuum decay that depends on the on the difference of potential, the expansion rate of the
Universe and the time that we allowed cooling to occur.

Finally, in the sixth, we perform a systematic analysis of all the work done relating all
models and we discuss how this analysis can be further refined in future works.

Keywords: Cosmology, Computational physics, Topological defects, Domain walls
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Chapter 1

Introduction

1.1 ΛCDM Cosmology

1.1.1 Historical context

The beginning of modern cosmology can be traced to 1915 with Albert Einstein’s theory of
General Relativity (GR) [12]. By 1922, the physicist Alexander Friedmann had used Einstein’s
theory to develop a mathematical model for a non-static Universe [14] which could imply that
it expanded from a hot dense fluid into the Universe we observe today. These ideas were all
based on the cosmological principle that states that, at large enough scales, the properties of
the Universe are the same for all observers. Mathematically, this translates to two important
fundamental properties in modern cosmology:

• Homogeneity - The Universe exhibits translational invariance;

• Isotropy - The Universe exhibits rotational invariance.

Experimentally, the idea of an expanding Universe was later corroborated by the observations
made by Edwin Hubble in 1929 [18] that established a linear correlation between the receding
velocity of galaxies and their distance from the observer (figure 1.1), which later came to be
known as the Hubble law.

Another important experimental evidence for an Universe that expanded from a hot dense
state was the discovery of the Cosmic Microwave Background (CMB) in 1965 by Penzias and
Wilson [30] - electromagnetic radiation that permeates space and is a result of the recombi-
nation period when radiation decoupled from matter.

1.1.2 FLRW Cosmology

GR is the best candidate for describing gravity which is understood to be the main driver
for the evolution of the Universe as a whole. In this theory, space-time is represented as a

1



2 Introduction

Figure 1.1: Velocity-Distance Relation among Extra-Galactic Nebulae taken from Hubble’s original work [18].

4-dimensional manifold and its dynamics is encapsulated in the Einstein field equation for the
metric:

Rµν−
1
2Rgµν = 8πGTµν (1.1)

Our current understanding of the Universe suggests that, at large scales, the cosmological
principle holds true. Based on this assumption, one chooses to use the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric with line element ds defined as

ds2 = dt2−a(t)2 d~x2 (1.2)

where ~x spans over the 3-dimensional space with uniform curvature parameterized by k wich,
in spherical coordinates, can be written as

d~x2 = dr2

1−kr2 + r2dΩ2 (1.3)

where dΩ is the element of solid angle. From the cosmological principle, it’s also reasonable
to take the content of the Universe at any time to behave as an isotropic perfect fluid, which
has its energy-momentum tensor defined as

Tµν = (P +ρ)uµuν−Pgµν (1.4)

with uµ being the fluid’s 4-velocity.

By plugging the FLRW metric (1.2) and the energy-momentum tensor (1.4) in equation
(1.1) and taking its 00 component and its trace we can obtain the Friedmann and Raychaudhuri
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equations respectively:

H2 = 8πG
3 ρ− k

a2 (1.5)

ä

a
=−4πG

3 (ρ+ 3P ) (1.6)

In equation (1.5) we used the usual definition for the Hubble parameter H ≡ ȧ/a. These
two equations can be manipulated and combined to give us the continuity equation for the
energy density in an FLRW Universe

ρ̇= 3H (ρ+P ) (1.7)

which, for a perfect fluid described by the EOS P = ωρ with constant ω, has the general
solution

ρ∝ a−3(1+ω) (1.8)

Based on the current cosmological constraints [1] it is reasonable to assume that, at any
time, the contribution of the curvature to the dynamics of the Universe is negligible compared
to the energy density. This means that we can simply set k = 0 and solve (1.5) for a single
perfect fluid using (1.8) by also fixing a(t= 0) = 0. This gives us an equation for the evolution
of the scale factor as a function of the content of the Universe:

a∝ t
2

3(1+ω) = tλ (1.9)

We know that, for non-relativistic matter, ω = 0 and, for ultra-relativistic particles, ω =
1/3. We can then create a good description of the expansion rate of the Universe when it’s
dominated by radiation and by non-relativistic matter:

arad ∝ t1/2 (1.10)

amat ∝ t2/3 (1.11)

1.1.3 Missing Pieces

We also know from different independent types of observations (galaxy rotation curves [37],
structure formation [34], CMB [1], etc.) that the non-relativistic matter content of the Universe
is mainly non-baryonic matter that only interacts with other matter through gravity. These
characteristics define what is known as cold dark matter (CMD) and its relative abundance in
our Universe is ΩCDM/Ωmatter = 0.8361±0.0064 [1].

Another missing ingredient in the standard FLRW model is dark energy. Up until the
late nineties, expansion was thought to either be constant or decelerated as a consequence of
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gravitational attraction. However, in 1998, two independent research teams [31, 33] showed
that in fact this expansion was accelerating. We can introduce an extra term Λ in Einstein’s
field equation (1.1) to account for that:

Rµν−
1
2Rgµν + Λgµν = 8πGTµν (1.12)

The introduction of this term is consistent with Einstein’s original derivation of the field
equations and an extension of the theory. Furthermore, it can also be thought of as an
additional component of the energy-momentum tensor, consistent with the description of a
fluid with negative pressure (ω =−1).

The current measurements of the relative densities of these quantities in the Universe were
taken from Planck data [1] and are ΩΛ = 0.6834± 0.0084, Ωmatter = 0.3166± 0.0084 and
Ωradiation ∼ 10−5 for a flat Universe.

Another important feature of the modern cosmology landscape is inflation - a mechanism
first introduced by Alan Guth in 1981 [15] to solve several problems in the current Big Bang
model by introducing a rapid exponential expansion (a∝ exp(t)) period in the early Universe:

• The horizon problem - Gravitational expansion doesn’t give enough time for patches of
the early Universe to reach thermal equilibrium before they become casually disconnected.
If this was the case we could not explain why the Universe appears homogeneous and
isotropic. By introducing inflation we guarantee that these regions were casually con-
nected in thermal equilibrium but inflation pushed them beyond the cosmological horizon
eventually becoming disconnected, but maintaining the same statistical properties.

• The flatness problem - The fact that the density of matter (relativistic and non-relativistic)
in the Universe is very close to the critical density necessary for a flat Universe has far-
reaching implications, since any small variation of this value in the early Universe would
increase rapidly over time as the density of matter decreases. During inflation, however,
this value would instead decrease forcing the curvature to zero.

• The monopole problem - Magnetic monopoles are topological defects (details in the
next section) that naturally arise in the early Universe in Grand Unified theories (GUT).
These relics are very long lived to the point where their density would exceed the critical
density of the Universe overclosing it. Despite several tests being made, no monopoles
were yet observed which has placed strict limits on their density. Inflation can deal with
this issue by "pushing" the monopoles out of the horizon in a similar way as in solving
the horizon problem. This mechanism not only applies for monopoles but for other types
of topological defects as well such as domain walls that would also end up dominating
the density of the Universe if no mechanism existed to disperse them.
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Table 1.1: Topological classification of defects based on the constrains on the homotopy group of the vacuum manifold
M.

Homotopy constraint Topological Defect Dimension
π0 (M) 6= I Domain walls 2
π1 (M) 6= I Strings 1
π2 (M) 6= I Monopoles 0
π3 (M) 6= I Textures -

1.2 Topological Defects

The formation of domain structures is a known phenomenon in gauge theories with spon-
taneous symmetry breaking. It’s often applied in the context of condensed matter and particle
physics with consistent results. In cosmology, this mechanism was first studied by Kibble [20],
in particular the topology and scale of the defects that form as a result of phase transitions
in the early Universe. In many cases these defects can persist throughout the evolution of the
Universe and leave its imprints as fossil relics.

A significant part of the theoretical analysis of these defects will closely follow the work
presented in [35] in particular the Kibble mechanism. This mechanism produces defects when a
scalar field φ undergoes a phase transition caused by expansion, changing the expectation value
of the field 〈φ〉. Due to gaussian fluctuations in the field and the finite correlation distance
between different patches in the Universe, protodomains (and consequently topological defects)
can form. The topology of these defects is only dependent on the symmetry breaking scenario.
Let us suppose that φ obeys a symmetry defined by a group G which is broken to a subgroup
K such that G→K. The manifold of the new degenerate vacuum stateM can be identified
with the coset space M = G/K. The type of topological defect that arises is shown to be
related to the non-trivial n-th homotopy group ofM as detailed in table 1.1

There are essentially two ways of approaching the nonlinear evolution of these defects. The
first one is by developing a model that captures the thermodynamics of the system. This idea
was first implemented by Kibble [21] for a model of string networks with a single macroscopic
correlation length that characterizes the dynamics of the system. The current state of the
art and the model that we will be closely following is the velocity-dependent one-scale (VOS)
model that was firstly developed for strings [25, 26] and later extended to domain walls [3, 28]
and monopoles [27] and gives us dynamical equations for both the correlation length and RMS
velocity of the network. This model also only has two free parameters that need to be calibrated
using additional computational data. This brings us to the second method of computing the
evolution of topological defects which is by using high-resolution numerical simulations of field
theory. This thesis will mostly focus on the latter but will mention the VOS model occasionally
in order to contextualize and compare our results to the analytical predictions of the model.
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Figure 1.2: Schematic 2D representation of a system where the vacuum manifold has two disconnected regions "+" and
"-" and domain walls interpolate between these two states.

1.2.1 Domain Walls

We chose to focus this work solely on the formation and evolution of domain walls. These
form as a result of a discrete symmetry breaking if the vacuum manifold contains several dis-
connected components. Due to random fluctuations, different regions of space can assume
different vacuum expectation values. Since the field is required to interpolate smoothly be-
tween these regions, domain walls form at the boundaries of domains with different vacuum
expectation values as shown schematically in figure 1.2. The general model we study involves
a real scalar field with a Lagrangian of the form

L= 1
2∂µφ∂

µφ+V (φ) (1.13)

where the potential V (φ) has a discrete set of degenerate minima.
By varying the action

S =
∫
dt

∫
d3x
√
−gL (1.14)

with respect to φ we can obtain the equation of motion for the field:

∂2φ

∂t2
+ 3H∂φ

∂t
− 1
a2∇

2φ=−∂V
∂φ

(1.15)

It’s useful to represent the equation of motion in terms of conformal time by doing a
coordinate transform such that the temporal coordinate is preserved through changes in the
scale factor. We define this coordinate by the relationship

dη = dt

a(t) (1.16)

Using this definition, equation (1.15) becomes

∂2φ

∂η2 + 2
(
dlna
dlnη

) 1
η

∂φ

∂η
−∇2φ=−a2∂V

∂φ
(1.17)
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where the term dlna/dlnη depends solely on the rate of expansion and acts like a damping
mechanism in the system. In particular, for a power-law evolution of the Universe as given by
(1.9), it can be shown that

dlna
dlnη = λ

1−λ (1.18)

The energy-momentum tensor for the field can also be obtain through its usual definition
and is given by

Tµν = ∂µφ∂νφ−gµνL (1.19)

1.2.2 The VOS model for domain walls

The evolution of a network of domain walls can be analytically described by the VOS model
[3, 28]. This model starts from the microscopic equations of motion for the walls and carries
out a statistical average for the system assuming that the defects are randomly distributed
at large scales. This analysis leads to a nonlinear system for the evolution of the correlation
length L and the RMS velocity of the walls v.

Our derivation will closely follow the work done by Martins et al. [28]. We start by
considering an infinitely thin wall parameterized by σ1 and σ2. This means that the evolution
of the wall can be described by the smooth function xµ (η,σ1,σ2) where we identified σ0 ≡ η.
We can also require two tangential vectors to be orthogonal (∂σ1x

µ∂σ2xµ = 0) and the wall
velocity to be normal to the tangent of the wall surface (∂ηxµ∂σ1xµ = ∂ηx

µ∂σ2xµ = 0).
To derive the EOM we start from the Dirac action for a membrane (the Nambu-Goto

equivalent for walls) by firstly identifying the induced metric

γab = gµν∂ax
µ∂bx

ν (1.20)

The action is then given by

S =−
∫
Ld3σ =−σw

∫ √
det(γab)d3σ (1.21)

where σw is a constant mass per unit area. By computing the energy-momentum tensor and
taking its 00 component we get the energy of the wall E (in a FLRW background). If we then
divide it by the total volume of space V we get energy density in that volume:

ρ≡ E

V
= σwa

2

V

∫
εd2σ (1.22)

where the coordinate energy per unit length ε is defined as

ε2 = ~x′ 2

1− ~̇x2 (1.23)
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with time derivative ~̇x in respect to conformal time and spatial derivative ~x′, which, in our
particular case, is simply ~x′ 2 ≡ (∂1~x)2 (∂2~x)2.

We can also apply standard variational methods to (1.21) in order to obtain the EOM for
the wall:

∂ηa

a
δ0λ

√
det(γab)γcdγcd−∂e

(√
det(γab)γcdgµλ∂cδed

)
= 0 (1.24)

By differentiating both the zeroth component of the EOM and (1.22) we obtain a differ-
ential equation for the evolution of ρ:

dρ

dt
=−Hρ

(
1 + 3v2

)
(1.25)

where v is the RMS velocity defined as

v2 ≡
〈
~̇x2
〉

=
∫
~̇x2εd2σ∫
εd2σ

(1.26)

and the time derivative, in this case, is with respect to conformal time.
Furthermore we can perform a similar operation to the spatial components of (1.24) (i. e.

λ= i) to obtain a differential equation for the evolution of v:

dv

dt
=
(
1−v2

)(kw
L
−3Hv

)
(1.27)

where kw is a curvature/momentum parameter, that is taken to be constant at a first approx-
imation, and L is the correlation length:

L−1 ≡ a2

V

∫
εd2σ (1.28)

To account for energy losses caused by intersections of walls and formation of closed sphere-
like objects that collapse into themselves, we need to introduce a mechanism similar to what
was done by Kibble for strings [21]:

dρloss
dt

=−cwv
ρ

L
(1.29)

where the chopping parameter cw is taken to be constant. We can rewrite (1.25) introducing
this energy loss term and representing it in terms of the correlation length (L= σw/ρ)

dL

dt
=
(
1 + 3v2

)
HL+ cwv (1.30)

To obtain the relevant asymptotic scaling solutions one must neglect the effect of the
energy density of the walls on the background (specifically, on the Friedmann equations).
Even though the wall network energy will end up dominating, this is a good approximation in
the context of the numerical simulations that will be carried out in this thesis. For a scale
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Figure 1.3: General shape of a double well φ4 potential.

factor behaving as (1.9), the attractor solution for equations (1.30) and (1.27) corresponds to
a linear scaling solution:

L=
√
kw (kw + cw)

3λ(1−λ) t (1.31)

v2 = 1−λ
3λ

kw
kw + cw

(1.32)

It’s important to note that, since cw and kw are free parameters of the model, they need to
be calibrated numerically using either bootstrapping techniques or more sophisticated methods
such as MCMC [10].

1.2.3 The φ4 potential

The prototypical model that is used to study the appearance and evolution of domain walls
is described by (1.13) with a double-well potential of the form

V (φ) = V0

(
1− φ

2

φ2
0

)2

(1.33)

Here, φ0 is the potential energy minimum and V0 is the height of the potential barrier
and has the general shape represented in figure 1.3. This model has been extensively studied
using both analytical and numerical approaches since it emerges naturally from current field
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Figure 1.4: Shape of a planar wall at rest with a localized kink at z = 0 and a thickness of w0 that interpolates between
the two vacua localized at φ=±φ0.

theory models. It can be shown that, for this case, equation (1.15) has the exact solution for
an adiabatically static Universe

φ(z) = φ0tanh
(√

2V0
φ0

z

)
(1.34)

which corresponds to a planar wall at rest with a localized kink centered at z = 0.
By identifying its thickness to be

w0 ≡
πφ0√
2V0

(1.35)

we can rewrite (1.34) as

φ(z) = φ0tanh
(
π

w0
z

)
(1.36)

which is represented in figure 1.4.
Numerically (and for consistency throughout this thesis), we will want to calculate V0 from

a fixed value of the wall density w0 so we can simply rearrange (1.35) to give us

V0 = π2φ2
0

2w2
0

(1.37)

Furthermore, it can be shown that its surface tension is

σ = 8
3φ0

√
V0 (1.38)

and that this surface tension in the two tangential directions is also equal to σw.



Chapter 2

Numerical Approach

2.1 The PRS algorithm

This thesis will closely follow the method developed by Press, Ryden & Spergel [32].

A consequence of evolving equation equation (1.17) is that the wall thickness w0 will
decrease as a−1. This creates a big problem when computing this model since, for later times,
we lose resolution on the wall and can easily encounter energy losses related to numerical
limitations. The PRS method solves this issue by introducing a new equation of motion that
preserves the dynamics of (1.17) but maintains a constant comoving thickness for the walls.
To do this, one first considers the general equation

∂2φ

∂η2 +α

(
dlna
dlnη

)
∂φ

∂η
−∇2φ=−aβ ∂V

∂φ
(2.1)

where α and β are constants. It’s easy to see that equation (1.17) is the particular case where
α= β = 2.

We can guarantee constant comoving wall thickness by removing the dependency on a in
the right-hand side of the equation i.e. setting β = 0. This however, may change the large
scale dynamics of the system so we will also need to adjust α in order to preserve them, namely
the rate at which the Hubble damping localizes φ into φ0 and the momentum conservation law
for how walls slow down in the Hubble flow. These are, respectively, determined by equations
(2.2) and (2.3).

〈φ−φ0〉rms ∝ a
−α/2−β/4 (2.2)

γv ∝ a−α−β/2 (2.3)

A fortunate result is that setting α = 3 and β = 0 in these equations gives us the same
dynamics as in the original system but with the benefit of maintaining a constant comoving

11
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wall thickness. By using this choice of parameters we obtain the final EOM that will be used
to evolve the field

∂2φ

∂η2 + 3
(
dlna
dlnη

)
∂φ

∂η
−∇2φ=−∂V

∂φ
(2.4)

2.1.1 Discretization of the theory

The method used to discretize (2.4) is fairly standard. A simple finite differences scheme
with a 7-point stencil was used to compute the 3-dimensional Laplace operator:

(
∇2φ

)
ijk
≡ φi+1,j,k +φi−1,j,k +φi,j+1,k +φi,j−1,k +φi,j,k+1 +φi,j,k−1−6φi,j,k (2.5)

For the time derivatives we used a staggered leapfrog finite differences scheme for the
second-order term and Crank-Nicolson for the first-order term:

φ̇
n+1/2
ijk =

(1− δ) φ̇n−1/2
ijk + ∆η

(
∇2φnijk−∂V/∂φnijk

)
1 + δ

(2.6)

Here, φ̇ ≡ ∂φ/∂η, ∆η is the discrete time step and the damping term δ is given by the
expression

δ ≡ 1
2α

∆η
η

dlna
dlnη (2.7)

By using a central difference scheme to compute φ̇n+1/2 it’s easy to realize that the
evolution of the field is simply given by

φn+1
ijk = φnijk + ∆ηφ̇n+1/2

ijk (2.8)

2.2 Code implementation

The highly parallel nature of steps (2.5), (2.6) and (2.8) makes this algorithm a prime
candidate for GPGPU implementation. This was firstly done by Correia and Martins [9] using
Open Computing Language (OpenCL) 1.2 as specified by the Khronos Consortium [29] which
allowed us to more efficiently run several simulations on a single machine.

The machine used for testing was equipped with a NVIDIA Quadro P5000 with 2560
CUDA cores clocked at 1607MHz. It also packed 16GB of total video memory clocked at
1126MHz.

The first relevant quantity that we wish to measure is the wall density, which is simply
given by

ρw = A

V
(2.9)
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where A is the comoving area of the wall and V is the volume of the box and is related to the
correlation length as discussed in section 1.2.2. For this, we used the value of φ(~x) on each
point of the grid to determine if it was located at a maximum of V (φ) within a certain margin
δφ and divide it by the total number of points in the grid. The other important quantity to
measure is the wall RMS velocity, more specifically γv (where γ is the the Lorentz factor)
which was done in accordance to the method described in [3] where this quantity is shown to
be given by 〈

γ2v2
〉

=
∑ φ̇2

2V (φ) (2.10)

and the sum is computed only over the points in the field that are located at a maximum of
V (φ).

The initial state of the field φ was assumed to be a randomly distributed variable between
−φ0 and +φ0 with ∂φ/∂η = 0. This leads to large energy gradients in the initial time steps
of the simulations that need some time to dissipate. In some cases on this thesis we had
to introduce a cooling mechanism where we temporary allowed the field to evolve without
expansion to soften these gradients.

All simulations start at a conformal time η = 1 and evolve in time steps of ∆η = 0.25 until
a conformal time equal to half the box size. This upper bound is set to prevent unwanted
interactions of the field as a result of using periodic boundary conditions. It’s also worth
mentioning that, when the cooling mechanism is introduced (for η < 1), the time step needs
to be much finer to prevent numerical errors, specifically we chose ∆ηcooling = ∆η/30.

All the results presented were averaged from 10 separate runs with 10 different seeds in
the initial conditions (for consistency, the same 10 different seeds were used in every chapter)
and a box size of 20482.

To keep the results consistent throughout all simulations and previous works, we also
decided to set φ0 = 1 and w0 = 5 when computing its evolution.

2.3 Consistency tests for the φ4 potential case

To test the validity of the code we first implemented it for the simple case of the double
well potential discussed in section 1.2.3. By using the definition for V0 in (1.37) along with
the previously mentioned values for φ0 and w0, equation (1.33) becomes:

V (φ) = π2

50
(
1−φ2

)2
(2.11)

For this test we decided to use three different expansion rates: a radiation dominated Uni-
verse with λ= 1/2, a matter dominated Universe with λ= 2/3 and an accelerated expansion
with λ= 4/5. We chose to represent in figure 2.1 simulations for radiation and matter domi-
nated Universes for two distinct time steps. Plotted in figures 2.2 and 2.3 are the evolution of
the wall density and velocity, respectively, using our method.
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(a) (b)

(c) (d)

Figure 2.1: Pictures of a domain wall network in a quartic potential and a 20482 grid evolved using the method described
in this chapter for λ = 1/2 (2.1a and 2.1b) and λ = 2/3 (2.1c and 2.1d). The color represents the value of the field φ.
Snapshots were taken for conformal times η = 101 (2.1a and 2.1c) and η = 751 (2.1b and 2.1d).

It shows that, after an initial period of about η = 20, the evolution assumes a stable
behavior similar to the one predicted by the VOS model. In order to quantify this relationship
we looked for the best fit to the power laws

ρw ∝ ηµ (2.12)

γv ∝ ην (2.13)

For a scale invariant behavior, we should expect µ = −1 and ν = 0. There needs to be
special care to only fit the data in the relevant dynamic range which, in this case, we chose to
be η > 21. We also calculated the asymptotic values of (ρwη)−1 and γv on the later stages
of evolution where we assumed to have achieved scaling. These quantities are directly used to
calculate the parameters cw and kw in the analytical model.
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Figure 2.2: Evolution of the domain wall density in a φ4 potential as a function of conformal time for a box size of 20482

and three different expansion rates. The plotted curves are averaged over 10 different simulations with different random
initial conditions, identical for each value of λ.

Table 2.1 shows that the values we obtained are consistent with the analytical model and
with the work done previously by Leite and Martins [23] who used an independent (CPU based)
version of the code and ran it for exponents identical to ours.
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Figure 2.3: Evolution of the domain wall velocity (γ2v2) in a φ4 potential as a function of conformal time for a box size
of 20482 and three different expansion rates. The plotted curves are averaged over 10 different simulations with different
random initial conditions, identical for each value of λ.

Table 2.1: Comparison of the values for the exponents µ and ν calculated for three different expansion rates where the
field is constrained by a φ4 potential between our work and Leite and Martins (2011). Our values were taken by averaging
over 10 simulations and fitting the data in the range η = [21,1024]. The fourth and fifth column show the asymptotic
values for (ρwη)−1 and γv which in turn are related to the macroscopic values of the VOS model. Values in parentheses
refer to the box size used in each case.

λ µ ν (ρwη)−1 γv

Rosa (20482) 1/2 −0.93±0.03 −0.06±0.02 0.49 0.41
Rosa (20482) 2/3 −0.94±0.02 −0.03±0.03 0.42 0.35
Rosa (20482) 4/5 −0.94±0.02 −0.00±0.04 0.35 0.28
Leite & Martins (5123) 1/2 −0.99±0.05 −0.0001±0.0002 0.60 0.46
Leite & Martins (5123) 2/3 −0.97±0.04 −0.0000±0.0001 0.54 0.37
Leite & Martins (5123) 4/5 −0.96±0.03 0.00001±0.00005 0.50 0.29



Chapter 3

Sine-Gordon Potential

3.1 Introduction

Another potential shape that emerges from specific symmetry breaking mechanisms such
as the in the schizon models [16] is the Sine-Gordon potential:

V (φ) = V SG
0

[
1 + cos

(
π
φ

φ0

)]
(3.1)

which has periodic minima at (2n+ 1)φ0 for any integer n, as shown in figure 3.1.

For consistency through this work it is important to relate V0 with the wall thickness wo
which is a fixed value in our simulations. To guarantee that the field has the same dynamics
in the vacuum as in φ4 we must choose a value of V0 that preserves the local curvature at
the minima that are common to both models. To do this, we simply calculate the second
derivative of both the φ4 (1.33) and Sine-Gordon (3.1) potentials:

d2Vφ4

dφ2

∣∣∣∣∣
φ=±φ0

= 8V0
φ2

0
,

d2VSG
dφ2

∣∣∣∣∣
φ=±φ0

= π2V SG
0

φ2
0

(3.2)

By imposing that they must have the same local curvature in the vacua, we get a relation-
ship between V0 and V SG

0 :

V SG
0 = 8

π2V0 (3.3)

Using this relation and plugging the same values for φ0 and w0 as we used in the previous
section, we can rewrite the potential (3.1) as

V (φ) = 4
25 [1 + cos(πφ)] (3.4)

This formulation ensures similar local field dynamics in the minima while at the same time
having the same fixed wall thickness as in the φ4 case.

17
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Figure 3.1: General shape of the Sine-Gordon potential and the different types of walls it can produce in each maxima.

3.2 Evolution of ρ and v

We used the same procedure as in the previous section to evaluate the evolution of domain
walls emerging from this type of potential, specifically the wall separating the vaccua at ±φ0.
For consistency we chose to represent in figure 3.2 snapshots of the field for λ = 1/2 and
λ= 2/3 and used the same initial conditions as in 2.1. Since the initial conditions are identical
to the ones used in the φ4 model, in the initial time steps only type-I walls can exist and other
types that form at later times are solely a consequence of the dynamics of the model.

Since the field can explore several minima, it will naturally do so in the initial time steps
where it has enough energy. Figure 3.4 shows us how these domains emerge in the simulation
and cause the formation of different types of walls. The data for the density and velocity of
each type of wall is plotted in figure 3.3. From 3.3c and 3.3e we can easily see that higher
expansion rates have less type-II and type-III walls. This is an expected result since the smaller
Hubble damping gives the opportunity for more areas to cross to other minima. We also found
that, given the initial conditions, no walls form between the third and fourth minima for the
expansion rates evaluated. The density plot for type-III walls also suggests that these defects
are very sparse and short-lived given these conditions.

More conclusions can be drawn by analysing the ratio of density and velocity between the
"outer" walls and type-I. This can give us a clearer picture on how their dynamics diverge from
one another. We only plotted the ratios between type-II and type-I in figure 3.5 because data
for the other walls was too noisy. Nevertheless figure 3.5a clearly shows that type-II walls also
decay slightly faster then type-I. Figure 3.5b on the other hand suggests that the velocity of
type-II walls has the same behaviour as velocity of type-I walls. Despite having the same order
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(a) (b)

(c) (d)

Figure 3.2: Pictures of a domain wall network in a Sine-Gordon potential and a 20482 grid evolved using the method
described in chapter 2 with λ= 1/2 (3.2a and 3.2b) and λ= 2/3 (3.2c and 3.2d). The color represents the value of the
field φ. Snapshots were taken for conformal times η = 101 (3.2a and 3.2c) and η = 751 (3.2b and 3.2d).

of magnitude it’s also clear that, the faster the expansion rate is, the faster type-II walls move,
more specifically the ratio for the velocities ((γv)2

II /(γv)2
I) is approximately 1.95 for λ= 1/2,

2.34 for λ= 2/3 and 3.49 for λ= 4/5. This again, is an expected result since the field needs
more energy to overcome the potential which means that, when it does, it naturally has more
kinetic energy.

Similarly to what was done in the previous section, we tried to model the data to the
semi-analytical VOS model. By fitting the data from type-I walls to (2.12) and (2.13) we
obtained the values presented in table 3.1.

As we can see, they significantly deviate from the values for a scaling solution of the VOS
model. In the case of φ4 it is known that these values might change depending on the size
and dimension of the box used to perform the simulations [23]. Whether this deviation is a
consequence of this or if it serves as a clue that the VOS model needs to be further refined is
still an open problem.
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Table 3.1: Values for the exponents µ and ν calculated for three different expansion rates for type-I and type-II walls
in a Sine-Gordon potential and a box size of 20482. Each value was taken by averaging over 10 simulations and fitting
the data in the range η = [26,1024] for type-I and η = [31,1024] for type-II walls. The fifth and sixth column show the
asymptotic values for (ρwη)−1 (which couldn’t be computed for type-II walls since ρw goes asymptotically to ρw = 0
given our resolution) and γv which in turn are related to the macroscopic values of the VOS model.

Wall type λ µ ν (ρwη)−1 γv

Type-I 1/2 −0.84±0.02 −0.21±0.02 0.40 0.30
Type-I 2/3 −0.85±0.01 −0.18±0.02 0.37 0.27
Type-I 4/5 −0.87±0.01 −0.14±0.02 0.33 0.25
Type-II 1/2 −1.45±0.04 −0.04±0.01 - 0.50
Type-II 2/3 −1.38±0.06 −0.06±0.01 - 0.52
Type-II 4/5 −1.54±0.05 −0.07±0.01 - 0.52
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Evolution of the density and velocity (γ2v2) of different types of domain walls that form in a Sine-Gordon
potential as a function of conformal time for a box size of 20482. The plots 3.3a and 3.3b correspond to the type-I walls
formed between the two central minima between φ = ±1, the plots 3.3c and 3.3d correspond to the type-II walls that
form between the the central minima and the following ones at φ=±3 and the bottom plots, 3.3e and 3.3f, correspond
to the type-III walls that form between the minima at φ=±3 and the ones at φ=±5.
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Figure 3.4: Picture of the field that details the emergence of domains outside the initial conditions in a Sine-Gordon
potential giving rise to type-II walls. The color represents the value of the field φ. This snapshot was taken from a
simulation using the method detailed in chapter 2 for a box size of 20482 and λ= 1/2 at conformal time η = 26.

(a) (b)

Figure 3.5: Ratios between density and velocity of type-I and type-II walls that form in a Sine-Gordon potential. It was
used the same data as in figure 3.3.



Chapter 4

φ6 Potential

4.1 Introduction

In this section we aim to analyse the cosmological evolution of a scalar field when con-
strained by a triple well potential defined by

V (φ) = V0
φ2

φ2
0

(
1− φ

2

φ2
0

)2

(4.1)

which has minima located at φ= 0 and φ=±φ0 as shown in figure 4.1.
This type of potential has been studied extensively in the context of both condensed matter

and high energy particle physics, most notably as a natural extension of the Ginzburg-Landau
model (see for example [5, 4, 11, 13, 19, 2, 36, 24, 22]). In this thesis we will focus on how
this potential behaves in an expanding Universe and its ability to form domain walls.

We will work on the ansatz that the wall thickness relates to V0 in the same as in φ4

defined in equation (1.37) since it preserves the same curvature at the side minima (φ=±φ0).
This can be validated by a similar analysis as it was done in the previous section where we
calculated the second derivative of the potential in that minima. For our purposes, this means
that we can rewrite (4.1) as

V (φ) = π2

50 φ
2
(
1−φ2

)2
(4.2)

where we used the same values for w0 and φ0 as in the previous sections.

4.2 Evolution of ρ and v

The same procedure as in the previous chapters was used to determine the evolution of the
density and velocity for the walls, which were considered to be the points of the field between
the middle minimum at φ= 0 and the two side minima φ=±1. The results are shown in 4.2
and 4.3 and they clearly show that there is no defect formation in any of the expansion rates
and that the area of points between the minima quickly falls to 0 in a time scale of η < 8.

23
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Figure 4.1: General shape of a triple well φ6 potential.

4.3 Field Collapse

To better understand the mechanism behind this collapse we looked for the values that
the field manifested. We concluded that the absence of walls was a consequence of the field
quickly collapsing to φ= 0 as figure 4.4 shows. This is also evident when we plot the density
of points in this minimum as shown in figure 4.5.

We propose that this is a consequence of the damping caused by the expansion and the
random symmetrical nature of the initial conditions. We tried to address the former by in-
troducing a cooling mechanism as described in section 2.2. This proved to be ineffective in
preventing the collapse. The latter might be curbed by introducing biased initial conditions
such as in the analysis done by Correia et al. [7, 8] for the φ4 case. We know of asymmetries
that occur in nature, such as in the case of the open baryon asymmetry problem, so it could
be interesting to investigate whether the introduction of biased initial conditions in a φ6 po-
tential could give rise to domain walls without the introduction of additional constrains in the
potential itself.

4.4 Christ-Lee Potential

In this section we investigate the possibility of wall formation in a triple well potential by
introducing a constraint in the potential making the central minimum metastable and try to
extend this model to a pure φ6 potential. For that purpose we compute the field in a Christ-Lee
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Figure 4.2: Evolution of the density of domain walls in a φ6 potential as a function of conformal time for a box size of
20482 and three different expansion rates. The plotted curves are averaged over 10 different simulations with different
random initial conditions, identical for each value of λ.

type potential [6] that has an aditional parameter ε which interpolates the potential between
φ4 (when ε→∞) and φ6 (when ε= 0) and is given by

V (φ) = V0

(
φ2/φ2

0 +ε2

1 +ε2

)(
1− φ

2

φ2
0

)2

(4.3)

The ability for this potential to replicate the scaling exponents µ and ν from section 2.3 for
a sufficiently high ε≥ 1 is shown in table 4.1 and serves as an important consistency test by
itself. This is furthermore validated by figure 4.7 which shows that the evolution of the network
for ε = 1 has an indistinguishable behaviour from the quartic model. Nevertheless, when we
look at the asymptotic values for the density we can see that they clearly deviate from the
values we got in section 2.3, even though the asymptotic values for the velocity have remain
consistent for ε= 2 and ε= 4. These values will be ultimately used together to calibrate the
parameters of the VOS model, so this variation can have a significant impact in the analytical
model and is likely caused by the different shape of the potential.

The Christ-Lee potential effectively creates a bias between the minima keeping the side
minima fixed at φ = ±φ0 and varying the central minimum at φ = 0. It can be seen that
this minimum emerges only for values of ε < 1/

√
2 as shown in figure 4.6. An important

quantity to take into consideration is the difference in potential between the central and the
outer minima ∆V , which is simply given by

∆V = V0
ε2

1 +ε2 (4.4)
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Figure 4.3: Evolution of the velocity (γ2v2) of domain walls in a φ6 potential as a function of conformal time for a box
size of 20482 and three different expansion rates. The plotted curves are averaged over 10 different simulations with
different random initial conditions, identical for each value of λ.

Another useful property is that the curvature of the side minima does not depend on ε and
it’s the same as in the the pure φ6 case which makes it reasonable to use the same ansatz as
in φ6 where we took the wall thickness w0 to be related to V0 in the same way as in the simple
φ4 case. This means that (4.3) can be rewritten with these considerations and the same values
for w0 and φ0 as

V (φ) = π2

50

(
φ2 +ε2

1 +ε2

)(
1−φ2

)2
(4.5)

4.4.1 Stability analysis of the metastable vacuum

Our aim is to understand how the formation of walls depends on ∆V when dealing with a
symmetric triple well potential so several simulations were made for the same initial conditions
but for different values of ε. More specifically, we looked at how the density of points in the
central minimum evolved over the simulations. If we expect walls to form, this value should
drop after an initial stabilization period.

The result of these simulations is plotted in figure 4.8 for the case of a radiation dominated
Universe. We used a threshold of ρ < 2/3 to estimate the time at which the vacuum decayed.
Doing this allowed us to plot the dependence of this vacuum decay time to the parameter ε.
Figure 4.9 shows us a clear ceiling for the formation of walls at ε= 1/

√
2 coinciding with the

value for which the potential becomes a double well.
We concluded that this was a consequence of the high gradients of the field in the initial

time steps of the simulation canceling each other as the increase of a(τ) acts as a damping
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(a) (b)

Figure 4.4: Pictures depicting the field collapsing in a φ6 potential and a 20482 grid evolved using the method described
in chapter 2 for λ= 1/2. The color represents the value of the field φ. Snapshots were taken for conformal times η = 2
(4.4a) and η = 51 (4.4b).

mechanism. In order to overcome this issue we introduced the cooling mechanism referred
in section 2.2 in our simulations. This, in fact, proved to facilitate the vacuum decay for
ε < 1/

√
2.

We showed that the possibility of decay and the decay time of such a potential depends on
the difference between the minima ∆V , the expansion rate λ and the initial cooling time of the
field ηcooling. This threshold is plotted in figure 4.10 for a radiation dominated Universe and a
matter dominated Universe. We can see that, for both cases, this threshold goes to ∆V = 1/3
when we have no cooling (corresponding to ε= 1/

√
2) and seems to approach ∆V = 0 as we

increase the cooling time. This suggests that, regardless of the time we let the system cool
before expansion, given symmetric initial conditions, a pure φ6 potential will never give rise to
domain walls. The main difference between the different values of λ seems to be "slope" of
the threshold curve where, in a slower expansion, ∆V approaches 0 quicker when increasing
the cooling time.

We can look at figure 4.11 to see how this vacuum decay occurs through bubble nucleation
from the false vacuum. Attempts to model this decay followed the work done by Hindmarsh
[17] where a potential bias between two minima is expected to follow a behaviour of the shape

ρ∝ η−1exp[−κ(∆V η)n] (4.6)

with κ being a normalization constant and n the number of spatial dimensions (n= 2 in our
case). This approach, however, was proven to fail in this particular case due to the existence
of global symmetry of the potential or by merely the existence of three minima. Both of these
hypotheses should be explored, and a precise analytical (or even empirical) model for the curves
shown in 4.10 would prove very useful for studying the domains for wall formation and fine
tune cosmological constrains.



28 φ6 Potential

Figure 4.5: Evolution of the density of the field φ located at the central minimum (φ = 0± 0.4) in a φ6 potential as a
function of conformal time for a box size of 20482 and three different expansion rates. The plotted curves are averaged
over 10 different simulations with different random initial conditions, identical for each value of λ.

Figure 4.6: General shape of the Christ-Lee Potential potential that interpolates between a double well and a triple well
for different values of ε.
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Table 4.1: Values for the exponents µ and ν calculated for three different expansion rates in a box size of 20482 where the
field is constrained by a Christ-Lee potential parameterized by different values of ε. Each value was taken by averaging
over 10 simulations and fitting the data in the range η = [31,1024]. The fifth and sixth column show the asymptotic
values for (ρwη)−1 and γv which in turn are related to the macroscopic values of the VOS model.

ε λ µ ν (ρwη)−1 γv

1 1/2 −0.93±0.02 −0.05±0.05 0.41 0.33
1 2/3 −0.95±0.02 −0.02±0.04 0.37 0.27
1 4/5 −0.94±0.01 −0.01±0.05 0.30 0.21
2 1/2 −0.94±0.03 −0.02±0.04 0.57 0.43
2 2/3 −0.94±0.02 −0.02±0.04 0.46 0.34
2 4/5 −0.95±0.01 −0.00±0.05 0.37 0.26
4 1/2 −0.95±0.03 −0.06±0.02 0.62 0.41
4 2/3 −0.96±0.03 −0.03±0.03 0.54 0.35
4 4/5 −0.96±0.02 +0.03±0.04 0.44 0.29

(a) (b)

(c) (d)

Figure 4.7: Pictures of a domain wall network in a Christ-Lee potential and a 20482 grid evolved using the method
described in chapter 2 for λ= 1/2 (4.11a and 4.11b) and λ= 2/3 (4.11c and 4.11d) and ε= 1. The color represents the
value of the field φ. Snapshots were taken for conformal times η = 101 (4.11a and 4.11c) and η = 751 (4.11b and 4.11d).
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Figure 4.8: Evolution of the density of the field φ located at the the central minimum (φ = 0± 0.4) in a Christ-Lee
potential as a function of conformal time for a radiation dominated Universe (λ= 1/2). Different colored lines represent
different values of ε. This data was taken from averaging 10 simulations for each ε for the same initial conditions and a
box size of 20482. The dashed line at ρ= 2/3 represents the threshold used to calculate vacuum decay.

Figure 4.9: Dependence of the vacuum decay on ε taken from the data of figure 4.8 using ρ < 2/3 as the condition for
decay.
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(a) (b)

Figure 4.10: Dependency of vacuum decay in a Christ-Lee potential in terms of the initial cooling time of the field
(ηcooling) and ∆V for λ= 1/2 (4.10a) and λ= 2/3 (4.10b). This data was averaged over 10 simulations for each value
of ε and λ in a box size of 20482 and the decay was considered to occur when ρ(φ= 0±0.4)< 2/3.

(a) (b)

(c) (d)

Figure 4.11: Pictures of a domain wall network in a Christ-Lee potential and a 20482 grid evolved using the method
described in chapter 2 for λ = 1/2 (4.11a and 4.11b) and λ = 2/3 (4.11c and 4.11d), ε = 1/2 and a cooling period of
ηcooling = 2. The color represents the value of the field φ. Snapshots were taken for conformal times η = 101 (4.11a and
4.11c) where bubble nucleation in the false vacuum can be clearly observed and η = 751 (4.11b and 4.11d) where the
vacuum has fully decayed.
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Chapter 5

Conclusions and future work

We will firstly summarize the results obtain throughout this thesis. Our work followed
the same systematic analysis which was validated for the prototypical φ4 potential in chapter
2. In chapter 3 we observed the formation of new types of domain walls outside the range
of initial conditions when the field is constrained by a periodic potential. Preliminary results
show that the behaviour of these new walls is highly dependent on the expansion rate of the
Universe and that it deviates from the analytical model previously validated for a φ4 potential.
In sections 4.2 and 4.3 we show that the existence of domain walls in a triple well potential
with symmetrical initial conditions and identical minima is unstable and that the field quickly
collapses to the central minimum. We try to address this in section 4.4 by introducing a bias
between this minimum and the side minima. This proved to be an effective way to provoke the
field to decay if, at the same time, we allow the initial conditions to undergo an initial cooling
period. This dependence is plotted in figure 4.10.

The results we obtained suggest that the current analytical models that are used to study
the evolution of these defects might not be well suited to deal with more exotic potential
functions than can naturally occur in the Universe. In any case, it’s clear that the evolution
of domain walls is always highly dependent on the expansion rate of the Universe regardless of
the potential shape.

The most obvious limitation of this thesis was that we had to choose a relatively small
box (20482) in order to perform an extensive number of simulations for each different case to
calibrate and test each model. Since this limits our spatial resolution and the time we can let
the simulations run, the statistical accuracy of our results is limited. Whether or not this can
account for the deviations to the analytical models is yet to be understood. Another way to
increase the resolution and reduce data noise is to increase the number of simulations to be
averaged in each model (we used 10). This can be especially useful in better characterizing
type-II and type-III walls in a SG potential.

Another interesting extension of these models is to test different initial conditions. In SG
this can mean testing how the width in the random distribution of initial conditions affects the
exploration of the outer minima. In the simple φ6 case it can be interesting to investigate the
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formation and evolution of topological defects if the initial conditions are asymmetrical. This
can be also extended to the Christ-Lee potential. Furthermore, since Hindmarsh [17] considers
a gaussian distribution for the initial values of the field, it could be interesting to investigate
if we can model the vacuum decay using (4.6) by changing this ansatz.

Finally, it can be worth mentioning that a similar analysis to what is presented in this thesis
may be a useful benchmark to investigate other topological defects such as strings.
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