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Abstract

In this document we will present work related to resource calculi, where an argument can be
copied as many times as needed. Resource calculi could have a major importance when talking
about memory space, time, or number of steps in operational semantics. Our work focus on two
calculi: λ-calculus with multiplicities and resource calculi. In this work, we prove the existence
of a relation between the two calculi and present a translation between them.
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Resumo

Nesta tese, apresentaremos o trabalho relacionado ao cálculo de recursos, onde um argumento
pode ser copiado as vezes que for necessário. O cálculo de recursos pode ter uma grande
importância quando falamos sobre espaço na memória, tempo ou número de passos na semântica
operacional. O nosso trabalho concentra-se em dois cálculos: λ-calculus com multiplicidades e
cálculos de recursos. Neste trabalho, provamos a existência de uma relação entre os dois cálculos
e apresentamos uma tradução entre eles.
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Chapter 1

Introduction

Formal systems for proving properties of programs are, nowadays, crucial for computer science.
One important property to be checked is the amount of resources that the execution of a given
program will consume. Resources can be of different kinds such as memory space, time or number
of steps in operational semantic. To address this problem Boudol [8], Ronchi Della Rocca, et
al [24], and others have done work related to the λ-calculus with resource consumption.

Boudol [7] focus his work on the λ-calculus with multiplicities. In his calculus he presents
the notion of bag, that consists of the argument of a function, which is a multiset. It is the bag
that indicates how many copies of the argument are available. Based on the work of Boudol [7],
Ronchi Della Rocca, et al [24] beyond the notion of bags, came up with the notion of resources.
According to her, it is the resource who control the number of uses of an argument.

Our main goal with this work is to study the relation between these two calculi. In order
to achieve this, we will implement theoretical models for resource calculi and the λ-calculus
with multiplicities, to fully understand the details of both approaches. We first started by
implementing the λ-calculus with multiplicities, in Haskell. After that, we implemented the
resource calculus setting according to Ronchi Della Rocca, et al [24]. The next step was to prove
the relation between the two calculi. We decided to start the relation from the resource calculus
to the λ-calculus with multiplicities. We made this decision based on the grammar. Since resource
calculus presents everything in more detail, it seamed more relevant to follow the approach. After
the implementation and the tests, we tried to prove the other way around, that the λ-calculus
with multiplicities can be transformed into the resource calculus. Our main problem implementing
these translations was that the two calculi, although similar, have important differences that
needed to be attended.

• The resource calculus works with lists, while the λ-calculus with multiplicities does not.
To resolve this problem Boudol [7] uses the idea of par (P |Q).

• The λ-calculus with multiplicities has explicit substitutions, while the other calculus does
not have explicit substitutions in its grammar.

1



2 Chapter 1. Introduction

1.1 Outline

This thesis will be organised as follows.

• Chapter 2: we present some notions of topics that we believed will help the reader fully
understanding our work.

• Chapter 3: we present the λ-calculus with multiplicities. We explain the calculus and
then we present an implementation with examples for this calculus.

• Chapter 4: we present the resource calculus where we explain the calculus and then, we
also present our implementation and some examples.

• Chapter 5: we present our translation from one calculus to the other. We start by defining
some theorems that will help us on this subject and then we present our implementation
and also some examples.

• Chapter 6: we present the conclusion of our work, some future work and some final
remarks.



Chapter 2

Background

In this chapter we present some relevant notions on the λ-calculus.

First, we will introduce some basic notions of the λ-calculus [5] for the sake of self-completeness
and to present to the user the theoretical basis behind both our work and some related work.

We will talk about some concepts about the resource calculus, which is an extension of the
usual λ-calculus.

2.1 λ-calculus

The λ-calculus was introduced in the 1930s by Alonzo Church [9] as a way of formalizing the
concept of effective computability. The λ-calculus is universal in the sense that any computable
function can be expressed and evaluated using this formalism, so it is computationally equivalent
to Turing machines.

The central concept in the λ-calculus is the term, represented in this context as M,N, . . . . A
variable is an identifier that can be any letter, represented in the context of this document as
x, y, z, . . . . We start by defining the set of the λ-terms admissible.

Definition 1. Let V be an infinite set of variables. The set Λ of λ-terms, is inductively defined
from V as follows:

x ∈ V ⇒ x ∈ Λ
M,N ∈ Λ⇒ (MN) ∈ Λ (Application)
M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ (Abstraction)

♦

We adopt the convention that function application associates from the left, that is

3



4 Chapter 2. Background

(M1M2M3 . . .Mn) ≡ (. . . ((M1M2)M3) . . .Mn).

On the other hand, abstractions are right associative, that is

(λx1x2 . . . xn.M) ≡ (λx1(λx2(. . . (λxn.M) . . . ))).

In the λ-calculus variables can occur free or bound. We say that a variable x occurs bound
in a term M if it is in the scope of an abstraction λx in M . Otherwise the variable x occurs free
in M . We call fv(L) to the set of free variables of term L.

Example 1. In the λ-term (λx.x)(λy.yx) we say that x occurs bound in (λx.x) and free in
(λy.yx). J

The term presented in Example 1 describes an application. In order to compute the result of
the application, one must be familiar with the concept of substitution in λ-calculus.

Definition 2. We define the substitution of the free occurrences of x by a term L in M , and
denote it as M [L/x], as:

y[L/x] ≡

L if x ≡ y,

y otherwise

(MN)[L/x] ≡ (M [L/x])(N [L/x])

(λy.M)[L/x] ≡

λy.M if x ≡ y

λy.(M [L/x]) otherwise

♦

Example 2. If we consider the term presented in Example 1 and take each of the parenthesized
terms individually, we could say that:

(λx.x)[y/x] ≡ (λx.x)

since x is bounded in (λx.x). However, if we consider the the right side of the application,
then:

(λy.yx)[z/x] ≡ (λy.yz)

J

The substitution process exemplified in Example 2 does not come without some concerns.
One needs to be careful when performing substitution, because a phenomenon known as name
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capture can occur. This means that a variable that occurred free in L before the substitution,
due to possessing the same name as a bound variable in M , might be captured by the abstraction
in M , when performing M [L/x], if there is a free occurrence of x in M under an abstraction
λy.M and y belongs to fv(L).

Definition 3. A change of a bound variable x in a term M is the substitution of sub-terms of
M of the form (λx.N) by (λy.N [y/x]), where y is a variable that does not occurs in N .

Changing bound variables preserves the meaning of the term, in the sense that it represents
the same function. We call this notion α-congruence:

Definition 4. M is α-congruent with N , (notation M ≡α N), if N can be obtained from M by
a series of changes of bound variables, and vice-versa.

Example 3. Two terms that are reducible to each other by α-conversions are α-equivalent.

1. λx.x ≡α λy.y

2. λxy.yx ≡α λzw.wz

3. λx.M ≡α λM.[y/x] if y /∈ fv(M)

A reducible term, or redex, is any term to which the main computation rule of the λ-calculus
called β-reduction can be immediately applied.

We will now introduce a formal definition of β-reduction.

Definition 5. The notion of β-reduction on Λ is defined as follows:

β : (λx.M)N →β M [N/x], M,N ∈ Λ

♦

Example 4. We say that (λy.y)z is a redex, more precisely a β-redex, and λx.(λy.y)z is not. J

We call (λx.M)N a β-redex and M [N/x] its β-contractrum.

Example 5. According to the Definition 5 we can now apply β-reduction to the λ-term presented
in Example 1.

(λx.x)(λy.yx)→β (λy.yx)

If we think about the result obtained through applying β-reduction to the λ-term above, we
conclude that the first term corresponds to the λ-calculus codification of the identity function
(I), so, applying the identity function to any other function, would yield the second function, by
the known properties of the identity function. J
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Reduction is lifted to general terms, denoted by M → N , by applying β-reduction to some
subterm of M to obtain N . More formally:

M →β M ′

M →M ′

M →M ′

(λx.M)→ (λx.M ′)

M →M ′

(MN)→ (M ′N)

M →M ′

(NM)→ (NM ′)

We denote by →∗ the reflexive and transitive clousure of →.

Some λ-terms have more than one redex, and a question arises when it comes to choosing
the first redex to be reduced. To address that issue one uses the notion of reduction strategy.
The most common strategies used in this situation are:

• Normal-order reduction: Choose the leftmost outermost redex first.

• Applicative-order reduction: Choose the rightmost innermost redex first.

• Call-by-need: Variation of the normal order reduction where we choose the leftmost redex
first and never evaluate an argument more than once. Note that the evaluation only occurs
when arguments are required.

Associated to the notion of reduction, we define the notion of reduction graph [29].

Definition 6. The reduction graph of a term M , denoted by G(M) is the set
{
N |M →∗ N

}
directed by →. ♦

Here we present a brief example to give the reader a better understanding of reduction graphs.

Example 6. In Figure 2.1 we present the reduction graph of the λ-term MIMI where M ≡
λx.xI(xI) and I = λx.x. J
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Figure 2.1: Reduction Graph of MIMI, taken from [21]

When an expression does not have a redex it is said to be in normal form.

One important characteristic of different reduction strategies is related to the termination of
the evaluation of a given term.

Example 7. Some terms do not terminate using any of the above reduction strategies. For
example,

(λx.xx)(λx.xx)→β (λx.xx)(λx.xx)→β (λx.xx)(λx.xx)→β . . .

Some terminate under normal-order reduction, but not under applicative-order. For example,
this term has two redexes.:

(λx.y)((λx.xx)(λx.xx))

If we choose the rightmost redex (applicative-order), it will not terminate. But if we choose
the leftmost one, it will reduce in one step to the expression y.

Most importantly, if a term has a normal form, i.e., can be reduced to the point of having no
redexes, that is using the normal-order reduction will always result in finding the normal form of
the term [5]. The same does not apply to the applicative-order reduction and other strategies. J

2.2 Resource Aware Calculi

We briefly discuss resource aware calculi. We start by linearity given its relevance in resource
aware computations.
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2.2.1 Linearity

We will now address the problem of linearity in the λ-calculus and divide this section in two
main parts: Linear Calculi and Annotated Calculi.

Regarding Linear Calculi, we will start by introducing the notion of linear and the affine
λ-calculus, then we will talk about some linear extensions to some λ-calculus systems. After
that, we will introduce Kfoury’s [20] notion of linearization and some definitions that arise from
that notion. We will finish this section by presenting the notion of weak linear λ-calculus.

2.2.1.1 Linear and Affine λ-calculus

In the linear λ-calculus the arguments are used exactly once. On the other hand, in the affine
λ-calculus, arguments are used at most one time.

Linearity in logic is modelled by the widely used linear logic [11].

Linear logic is a substructural logic proposed by Jean-Yves Girard [11]. Linear logic is resource
aware, in the sense that assumptions may not be arbitrarily copied nor erased.

There are three notions of linearity, based on linear logic, for functional calculi: syntactical,
operational and denotational.

Syntactical linearity requires a linear use of variables in terms. Operational linearity
means that arguments of functions cannot be duplicated or erased during evaluation. Finally,
denotational linearity is achieved when all functions that can be defined in the language correspond
to linear functions in a particular model.

In this thesis we are going to focus mainly on syntactical and operational linearity. We are
going to describe in more detail those two types of linearity.

Syntactical linearity can be statically checked. On the other hand, operational linearity
requires dynamic evaluation of terms. For the linear λ-calculus, syntactical linearity implies
operational linearity.

Along with linear λ-calculus comes the definition of the affine λ-calculus, where the main
difference is that a resource can be used at most once, so one can see affine linear logic, and
therefore the affine λ-calculus, as linear logic with a weakening rule [27].

The weakening rule allows adding extra assumptions to a list of assumptions Γ that already
proves a conclusion C without changing the actual validity of the original conclusion.
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2.2.1.2 Linear Extensions

The λ-calculus is usually referred to as a type-free theory, since every expression can be applied
to every other expression.

Type theories were first studied in the early 1900’s with the purpose of helping surpass the
mathematical paradoxes of the time, however they became a vary handy tool in proof-theory.
Around the 1970’s, the need for stronger programming languages forced computer scientists
to study them as well, so they could build type theory based programming languages, such as
ML [22].

Several techniques that emerged from this study were very relevant in making programming
languages and the systems they represent much more robust. Such techniques include, as an
example, type-checking algorithms [15] and type inference algorithms [14], that check if a given
type can be assigned to a λ-term and automatically infer the type of a given term.

There are also typed versions of the λ-calculus [16]. Types are usually objects of a syntactic
nature and may be assigned to expressions in the λ-calculus.

If M is a term, and A is a type assigned to M , then we can say "M has type A" or "M" in A.
The notion used is M : A.

Example of typed extension of the λ-calculus include Gödel’s system T [12] for bounded
recursions and the Plotkin’s Programming Language for Computable Functions (PCF) [25] for
unbounded recursions.

System T was built from the simply typed λ-calculus, with the addition of number, booleans
and a bounded recursor. Many linear versions of System T were studied in order to characterize
classes of functions [2, 17].

PCF [25] is a Turing complete extension of the simply typed λ-calculus with an addiction of
numbers, constants pred, succ, iszero a conditional operator and a fixpoint operator and forms
the basis of programming languages such as ML [13] or Haskell [18]. In PCF typed are used to
ensure the correct behavior of the program. Linear version of PCF were also defined [3].

2.2.1.3 Expanded λ-calculus

Kfoury [20] introduced for the first time the notion of linearization as a process of transforming
non-linear functions into equivalent linear ones. Kfoury defined an expanded version of the
λ-calculus with a new reduction→ β in which the evaluation of these new linear λ-terms satisfies
a particular case of what we here call the linearity condition:

Definition 7. If the formal parameter x of a abstraction (λx.M) is not dummy, then the free
occurrences of x in the body M of the abstraction are in a one-one correspondence with the
arguments to which the function is applied. ♦
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Kfoury [20] also defined two very important notions in the linear λ-calculus: contraction,
denoted as |M |, being M a λ-term and lifting. Contracting an expanded term in the new calculus
yields a λ-term. Lifting a β-reduction generates a β -̂reduction, which consumes arguments at
most once. Well-formed terms of the new calculus are those for which there is a contracted term
in the λ-calculus.

Theorem 1. Let M be a standard λ-term. If there is a well-formed expanded λ-term N such
that |N | ≡M and every β-reduction from M can be lifted to a β -̂reduction from N , then M is
β-strongly normalizable. �

Kfoury then concluded that for any strongly normalized λ-term M , there exists a term in Λ̂,
which contraction is M .

This work shown that there is a semantic between the standard λ-calculus and the linear
λ-calculus. This was further studied in [10].

2.2.1.4 Weak-Linear λ-calculus

Using a linear subset of the λ-calculus, the question of whether one can or can not simulate the
λ-calculus arises. Such subset is called the weak linear λ-calculus and the following definition
arises, according to [4]:

Definition 8. A λ-term M is called weak linear if and only if every redex (λx.N)S, in the
reduction graph of M , is such that x occurs at most once in N . ♦

The weak linear λ-calculus is:

1. Strongly normalizing.

2. Typable in polynomial time.

3. Decidable in polynomial time.

The weak linear λ-calculus is strongly normalizing meaning that no terms are duplicated by
reduction, then each reduction effectively reduces the size of the term, therefore, there cannot be
infinite reductions. It is typable in polynomial type because it uses a restricted type system that
is based on interaction types. Also, it is decidable in polynomial time because it uses a maximal
reduction strategy and knowing that every weak linear term is normalized in a number of steps
less or equal to its size.

2.2.2 Linear Types

In the next sections, we will talk briefly about Linear Type Systems.
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Regarding Linear Type Systems, we will briefly explain their core characteristics. We briefly
mention Linear Haskell, has as a reference for a practical use of Linear Types.

2.2.2.1 Linear Type Systems

Linear type systems [28] are based on Linear Logic introduced by Girard [11] and explicitly
control the use of resources through the use of types.

A term of linear type A( B is a function from A to B that neither duplicates or ignores its
argument.

The impossibility of duplication helps to guarantee an efficient implementation, in the sense
that it is safe to update data structures destructively, like, for instance, overwriting a given index
of an array with the given value.

Equally important is the impossibility of resource destruction, which means a resource must
be used eventually. It avoids the need for space recovering through the use of, for example, a
garbage collector, meaning that both allocation and deallocation of linear values are implicit in
the program text [28].

Linear type systems start to appear now into most known programming languages. In [6],
the functional language Haskell is extended for linear types, enabling safe update-in-place for
mutable structures and access protocols for external API’s.

2.2.3 Cost Annotated Operational Semantics

We will now address annotated operational semantics and lastly talk about two different systems
based on resource calculi.

Annotated operational semantics are used by type systems to enhance the cost estimation
associated to a given computation. Costs are measured in various forms, such as memory costs,
time costs and number of steps.

Steffen Jost et. al [19] stated that predicting operational properties, such as time and space
consumption can pose some difficulties. These difficulties are even more significant in non-strict
programming languages such as Haskell [26]. Annotated operational semantics, as defined in [19]
is presented as M →n N , where n is a non-negative integer that represents the cost associated
with the reduction of M to N [19].

In [19] a type-based approach is described for obtaining static cost bounds for lazily evaluated
functional programs. The analysis that they use, combines two independent analysis that
considered the allocation of the costs of recursive and co-recursive programs.

This work also provides an operational semantics using annotated typing in order to generalize
the cost model to a parametric one.
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2.2.4 Resource Calculi

The explicit use of resources into the calculi was made by the definition of resource aware calculi
such as [24] and [8].

We will now address two different approaches of resource calculus.

In one hand, we have an approach conceived by Gerard Boudol [7], whose formulation consists
of a refinement of the λ-calculus, where one has possibly infinite resources.

In order to achieve that, the notion of bag of resources was introduced as the consumable
argument of a function. Those bags consist of multisets of terms with associated multiplicities
that indicate the number of available copies of such resource. It converges to the regular λ-calculus
when all bags have a multiplicity of 1.

Bags are represented as a parallel composition P = (Mm1
1 | . . . |M

mk
k ) where mi represents

the multiplicity associated to the term Mi.

A more detailed explanation on such formalism and its details is available in Chapter 3.

On the other hand, we have a different approach. Ronchi della Roca et. all [24] came up
with a calculus that is an extension of the λ-calculus allowing to model resource computation. In
this type of calculus, the argument of a function comes as a finite multiset of resources, which in
turn can be either linear or reusable. Because of that, this calculus is non-deterministic.

In Chapters 3 and 4 we will cover in more depth both of these approaches, due to their high
influence in the outcome of our work.

In this section we introduced some basic concepts on classic λ-calculus, then we mentioned
resource aware calculi and their linear expansions. Then, we proceeded to talk about Linear
type systems. Next, we talked about annotated calculi and finally we briefly addressed resource
calculi.

In the next section we will focus on λ-calculus with multiplicities and resource calculi. We
will expose both approaches in more detail and also present our implementation in Haskell of
them.



Chapter 3

λ-calculus with multiplicities

The λ-calculus with multiplicities is a refinement of the usual λ-calculus, inspired by the encoding
of the lazy λ-calculus into the π-calculus given by Milner [23]. The basic observation is that in a
reduction step (λx.M)N →M [N/x], the argument N is copied as many times as we need, which
means, as much as there are free occurences of x in M .

According to Boudol [8], the argument of a function is a bag of resources, that is, a multiset
of terms. Then each term in the bag comes with an explicit, possibly infinite multiplicity,
indicating how many copies of it are available. One recovers the usual λ-calculus when the bags
consist of just one term. So we can say that a bag can be written as a parallel composition
P = (Mm1

1 | · · · |Mmk
k ) of terms with multiplicities, where mi is an integer greater or equal than

zero, or ∞. The parallel composition is intended to be commutative and associative, with 1 as a
neutral element.

Then, besides the variables x, y, z, . . . and the abstraction λx.M , the syntax of this calculus
includes applications of the form (MP ), where M is any term, and P a bag of terms. The
management of the resources is done by means of explicit substitutions [1]. The syntax of the
λ-calculus with multiplicities is as follows:

M ::= x | λx.M | (MP ) | (M [P/x])
P ::= 1 | M | (P |P ) | M∞

The set of terms will be denoted by ΛM and the set of bags by ΛP . Note that ΛM ≡ ΛP .

With the syntax of terms presented above, we can define the commutativity and associativity
properties in bags of terms as follows, where ≡ stands for structural equivalence and M∞ stands
for a term with infinite multiplicity:

13



14 Chapter 3. λ-calculus with multiplicities

(P |1) ≡ P
(P |Q) ≡ (Q|P )
(P |(Q|R)) ≡ ((P |Q)|R)
M∞ ≡ (M |M∞)

We can now define terms with explicit finite multiplicity:

M0 = 1
Mm+1 = (M |Mm)

We will now define evaluation rules that rely on a lazy evaluation mechanism. It means that
neither the body M of an abstraction λx.M or the arguments of an application MP or in a
substitution M [P/x], namely P , are evaluated.

The one-step evaluation relation is denoted M →M ′. We use implicitly the rule that any
two α-equivalent (one can transform one term into another through α-conversion) terms have
the same reductions. The notion of α-conversion is the same that was introduced for λ-calculus.
The rule for one step evaluation is presented in Rule 3.1:

M →M ′

N →M ′
M =α N (3.1)

We will now start by defining Π as the set of "bags of resources", Σ as the set of substitution
items and Λm as the set of terms defined by the first clause presented in the syntax of λ-calculus,
that is the terms of the form [P/x] for P ∈ Π.

We are going to show an example of rule 3.1 to give to the reader a better understanding.

Example 8. LetM be (λxλy.xy)(λz.z)(λw.w) we obtain by several→β the following expression:

M = (λxλy.xy)(λz.z)(λw.w) →β (λy.(λz.z)y)(λw.w) →β (λz.z)(λw.w) →β λw.w.

And let N be (λwλz.wz)(λx.x)(λy.y), by the same reductions, we obtain the following
expression

N = (λwλz.wz)(λx.x)(λy.y) →β (λz.(λx.x)z)(λy.y) →β (λx.x)(λy.y) →β λy.y.

We observe thatM andN , are α-equivalent where λx.x =α λw.w, λy.y =α λz.z, λz.z =α λx.x

and λw.w =α λy.y.

Boudol [8] observes that any term M may be written in a unique way as AQ1 . . . Qk where
each of the Qi belongs to Π∪Σ and A is either a variable, or an abstraction, λx.N . The grammar
for the terms is written as follows:
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M ::= A | (MQ)
A ::= x | λx.M
Q ::= P | [P/x]

Where P is any term of Π. To evaluate any encoded function, resource calculi uses also the
notion of value, which is any functional closure. This means that the values are the terms of Λm

given by the grammar:

V ::= λx.M | (V [P/x])

Now we are introducing the computation rules. The two rules presented next state that a
reduction may be performed in the context of list of arguments or substitutions:

M →M ′

MP →M ′P (3.2)

M →M ′

M [P/x]→M ′[P/x] (3.3)

Then the actual computation depends on the form of the head subterm A of M = AQ1 . . . Qk.
So there are two possible types for A: A is an abstraction or a variable. When A is an abstraction,
we look for the first Qi in the list, if any, which is an argument, that is a term P of Π to which
the closure AQ1 . . . Qi−1 is applied. Using the context rules (rules 3.2 and 3.3), we perform a
β-reduction of the form:

(λx.M)[P1/x1] · · · [Pi−1/xi−1]PQi+1 · · ·Qk →M [P/x][P1/x1] · · · [Pi−1/xi−1]Qi+1 · · ·Qk(3.4)

provided the x′s are not free in P . There are two rules that formalized what was mention
before.

(λx.M)P →M [P/x](3.5)

(V P )→M

(V [R/x])P →M [R/x] x /∈ fv(P ) (3.6)

The function fv(P ) is defined similarly as for terms. A variable x occurs free in a bag P , if
in one of the terms that compose the bag, x occurs free in M .

The head subterm can also be a variable x, and when it is the case, one looks for the first
substitution [P/x] for it, if any, in the list Q1 . . . Qk. Then one fetches a resource out of P , that
is any term N of Λm such that P ≡ (N |R), and leaves the rest R for future use. To state the
fetch rule 3.10, we introduce an auxiliary relation M [N/x] → M ′, intended to formalize the
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replacement of the head variable x of M by N , that is, M = xQ1 . . . Qk and M ′ = NQ1 . . . Qk,
where Qi ∈ Π ∪ Σ. The rules are:

x[M/x] →M(3.7)

M [N/x]→M ′

(MP )[N/x]→M ′P (3.8)

M [N/x]→M ′

(M [P/z])[N/x]→M ′[P/z])
z 6= x and z /∈ fv(N)

(3.9)

And the fetch rule is given by:

M [N/x]→M ′

M [P/x]→M ′[R/x]
P ≡ (N |R) x /∈ fv(N)

(3.10)

But notice that in this rule the resource that is fetched is a term of Λm, and not a term of Π.
It is important to emphasize two points. First, if the bag P in M [P/x] is empty, nothing can be
fetched out of it. For example, a term like x[1/x] is deadlocked. It is a closed normal form but
not a value. Second since parallel composition is commutative and associative, any resource from
the bag can be selected in the fetch operation. Then we can define a non-deterministic choice
(M ⊕N) as follows, provided x is not free in M or N :

(M ⊕N) =def x[(M |N)/x](3.11)

We have now introduced related work done by Boudol [8] that provides important concepts
on λ-calculus with multiplicities, which will play a great role in our work, in the sense that part
of it consists in studying this calculus.

3.1 Implementation

We are now going to present the relevant parts of our implementation of the calculus with
multiplicities.

Following the paper of Gérald Boudol [8], we start by implementing the syntax of λ-calculus
with multiplicities, in Haskell, and some auxiliary functions.

The two next coding boards will give the reader our Haskell implementation of this grammar,
starting with the Bag implementation and then the Term implementation.� �

data Bag = Empty

| TSingle Term

| TInfinite Term
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| Par Bag Bag

deriving (Show, Eq)� �
The above code board represents the data in Haskell that represents the Bag data structure,

according to the λ-calculus with multiplicities [7]. Note that we a Term can be represented as
a Bag, either as a TSingle or a TFinite. Those different representations allow us to represent
terms with infinite, and finite multiplicities. Also, the Empty token represents the empty Bag
and the Par constructor represents the (P |Q) operation.

Below, we have the data for a term. It can be a variable, a λ-term, an application of a term
to a bag, or a substitution of a variable in a term by a bag.� �

data Term = V String

| Lambda String Term

| App Term Bag

| Subs Term Bag String

deriving (Show, Eq)� �
The representation for a Term is really straightforward. The V constructor represents

a variable, the Lambda constructor represents a λ-term, the App constructor represents an
application of a Term to a Bag and the Subs constructor represents a Term where we substitute
a variable represented as a String by a Bag.

The next step was to create a function to check values

V ::= λx.M | (V [P/x])

that are terms of Λm, and the function for parallel composition,

(P |1) ≡ P
(P |Q) ≡ (Q|P )
(P |(Q|R)) ≡ ((P |Q)|R)
M∞ ≡ (M |M∞)

both previously defined in the beginning of Chapter 3 and are presented below, respectively:� �
value :: Term -> Bool

value (Lambda m x) = True

value (Subs v b x) = value v

value _ = False� �
The value function determines if a term is either a λ-term or a substitution on a value.� �
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equals :: Bag -> Bag

equals (Par p Empty) = p

equals (Par p q) = Par q p

equals (Par p (Par q r)) = Par (Par p q) r

equals (TInfinite m) = Par (TSingle m) (TInfinite m)� �
The equals function represents the four cases of the parallel composition. The first case

represents the parallel composition P |1, that evaluates to P . The second case represents the
equivalence between the parallel composition (P |Q) and (Q|P ). Next, we have the equivalence
between (P |(Q|R)) and ((P |Q)|R). Finally, we have the unfolding of a term with infinite
multiplicity, where M∞ ≡ (M |M∞).

We also implemented functions for substitution and reduction. They follow the structure of
Boudol [8], mentioned in Chapter 2. For reduction we decided to create a single function with
the rules 3.2, 3.3, 3.5 and 3.6 following Boudol’s ideas.� �

red :: Term -> Term

red (App (Lambda x m) p) = Subs m p x

red (App (Subs v r x) p) = Subs (red (App v p)) r x

red (App m p) = App (red m) p

red (Subs m p x) = Subs (red m) p x� �
We will now present some reduction examples:

test11: (λx.x)(λy.y)

test12: (λz.z)(λx.x(λy.y))

The translation of those examples to Haskell is presented below:� �
test11 :: Term

test11 = App (Lambda "x" (V "x")) (TSingle (Lambda "y" (V "y")))

test12 :: Term

test12 = App (Lambda "z" (V "z")) (TSingle test11)� �
The output of running test11 in our system yields the following output:� �
[Subs (V "x") (TSingle (Lambda "y" (V "y"))) "x"]� �
This translates to λ-calculus with multiplicities as x[λy.y/x], which is, in fact, the expected

result for the chosen example, in a one-step perspective.

Test12 results in:� �
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[Subs (V "z") (TSingle (App (Lambda "x" (V "x")) (TSingle (Lambda "y" (V

"y"))))) "z"]� �
This translates to λ-calculus as z[(λx.x)(λy.y)/z], which is the expected result for a one-step

reduction of the presented example.

We used the same method for substitution, but the rules that we developed were 3.7, 3.8
and 3.9.� �

sub :: Term -> Term

sub (Subs (V x) (TSingle m) y) |

x == y = m

sub (Subs (V x) (TInfinite m) y) |

x == y = m

sub (Subs (App m p) n x) = App (sub (Subs m n x)) p

sub (Subs (Subs m p z) n x) = Subs (sub (Subs m n z)) p z� �
We will now present some substitution examples:

The λ-calculus representation of the examples is: test21 = x[λy.y/x], test24 = λx.x[y/x]
and test22 = x[(λx.x)(λy.y)/x]� �

test21 :: Term

test21 = Subs (V "x") (TSingle (Lambda "y" (V "y"))) "x"

test24 :: Term

test24 = Subs (Lambda "x" (V "x")) (TSingle(V "y")) "x"

test22 :: Term

test22 = Subs (V "x") (TSingle (App (Lambda "x" (V "x")) (TSingle (Lambda "y"

(V "y"))))) "x"� �
The results of applying the substitution rules to those λ-terms is: test21 = (λy.y), test24

= (λx.x) and test22 = (λx.x)(λy.y).

Such terms are, in fact, the output of our system, when applying the substitution rules to
those examples, as presented below:� �

test21 = [Lambda "y" (V "y")]

test24 = [Lambda "x" (V "x")]

test22 = [App (Lambda "x" (V "x")) (TSingle (Lambda "y" (V "y")))]� �
Finally, we created the fetch rule 3.10:� �
fetch :: Term -> Term
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fetch (Subs m (Par n r) x) = Subs (sub (Subs m n x)) r x� �
We will present some examples of applying the fetch rule.

We tested the fetch rule on the following examples: test31 = (λx.x)[(1|(λy.y))/x] and test32
= (λx.x)[(1|1|λy.y)/x]. We present their representation in our system below:� �

test31 :: Term

test31 = Subs (Lambda "x" (V "x")) (Par Empty (TSingle (Lambda "y" (V "y"))))

"x"

test32 :: Term

test32 = Subs (Lambda "x" (V "x")) (Par Empty (Par Empty (TSingle $ (Lambda "y"

(V "y"))))) "x"� �
The expected result of applying the fetch rule to those examples is: test31 = λx.x[(λy.y)/x]

and test32 = λx.x[(1|(λy.y))/x].

This corresponds to the result of applying the fetch rule to the same examples in our system,
as stated below:� �

test31 = [Subs (Lambda "x" (V "x")) (TSingle (Lambda "y" (V "y"))) "x"]

test32 = [Subs (Lambda "x" (V "x")) (Par Empty (TSingle (Lambda "y" (V "y"))))

"x"]� �
Note that the choice of which resource to choose in the fetch rule is deterministic in the

smaller step of fetch, in the sense that the algorithm always chooses the first resource available.
We also implemented a fetch_all function that outputs a list of all possible choices the algorithm
can, in fact, make. The code in Haskell for the fetch_all routine is presented below.� �

fetch_list :: [Bag] -> Term -> String -> [Term]

fetch_list [] m s = []

fetch_list (x:xs) m s = fetch (Subs m x s) ++ fetch_list xs m s

fetch_all :: Term -> [Term]

fetch_all (Subs m n x) = fetch_list (groupTerms $ all_terms n) m x� �
An example using the fetch_all routine is presented below.� �
*Main> fetch_all test32

[Subs (Lambda "x" (V "x")) (Par Empty (TSingle (Lambda "y" (V "y")))) "x",Subs

(Lambda "x" (V "x")) (Par Empty (TSingle (Lambda "y" (V "y")))) "x",Subs

(Lambda "x" (V "x")) (Par Empty Empty) "x",Subs (Lambda "x" (V "x")) (Par

(TSingle (Lambda "y" (V "y"))) Empty) "x",Subs (Lambda "x" (V "x")) (Par

Empty Empty) "x",Subs (Lambda "x" (V "x")) (Par (TSingle (Lambda "y" (V

"y"))) Empty) "x"]
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� �
One can easily see that all possibilities are accounted in the output of our algorithm.

Implementing these λ-calculus rules in a functional language gave us a lot more insight about
our work.





Chapter 4

Resource λ-calculus

The resource calculus [24] extends λ-calculus to model resource consumption. In this extension,
arguments of a function are defined as finite multisets of resources. Those resources can either
be linear, in the sense they must be used exactly once, or reusable, meaning that can be used ad
libitum.

Evaluating a function applied to an argument yields different possible choices, due to the
amount of different possible distributions of resources among the occurrences of the formal
parameter, because the argument of a function is a multiset of resources. This specificity of the
resource calculus generates a non-deterministic result, that is represented by a formal sum of all
the possible cases.

This non-determinism introduces a notion of failure of computation different from non-
termination: the empty sum. Whenever the number of available resources does not fit the number
of occurrences of the variable abstracted in a redex, it evaluates to the empty sum or crash. The
resource calculus is specially important in studying the relation between the notions of linearity
and non-determinism [24].

This calculus can be seen as an evolution of Boudol’s calculus of multiplicities, where the
main differences between the two calculi lie on the fact that Boudol’s calculus uses explicit
substitutions and lazy operational semantics, while the resource calculus extends the classical
λ-calculus. If one translates the application MN into M [N !] where [N !] represents the multiset
containing one reusable copy of the resource N , then classic λ-calculus can, in fact, be embedded
into Λr.

The resource calculus has three syntactical sorts:

• Terms, that are in functional position, represented by Λr;

• Bags, that represent the multiset of resources, and are represented by Λb;

• Finite formal sums, that represent the possible results of a computation, that are represented
by Λ(!).

23
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Recall that a resource can be linear or used ad libitum and bags are multisets presented in
multiplicative notion. So P ·Q is the multiset union, and 1 = [] is the empty bag, meaning that
P · 1 = P and P ·Q = Q · P .

Sums are multisets with additive notation with the empty multiset represented by a 0. So
M + 0 = M and M +N = N +M .

An expression, denoted by Λ(b) is either a term or a bag.

Λr : M,N,L ::= x | λx.M | MP Terms
Λ(!) : M (!), N (!) ::= M | M ! Resources
Λb : P,Q,R ::= 1 | [M (!)] | P.Q Bags
Λ(b) : A,B ::= M | P Expressions
Nat〈Λr〉 : M,N ::= 0 | M | M + N Sums of Terms
Nat〈Λb〉 : P,Q ::= 0 | P | P + Q Sums of Bags

When we mention [x, λx.x, x!] we will say [x].[λx.x].[x!].

In this calculus, we have present both linear and reusable resources. Hence, the need for two
different notions of substitution arises:

Definition 9. We define both substitution operations as follows:

1. A{N/x} is the classic λ-calculus substitution of N for x. It is extended to sums as in
A{N/x} by linearity in A and using the formal equalities below. The form A{x+N/x} is
called partial substitution.

λx.(
∑
iMi) =

∑
i λx.Mi

(
∑
iMi)P =

∑
iMiP

M(
∑
i Pi) =

∑
iMPi

[(
∑
iMi)] · P =

∑
i[Mi] · P

[(
∑
iMi)!] · P = [M !

1, . . . ,M
!
k] · P

2. A〈N/x〉 is the linear substitution defined by:

y〈N/x〉 =

N if x = y,

0 otherwise
[M ]〈N/x〉 = [M〈N/x〉]

[M !]〈N/x〉 = [M〈N/x〉,M !]

(λy.M)〈N/x〉 = λy.(M〈N/x〉)

(MP )〈N/x〉 = M〈N/x〉P +M(P 〈N/x〉)

1〈N/x〉 = 0

(P ·R)〈N/x〉 = P 〈N/x〉 ·R+ P ·R〈N/x〉.
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It is extended to A{N/x} by linearity in both A and N.

♦

Linear substitution corresponds to the placement of the resource in exactly one linear
occurrence of the variable. When one has multiple possibilities, all the choices are performed and
the end result is the sum of all of them. We will now elaborate with an example: (y[x][x])〈N/x〉 =
y[N ][x] + y[x][N ]. If there are no free linear occurrences, then linear substitution returns 0. For
example (λy.y)〈N/x〉 = λy.(y〈N/x〉) = λy.0 = 0.

We will now present two different types of reduction steps [24]: the baby-step reduction and
the giant-step reduction.

The two differ in the way they perform the substitutions when reducing redexes. While the
baby step performs one substitution at a time, the giant-step consumes all the redex at once.

Definition 10. The baby-step reduction is denoted by →b and is defined by the following
relation, assuming that x /∈ fv(N):

1. (λx.M)1→b M{0/x}

2. (λx.M)[N ].P →b (λx.M〈N/x〉)P

3. (λx.M)[N !].P →b (λx.M{N + x/x})P

The giant-step reduction is denoted by →g and is defined by the following relation for
l, n ≥ 0, assuming that x /∈ fv(Li) and fv(Ni):

1. (λx.M)[Li, . . . , Ll, N !
1, . . . , N

!
n]→g M〈L1/x〉 . . . 〈Ll/x〉{N1 + · · ·+Nn/x}.

If n = 0, then the reduct is M〈L1/x〉 . . . 〈Ll/x〉{0/x}. For every reduction, we will denote by
→x+ its transitive closure and by →x∗ its reflexive-transitive closure.

Baby-step and giant-step reductions are clearly related. But notice that the giant-step
reduction is defined independently of the ordering of the resource substitutions.

Let ∆ = λx.x[x!] and I = λx.x:
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Figure 4.1: Example of baby and giant step reductions, taken from [24]

Figure 4.1 shows sequences of both baby-step and giant-step reductions. In [24] it is shown
that both reduction strategies are related, in the sense that →g⊂→b∗⊂→g∗←g∗, where the last
denotes the relational composition between →g∗ and its inverse ←g∗.

One should note that, even though both reduction strategies yield the same normal forms,
they have different properties: for example, in Figure 4.1, the starting term is strongly normalizing
for giant-step reduction but weak normalizing for baby-step reduction.

Definition 11. Weak normalization means that any term has a terminating rewriting sequence,
i.e. admits a finite amount of reduction steps which lead to a normal form.

Definition 12. Strong normalization means that any term can never be reduced infinitely many
times. Any reduction sequence eventually reaches a normal form (hence it is finite).

In the next section we will present some parts of our implementation for this strategy.

4.1 Implementation

We will now present the relevant parts of our implementation.

We start by implementing the sintax of the resource calculus, in Haskell, with the help of
some auxiliary functions.

Recall the grammar presented in the beginning of this chapter.

The next coding board will describe our implementation of the Terms in this grammar.� �
data Rterms = EmptyT

| Var String

| Lambda String Rterms

| App Rterms Rbags

deriving (Show)� �
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The above code board shows the different forms a Term can assume in the resource calculus.
It can either be the empty term, represented as EmptyT, a variable, represented by the Var
constructor, a λ-term, represented by the Lambda constructor, or an application of a term to a
bag, represented by the App constructor.

Now we present the implementation of the Bag and Resource data structures.

� �
data Resource = Term Rterms

| BangTerm Rterms

deriving Show� �
� �
data Rbags = Empty

| TSingle Rterms

| Dot Rterms Rbags

| Multi [Resource]

deriving Show� �
A Resource can either be a term, as represented by the RTerms data, or a term with infinite

multiplicity, represented by the BangTerm constructor.

A Bag, on the other hand, can be an empty bag (Empty constructor), a term (TSingle
constructor), a P ·Q (Dot constructor) or a list with resources (Multi constructor).

Next, we present our implementation of an Expression in resource calculus.� �
data Exp = ExpTerm Rterms

| ExpBag Rbags

deriving Show� �
An Expression can either be a term, as represented by the ExpTerm constructor, or a bag, as

represented by the ExpBag constructor.

Finally, we present the data type for sums. We decided to treat sums of terms and sums of
bags individually, as suggested in the grammar presented above.� �

data SumTerms = ZeroT

| SumTerm Rterms

| LambdaST String SumTerms

| AppST SumTerms Rbags

| AddT SumTerms SumTerms

deriving Show� �
� �
data SumBags = ZeroB

| SumBag Rbags

| AppSB SumTerms SumBags

| DotSB SumBags SumBags
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| AddB SumBags SumBags

| BangTermsSB SumTerms

| MultiSB [SumBags]

deriving Show� �
In these data structures, SumTerms and SumBags, their structure is pretty straightforward

when compared to the grammar. They both have a zero, ZeroT and ZeroB respectively, or they
are a term, in the case of SumTerms, or a bag, in the case of SumBags, or a sum of those.� �

data SumExp = Union SumTerms SumBags

deriving Show� �
Having finished presenting the data structures implemented by us, we will now introduce

some functions that represent some important operations in the resource calculus.

First, we will present the substitution implementation.� �
subR :: Rterms -> Rterms -> String -> Maybe Rterms

subR (Var y) n x

| y == x = Just n

| otherwise = Nothing

subR (Lambda y m) n x = Just $ Lambda y unpacked

where packed = subR m n x

unpacked = unpackTerms packed

subB :: Rbags -> Rterms -> String -> Maybe Rbags

subB (Multi [Term m]) n x = Just $ Multi [Term (unpackTerms $ subR m n x)]

subB Empty _ _ = Nothing

subB (Multi [BangTerm m]) n x = Just $ Multi [Term (unpackTerms $ subR m n x),

BangTerm m]

subR1 :: Rterms -> Rterms -> String -> SumTerms

subR1 (App m p) n x = AddT ( SumTerm ( App (unpackTerms $ subR m n x) p )) (

SumTerm ( App m (unpack $ subB p n x)))

subR2 :: Rbags -> Rterms -> String -> SumBags

subR2 (Dot p r) n x = AddB (SumBag (Dot (unpackTerms $ subR p n x) r)) (SumBag

(Dot p (unpack $ subB r n x)))

subN :: Rterms -> Rterms -> String -> Rterms

subN (Var x) m y |

x == y = m
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subN (App m p) n x = App (subN m n x) p

subN (Lambda x t) n y = if elem y (freev (Lambda x t) [] ) then Lambda x (subN

t n y) else Lambda x t� �
The subR function represents the substitution of a variable or a λ-term in Definition 9. The

subB function represents the substitution rules applied to lists of resources in Λb, where one can
either have a single term, or a term with infinite multiplicity. Both of those cases are considered,
and our implementation follows the formulation previously presented in Definition 9. The subR1
rule follows the formulation in Definition 9 where the substitution of an application will result in
a sum of new terms. The subR2 function represents the substitution of a P.Q bag by a term t.
The subN function represents the classical substitution in λ-calculus.

We will now show some examples to demonstrate how our implementation of the substitution
function works:

We test the substitution function in some examples like test22: (λy.y) where we need to
add x because the function needs another argument, and test23: (λx.x)(λy.y). We also have a
basic example that is going to be call to the other tests, text21: x.� �

test21 :: Rterms

test21 = Var "x"

test22 :: Rterms

test22 = Lambda "y" (Var "y")

test23 :: Rterms

test23 = App (Lambda "x" (Var "x")) (TSingle (Lambda "y" (Var "y")))� �
We should expect that the outcome of test22 with test21 and x to be (λy.y), and we obtian,� �
*Main> subN test21 test22 "x"

Lambda "y" (Var "y")� �
And for the test23 with test23 and x we expect (λx.x)(λy.y), and the outcome was,� �
*Main> subN test21 test23 "x"

App (Lambda "x" (Var "x")) (TSingle (Lambda "y" (Var "y")))� �
As expected we obtained the same result.

Finally, we introduce the giant-step reduction. We only present the implementation of the
giant-step reduction. The baby-step reduction was also implemented as an experiment to assure
the consistency of the results generated by the giant-step reduction, but it will not be used in
our experimental results.� �
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redg :: Rterms -> Rbags -> Rterms

redg (Lambda x t) (Multi n) = apply_subR (apply_subN t x l’) x l’’

where (l’,l’’) = split n [] []

apply_subN :: Rterms -> String -> [Resource] -> Rterms

apply_subN t y [] = t

apply_subN t y (Term x:xs) = apply_subN (subN t x y) y xs

apply_subR :: Rterms -> String -> [Resource] -> Rterms

apply_subR t y [] = t

apply_subR t y (BangTerm x:xs) = apply_subR (unpackTerms $ subR t x y) y xs

split :: [Resource] -> [Resource] -> [Resource] -> ([Resource], [Resource])

split [] ls xs = (ls,xs)

split ((Term t):ys) ls xs = split ys (ls ++ [Term t]) xs

split (BangTerm t:ys) ls xs = split ys ls (xs ++ [BangTerm t])� �
The implementation of the giant step reduction step follows directly from Definition 10.

Some examples of reduction follow:

To explain better the reduction we present and example. Consider test13 and test14 (λx.x)
and [xy] respectively.� �

test13 :: Rterms

test13 = Lambda "x" (Var "x")

test14 :: Rbags

test14 = Multi [ Term (App (Var "x") (TSingle(Var "y"))) ]� �
If we test them both together we obtain,� �
test13 :: Rterms

test13 = Lambda "x" (Var "x")� �
And the expected result was λx.x. So we can say that the results are the same.

These implementations gave us a strong insight of the basic notions of the resource calculus
and the calculus with multiplicities. A natural question is what is the relation between the two
calculi. We further explore this question in the next chapter.



Chapter 5

Compilation

We previously presented two calculi: the λ-calculus with multiplicities [7] and the resource
calculus [24] and in this chapter we are going to explore a relation between these two calculi. We
will start by defining a compilation function of the resource calculus into the λ-calculus with
multiplicities. This will give us a better insight on the relation between these calculi.

We will introduce an example of an application in both settings, to highlight the similarities
between the two calculi.

In both settings it is possible to create the term (λx.x)(1). This can be proven using the
grammar for each setting. In the calculus with multiplicities, we can form the term (λx.x)(1),
following M → MP → (λx.x)P → (λx.x)(1). In a similar way, one can generate, through
the grammar of the resource calculus, the term (λx.x)(1), following M → MP → (λx.x)P →
(λx.x)(1).

With this example we can see a trace of similarity between the two calculi, which we will
further discuss.

In the resource λ-calculus [24], there were defined two substitutions: partial substitution and
linear substitution. Recall the linear substitution mentioned in Chapter 4.

Having defined the linear substitution for A{N/x}, we are now in condition to translate the
resource calculi into calculus with multiplicities.

The reduction rules that reduce a term in the λ-calculus with multiplicities to a term in the
resource calculus are now presented.

TR (M) represents the translation of a term M from the resource calculus to the λ-calculus
with multiplicities. TM (M) represents the translation of a term M from the λ-calculus with
multiplicities to the resource calculus.

Definition 13. Given M = N1 + · · ·+Nn, N1, . . . , Nn are called summands of M .

We will now define the compilation rule from resource calculus to the λ-calculus with
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multiplicities.

Definition 14. Let M,N be terms, P and Q be bags. We define functions TR : ΛR → ΛM , B
: Λb → ΛP in the following way:

Compilation of Terms:
TR (x) = x

TR (λx.M) = λx. TR (M)

TR (MP ) = TR (M) BR (P )

Compilation of Bags:
BR (1) = 1

BR (P.Q) = BR (P )| BR (Q)

BR ([M (!)]) =

TR (M) if M (!) = M ,

TR (M)∞ if M (!) = M !

We will now exemplify the compilation of a term. Such term will be L = (λx.x)([x] . [λy.y]).

The compilation routine will execute as follows:

TR (L) = TR (λx.x) BR ((x) . (λy.y)) = (λx. TR (x))( BR (x) | BR (λy.y)) = (λx.x)(( TR
(x)| TR (λy.y)) = (λx.x)(x|λy. TR (y) = (λx.x)(x | λy.y)

We now show that TR (M) is in fact a term in the calculus with multiplicities.

Theorem 2. If M ∈ ΛR, then TR (M) ∈ ΛM .

Proof. For this proof we will use structural induction on the structure of terms. To prove this
theorem we prove a more general result:

1. If M ∈ ΛR, then TR (M) ∈ ΛM .

2. If P ∈Λb then BR (P ) ∈ ΛP

• When M = x we have: x ∈ ΛR. By the compilation we obtain that TR (x) = x, and
x ∈ ΛM .

• If M = λx.N we have that λx.N ∈ ΛR. By the compilation we have that TR (λx.N) = λx.

TR (N) so by induction hypothesis, TR (N) ∈ ΛM , therefore if N ∈ ΛR and P ∈ Λb, λx.
TR (N) ∈ ΛM .

• Finally if we are facing an application, NP , we have that NP ∈ ΛR. By the compilation
we have that TR (NP ) = TR (N) BR (P ). By induction hypothesis we obtain that TR
(N) ∈ ΛM and that BR (P ) ∈ ΛP . So, we can state that TR (NP ) ∈ ΛM .
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• If P = 1, then, we have that BR (1) = 1 and 1 ∈ ΛP .

• If P = Q.R ∈ ΛbifP.Q ∈ Λb, then, we have that BR (Q.R) = BR (Q) | BR (R). By our
induction hypothesis, we have that BR (Q) and BR (R) both belong to ΛP . Therefore, BR
(Q) | BR (R) ∈ ΛP .

• If P = [M (!)], we have two possibilities. If M (!) = M ∈ ΛR, then, as proved before, TR
(M) ∈ ΛM , belonging, therefore, to ΛP (since ΛM ⊆ ΛP ). On the other hand, if M (!) = M !,
BR [M !] = TR (M)∞ and by induction hypothesis TR (M) ∈ ΛM , so TR (M)∞ ∈ ΛP .

We now present the translation on the other side to prove the relation between the two
calculi.

Definition 15. Let M,N be terms, P and Q be bags. We define functions TM : ΛM → ΛR, PM
: ΛB → Λb in the following way:

Compilation of Terms:
TM (x) = x

TM (λx.M) = λx. TM (M)

TM (MP ) = TM (M) PM (P )

TM (M〈P/x〉) = TM S(M〈P/x〉) where S(M) consists on applying the substitution rules
represented in 3.7, 3.8 and 3.9 to M as many times as needed until it no longer represents a
substitution.

Compilation of Bags:
PM (1) = 1

PM (M) = TM (M)

PM (P |Q) = PM (P ). PM (Q)

PM (M∞) = TM (M !)

Theorem 3. If M ∈ ΛM , then TM (M) ∈ ΛR.

Proof. For this proof we will use structural induction on the structure of terms. To prove this
theorem we prove a more general result:

1. If M ∈ ΛM then TM ∈ ΛR.

2. If P ∈ ΛP then PM ∈ Λb.
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• When M = x we have: x ∈ ΛM . By the compilation we obtain that TM (x) = x, and
x ∈ ΛR.

• IfM = λx.N we have that λx.N ∈ ΛM . By the compilation we have that TM (λx.N) = λx.

TM (N) so by induction hypothesis, TM (N) ∈ ΛR, therefore if N ∈ ΛM and P ∈ Λb, λx.
TM (N) ∈ ΛM .

• Finally if we are facing an application, NP , we have that NP ∈ ΛM . By the compilation
we have that TM (NP ) = TM (N) PM (P ). By induction hypothesis we obtain that TM
(N) ∈ ΛM and that PM (P ) ∈ ΛPM . So, we can state that TM (NP ) ∈ ΛM .

• If M = N〈P/x〉, then M ∈ ΛM . Since we apply successively rules 3.7, 3.8 and 3.9 to
N〈P/x〉, we get that the result, call it N ′, will also belong to ΛM . Since N ′ ∈ ΛM , we
apply TM to it, which will yield a term in ΛR.

• If P = 1, then, we have that PM (1) = 1 and 1 ∈ ΛP .

• If P = M , with M ∈ ΛM , then, by our induction hypothesis, we have that TM (M) ∈ ΛR.

• If P = Q.R ∈ Λb if Q.R ∈ Λb, then, we have that PM (Q.R) = PM (Q) | PM (R). By our
induction hypothesis, we have that PM (Q) and PM (R) both belong to ΛP . Therefore,
PM (Q) | PM (R) ∈ ΛP .

• If P = [M (!)], we have two possibilities. If M (!) = M ∈ ΛR, then, as proved before, TM
(M) ∈ ΛM , belonging, therefore, to ΛP (since ΛM ⊆ ΛP ). On the other hand, if M (!) = M !,
PM [M !] = T (M)∞ and by induction hypothesis TM (M) ∈ ΛM , so TM (M)∞ ∈ ΛP .

Conjecture 1. If M ∈ ΛR and M →b
R N and TR (M) = M∗ and M∗ →∗M N∗, then N∗ = TM

(Ni) when Ni is a summand of N .

Conjecture 2. If M ∈ ΛM and M →∗M N and TM (M) = M∗ and M∗ →b
R N

∗, then N∗ = TR
(Ni) is a summand of N .

In the next section we will present our implementation, in Haskell, of the translation methods
presented in this Chapter.

5.1 Implementation

Let us now present the implementation of our translation.

The following board shows the compilation of a term M ∈ ΛR to a term M ′ ∈ ΛM . One can
see that all the implementation is pretty straightforward, in the sense that it results directly
from the intuitive mapping between the two grammars of both calculi.
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� �
compileT :: Rterms -> Term

compileT EmptyT = TEmpty

compileT (Var s) = V s

compileT (Simona.Lambda s rt) = Lib.Lambda s (compileT rt)

compileT (Simona.App rt rb) = Lib.App (compileT rt) (compileB rb)� �
Next, we present the translation for bags. When it comes to bags, the translation may not

be as direct as the one presented before. Nonetheless, the following board shows the compiling
function of a term P ∈ Λb to a term P ′ ∈ ΛP .

If P = Empty or P = TSingle t, the translation is again, pretty straightforward. However,
if R = (P.Q), one must be aware of some details. We do not have a P.Q constructor per se in
the λ-calculus with multiplicites. Nonetheless, it does contain the P |Q that contains similar
properties, being, therefore, possible to map one into the other, as proven in our Theorem above.

If P = [M (!)], then some details must be considered in the translation algorithm as well, since
[M (!)] can either be M or M !. Our transformResources function treats each R ∈ Λ! different
according to their nature. If [M (!)] = M , where M ∈ ΛR, then, we have the case where M is
translated as a term of ΛR. However, M needs to be encapsulated in a Bag, since the constructor
(P |Q) deals with Bags on both arguments. That is no problem, since all terms can be bags,
according to the grammar of both calculi. Therefore, a "bag" is created, which consists of a term
M ∈ ΛR encapsulated in a bag constructor. When [M (!)] = M !, a possible way to translate M !

to a term N ∈ ΛP is to transform the ”!” into a ∞. It means that M ! translates to M∞ ∈ ΛP .
The only aspect in this translation algorithm left to explain is the use of the (P |Q) constructor as
a way of simulating the behavior of a list of resources in resource calculus. Since the λ-calculus
with multiplicities does not contain any other structure that can agreggate multiple terms, the
only way to "construct a list" in the λ-calculus with multiplicites is to use the (P |Q) constructor.
In such way, one can map [M,N,P ] into (M |N |P ), and maintain the order intact.� �

compileB :: Rbags -> Bag

compileB Simona.Empty = Lib.Empty

compileB (Simona.TSingle rt) = Lib.TSingle (compileT rt)

compileB (Dot rb1 rb2) = Par (compileB rb1) (compileB rb2)

compileB (Multi l) = transformResources l� �� �
transformResources :: [Resource] -> Bag

transformResources [] = Lib.Empty

transformResources (BangTerm bt : xs) = Par (Lib.TInfinite (compileT bt))

(transformResources xs)

transformResources (Term t : xs) = Par (Lib.TSingle (compileT t))

(transformResources xs)� �
We also have created another translation function that transform the lambda-caluclus with

multiplicities into resource calculi. Again, some of the aspects of the implementation can seem
rather intuitive, while others may seem not so straightforward.
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We begin by presenting our function that translates a term M ∈ ΛM to a term N ∈ ΛR. The
Empty term, the variable, the abstraction and the application cases are very straightforward,
similar to the translation from the resource calculus to the λ-calculus with multiplicities. All
the particularities of this function are related to translating the Subs M P s constructor. Since
resource calculus does not contain an explicit constructor to represent substitutions, we had
to create a function. The way we did this was to apply all the substitutions to the term
M = Subs N Ps until it no longer represented a substitution and then we translate it as we
would translate a regular term M ∈ ΛM . The needed substitutions are all performed by the
auxiliary function finalSub.� �

compileT :: Term -> Rterms

compileT TEmpty = EmptyT

compileT (V s) = Var s

compileT (Lib.Lambda s mt) = Simona.Lambda s (compileT mt)

compileT (Lib.App mt mb) = Simona.App (compileT mt) (compileB mb)

compileT (Subs mt mb s) = compileT (finalSub (Subs mt mb s))� �
� �
finalSub :: Term -> Term

finalSub (Subs mt mb s) = finalSub (sub $ Subs mt mb s)

finalSub t = t� �
Below we present the translation of a bag P . If P = 1, then it translates directly to 1 in

the resource calculus. If P is, in fact, a term M ∈ ΛM , then the translation is also pretty
straightforward, since both calculi have this situation explicitly represented in their grammars.

If P = M∞, then, according to the Theorem proved before, we can see that it translates to a
M !. However, we cannot represent, as a Bag, a loose M !, so we represent it as a singleton list
[M !], that is, in fact, a bag, according to the grammar of the resource calculus.

If P = (P ′|Q), then, analogously to what we did in translating the resource calculi into the λ-
calculus with multiplicites, we can use the (P.Q) constructor to represent (P ′|Q) as (P ′′ = P ′.Q).
In that way, we can easily see that P ′′ ∈ ΛP .� �

compileB :: Bag -> Rbags

compileB Lib.Empty = Simona.Empty

compileB (Lib.TSingle mt) = Simona.TSingle (compileT mt)

compileB (Lib.TInfinite mt) = Multi [BangTerm (compileT mt)]

compileB (Par (Lib.TSingle mt) mb) = Dot (compileT mt) (compileB mb)� �
5.1.1 Example

In this section we present some examples to prove the similarity between these two calculi.� �



5.1. Implementation 37

*Translation> compileT (Simona.App (Var "x") (Dot (Simona.TSingle (Var

"y"))(Simona.TSingle (Var "z"))))

App (V "x") (Par (TSingle (V "y")) (TSingle (V "z")))� �
In the box above we can observe that the translation was made. In the resource calculi we

have x(y.z), and in the λ-calculus with multiplicities we have x(y|z). If we check the compilation
we can conclude that the translation is correct, for this case. That means that,

TR (x(y.z)) = TR (x) BR (y.z) = x BR (y) BR (z) = x(y|z).

Next we present an example of the translation from λ-calculus with multiplicities to resource
calculi. For this example we test the output of the previous example and we expect the same
result.� �

*Translation2> Translation2.compileT (Lib.App (V "x") (Par (Lib.TSingle (V

"y")) (Lib.TSingle (V "z"))))

App (Var "x") (Dot (TSingle (Var "y")) (TSingle (Var "z")))� �
The box above presents the translation between the λ-calculus with multiplicities to the

resource calculus. We will present a step-by-step translation of (x)(y|z):

TM (x)(y|z) = TM (x) BM (y|z) = x BM (y). BM (z) = x(y.z).

We can denote that the output is similar, and the meaning is the same, for this example.
In λ-calculus with multiplicities our examples became x(y|z) and the result x(y.z), that is the
expected result, based on the grammar and in the previous test.





Chapter 6

Conclusion and Future Research

In this chapter we will present some final thoughts on the matter related to our document.

Our main goal for this work, was to prove a relation between λ-calculus with multiplicities
and resource calculus. To achieve this goal we implemented both calculi in Haskell, and then
we created a translation. We programmed it Haskell because of previous experiences with this
language and coding the grammar into a functional language seemed a natural choice.

Observing the implementation, one can see that the calculi are related, since one can translate
the a term in one setting into a different term in the other setting.

6.1 Future Work

In the future, we believe that it is important to try to establish a relation between both of these
calculi and linear calculus.

6.2 Final Remarks

Logic has always been an area of interest to me, in the vast field of Computer Science. In
particular, in a MSc course, I had my first interaction with λ-calculus and this particular topic
got me blown away by it’s elegance and by the fact that it constitutes the basis of an important
part of Computer Science. With this thesis, I have been having a great chance to dig deeper into
this subject.

In terms of results, not only I learned a lot of theoretical models and different approaches in
the most various ways in λ-calculus, but also have improved my skills in implementing theoretical
models, in particular, using Haskell.

Finally, I sincerely hope that the reader also shares a little bit of my curiosity and enthusiasm
and can appreciate what I present here as much as I have appreciated learning all of this.

39





Bibliography

[1] Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J. (1991). Explicit substitutions. J. Funct.
Program., 1:375–416.

[2] Alves, S., Fernández, M., Florido, M., and Mackie, I. (2010). Gödel’s system tau revisited.
Theor. Comput. Sci., 411(11-13):1484–1500.

[3] Alves, S., Fernández, M., Florido, M., and Mackie, I. (2011). Linearity and recursion in a
typed lambda-calculus. In Proceedings of the 13th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, July 20-22, 2011, Odense, Denmark,
pages 173–182.

[4] Alves, S., Fernández, M., Florido, M., and Mackie, I. (2014). Linearity: A roadmap. J. Log.
Comput., 24(3):513–529.

[5] Barendregt, H. P. et al. (1984). The lambda calculus, volume 3. North-Holland Amsterdam.

[6] Bernardy, J.-P. and Newton, R. (2017). Linear haskell.

[7] Boudol, G. (1993a). The lambda-calculus with multiplicities. In International Conference on
Concurrency Theory, pages 1–6. Springer.

[8] Boudol, G. (1993b). The lambda-calculus with multiplicities (abstract). In CONCUR ’93,
4th International Conference on Concurrency Theory, Hildesheim, Germany, August 23-26,
1993, Proceedings, pages 1–6.

[9] Church, A. (1932). A set of postulates for the foundation of logic. Annals of mathematics,
pages 346–366.

[10] Florido, M. and Damas, L. (2004). Linearization of the lambda-calculus and its relation
with intersection type systems. Journal of Functional Programming, 14(5):519–546.

[11] Girard, J. (1987). Linear logic. Theor. Comput. Sci., 50:1–102.

[12] Gödel, V. K. (1958). Über eine bisher noch nicht benützte erweiterung des finiten
standpunktes. dialectica, 12(3-4):280–287.

41



42 Bibliography

[13] Gordon, M. J. C., Milner, R., Morris, L., Newey, M. C., and Wadsworth, C. P. (1978). A
metalanguage for interactive proof in LCF. In Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson, Arizona, USA, January 1978,
pages 119–130.

[14] Henglein, F. (1993). Type inference with polymorphic recursion. ACM Transactions on
Programming Languages and Systems (TOPLAS), 15(2):253–289.

[15] Hindley, J. R. (1997). Basic simple type theory. Number 42. Cambridge University Press.

[16] Hindley, J. R. and Seldin, J. P. (2008). Lambda-calculus and Combinators, an Introduction,
volume 13. Cambridge University Press Cambridge.

[17] Hofmann, M. (1999). Linear types and non-size-increasing polynomial time computation. In
14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 464–473.

[18] Jones, S. P. and Wadler, P. (1992). A static semantics for haskell. Draft paper, Glasgow, 91.

[19] Jost, S., Vasconcelos, P., Florido, M., and Hammond, K. (2017). Type-based cost analysis
for lazy functional languages. Journal of Automated Reasoning, 59(1):87–120.

[20] Kfoury, A. J. (2000). A linearization of the lambda-calculus and consequences. J. Log.
Comput., 10(3):411–436.

[21] Lévy, J.-J. (1978). Réductions correctes et optimales dans le lambda-calcul. PhD thesis.

[22] Milner, R. (1978). A theory of type polymorphism in programming. Journal of computer
and system sciences, 17(3):348–375.

[23] Milner, R. (1992). Functions as processes. Mathematical structures in computer science,
2(2):119–141.

[24] Pagani, M. and Rocca, S. R. D. (2010). Solvability in resource lambda-calculus. In
Foundations of Software Science and Computational Structures, 13th International Conference,
FOSSACS 2010, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, pages 358–373.

[25] Plotkin, G. D. (1977). Lcf considered as a programming language. Theoretical computer
science, 5(3):223–255.

[26] Thompson, S. (2011). Haskell: the craft of functional programming, volume 2. Addison-
Wesley.

[27] Troelstra, A. S. (1992). Lectures on linear logic.

[28] Wadler, P. (1990). Linear types can change the world! In Programming Concepts and
Methods.

[29] Zilli, M. V. (1984). Reduction graphs in the lambda calculus. Theoretical Computer Science,
29(3):251–275.



Appendix A

Implementation in Haskell

� �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Implementation of the c a l c u l u s with m u l t i p l i c i t i e s −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module Lib

( Term(V, Lambda, App, Subs,TEmpty),

Bag(Empty, TSingle, TInfinite, TFinite, Par),

red, sub, redL, subL, fetch, rename, fv, all_terms, nth, construct_terms,

groupTerms, createBags, fetch_all, garbage, clean, normalize, included

) where

import Data.List

−−−−−−−−−−−−−−−−−−−−−
−− Data Struc tures −−
−−−−−−−−−−−−−−−−−−−−−

data Bag = Empty

| TSingle Term

| TInfinite Term

| Par Bag Bag

deriving (Show, Eq)

data Term = TEmpty

| V String

| Lambda String Term

| App Term Bag

| Subs Term Bag String

deriving (Show, Eq)

−−−−−−−−−−−−−−−−−−−−
−− Free Variab les −−
−−−−−−−−−−−−−−−−−−−−
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fv :: Term -> [String] -> [String]

fv (V x) lb = if elem x lb then [] else [x]

fv (Lambda x t) lb = fv t (lb ++ [x])

fv (App t (TSingle b)) lb = fv t lb ++ fv b lb

fv (Subs t (TSingle b) s) lb = fv t lb ++ fv b lb

−−−−−−−−−−−
−− Value −−
−−−−−−−−−−−

value :: Term -> Bool

value (Lambda m x) = True

value (Subs v b x) = value v

value _ = False

−−−−−−−−−−−−
−− Equals −−
−−−−−−−−−−−−

equals :: Bag -> Bag

equals (Par p Empty) = p

equals (Par p q) = Par q p

equals (Par p (Par q r)) = Par (Par p q) r

equals (TInfinite m) = Par (TSingle m) (TInfinite m)

−−−−−−−−−−−−−−−−−−−−−−−−−
−− Reduction L i s t −−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−

redL :: Term -> [Term]

redL t = [red t]

−−−−−−−−−−−−−−−
−− Reduction −−
−−−−−−−−−−−−−−−

red :: Term -> Term

red (App (Lambda x m) p) = Subs m p x

red (App (Subs v r x) p) = Subs (red (App v p)) r x

red (App m p) = App (red m) p

red (Subs m p x) = Subs (red m) p x

−−−−−−−−−−−−−−−−−−−−−−−
−− S u b s t i t u t i o n L i s t −−
−−−−−−−−−−−−−−−−−−−−−−−
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subL :: Term -> [Term]

subL t = [sub t]

−−−−−−−−−−−−−−−−−−
−− S u b s t i t u t i o n −−
−−−−−−−−−−−−−−−−−−

sub :: Term -> Term

sub (Subs (V x) (TSingle m) y) |

x == y = m

sub (Subs (V x) (TInfinite m) y) |

x == y = m

sub (Subs (V x) (Empty) y) = if x == y then TEmpty else (V x)

sub (Subs (App m p) n x) = App (sub (Subs m n x)) p

sub (Subs (Subs m p z) n x) = Subs (sub (Subs m n z)) p z

sub (Subs (Lambda x t) n y) = if elem y (fv (Lambda x t) [] ) then Lambda x

(sub $ Subs t n y) else Lambda x t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Fetch Rule and Auxi l iary Functions −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

all_terms :: Bag -> [Bag]

all_terms (Par p q) = [p] ++ all_terms q

all_terms p = [p]

nth :: [a] -> Int -> a

nth [] _ = error "Index too high"

nth (x:xs) 0 = x

nth (x:xs) n = nth xs (n-1)

construct_terms :: [Bag] -> Bag

construct_terms [x] = x

construct_terms (x:xs) = Par x (construct_terms xs)

groupTerms :: [Bag] -> [Bag]

groupTerms (x:xs) = createBags (permutations (x:xs))

createBags :: [[Bag]] -> [Bag]

createBags [] = []

createBags (x:xs) = construct_terms x : createBags xs

fetch_list :: [Bag] -> Term -> String -> [Term]

fetch_list [] m s = []
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fetch_list (x:xs) m s = fetch (Subs m x s) ++ fetch_list xs m s

fetch_all :: Term -> [Term]

fetch_all (Subs m n x) = fetch_list (groupTerms $ all_terms n) m x

fetch :: Term -> [Term]

fetch (Subs m (Par n r) x) = [Subs (sub (Subs m n x)) r x]

−−−−−−−−−−−−−−−−−−−−−−−−
−− Garbage Co l l e c t i on −−
−−−−−−−−−−−−−−−−−−−−−−−−

garbage :: Term -> Term

garbage (Subs m p x) = if not (elem x (fv m [])) then m else (Subs m p x)

−−−−−−−−−−−−−−−−−−−−−−−
−− Remove Dupl icants −−
−−−−−−−−−−−−−−−−−−−−−−−

clean :: Term -> [Term]

clean (Subs m n x) = map garbage (fetch_all (Subs m n x))

clean x = [x]

removeDuplicates :: [Term] -> [Term]

removeDuplicates t = rdHelper [] t

where rdHelper seen [] = seen

rdHelper seen (x:xs) = if elem x seen then rdHelper seen

xs else rdHelper (seen ++ [x]) xs

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Top Level from funct ion Clean and a u x i l i a r y func t ions −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

normalize :: Term -> [[Term]]

normalize t = normalize_ [t] [[t]]

normalize_ :: [Term] -> [[Term]] -> [[Term]]

normalize_ ts ls = if t’ == [] || length ( concat $ included t’ ls) == length

t’ then ls else normalize_ t’ (ls ++ [t’])

where

t’ = concat $ map clean ts

included :: Eq a => [a] -> [[a]] -> [[a]]

included ls nest = filter func nest

where

func x = any (ls==) $ concat $ map subsequences $

permutations x� �
� �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−− Implementation of the Resource Calcu lus −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module Simona

(Rterms(EmptyT, Var, Lambda, App),

Resource(Term, BangTerm),

Rbags(Empty, Dot, Multi,TSingle),

Exp(ExpTerm, ExpBag),

SumTerms(ZeroT, SumTerm, AddT),

SumBags(ZeroB, SumBag, AddB),

SumExp(Union),

subR, subB, subR1, subR2, subN, redg

) where

import Data.List

−−−−−−−−−−−−−−−−−−−−−
−− Data Struc tures −−
−−−−−−−−−−−−−−−−−−−−−

data Rterms = EmptyT

| Var String

| Lambda String Rterms

| App Rterms Rbags

deriving (Show)

data Resource = Term Rterms

| BangTerm Rterms

deriving Show

data Rbags = Empty

| TSingle Rterms

| Dot Rbags Rbags

| Multi [Resource]

deriving Show

data Exp = ExpTerm Rterms

| ExpBag Rbags

deriving Show

data SumTerms = ZeroT

| SumTerm Rterms

| LambdaST String SumTerms

| AppST SumTerms Rbags

| AddT SumTerms SumTerms

deriving Show

data SumBags = ZeroB

| SumBag Rbags

| AppSB SumTerms SumBags

| DotSB SumBags SumBags
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| AddB SumBags SumBags

| BangTermsSB SumTerms

| MultiSB [SumBags]

deriving Show

data SumExp = Union SumTerms SumBags

deriving Show

−−−−−−−−−−−−−−−−−−−
−− S u b s t i t u t i o n s −−
−−−−−−−−−−−−−−−−−−−

unpack :: Maybe Rbags -> Rbags

unpack (Just a) = a

unpack Nothing = Empty

unpackTerms :: Maybe Rterms -> Rterms

unpackTerms (Just a) = a

unpackTerms Nothing = EmptyT

subR :: Rterms -> Rterms -> String -> Maybe Rterms

subR (Var y) n x

| y == x = Just n

| otherwise = Nothing

subR (Lambda y m) n x = Just $ Lambda y unpacked

where packed = subR m n x

unpacked = unpackTerms packed

subB :: Rbags -> Rterms -> String -> Maybe Rbags

subB (Multi [Term m]) n x = Just $ Multi [Term (unpackTerms $ subR m n x)]

subB Empty _ _ = Nothing

subB (Multi [BangTerm m]) n x = Just $ Multi [Term (unpackTerms $ subR m n x),

BangTerm m]

subR1 :: Rterms -> Rterms -> String -> SumTerms

subR1 (App m p) n x = AddT ( SumTerm ( App (unpackTerms $ subR m n x) p )) (

SumTerm ( App m (unpack $ subB p n x)))

subR2 :: Rbags -> Rterms -> String -> SumBags

subR2 (Dot p r) n x = AddB (SumBag (Dot (unpack $ subB p n x) r)) (SumBag (Dot

p (unpack $ subB r n x)))

−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Nat(Sum) Expressions −−
−−−−−−−−−−−−−−−−−−−−−−−−−−
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nat1 :: SumTerms -> SumTerms

nat1 ZeroT = ZeroT

nat1 (LambdaST x (AddT st1 st2)) = AddT (LambdaST x st1) (LambdaST x (nat1 st2))

nat1 m = m

nat2 :: SumTerms -> SumTerms

nat2 ( AppST (SumTerm m) p) = AppST (SumTerm m) p

nat2 ( AppST (AddT st1 st2) p ) = AddT (AppST st1 p) (nat2 (AppST st2 p))

nat3 :: SumBags -> SumBags

nat3 ( AppSB m (SumBag p)) = AppSB m (SumBag p)

nat3 ( AppSB m (AddB sb1 sb2)) = AddB (AppSB m sb1) (nat3 (AppSB m sb2))

nat4 :: SumBags -> SumBags

nat4 (DotSB (MultiSB l) p) = DotSB (aux l) p

aux :: [SumBags] -> SumBags

aux = foldr (\x -> AddB (MultiSB [x])) ZeroB

nat5 :: SumBags -> SumBags

nat5 (DotSB (MultiSB l) p) = DotSB (MultiSB (aux2 l)) p

aux2 :: [SumBags] -> [SumBags]

aux2 [BangTermsSB (AddT st1 st2)] = [(BangTermsSB st1)] ++ (aux2 [BangTermsSB

st2])

−−−−−−−−−−−−−−−−−−−−−−−−
−−Normal S u b s t i t u t i o n −−
−−−−−−−−−−−−−−−−−−−−−−−−

freev :: Rterms -> [String] -> [String]

freev (Var x) lb = if elem x lb then [] else [x]

freev (Lambda x t) lb = freev t (lb ++ [x])

freev (App t (TSingle b)) lb = freev t lb ++ freev b lb

subN :: Rterms -> Rterms -> String -> Rterms

subN (Var x) m y |

x == y = m

subN (App m p) n x = App (subN m n x) p

subN (Lambda x t) n y = if elem y (freev (Lambda x t) [] ) then Lambda x (subN

t n y) else Lambda x t

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Reduction : Giant Step −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

redg :: Rterms -> Rbags -> Rterms
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redg (Lambda x t) (Multi n) = apply_subR (apply_subN t x l’) x l’’

where (l’,l’’) = split n [] []

apply_subN :: Rterms -> String -> [Resource] -> Rterms

apply_subN t y [] = t

apply_subN t y (Term x:xs) = apply_subN (subN t x y) y xs

apply_subR :: Rterms -> String -> [Resource] -> Rterms

apply_subR t y [] = t

apply_subR t y (BangTerm x:xs) = apply_subR (unpackTerms $ subR t x y) y xs

split :: [Resource] -> [Resource] -> [Resource] -> ([Resource], [Resource])

split [] ls xs = (ls,xs)

split ((Term t):ys) ls xs = split ys (ls ++ [Term t]) xs

split (BangTerm t:ys) ls xs = split ys ls (xs ++ [BangTerm t])

−−−−−−−−−−−−−−−
−− Normalize −−
−−−−−−−−−−−−−−−

normalizeS :: Rterms -> Rbags -> Rterms

normalizeS rterm rbag = redg rterm rbag� �
� �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Trans lat ion from Resource Calculus to Lambda−Calculus with m u l t i p l i c i t i e s −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module Translation where

import Lib

import Simona

import Data.List

−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Compilation of Terms −−
−−−−−−−−−−−−−−−−−−−−−−−−−−

compileT :: Rterms -> Term

compileT EmptyT = TEmpty

compileT (Var s) = V s

compileT (Simona.Lambda s rt) = Lib.Lambda s (compileT rt)

compileT (Simona.App rt rb) = Lib.App (compileT rt) x

where x = compileB rb

−−−−−−−−−−−−−−−−−−−−−−
−− Compilation Bags −−
−−−−−−−−−−−−−−−−−−−−−−

compileB :: Rbags -> Bag
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compileB Simona.Empty = Lib.Empty

compileB (Simona.TSingle rt) = Lib.TSingle (compileT rt)

compileB (Dot rb1 rb2) = Par (compileB rb1) x

where x = compileB rb2

compileB (Multi l) = transformResources l

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Compiling of every term in the multi−s e t −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

transformResources :: [Resource] -> Bag

transformResources [] = Lib.Empty

transformResources (BangTerm bt : xs) = Par (Lib.TInfinite (compileT bt))

(transformResources xs)

transformResources (Term t : xs) = Par (Lib.TSingle (compileT t))

(transformResources xs)� �
� �
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Trans lat ion from Lambda−Calculus with m u l t i p l i c i t i e s to Resource Calcu lus −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module Translation2 where

import Lib

import Simona

import Data.List

−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Compilation of Terms −−
−−−−−−−−−−−−−−−−−−−−−−−−−−

compileT :: Term -> Rterms

compileT TEmpty = EmptyT

compileT (V s) = Var s

compileT (Lib.Lambda s mt) = Simona.Lambda s (compileT mt)

compileT (Lib.App mt mb) = Simona.App (compileT mt) (compileB mb)

compileT (Subs mt mb s) = compileT (finalSub (Subs mt mb s))

−−−−−−−−−−−−−−−−−−−−−−−−−
−− Compilation of Bags −−
−−−−−−−−−−−−−−−−−−−−−−−−−

compileB :: Bag -> Rbags

compileB Lib.Empty = Simona.Empty

compileB (Lib.TSingle mt) = Simona.TSingle (compileT mt)

compileB (Lib.TInfinite mt) = Multi [Term (compileT mt)]

compileB (Par (Lib.TSingle mt) mb) = Dot (compileT mt) (compileB mb)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Boudol ’ s S u b s t i t u t i o n s −−
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−

finalSub :: Term -> Term

finalSub (Subs mt mb s) = finalSub (sub $ Subs mt mb s)

finalSub t = t� �
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