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Abstract—Knee abnormality is a major problem in elderly
people these days. This can be diagnosed by using MRI or
X-Ray techniques. X-Ray technique is only be used for the
primary evaluation while MRI is an efficient way to diagnose knee
abnormality but it is very expensive. In this work, Surface EMG
(sEMG) signal taken from healthy and knee abnormal individuals
for three different lower limb movements (Gait, Standing and
Sitting) were used for the classification. For the classification,
first Discrete Wavelet Transform (DWT) was being used for de-
noising the signal then eleven different time-domain features were
extracted by using 256 msec windowing with 25% overlapping.
After that normalized the features between 0 to 1 and then
selected by using the backward elimination method using the p-
value test. Five different machine learning classifiers (k-nearest
neighbor, support vector machine, decision tree, random forest,
and extra tree) were tested for this classification by training with
selected features. Our result shows that the Extra Tree Classifier
with ten cross-validations gives the highest accuracy (91%) to
detect the knee abnormality using sEMG signal.

Index Terms—Knee Abnormality, Surface Electromyography
(sEMG), Discrete Wavelet Transform (DWT), Machine Learning
Classifiers.

I. INTRODUCTION

In the present scenario, knee pain is a most common
healthcare issue in the elderly. The major reasons behind the
knee pain are related to injury, aging, repeated stress on the
knee or due to an underlying condition such as knee arthritis.
According to the united-state study, more than one in ten adults
suffer from knee osteoarthritis (Knee OA) which is a form of
knee abnormality [1].

The Knee joint is one of the complex joints in the human
body which provides the leg movement, the stability of the
human body, and also acts as a shock absorber. Bones, liga-
ments, tendons, muscles, cartilage, and fluids are the different
parts of the knee joint. Tibia, femur, and pattela are the three
major bones that are used to form the knee joint.

X-Ray, Magnetic Resonance Imaging (MRI), CT, Arthro-
scopic are the different techniques that are being used to
diagnose the knee abnormality clinically [2], [3], [4]. X-
Ray is being used for the initial evaluation of knee pain but
this technique is not powerful. Clinically, magnetic resonance
imaging (MRI) procedure is commonly used to assess knee
pain but is very costly. As per the literature, knee abnormality
can also be diagnosed with the help of human activities by
using wearable sensor like EMG, Gyrometer, Accelerometer
[5], [6], [7] and visual sensor like camera [8], [9]. Privacy,
pervasiveness, and complexity are some of the advantages of
wearable sensors over the visual sensors. In the wearable sen-
sors, EMG sensors are better in the human activity recognition
applications because it can recognize the movement in advance
and also take less time to detect the signal.

Electromyography (EMG) is a technique used to analyze
and record the electrical activity emitted during muscle con-
traction by the skeletal muscles. Surface EMG (sEMG) and
intramuscular EMG (iEMG) are the two ways by which collect
the EMG signal [10]. Recording of sEMG signal has several
advantages over iEMG signals. The sEMG signals play a
critical role in analyzing the lower limb movements and may
help in detecting anomalies in the lower limb. Artificial Neural
Network based knee abnormality classification has been done
by Erkamaz et al [4]. Vijayvargiya et al have been analyzed the
early detection of knee osteoarthritis by using support vector
machine classifier with different kernels [11]. Ertugrul et al.
have been used surface EMG signal classification of the lower
limb and upper limb by using adaptive local binary patterns
[12].

In this work, we present a comparative analysis of the
performance of various machine-learning classifiers for knee
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Fig. 1: sEMG signal taken for three different postures (Walking, Standing, Sitting) : a) Normal subject b) Abnormal subject

abnormality detection using sEMG datasets. This paper is
divided into five sections. A brief overview of the EMG
data set is provided in Section II. The detail of the proposed
methodology is shown in section III. Results and discussion
are presented in section IV. Conclusions and possible research
are discussed in section V.

II. DATASET

In this paper, we were considered the datasets which consist
of the surface EMG signal from three different movements
(standing, walking and sitting) of twenty-two subjects [13].
The age of all the subjects were more than 18 years in 11
individuals were healthy and 11 individuals were suffering
from knee abnormalities. The healthy individuals did not have
any record of a knee injury while the unhealthy individuals
have suffering knee abnormality which was already diagnosed
by professionals. DataLog MWX8 and a goniometer were used
to collect the surface EMG data for three different postures.
The data were collected around the four distinct muscles:
rectus femoris (RF), biceps femoris (BF), vastus medialis
(VM), and semitendinosus (ST). The goniometer was attached
to the external side of the knee joint. All these data were
stored on the computer by the bluetooth adapter. For this
analysis, we have considered only EMG signals for three
distinct movements. Fig 1 shows an example of the normal
and abnormal subject’s sEMG recordings in each posture,
respectively.

III. PROPOSED METHODOLOGY

This section gives a brief description of the methodology
used in knee abnormality detection by using surface EMG

datasets. Fig. 2 illustrates the basic steps involved in this
classification of the sEMG signal. First, the discrete wavelet
transform (DWT) was used to denoised the raw sEMG signal
and then various features were extracted using overlapping
windowing techniques. To reduce the feature dimension and
improve performance parameters, a backward elimination
method for feature selection was used. After that, selected
features were fed to the machine learning classifiers and
analyzed the performance parameters.

Fig. 2: Basic flow chart of the proposed methodology

A. Discrete Wavelet Transform

During the recording of the sEMG signal, Several differ-
ent kinds of noises are introduced in the data. The noises
are present due to external disturbances and psychological
disturbances. Owing to the combination of various noise
signals or artifacts, the identity of an EMG signal gets lost.



The EMG signal attributes depend on the skin temperatures,
subject’s internal structure, skin formation, blood flow rate,
tissue structure, measurement location, and more.

The identity of an EMG signal is lost due to the mixing of
various noise signals or artifacts. The attributes of the EMG
signal depend on the internal structure of the subject, including
the individual skin formation, blood flow velocity, measured
skin temperatures, the tissue structure (muscle, fat, etc.), the
measuring site, and more.

It is not possible to use traditional filtering techniques such
as high-pass, low-pass, and band-pass to eliminate unwanted
noise like impulse within the active EMG signal spectrum
band. Novel techniques including Independent Component
Analysis (ICA), Discrete Wavelet Transform (DWT), and
Empirical Mode Decomposition (EMD) have recently been
used to eliminate random noise from sEMG signals. [14], [15],
[16], [17], [18]. In this work, DWT was applied to denoise the
raw sEMG signal because it has minimum signal distortion and
gives information in both frequency and time domain.

The signal can decomposed into various levels in a discrete
wavelet transformation using various wavelets such as Haar,
Daubechies, Marlet, Symlet, etc. It is implemented as a bank of
filters which contains low pass filters (approximate coefficient)
and high pass filters (detail coefficient). Further, the signal is
passed through the next level of LPF and HPF. The number
of coefficients depends on the level of decomposition. Fig. 3
shows the wavelet decomposition up to level 4. The wavelet
are generated from a mother wavelet (ψt), by scaling (s) and
translation (τ ) [19]:

ψs,τ =
1√
s
ψ

(
t− τ
s

)
(1)

Fig. 3: Wavelet Decomposition

To remove the noise after decomposing the signal,
various kind of thresholding such as soft thresholding, hard
thresholding have been used. In this study, wavelet denoising
was used with db7 from the Daubechies family till fourth
level decomposition. Garotte thresholding applied to detail
coefficient D2, D3 and, D4 as shown in fig. 3. Fig. 4 shows
the raw EMG signal and the denoised signal after the wavelet
denoising.

Fig. 4: Raw EMG signal and denoised EMG signal by using
DWT

B. Segmentation

EMG signals are random. Due to its randomness, the
segmentation of the EMG signal is necessary rather than the
full signal. Windowing technique is being used for the segmen-
tation of the signal. There are two different techniques (shown
in fig 5) for data segmentation: overlapped windowing and
adjacent windowing [20], [21]. In this paper, we considered
overlapping windowing with 256 msec window length and
25% overlapping [7].

Fig. 5: Windowing Techniques

C. Features Extraction and Selection

Different types of artifacts and noises are still present after
the preprocessing of the EMG data. These noises degrade the
performance of the classification model. Different kinds of
features (time domain, frequency domain, and time-frequency
domain) are extracted from the pre-processed EMG data to
improve the model performance. In this study, elven time-
domain feature (shown in table I ) for four different muscle
signals (i.e. 44 features) were being extracted for the knee
abnormality classification.

After extracting the features, the selection of relevant fea-
tures or remove the redundant features is a very challenging
task. We applied the backward elimination procedure for the



TABLE I: Mathematical expression of the extracted features

Sr. No. Feature Extracted Mathematical Formulation

1 Mean Absolute Value (MAV)
1
N

∑N
i=1 |xi|

Where : xi is sample of EMG signal

2 Root Mean Square (RMS)
√

1
N

∑N
i=1 |xi|

2

3 Zero Crossing (ZC)

∑N−1
i=1 f (xi)

Where: f (xi) =


1 if, (xi > 0 and xi+1 < 0)

or (xi < 0 and xi+1 > 0)

0 otherwise

4 Slope Sign Change (SSC)

∑N−1
i=2 f (xi)

Where: f (xi) =


1 if, if, (xi > xi−1 and xi > xi+1)

or (xi < xi−1 and xi < xi+1)

0 otherwise

5 Variance (VAR) 1
N−1

∑N
i=1 x

2
i

6 Wilison Amplitude (WAMP)

∑N−1
i=1 f (|(xi+1 − xi)|)

Where: f (xi) =

1 if, (x ≥ Threshold)

0 otherwise

7 Myopulse Percentage Rate (MYOP)

1
N

∑N
i=1 f (xi)

Where: f (xi) =

1 if, (x ≥ Threshold)

0 otherwise

8 Difference Absolute Standard Deviation Value (DASDV)
√

1
N−1

∑N−1
i=1 (xi+1 − xi)2

9 Average Amplitude Change (AAC) 1
N

∑N−1
i=1 |xi+1 − xi|

10 Skewness (Skew) E[(x−µ)3]
σ3

11 Kurtosis (Kurt)

E[(x−µ)4]
σ4

Where, σ is the Standard deviati of data set,

µ = Mean of the data set,

E is the Expected value estimator of the signal

diagnosis of knee abnormality. In this approach we begin with
all of the model’s attributes, followed by their removal based
on the p-value. Those attributes were discarded with p-values
greater than 0.05 and the model was refitted with the rest of
the attributes. This process was iterated several times until
each existing variable was at a significant level for the model.
After the selection of the feature, all selected features were
standardized between 0 and 1 according to equation 2.

XFnew =
XF −XFmin

XFmax −XFmin
(2)

Where, XFnew is the normalized EMG feature, XF is the
actual EMG feature, XFmax is the maximum value of actual
EMG feature, and XFmin is the minimum value of actual
EMG feature.

D. Machine Learning Methods
In this section, discuss support vector machine, decision

tree, k-nearest neighbor, random forest, and extra tree machine

learning classifiers which were used for the classification
between healthy and unhealthy individuals. We did not discuss
the machine learning classifiers in depth.

Decision Tree (DT) [22] is a supervised learning classifier
that can be used for both numerical or categorical data. It uses
a tree kind of structure of decision-based on entropy.

• calculate the entropy of each features:

H(X) = −
∑
tεY

p(t)log2p(t) (3)

Where, X is the Dataset, Y is the Set of classes in S, and
p(t) is number of elements in class Y to the number of
elements in set X

• Split the set into subsets using the attribute which infor-
mation gain is maximum.

IG(X,A) = H(X)−H(X|A) (4)



TABLE II: Performance Parameters of Different Classifiers

Classifier Accuracy Sensitivity Specificity F1-Score
µ σ µ σ µ σ µ σ

SVM 0.701 0.019 0.404 0.028 0.864 0.024 0.550 0.027
DT 0.700 0.018 0.567 0.043 0.773 0.022 0.653 0.028

KNN 0.793 0.012 0.641 0.028 0.878 0.017 0.740 0.018
RF 0.888 0.017 0.789 0.037 0.943 0.015 0.859 0.024
ET 0.913 0.013 0.825 0.034 0.962 0.011 0.888 0.02

(a) SVM (b) Decision Tree (c) KNN

(d) Random Forest (e) Extra Tree

Fig. 6: Confusion Matix of Different Classifiers

• No further splitting is required if the value of entropy is
0, otherwise further splitting the same as above.

Random Forest (RF) [23] is a similar kind of decision tree
algorithm but it creates several trees rather than a single tree.

• First, select the number of samples in the dataset ran-
domly which is called bootstraps sample.

• Create the decision tree for every bootstrap sample and
calculate the prediction results from each decision tree.

• Voting was performed between the results of decision
trees, and the most voted prediction result shows the
output of the overall prediction.

Extra Tree (ET) [24] is very similar to the random forest
classifier. It considers the entire dataset instead of the bootstrap
dataset.

IV. RESULT AND DISCUSSION

This section presents the performance analysis of different
machine learning classifiers. This problem is a binary class
problem either subject is healthy or unhealthy. A machine
learning algorithm for binary classification gives four out-
comes which are: True Negative (TN), True Positive (TP),
False Negative (FN), and False Positive (FP). Calculate the
performance parameters with the help of these four parameters.



Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Sensitivity(Recall) =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

F1− Score = 2 ∗Recall ∗ Precision
Recall + Precision

(9)

K-fold cross-validation is a re-sampling method that used a
constrained data test to evaluate the performance parameters
of machine learning models. In this k-fold approach, data are
randomly separated into k groups of equal size. Then the
model is trained with the help of k-1 groups of a dataset and
validates with kth dataset. This process is repeated for all the
groups of a dataset. In this article, performance parameters of
classification models were evaluated by using 10 fold cross-
validation which is shown in table II. The accuracy for the
extra tree classifier was 91.3% while it was 70.1%, 70.0%,
79.3%, and 88.8% for the support vector machine, decision
tree, k-nearest neighbor and random forest respectively. Extra
Tree classifier shows high-performance parameters than other
machine-learning classifiers. Fig. 6 shows the confusion matrix
for the knee abnormality classification.

V. CONCLUSION AND FUTURE SCOPE

Comparative analysis of machine learning classifiers for
sEMG based classification of lower limb abnormality in be-
tween subjects suffering from knee abnormality and healthy
subjects have been studied. First, raw EMG signal denoised
with the help of a discrete wavelet transform then 11 hand-
crafted features were extracted by using overlapping window-
ing techniques. After that relevant features were selected by
using the backward selection method. Then, five different
machine learning models are being used to calculate the
performance parameter in which extra tree classifier reflects
superlative performance than other classifiers. In this study,
publicly available data taken from the UCI. only data for 22
subjects are available. As a future scope, we can collect EMG
data for more number of subjects.

REFERENCES

[1] Daniel K White, Catrine Tudor-Locke, David T Felson, K Douglas
Gross, Jingbo Niu, Michael Nevitt, Cora E Lewis, James Torner, and
Tuhina Neogi. Do radiographic disease and pain account for why people
with or at high risk of knee osteoarthritis do not meet physical activity
guidelines? Arthritis & Rheumatism, 65(1):139–147, 2013.

[2] J Bedson, K Jordan, and P Croft. How do gps use x rays to manage
chronic knee pain in the elderly? a case study. Annals of the rheumatic
diseases, 62(5):450–454, 2003.

[3] Charles Peterfy and Manish Kothari. Imaging osteoarthritis: magnetic
resonance imaging versus x-ray. Current rheumatology reports, 8(1):16,
2006.
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