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What we know here is very little, but what we are ignorant of is immense. 
Pierre-Simon Laplace  



I 
 

 

ACKNOWLEDGEMENTS 

 

First of all, I would like to thank Luís Botelho for guiding me through all the details of 

resting-state fMRI, from the acquisition to the post-processing. It is with an enormous 

gratefulness that I acknowledge his kindness, support, and advices. He is a tremendous 

neuroradiologist and I would not be able to do this work without him. 

To Dr. João Xavier I would like to thank the inspiration to go through this master’s degree, 

the constant incentive and motivation, as well as all the suggestions and revision. 

I am also very grateful to Professor Agostinho Moreira for trusting me in the development 

of the presenting work and for his precious corrections.  

A special thanks to Professor Patrícia Figueiredo for the opportunity to glimpse the 

LaSEEB team workflow and for all the counselling and guidance. 

I would also like to thank Marta Xavier from LaSEEB for her kindness on helping me with 

the post-processing analysis; her expertise and availability were fundamental.  

I want to thank to Radiographer Davide Freitas for the contributions to this work 

(especially through the night, long after his shift was done, and always with a smile and 

motivated).  

As cliche as it can gets, last but not the least, my greatest gratitude goes to Tiago, my 

parents, and to my brother Miguel, for their unconditional support, for cheering me and 

for understanding me, even I if spend more time on the computer than enjoying their 

company.       



II 
 

 

ABSTRACT 

 

Resting-state functional Magnetic Resonance Image (rs-fMRI) is a non-invasive 

technique for the study of brain function, with several applications in clinical practice, 

namely in the study of functional connectivity, and mapping of resting-state networks 

(RSNs) reflecting different cognitive functions. Although it is a well-known technique, its 

application is mainly investigational with few, if any, examples of hospital clinical practice 

implementation. The main objective of this work is to introduce the assessment of 

functional brain connectivity by rs-fMRI in the clinical practice of the Neuroradiology 

Department of Centro Hospitalar Universitário do Porto (CHUP). Thereunto, a pipeline 

including all the steps from the data acquisition to the processing and analysis of rs-fMRI 

was designed. The pipeline was validated on a group of 10 healthy volunteer 

participants. Data preprocessing included motion and distortion correction, temporal and 

spatial filtering, as well as noise clean-up by independent component analysis (ICA). The 

study of functional activity and identification of RSNs was then performed using two 

alternative methods: ICA and seed-based correlational analysis. The results 

demonstrate that the constructed pipeline is feasible and robust to evaluate functional 

brain connectivity. This work has enabled the possibility of performing a new image 

technique in the Neuroradiology Department of CHUP, improving our response to the 

patients, namely regarding brain connectivity and cerebral function mapping. 

 

Key-words: fMRI, resting-state, functional connectivity, independent component 

analysis, seed-based correlational analysis  
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RESUMO 

 

O estudo da conectividade cerebral através de imagem de Ressonância Magnética 

funcional (RMf) em estado de repouso é uma técnica não invasiva para o estudo das 

funções cerebrais, com várias aplicações clínicas, nomeadamente na caracterização de 

circuitos de ativação cerebral, conectividade cerebral e mapeamento das redes 

neuronais em estado de repouso (RSNs). Apesar de ser uma técnica globalmente bem 

estabelecida, a sua aplicação na prática clínica hospitalar, é muito reduzida, se não 

mesmo inexistente. O objetivo deste trabalho é implementar o uso da fRM em estado 

de repouso para o estudo da conectividade e mapeamento cerebral no Serviço de 

Neurorradiologia do Centro Hospitalar Universitário do Porto (CHUP). Para isso, foi 

desenhado um fluxograma de atuação com todos os passos necessários à aquisição e 

processamento das imagens de RMf em estado de repouso. O fluxograma foi validado 

num grupo de 10 voluntários saudáveis. O pré-processamento dos dados incluiu 

correção de movimento e distorção, filtragem temporal e espacial, bem como remoção 

de ruído através de análise de componentes independentes (ICA). O estudo da ativação 

funcional e identificação das RSNs foi então realizado recorrendo a dois métodos 

alternativos: ICA e análise baseada em sementes. Os resultados demonstraram que o 

fluxograma de trabalho instituído é exequível e eficaz na avaliação da conectividade 

cerebral. Este trabalho permitiu, assim, trazer uma nova modalidade de imagem ao 

Serviço de Neurorradiologia do CHUP, melhorando a nossa capacidade de resposta aos 

doentes, nomeadamente no que concerne ao estudo da conectividade cerebral e ao 

mapeamento de funções cerebrais.   

 

Palavras-chave: fMRI, resting-state, conectividade funcional, análise de componentes 

independentes, análise de correlação baseada em sementes 
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1. INTRODUCTION 

The brain is the human organ that causes more fascination and curiosity, mainly because 
we still poorly understand how this complex organ works. Our eagerness to know about 

the way the human brain is organized is as old as humanity, and the new technologies 

have not yet fully addressed the individual’s inquietude about mental functions. 

Nevertheless, progress in neurosciences and particularly in neuroimaging have opened 

some small windows to the magnificent world of human thinking. Complex functions as 

perception, emotions, and behavior are ultimately described by neuronal pathways. 

Once we gain access to understanding those neuronal patterns, either quantitatively and 

qualitatively, we may better understand the cognitive processes. Knowing how different 

regions of the human brain interconnect to give rise to a determinate pattern of activation 

can be useful, not only to understand the neuronal network in normal conditions but also, 

to understand how diseases can change that normal cognitive network. In the future, 

different patterns of modulation of brain activity might be used to predict diseases, to 

anticipate response to treatment and even, eventually, to pick individuals at risk of some 

condition and act to prevent it. For now, the diagnostic tool is the main purpose of human 

connectivity and functional mapping studies.  

1.1. Objective 

The objective of this work is to study brain functional connectivity and functional mapping 

with resting-state fMRI (rs-fMRI) in healthy volunteers. Although this advanced MRI 

technique is well described in the literature, the daily clinical application of rs-fMRI is 

scarce. The majority of studies with patients are carried in research and investigational 

centers that have funds, equipment, and human resources specifically allocated to these 

investigations. The main goal of this thesis is to implement a pipeline to bring rs-fMRI to 

the clinical practice of the Neuroradiology Department of Centro Hospitalar Universitário 

do Porto (CHUP). As a national main center in to the Neuroscience field, the actual 

application of rs-fMRI in CHUP would be of great interest to practitioners and, more 

importantly, to the patients. Ultimately, the objective is to design a pipeline for the 

implementation of brain connectivity evaluation by rs-fMRI. 
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To achieve this main objective specific key-points were delineated: 

1) To introduce, develop, and optimize the rs-fMRI data acquisition in a specific MRI 

scanner of the Neuroradiology Department at CHUP. 

2) To pre-process the obtained functional images, using the described 

methodologies in the literature. This consists of a very important step, once only 

carefully cleaned data allows for drawing reliable conclusions in further data 

analysis. 

3) To analyze the functional connectivity by rs-fMRI with two different methods: ICA 

and seed-based analysis, to identify well-established resting-state networks 

(RSNs). 

4) To compare the results of the different processing methods in order to validate 

them. 

 

1.2. Thesis Outline 

The present dissertation is divided into 5 chapters, through which the developed work 
will be presented and discussed. The present chapter is an introduction to the work, 

where theoretical background and literature review on relevant studies to the 

development of the work are presented. Chapter 2 overviews the data used in this study 

as well as the pre-processing and image analysis performed. Chapter 3 presents the 

results related to functional connectivity and functional mapping. Chapter 4 discuss the 

results, its strengths and limitations. Chapter 5 closes the dissertation by presenting the 

conclusions of the developed work.  

 

1.3. Theoretical background  

1.3.1. Brain function and anatomy 

The human brain is the most complex organ of the human body, not only functionally but 

also anatomically, once its intricate anatomy reflects its functional complexity. We briefly 

review the relevant brain anatomy for this work, to give a background on less familiarized 

readers. 
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The human brain is divided into two hemispheres, separated by the longitudinal sulcus, 

and anatomically connected by the corpus callosum, a median structure of compact 

white matter fibers. Generally, each hemisphere controls the contralateral side of the 

body. Despite working together as a whole, not all the functions are represented in both 

hemispheres. The left hemisphere is usually associated with speech, reasoning, and 

writing, while the right hemisphere excels in visual perception, spatial ability, and 

creativity [1]. Each cerebral hemisphere is divided into 6 lobes by sulci and fissures: 

frontal, parietal, temporal, occipital, insular, and limbic [2]. 

The frontal lobe is responsible for movement control and for memory, motivation, 

emotion, reasoning, speech, and language [3]. Functionally, it comprises the primary 

motor cortex, the supplementary motor area, the premotor cortex, the prefrontal cortex, 

and Broca’s motor speech center (this one unilaterally, on the dominant hemisphere). 

The parietal lobe is formed by the primary somatosensory cortex, responsible for the 

perception of body sensations, and also receive projections of the visual field and 

auditory spectrums, making it responsible for the integration and comprehension of these 

complex stimuli [4].  

The temporal lobe contains the primary auditory cortex, responsible for receiving and 

processing auditive information. It is also responsible for some aspects of speech, 

comprising the Wernicke’s sensitive speech center (again, unilaterally on the dominant 

hemisphere), learning, and memory [5]. 

The occipital lobe includes the primary visual cortex, responsible for receiving and 

processing visual information and interpretation of the visual stimuli [6].  

The insular cortex receives input from its connections to the primary and secondary 

somatosensory cortex, orbitofrontal cortex, and inferior parietal lobule. Its role is not fully 

understood, but it is thought to modulate feelings and emotions, recognition of fine touch, 

auditory impulses, and some language connections [7]. 

The limbic structures comprise the hippocampus, amygdala, and olfactory bulb, being 

responsible for the regulation of emotions, motivation, behavior, and memory [8].  

In addition to the hemisphere lobes, basal ganglia and thalami are gray matter structures 

in deep location, that are responsible for the control and planning of stereotyped 

movements, regulation of posture and muscle tone adjustment. They influence motor 

activity by sending impulses through the thalamus to the cerebral motor and premotor 



FCUP 

Brain Functional Connectivity in Resting-State fMRI 
4 

 
 

 

cortex [9]. The thalami work as an integration center for several stimuli, being part of 

several connection circuits. 

In the rostral part of the brain is the cerebellum that intimately connects with the motor 

cortex to coordinate movements. It is crucial to motor learning and reflex modification 

[10]. 

 

1.3.2. Functional Magnetic Resonance Imaging (fMRI) 

1.3.2.1. Principles of Magnetic Resonance Signal Generation 

Magnetic Resonance Image (MRI) is an imaging technique based on the nuclear 
magnetic resonance (NMR) phenomenon described independently by Purcell et al and 

Bloch et al in 1946 [11]. Only many years later, in 1973, the NMR was applied to the 

image of the human body when Lauterbur and Mansfield [12] first described the use of 

the MRI. It is a non-invasive imaging modality that has experienced rapid growth over 

the last decades, still improving every day. MRI has high contrast and spatial resolution 

and does not require the use of ionizing radiation, being one of the best and most 

clinically useful techniques in the study of the human brain. 

All atoms with an odd number of protons and/or neutrons possess a nuclear spin angular 

momentum (𝐽), often just called spin. For human imaging purposes, the MRI signal 

comes predominantly from the excitation of the hydrogen ( 𝐻!! ) magnetic moment, as it is 

the most abundant MR active nucleus in biological tissues [13]. 

A nucleus with a non-zero angular momentum (𝐽 ≠ 0), exhibits a nuclear magnetic 

moment, 𝜇⃗, called nuclear magnetic dipole or magnetic moment. These two are related 

to each other by one of the basics equations of particles’ physics [14]: 

 𝜇 = 𝛾𝐽 (1) 

 

where 𝛾 is the gyromagnetic ratio, which value depends on the atomic species. For 

hydrogen, 𝛾 = 	267.52	 ×	10"	𝑟𝑎𝑑/𝑠/𝑇. This gyromagnetic ratio can be positive or 

negative: when positive it means that the magnetic moment (𝜇⃗) is parallel to the angular 

moment (𝐽), while when negative the magnetic moment (𝜇⃗) has opposite direction to the 

angular moment (𝐽). 
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To define the magnetic moment (𝜇), one must know its magnitude and orientation. The 

magnitude is given by the following equation, according to the theory of quantum 

mechanics [15]: 

 𝜇 = 𝛾ℏ:𝐼(𝐼 + 1) (2) 

 

where ℏ relates to the Plank’s constant ℎ (ℏ = ℎ/2𝜋) and 𝐼 is the nuclear spin quantum 

number. Nuclei with an even mass number and even charge number have null spin (𝐼 =

0) while nuclei with an odd charge number and/or odd mass number have nonzero spin 

(𝐼 ≠ 0). In biological tissues, the orientation/direction of 𝜇	 depends on the existence of 

an external magnetic field. In the absence of the external magnetic field, the 𝜇⃗	 direction 

will be random (as a result of random thermal motion of the nuclei), resulting in null total 

magnetization. On the contrary, after turning on a strong external magnetic field (𝐵@⃗ #), the 

nuclei magnetic momenta (𝜇⃗	) tend to align with the direction of the magnetic field (Figure 

1). When under a magnetic field, the spins will align with the direction of the field and will 

precess around it (Figure 2). This means that the nuclei magnetic momenta will precess 

around 𝐵@⃗ #. Considering a 𝑥𝑦𝑧 coordinate system, the applied external magnetic field 𝐵@⃗ # 

is assumed to be along 𝑧 direction. 

 

 
Figure 1: Representation of the magnetic moment of a spin, the random orientation of the spins in the absence of an 

external magnetic field and the alignment of the spins when under a magnetic field. (Adapted from [16]) 
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Figure 2: Precession of a nuclear spin around the main magnetic field 𝐵%⃗ !. (Adapted from [17]) 

 

As so, the magnetic moment will also be precessing along 𝑧 and can, therefore, be 

represented by 𝜇'. Its magnitude is given by the following equation [17]: 

 

 𝜇' = 𝛾𝑚(ℏ (3) 

 

where 𝑚( is the magnetic quantum number. For nuclei with nuclear spin of 1/2, 𝑚( takes 

the values of ±1/2, meaning that 𝜇		will have two possible orientations in relation to the 

applied external magnetic field: parallel orientation (↑) if positive 𝑚( or anti-parallel (↓) if 

negative 𝑚(. Depending on the orientation of the spins, they will have different energy 

levels as result of the interaction with the external magnetic field. (Figure 3). 

 

 

Figure 3: Representation of parallel and anti-parallel orientation. Spin states which are oriented parallel to the external 

field are lower in energy than in spin states whose orientations oppose the external. (Adapted from [18]) 
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Based on quantum theory, the spin’s energy under a uniform magnetic field 𝐵@⃗ # is given 

by [17]: 

 𝐸 = −𝜇. 𝐵@⃗ # =	−𝜇'. 𝐵# = −𝛾ℏ𝑚( . 𝐵# (4) 

 

Meaning that, for each different spin, the energy can be [17]: 

 𝐸H𝑚( = 1
2I J = −𝛾ℏ𝐵#/2 (5.1) 

 𝐸H𝑚( = −1 2I J = 𝛾ℏ𝐵#/2 (5.2) 

 

Interpreting these equations, we can understand that the parallel orientation state 
(𝑚( = 1/2) is the state of lower energy while the anti-parallel orientation state 

(𝑚( = −1/2) is the state of higher energy. The energy difference between both states 

(often designated Zeeman effect) is calculated as follow [17]: 

 ∆𝐸 = 𝐸↓ − 𝐸↑ = 𝛾ℏ𝐵# (6) 

 

The number of spins on each state (population of the different spin states - 𝑛) is related 

to this energy difference by the Boltzmann distribution [17]: 

 
𝑛↑
𝑛↓
= 𝑒

∆,
-. (7) 

where 𝑇 is the absolute temperature (in kelvin - 𝐾) of the spin system and 𝐾 is the 

Boltzmann constant (𝐾 ≈ 1,38𝑥10/01𝐽/𝐾). 

All spins contribute to the global magnetization, and the sum of each individual 

microscopic magnetic momentum inside a volume gives rise to the net magnetization 

vector 𝑴. In the absence of the static external magnetic field, and knowing that all 

magnetic momenta of individual spins are independent, the net magnetization 𝑴 will be 

null given the random orientation of the spins. Assuming that the external magnetic field 

𝐵@⃗ # is along the 𝑧 direction, as we have seen before, the magnectic momentum of each 

spin will also align and precess along the 𝑧 direction, which will be the direction of the 

net magnetization vector 𝑴. The magnetization vector will be maximum when all spins 

are lined up with the main magnetic field. This vector is described by three components: 

𝑀', corresponding to the longitudinal magnetization, and 𝑀2 and 𝑀3, both corresponding 
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to the transversal magnetization, on 𝑥𝑦 plane; they are commonly combined and 

represented by 𝑀23, known as transverse magnetization. The precessing movement of 

the net magnetization 𝑴 is analogous to the one of the individual spins. In that way, if 

we again consider a 𝑥𝑦𝑧 coordinate system, the 𝑴 magnetization will be precessing 

around the 𝑧-direction (Figure 4).  

 

Figure 4: Precession of the net magnetization 𝑴 around 𝐵%⃗ !, along z-direction (Adapted from [19]) 

 

As we have seen, the longitudinal magnetization is maximum at equilibrium, when the 

spins are more likely to assume the low energy state (parallel) than the high energy state 

(anti-parallel). The difference between the spins population is very small, but is sufficient 

to give rise to an observable macroscopic magnetization along the longitudinal 

component 𝑀', known as equilibrium magnetization 𝑴# [20]. Since the spins do not 

rotate in phase, the sum of all the microscopic transverse magnetization of the spins 

results in a null macroscopic transverse magnetization (Figure 5). 

 

 

Figure 5: Illustration of the dephasing of preccessing spins in the xy plane, making the transverse magnetization null. 

(Adapted from [21]) 
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To generate MRI signal (magnetic resonance signals emitted by the nuclei when 

returning from an excited state to the equilibrium), the magnetization have to change in 

time and the magnetic momenta must have to be excited by a magnetic component 𝐵@⃗ ! 

of the radiofrequency circularly polarized wave (RF-wave) in a process called spin 

excitation. If the frequency of the exciting RF-pulse is equal to the spontaneous 

resonance frequency of the spin system (Larmor frequency - 𝜔#), the excitation process 

is in resonance. The Larmor frequency of the system, also called precession frequency, 

depends on the atomic species, and is given by [17]: 

 𝜔# = 𝛾𝐵# (8) 

 

The Larmor frequency is directly proportional to the external applied magnetic field 𝐵# 

with the gyromagnetic ratio (𝛾) of the atom in the system, being the proportional constant. 

When the RF-pulse is applied perpendicularly to the 𝐵@⃗ #, there is a torque that rotates the 

magnetization 𝑴, giving rise to the transversal components of the magnetization, making 

𝑀2 and 𝑀3 measurable. In the simplest case, assuming the rotating frame, the circularly 

polarized RF-pulse can be described by a rectangular envelope with duration ∆𝑡, where  

the rotation angle 𝜃 is given by [17]: 

 𝜃 = 𝐵!	∆𝑡 (9) 

 

Given this, as a result of the excitation, the bulk magnetization is tipped away from the 

direction of 𝐵@⃗ # reducing the longitudinal magnetization and creating a measurable 

transverse magnetization [20]. If the RF-pulse rotates the net magnetization into the 

transverse plane, it is called a 90° RF pulse and the transverse magnetization will be 

maximum. 

The analysis of the net magnetization movement after an RF-pulse, in the stationary 

frame (laboratory frame) is complex. Considering the stationary frame 𝑥𝑦𝑧, where 𝐵@⃗ # is 

along 𝑧-direction, the application of the 𝐵@⃗ !, let’s say along the 𝑥 direction, will tip the 

magnetization to the 𝑥𝑦 plane, describing a nutation movement (Figure 6). 
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Figure 6: The magnetization M along the z-axis, is seen in the stationary frame to follow a nutation around the z-axis due 

to the static magnetic field and also around x-direction due to a RF pulse perpendicular to the z-direction. (Adapted from 

[22]) 

 

To better describe the magnetization movement is preferable to consider a rotating frame 

𝑥’𝑦’𝑧’, where 𝑧’ conincide with 𝑧, having the same direction as 𝐵@⃗ #. This way, 𝑥’ and 𝑦’ axis 

rotate around 𝑧’ with a precessing frequency equals to Larmor frequency - 𝜔#. In the 

rotating frame, if we apply the 𝐵@⃗ !	magnetic field in the 𝑥’ direction, the magnetization 

movement can be interpreted as a direct rotation from 𝑧’ to 𝑥’𝑦’	plane, with a rotatory 

movement around 𝐵@⃗ ! [17]. This way, the 𝐵!(𝑡) will appear static in the rotating frame 

(Figure 7). 

 

 

Figure 7: Representation of the rotating frame on resonance with the precessing spins, so that no field exists along z. 

(Adapted from [22]) 
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Relaxation 

After removing the RF-pulse, the net magnetization will evolves towards the thermal 

equilibrium value under the influence of the external magnetic field 𝐵@⃗ #; this means that 

the transverse magnetization component goes to zero – transversal relaxation, while the 

longitudinal component recovers the equilibrium value – longitudinal relaxation.  

 

Longitudinal relaxation time T1 

When the magnetization starts to grow back in the longitudinal direction, we have 

longitudinal or T1 relaxation (Figure 8). T1 is a time constant representing the time 

interval taken to the longitudinal magnetization to return to 63% of its original value 

(assuming a 90º RF pulse) and is also called spin-lattice relaxation (Figure 9). The 

recovery of the longitudinal magnetization can be expressed mathematically by [20]: 

 𝑀'(𝑡) = 𝑀# Y1 − 𝑒
/ 5
.!Z +𝑀'(0)𝑒

/ 5
.! (10) 

 

where 𝑀# is the equilibrium value of the longitudinal magnetization and 𝑀'(0) is the 

longitudinal magnetization right after the RF-pulse is applied. By the equation, we 

understand that the longitudinal magnetization grows exponentially with a time constant 

T1. 

The T1 time constant depends on several factors namely the magnetic field strength, the 

materials present in the medium and its physical characteristics, as well as the physical 

properties of the nuclei that originated the signal. T1 can be used to distinguish different 

tissues. 

 

 

Figure 8: Diagram of T1 (spin-lattice, longitudinal) relaxation after a 90° nutation pulse. (Adapted from [16]) 
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Figure 9: Longitudinal relaxation is modeled as exponential growth curve with time constant 𝑇1, assuming a 90º RF-pulse. 

𝑀𝑧 reaches 63% of its maximum value (𝑀"
!) at 𝑡	 = 	𝑇1 and is very close to maximal at 𝑡	 = 	5	𝑥	𝑇1. (Adapted from [23]) 

 

Transverse relaxation time T2 

The transverse relaxation occurs with the dephasing of the individual spins on the 𝑥𝑦 

plane, caused by a magnetic field variation. The loss of phase coherence will traduce 

into destruction of the transverse magnetization (Figure 10). The described process, also 

denominated spin-spin interaction, is determined by the T2 time constant, that represents 

the time interval taken to the transverse magnetization to fall to 37% of its original value 

(assuming a 90º RF pulse) (Figure 11). The decay of the transverse magnetization can 

be expressed mathematically by [20]: 

 𝑀23(𝑡) = 𝑀23(0)𝑒
/ 5
.0 (11) 

 

where 𝑀23(0) represents the transverse magnetization right after the RF-pulse is applied 

(thus corresponding to the maximum transverse magnetization). Similar to the T1, T2 

time constant depends on several parameters including the magnetic field strength, the 

molecular structure of the medium and its physical characteristics. As for T1, different 

tissues have different T2 values.  
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Figure 10: Diagram of T2 (spin-spin, transverse) relaxation after a 90° nutation pulse. (Adapted from [16]) 

 

 

Figure 11: Transverse relaxation. Graphic representation of T2 and T2* relaxation curves (T2* is shorter than T2). 𝑀𝑥𝑦 

reaches 37% of its maximum at 𝑡 = 𝑇2. (Adapted from [23]) 

 

Transverse relaxation time T2* 

The transverse dephase of the spins occurs due to inhomogenities in the magnetic field, 

spin-spin interactions, magnetic susceptibility and also chemical shift artefacts. These 

local inhomogeneities cause a rapid dephasing, faster than it would be if the spins where 

submitted just to the magnetic field. This results in acceleration of the FID signal, 

characterized by a new relaxation time T2*. This interaction can be mathematically 

translated by the following expression [24]: 

 
1
𝑇2∗

=
1
𝑇2

+	
1

𝑇2BCDEFEGHCH5BHI
 (12) 
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Free Induction Decay  

The initially coherent transverse components of 𝑴 dephase as a result of both magnetic 

field inhomogeneities and intrinsic T2 mechanisms, incorporated in the concept of T2*-

decay described earlier. During the relaxation process protons will emit electromagnetic 

energy (nuclear magnetic signal) also known as the free induction decay (FID) signal 

[25]. The FID oscillates at the Larmor frequency but is damped by the T2* decay (Figure 

12). The resulting FID signal is a damped sine wave of the following form [20]: 

 [sin𝜔#𝑡]𝑒
/ 5
.0∗ (13) 

 

 

Figure 12: Free Induction Decay (FID) nuclear magnetic resonance signal (Adapted from [23]) 

 

Spatial localization of MR signal 

Spatial localization is based on magnetic field gradients, applied successively along 

different axes. Magnetic gradient causes the field strength to vary linearly with the 

distance. These gradients are employed for slice selection, phase encoding and 

frequency encoding [26]. The different gradients used to perform spatial localization have 

identical properties but are applied at distinct moments and in different directions. This 

way, after applying all three gradients, we can precisely localize the origin of one specific 

MR signal from a determinate region of the human body. 
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1.3.2.2. Basic Principles of fMRI 

fMRI is an advanced MRI technique, first described in the 1990s, that opened the window 

to the study of neuronal activity [27]. This is a safe, non-invasive method to study brain 

activation through measurements of changes in blood oxygenation during a specific task 

performed by the human brain. The concept of fMRI was first introduced by Belliveau et 

al [28] in 1991, when the authors used dynamic susceptibility contrast to measure the 

changes in cerebral blood volume following neural activation caused by visual 

stimulation, aiming to create a functional magnetic resonance map of human task 

activation.  

fMRI has a fairly good spatial resolution and good temporal resolution which, along with 

the fact that it doesn’t need the injection of the radioactive agent (being noninvase), 

constitute the main advantages facing Positron Emission Tomography (PET) studies, the 

other method available to evaluate brain activity [29]. 

 

BOLD Phenomenon 

Neurons do not contain any internal source of energy, either in form of oxygen or glucose. 

Therefore, when activated, they need to be supplied with more energy by the 

circumjacent capillaries that provide them with the required oxygen, through a process 

called hemodynamic response [30]. This hemodynamic response in consequence of the 

neural activation is known as the neurovascular coupling. The neurovascular coupling is 

the basic phenomenon behind the fMRI since it allows us to infer the neuronal activity 

based on the increase of the blood supply to that brain tissue being activated. The most 

common method to perform fMRI is based on the Blood Oxygen Level Dependent 

(BOLD) phenomenon that has a measurable effect on the MR signal intensity of the 

cerebral tissue being analyzed. The BOLD signal was first described by Ogawa in 1990 

[31]. One interesting aspect about the neurovascular coupling and the hemodynamic 

response is that the increase in the neuronal activity increases the metabolic demand, 

which in turn recruit blood flow in more quantity than the one needed for blood supply, 

resulting in excess of blood, and therefore in oxygen, in the activated region (Figure 13). 

The BOLD signal measured depends on this difference in oxygenation between 

metabolic active tissues and resting tissues [29]. 
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Figure 13: Hemodynamic changes in blood oxygen level. During activation there is increased blood flow and blood volume 

that cause rising in the oxyhemoglobin/deoxyhemoglobin ratio, thus decreasing the deoxyhemoglobin in the tissue. 

(Adapted from [32]) 

 

Decades before Ogawa has described the BOLD signal, Pauling and Coryell, in 1936, 

discovered that the magnetization level of hemoglobin depended on its levels of 

oxygenation [33]. When deoxyhemoglobin was placed under a magnetic field, the 

authors observed that it was strongly attracted by the field, unlike oxyhemoglobin. The 

BOLD contrast is therefore based on the changes in the ratio between oxyhemoglobin 

(Hb) and deoxyhemoglobin (dHb), the latter being the metabolite contributing to the 

activation-induced susceptibility changes and consequent local signal decrease. As the 

relative quantity of deoxyhemoglobin decreases in the active areas, the MRI signal 

increases when compared to the surrounding tissues. 

This BOLD phenomenon was first studied as a response to a stimulus or task inducing 

brain activity (increase in synaptic activity and electric conduction between neurons). 

This activity increases the blood flow – cerebral blood flux (CBF) and consequently the 

blood volume – cerebral blood volume (CBV). The brain activity leads to an increase in 

the cerebral metabolic rate of oxygen (CMRO2) as well as in the cerebral metabolic rate 

of glucose (CMRGlu) [34]. This induced vascular hemodynamic response will produce 

changes in the constituents of the brain tissue being activated, which will give rise to 
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changes in the microstructural magnetic field of that region, leading to changes in the 

MRI signal. In Figure 14, we can see how the changes in the biophysical parameters will 

influence the MRI signal. 

 

Figure 14: Schematic representation of MRI signal changes induced by brain stimulation. Task/stimulation increases 

neural activity and increases metabolic (CMRO2) and vascular responses (CBF and CBV). Increase in CBF enhances 

venous oxygenation level, whereas increase in CMRO2 decreases venous oxygenation level. Because the increase in 

CBF exceeds the increase in CMRO2, venous oxygenation level increases. These vascular and metabolic changes will 

modulate the local magnetic field resulting in changes of biophysical parameters. Increases in CBF and CBV increase R1 

(= 	1/𝑇1) and R2 (= 	1/𝑇2), respectively, whereas decrease in dHb contents reduces R2. Changes in R1 and R2 will 

therefore change the T1 and T2 that will in turn influence the MRI signal. (Adapted from [35]) 

 

Assuming an arterial oxygen saturation of 1.0, the relative change of venous oxygenation 

level (Y) can be determined from the relative changes of both CBF and CMRO2 as 

described by Ogawa [36]:  

 
∆𝑌
1 − 𝑌

= 1 −
(∆𝐶𝑀𝑅N!/𝐶𝑀𝑅N! + 1)
(∆𝐶𝐵𝐹/𝐶𝐵𝐹 + 1)

 (14) 

 

We should be aware that we are measuring neuronal activity indirectly and that the 

neural activity is much faster than the hemodynamic response that follows: the neuronal 

activity can last milliseconds while the vascular response will take few seconds to reach 

it maximum (usually around 5 seconds). The relationship between oxygenation and 

blood flow change is linear at low CBF changes [37] but can be nonlinear at very high 

CBF changes. It is also important to note that the BOLD response acts as a linear time-

invariant system and the linearity of the BOLD is crucial to the analysis of the results 

allowing the use of General Linear Models (GLM), which will be discussed further on. 
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Acquisition sequence 

The most used image acquisition sequence for fMRI purposes is the echo-planar image 

(EPI). In the need for imaging the physiological markers of transient events and 

processes, the MR signal needs to be reconstructed to the entire image in the shortest 

time possible, but, at the same time, lasting sufficiently long enough for BOLD-inducing 

factors influencing the MR signal to develop [35]. The demand for higher temporal 

resolution requires more rapid MR signal sampling. In order to study the changes in the 

hemodynamic response of brain tissue, we must use a time and physiologic sensitive 

sequence.  

This is accomplished with shorter acquisition times, which is in turn attained with 
sequences that cover the entire k-space after a single excitation pulse. The group of 

imaging methods that covers the all k-space in a single passing shot, or in a series of 

multiple shots, constitutes the Echo Planar Imaging (EPI) techniques. EPI pulse 

sequences are spatial encoding schemes that use the same echo-formation 

mechanisms as spin or gradient-echo methods (allowing different images such as Spin-

echo EPI, Gradient-echo EPI and Inversion-Recovery EPI), with the only difference that 

they are very quick to traverse the entire k-space, thanks to several rephasing gradients 

for the same exciting pulse [38]. From all echo-planar images, gradient-echo EPI is the 

most frequently used technique [39]. 

Echo-planar imaging has some advantages compared to conventional MRI, namely the 

shorter time of acquisition (allowing better temporal resolution), the decreased sensivity 

to motion artifacts and the capacity to image rapid physiologic processes of the human 

body [39]. However, EPI presents some disadvantages, the most important being the 

artifacts caused by inhomogeneities in the magnetic field and geometric distortions in 

the boundaries between brain tissues, bone, and air-filled cavities. 

 

1.3.2.3. Resting-State fMRI 

The fMRI developed over the years, and in 1995, Biswal [40] performed the first study 

on human brains to assess the functional connectivity in the motor cortex of the resting 

human brain. These authors found correlations of low frequency between different areas 

of the brain that brought attention to the connectivity within the brain. With this discovery, 
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several studies started to focus on this issue and there was a boom in publications about 

resting-state connectivity. 

Resting-state fMRI evaluates the spontaneous fluctuations in brain activity without 

stimulus or task paradigms. The basic principle is to identify synchronous alterations on 

the BOLD signal of different brain regions. Because rs-fMRI does not need the 

compliance of the subjects to adhere to some task, it can be applied to populations 

incapable of performing task-based functional MR imaging such as children, subjects 

with dementia, and patients with reduced consciousness (coma or sedation) [41]. 

Moreover, the rs-fMRI analysis is not restricted to one single cognitive domain like the 

task-based functional MR imaging, allowing the multi-domain analysis simultaneously. 

In addition, rs-fMRI enables the evaluation of functional connectivity networks and their 

inter-relationships all across the brain. All these advantages turn rs-fMRI very attractive 

to the clinical practice application. 

 

1.3.3. Brain connectivity 

Although brain anatomy has been extensively studied and is almost perfectly known, 

brain functionality and connectivity is still an evolving field. For many decades now, there 

has been a debate on whether specific mental functions are located in specific cerebral 

areas or instead they are more diffusely distributed on the brain. Nowadays, most 

neuroscientists agree that there is at least some degree of localization of mental function, 

but the function of each of these regions must be integrated in order to achieve coherent 

mental function and behavior [29]. Brain connectivity datasets comprise networks of 

brain regions connected by anatomical tracts or by functional associations [42]. 

Neuroimaging research must take functional integration seriously to fully explain brain 

function [43]. 

 

Functional connectivity  

The correlation of the activity of different and spatially distant regions of the brain reflects 

the brain functional connectivity. These activations must be synchronous and can arise 

for numerous reasons. Effective connectivity describes the direct influence of one region 

on another [44]. However, there are several forms of indirect connectivity: (i) one region 

may exert its influence on another region under the mediation of a third region or (ii) there 
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can be two separate regions receiving inputs from one same area, being thus activated 

simultaneous, even if they do not influence each other alone. These concepts may arise 

concerns on whether the perceived functional association reflects true direct causal 

influence between two anatomically distinct regions. 

It is known that “the resting human brain represents only 2% of total body mass but 

consumes 20% of the body’s energy, most of which is used to support ongoing neuronal 

signaling. Task-related increases in neuronal metabolism are usually small (<5%) when 

compared with this large resting energy consumption” as stated by Fox et al [45]. In this 

way, it is legit to think that the connectivity of the brain in resting-state is the key to fully 

understand how the human brain works, once it is the process where the human brain 

expends more energy. 

In this sense, rs-fMRI can be used to study the brain’s functional connectivity and how 

different areas of the brain interconnect and activate synchronously with each other to 

give rise to a determinate functionality. The study of brain functional connectivity also 

allows the construction of functional maps, which are representations of how some areas 

of the brain are activated together and act as a whole to allow a complex task.  

These functional maps have been studied by several researchers in big databases of 

healthy controls and diseased individuals, allowing to collect data about the patterns of 

brain connections in the human brain that are more reproducible. There are about 20 

functional patterns of brain connections that can be acquired regardless of the acquisition 

method and across multiple different individuals. These connectivity patterns are called 

resting-state networks, each consisting of temporally synchronized structures. Over the 

years there were several RSNs that were found more inconsistently and there is still 

some debate as to include them as RSNs. Nevertheless, we will be focusing on the 10 

more consensual RSNs that were described and summarized by Smith et al [46]. These 

10 RSNs include the visual medial, visual occipital and visual lateral area; default mode 

network; cerebellum; sensorimotor area; auditory area; executive control; right 

frontoparietal and left frontoparietal as depicted in Figure 15. 

The anatomic distribution and the specific function of the most commonly described 

RSNs in the literature are resumed on Table 1. In this Table, we included the RSNs 

described by Smith et al, but also the Salience and Dorsal Attention networks described 

more recently [47].  
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Figure 15: Image from Smith et al [46]. Depiction of the 10 RSNs in 3 orthogonal slices, both on fMRI images (left column 

for each) and on MNI standard space (right column for each). From 1 to 10 they represent respectively: medial visual area 

(1), occipital visual area (2), lateral visual area (3), default mode network (4), cerebellum (5), sensorimotor (6), auditory 

(7), executive control (8), right frontoparietal (9) and left frontoparietal (10). 

 

 

Table 1: Anatomy and function of the RSNs.  

Resting-state networks Anatomical structures Function 

DMN 

Precuneus, posterior cingulate, bilateral 

inferior-lateral-parietal and ventromedial 
frontal córtex 

Episodic memory 

Visual networks Medial, occipital, lateral areas 
Field of cognition-language 

and cognition-space 

Sensorimotor network 

Primary sensorimotor cortex, 

suplemmentary motor area and 

secondary motor cortex. 

Motor functions 

Executive control Anterior cingulate and paracingulate Working memory 

Auditory network 
Superior temporal gyrus and posterior 

insular 

Execution of speech and 

auditory perception 

Frontoparietal networks Many frontoparietal areas Language and cognition 
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Salience network 
Dorsal anterior cingulate cortex and 
anterior insula 

Social behaviour, self-
awareness through the 

processing of sensory, 

emotional, and cognitive 
information 

Dorsal-attention network 
Superior parietal and superior frontal 

areas, including intraparietal sulcus 

Focused attention and 

orientation 

Cerebellum Cerebellum 
Motor learning, fine 
movement and equilibrium 

Adapted from Smith et al [46] and Barkhof et al [41]. 

 

The default mode network (DMN) is the most studied and the easiest identifiable pattern. 

It is a resting network, meaning that is stronger and more active at rest, decreasing during 

task-based fMRI stimulus. DMN is known to be a task-negative network. On the contrary, 

task-positive networks include visual, auditory, executive control, sensorimotor, 

frontoparietal, and cerebellum networks. The two groups are in balance and work in 

opposite directions, which means that when task-positive networks are active the DMN 

decreases its activation, and vice-versa.  

Variations on the strength and activation of these different networks can be found in 

different situations in healthy individuals (reflecting physiologic differences) and also on 

different pathologic conditions. Sleep is one of the states that can make these networks 

vary, namely decreasing the activation of DMN [48]. Also, the administration of some 

drugs has interference with the activation of the networks [49, 50]. Finally, it is now well 

established that aging has an important role in modulating the RSNs, particularly by 

decreasing DMN activity [51]. Besides these changes in physiologic/pharmacologic 

alterations, RSNs are also modified in several different pathologies, with 

neurodegenerative diseases being the most studied field [52]. 

In fact, several authors have described that Alzheimer’s disease and other 

neurodegenerative diseases present a decrease in activation of the DMN comparing to 

age-matched controls [53, 54]. The capability to understand these differences has clinical 

importance since these alterations tend to appear earlier than the structural changes and 

therefore can potentially be used as disease markers. 
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Nevertheless, the application of the brain connectivity study in the clinical setting is still 

investigational, with few centers applying these image method to diagnose and orientate 

individual patients. 

The rapid pace of development and the interdisciplinary nature of the diverse fields that 

use and collaborate to fMRI data presents an enormous challenge to researchers [55]. 

The ability to evolve rs-fMRI requires strong collaborative teams with expertise in a 

number of disciplines, including psychology, neuroanatomy, neurophysiology, physics, 

biomedical engineering, signal processing, and statistics. True interdisciplinary 

collaboration is extremely challenging, as all members of the research team must know 

enough about the other disciplines to be able to talk intelligently with experts in each 

discipline [56]. 

 

1.3.4. fMRI data analysis  

In order to analyze the fMRI data, a software package is usually necessary. In the early 

days of fMRI every single lab/department wanting to perform data analysis needed to 

have its own software package. Nowadays, there are several software packages 

available for fMRI data analysis (Table 2). These are full-fledged analysis suites, able to 

perform all aspects of the analysis of an fMRI study and that can be used by anyone.  

 

Table 2: Overview of major fMRI software packages. 

Package Developer Platform 

SPM University College of London MATLAB 

FSL Oxford University Linux, macOS, Windows*  

AFNI NIMH Linux, macOS 

Brain Voyager Brain Innovation Linux, macOS, Windows 

Adapted from Poldrack et al [29]. *Using a “Virtual Linux Machine - VM” or the Windows Subsystem for Linux. 
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1.3.4.1. Pre-processing 

The acquisition of fMRI data is not straightforward and a number of processing steps 

must be performed before the statistical analysis of the data. During image acquisition, 

movement can produce displacements of the data in time or space that must be 

corrected. Furthermore, artifacts of geometric distortion (mainly at air-bone interfaces) 

and signal drop out can lead to misregistration and loss of signal. The preprocessing 

steps aim to eliminate or reduce these artifacts and noise. Preprocessing is one of the 

most important steps in the pipeline of data analysis, as it will influence all the posterior 

statistical analysis. A small drawback can lead to error propagation, invalidating the 

interpretation of the results. The main standard processes, as stated by Poldrack [29], 

are schematized in Figure 16.  

 

Figure 16: Common fMRI preprocessing steps including correspondent quality control checkpoints (on the right). (Adapted 

from Poldrack et al [29]) 
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Distortion correction 

As we have seen before, the BOLD fMRI data are acquired with echo-planar imaging 

technique, which is very susceptible to distortion artifacts due to static magnetic field 

inhomogeneities, especially in the air-tissue interface, like the sinuses and ear canals 

[57]. The distortion can assume two forms: dropout and geometric distortion [29].  

Dropout corresponds to the reduced signal seen in brain regions adjacent to the air-

tissue interfaces, like the fronto-orbital cortex (Figure 17) and lateral temporal lobe. 

Importantly, once the images are acquired, we cannot retrieve informative data from an 

area with significant dropout, so this question must be addressed during the acquisition 

in order to minimize the dropout. Along with the loss of the MRI signal on those regions, 

fMRI images can suffer geometric distortion in the same places.  

Geometric distortion occurs as a result of errors in the location of structures on the final 

image because of the inhomogeneities of the magnetic field that will influence the spatial 

encoding. In this context, the geometric distortion appears along the phase encoding 

direction that is used, which is generally the 𝑦𝑦 (anterior-posterior) axis. The most 

commonly affected regions are the anterior prefrontal cortex and the fronto-orbital cortex.  

Although we cannot recover the lost signal in dropout regions, we actually can attempt 

to undistort our images. It is possible to correct for the effects of magnetic field 

inhomogeneity using a field map, which characterizes the 𝐵# field [58]. MR phase is the 

most important quantity in a fieldmap sequence, whereas in normal imaging this phase 

is not of interest and is normally not saved when reconstructing the images. As a 

consequence, raw fieldmap scans are somewhat different from most scans and may 

contain images of complex values, or separate phase and magnitude images. Field 

heterogeneities can be suppressed by subtracting the phase of two images acquired at 

two different echo times. The difference in phase between the two images can be used 

to compute the local field inhomogeneity, and these values can then be used to create a 

map quantifying the distance that each voxel has been shifted [29]. The change in the 

MR phase from one image to the other is proportional to both the field inhomogeneity in 

that voxel and the echo time difference. The field value is therefore given by the 

difference in phase between these two images divided by the echo time difference.  
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Figure 17: An example of signal dropout in gradient-echo EPI images. The EPI image on the left shows no signal on the 

fronto-orbital region (highlighted with the brown box) while we can see normal brain tissue in the same region on the T1-

weighted image on the right. 

 

The post-correction images with the field map must be visually inspected and compared 

to the pre-correction images to ensure that the distortion correction has not introduced 

new artifacts. Usually, the information on field map image can compensate for the 

geometric distortion artefacts, but not completely remove them. The artefacts are 

compensated by unwarping the EPI images and applying a cost-function masking in 

registrations to ignore areas of signal loss. 

 

Motion correction 

Head motion is one of the most important sources of data misregistration. Head motion 

is a huge concern in fMRI studies since even very subtle movements during acquisition 

can translate into a major source of error [32]. While the movement between adjacent 

slices can be subtle, the result of the misalignment of successive slices can translate into 

bulk head motion leading to incorrect anatomical positions between voxels of subsequent 

images [59]. There are several strategies to reduce head motion during the scan 

including foam pads around the head, bite bars, custom-designed cushions, thermo-

plastic face masks, etc. Nevertheless, despite these efforts, the head usually moves a 

little during scanning making the motion correction always needed. To correct for this 

movement, there are some pre-processing steps that should be applied. This generally 

is done by realigning the image of the brain obtained at each point in time back to the 
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first image acquired or to the middle volume. There are several correction methods, 

being the six-parameter motion correction method the most common. In this method, the 

head is considered a rigid body that can only move in six ways (three translation and 

three rotation movements). The movements are calculated at each point in time to 

minimize the image difference between the realigned brain and the brain in its original 

position [35]. It is important to notice that this method does not correct for all the effects 

of the movement since they realign the scans but cannot remove the movement induced 

signal artifacts. In order to overcome this problem independent component analysis (ICA) 

methods are used [29]. More recently, prospective (or adaptive/real-time) motion 

correction approaches have been used, allowing adequate correction of spin-history 

effects and intra-volume distortions [60]. 

 

 
Slice-timing correction 

A single volume of BOLD fMRI data, acquired during one TR, consists of different echo-
planar images acquired sequentially on time, meaning that, for a given volume data, the 

images will not be acquired at the exact same time, but with a delay of a few seconds. 

Consequently, a neuronal event that takes place at the same time in different slices will 

be displayed at a slightly different time on multiple slices within the brain. Slice-timing 

correction corrects for this staggering order of slice acquisition. If data acquisition is done 

with a short repetition time (TR), this pre-processing step might not be needed. In the 

case of rs-fMRI, slice-timing correction exhibits a negligible effect [61].  

 

Spatial smoothing 

Before statistical analysis, it is also common to do digital smoothing of BOLD fMRI data 

in space. This is achieved by averaging the intensity value of each voxel with the values 

of its neighbours. As a result, spatial smoothing attenuates high frequency fluctuations 

between adjacent voxels. BOLD fMRI data are typically composed of time-series 

information from many thousands of individual voxels, which means that statistical 

analysis of the data implies the application of a statistical test to each voxel being studied. 

By smoothing the data in space, one reduces the number of independent statistical tests 

that are being performed [35]. To smooth the image a low-pass filter is applied to the 

image which eliminates high-frequency signals, maintaining low-frequency information 
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[61]. Therefore, by smoothing the image, one improves the signal-to-noise ratio (SNR) 

at the expense of little loss in spatial resolution. Furthermore, by smoothing the image 

we can also overcome residual differences in anatomy between subjects that might 

otherwise render common areas of activation non-overlapping, providing better 

registration results [62]. On the other hand, smoothing too much will decrease statistical 

sensitivity for small focal areas of activation. Moreover, brain voxels can be averaged 

with non-brain tissue/background, resulting in inaccurate signal intensity. In the end, the 

amount of spatial smoothing to perform can be difficult to determine. The recommended 

amount of smoothing is the double of voxel dimensions [61]. 

 

For spatial smoothing, a convolution of the three-dimensional image with a three-

dimensional Gaussian filter is performed. The filter is characterized by its full width at 

half maximum (FWHM), with a larger value of FWHM representing a greater data 

smoothing. The smoothing is given by: 

 𝐹𝑊𝐻𝑀 =	e𝐹𝑊𝐻𝑀BC5OBCIBP
0 + 𝐹𝑊𝐻𝑀QRRSBHT

0  (15) 

 

Spatial normalization 

In order to study a population of individuals, we must guarantee that we are studying the 

same areas within the brain across subjects. This is achieved by computationally warping 

the anatomical structure of the brain of one subject to match a template brain within a 

standard defined space. The problem is that sometimes intersubject variability in 

anatomy cannot be overcome by warping brains to a standard space. While two subjects 

may have neural responses at the same true cytoarchitectonic location, the position of 

this site with respect to other landmarks in the brain may differ between subjects, leading 

to the spread of these locations when data are converted to a standard space [35]. 
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1.3.4.2. Functional connectivity analysis in resting-state fMRI 

When analyzing rs-fMRI data, one can extract information on the function of a specific 

brain region (functional mapping) or analyze the information on the functional 

connectivity between different brain regions [63].   

After the pre-processing steps, the statistical method to analyze the fMRI data must be 

selected. Unlike task paradigms, which aim to study BOLD signal changes that reflect 

the level of engagement in response to a specific stimulus or task, rs-fMRI studies do 

not depend on a temporal response to a stimulus [32]. There are several analysis 

methods to withdraw information from a rs-fMRI acquisition. A summary of these 

methods is resumed in Figure 18. 

 

 

Figure 18: Adapted from Soares et al [61]. Resting-state fMRI methods. Top row (from left to right): seed based 

correlations; Regional Homogeneity (ReHo); Amplitude of Low Frequency Fluctuations; Principal Component Analysis 

(PCA). Bottom row (from left to right): Independent Component Analysis; Clustering; Graph Theory; dynamic Functional 

Connectivity (dFC). 

 

Analytic approaches can be divided into two types: functional segregation and functional 

integration [64]. Functional segregation relates to the local function of a specific brain 

region and is, therefore, mainly used for brain mapping, reflecting the analysis of rs-fMRI 

activity. This type of analytic approach includes the ALLF and ReHo that we will discuss 
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further. On the other hand, functional integration focuses on functional correlation or 

connectivity between different brain regions, so it assesses the brain as an integrated 

network, reflecting the analysis of rs-fMRI connectivity. This analytic approach includes 

the PCA, ICA, Graph analysis and seed-based connectivity analysis that will likewise be 

discussed further on. 

These analysis methods can also be divided into two main groups: (i) Model-based and 

(ii) Data-driven methods, based on whether they use or not prior assumptions about the 

data, respectively [65]. Model-based methods require prior information, once fMRI data 

is compared to a predetermined model. On the other hand, data-driven models, also 

called model-free methods, do not rely on previous assumptions, since they are able to 

identify and extract the data. These latter models select the useful information and 

retrieve the data without constrictions [66]. 

For resting-state experiments the data-driven models are preferred since they do not 

require prior knowledge about the spatial and temporal activation patterns across the 

brain. In this way, they are also called exploratory methods. For validation, these 

methods are usually used together to analyze the data. 

 
Model-based analysis 
 

1) Seed-based correlational analysis 

 

Historically, this was the first model used to study rs-fMRI [67]. This method is 

based on the selection of one seed (that can be a single voxel or a selected 

volume of the brain/region of interest - ROI), and comparison of its BOLD signal 

time-series to the time-series of all the other voxels in the brain [68]. Several 

metrics (eg, the cross-correlation coefficient, partial correlations, multiple 

regressions, and synchronization likelihood) can be used to assess associations 

between time-series of brain areas [63]. The activation of different brain areas at 

the same time suggests that these regions are functionally connected. The 

comparison can be made with (i) general linear model (GLM) or (ii) correlation 

analysis.  

 

(i) The GLM is an important tool for several fMRI analysis. It establishes a 

model and fits it to the data. The rationale behind GLM is finding the 
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relation between a determinate response (dependent variable) and some 

predictors (independent variables). It consists in the modulation of the 

observed signal in terms of one or more regressors, also called 

explanatory variables (EVs). The general equation describing this model 

is shown below: 

 𝑌 = 𝛽# + 𝛽!𝑥! +⋯+ 𝛽C𝑥C + 𝜀 (16) 

 

In this way, the fMRI signal (𝑌) can be explained by the sum of different 

components/variables (𝑥!,	𝑥0, … , 𝑥C) weighted by a factor (𝛽!, 𝛽0, … , 𝛽C) 

and a parameter of random noise (𝜀). The GLM can include variables that 

are nuisance regressors (components that interfere with the results but 

do not contain useful information), allowing to decrease the error 

associated with these regressors (usually head motion or age effect). 

Once the GLM is constructed, it is possible to mathematically compute 

the values for the weighting factors (or effect sizes) corresponding to each 

variable. The effect size associated with a given regressor quantifies how 

strongly the data is explained by that regressor. Hence, by introducing the 

BOLD time-series of the seed as a regressor in the GLM, it is possible to 

investigate which other regions of the brain are significantly related to the 

seed region. This regressor can be obtained by averaging the time-series 

of the all voxels within the seed region [69]. 

 

(ii) The correlation analyses allow the computation of the degree of temporal 

synchrony between two different voxels. To assess this synchrony, a 

correlation coefficient (𝑟) is calculated as: 

 𝑟 = 	
∑(𝑥B − 𝑋l)(𝑦B − 𝑌l)

:∑(𝑥B − 𝑋l)0∑(𝑦B − 𝑌l)0
 (17) 

 

where 𝑟 can range from -1 to 1, with 𝑟 = 	−1 meaning perfect anti-

correlation, 𝑟 = 	1 reflecting perfect correlation and 𝑟 = 	0 denoting no 

correlation. Naturally, this correlation analysis can only be done if only 

one hypothesis is being tested. In the resting-state studies, the bigger the 
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𝑟 (closer to 𝑟 = 	1), the stronger the association and thus the connectivity 

between two voxels (or two regions) [32]. 

 

Seed-based methods are easy to implement and the statistics behind this 

analysis are also simple to understand. Like mentioned before, and similar to 

other model-based analysis, the seed-based method implies the previous 

selection of an ROI, introducing some bias to the system. For rs-fMRI, ROI 

selection can be done using the data itself (each RSN can be extracted from a 

specific associated ROI) [70]. 

 

2) Regional Homogeneity analysis (ReHo) 

 

Regional homogeneity analysis is a voxel-based method that compares one 

single voxel activation to the time-series activation of its neighbours. The 

statistics used to extract this correlation is the Kendall’s coefficient of 

concordance that allows the measurement of the synchronization of the time-

series of one voxel and the closest neighbours (based on a previously selected 

ROI) [71]. The ReHo method is easy to implement and interpret and is normally 

applied to rs-fMRI determinations [72]. 

 

3) Amplitude of Low-Frequency Fluctuations (ALFF) 

 

The Amplitude of Low-Frequency Fluctuations and more recently the fractional 

ALFF (which is less sensitive to physiological noise) evaluates the signal 

amplitude or magnitude on a voxel by voxel basis. Brain slow (low-frequency) 

fluctuations are a distinctive pattern of activation that is very useful to study the 

resting-state networks. The magnitude of these fluctuations vary from subject to 

subject and can be markers of abnormalities [73]. 
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Data-driven analysis 
 

1) Principal Component Analysis (PCA) 

 

The Principal component analysis relies on finding a set of orthogonal axes 

(called the principal components) that can potentially explain the variation on 

functional data, allowing the separation of the relevant information from noise [74, 

75]. Three conditions are necessary to apply PCA: (i) a high SNR and (ii) linearity 

and (iii) orthogonality of the principal components. The directions that are 

included in the analysis are the ones that contain the majority of the variation [76]. 

 

2) Independent Component Analysis (ICA)  

 

Independent component analysis is an extent of the PCA and is the most widely 

used method to process rs-fMRI data. This method separates each individual 

element in its underlying components, detecting the spatiotemporal structure of 

the signal by decomposing the BOLD signal into separate components. These 

components are then linearly mixed. The rs-fMRI data is modeled as a constant 

number of components that are spatially or temporally independent. ICA 

generates a set of spatial maps and corresponding time-courses [77]. For rs-fMRI 

analysis, ICA maps are usually spatial maps reflecting the spatially independent 

components. Temporal ICA contains fewer data points (when compared to the 

number of voxels of the spatial ICA), reason why the use of time-domain is 

deprecated. Spatial ICA allows better statistics estimations [78].  

 

The spatial ICA algorithm is applied to the rs-fMRI dataset as depicted in Figure 

19. The 4D rs-fMRI data (information within voxels over a period of time) is 

reorganized in a 2D matrix (voxels x time), where the voxels for a given time point 

are lined on a row, meaning that each single row corresponds to a 3D image [79]. 

This matrix is then re-arranged to obtain two new matrixes: one with the time-

course of a specific signal/component in each row (components x time) and the 

other with a spatial map for each component (components x spatial maps). This 

last matrix gives rise to an image that we use to assess the connectivity. 
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Figure 19: (Adapted from Beckmann et al [79]) Spatial ICA. Schematic illustration of the data representation 

and the spatial decomposition performed by spatial ICA on fMRI data. 

 

Each functional network is reported as a spatial map of the 𝑧 scores derived from 

the correlation between the time-series of each voxel and the mean time-series 

of that brain network [63]. The average 𝑧 score of each network reflects the 

magnitude of functional connectivity within the network. 

This technique is also sensitive to motion and physiologic signals (non-neural 

fluctuations), like cardiac, breathing and CSF-related pulsations. The 

identification of these components enhances the possibility to exclude them from 

the analysis, with ICA being a robust method to denoise the signal. However, the 

selection of components of interest is not trivial and is usually performed by visual 

inspection or correlation with previously defined RSNs templates. The user 

selection of the relevant components introduces great bias to the analysis [32]. 

On individual single-subject analysis (first-level analysis) ICA is relatively easy to 

implement, but complexity emerges when applying it to group analysis [80].  

 

3) Clustering methods  

 

The clustering methods are based on mathematical algorithms that group the 

data into clusters (subsets) [81]. These clusters include data which parameters 

are more similar to each other than compared to other clusters (for example, 

voxels can be grouped in the same cluster if they show temporal synchrony). This 

data-driven method allows the grouping of brain voxels with the same 

connectivity in the same cluster. As a single-voxel technique, in this method, 

every voxel in the data has the potential to be explored [82]. 
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Clustering can be implemented using different mathematical algorithms: (i) 

hierarchical clustering, which defines an individual voxel as a cluster and 

combines similar clusters within a settled distance measuring [65]; (ii) partitional 

clustering, where the dataset is parted into non-overlapping clusters (a priori 

definition of the number of clusters to be set); (iii) spectral clustering, which uses 

graph representation (explained in detail next), assuming that voxels are nodes 

that are connected thought weighted edges, with the weights being similarity 

measures [83]. The major concern regarding cluster analysis is to assure the 

reproducibility of networks across subjects and to guarantee the uniformity of an 

individual network [84].  

 

4) Graph theory 

 

Graph theory is an increasingly promising technique for the study of brain 

connectivity and functional brain networks. This method interprets the brain as a 

network of nodes (voxels or regions, usually defined as ROI) linked by edges (the 

connections between the nodes, that can be, for example, time-series 

correlations) [85]. With this method is possible to study the functional connection 

between any regions within the brain, constituting an extension of the seed-based 

analysis with multiple (and in every desired region) seeds. The whole-brain 

network can be integrated as a mathematical model (assumed as a graph), and 

every topographic property of the brain network can be represented by graph 

theory metrics [86]. These metrics include (i) clustering coefficient - the number 

of clusters close to the selected node compared to all the possible connections; 

(ii) characteristic path length – the average of the shortest path between two 

nodes; (iii) centrality – number of the shortest paths that are linked to a certain 

node; (iv) modularity – measures the capability of parcellating a network into 

modules. The centrality of a node defines the extent of connections that it 

establishes with other nodes, and a high centrality means that the node is very 

informative within the network [86]. The more modular a network is, the tighter 

are the relationships within the module but looser are the connections between 

different modules [87]. 

For simplicity one can just describe the edges of the graph, relegating the 

characterization of the topological properties of the entire network. 
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5) Dynamic Functional Connectivity (dFC)  

 

Dynamic functional connectivity evaluates the temporal components (signal 

fluctuations over time) of the spontaneous BOLD signal. dFC has the advantage 

of better identify the constant changes in patterns of neural activity and these 

changes in functional connectivity over time may reveal important information 

about brain networks [88]. This technique can be implemented with different 

approaches and metrics that will not be discussed here but can be found in 

Soares et al work [61]. The biggest disadvantage of this method is the complexity 

of statistical analysis. 

 

6) Functional Connectivity Density (FCD) analysis 

 

Functional connectivity density is the most basic measurement of functional 

connectivity as it identifies the highly connected functional hubs [89]. FCD reveals 

how strongly a voxel is connected but gives no information on the regions with 

which the voxel is connected. FCD analysis calculates the correlation of the 

BOLD time-series between each voxel and all the other voxels in the brain, 

allowing the calculation of FCD maps (with the cutoff distance being around 

75mm) [90, 91]. FCD analysis is simple to apply and it does not need any model 

assumption. Although it can reveal the importance of functional hubs on brain 

connectivity it does not indicate which regions are connected. 
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2. MATERIALS AND METHODS 

2.1. Participants 

The participants of this study included 10 healthy volunteers from the community, 5 

males and 5 females, with a mean age of 39.6 years old, ranging from 29 to 51 years-

old. None of the participants had structural alterations on brain MRI and none of them 

was under medication. The study was approved by CHUP ethical committee and 

informed consent was obtained for all participants. 

2.2. Imaging data acquisition  

For this study, image acquisition was performed on an MRI scanner Achieva 3.0T TX 

Software release 5.4.1.1 (Phillips Medical Systems). All the images were acquired in the 

Neuroradiology Department at CHUP, during the development of the present 

dissertation. The images were obtained under the supervision of the author and with the 

collaboration of the technical staff. 

All data were acquired using a 32-channel phased-array head coil. In the scanner, foam 

cushions and earplugs were used to limit head motion and reduce scanner noise, 

respectively. 

Both T1-weighted and T2-weighted structural images, fieldmap, and functional images 

were obtained for each patient. 

T1-weighted images consisted in a 3D T1-TFE sequence with the following 

parameters:	𝑇𝐸 = 2.948	𝑚𝑠, 𝑇𝑅 = 6.557	𝑚𝑠 and flip angle of 8°. The images had a voxel 

resolution of	1 × 1 × 1	𝑚𝑚1, square FOV of 240	𝑚𝑚 with a reconstructed matrix size of 

512 × 512. The 3D T1-TFE sequence is a fast 3D gradient echo pulse.  

T2-weighted images were based on a 3D FLAIR sequence with the following parameters: 

𝑇𝐸 = 340	𝑚𝑠, 𝑇𝐼 = 	1650	𝑚𝑠, 𝑇𝑅 = 4800	𝑚𝑠 and flip angle of 90°. The acquisition voxel 

resolution of these images is 1.11	 × 	1.11	 × 	1.12	𝑚𝑚1 (reconstructed to 0,88	 × 	0,88	 ×

	0,56	𝑚𝑚1) using a square FOV of 240	𝑚𝑚. 

fMRI data were acquired using a gradient-echo EPI sequence (2D) with the following 

parameters: 𝑇𝐸 = 33	𝑚𝑠; 𝑇𝑅 = 2500	𝑚𝑠; flip angle of 88°. Sense factor of 2,5 and Band-

width of 2743	𝐻𝑧/𝑝𝑖𝑥𝑒𝑙. Voxel resolution of 3	 × 	3	 × 	3	𝑚𝑚1	; matrix size of 



FCUP 

Brain Functional Connectivity in Resting-State fMRI 
38 

 
 

 

240	 × 	80	 × 	80. Total scan time duration was 6.5	𝑚𝑖𝑛𝑢𝑡𝑒𝑠. Each acquisition has 150 

time points/slices. To guarantee steady-state magnetization, a total of 4 dummies were 

acquired and discarded. The participants were instructed to stay awake, not to think of 

anything in particular, to keep the eyes closed, and to stay still as much as possible, with 

shallow breaths.  

An additional sequence, the field map, was collected to improve the co-register. Field 

Map is also a gradient-echo sequence, being a T2*-weighted image. For this data, Field 

map parameters were like following:	𝑇𝐸 = 2,3/4,6	𝑚𝑠; 𝑇𝑅 = 20	𝑚𝑠; flip angle of 10°; 

voxel resolution of 3	 × 	3	 × 	3	𝑚𝑚1; matrix size of 240	 × 	80	 × 	80. 

2.3. Imaging Analysis 

All image analysis was performed with the FMRIB Software Library (FSL 6.0.4) 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). FSL is a comprehensive library that includes tools 

specialized in the analysis and processing of MRI, fMRI and DTI brain imaging data; it 

was developed in Oxford, UK by members of the Analysis Group [92].  

The acquired images in the MRI scanner are exported from the visualizer in DICOM 

format, which is not compatible with FSL. To overcome this limitation, the DICOM images 

must be converted to NIfTI (FSL input image format). To do so, we used the dcm2niigui 

tool provided by the neuroimaging visualization program MRIcron 

(https://www.nitrc.org/projects/mricron). This tool not only converts images to the proper 

NIfTI format but also reorients them for proper visualization in FSL.  

 

2.3.1. Pre-processing 

After all the images were imported to FSL, each fMRI dataset underwent a pre-
processing pathway using FSL’s FEAT tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/). 

 

1. Brain Extraction 

 

The first step was to perform brain extraction using the Brain Extraction Tool 

(BET) from FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) [93]. This tool removes 

non-brain tissue like the scalp and bones, accurately excluding non-informative 



FCUP 

Brain Functional Connectivity in Resting-State fMRI 
39 

 
 

 

non-brain tissue. BET was applied to the 3D T1-weighted structural image (Figure 

20), and also to the fMRI BOLD data. 

 

 
Figure 20: BET. T1-w structural image before (grey-scale) and after (red) brain extraction using FSL’s BET. 

Sagittal, coronal and axial view. Images obtained in FSL’s FSLeyes. 

 

As we found the result from the default BET far from optimal in many cases, even 

with refined parameters, we included in the pipeline the script optiBET from Monti 

et al [94], with great improvement on extraction as we can confirm in Figure 21. 

 

 
Figure 21: OptiBET. T1-w structural image before (grey-scale) and after (light red) brain extraction using the 

optimized script of optiBET for FSL’s BET. Sagittal, coronal and axial view. Images obtained in FSL’s FSLeyes. 

 

 

2. Motion correction 

 

Secondly, correction of head movements throughout the acquisition was 

accomplished by modeling displacement and changes in orientation of the 

images as rigid body transformations. Head motion artefacts were corrected with 

the tool MCFLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT) [95], which 

implements an optimization method that uses FLIRT to apply rigid body 

transformations with 6 degrees of freedom (DOF) (3 rotations and 3 translations) 

to every volume, using the middle volume as an initial template. It computes the 

resulting mean displacement, as illustrated in Figure 22. 
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Figure 22: FEAT. Example of FEAT motion correction results, showing estimated rotations, translations, and 

mean displacement, in each volume, for one illustrative patient. 

 

 

3. Spatial Smoothing  

 

Spatial smoothing aimed to remove high-frequency fluctuations between 

adjacent pixels and was achieved applying a Gaussian kernel, with FWHM = 5 

mm, individually in each volume of the fMRI data set. The usage of this low-pass 

filter increases SNR (signal-to-noise ratio) by removing noise without removing 

valid activation. 

 

4. Temporal filtering 

 

Temporal filtering was performed selecting a high-pass filter, to remove low-

frequency drifts inherent to the acquisition process. These low-frequency 

artefacts were removed by using a local fit of a straight line, with 𝑐𝑢𝑡𝑜𝑓𝑓	 =

	40𝑇𝑅 = 100𝑠	which is the recommended value for rs-fMRI data with our 

acquisition parameters. 
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5. Distortion correction 

 

To correct for distortion artefacts we applied fieldmaps. This is done with FUGUE 

tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE) from the GUI which is part of the 

FEAT preprocessing options. FUGUE is a tool for EPI distortion correction in two 

steps: (i) geometrically unwarping the EPI images, and (ii) applying cost-function 

masking in registrations to ignore areas of signal loss. 

Unfortunately, there is no standard sequence for fieldmap acquisitions and 

different scanners return different images. Normally, these images require 

processing before they represent images with field values in the desired units (of 

radians/second) in each voxel. The steps to construct the required fieldmap 

images from Phillips fielmap acquisition for B0 unwarping can be found on 

(https://osf.io/hks7x/) and are detailed in Appendix I. Different checkpoints for 

distortion correction with fieldmap and the final result of undistorted and distorted 

images are depicted in Figure 23 and 24, respectively. 

 

 

 
Figure 23: Sequential steps of distortion correction using fieldmaps. Top row: Brain-masked B0 fieldmap 

(orange), overlaid on top of fieldmap magnitude image; Second row: Thresholded signal loss weighting image; 

Third row: Unwarping shift map; Bottom row: White matter edges, overlaid on top of fieldmap image. Image 

obtained from unwarp report of FEAT data processing. 
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Figure 24: Registration without (first set of images) and with (second set of images) fieldmap correction. Top 

row of each image: co-register of white matter boundaries (red) to the example_func (fMRI); bottom row: co-

register of white matter boundaries (red) to highres (structural T1).  

 

When using the fieldmap information to correct for geometric distortion we need to select 

the phase encoding direction which, for our data, was the positive one. As we do not 

know this information a priori we should run both positive and negative phase-encoding 

directions and compare these results by visual inspection.  

 

2.3.2. Registration 

The pre-processed fMRI data were then co-registered with T1 structural images of each 
subject (Figure 15) using the FSL FLIRT (FMRIB’s Linear Image Registration Tool) and 

FNIRT (FMRIB’s Non-linear Image Registration Tool), FSL’s tools for linear and non-

linear registration, respectively.  

The registration of fMRI images to the T1 acquisition was done using the boundary-

based registration (BBR) method of FLIRT 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT_BBR). BBR can detect the white matter (WM) 

boundary on EPI BOLD fMRI images, correlating it with the WM boundary of T1 and 

registering the images together [96]. After this step, the T1 structural image was then 

normalized to a standard MNI space (MNI152, standard-space T1-weighted average 

structural template image, 2 × 2 × 2	𝑚𝑚1) (Figure 25). Normally, a simple linear 
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regression is used to align the images (using the FLIRT tool from FSL - 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT), but this strategy may not be fully accurate to 

align internal structures, since the brain of different subjects has different morphologies 

resulting from ageing, pathologies or race. To overcome this issue we can use a non-

linear registration with FSL tool FNIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT/) after 

optimization of FLIRT. This approach improves the results, with better registrations.  

 

 
Figure 25: Example of registration of fMRI data to the structural image and the standard MNI space for one illustrative 

subject. Top image: functional space (fMRI) to high resolution structural space: (i) top line – fMRI image in grey and the 

high resolution structural image exhibited in red lines;(ii) bottom line – fMRI image depicted in red lines and the structural 

image in grey. Middle image: high resolution structural image to standard space: (i) top line – the structural image is in 

grey and the red lines represent the MNI; (ii) bottom line – structural image in red contours and the MNI in grey. Bottom 

image: combined transformation from functional to MNI space: (i) top line – fMRI is in grey and the red contours are from 

the MNI image; (ii) bottom line – fMRI is exhibited in red lines whereas the MNI is in grey. 

 

2.3.3. Functional Connectivity Analysis 

2.3.3.1. Independent Component analysis 

The independent component analysis (ICA) was performed using Multivariate 

Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) 

FSL tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC/) to decompose the single-

subject 4D datasets into sets of spatial components. MELODIC estimates automatically 
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from the data the optimal number of components, which differ from subject to subject. 

The MELODIC offers three types of analysis: Single-session ICA, Multi-session temporal 

concatenation, and Multi-session Tensor-ICA. For the design of this work Single-session 

ICA (Figure 26) is the most suitable. This will perform standard 2D ICA on each of the 

input files (the 4D image of each subject being studied). The input data will each be 

represented as a 2D time x space matrix. MELODIC then decomposes each matrix 

separately into pairs of time courses and spatial maps [97]. The original data is assumed 

to be the sum of outer products of time courses and spatial maps. All the different time 

courses (one per component) will be saved in the mixing matrix melodic_mix and all the 

spatial maps (one per component) will be saved in the 4D file melodic_IC. 

 

 
Figure 26: Schematic representation of MELODIC Single-session ICA. 

 

Independent components (IC) classification 

The Independent Components (IC) returned by MELODIC were classified, whether as 
noise components or neural signal components. This classification allows for further 

denoising of ICA, since the IC classified as noise can be removed from the input for 

further analysis, improving the results. For the classification, we used FSL’s tool FIX 

(FMRIB’s ICA-based Xnoiseifier) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX) [98] which is an 

automated approach for ICA-based denoising. In this way, the components of no interest 

can be removed from the reconstruction of the data, originating a denoised dataset. The 

general cleaning procedure in FIX consists of several steps: spatial ICA, component-

wise feature extraction, classifier training, components’ classification (predicting 

components’ likelihood of being signal vs. noise, in new data) and denoising (removal of 

the artefactual components). The trained weight-file used was Standard.Rdata (supplied 

by FSL), which is indicated for fMRI studies with acquisition parameters close to the ones 

of this study. 
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FIX results were validated by hand, confirming that the noise and signal IC returned by 

FIX contained the expected characteristics [23]: 

 

• Spatial Maps: noise components’ spatial maps hold a predominance of overlap 

brain boundaries, vessels, CSF and WM, whereas signal components contain 

well-defined areas; 

• Time-series: noise component’s time-series show sudden jumps or sudden 

changes of oscillation patterns; 

• Power Spectrum: noise component’s power spectrum contains high-frequency 

components, whereas signal components contain predominantly typical fMRI 

frequencies 0.01-0.08 Hz. 

 

The IC classification can also be exclusively manually, by classification of each IC by 

visual inspection. To compare both methods we also performed manually classification 

to check for differences between both. The IC were evaluated by two neuroradiologists 

(blind to FIX classification) that rated them as being a true signal, a cardiac/CSF flow 

signal, and movement. When in doubt the components were classified as unknown in 

order not to be retrieved from further analysis. Manually classification was done on 

FSLeyes (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes) after the first MELODIC analysis 

(Figure 27). 

 

 
 Figure 27: Manual classification of IC for one illustrative subject in FSLeyes. 
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After automated classification, the noise components returned by FIX were regressed 

out of the data to clean the activation maps, and all further processing was done using 

only the clean signal components from FIX. 

 

RSNs identification 

The cleaned signal was then used to run MELODIC again. The retrieved ICs from this 

analysis were the ones considered to further comparison with the RSNs described in the 

literature.  

RSNs were first estimated by comparing the signal of the IC to the RSNs identified by 

Smith et al [46]. RSNs maps from Smith et al. were retrieved from BrainMap 

(https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/), and the IC of this study were 

identified using a template-matching procedure similar to that used in previous studies 

[99], in which IC are identified through spatial comparison against the RSNs templates. 

This is done by computing the Dice coefficient (DC) for all IC-RSN pairs [100]: 

 𝐷𝐶 =
2𝑉EUHOSQR
𝑉(V" + 𝑉(V!

 (18) 

 

The DC provides a measure of similarity between the IC and the RSN template, varying 

between 0 and 1, higher values representing higher similarities. A DC over 0.3 is said to 

represent a good similarity between the IC and the RSN template [99]. Hence, each of 

the 10 RSNs in Smith et al. was attributed to the IC with which it shared higher similarity 

(higher DC), but only if it was also the RSN with which that same IC shared the highest 

similarity.  

All RSNs were also assessed by visual inspection by using the matched maps published 

by Smith et al. 

 

2.3.3.2. Seed-based analysis 

RSNs identification 

The Seed-based analysis was performed in this study in order to validate this method in 

the identification of the RSNs. For this analysis we performed two strategies: 1) using 

the FSL tools, and 2) using the Intellispace software from Phillips. In both cases we used 

the same 4 seeds (or regions of interest, ROI), based on state-of-art literature, 



FCUP 

Brain Functional Connectivity in Resting-State fMRI 
47 

 
 

 

corresponding to the posterior cingulate cortex (PCC), occipital pole (OP), middle frontal 

gyrus (MFG), and supplementary motor area (SMA). These seeds represent brain 

regions that are usually involved in important RSNs: the DMN, the visual, the 

frontoparietal network, and the sensorimotor, respectively. All the seeds used are well-

defined areas within the respective network. The left and right frontoparietal networks 

were grouped into one individual network, the frontoparietal network [101]. 

 

1) FSL 

 

For seed-based RSNs identification using FSL, 4 independent seed-based 

analyses were performed, each for the identification of one of the RSNs in Smith 

et al. A GLM analysis with multiple seeds as different regressors in a single 

design matrix was also performed. 

In each analysis, a mask of the seed was created in the FSL’s program FSLeyes 

(using the Harvard-Oxford Cortical Structural Atlases) and then binarized, by 

thresholding the image at 50%. After converting the mask from standard to 

functional space, the average time-series for the seed was extracted from the 

functional data and used as a regressor in the GLM. The multiple regression 

analysis was performed using the FSL’s tool FEAT, and the Z statistic images 

returned were thresholded at Z=3 and compared with the RSNs in Smith et al. 

(also thresholded at Z=3). Importantly, high Z-scores in the Z statistic images 

reflect high effect sizes, and so are assumed to belong to brain areas with a 

strong correlation to the seed area and therefore are assumed to belong to the 

corresponding RSN. 

 

2) IntelliSpace 

 

The IntelliSpace Portal is an advanced visualization platform that allows the post-

processing of several MR studies. Among the applications of this interface, is the 

MR iViewBOLD, an off-line package that facilitates the processing and 

interpretation for both block, event-related, and seed-based resting-state 

analysis. This tool presents the big advantage of automated pre-processing and 

registration to anatomical reference, enabling efficient workflow. Nevertheless, 

the system is restricted and closed, so few changes to the pre-processing of 



FCUP 

Brain Functional Connectivity in Resting-State fMRI 
48 

 
 

 

image analysis is permitted. The construction of the RSNs is based on SPM 

analysis. The program allows the selection of the seeds/ROI, which can be done 

with co-registration with the anatomic structural images. The selection and 

placement of the ROI are manual, and for each ROI selected, one pattern of 

activation is constructed and later displayed on the viewer. For each seed, a 

spherical ROI (5mm of radius) was manually designed. It is possible to change 

the threshold of smoothering.  

Although very simple and intuitive to use, this tool can be quite limited in the 

application of rs-fMRI. 
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3. RESULTS 

This study aimed to implement the evaluation of functional connectivity through resting-

state fMRI in the Neuroradiology Department of Centro Hospitalar Universitário do Porto. 

Therefore, our results include not only the individual analysis of the constructed RSNs 

and the study of the functional connectivity for each participant but also the creation of a 

pipeline for performing rs-fMRI in our institution. This pipeline will serve as a guide and 

protocol for future clinical studies with patients.  

In this chapter, we first describe our results relating to the exploratory analysis performed 

using ICA, as well as the results from the seed-based analysis, also including the network 

mean FC analyses. At the end of the chapter, we present a pipeline suggestion for 

implementation of rs-fMRI analysis. 

 

3.1. Independent Component Analysis 

FIX Denoising 

FIX classified IC as signal components and as noise components for each patient and 

examples of the classification are demonstrated in Figure 28. The classification of all IC 

by FIX was visually inspected for validation (like described on methodology). Some of 

the IC classified was unknown by FIX were then reviewed by the neuroradiologists and 

further classified as shown in Table 3. The number of removed signals for each subject 

and the final number of the IC after the FIX clean-up is also characterized in Table 3. 
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Figure 28: Examples of IC classified as signal (left), cardiac/CSF (middle) and movement (right) for one illustrative subject. 

 

Table 3: Independent components before and after FIX and manual classification. 

 

Number of IC 

identified on first 

MELODIC 

analysis 

Number (and identification) of IC 

classified as noise by FIX 

Number (and 

identification) of FIX 

unknown IC classified 

as noise by hand 

Final number of IC 

removed from the 

analysis 

Subject 1 

 
36 

 

13 
 
[1, 2, 8, 12, 13, 14, 15, 
17, 24, 26, 27, 30, 31] 

4 
 

[6, 11, 20, 34] 
17 

Subject 2 

 
36 

9 
 
[1, 3, 4, 5, 7, 8, 23, 
33, 34] 

2 
 

[10, 12] 
11 

Subject 3 

 
38 

10 
 
[1, 4, 5, 6, 7, 10, 15, 
19, 20, 33] 

0 
10 

Subject 4 

 
37 

6 
 
[2, 4, 13, 15, 35, 36] 

8 
 

[1, 2, 3, 5, 6, 
9, 24, 28] 

14 
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Subject 5 

 
25 

14 
 
[1, 2, 3, 4, 5, 6, 11, 
13, 15, 17, 18, 19, 20, 
24] 

1 
 

[7] 
15 

Subject 6 

 
32 

11 
 
[2, 4, 5, 6, 7, 11, 13, 
15, 16, 22, 24] 

1 
 

[3] 
 

12 

Subject 7 

 
45 

24 
 
[1, 3, 4, 6, 7, 8, 12, 
15, 17, 19, 24, 27, 28, 
31, 32, 34, 36, 37, 38, 
39, 41, 43, 44, 45] 

3 
 

[2, 5, 42] 27 

Subject 8 

 
35 

16 
 
[2, 3, 5, 6, 13, 14, 15, 
19, 20, 22, 23, 24, 26, 
27, 30, 35] 

3 
 

[4, 28, 31] 
19 

Subject 9 

 
40 

13 
 
[2, 3, 4, 5, 6, 10, 16, 
17, 19, 26, 28, 31, 39] 
 

2 
 

[1, 13] 
15 

Subject 10 

 
34 

7 
 
[3, 6, 7, 12, 13, 14, 22] 

5 
 

[1, 4, 8, 11, 
26] 

 

12 

 

As we have previously described, the FIX application needs a training data set. For better 

results, we can train our own data to construct a training data set with the specific 

characteristics of our MR machine and acquisition parameters. For this, we must hand 

classify all ICs to later construct the training data set, which we did. The “Training set 

CHUP” was constructed and tested in our population, but as mentioned in the 

methodology section, our analysis was done with the Standard.Rdata training data set 

to guarantee robustness.  

RSNs Identification 

The correspondence between the 10 RSNs in Smith et al. and the signal ICs of this 
study, along with the associated Dice Coefficient, is represented for each subject in 

Tables 4 to 13. 
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Table 4: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 1. Dice Coefficient (DC) computed for each pair. 

Subject 1 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 5 0,301 

visual occipital pole network IC 15 0,479 

visual lateral network IC 23 0,195 
default mode network IC 13 0,371 

cerebellum network ---- ---- 

sensorimotor network IC 8 0,163 
auditory network IC 7 0,205 

executive control network IC 19 0,312 

right frontoparietal network IC 3 0,418 
left frontoparietal network IC 1 0,356 

 

Table 5: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 2. Dice Coefficient (DC) computed for each pair. 

Subject 2 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 1 0,629 

visual occipital pole network IC 4 0,565 

visual lateral network IC 2 0,389 

default mode network IC 11 0,419 

cerebellum network IC 21 0,433 

sensorimotor network IC 6 0,275 

auditory network IC 5 0,255 

executive control network IC 5 0,225 

right frontoparietal network IC 19 0,379 

left frontoparietal network IC 20 0,348 

 

 

 



FCUP 

Brain Functional Connectivity in Resting-State fMRI 
53 

 
 

 

 

Table 6: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 3. Dice Coefficient (DC) computed for each pair. 

Subject 3 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 19 0,455 

visual occipital pole network IC 14 0,355 

visual lateral network IC 14 0,357 

default mode network IC 1 0,453 

cerebellum network IC 16 0,110 

sensorimotor network IC 22 0,288 

auditory network IC 6 0,370 

executive control network IC 10 0,223 

right frontoparietal network IC 4 0,317 

left frontoparietal network IC 3 0,466 

 

Table 7: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 4. Dice Coefficient (DC) computed for each pair. 

Subject 4 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 8 0,437 

visual occipital pole network IC 28 0,514 

visual lateral network IC 28 0,457 

default mode network IC 5 0,374 

cerebellum network IC 7 0,150 

sensorimotor network IC 14 0,342 

auditory network IC 3 0,319 

executive control network IC 29 0,229 

right frontoparietal network IC 16 0,375 

left frontoparietal network IC 20 0,342 
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Table 8: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 5. Dice Coefficient (DC) computed for each pair. 

Subject 5 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 8 0,102 

visual occipital pole network IC 17 0,140 

visual lateral network IC 17 0,129 

default mode network IC 1 0,396 

cerebellum network ---- ---- 

sensorimotor network IC 10 0,168 

auditory network IC 13 0,101 

executive control network IC 12 0,188 

right frontoparietal network IC 6 0,382 

left frontoparietal network IC 2 0,353 

 

Table 9: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 6. Dice Coefficient (DC) computed for each pair. 

Subject 6 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 5 0,308 

visual occipital pole network IC 21 0,413 

visual lateral network IC 5 0,469 

default mode network IC 3 0,468 

cerebellum network IC 18 0,216 

sensorimotor network IC 16 0,256 

auditory network IC 10 0,143 

executive control network IC 4 0,289 

right frontoparietal network IC 9 0,385 

left frontoparietal network IC 13 0,405 

 

 

 



FCUP 

Brain Functional Connectivity in Resting-State fMRI 
55 

 
 

 

 

Table 10: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 7. Dice Coefficient (DC) computed for each pair. 

Subject 7 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 15 0,416 

visual occipital pole network IC 12 0,527 

visual lateral network IC 15 0,486 

default mode network IC 16 0,314 

cerebellum network IC 21 0,234 

sensorimotor network IC 4 0,214 

auditory network IC 17 0,371 

executive control network IC 11 0,215 

right frontoparietal network IC 3 0,314 

left frontoparietal network IC 10 0,318 

 

Table 11: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 8. Dice Coefficient (DC) computed for each pair. 

Subject 8 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 4 0,241 

visual occipital pole network IC 1 0,283 

visual lateral network IC 13 0,457 

default mode network IC 5 0,474 

cerebellum network IC 14 0,110 

sensorimotor network IC 9 0,250 

auditory network IC 8 0,472 

executive control network IC 17 0,188 

right frontoparietal network IC 11 0,367 

left frontoparietal network IC 7 0,441 
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Table 12: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 9. Dice Coefficient (DC) computed for each pair. 

Subject 9 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 2 0,345 

visual occipital pole network IC 15 0,427 

visual lateral network IC 2 0,438 

default mode network IC 5 0,458 

cerebellum network IC 22 0,291 

sensorimotor network IC 11 0,306 

auditory network IC 21 0,241 

executive control network IC 12 0,238 

right frontoparietal network IC 3 0,303 

left frontoparietal network IC 6 0,335 

 

Table 13: Correspondence between the 10 RSNs in Smith et al. and 10 signal IC of 

Subject 10. Dice Coefficient (DC) computed for each pair. 

Subject 10 

RSN from Smith et al IC # Dice Coefficient 

visual medial network IC 13 0,461 

visual occipital pole network IC 7 0,343 

visual lateral network IC 8 0,305 

default mode network IC 18 0,414 

cerebellum network IC 26 0,204 

sensorimotor network IC 4 0,344 

auditory network IC 22 0,273 

executive control network IC 21 0,319 

right frontoparietal network IC 12 0,377 

left frontoparietal network IC 15 0,352 
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Generally, there was always a constructed IC that could represent an RSN, being very 

similar to the Smith et al RSN template on visual inspection. This also reflects on the DC 

values found for each subject that were globally very good. An exception is made for 

subject 5, where the DC was low for almost all networks, with DC>0.3 just for default 

mode and frontoparietal networks. In general, DC values were high for visual networks 

(maximum DC = 0,629), the default mode network, the frontoparietal, and, in less degree, 

for the sensorimotor network. For the auditory and executive control networks, the DC 

computed was small, which indicates that these networks may be scattered across 

multiple ICs (notice that there are much more identified ICs in our study than the 10 

RSNs in Smith et al, meaning that some networks may split in different ICs. The same 

goes for the cerebellum network that was by far the most inconsistent network, with low 

DC in all participants and not able to be recognized in two patients. 

Each of the IC-RSN pairs was manually confirmed by visual comparison of the respective 

spatial maps. In Figures 29 to 38 are presented examples of spatial maps for the 10 most 

relevant IC-RSN pairs. 

 

 

Figure 29: Spatial map of one IC representing the visual medial network (left) and the visual medial network identified in 

Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 

 

 

Figure 30: Spatial map of one IC representing the visual occipital network (left) and the visual occipital network identified 

in Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 
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Figure 31: Spatial map of one IC representing the visual lateral network (left) and the visual lateral network identified in 

Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 

 

 

 

Figure 32: Spatial map of one IC representing the default mode network (left) and the default mode network identified in 

Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 

 

 

 

Figure 33: Spatial map of one IC representing the cerebellum network (left) and the cerebellum network identified in Smith 

et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 
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Figure 34: Spatial map of one IC representing the sensorimotor network (left) and the sensorimotor network identified in 

Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 

 

 

 

Figure 35: Spatial map of one IC representing the auditory network (left) and the auditory network identified in Smith et al 

(right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 

 

 

 

Figure 36: Spatial map of one IC representing the executive control network (left) and the executive control network 

identified in Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3. 
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Figure 37: Spatial map of one IC representing the right frontoparietal network (left) and the right frontoparietal control 

network identified in Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3 

 

 

 

Figure 38: Spatial map of one IC representing the left frontoparietal network (left) and the left frontoparietal control network 

identified in Smith et al (right). Spatial map was obtained in FSL’s FSLeyes. All maps thresholded at Z=3 

 

3.2. Seed-based analysis 

RSNs identification in FSL 

For each subject, a multiple regression analysis was performed using the GLM 

framework. The mean BOLD signal time course of each seed was inserted as an 

explanatory variable within the design matrix and four contrasts of interest were defined, 

one for each EV. The output from this voxel-wise analysis was represented in Z statistic 

maps, one for each seed, reflecting the strength of the correlation between each voxel’s 

time series and the seed’s mean time course, for each subject. The spatial maps we 

obtained belong to the networks constructed based on the seeds considered to be the 

most relevant for this work as described in the methodology section.  
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We could construct all the four RSNs in all the patients, with varying strength among 

them. Both examples of GLM and resting-state networks constructed with seed-based 

analysis can be seen in Figure 39 and Figure 40-43, for one illustrative subject.  

 

 

Figure 39: Design matrix used throughout the GLM analyses with the 4 explanatory variables (time course of each seed) 

and 4 t-test contrasts depicted. 

 

 

Figure 40: Spatial map of regions with high correlation to the seed PCC, obtained by seed-based GLM analysis with 

multiple regressors. Spatial maps was obtained in FSL’s FSLeyes (thresholded at Z=3). 
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Figure 41: Spatial map of regions with high correlation to the seed OP, obtained by seed-based GLM analysis with multiple 

regressors. Spatial maps was obtained in FSL’s FSLeyes (thresholded at Z=3). 

 

 

Figure 42: Spatial map of regions with high correlation to the seed MFG, obtained by seed-based GLM analysis with 

multiple regressors. Spatial maps was obtained in FSL’s FSLeyes (thresholded at Z=3). 
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Figure 43: Spatial map of regions with high correlation to the seed SMA, obtained by seed-based GLM analysis with 

multiple regressors. Spatial maps was obtained in FSL’s FSLeyes (thresholded at Z=3). 

 

By visual inspection, the RSNs constructed based on the seeds satisfactorily 

corresponded to the RSNs templates described in the literature. 

 

Mean connectivity 

The seed-based analysis with the GLM approach also allows us to evaluate some 
metrics of brain connectivity. The mean functional connectivity (FC) was estimated in a 

single-level analysis as the mean Z-value from each Z statistic map for each selected 

seed (obtained as previously described). We retrieve this value for each participant and 

the results are in Table 14. 
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Table 14: Mean FC (measure from mean Z-value) from each seed for every participant. 
 

Posterior 
cingulate cortex Occipital pole Middle frontal 

gyrus 
Suplementar 
motor area 

Subject 1 4.756 3.746 3.032 3.455 

Subject 2 3.650 4.438 3.248 4.023 

Subject 3 4.563  3.295 4.279 3.452 

Subject 4 4.588 3.614 3.126 3.842 

Subject 5 3.514 3.843 3.842 3.197 

Subject 6 5.382 3.121 4.512 4.281 

Subject 7 4.296 4.192 3.387 4.296 

Subject 8 3.729 3.121 3.103 3.191 

Subject 9 4.756 3.822 3.098 3.126 

Subject 10 5.018 4.395 3.256 3.338 

 

Finally, the comparison of the mean FC of the different seeds is shown in Figure 44. The 

seed on the PCC was the one demonstrating the higher value of mean FC (mean Z-

value), meaning that the DMN network was the network with the strongest correlation 

between the connected areas. The OP, MFG, and SMA showed lower and similar mean 

FC. 

 

Figure 44: Blox-pot representing the distribution of the mean Z-values for each seed-based network. 
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RSNs identification in Intellispace 

The RSNs identification with the seed-based package for rs-fMRI analysis of Intellispace 

was modest to say the best. We found the software very user-friendly, with easy and 

quick processing of the fMRI data, exempting all the pre-processing analysis (Figure 45). 

Nevertheless, the capability of the package to construct the RSNs was far from 

consistency and reproducibility, making this a fragile tool for clinical application (Figure 

46).  

 

Figure 45: Display of the initial layout of MRI iViewBOLD of Intellispace. After uploading the image, all the preprocessing 

is automated. The software shows the Quality Graph Check but does not allow any modification on it.  

 

  

Figure 46: Examples of seed-based analysis with iViewBOLD: Motor activation on the right and DMN on the right.   
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3.3. Pipeline for Neuroradiology Department at CHUP 

To perform a rs-fMRI analysis several steps must be taken into account. For simplicity 

and reproducibility, we have chosen the ICA-based analysis over the seed-based 

analysis to implement in our department (Figure 47). We now summarize the developed 

work in terms of the acquisition, pre and post-processing of rs-fMRI. A more detailed 

pipeline can be found in Appendix II. 

 

Figure 47: Schematic representation of the key steps to process rs-fMRI in CHUP. 
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4. DISCUSSION 

All the evolution in the neuroscience field is brought alive with the cooperation of different 

professionals, with different but complementary assets and knowledge. The most difficult 

part of being a clinician eager to best understand the neurophysiology behind the 

neuroimaging is that there usually are no resources to develop advanced techniques.   

 

4.1. Implementation of resting-state fMRI on healthy individuals in 

CHUP 

The major ambition of this work was to implement a new neuroimaging technique to the 

Neuroradiology Department of CHUP. To achieve that goal we had to go a long way to 

attain the several steps that must be accomplished to have a thorough functional image 

working. 

The first step was to develop the rs-fMRI acquisition for our Phillips machine, based on 

literature. We choose the parameters described in the methodology (Gradient-echo EPI 

sequence (2D): 𝑇𝐸 = 33	𝑚𝑠; 𝑇𝑅 = 2500	𝑚𝑠; voxel resolution of 3	 × 	3	 × 	3	𝑚𝑚1	; matrix 

size of 240	 × 	80	 × 	80	𝑚𝑚; flip angle of 88°; duration: 6,5	𝑚𝑖𝑛𝑢𝑡𝑒𝑠; 150 time 

points/slices), and we found our acquisition well-design, informative and reproducible. 

This MRI sequence (with all the parameters defined) was stored in a common folder (rs-

FMRI_LB_CMP) on the MRI protocols folder of our MRI scanner, being available for 

anyone wishing to use it. The recommendations to be given to the patients regarding the 

acquisition are the ones stated before.  

We also constructed the fieldmap acquisition with the parameters described in the 

methodology section, but we found it of little added value for clinical use once it adds 

complexity to the pre-processing with little improvement on image quality and in the co-

registration process. We analyzed the results regarding RSN identification with both the 

fieldmap corrected images and the images without distortion correction and we did not 

find any significant difference, meaning that, in our case, the suppression of the distortion 

correction with fieldmap images did not influence the results. As so, we believe that this 

step could probably be skipped if good care is taken in the EPI pulse sequence to 

optimize image quality and minimize its distortion. Structural images, 3D FLAIR and 3D 
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T1, are also on the same folder and should always be acquired to allow the identification 

of structural lesions and the registration steps, respectively. 

The second step was to perform the image processing. All processing steps were done 

with FSL. FSL is directly supported in multiple hardware and software platforms like 

Linux, macOS and can also be deployed as a virtual machine in Microsoft Windows. It 

provides an advanced and readily available solution for rs-fMRI analysis, being license-

free for non-commercial use. In the absence of available hardware and software in our 

department, we used a virtual machine from VMware Workstation Player. Because of 

administration restrictions on the computers installed in our department, there is only one 

workstation in which the virtual machine could be run. This will be, for now on, and until 

a new investment is done, the way to process the rs-fMRI acquisition in CHUP.  

Along with FSL, some other tools needed to be installed, as is the case of FIX. FIX tool 

is a set of R, MATLAB and shell scripts, requiring various other software than just FSL, 

and for now, it is not bundled as part of FSL. We encountered some difficulties regarding 

FIX installation, but we finally manage to integrate it into our workflow. In addition to the 

standard training data set used, we also created our own training data set “Training set 

CHUP” with our participants. Although the application for this particular study is limited, 

the “Training set CHUP” will be useful in future studies, since the training data is more 

efficient the similar it is to the data being analyzed. 

After going through all the technical details, we could achieve our goal of studying brain 

connectivity with rs-fMRI. All the careful pre- and post-processing of the data enable the 

congruent results. With the data-driven analysis, ICA, we were able to construct all the 

main RSNs described in the literature and we validated our results both with visual 

inspection (all spatial maps appeared sufficiently similar to the matched RSNs template) 

and with statistical analysis with Dice Coefficient. Regarding the seed-based GLM 

analysis, we also succeed in obtaining robust spatial maps for each selected seed that 

were further validated by visual comparison with the spatial maps of the same RSNs in 

Smith et al. That way, all the ROIs used for this study were confirmed to be reliable seed 

regions for the identification of the corresponding networks.  

Our results regarding the mean FC showed that the Default mode network was the one 

with higher connectivity (through analysis of the Z maps of the PCC seed) when 

compared with the task-positive networks, like the visual, frontoparietal, and 

sensorimotor networks. These results are in line with the literature, where DMN is often 
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described as the most important cortically based network during rest [102]. The study of 

the mean FC, although of little interest to compare the strength of the networks, is of 

major importance in further works aiming to compare the functional connectivity between 

groups of patients with some pathology or to compare disease groups to healthy controls. 

The results indicate that both approaches under analysis (ICA and Seed-based) were 

able to identify RSNs with good enough efficacy for the purposes of this project. Thereby, 

we validated our results regarding functional mapping and brain connectivity with both 

the most used methods in the literature. The study of brain functional connectivity by rs-

fMRI can now be performed in the Neuroradiology Department of CHUP, by simply 

following the proposed pipeline. 

As the methodology for ICA is simpler in terms of post-processing (when compared with 

seed-based analysis), we propose that this should be the preferable approach for clinical 

practice application and for less experienced researchers.  

 

4.2. Limitations 

The main limitation of this work is the small sample size. Ten subjects are enough to 

bring some conclusions, but it is a limited representation of the population. Moreover, we 

recruit young healthy volunteers from the general population, most of them highly 

differentiated, which may not represent our future debilitated patients. We may face 

issues with the compliance of older patients, who usually have difficulties in laying still 

during the 6 minutes acquisition time.  

Another concern is the effect of aging on mean functional connectivity and consequently 

on the construction of RSNs. It is now well established that, early in life, every primary 

sensory and cognitive network suffers some degree of age-related decline, including 

reduced within-network connectivity [103]. This can somehow influence the results if we 

are testing an older population, although the full extent of age modulation is not 

completely understood.  

Lastly, it also constitutes a limitation to our work the fact that the image processing can 

only be performed in the virtual machine installed in the specific workstation. As an asset 

to the Neuroradiology department, ideally, we should have a dedicated set-up, with both 

hardware and software capable of more complex installations and pipelines. Only then, 
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it will be possible to further improve and to translate the research expertise to the clinical 

knowledge.  

4.3. Future Work 

Along with the main purpose of this work, which was to implement and validate the rs-
fMRI in healthy individuals in CHUP, the ultimate intention of this project was to give the 

basis and the background for future research works on the neuroscience field in our 

department. While working on a tertiary and university hospital we, as clinicians, have 

access to a great number of patients with a lot of pathologies, usually rare and 

differentiated, that present a big opportunity for learning. The step forward is to 

consciously use precious information gathered from rs-fMRI to improve our knowledge 

about the brain pathologies, how and why they develop, what is the expected course, 

how to understand the pathologic march and how to better predict outcomes or even the 

therapeutic response. From a daily clinician perspective, rs-fMRI is more important to 

give response to the individual question, in order to localize determinate brain functions 

that can be used, for example, to integrate the surgical planning. In this context, 

individual analysis, like the one we performed on the individual healthy subjects, is more 

valuable. On the other hand, when we think about big groups of patients with a specific 

disease or different subgroups of pathology that we want to study as a whole, the group 

analysis is more appropriate. Although the single-subject approach is the one that we 

will probably use the most in our daily clinical practice, this work leaves an open window 

to bigger and audacious group analysis that would allow comparison between groups of 

patients, may we have the support of our administration to engage investigational 

researches. 

In future works, it would be interesting to compare the resting-state networks with task-

related activity in order to understand if the networks extracted through functional 

connectivity by rs-fMRI tap into the complex activations subserving task execution. This 

would be essential to ascertain whether functional mapping with rs-fMRI is effective for 

pre-surgical planning.  

On the image processing workflow, we can also improve our image analysis, namely in 

the pre-processing steps, including the application of additional motion regressors like 

the FSL Motion Outliers. 
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In the technical aspect, for future work, it would also be interesting to collect information 

on physiologic parameters (cardiac frequency, respiratory frequency) to better filter the 

noise components. The combination of the rs-fMRI results with other imaging modalities 

such as electroencephalogram could also be of great value, namely in differentiation 

neurovascular from neuroelectric phenomena of RSNs. In addition, the relation between 

functional (rs-fMRI) and anatomic (diffusion tensor imaging) connectivity can also be of 

interest to further understand normal brain connections and potential alterations in these 

relations in neurologic diseases [41]. 
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5. CONCLUSION 

This present dissertation aimed to implement the brain functional connectivity analysis 

by rs-fMRI on the Neuroradiology Department of Centro Hospitalar Universitário do 

Porto. The objective was to integrate resting-state functional neuroimaging into the daily 

practice of neuroradiologists, as well as to create guidelines with all the necessary steps 

for the processing of rs-fMRI data using FSL, enabling its application by any 

neuroradiologist interested in doing so.  

We could achieve our goal, and it is now possible to acquire and process rs-fMRI data 

in Paulo Mendo Neuroradiology Department, following the pipeline that we have 

proposed in this work.   

We have demonstrated that our acquisition sequences were conceptually well designed, 

reproducible and robust. Also, we could implement all the pre- and post-processing 

steps, being able to actually construct the RSNs and calculate their connectivity in the 

studied individuals. 

Although we did not provide any scientific advance to the neuroscience research 

community, the strength and value of our work resides in the fact that we could bring 

together professionals from very different backgrounds to work together and to 

implement a research and investigational tool to the everyday practice of a clinical 

hospital. This might seem of little value, but we truly believe that the answer for the 

development of the neuroradiology field is to cooperate with professionals from diverse 

backgrounds: statistics, computer science, engineering, psychology, mathematics, and 

physics. It is in the hospitals, and not in the labs, that are the people that make us want 

to go further – the ones in need to be helped, the patients. It is our mission to bring 

science closer to the patients and to join the powerful force of engineers and physicists 

with medicine. 
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APPENDIX I 

 

FIELDMAP 

 

The following instructions show how the get the magnitude and fieldmap image from 
gradient-echo T2* Fieldmap acquisition on Phillips scanner 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE/Guide).  
 

Step 1 - Getting the magnitude image 

(a) If you start with a complex Analyze or Nifti volume that contains the scans at two echo 
times then you need to do: 

fslcomplex -realabs complex_acq fieldmap_mag 

(b) If you have separate phase images or a single, fieldmap image, then you need to 
also get a magnitude image that is (i) undistorted and (ii) registered with this 
phase/fieldmap image. Usually the sequence used to acquire the phase or fieldmap 
image also contains data that can give you this magnitude image. Check with your 
scanner operator, physicists and/or analysis people as to how to reconstruct this image 
- often it just requires extraction from the original DICOM or vendor-specific format. 

(c) Check that the magnitude image and the phase/fieldmap images have the same 
resolution. You can do this by looking at the dim and pixdim entries (only the first three 
of each) as reported by fslinfo. 

If they are not the same then they must be resampled to be equal. In this case choose 
the one with the best resolution and use this as a reference image in flirt with the -
applyxfm option to resample the other images. For example, if the magnitude image 
has a better resolution (smaller pixdims) then do the following: 

flirt -in original_phase0 -ref fieldmap_mag -applyxfm -
out orig_phase0 
flirt -in original_phase1 -ref fieldmap_mag -applyxfm -
out orig_phase1 

Once this is done, check that the output images (e.g. orig_phase0) have the same 
dimensions and resolution as the reference (using fslinfo) and also check that they 
are aligned correctly by loading both the output and reference images into fslview and 
visually inspecting them. 

Step 2 - Getting (wrapped) phase in radians 

(a) If you have complex volumes then do: 



 
 

fslcomplex -realphase complex_acq phase0_rad 0 1 
fslcomplex -realphase complex_acq phase1_rad 1 1 

These phase volumes will now be in radians. (b) If you have seperate phase volumes 
that are in integer format then do: 

fslmaths orig_phase0 -mul 3.14159 -div 2048 phase0_rad -
odt float 
fslmaths orig_phase1 -mul 3.14159 -div 2048 phase1_rad -
odt float 

Note that the value of 2048 needs to be adjusted for each different 
site/scanner/sequence in order to be correct. The final range of the phase0_rad image 
should be approximately 0 to 6.28. If this is not the case then this scaling is wrong. If you 
have separate phase volumes are not in integer format, you must still check that the units 
are in radians, and if not scale them appropriately using fslmaths. 

Step 3 - Unwrapping the phase images 

Use PRELUDE to do the required phase unwrapping 

prelude -a fieldmap_mag -p phase0_rad -o phase0_unwrapped_rad 
prelude -a fieldmap_mag -p phase1_rad -o phase1_unwrapped_rad 

Step 4 - Getting the fieldmap in rad/s 

(a) For separate phase images do: 

fslmaths phase1_unwrapped_rad -sub phase0_unwrapped_rad -
mul 1000 -div TE fieldmap_rads -odt float where TE must be replaced 
with the appropriate difference in echo times (in units of milliseconds). 

(b) If you have a single, real fieldmap then you must determine the units of this fieldmap 
(ask an operator/physicist) and rescale to radians per second if it is not already in these 
units. Common other units are (i) Hz (scale these by 6.28 to get rad/s) and (ii) Telsa 
(scale these by 2.68e8 to get rad/s). 

Step 5 - Regularising the fieldmap 

Fieldmaps can often be noisy or be contaminated around the edges of the brain. To 
correct for this you can regularise the fieldmap using fugue. Note that the "best" 
regularisation will depend on many factors in the acquisition and must be determined 
separately for each site/scanner/sequence. Look at the fieldmap (e.g. using fslview) 
to decide what is the best regularisation to use - which could also be to do no 
regularisation. 

Some regularisation options are - Gaussian smoothing, despiking and median filtering. 
Examples of these (in order) are: 



 
 

fugue --loadfmap=fieldmap_rads -s 1 --savefmap=fieldmap_rads 
fugue --loadfmap=fieldmap_rads --despike --
savefmap=fieldmap_rads 
fugue --loadfmap=fieldmap_rads -m --savefmap=fieldmap_rads 

Any combination of these regularisations can be performed. See the command-line 
documentation on fugue below for more information aspects of regularisation. 

 

To calculate the effective echo spacing use the OSF furmula (https://osf.io/hks7x/): 

effective echo spacing=(((1000*WFS)/(434.215*(ETL+1))/acceleration) 

WFS = water-fat shift (per pixel) 

ETL: echo train length 



 
 

APPENDIX II 

PIPELINE 

1) Acquisition 

On the 3T MRI scanner Phillips, go to rs_fMRI_LB_CMP folder and the run the 4 

sequences: 

• 3D T1-TFE (TE=2,948 ms; TR=6,557 ms; flip angle=8°; voxel 

resolution of 1x1x1mm3; FOV of 240 mm2; matrix=512×512). 

• 3D FLAIR (TE=340 ms; TI= 1650 ms; TR=4800 ms; flip angle=90°; 

voxel=1.11x1.11x1.12mm3 (reconstructed to 0,88x0,88x0,56mm3); 

FOV=240 mm2). 

• Gradient-echo T2* (TE=2,3/4,6 ms; TR=20 ms; voxel= 3x3x3mm3; 

matrix=240x80x80mm; flip angle=10°). 

• Gradient-echo EPI (TE=33 ms; TR=2500 ms; voxel=3x3x3mm3; 

matrix=240x80x80mm; flip angle=88°; duration=6,5 minutes).  

 
Note: The participants must be instructed to stay awake, not to think of anything in particular, to 

keep the eyes closed and to stay still as much as possible, with shallow breaths. 

 

2) Extract the DICOM images from PACS to an external volume/disk. 

 

3) Download MRICRON (https://www.nitrc.org/projects/mricron) and convert the 

DICOM images to NIfTI with DICOM to NIfTI convertion tool 

(https://www.nitrc.org/projects/dcm2nii/). 

 

4) Connect the virtualbox (external disk) to the hardware (workstation) and launch 

the FSL on the command line. It will be opened a pop-up like this: 



 
 

 
5) Open BET brain extraction either by clicking on the button or typing ‘bet’. The 

following pop-up window will appear: 

 

 
 

• The step of scalp and skull removal requires manipulating the values of the 

‘Fractional intensity threshold’ and ‘Threshold gradient’ (BET parameters) 

to achieve a good estimate of the brain outline. This can be done by visual 

inspection of the images. We suggest to use the OptiBet script (reference 

on the text) for better results. 

 

6) Open MELODIC ICA either by clicking on the button or just type ‘Melodic’ on the 

command line. A pop-up window will appear: 

 



 
 

 
 
• Click on the button ‘Select 4D data’ and select your EPI sequence. Output 

directory will be created, you can change it if you want the output to be 

specified. TR should change automatically, but always confirm it. The high 

pass filter cutoff is the default (100s). 

 

7) On the previous window, click on ‘Pre-stats’ tab. 

 

 
 

• MCFLIRT is already selected in ‘Motion correction’ and should be left that 

way.  

8) The click on the B0 unwarping and it should appear like this: 

 



 
 

 
 

• On ‘Fieldmap’ select the Fieldmap image from your folder (see how to get 

the Fieldmap image from Phillips on Appendix XX) and on ‘Fieldmap mag’ 

the magnitude image from your folder. 

• The ‘Effective EPI echo spacing’ should be calculated for each Fieldmap 

(also detailed on Appendix XX). 

• Enter the ‘EPI TE’ which is 33ms in our case. 

• The B0 unwarpping should be run for both ‘-y’ and ‘y’ unwarp direction (and 

then check for the best results). 

• The ‘% Signal loss threshold’ can be de default. 

• ‘Slice timing correction’ should be none for resting-state analysis. 

 

9) Next, click on ‘Registration’ tab. 

 

 



 
 

• In this step we defined the main structural image as the image obtained by 

the BET and the registration as Linear ‘Normal Search’ with ‘BBR’ selected. 

For the standard space we use the default standard space image with 

Linear ‘Normal Search’ and ’12 DOF’ and also select ‘Nonlinear’. 

 

10)  Then click on ‘Stats’ tab. 

 

 
 

• In this folder everything should be kept as default. 

 

11)  Open ‘Post-Stats’ just to check that ‘Threshold IC maps’ is defined as 0.5. 

 

 
 

12)  Click on ‘Go’ button and wait for the Melodic analysis to run.



 
 

13)  After first Melodic analysis is performed, we apply the FIX auto-classify ICA 

components just by typing on command line:  

 /usr/local/fix/fix <mel.ica> /usr/local/fix/training_files/Standard.RData  20, where 

<mel.ica> is the path to the directory where our melodic analysis is placed. 

 

• This step will create a file named: XXXX_clean.ica that is our IC after cleaned-

up by FIX. 

 

14)  With this steps we conclude the rs-fMRI analysis, ending up with a determinate 

number of IC that we need to inspect to compare with the RSNs. 

 

 
 
 
 

  



 
 

 


