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Abstract

Cloud Storage is a popular service used by large entities or by single users at a personal level. The
responsibility of storage companies in maintaining external data stored on their servers has been
growing in the last years. Any type of disk failure can result in large monetary costs for companies,
even if the number of failed disks is small. In order to mitigate this problem, companies rely on
monitoring variables provided by vendors. These are the S.M.A.R.T. (Self-Monitoring, Analysis
and Report Technology) attributes, that provide information about various aspects of hard disks.
However, even monitoring these variables, disks still fail unexpectedly.

This thesis’ objective is based in the analysis and learning of hard disk behaviour in an
attempt to uncover factors and relations among the S.M.A.R.T. attributes that may be worth
investigating before a disk fails. By predicting anomalous behaviors and hard disk failures, the
companies can be more proactive in taking preventive measures and improving the monitoring of
their storage devices.

The data used in this work accounts for 90 days of hard disks observations made available
by Backblaze. An thorough analysis of the disks is made, preparing the data for the machine
learning methods used. Because the ratio of healthy disks over failed disks is very high, an
undersampling method is applied to the majority class. As learning models, Random Forest and
Support Vector Machine are used. Relations among the S.M.A.R.T. attributes, which expose
relationship patterns of healthy and failed disks are extracted from the Random Forests. We also
apply a Vector Autoregression (VAR) method in order to find multiple temporal correlations
among the attributes and perform forecasting of disk attributes values.

Results indicate that S.M.A.R.T. variables 9, 193 and 240 are correlated over time. Also,
variables 7, 9 and 240 are present quite often in the results for failed disks, which does not
happen so often for the healthy disks.

The obtained results are promising and the methodology and statistical analysis carried out
may prove to be useful for new projects in this area. For forecasting, our time series is not
sufficiently large. Nevertheless, for some disks, predictions for a small period of time ahead have
a low error. We expect that companies may investigate the methods used in this work in order
to provide even better service to users.
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Resumo

Cloud Storage é um serviço popular cada vez mais utilizado por grandes entidades ou até por
utilizadores a nível pessoal. A responsabilidade das empresas de armazenamento em manter
dados externos nos seus servidores, tem vindo a crescer nos últimos anos. Qualquer tipo de falha
nos discos pode advir grandes custos monetários às empresas mesmo que o número de falhas seja
pequeno. De forma a reduzir este problema, as empresas utilizam variáveis de monitorização
disponibilizadas pelas diferentes marcas de discos. Estas variáveis são as S.M.A.R.T. (Self-
Monitoring, Analysis and Report Technology) attributes, que fornecem informações sobre as
diferentes características do disco. Contudo, mesmo com uma monitorização cuidada destas
variáveis, alguns discos falham inesperadamente.

O objetivo desta tese baseia-se na análise e na aprendizagem do comportamento dos discos
rígidos, com o intuito de descobrir fatores e relações das S.M.A.R.T. attributes que possam vir a
ser investigados antes da falha do disco. Prevendo estes comportamentos anómalos e falhas em
discos rígidos, as empresas podem tentar ser mais proativas a tomar medidas preventivas e a
monitorizar os seus dispositivos de armazenamento.

Os dados usados neste projeto são de observações de discos rígidos, adquiridos durante 90 dias,
disponibilizados pela empresa Backblaze. Uma análise por todos os discos é feita, para preparar
os dados a serem processados pelos modelos de learning. Como o ratio de discos saudáveis sobre
os discos que falham é muito elevado, um método de undersampling é aplicado à classe maioritária.
Os modelos de learning utilizados são o Random Forest e o Support Vector Machine. Através
da Random Forest são extraídas algumas relações, de acordo com as S.M.A.R.T attributes, que
mostram padrões para dos discos saudáveis e para os discos que falham. É também aplicado um
método de Vector Autoregression de maneira a encontrar múltiplas correlações temporais nas
variáveis e executar uma previsão dos valores dos atributos.

Os resultados indicam que as variáveis S.M.A.R.T. 9, 193 e 240 se correlacionam ao longo do
tempo. Além disso, as variáveis 7, 9 e 240 estão presentes com maior frequência nos resultados
dos discos com falha, não se verificando o mesmo para discos considerados saudáveis.

Os resultados obtidos são promissores, sendo que a metodologia e a análise estatística feita
podem vir a ser úteis para novos projetos nesta área. Para a previsão, a nossa série temporal não é
suficientemente grande, contudo para alguns modelos de discos, a previsão tem uma percentagem
de erro bastante baixa. Espera-se que as empresas possam investigar mais detalhadamente os
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métodos utilizados neste trabalho de maneira a providenciar melhores serviços aos utilizadores.
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Chapter 1

Introduction

Hard drives are an essential component in today’s data storage systems. Ten years ago a terabyte
was considered a large amount of memory, but nowadays some applications manage to generate
huge amounts of information per day. One example is Facebook, that can generate more than
500 terabytes daily [16].

The boom of cloud computing, online services and big data applications have resulted in a
huge expansion of storage systems. More than 90% of the information produced annually in our
world, is stored in magnetic devices [16]. Datacenters have the responsibility to ensure quality of
service for their customers, who depend highly on their storage systems.

Although a hard drive failure event is relatively rare, when we consider cloud scale service
providers, rare events occur frequently enough to be the norm and cause issues with large scale
infrastructures. Hard drives are reported to be the components that most need to be replaced
in storage systems. HDD failures cause service delays and sometimes data loss, costing big
companies millions of euros per year. According to a research [17], the average cost of data center
down time is 9000$ per minute.

S.M.A.R.T. (self monitoring, analysis and reporting technology) was for a long time, the
mechanism used to evaluate the health status of hard drives. Once it was detected that the
values were above the threshold, the system administrator would be informed. Unfortunately,
the failure detection rate of only using S.M.A.R.T. variables is only between 3%-10% [30].

1.1 Objective

Given the poor performance of monitoring the S.M.A.R.T. attributes and the fact that many
vendors choose specific attributes to monitor their HDD’s, the main objectives of this work are:
(1) to improve the performance in detecting possible failures and misbehaviour in hard disks,
and (2) study the impact of other, less studied, S.M.A.R.T. attributes on healthy and failed
hard disks.
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2 Chapter 1. Introduction

1.2 Contribution

By examining daily observations of S.M.A.R.T. attributes from thousands of hard disk models,
provided by Backblaze, patterns were successfully identified for specific attributes along time
that could distinguish healthy from misbehaving disks. Were also found correlations for sets of
S.M.A.R.T. attributes that are usually not associated with disk failure. With these correlations,
companies can have a more precise monitoring of the disks, following the progress of several
variables over time, instead of just a single critical variable. Moreover, we studied the applicability
of a vector autoregressive model to perform a forecasting of the attributes values with the intention
of emitting alerts to companies about the future behaviour of their disks.

1.3 Structure

This thesis is organized in 4 more chapters that are described below:

Background Provides some concepts on the most important topics related to this project,
such as some basic concepts on hard disks functioning, S.M.A.R.T. attributes, Data Mining
techniques, machine learning models, imbalanced domains, time series concepts and metrics to
evaluate performance. The chapter ends with a literature review about learning models used to
prevent disk failures.

Failure and Misbehavior Prediction In this Chapter the methodology used in this work
is described to help finding ways to predict disk failures. This chapter also describes the dataset
used, pre-processing methods and how the learning models were applied.

Results and Analysis Presents the results and main findings, as well a discussion about
what was achieved.

Conclusion Presents a summary of the motivations and main contributions given by this
work. And a summary about what could be done in future works.



Chapter 2

Background

In this chapter, the necessary concepts and methods to achieve our objectives are reviewed. It
starts with a small overview on HDD’s concepts and S.M.A.R.T. attributes. Next, some Data
Mining techniques, followed by exploring some of the machine learning algorithms and time series
concepts.

2.1 Hard Disk Drives

The hard disk industry has more than half a century of existence, and the first HDD was
implemented in 1956 by the IBM (International Business Machines Corporation) company with
only 5 MB (Mega Bytes) of capacity. Nowadays, anyone has access to a HDD on their computer,
but a few decades ago, a HDD was a gigantic device that occupied an entire floor. The constant
need to increase data storage digitally, made this area develop a lot in the recent years. The
ability to meet this demand at a relatively low cost, makes the HDD the undisputed candidate
for online storage [1].

A HDD is a magnetic data storage device that uses one or more rotating disks (platters)
coated with magnetic material. The components of a HDD can be classified in 4 categories -
magnetic, mechanical, electromechanical and electronic. The disks are paired with magnetic
heads, that can read and write information on the surfaces of the disk. Data is written and read
from HDD in chunks of data or data blocks and each block is mapped to a specific addressable
place on the HDD. These blocks are the smallest unit of storage on any given HDD. HDD’s can
be connected to systems via PATA (Parallel Advanced Technology Attachment), SATA (Serial
Advanced Technology Attachment), USB (Universal Serial Bus) or SAS (Serial Attached SCSI)
cables [1]. In Figure 2.1 it is possible to verify some HDD essential components.

3



4 Chapter 2. Background

Figure 2.1: HDD components. [1]

2.1.1 Disk Failures

Schroeder et al. [28] mention a very important point, when saying that costumers and vendors
might use different definitions of what is a faulty HDD. For a costumer, a disk misbehavior
may consist in a reading operation that takes longer to execute than usual. For vendors, that
value may not be an alarm to be considered because the threshold is not being passed. A
disk manufacturer once published that 43% of all disks returned by costumers, because they
supposedly found that the disks had some problem, were considered healthy by the vendors.
While drive manufacturers often quote yearly failure rates below 2%, user studies have seen rates
as high as 6% [27].

Failures can be categorized in two major groups, predictable and unpredictable [24]. Unpre-
dictable failures, such as electronic and some mechanical problems, occur quickly without any
chance of control from the user. For example, a power surge may cause chip or circuit damages
on the hard disk. On the other hand, predictable failures are characterized by degradation of an
attribute over time. Therefore, attributes can be monitored, making it possible for predictive-
failure analysis. Many mechanical components suffer some kind of degradation over their life-time,
this can indicate a potential problem in the future, so it is possible to the user to control the
HDD components more carefully before they fail [24].

The study made by Schroeder et al. [28] also refers that even if the HDD is from the same
model, they can differ on their behavior, because disks are manufactured using processes and
parts that may change. A simple change in a drive’s firmware or in a hardware component, or
even in the assembly line on which a drive was manufactured, can change the failure behavior of
a disk.

According to the Backblaze Company, a disk is considered failed when [5]:

"it is removed from a Storage Pod and replaced because it has 1) totally stopped working, or 2)



2.1. Hard Disk Drives 5

because it has shown evidence of failing soon. A drive is considered to have stopped working when
the drive appears physically dead (e.g. won’t power up), doesn’t respond to console commands or
the RAID system tells us that the drive can’t be read or written."

2.1.2 S.M.A.R.T. Attributes

S.M.A.R.T. emerged from the need to protect critical information stored on disk drives. As system
storage capacity requirements increased, the industry identified the importance of creating an
early warning system that would allow enough lead time to back up data if failure was imminent,
preventing catastrophic data loss [24].

S.M.A.R.T. includes a series of attributes, chosen specifically for each drive model. This
individualism is important because HDD architectures vary from model to model. Attributes
and thresholds that detect failure for one model may not be functional for another model. The
same occurs between vendors.

In Table 2.1 some of the attributes and their meaning [9] are presented.

Table 2.1: S.M.A.R.T. Attributes

ID Attribute Name Description
smart_1 Read Error Rate Rate of hardware read errors that occurred

when reading data from a disk surface.
smart_2 Throughput Performance Throughput performance of a hard disk drive.
smart_3 Spin-Up Time Average time of spindle spin up (from zero

RPM to fully operational [milliseconds]).
smart_4 Start/Stop Count A tally of spindle start/stop cycles.
smart_5 Reallocated Sectors Count Count of reallocated sectors.
smart_7 Seek Error Rate Rate of seek errors of the magnetic heads.
smart_8 Seek Time Performance Average performance of seek operations of the

magnetic heads.
smart_9 Power-On Hours Count of hours in power-on state.
smart_10 Spin Retry Count A total count of the spin start attempts to

reach the fully operational speed.
smart_11 Recalibration Retries A count that recalibration was requested.
smart_12 Power Cycle Count A count of full hard disk power on/off cycles.
smart_184 End-to-End error A count of parity errors which occur in the

data path to the media via the drive’s cache
RAM.

smart_187 Reported Uncorrectable Errors The count of errors that could not be recovered
using hardware ECC
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smart_188 Command Timeout The count of aborted operations due to HDD
timeout.

smart_189 High Fly Writes This attribute indicates the count of rewritten
or reallocated information over the lifetime of
the drive.

smart_190 Temperature Difference Value is equal to (100-temp. C), allowing
manufacturer to set a minimum threshold
which corresponds to a maximum temperature.

smart_191 G-sense Error Rate The count of errors resulting from externally
induced shock and vibration.

smart_192 Power-off Retract Count Number of power-off or emergency retract
cycles.

smart_193 Load Cycle Count Count of load/unload cycles into head landing
zone position.

smart_194 Temperature Indicates the device temperature.
smart_195 Hardware ECC Recovered
smart_196 Reallocation Event Count A count of attempts to transfer data from real-

located sectors to a spare area. Both successful
and unsuccessful attempts are counted.

smart_197 Current Pending Sector Count Count of "unstable" sectors (waiting to be
remapped, because of unrecoverable read
errors).

smart_198 Uncorrectable Sector Count The total count of uncorrectable errors when
reading/writing a sector.

smart_199 UltraDMA CRC Error Count The count of errors in data transfer via
the interface cable as determined by ICRC
(Interface Cyclic Redundancy Check).

smart_200 Multi-Zone Error Rate The count of errors found when writing a
sector.

smart_201 Soft Read Error Rate Count indicates the number of uncorrectable
software read errors.

smart_223 Load/Unload Retry Count Count of times head changes position.
smart_240 Head Flying Hours Time spent during the positioning of the drive

heads.

Some variables are considered to be critical, by the literature, in failure events. These
variables are 5, 12, 187, 188, 189, 190, 198, 199 and 200 [3]. In this project, one of the objectives
is also to pay attention to the variables that are not so observed, because the alert variables are
generally already highly monitored by the storage companies.

Generally, in smart attributes that are already normalized by the vendors, higher values
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are always better (except for temperature in some manufactures). The range is normally 0-100
and for some attributes 0-255. There is no standard on how manufacturers convert the raw
values to the normalized ones: it can be a linear, exponential, logarithmic or any other range
normalization. That said, it is really difficult to have a quick perception of the disks behavior on
a cloud storage system, since they usually use dozens of different disk models.

2.2 Data Mining

As previously mentioned, the technological boom created a lot of information in the digital world.
These data are a great source of knowledge extraction for all companies. The constant need to
interpret data and discover relevant information has caused data analysis to develop rapidly in
recent years.

Fayyad et al. [13] described the necessary steps to extract relevant information on databases.
The KDD (Knowledge Discovery in Databases) process is a set of continuous activities that
share the knowledge discovered from data. According to Fayyad et al. [13] this set is composed
of five steps: data selection, pre-processing and data cleaning, processing of data, data mining,
interpretation and evaluation of results (cf. Figure 2.2).

Figure 2.2: An overview of the KDD steps [13]

2.2.1 Machine Learning

Machine Learning principal objective is to understand the way data is related. It is based
on algorithms that can learn models and make predictions. Machine learning tasks can be
categorised as supervised, unsupervised or semi-supervised. In supervised learning the goal is to
train the machine using data that is already labelled in order to give a learning basis for future
processing. In this case, the labelled values correspond to what is called the target variable. In
unsupervised learning, examples do not have a target variable associated, so the objective is to
group similar observations without knowing what is represented by each group. Semi-supervised
learning is a task using both labelled and unlabelled cases.
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Supervised learning tasks can be split in two categories of algorithms: classification and
regression. Classification is a form of data analysis that extracts models describing important
data classes. Such models, called classifiers, predict categorical class labels. The classification
model is built from the analysis of the training data set and is used to predict the class label
for observations that are not categorized. Regression is used to predict a numeric or continuous
values. Regression is a statistical methodology that is most often used for numeric prediction, so
it is used to predict missing or unavailable numerical data values rather than (discrete) class
labels [14].

2.2.2 Classification Algorithms

In the development of this work, two machine learning algorithms were used for the classification
task such as Random Forest and SVM (Support Vector Machine). Below, the algorithms are
described with more detail.

The goal of classification tasks is to obtain a good approximation of the unknown function
that maps predictor variables toward the target value. The unknown function can be defined as
Y = f(X1, X2, ..., Xp), where Y is the target variable, X1, X2, ..., Xp are features and f() is the
unknown function we want to approximate. This approximation is obtained using a training
dataset D = {〈xi, yi〉}ni=1

2.2.2.1 Random Forest

The Random Forest algorithm was first introduced by Breiman [8] and it is defined as an ensemble
method. An ensemble is a set of multiple models, being in this case, a set of decision trees. As
the name suggests, this algorithm creates a forest with a large number of decision trees, where
each one considers a distinct random subset of features when forming the decision nodes, while
accessing a subset of the training data. Each classifier tree is a predictor component.

In classification, Random Forest constructs is decision by counting the votes of the predictor
components in each class and then selects the winning class by checking the number of votes
accumulated. The process of this algorithm is represented in Figure 2.3: the first phase consists
of training each decision tree with data subsets from the training set. Then, the test cases are
classified by majority vote.
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Figure 2.3: Random Forest example [21]
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2.2.2.2 Support Vector Machine

Support Vector Machine, proposed by Boser et al. [7] in 1992, consists in a method that tries
to find the largest margin to separate different classes of data. The objective of the SVM is to
construct an optimal hyperplane that can separate different classes of data. In the Figure 2.4 it
is possible to see how SVM works. There are several straight lines that can be drawn to separate
the data, the support vectors are data points that are closer to the hyperplanes and they serve
to choose the best one, represented by the filled points.

Figure 2.4: SVM example [18]

The data can not always be separable in a linear way. In these cases, the SVM maps the data
to a space of higher dimension. At this point, the concepts of soft margin and kernel trick are
introduced. The main idea of a soft margin is to allow some examples to be placed on the wrong
side of the dividing hyperplane. The kernel transforms non-separable data to separable data by
adding more dimension. Nonlinear kernel functions were proposed by Boser et al. [6] so SVM
could be applied to data that couldn’t be divided by linear hyperplanes. Table 2.2 provides some
of the kernel functions.

Table 2.2: SVM Kernel Types
Kernel Type Formula

Polynomial kernel (xi, xj) = (xi ∗ xj + r)p, r ≥ 0
RBF kernel (xi, xj) = exp(−γ||xi − xj ||2), γ > 0

Sigmoid kernel (xi, xj) = tanh(ηxi ∗ xj + v)

2.2.3 Time Series

In almost every scientific field, some measurements are performed over time [12]. The purpose of
time-series models is to extract the most meaningful knowledge from the shape (temporal) of the
data. A time series is a collection of observations obtained chronologically. Time series can be
regular if there is an equally spaced interval of time between the observations and irregular if the
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opposite occurs. The values are typically measured at equal time intervals (e.g.,every minute,
hour, or day). This type of data can be characterized in 4 different movements [14]:

• Trend or long-term movements: These indicate the general direction in which a
time-series graph is moving over time.

• Cyclic movements: Are the long-term oscillations about a trend line or curve.

• Seasonal variations: Are nearly identical patterns that a time series appears to follow
during seasons of successive time.

• Random movements: As the name refers, are random movements with no pattern
associated.

In figure 2.5 it is possible to have a better perception of the 4 different types of movements.

Figure 2.5: Time Series Types [2]

These movements referred above, can also be grouped in two kinds of data. Stationary and
not stationary. In stationary data, the time series values do not depend on the time that the
observations were collected, therefore it will not have predictable patterns in the long-term. Non
stationary data typically have some kind of trend or seasonality over the time [23]. In figure 2.6
it is possible to see and example to have a better perception in the differences between these two
types.
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Figure 2.6: Stationary and not stationary data [26]

2.2.4 Vector Auto Regression

Lütkepohl et al. [23] say that if time series observations are available for a variable of interest
and the past observations contain information about the future development of a feature, it is
worth using as forecast some function of the data collected in the past.

The VAR model expresses each variable as a linear function of its own past values, the past
values of all other variables being considered, and a serially uncorrelated error term
[32]. Each variable has an equation explaining its progression over time. This equation includes
the variable’s lagged (past) values, the lagged values of the other variables in the model, and an
error term.

Usually, equations of a bivariate autoregression typically take the form [15] :

yt = α0 +
m∑

l=1
αlyt−l +

m∑
l=1

δlxt−l + ut (2.1)

"where the α’s and δ’s are the coefficients of the linear projection of yt onto a constant and
past values of yy and xt, and the lag length m is sufficiently large to ensure that ut is a white
noise error term. While it is not essential that the lag lengths for y and x are equal, we follow
typical practice by assuming that they are identical."
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2.3 Imbalanced domain learning

This project faces an imbalance domain learning problem. This occurs whenever the user has
an interest in cases that are rare in the training set. This can create several obstacles in the
learning methods that are applied. The models created by standard learning algorithms tend to
be biased towards the majority class and because of that, the evaluation metrics will not capture
the competence of models in relevant cases.

Han et al. [14] say that “given two-class data, the data are class-imbalanced if the main class
of interest (the positive class) is represented by only a few tuples, while the majority of tuples
represent the negative class.”

Therefore, it is really important to pay close attention to this type of data, and take the
necessary steps to prevent getting wrong information from the data mining processes that are
made.

Two of the methods utilized to handle imbalanced data are oversampling and undersampling.
Oversampling works by resampling the positive tuples so that the training set contains an equal
number of positive and negative tuples. Undersampling works by decreasing the number of
negative tuples. It randomly eliminates tuples from the majority (negative) class until there are
an equal number of positive and negative tuples [14].

In Figure 2.7 we can see a clear example of these two sampling methods:

Figure 2.7: Undersampling and Oversampling examples. [20]

2.4 Evaluation Metrics

In machine learning, normaly are used the terms of positive tuples (tuples of the class of interest)
and negative tuples (all the other tuples). Four more terms are used, and are the base-line of
many evaluation metrics used. Below, each of the terms are explained [14]:

• True positives (TP): Positive tuples that were correctly labeled by the classifier.
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• True negatives (TN): Negative tuples that were correctly labeled by the classifier.

• False positives (FP): Negative tuples that were incorrectly labeled as positive.

• False negatives (FN): Positive tuples that were incorrectly as negative.

With these four definitions, we can build a confusion matrix. It is a square matrix, with as
many rows and columns as there are classes on the data. Each row represents the actual class of
the observation while each column represents the predicted class. This matrix serves as a source
of information for most of the metrics used. An example of a confusion matrix can be seen in
Figure 2.8.

Figure 2.8: Confusion Matrix. [25]

In Figure 2.9 we can see the most used metrics to evaluate learning models.

Figure 2.9: Evaluation Metrics. [11]
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2.5 Related Work

Several works on the subject of hard drive failure prediction have already been made. In recent
years almost everyone works with the Backblaze dataset, that gathers more than 100 thousand
hard disk drives and reports their respective S.M.A.R.T. variables daily [3], [33].

Aussel et al. [3] say that the existing predictive models no longer perform sufficiently well on
the Backblaze dataset due to the extremely high unbalanced ratio of 5000:1 between healthy
and failure disks, and the lack of control on the environment. For that reason they selected
machine learning models for classification, like SVM, Random Forests and Gradient Boosting
Trees. They achieved results of 95% precision and 67% recall with the Random Forests model
and 94% precision and 67% recall with Gradient Boosting Trees. The SVM got a precision below
1%.

Wang et al. [33] defend that the reactive fault-tolerant measures, like RAID’s (Redundant
Array of Inexpensive Drives) and ECC (error correction codes) are not enough to mitigate or
eliminate the negative effects of the HDD’s failures. The proactive measures are more efficient
because they will predict the failures in advance. However the built-in prediction models that
the HDD’s manufactures are using, have a quite weak prediction power, with only 4% of failure
prediction rate. To overcome the issues and obtain results, they proposed a deep architecture
called Amender (for Attention-augMENted Deep architEctuRe) composed of a feature integration
layer, a temporal dependency extraction layer, an attention layer and a classification layer. After
analyzing the results, they concluded that different S.M.A.R.T. attributes have different abilities
to indicate failures. Compared with Recurrent Neural Networks (RNNs) the architecture proposed
improves 8.3% on failure-prediction and 90.2% in the health status assessment. This will also
help find the causes of HDD failures.

Shen et al. [31] propose a Random Forest predicting model capable of differentiating failure
prediction for HDD’s. They show that most of the statistical approaches, machine learning,
and deep learning technologies are good at identifying failures that occur more frequently, but
perform poorly when they face a less known behavior. A clustering-based under-sampling method
is used, so the data imbalance problem is mitigated and the quality of training set is improved.
The results show that the Random Forest model can achieve a FDR (Failure Detection Rate) of
over 97.67% with a FAR (False Alarm Rate) of 0.017%.

Li et al. [22] propose two prediction models based on Decision Trees and Gradient Boosted
Regression Trees in two different real-world datasets (one with 121,698 and other with 39,091
hard disks). In data preparation and pre-processing, they use quantile functions, to select the
more important features on healthy and drives that fail.

• Bigger dataset: The Decision Trees model, helps in improving the hard drive failure
prediction with a 93% FDR and a FAR under 0.01%. The Gradient Boosted Regression
Trees also contributes in evaluating the health degree level and the results show a 90%
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FDR and a 0% FAR.

• Smaller dataset:Both models show steady prediction performance, with failure detection
rates of 80% to 96% and low false alarm rates of 0.006% to 0.31%.

They also mention a really interesting point by using a metric that calculates the expected
number of data loss events per petabyte used by year in these companies.

Zhao et al. [34] believe that many works done in the area fail to consider the characteristics
of the observed features, over time, and tend to make the predictions based on individual or a
set of attributes. They also believe that it is reasonable that attribute values observed over time
are not independent, and a sequence of observed values with certain patterns may be a good
indicator on whether or not a drive may fail soon. Therefore, they consider the observations
from the disks, as a time series and apply a Hidden Markov Model and a Hidden semi-markov
model to build prediction models that could label disks as healthy or pre-failing. Although their
FDR results are not high (up until 46% for single attributes and 52% for multiple attributes),
they achieve a FAR of 0% in both cases.
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Failure and Misbehavior Prediction

In this chapter the methodology to achieve the proposed objectives is described. Starts by
presenting the base method (CRISP-DM) used in this work. Then, a detailed description about
the Backblaze data is presented, as well as the approach taken to pre-process, analyse and
modeling these datasets.

3.1 Methodology

In this work we will use the popular CRISP-DM (Cross Industry Standard Process for Data
Mining) methodology to analyse the data and build the learning models. This method, as
shown in Figure 3.1, consists of six steps. Next, a brief describe of each one them is presented,
highlighting our HDD domain.

Figure 3.1: CRISP-DM process diagram.[? ]
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Business and data understanding

The proposed methodology begins by understanding the main concepts about the HDD
market, and the cloud storage systems as a business, in order to get a better insight into the
problem that is intended to solve. The data understanding makes a big part of this project, so a
prior analysis to inspect the various attributes and observations is made, and a verification of
the data quality to ensure that the pre-processing methods are done correctly.

Data Preparation

The dataset used is from Backblaze (explained further) so there is no need to create a program
to collect the disks observations and merge them in a database. Therefore, it is just necessary to
pre-process the data, based on the information extracted on the steps above. The usual tasks
like removing missing values, duplicated observations and biased values are executed.

Modelling and Evaluation

In this phase, the learning models are selected according to the project objective. Since the
dataset is a time series, a forecasting model is selected so the results can demonstrate some
correlation through time between the variables, and a forecast can be calculated to predict some
disk misbehavior. Lastly, two classification algorithms are applied, to failed and healthy disks,
and the respective evaluation metrics are analysed.

3.2 Dataset Description

The Dataset utilized in this project is provided by Backblaze, a cloud storage and data backup
company, founded in 2007. They provide B2 Cloud Storage and Computer Backup services,
targeted at both business and personal markets. Since 2013, Backblaze has been publishing
statistics and insights based on the hard drives in their data center. Along with that, they made
their data available to the public [4].

Every day in the Backblaze data center, a snapshot of each operational hard drive is taken.
The snapshots include basic drive information (explained below) along with the S.M.A.R.T.
attributes reported by each drive. All the drives informations are collected into a file consisting
of a row for each hard drive. The file format is a "csv" (Comma Separated Values) [4].

As mentioned, the company joins some drive information to the S.M.A.R.T. attributes. That
information is described as follows:

• Date – The day when the snapshot was taken in yyyy-mm-dd format.

• Serial Number – The manufacturer-assigned serial number of the drive.

• Model – The manufacturer-assigned model number of the drive.

• Capacity – The drive capacity in bytes.
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• Failure – Contains a “0” if the drive is OK. Contains a “1” if this is the last day the drive
was operational before failing.

In figure 3.2 it is possible to have a better visualization of the type of data that is being used.

Figure 3.2: A dataset sample example from October 1st.

In this project, the data from the fourth trimester of 2019 will be used. 92 datasets from the
period of 01-October to 31-December were downloaded from the Backblaze data center. After a
brief analysis to all files, 125,731 different disks were identified during the three months.

From the 125,731 disks, only 678 failed showing a failure rate below 0.54%. This demonstrates
a huge disparity between the two classes that categorize the disks. In Figure 3.3 it is possible to
have a better visualization of the data distribution.

Figure 3.3: Diagram of Failed and Healthy Disks

The company has in its storage systems, dozens of different HDD’s models and from different
vendors too. In Table 3.1, it is possible to see all types of disks available on this dataset.
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Table 3.1: All disk models and their numbers available on Backblaze Storage.

Disk model Number of Disks Disk model Number of Disks
DELLBOSS VD 60 ST6000DM001 4

HGST HDS5C4040ALE630 26 ST6000DM004 1
HGST HMS5C4040ALE640 2833 ST6000DX000 887
HGST HMS5C4040BLE640 12758 ST8000DM002 9844
HGST HMS5C4040BLE641 1 ST8000DM004 3
HGST HUH721010ALE600 20 ST8000DM005 25
HGST HUH721212ALE600 1561 ST8000NM0055 14502
HGST HUH721212ALN604 10866 Seagate BarraCuda SSD ZA2000CM10002 4
HGST HUH728080ALE600 1002 Seagate BarraCuda SSD ZA250CM10002 157
HGST HUS726040ALE610 28 Seagate BarraCuda SSD ZA500CM10002 18
Hitachi HDS5C4040ALE630 2 Seagate SSD 107

ST10000NM0086 1205 TOSHIBA HDWE160 4
ST1000LM024 HN 1 TOSHIBA HDWF180 20
ST12000NM0007 37442 TOSHIBA MD04ABA400V 99
ST12000NM0008 7226 TOSHIBA MG07ACA14TA 3627
ST12000NM0117 15 TOSHIBA MQ01ABF050 475
ST16000NM001G 40 TOSHIBA MQ01ABF050M 425
ST4000DM000 19330 WDC WD5000BPKT 10
ST4000DM005 39 WDC WD5000LPCX 54

ST500LM012 HN 501 WDC WD5000LPVX 214
ST500LM021 33 WDC WD60EFRX 3
ST500LM030 259

Not all vendors use the same variables, so it is important to note which ones will be kept in
the dataset. In Table 3.2 the features that each vendor prefers to use, are summarised. It is
important to note that not all variables are presented on the table, as vendors do not use many
of them.
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Table 3.2: S.M.A.R.T. Attributes used from each vendor.

S.M.A.R.T.
Vendors Toshiba Hitachi Seagate WDC

smart_1 X X X X

smart_2 X X X

smart_3 X X X X

smart_4 X X X X

smart_5 X X X X

smart_7 X X X X

smart_8 X X X

smart_9 X X X X

smart_10 X X X X

smart_11 X X

smart_12 X X X X

smart_18 X

smart_22 X

smart_23 X

smart_24 X

smart_183 X

smart_184 X

smart_187 X

smart_188 X

smart_189 X

smart_190 X

smart_191 X X X

smart_192 X X X X

smart_193 X X X X

smart_194 X X X X

smart_195 X

smart_196 X X X X

smart_197 X X X X

smart_198 X X X X

smart_199 X X X X

smart_200 X X

smart_220 X

smart_222 X

smart_223 X X X

smart_224 X

smart_225 X

smart_226 X

smart_240 X X X

smart_241 X X

smart_242 X X

smart_254 X

Total 26 21 34 19
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Backblaze gives some helpful considerations to be taken before working with the data available
on the platform. Below some of them are presented [4].

Blank Fields

"The daily snapshots record the SMART stats information reported by the drive. Since most
drives do not report values for all SMART stats, there are blank fields in every record. Also,
different drives may report different stats based on their model and/or manufacturer."

Inconsistent Fields

"Reported stats for the same SMART stat can vary in meaning based on the drive manufacturer
and the drive model. Make sure you are comparing apples-to-apples as drive manufacturers don’t
generally disclose what their specific numbers mean."

Out-of-Bounds Values

"The values in the files are the values reported by the drives. Sometimes, those values are
out of whack. For example, in a few cases the RAW value of SMART 9 (Drive life in hours)
reported a value that would make a drive 10+ years old, which was not possible. In other words,
it’s a good idea to have bounds checks when you process the data."

The Number of Drives Will Change

"When a drive fails, the "Failure" field is set to "1" on the day it fails. The next day, the
drive is removed from the list and is no longer counted, reducing the overall number of drives.
On the other hand, new drives are added on a regular basis increasing the overall number of
drives. In other words, count the number of drives each day."

3.3 Data Preparation

For this project, data mining tasks were performed using the Python language, mainly using the
pandas library, for data manipulation and analysis. Pandas offers structures and operations for
manipulating numeric tables and time series. As a code development interface, Jupyter lab [19]
and Google Collaboratory [10] platforms were used. The last one offers a virtual machine service,
so the resources used were not from a personal machine. Access to a server at the DCC was also
granted so that high-cost processing and memory executions could be performed.

The process of cleaning data is an important way to extract wrong values, missing values
and information that could be biased. One of the first and natural approaches to take would be
to remove disks that have less than 100 units per model, to make the dataset more homogeneous
and work only with the most used models, as they would consequently have more information to
extract. However, as this project works with imbalanced domains, the removed models could fail
during the time period under analysis, and this would make the minority class even smaller.
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As it is possible to see in Figure 3.2, each feature has a raw_ value and a normalized_value
associated. As mentioned before, in Chapter 2, the normalized_value is a mapping from
raw_values to discrete values chosen by vendors. As the objective would be to use classification
algorithms, the ideal would be to work with normalized data, so that the values of the observations
are not too dispersed. However, data normalization causes a lot of information to be lost during
the process and raw values from different disks, which are very dispersed, end up belonging to
the same value range when normalized.

Another natural approach would be to remove columns that have more than half of the
observations as missing values. But as mentioned above, there are models that do not use some
of the existing features in the dataset so the number of missing values will naturally increase,
thus it is not possible to conclude that the variable is removable.

As discussed in the previous paragraphs, the pre-processing performed on this dataset requires
a lot of attention and care. Since removing models with less than 100 disks would not be a
good approach, it was decided that the models that never failed over the 3 months, would be
removed. This measure was taken because the observations of these disks will never take our
class of interest into account so it is not worth analyzing them.

Then it is necessary to deal with data imbalance. One of the methods presented in chapter 2
was undersampling, that consists of randomly choosing a smaller set of observations, capable of
balancing the dataset. As the objective is to analyze the dataset in a temporal way, a function
was executed to determine the day with most failures. After selecting it, the failed disks were
gathered, and the respective observations were collected from day 1 to the selected day. With
this, it is possible to obtain a dataset in the form of a time series, to better analyze the behavior
of the disks over the days. From now, the undersampling method is used to select the disks that
were healthy until the day, and collect the respective observations over the period. It is important
to note, that the healthy disks must be from the same model as the disks that failed, so that
the comparison would be correctly done, because as stated by Backblaze, different models make
use of different variables. Therefore, 2 datasets are created: Healthy Disks and Failed Disks. In
Figure 3.4 it is possible to have a better visualization of this process where blue corresponds to
healthy disks and red to the failed disks.
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Figure 3.4: Pre-Processing Diagram Example.

3.4 Methodology for Data Visualization and Analysis

Before the models are applied, a temporal analysis is executed to both datasets created (Healthy
Disks and Failed Disks) for a better visualization of the oscillations in the variables values, so as
the differences between the healthy and failing disks. Also the Euclidean distances, between the
failed disks and the healthy ones, are calculated for every feature. With this, it is possible to
obtain a better numerical perception. Both processes will help extracting information from the
data and turning the decision making, before applying the learning algorithms, more efficient
and accurate.

The temporal analysis is performed by plotting the variables of interest for failing disks and
healthy disks. The two graphs will be placed side by side for the comparison to be made.

The Euclidean distance is calculated for each variable. This distance helps understanding
how dispersed are the values, of the same variables, between a healthy disk and a disk that ends
up failing. To better clarify this process, the objective is to compare the smart_1, over time, of
a healthy disk, with the smart_1 over time of a disk that will fail. To ensure that the execution
of the algorithms is well made, the comparison between the disks is always done with the same
models.
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3.5 Learning Algorithms

As mentioned in Chapter 2, 3 learning models are applied in order to find more effective ways of
preventing disk failures. An algorithm is used to analyze the dataset as a time series (VAR), and
two are used as classification models (Random Forest and SVM).

3.5.1 Vector Auto Regression

To apply the VAR model, it was necessary to divide the two datasets created, into subdatasets
that were grouped by serial_number. Thus, subdatasets would only contain observations over
time of a given disk. By this way it is possible to apply the model to each disk and make a
comparison between the healthy and the failing ones.

The observations from the last 5 days of each disk were removed so when the forecast was
executed, the prediction could be compared with the real values. The drive information that was
added by Backblaze is removed, except the Date values, so that the table is only constituted with
S.M.A.R.T. variables, over time. This measure is taken, because the VAR model only performs
operations on numeric variables and would not extract any information from the variables that
were added only to describe the disk (Ex: Serial_number, Model).

Figure 3.5: VAR Diagram Example.

Since one of the main algorithm goals is to show correlations between variables over time,
features that remain constant over the days, were removed, because they don’t fit in the model.
Finally, the VAR model is applied to the subdatasets, the results are calculated using the different
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lags, and the forecast is executed with the objective of predicting the behavior of each attribute.

3.5.2 Classification Algorithms

The first thing to do so the execution of the algorithms would be correctly done, is to divide the
datasets (Healthy and Failed) in subdatasets once more, but this time, in subdatasets grouped
by disk models. This can be done because there is no need to have a temporal view of the
data, so more than 1 disk can be placed on the new subdataset. Then it is necessary to add the
class variable to all observations. The disks that fail will have the class equal to 1 and those
that remain healthy will have the class equal to 0. In these algorithms, only the S.M.A.R.T.
attributes remain in the dataframe, the rest of the variables are eliminated for the same reasons
referenced in the VAR model. After all these measures are taken, there may be observations
that have S.M.A.R.T. variables with equal values, and since they no longer have serial_numbers
to distinguish them, these observations will be removed so there are no duplicates and the
classification models are not affected. All features were normalized to values between 0 and 1,
since the learning algorithms had difficulties to perform the operations in the standard values.
This normalization was made after the disks were divided by models, so the values range were
not mixed up. The validation method utilized was the train-test-split with a 80 to 20 ratio. Both
classification algorithms, SVM and Random Forest, were executed using default parameters.

Figure 3.6: Classification models Diagram Example.



Chapter 4

Results and Analysis

In this chapter, the results of the methods applied to the pre-processed data are presented and
analysed. The first step is to describe the statistical analysis made before the pre-processing and
after it is done. Also the data used in the learning algorithms is shown for a better visualization of
the features that were worked with. The second step is to present the results obtained through the
temporal analysis and the Euclidean distances that were calculated between the two subdatasets
(Healthy and Failed). Finally, the results of the learning models are observed and interpreted.

4.1 Pre-Processing

As described in the methodology, one of the first measures taken was counting the number of
disks available throughout the trimester, as well as the respective failures. Table 4.1 shows a
summary of the analysis made. All disks that never failed, can be removed, as they will not take
our class of interest into account.

27
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Table 4.1: Disks count and respective Failure Rate
Model Disk Count Failure Count Failure Rate
DELLBOSS VD 60 0 0.0%
HGST HDS5C4040ALE630 26 0 0.0%
HGST HMS5C4040ALE640 2833 4 0.14%
HGST HMS5C4040BLE640 12758 12 0.09%
HGST HMS5C4040BLE641 1 0 0.0%
HGST HUH721010ALE600 20 0 0.0%
HGST HUH721212ALE600 1561 1 0.06%
HGST HUH721212ALN604 10866 7 0.06%
HGST HUH728080ALE600 1002 2 0.2%
HGST HUS726040ALE610 28 0 0.0%
Hitachi HDS5C4040ALE630 2 0 0.0%
ST10000NM0086 1205 5 0.41%
ST1000LM024 HN 1 0 0.0%
ST12000NM0007 37442 364 0.97%
ST12000NM0008 7226 10 0.14%
ST12000NM0117 15 0 0.0%
ST16000NM001G 40 0 0.0%
ST4000DM000 19330 119 0.62%
ST4000DM005 39 0 0.0%
ST500LM012 HN 501 13 2.59%
ST500LM021 33 0 0.0%
ST500LM030 259 6 2.32%
ST6000DM001 4 0 0.0%
ST6000DM004 1 0 0.0%
ST6000DX000 887 1 0.11%
ST8000DM002 9844 35 0.36%
ST8000DM004 3 0 0.0%
ST8000DM005 25 0 0.0%
ST8000NM0055 14502 53 0.37%
Seagate BarraCuda SSD ZA2000CM10002 4 0 0.0%
Seagate BarraCuda SSD ZA250CM10002 157 0 0.0%
Seagate BarraCuda SSD ZA500CM10002 18 0 0.0%
Seagate SSD 107 0 0.0%
TOSHIBA HDWE160 4 0 0.0%
TOSHIBA HDWF180 20 0 0.0%
TOSHIBA MD04ABA400V 99 0 0.0%
TOSHIBA MG07ACA14TA 3627 7 0.19%
TOSHIBA MQ01ABF050 475 23 4.84%
TOSHIBA MQ01ABF050M 425 10 2.35%
WDC WD5000BPKT 10 0 0.0%
WDC WD5000LPCX 54 0 0.0%
WDC WD5000LPVX 214 6 2.8%
WDC WD60EFRX 3 0 0.0%

Total 125731 678 0.54%

The second step, in the pre-processing methods, was based on analyzing the number of
failures per day, so it would be possible to build a dataset that had the most number of failures
and the chosen disks would have enough previous observations to perform a reasonable temporal
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analysis.

In Figure 4.1 the results of this process are presented in a Bar Chart.

Figure 4.1: Bar Chart related to the number of failures per Day

As it is possible to observe, the second day was the day that had most failures (18 disks),
however, since the objective is to have observations collected before the failing day, it is necessary
to select another date, that is further from the beginning of the time scale. 14-10-2019, 04-
11-2019, 18-11-2019 and 20-11-2019 were the next days with most failing disks (all with 16
disks). Therefore, 20-11-2019 was the selected date because there are more observations to be
collected.

After the day was selected, all observations for the disks that failed, were collected. A 16
disks sampling, from disks that never failed, was executed to the rest of the dataset, with a
condition that the collected observations needed to be from the same models as the failed disks.
The results obtained can be observed in Table 4.2.
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Table 4.2: Selected Healthy and Failed Disks
Healthy Disks Failed Disks

Serial_number Model Serial_number Model
ZCH06YQ3 ST12000NM0007 ZCH097GA ST12000NM0007
ZCH0D2V0 ST12000NM0007 ZJV00F20 ST12000NM0007
ZJV5GMSJ ST12000NM0007 ZJV03JDV ST12000NM0007
ZJV10J45 ST12000NM0007 ZJV00C88 ST12000NM0007
ZCH056VR ST12000NM0007 ZJV03NQB ST12000NM0007
ZJV501TY ST12000NM0007 ZJV17SG6 ST12000NM0007
ZCH0BCML ST12000NM0007 ZCH0AL23 ST12000NM0007
ZCH06HY1 ST12000NM0007 ZCH0A7G6 ST12000NM0007
ZCH0CDWV ST12000NM0007 ZCH0C5JJ ST12000NM0007
Z305D2CY ST4000DM000 S301P6Y6 ST4000DM000
Z302DJZ6 ST4000DM000 Z302T88S ST4000DM000
ZA18BTFV ST8000NM0055 ZA1819DM ST8000NM0055
ZA16YG7B ST8000NM0055 ZA17ZNQ9 ST8000NM0055
ZHZ3PT1S ST12000NM0008 ZHZ3MSH6 ST12000NM0008

X8B0A007F97G TOSHIBA MG07ACA14TA X8B0A00QF97G TOSHIBA MG07ACA14TA
57RFWNHLT TOSHIBA MQ01ABF050 17OYTGL3T TOSHIBA MQ01ABF050

4.2 Temporal Analysis

Figure 4.2 and Figure 4.3 show the temporal behavior of the Smart_1_normalized variable for
the failed and healthy disks respectively. It is possible to observe, for both cases, that four types
of models have a really distinct behavior. These are ST4000DM000, ST12000NM0007 and the
two Toshiba models (whose behavior overlap with each other). In both graphs, some models
have peaks during time, indicating higher Read Error Rate than the regular behavior.

According to Backblaze documentation, it is common for different vendors and different
models to have different reference values. That can explain why 3 groups with dispersed values
are presented. According to Seagate, the use of third party software can also read different range
values than the variable should report [29].

The remaining graphs for the variables that show significant variations are presented in the
Appendix.
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Figure 4.2: Smart_1 for the failed disks along time

Figure 4.3: Smart_1 for the healthy disks along time

Euclidean distances were calculated over time since raw observational variables were difficult
to obtain. In Tables 4.3, 4.4, 4.5 the results of the distances can be found.
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Table 4.3: Euclidean distances between the healthy and failed disks
EUCLIDEAN DISTANCES BETWEEN THE HEALTHY AND FAILED DISKS

smart_1_normalized smart_1_raw smart_7_normalized smart_7_raw smart_9_normalized smart_9_raw
ST12000NM0007 2.896801 3.141699 N/A 0.186010 3.000000 0.056366
ST12000NM0007 2.054655 2.665402 1.092906 0.532815 3.041381 0.064692
ST12000NM0007 1.964036 3.185758 2.403701 0.704135 3.000000 0.040648
ST12000NM0007 3.832814 2.756828 4.358899 1.431158 3.041381 0.066226
ST12000NM0007 1.991425 2.650050 4.845187 5.122032 2.645751 0.053915
ST12000NM0007 2.565644 3.179320 1.471768 0.574069 2.449490 0.046023
ST12000NM0007 2.885591 2.882519 3.122499 0.871523 3.000000 0.056832
ST12000NM0007 3.051245 2.747076 3.752777 0.313711 3.000000 0.050737
ST12000NM0007 1.454620 1.372290 2.373880 0.160891 N/A 0.107380

ST4000DM000 2.293516 3.111510 2.719062 3.947537 2.236068 0.050780
ST4000DM000 2.394414 2.934578 N/A 0.299613 3.000000 0.031744

ST8000NM0055 2.323827 3.176403 4.716991 0.275336 3.041381 0.056363
ST8000NM0055 3.533003 3.427996 3.464102 0.530212 3.041381 0.057715

ST12000NM0008 1.980921 2.321437 0.139754 0.056393 N/A 0.005388
TOSHIBA MG07ACA14TA N/A N/A N/A N/A 0.881917 0.039677

TOSHIBA MQ01ABF050 N/A N/A N/A N/A N/A 0.135676

Table 4.4: Euclidean distances between the healthy and failed disks
EUCLIDEAN DISTANCES BETWEEN THE HEALTHY AND FAILED DISKS

smart_190_normalized smart_190_raw smart_192_raw smart_193_raw smart_194_normalized smart_194_raw
ST12000NM0007 2.483445 2.483445 1.619691 0.371148 2.483445 2.483445
ST12000NM0007 2.032753 2.032753 1.157226 0.628584 2.032753 2.032753
ST12000NM0007 3.645545 3.645545 1.084268 0.089325 3.645545 3.645545
ST12000NM0007 2.057304 2.057304 0.936340 0.229052 2.057304 2.057304
ST12000NM0007 2.390214 2.390214 0.391854 0.171993 2.390214 2.390214
ST12000NM0007 2.640707 2.640707 0.446825 0.232692 2.640707 2.640707
ST12000NM0007 2.315407 2.315407 1.379692 0.271378 2.315407 2.315407
ST12000NM0007 2.736989 2.736989 0.898376 0.262118 2.736989 2.736989
ST12000NM0007 2.420973 2.420973 1.262438 0.623084 2.420973 2.420973

ST4000DM000 2.190735 2.190735 N/A 2.023830 2.190735 2.190735
ST4000DM000 2.935652 2.935652 N/A N/A 2.935652 2.935652

ST8000NM0055 3.040468 3.040468 N/A 0.475524 3.040468 3.040468
ST8000NM0055 2.808717 2.808717 N/A 0.488010 2.808717 2.808717

ST12000NM0008 0.634389 0.634389 0.971825 0.025017 0.634389 0.634389
TOSHIBA MG07ACA14TA N/A N/A N/A N/A N/A 3.133599

TOSHIBA MQ01ABF050 N/A N/A N/A 0.124013 N/A 0.490990

Table 4.5: Euclidean distances between the healthy and failed disks
EUCLIDEAN DISTANCES BETWEEN THE HEALTHY AND FAILED DISKS

smart_195_normalized smart_195_raw smart_240_raw smart_241_raw smart_242_raw
ST12000NM0007 3.542220 3.141699 0.054533 0.428738 0.492309
ST12000NM0007 2.331108 2.665402 0.066951 0.539049 0.929371
ST12000NM0007 1.964036 3.185758 0.038755 1.912447 1.286088
ST12000NM0007 3.832814 2.756828 0.065074 0.629421 2.144796
ST12000NM0007 1.830734 2.650050 0.052356 0.241918 0.438149
ST12000NM0007 2.565644 3.179320 0.055710 2.145395 1.042680
ST12000NM0007 2.967972 2.882519 0.060883 1.069801 1.628842
ST12000NM0007 4.003278 2.747076 0.055455 0.872949 0.444799
ST12000NM0007 1.684156 1.372290 0.113008 0.316462 0.831752

ST4000DM000 N/A N/A 0.048300 0.306779 1.235419
ST4000DM000 N/A N/A 0.032122 0.257148 0.909482

ST8000NM0055 2.323827 3.176403 0.057763 0.758562 0.214966
ST8000NM0055 3.533003 3.427996 0.061746 0.112897 0.645277

ST12000NM0008 1.000000 2.321437 0.013047 0.013032 0.014404
TOSHIBA MG07ACA14TA N/A N/A N/A N/A N/A

TOSHIBA MQ01ABF050 N/A N/A N/A N/A N/A

The variables values that present bigger distances, for the comparisons made to the pairs
of disks (healthy, failed), are selected in bold for a better visualization. The variables Smart_7
and Smart_194 are the ones with highest values and, therefore, their analysis may prove to
be useful in discovering possible anomalies in the disks. It is also possible to notice that the
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smart_7_normalized is the one that obtains the highest values in the Euclidean distances, with
an approximate mean of 2.87.

As mentioned in Chapter 3, sometimes the values normalization can cause information loss
in the data. Analyzing the values between the raw variables and the normalized variables,
demonstrates that the difference between the distances can be quite notable.

For example, when comparing the raw variables of two disks of the same model (one healthy
and one that fails), it is possible to find some differences in the behaviors, but if a comparison is
made with the normalized values, this difference may no longer be shown. This can happen on
both ways, the smart_raw shows no difference and the smart_normalized can show.

4.3 Classification Algorithms

After all steps, referred in Chapter 4, were executed, the classification models were applied to
the subdatasets created (12 dataframes distinguished by disk model). From Table 4.6 to Table
4.17, the metrics results are presented along with the respective Confusion Matrix. The tables
present metrics like precision, recall, f1-score and accuracy. It is also possible to observe the
support of each class, that corresponds to how many observations are labeled for each class. In
the confusion matrices the predicted cases for each classification algorithm are presented so it is
possible to evaluate the respective performance. All the presented results are obtained from the
test set.

Table 4.6: Metrics Results for model ST12000NM0007

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 1.00 0.99 0.99 92 0.99 0.99 0.99 92
Failure 0.99 1.00 0.99 83 0.99 0.99 0.99 83

accuracy 0.99 175 0.99 175
macro avg 0.99 0.99 0.99 175 0.99 0.99 0.99 175

weighted avg 0.99 0.99 0.99 175 0.99 0.99 0.99 175

Table 4.7: Confusion Matrix model ST12000NM0007

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual
Class

Healthy 91 1 91 1
Failure 0 83 1 82
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Table 4.8: Metrics Results for model ST4000DM000

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.83 1.00 0.91 20 0.95 1.00 0.98 20
Failure 1.00 0.80 0.89 20 1.00 0.95 0.97 20

accuracy 0.90 40 0.97 40
macro avg 0.92 0.90 0.90 40 0.98 0.97 0.97 40

weighted avg 0.92 0.90 0.90 40 0.98 0.97 0.97 40

Table 4.9: Confusion Matrix model ST4000DM000

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual
Class

Healthy 20 0 20 0
Failure 4 16 1 19

Table 4.10: Metrics Results for model ST8000NM0055

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.95 1.00 0.98 20 1.00 1.00 1.00 20
Failure 1.00 0.95 0.98 21 1.00 1.00 1.00 21

accuracy 0.98 41 1.00 41
macro avg 0.98 0.98 0.98 41 1.00 1.00 1.00 41

weighted avg 0.98 0.98 0.98 41 1.00 1.00 1.00 41

Table 4.11: Confusion Matrix model ST8000NM0055

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual
Class

Healthy 20 0 20 0
Failure 1 20 0 21

Table 4.12: Metrics Results for model ST12000NM0008

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.40 0.40 0.40 5 0.50 0.40 0.44 5
Failure 0.25 0.25 0.25 4 0.40 0.50 0.44 4

accuracy 0.33 9 0.44 9
macro avg 0.33 0.33 0.33 9 0.45 0.45 0.44 9

weighted avg 0.33 0.33 0.33 9 0.46 0.44 0.44 9
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Table 4.13: Confusion Matrix model ST12000NM0008

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual
Class

Healthy 2 3 2 3
Failure 3 1 2 2

Table 4.14: Metrics Results for model TOSHIBA MQ01ABF050

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 0.80 0.80 0.80 10 0.91 1.00 0.95 10
Failure 0.82 0.82 0.82 11 1.00 0.91 0.95 11

accuracy 0.81 21 0.95 21
macro avg 0.81 0.81 0.81 21 0.95 0.95 0.95 21

weighted avg 0.81 0.81 0.81 21 0.96 0.95 0.95 21

Table 4.15: Confusion Matrix model TOSHIBA MQ01ABF050

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual
Class

Healthy 8 2 10 0
Failure 2 9 1 10

Table 4.16: Metrics Results for model TOSHIBA MG07ACA14TA

SVM RANDOM FOREST
precision recall f1-score support precision recall f1-score support

Healthy 1.00 0.50 0.67 2 1.00 0.50 0.67 2
Failure 0.67 1.00 0.80 2 0.67 1.00 0.80 2

accuracy 0.75 4 0.75 4
macro avg 0.83 0.75 0.73 4 0.83 0.75 0.73 4

weighted avg 0.83 0.75 0.73 4 0.83 0.75 0.73 4

Table 4.17: Confusion Matrix model TOSHIBA MG07ACA14TA

SVM RANDOM FOREST
Predicted Class Predicted Class
Healthy Failure Healthy Failure

Actual
Class

Healthy 1 1 1 1
Failure 0 2 0 2
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It is possible to observe in Table 4.6 that the ST12000NM0007 model shows metrics values
really close to 100%, this can demonstrate that the methodology used may prove to be quite
accurate. It is important to note that the ST12000NM0008, TOSHIBA MQ01ABF050 and
TOSHIBA MG07ACA14TA models, do not have a favorable support (very low number of
observations and past behaviors information) for the algorithms execution, and therefore their
results are not the most promising. In the future work section, some points that could improve
these results are discussed.

It is essential to have a perception of the importance that the Random Forest model gives to
variables in its decision making and in the trees creation. With this, it is easier to understand
which features weight more in helping the algorithm to predict if the disk will fail or remain
healthy. Table 4.18 shows the importance ranking given to the 6 different models.

Table 4.18: Random Forest Features Importance for each disk model

ST12000NM0007 ST4000DM000 ST8000NM0055
importance importance importance

smart_7_normalized 0.228980 smart_193_raw 0.156771 smart_195_normalized 0.207715
smart_193_raw 0.187561 smart_183_raw 0.127605 smart_1_normalized 0.182538

smart_3_normalized 0.165387 smart_3_normalized 0.099825 smart_193_normalized 0.126374
smart_9_normalized 0.058750 smart_190_normalized 0.083486 smart_193_raw 0.075515

smart_9_raw 0.057293 smart_183_normalized 0.080752 smart_191_raw 0.066237
smart_241_raw 0.051673 smart_194_raw 0.063729 smart_7_normalized 0.060627

smart_7_raw 0.041517 smart_194_normalized 0.061899 smart_191_normalized 0.053196
smart_240_raw 0.032224 smart_190_raw 0.056995 smart_192_raw 0.043330
smart_12_raw 0.026624 smart_7_normalized 0.046583 smart_190_raw 0.022044

smart_242_raw 0.026087 smart_240_raw 0.045435 smart_194_normalized 0.021385

ST12000NM0008 TOSHIBA MQ01ABF050 TOSHIBA MG07ACA14TA
importance importance importance

smart_190_raw 0.165062 smart_191_raw 0.400617 smart_226_raw 0.278620
smart_194_normalized 0.146380 smart_194_raw 0.286671 smart_222_raw 0.193245
smart_190_normalized 0.139104 smart_9_raw 0.134172 smart_9_raw 0.181570

smart_194_raw 0.130639 smart_222_raw 0.125146 smart_220_raw 0.145886
smart_192_raw 0.061040 smart_222_normalized 0.028102 smart_194_raw 0.104060

smart_1_raw 0.059038 smart_9_normalized 0.025292 smart_193_raw 0.096619
smart_1_normalized 0.050796

smart_240_raw 0.038349
smart_7_raw 0.037081
smart_9_raw 0.036924

Variables like smart_7, smart_9, and smart_193 have a high importance in almost all disk
models, so trying to monitor them more often, is probably a good approach in the future. As
mentioned in Chapter 2, the S.M.A.R.T. variables that are considered critical by the literature,
are the ones that the storage systems follow the most. So giving more attention to these features
could also help preventing some misbehavior.

Figure 4.4 shows one of the trees created after the Random Forest algorithm was executed
in the ST12000NM0007 dataset. As is normal, the variables presented in the Decision Tree are
shown in the importance table, showing that the algorithm uses them to classify the observations.
In Table 4.19 the variables presented on the Decision Tree are described. It is important to note
that this description was made after the variables were already normalized between 0 and 1.
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Table 4.19: Decision Tree variables description

smart_7_normalized smart_7_raw smart_9_normalized smart_9_raw smart_241_raw
count 699.000000 699.000000 699.000000 699.000000 699.000000
mean 0.705797 0.476673 0.270684 0.739938 0.769213

std 0.184539 0.306533 0.301359 0.301370 0.266498
min 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.600000 0.178866 0.100000 0.737158 0.804327
50% 0.685714 0.476555 0.150000 0.847509 0.853286
75% 0.900000 0.772911 0.263158 0.939120 0.925315
max 1.000000 1.000000 1.000000 1.000000 1.000000

Figure 4.4: A Decision Tree from the Random Forest of the ST12000NM0007 model
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4.4 VAR Model

As stated in the methodology, 32 subdatasets were created to apply this time series model, all
of them grouped by serial_number, so the algorithm could be applied individually and could
calculate the respective correlation matrices and a possible prediction of the variables behavior
over time.

From Table 4.20 to Table 4.27 the correlation matrices from 4 disk models (one healthy and one
failed) are presented. The selected disks from both Toshiba models (TOSHIBA MG07ACA14TA
and TOSHIBA MQ01ABF050) could not provide enough information for the learning model to
be executed, and therefore, their correlation matrices and the forecasting process were not built.
This happened because all features that were filled with missing values were removed, as well as
the ones that stay constant over the time, because the algorithm does not preform operations
with them. Thus, there was not enough S.M.A.R.T. attributes to run the model.

Table 4.20: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZCH0C5JJ)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.253239 0.201611 -0.120629 -0.190959 0.187426
smart_7_raw 0.253239 1.000000 0.852643 0.696433 0.055252 0.849855
smart_9_raw 0.201611 0.852643 1.000000 0.923364 0.039857 0.998544

smart_193_raw -0.120629 0.696433 0.923364 1.000000 -0.040797 0.920185
smart_194_raw -0.190959 0.055252 0.039857 -0.040797 1.000000 0.068931
smart_240_raw 0.187426 0.849855 0.998544 0.920185 0.068931 1.000000

Table 4.21: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZCH06YQ3)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.166218 -0.085673 -0.141543 0.260900 -0.001269
smart_7_raw 0.166218 1.000000 0.351067 -0.135600 -0.120242 0.392243
smart_9_raw -0.085673 0.351067 1.000000 0.254303 -0.457013 0.992656

smart_193_raw -0.141543 -0.135600 0.254303 1.000000 -0.546709 0.235824
smart_194_raw 0.260900 -0.120242 -0.457013 -0.546709 1.000000 -0.406834
smart_240_raw -0.001269 0.392243 0.992656 0.235824 -0.406834 1.000000

Table 4.22: Correlation Matrix for failed disk from model ST4000DM000
Failed Disk ST4000DM000

(Z302T88S)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.557678 0.641922 0.054301 0.027109 0.612161
smart_7_raw 0.557678 1.000000 0.933525 -0.456721 0.200886 0.942728
smart_9_raw 0.641922 0.933525 1.000000 -0.262591 0.029598 0.998036

smart_193_raw 0.054301 -0.456721 -0.262591 1.000000 -0.332683 -0.271897
smart_194_raw 0.027109 0.200886 0.029598 -0.332683 1.000000 0.036335
smart_240_raw 0.612161 0.942728 0.998036 -0.271897 0.036335 1.000000
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Table 4.23: Correlation Matrix for healthy disk from model ST4000DM000
Healthy Disk ST4000DM000

(Z302DJZ6)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.105579 -0.208478 -0.153385 0.724605 -0.208246
smart_7_raw -0.105579 1.000000 0.458922 -0.102037 -0.192726 0.471757
smart_9_raw -0.208478 0.458922 1.000000 0.569640 -0.315389 0.998916

smart_193_raw -0.153385 -0.102037 0.569640 1.000000 -0.432104 0.559510
smart_194_raw 0.724605 -0.192726 -0.315389 -0.432104 1.000000 -0.336655
smart_240_raw -0.208246 0.471757 0.998916 0.559510 -0.336655 1.000000

Table 4.24: Correlation Matrix for failed disk from model ST8000NM0055
Failed Disk ST8000NM0055

(ZA1819DM)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.257158 -0.061240 -0.286411 -0.268057 -0.022319
smart_7_raw 0.257158 1.000000 0.830599 -0.177065 -0.081025 0.844100
smart_9_raw -0.061240 0.830599 1.000000 0.161528 0.070777 0.995699

smart_193_raw -0.286411 -0.177065 0.161528 1.000000 0.370282 0.189769
smart_194_raw -0.268057 -0.081025 0.070777 0.370282 1.000000 0.100202
smart_240_raw -0.022319 0.844100 0.995699 0.189769 0.100202 1.000000

Table 4.25: Correlation Matrix for healthy disk from model ST8000NM0055
Healthy Disk ST8000NM0055

(ZA18BTFV)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.455708 -0.264859 0.321201 0.271168 -0.249651
smart_7_raw -0.455708 1.000000 0.918986 0.235787 -0.325022 0.921027
smart_9_raw -0.264859 0.918986 1.000000 0.528043 -0.273634 0.999511

smart_193_raw 0.321201 0.235787 0.528043 1.000000 -0.302633 0.529167
smart_194_raw 0.271168 -0.325022 -0.273634 -0.302633 1.000000 -0.267527
smart_240_raw -0.249651 0.921027 0.999511 0.529167 -0.267527 1.000000

Table 4.26: Correlation Matrix for failed disk from model ST12000NM0008
Failed Disk ST12000NM0008

(ZHZ3MSH6)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.061050 0.395718 0.741040 0.703804 0.072431
smart_7_raw 0.061050 1.000000 0.922226 -0.374584 -0.446844 0.961005
smart_9_raw 0.395718 0.922226 1.000000 -0.097896 -0.156114 0.927476

smart_193_raw 0.741040 -0.374584 -0.097896 1.000000 0.863018 -0.457007
smart_194_raw 0.703804 -0.446844 -0.156114 0.863018 1.000000 -0.442773
smart_240_raw 0.072431 0.961005 0.927476 -0.457007 -0.442773 1.000000

Table 4.27: Correlation Matrix for healthy disk from model ST12000NM0008
Healthy Disk ST12000NM0008

(ZHZ3PT1S)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.106104 -0.175308 -0.074616 0.041358 -0.206763
smart_7_raw -0.106104 1.000000 0.976768 -0.217435 0.040426 0.982719
smart_9_raw -0.175308 0.976768 1.000000 -0.054606 0.107858 0.960382

smart_193_raw -0.074616 -0.217435 -0.054606 1.000000 0.578504 -0.306347
smart_194_raw 0.041358 0.040426 0.107858 0.578504 1.000000 -0.096563
smart_240_raw -0.206763 0.982719 0.960382 -0.306347 -0.096563 1.000000
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Undoubtedly, the choice of this model had as main objective the analysis of the correlation
between variables. These correlations can be important, so the features are monitored together
and not just those that present critical values because their thresholds were exceeded.

Variables 9 and 240 show in all disks (healthy and failed), correlations really close to 1. This
is probably happening because both are hour counters, with 9 being the number of hours in
power-state and 240 the time during the positioning of the drive heads.

It is possible to verify that higher correlations between variables (9-193) and (240-193) also
happen more frequently in the disks that fail from ST12000NM0007 model. The high correlation
between these variables, may alert that a more careful observation of the disks should be made.
However, there are also healthy disks that show high correlations between these variables, but
there is no guarantee that the disk will remain healthy in the future, so these disks may even
already show some type of anomaly.

Even though there are not enough disks to draw a strong conclusion, the ST4000DM000
model shows correlations between the variables (9-7) and (240-7) for the disks that fail, and the
ST12000NM0008 model with correlations in the variables (1-193), (1-194) and (193-194) also in
the failing disks.

Finally, the forecasting was done to predict the disks behavior over the time. In Figures 4.5
and 4.7, inside the red dashed line, a 5-day forecast can be observed, for each variable, from a
disk that fails and a disk considered healthy. In Figures 4.6 and 4.8, also inside the dashed line,
it is possible to see how the disks actually performed in the last 5 days before being selected.
The X axis represents a time scale, with daily periodicity and the Y axis represents the values
for each variable. It is important to notice that these 5 days were removed from the datasets at
the beginning of the learning model, so now that they could be compared with the respective
forecasted values.

In short, good results were obtained, and it can be seen that the predicted results are not far
from the real values.
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Figure 4.5: Forecast for the first failed disk with a FPE (failure prediction error) of 7x10−22

Figure 4.6: Real Values for the first failed disk
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Figure 4.7: Forecast for the first healthy disk with a FPE (failure prediction error) of 4x10−22

Figure 4.8: Real Values for the first healthy disk



Chapter 5

Conclusion and Future Work

The objective of the dissertation was to add, to the current state of the art, measures that
would help to predict HDD’s failures and anomalies, so the storage companies could reduce the
problems resulting from this.

Working with imbalanced data reduces the effectiveness of prediction models. Because of
this, it was necessary to take a very cautious approach to the data, so small information about
the disks, that could be useful, was not lost during the process.

One of the biggest beliefs in this project was that the pre-processing and statistical analysis
methods used to create the subdatasets were fundamental in the learning process of the data.
Almost all studies made on the subject, analyze the disks together, without splitting them by
models and vendors. This means that the variables standard values, the thresholds and even the
features normalization process are not distinguished between them.

Although, most subdatasets created during the project, did not have the ideal number of
observations, the metrics values for the classification models are quite promising, showing values
really close to 100%, for the precision, recall and f-score of certain disk models.

The VAR model application, allowed to trace temporal correlation matrices between the
features, showing that variables 9, 240 and 193 are related over time. The forecasting performed
fulfilled the expectation, showing a relatively low forecasting error and may be an interesting
method to predict the variables behavior in storage companies.

It should also be noticed that variables 7, 9 and 240 are present quite often in the results,
and therefore, they must also be monitored carefully, together with the ones that are considered
to be critical by the literature.

During the project, some obstacles appeared and had to be overcome. Working with such
a large and imbalanced dataset was undoubtedly a great challenge, and helped to clarify the
reality that in data science, the work is done with data that are not perfect to apply learning
models. The lack of perception about the variables, the difference between vendors reference
values and the amount of missing values presented in the dataset, made the decision making very
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difficult, and many times, some methods had to be redone from scratch. Since the VAR is an
algorithm that works with mathematical matrices, it proved to be a model with high complexity
and that requires a lot of attention in the type of data that is used.

However, in overall, the objectives were achieved and the work carried out helped a lot in
developing my knowledge in Data Science area and understanding how HDD’s really work.

Although the objectives have been achieved, we believe that some measures can be taken to
improve the results obtained and their reliability in future works:

• If a bigger time scale is used, the disk information will also be bigger and the learning
models will probably prove to show a greater performance and better results for all disk
models. This because, the processes executed by the algorithms, will have a greater support,
and probably show that the methodology used in this work can also be used in datasets
with a higher number of observations.

• A further study and analysis on the variables normalization should be done, in order to
improve the state of the art and help future works to better understand the data.

• Use, in parallel with the methodology carried out in this project, a class variable that
defines the disks lifetime. This classification can be done through variable 9, that counts
the number of hours that the HDD was powered on.

• Apply the models built in this work to more recent Backblaze disks observations.



Appendix A

Subdatasets Description

Table 5.1: Failed Disks Dataset Description

Smart_1 Smart_3 Smart_7 Smart_9 Smart_193 Smart_194

Disk1

count 46.0 46.0 46.0
mean 79.6 80.6 37.1
std 4.2 0.5 0.9
min 67.0 80.0 35.0
max 84.0 81.0 39.0

Disk2

count 46.0 46.0 46.0 46.0
mean 79.6 83.1 90.3 23.9
std 4.7 0.8 0.5 0.8
min 67.0 82.0 90.0 22.0
max 84.0 84.0 91.0 25.0

Disk3

count 46.0 46.0 46.0 46.0
mean 80.4 87.3 87.5 24.4
std 5.7 0.5 0.5 3.7
min 69.0 87.0 87.0 20.0
max 100.0 88.0 88.0 30.0

Disk4

count 46.0 46.0 46.0 46.0
mean 79.2 89.5 80.6 35.3
std 4.4 0.5 0.5 1.1
min 64.0 89.0 80.0 33.0
max 84.0 90.0 81.0 38.0

Disk5

count 45.0 45.0 45.0 45.0
mean 80.3 80.6 83.5 21.9
std 3.8 8.5 0.5 1.0
min 65.0 60.0 83.0 20.0
max 84.0 90.0 84.0 24.0

Disk6

count 46.0 46.0 46.0 46.0 46.0
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Table 5.1: Failed Disks Dataset Description

Smart_1 Smart_3 Smart_7 Smart_9 Smart_193 Smart_194
mean 79.5 96.4 78.7 99.5 27.8
std 4.4 1.5 4.6 0.5 0.8
min 68.0 95.0 63.0 99.0 26.0
max 84.0 98.0 83.0 100.0 29.0

Disk7

count 46.0 46.0 46.0 46.0
mean 79.8 87.8 82.6 30.0
std 3.9 0.4 0.5 0.9
min 68.0 87.0 82.0 28.0
max 84.0 88.0 83.0 32.0

Disk8

count 45.0 45.0 45.0 45.0
mean 79.4 79.9 82.6 25.4
std 5.6 1.7 0.5 0.7
min 67.0 76.0 82.0 24.0
max 100.0 82.0 83.0 27.0

Disk9

count 46.0 46.0 46.0 46.0
mean 79.3 78.7 99.6 22.8
std 4.4 4.8 0.5 1.1
min 69.0 63.0 99.0 21.0
max 84.0 83.0 100.0 25.0

Disk10

count 45.0 45.0 45.0 45.0
mean 115.2 74.8 53.4 17.1
std 4.0 4.9 0.5 0.4
min 102.0 63.0 53.0 16.0
max 120.0 90.0 54.0 18.0

Disk11

count 45.0 45.0 45.0
mean 114.4 63.2 33.6
std 4.8 0.4 1.0
min 102.0 62.0 32.0
max 120.0 64.0 35.0

Disk12

count 45.0 45.0 45.0 45.0 45.0
mean 80.1 88.3 78.7 88.3 33.6
std 3.5 0.7 0.4 0.4 0.6
min 69.0 87.0 78.0 88.0 33.0
max 84.0 89.0 79.0 89.0 35.0

Disk13

count 46.0 46.0 46.0 46.0 46.0
mean 79.8 90.7 77.5 96.2 36.0
std 3.7 0.5 0.5 0.4 0.9
min 70.0 90.0 77.0 96.0 35.0
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Table 5.1: Failed Disks Dataset Description

Smart_1 Smart_3 Smart_7 Smart_9 Smart_193 Smart_194
max 84.0 91.0 78.0 97.0 38.0

Disk14

count 17.0 17.0 17.0
mean 80.4 71.6 30.6
std 3.4 5.3 2.4
min 73.0 63.0 25.0
max 83.0 77.0 32.0

Disk15

count 17.0
mean 100.0
std 0.0
min 100.0
max 100.0

Disk16

count
mean
std
min
max

Table 5.2: Healthy Disks Dataset Description

Smart_1 Smart_3 Smart_7 Smart_9 Smart_193 Smart_194

Disk1

count 45.0 45.0 45.0 45.0
mean 80.4 88.8 85.9 26.9
std 4.7 1.0 0.5 1.2
min 65.0 88.0 85.0 25.0
max 100.0 90.0 87.0 29.0

Disk2

count 45.0 45.0 45.0 45.0 45.0
mean 80.2 91.3 80.8 82.9 26.5
std 3.9 1.4 1.3 0.4 1.0
min 65.0 90.0 78.0 82.0 22.0
max 84.0 93.0 83.0 84.0 28.0

Disk3

count 45.0 45.0 45.0 45.0
mean 81.3 84.4 82.9 37.7
std 5.0 1.1 0.5 1.3
min 72.0 83.0 82.0 35.0
max 100.0 86.0 84.0 40.0

Disk4

count 46.0 46.0 46.0 46.0
mean 81.7 89.1 85.2 36.5
std 4.9 0.3 0.4 1.1
min 73.0 89.0 85.0 35.0
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Table 5.2: Healthy Disks Dataset Description

Smart_1 Smart_3 Smart_7 Smart_9 Smart_193 Smart_194
max 100.0 90.0 86.0 39.0

Disk5

count 46.0 46.0 46.0 46.0 46.0
mean 79.9 89.6 88.3 82.6 30.6
std 3.5 0.5 0.5 0.5 1.5
min 68.0 89.0 88.0 82.0 28.0
max 84.0 90.0 89.0 83.0 33.0

Disk6

count 45.0 45.0 45.0 45.0
mean 80.0 86.2 82.6 26.4
std 4.0 0.6 0.5 1.3
min 67.0 85.0 82.0 24.0
max 84.0 87.0 83.0 29.0

Disk7

count 45.0 45.0 45.0 45.0 45.0
mean 79.4 89.8 85.8 82.3 30.7
std 3.8 0.4 0.6 0.5 0.8
min 69.0 89.0 85.0 82.0 29.0
max 84.0 90.0 87.0 83.0 32.0

Disk8

count 46.0 46.0 46.0 46.0 46.0
mean 79.4 89.6 88.2 85.2 32.8
std 3.6 0.9 0.4 0.4 2.6
min 68.0 89.0 88.0 85.0 27.0
max 84.0 91.0 89.0 86.0 37.0

Disk9

count 10.0 10.0 10.0 10.0
mean 80.5 97.8 71.8 23.3
std 1.8 1.8 10.1 0.5
min 78.0 93.0 65.0 23.0
max 83.0 99.0 100.0 24.0

Disk10

count 45.0 45.0 45.0 45.0
mean 115.3 74.1 59.3 28.5
std 4.3 3.9 0.5 1.7
min 102.0 62.0 59.0 26.0
max 120.0 78.0 60.0 33.0

Disk11

count 45.0 45.0 45.0 45.0
mean 115.9 88.7 60.6 21.6
std 3.3 0.4 0.5 0.5
min 108.0 88.0 60.0 20.0
max 120.0 89.0 61.0 22.0

Disk12

count 46.0 46.0 46.0 46.0 46.0
mean 80.8 92.1 78.3 95.7 46.3
std 2.5 0.3 0.5 0.5 0.8
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Table 5.2: Healthy Disks Dataset Description

Smart_1 Smart_3 Smart_7 Smart_9 Smart_193 Smart_194
min 76.0 92.0 78.0 95.0 45.0
max 84.0 93.0 79.0 96.0 48.0

Disk13

count 46.0 46.0 46.0 46.0
mean 80.2 92.4 78.3 39.4
std 3.4 0.5 0.5 0.8
min 71.0 92.0 78.0 38.0
max 84.0 93.0 79.0 41.0

Disk14

count 17.0 17.0 17.0
mean 80.2 71.8 24.6
std 3.6 5.1 1.5
min 74.0 63.0 21.0
max 84.0 77.0 26.0

Disk15

count 17.0
mean 100.0
std 0.0
min 100.0
max 100.0

Disk16

count
mean
std
min
max
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Temporal Analysis

Figure 5.1: Smart_3 for the failed disks along time

Figure 5.2: Smart_3 for the healthy disks along time
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Figure 5.3: Smart_7 for the failed disks along time

Figure 5.4: Smart_7 for the healthy disks along time
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Figure 5.5: Smart_194 for the failed disks along time

Figure 5.6: Smart_194 for the healthy disks along time
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Correlation Matrices

Table 5.3: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZCH0A7G6)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.326879 0.470757 0.396524 0.429924 0.456820
smart_7_raw 0.326879 1.000000 0.539748 0.128281 0.585176 0.519329
smart_9_raw 0.470757 0.539748 1.000000 -0.020046 0.266706 0.997736

smart_193_raw 0.396524 0.128281 -0.020046 1.000000 0.335702 -0.079894
smart_194_raw 0.429924 0.585176 0.266706 0.335702 1.000000 0.228991
smart_240_raw 0.456820 0.519329 0.997736 -0.079894 0.228991 1.000000

Table 5.4: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZCH056VR)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.291492 0.040868 0.198374 -0.004008 0.046690
smart_7_raw -0.291492 1.000000 0.722485 0.455088 -0.064878 0.713665
smart_9_raw 0.040868 0.722485 1.000000 0.642411 -0.326361 0.999289

smart_193_raw 0.198374 0.455088 0.642411 1.000000 -0.510889 0.642498
smart_194_raw -0.004008 -0.064878 -0.326361 -0.510889 1.000000 -0.313906
smart_240_raw 0.046690 0.713665 0.999289 0.642498 -0.313906 1.000000

Table 5.5: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZCH0AL23)
smart_1_raw smart_7_raw smart_9_raw smart_192_raw smart_193_raw smart_240_raw

smart_1_raw 1.000000 0.743022 0.503125 0.451996 0.344509 0.513814
smart_7_raw 0.743022 1.000000 0.500417 0.405775 0.167038 0.486951
smart_9_raw 0.503125 0.500417 1.000000 0.601211 0.839095 0.999076

smart_192_raw 0.451996 0.405775 0.601211 1.000000 0.759134 0.614697
smart_193_raw 0.344509 0.167038 0.839095 0.759134 1.000000 0.851500
smart_240_raw 0.513814 0.486951 0.999076 0.614697 0.851500 1.000000

Table 5.6: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZJV10J45)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.155619 -0.166672 -0.016085 -0.659190 -0.170055
smart_7_raw -0.155619 1.000000 0.173853 -0.020315 0.416513 0.191309
smart_9_raw -0.166672 0.173853 1.000000 0.575493 -0.062259 0.991522

smart_193_raw -0.016085 -0.020315 0.575493 1.000000 -0.311858 0.543125
smart_194_raw -0.659190 0.416513 -0.062259 -0.311858 1.000000 -0.079599
smart_240_raw -0.170055 0.191309 0.991522 0.543125 -0.079599 1.000000

Table 5.7: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZJV03NQB)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.544369 0.353490 -0.074066 0.373296 0.375813
smart_7_raw 0.544369 1.000000 -0.305087 0.011450 0.420312 -0.316823
smart_9_raw 0.353490 -0.305087 1.000000 0.018962 0.042215 0.993542

smart_193_raw -0.074066 0.011450 0.018962 1.000000 0.047066 -0.027482
smart_194_raw 0.373296 0.420312 0.042215 0.047066 1.000000 0.067022
smart_240_raw 0.375813 -0.316823 0.993542 -0.027482 0.067022 1.000000
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Table 5.8: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZCH06HY1)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.721362 0.020591 -0.832200 0.202707 0.005923
smart_7_raw -0.721362 1.000000 0.047877 0.809806 -0.043604 0.053896
smart_9_raw 0.020591 0.047877 1.000000 -0.087280 -0.063281 0.991122

smart_193_raw -0.832200 0.809806 -0.087280 1.000000 -0.129605 -0.072844
smart_194_raw 0.202707 -0.043604 -0.063281 -0.129605 1.000000 0.016449
smart_240_raw 0.005923 0.053896 0.991122 -0.072844 0.016449 1.000000

Table 5.9: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZCH097GA)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.090013 -0.559926 -0.414314 -0.284392 -0.554120
smart_7_raw -0.090013 1.000000 0.665603 0.419819 0.818138 0.673308
smart_9_raw -0.559926 0.665603 1.000000 0.842269 0.640534 0.999752

smart_193_raw -0.414314 0.419819 0.842269 1.000000 0.207130 0.839416
smart_194_raw -0.284392 0.818138 0.640534 0.207130 1.000000 0.649345
smart_240_raw -0.554120 0.673308 0.999752 0.839416 0.649345 1.000000

Table 5.10: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZCH0BCML)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.265662 0.288319 -0.222821 -0.149011 0.285033
smart_7_raw 0.265662 1.000000 -0.147119 -0.247221 -0.699470 -0.170810
smart_9_raw 0.288319 -0.147119 1.000000 0.694975 0.378101 0.997797

smart_193_raw -0.222821 -0.247221 0.694975 1.000000 0.449099 0.677031
smart_194_raw -0.149011 -0.699470 0.378101 0.449099 1.000000 0.412304
smart_240_raw 0.285033 -0.170810 0.997797 0.677031 0.412304 1.000000

Table 5.11: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZJV00F20)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.626566 -0.172211 -0.556303 0.240412 -0.109197
smart_7_raw -0.626566 1.000000 0.494762 0.598639 0.003462 0.468865
smart_9_raw -0.172211 0.494762 1.000000 0.531663 -0.138053 0.996179

smart_193_raw -0.556303 0.598639 0.531663 1.000000 -0.299230 0.488389
smart_194_raw 0.240412 0.003462 -0.138053 -0.299230 1.000000 -0.085365
smart_240_raw -0.109197 0.468865 0.996179 0.488389 -0.085365 1.000000

Table 5.12: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZJV501TY)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.221391 -0.503270 -0.396752 0.235408 -0.513900
smart_7_raw -0.221391 1.000000 0.885034 0.088399 -0.281677 0.896764
smart_9_raw -0.503270 0.885034 1.000000 0.032943 -0.346043 0.998117

smart_193_raw -0.396752 0.088399 0.032943 1.000000 -0.007978 0.048129
smart_194_raw 0.235408 -0.281677 -0.346043 -0.007978 1.000000 -0.362542
smart_240_raw -0.513900 0.896764 0.998117 0.048129 -0.362542 1.000000
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Table 5.13: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZJV00C88)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.550420 0.768246 0.703953 -0.156656 0.764068
smart_7_raw 0.550420 1.000000 0.923780 0.888632 -0.435427 0.921210
smart_9_raw 0.768246 0.923780 1.000000 0.933976 -0.430801 0.998644

smart_193_raw 0.703953 0.888632 0.933976 1.000000 -0.407332 0.916139
smart_194_raw -0.156656 -0.435427 -0.430801 -0.407332 1.000000 -0.425609
smart_240_raw 0.764068 0.921210 0.998644 0.916139 -0.425609 1.000000

Table 5.14: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZCH0CDWV)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.581867 -0.192267 0.126343 0.257818 -0.175353
smart_7_raw -0.581867 1.000000 0.184252 0.041591 -0.142339 0.168532
smart_9_raw -0.192267 0.184252 1.000000 0.805019 -0.560167 0.998472

smart_193_raw 0.126343 0.041591 0.805019 1.000000 -0.517995 0.793278
smart_194_raw 0.257818 -0.142339 -0.560167 -0.517995 1.000000 -0.547501
smart_240_raw -0.175353 0.168532 0.998472 0.793278 -0.547501 1.000000

Table 5.15: Correlation Matrix for failed disk from model ST12000NM0007
Failed Disk ST12000NM0007

(ZJV03JDV)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.037589 -0.556252 -0.159486 -0.407908 -0.525013
smart_7_raw -0.037589 1.000000 0.283011 0.049724 0.168751 0.261249
smart_9_raw -0.556252 0.283011 1.000000 0.495007 0.422434 0.998160

smart_193_raw -0.159486 0.049724 0.495007 1.000000 0.202369 0.487922
smart_194_raw -0.407908 0.168751 0.422434 0.202369 1.000000 0.410003
smart_240_raw -0.525013 0.261249 0.998160 0.487922 0.410003 1.000000

Table 5.16: Correlation Matrix for healthy disk from model ST12000NM0007
Healthy Disk ST12000NM0007

(ZCH0D2V0)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.041900 0.071323 0.507615 -0.437712 0.077877
smart_7_raw -0.041900 1.000000 0.645153 0.122852 -0.205947 0.696068
smart_9_raw 0.071323 0.645153 1.000000 0.618001 -0.115715 0.994133

smart_193_raw 0.507615 0.122852 0.618001 1.000000 -0.289708 0.625184
smart_194_raw -0.437712 -0.205947 -0.115715 -0.289708 1.000000 -0.140796
smart_240_raw 0.077877 0.696068 0.994133 0.625184 -0.140796 1.000000

Table 5.17: Correlation Matrix for failed disk from model ST4000DM000
Failed Disk ST4000DM000

(S301P6Y6)
smart_1_raw smart_7_raw smart_9_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.453119 0.366908 0.018715 0.365931
smart_7_raw 0.453119 1.000000 0.568157 -0.161762 0.558772
smart_9_raw 0.366908 0.568157 1.000000 -0.230670 0.999374

smart_194_raw 0.018715 -0.161762 -0.230670 1.000000 -0.234252
smart_240_raw 0.365931 0.558772 0.999374 -0.234252 1.000000
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Table 5.18: Correlation Matrix for healthy disk from model ST4000DM000

Healthy Disk ST4000DM000
(Z305D2CY)

smart_1_raw smart_7_raw smart_9_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.285876 0.242102 -0.167771 0.237615
smart_7_raw -0.285876 1.000000 0.379360 -0.150866 0.374310
smart_9_raw 0.242102 0.379360 1.000000 -0.228496 0.999596

smart_194_raw -0.167771 -0.150866 -0.228496 1.000000 -0.233356
smart_240_raw 0.237615 0.374310 0.999596 -0.233356 1.000000

Table 5.19: Correlation Matrix for failed disk from model ST8000NM0055
Failed Disk ST8000NM0055

(ZA17ZNQ9)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 0.141209 0.133120 0.681647 0.148984 0.146289
smart_7_raw 0.141209 1.000000 0.974040 0.146295 0.473009 0.972681
smart_9_raw 0.133120 0.974040 1.000000 0.256401 0.485871 0.999378

smart_193_raw 0.681647 0.146295 0.256401 1.000000 0.421099 0.266986
smart_194_raw 0.148984 0.473009 0.485871 0.421099 1.000000 0.501445
smart_240_raw 0.146289 0.972681 0.999378 0.266986 0.501445 1.000000

Table 5.20: Correlation Matrix for healthy disk from model ST8000NM0055
Healthy Disk ST8000NM0055

(ZA16YG7B)
smart_1_raw smart_7_raw smart_9_raw smart_193_raw smart_194_raw smart_240_raw

smart_1_raw 1.000000 -0.207226 -0.305566 -0.400377 -0.211327 -0.321603
smart_7_raw -0.207226 1.000000 0.907206 -0.212340 -0.541860 0.901361
smart_9_raw -0.305566 0.907206 1.000000 -0.216698 -0.650402 0.996615

smart_193_raw -0.400377 -0.212340 -0.216698 1.000000 -0.038489 -0.259011
smart_194_raw -0.211327 -0.541860 -0.650402 -0.038489 1.000000 -0.612920
smart_240_raw -0.321603 0.901361 0.996615 -0.259011 -0.612920 1.000000
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