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Abstract 

Ecosystem services (ES) are the contributions that nature provides to human well-being, 

either through the provision of material outputs (such as food and timber) or the regulation and 

maintenance of ecological processes and functions (e.g. disease protection or climate 

regulation). Besides provisioning and regulation ES, nature also provides cultural ecosystem 

services (CES), frequently known as nature-based experiences and preferences, that result 

from the interactions between humans and nature, contributing to people’s physical and mental 

well-being (e.g., through inspiration or recreation). CES have been mostly evaluated through 

revealed and stated preference methods (e.g. social surveys). Nevertheless, with the rise of 

digital data and technological advances during the last years, CES analysis has become 

popular in social media analytics.  

 Most of the contemporary social media content analyses considered in the context of CES 

are based on the manual classification of photographs or texts shared by social media users. 

Inevitably, the manual classification of big photographic data is too time consuming and costly, 

particularly when it comes to study large geographic areas, time periods and audiences. In this 

context, advances in automated techniques for image classification have been showing great 

relevance to address CES. Among these are the convolutional neural networks (CNNs), which 

constitute the current deep learning state-of-the-art method for visual imagery analyses, due 

to their ability to capture nonlinear patterns, avoiding the necessity of manually extracting 

features from the images, as they are automatically learned by the algorithm. Despite deep 

learning advances and opportunities, the application of CNNs to advance CES assessments 

has been underexplored. 

This thesis aims to advance an automated classification of social media photographs (more 

precisely, from Flickr and Wikiloc platforms) of the “Peneda-Gerês” protected area (Northern 

Portugal), that can be useful for CES evaluation, as well as for offering innovative solutions to 

the scientific community. To achieve that, two CNNs architectures where implemented – 

VGG16 and ResNet152 –, in conjunction with three approaches: two based in two transfer 

learning scenarios, one using the Places365 weights and other using the ImageNet weights, 

and one based in the weights obtained by training only over our dataset. The transferability 

and generalization of the models was also tested using Flickr’s photographs from the protected 

area of “Sierra Nevada” (Southern Spain).  

The models implemented with both of the transfer learning scenarios were more accurate 

than the ones with the weights obtained by training only over our dataset, suggesting that 

transfer learning constitutes a reliable solution for training when a small dataset is under 

analysis. Also, out of the two network architectures, ResNet152 achieved a slightly better 
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performance than VGG16. The same was verified for the ImageNet and Places365, where 

ImageNet led to a finer model’s performance, probably since the training was conducted with 

a greater number of images. The transferability and generalization capacity of the models 

when in contact with new and unseen data was not as accurate as expected, which can be 

related to the features/elements of the photographs which are very distinct among the 

datasets. Specifically, in “Sierra Nevada”, cold and neutral colours, such as white, grey and 

blue, predominate, while in “Peneda-Gerês”, warm and cold colours, like green, blue and 

brown, are the most common. Overall, the results revealed that deep learning methods can 

offer significant contributions to assist in CES evaluation. 

 

 

Keywords: bioinformatics, convolutional neural networks, digital conservation, iEcology, 

nature-based experiences, transfer learning. 
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Resumo 

Os serviços dos ecossistemas (SE) são as contribuições que a natureza proporciona ao 

bem-estar humano, seja por meio do fornecimento de produtos materiais (tais como alimentos 

e madeira) ou pela regulação e manutenção de processos e funções ecológicas (por exemplo, 

proteção contra doenças ou regulação do clima). Além dos SE de provisão e regulação, a 

natureza também proporciona serviços dos ecossistemas culturais (SEC), frequentemente 

reconhecidos como as experiências e preferências baseadas na natureza, que resultam das 

interações entre o homem e os ecossistemas, contribuindo para o bem-estar físico e mental 

das pessoas (e.g. através de inspiração ou atividades de recreio). Os SEC têm sido 

maioritariamente avaliados através de métodos de preferência revelada e declarada (tais 

como pesquisas sociais). Todavia, com a ascensão dos dados digitais e avanços tecnológicos 

que se verificou nos últimos anos, o estudo dos SEC através de análises de dados de redes 

sociais tem vindo a tornar-se popular.  

A maioria das análises contemporâneas de conteúdo de redes sociais considerada no 

contexto dos SEC baseia-se na classificação manual de fotografias ou textos partilhados pelos 

utilizadores das redes sociais. Inevitavelmente, a classificação manual de grande conteúdo 

fotográfico constitui um processo demorado e dispendioso, especialmente quando se trata do 

estudo de grandes áreas, longos períodos temporais e públicos de larga escala. Neste 

contexto, os avanços em técnicas automatizadas de classificação de imagens têm 

demonstrado ser de extrema relevância na abordagem aos SEC. Entre estas encontram-se 

as redes neuronais convolucionais (RNCs), as quais constituem o atual estado da arte, em 

aprendizagem profunda, para análises de imagens, devido à sua capacidade de captar 

padrões visuais não lineares. Deste modo, evita-se a necessidade de extrair manualmente as 

características das imagens, uma vez que estas são automaticamente aprendidas pelo 

algoritmo. Apesar dos avanços e oportunidades na área de aprendizagem profunda, a 

aplicação de RNCs para promover avaliações de SEC tem sido pouco explorada.  

Esta tese visa desenvolver uma classificação automatizada de fotografias de redes sociais 

(mais precisamente, das plataformas Flickr e Wikiloc) da área protegida, Peneda-Gerês (norte 

de Portugal), que se espera útil para a avaliação dos SEC, bem como para providenciar 

soluções inovadores à comunidade científica. Para tal, implementou-se duas arquiteturas de 

RNCs – VGG16 e ResNet152 –, em conjunto com três abordagens: duas baseadas em 

cenários de aprendizagem por transferência (um com os pesos do Places365 e outro com os 

pesos do ImageNet) e uma baseada nos pesos obtidos ao treinar apenas sobre o nosso 

conjunto de dados. A transferibilidade e generalização dos modelos também foram testadas 

utilizando fotografias do Flickr da área protegida Sierra Nevada (sul de Espanha). 
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Os modelos implementados com ambos os cenários de aprendizagem por transferência 

obtiveram resultados mais precisos do que os implementados com os pesos obtidos ao treinar 

apenas sobre o nosso conjunto de dados. Isto sugere que a aprendizagem por transferência 

constitui uma solução viável para treinar quando um pequeno conjunto de dados está sob 

análise. Além disso, das duas arquiteturas de rede, a ResNet152 alcançou um desempenho 

ligeiramente melhor do que a VGG16. O mesmo verificou-se para a ImageNet e Places365, 

onde a ImageNet conduziu a um melhor desempenho do modelo, provavelmente devido ao 

facto do treino ter sido realizado com um maior número de imagens. A transferibilidade e 

capacidade de generalização dos modelos quando em contacto com dados novos, não foram 

tão precisas quanto seria esperado, o que pode estar relacionado com as 

características/elementos das fotografias que são muito distintas entre os conjuntos de dados. 

Especificamente, em Sierra Nevada, cores frias e neutras, como o branco, cinza e azul, 

predominam, enquanto que na Peneda-Gerês, cores quentes e frias, tais como o verde, azul 

e castanho, são as mais comuns. No geral, os resultados revelaram que os métodos de 

aprendizagem profunda podem oferecer contribuições significativas para auxiliar na avaliação 

dos SEC. 

 

 

Palavras-chave: bioinformática, redes neuronais convolucionais, conservação digital, 

iEcologia, experiências baseadas na natureza, aprendizagem por transferência. 
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Chapter 1 

 

Introduction 

Ecosystem services (ES) represent the benefits that people can obtain from nature, which 

are currently subdivided into three main categories: provisioning, regulating and cultural 

services (MEA, 2005; Figure 1.1). ES result from the outputs that are supplied by ecosystems 

and from the benefits that are demanded by people to achieve a good quality of life. 

Provisioning services include material benefits directly obtained from nature, such as food, 

water and energy, while regulating services comprise the results from regulatory processes of 

ecosystems that contribute to climate regulation, pest control and water quality, among others. 

Cultural ecosystem services (CES), include nature-based experiences and preferences and 

constitute the non-material benefits that people can experience from nature, such as recreation 

and ecotourism, as well as those pertaining to spiritual, religious, aesthetic or heritage values, 

among others (MEA, 2005; Hausmann et al., 2018). In recent years, out of the three categories 

of ES, the study of CES has become extremely relevant, for instance encouraging people to 

engage in activities related to the conservation and maintenance of the environment and 

ecosystems, or the improvement of areas associated with urban planning and landscape 

design (Richards & Tunçer, 2018; Fish et al., 2016a). However, the study of CES has been 

particularly complex and challenging in the scope of decision-making, comparatively to the 

other ES, due to its intangible and often subjective nature that results from intellectual (e.g. 

aesthetics) or physical (e.g. recreation) interactions between humans and the environment 

(Cheng et al., 2019).  

CES have been traditionally evaluated through revealed and stated preference methods 

from the social sciences (e.g. social surveys), which can be restricted in terms of temporal and 

spatial coverage, especially if a large study area is under consideration (Yoshimura & Hiura, 

2017). Due to fast improvements in computational power and data storage capacity during the 

last years, the emergent fields of Digital Conservation (van der Wal & Arts, 2015), iEcology 

(Jarić et al., 2020) and conservation culturomics (Ladle et al., 2016) have brought new 

opportunities to address CES. These disciplinary fields refer to the use of digital (big) data and 

technology to understand human-nature interactions and to provide evidence in favour of 

nature conservation and of the sustainable use and management of ecosystems (van der Wal 

& Arts, 2015; Toivonen et al., 2019). It considers the use of digital information and data 

produced and shared by people, for instance through their mobile devices (e.g. smartphones, 
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digital cameras, etc.) and in social media platforms (e.g. geo-tagged photographs and tweets). 

The incorporation of social media data in the study of conservation-related events, such as 

CES, has brought, for instance, the possibility of assessing the presence of people in protected 

areas, as well as to identify human-nature interactions hotspots, which can add a significant 

contribution to the understanding of landscape values, human activities in nature, visitation 

preferences of people, among others. (Tenkanen et al., 2017). 

 

 

Figure 1.1. Illustration of the relationship between ecosystem services and human well-being (source: MEA, 2005). 

 

Nowadays, computer science and related fields have been highly invested in the use and 

combination of methods that incorporate social media analytics (Sherren et al., 2017). Social 

media platforms represent a very significant fraction of all social digital data, constituting an 

efficient method to collect big data that provide information on people’s interactions with each 

other and with their environment (Di Minin et al., 2015). For instance, Flickr (often used for 

sharing nature-related content) and Instagram (normally associated with day-to-day content) 

are two media-sharing platforms with a rich visual (e.g. photos) and textual (e.g. tags and 

comments) contents. Furthermore, these platforms respectively have about 1.7 and 40 million 

photos shared by their users at a daily basis, making them candidate tools for the identification, 

mapping and monitoring of physical, visual and sensory features of ecosystems and nature 
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(Heikinheimo et al., 2018; Fu & Rui, 2017). However, an approach that combines different data 

from social media with advanced analytics, besides spatial analysis, remains very uncommon. 

Thus, the investment in methods that can identify features of ecosystems and nature through 

the content analysis of shared photos (or text), can constitute an asset to support the 

evaluation of CES, particularly, related to aesthetics and recreation or ecotourism (Fu & Rui, 

2017; Richards & Tunçer, 2018). Furthermore, the action of sharing photographs in social 

media can provide digital proxies of spatial preferences, since people usually share pictures 

that they assume to be worthy of sharing visually, which gives a sense of the places that are 

considered to be valuable for visitation (Gliozzo et al., 2016). 

Most social media content analyses considered in the context of CES are based on the 

manual classification of photos or texts shared by social media users (Cheng et al., 2019). 

Examples include the work developed by Hausmann et al. (2018), who evaluated people’s 

preferences for biodiversity based on the manual interpretation of Flickr and Instagram’s 

photographs. Inevitably, the manual classification of big photographic data is too time 

consuming and costly, particularly when it comes to large areas under analysis. In this context, 

advances in automated techniques for image classification have been showing great relevance 

to address CES (and other ES; Willcock et al., 2018; Gosal et al., 2019). 

One of the biggest challenges in the modelling and assessment of ES is deciding on either 

a simple approach or a complex approach. Complex approaches are time consuming and 

require intensive data, therefore being more challenging to implement and hard to upscale, 

while simple approaches allow for speedier assessments. However, complex approaches 

imply more accurate and locally specific results, and simple approaches sacrifice accuracy 

and credibility of its results (Martínez-López et al., 2019). The emergence of the artificial 

intelligence (AI) field brought a wide range of possibilities in broadest areas, with ES being no 

exception, since it allows to reduce assessment complexity and cost for the user, offering a 

simple, yet precise, approach (Villa, 2009). An AI algorithm constitutes every set of rules that 

is followed in order to perform a given task, allowing to perceive its environment, a singularity 

that is acquired by selecting actions that maximize the probability of successfully reaching 

particular goals (Vinuesa et al., 2020).  

One of the most common AI subfields in computer vision analysis is machine learning, 

which, in general, focuses on the development of computer (or machine) programs that can 

access data and use that data in order to self-learn task performance. Within machine learning, 

deep learning has been gaining ground in the areas of digital image processing, constituting 

the current state-of-the-art. Deep learning is defined as the set of algorithms that are based on 

artificial neural network architectures (Lusch et al., 2018), such as Convolutional Neural 

Networks (CNNs), and that allow the automated identification and analysis of labelled data in 

the context of visual imagery classification, natural language processing (NLP), video analysis, 
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time series forecasting, among many others (Najafabadi et al., 2015). Advances in deep 

learning have shown to be very effective in many research areas, such as species identification 

(Ferreira et al., 2019), health care (Renna et al., 2019) or safety surveillance (Castillo et al., 

2019). However, those algorithms have been seldom applied to ES in general, and more 

specifically to CES evaluation from social media (Willcock et al., 2018). Currently developed 

tools that can be useful to support CES analysis, such as the Google Cloud Vision1 

(https://cloud.google.com/vision), are not freely available (Richards & Tunçer, 2018; Mulfari et 

al., 2016; Gosal et al., 2019).  

In this context, the development of scientific tools grounded on AI and machine learning 

algorithms should constitute an asset to CES evaluations. Therefore, this will allow the 

incorporation of big data into interdisciplinary models to provide holistic solutions to complex 

socio-ecological issues under user-friendly, cost-effective and publicly accessible ways.  

 

 

 

 

 

 

 

 

 

 
1 The Google Cloud Vision is an application programming interface that provides powerful pre-trained machine learning 
classification models, specialized in detecting objects and faces, read printed and handwritten text, etc., by means of 
assigning labels to a given image. 
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Chapter 2 

 

Thesis motivation and research goals 

Cultural ecosystem services (CES) are an essential concept of human health and well-

being, contributing, among others, to foster social cohesion, which makes the assessment and 

quantification of these services essential for people’s welfare when in contact with the 

environment and nature, supporting decision making in national parks, protected areas, among 

others. CES are often considered as intangible and subjective, that makes the measurement 

and quantification of these services difficult. However, CES evaluations can be indirectly 

obtained through the evaluation of people’s experiences and preferences towards nature. For 

instance, such preferences can be evaluated from texts and pictures shared by people on 

social media platforms. During recent years, CES have been mainly inferred from the manual 

interpretation of social media pictures, which is time and resource consuming. Thus, the 

investment in the development of new techniques that reduce both the evaluation time and 

cost to infer on CES from social media data, has become a priority in the digital conservation 

field. 

This project aims to develop an automated classification of social media photographs that 

can be useful for CES evaluation and for providing innovative solutions to the scientific 

community. Specifically, this study aims to answer the following questions: (1) can deep 

learning algorithms be developed to support an automated classification of social media 

photographs in the context of CES? (2) how can those algorithms and models be improved in 

order to promote statistically reliable image classifications? and (3) at which point can those 

algorithms and models be replicable and applied to other geographical contexts than those for 

which they have been trained? To achieve this, deep learning algorithms are here developed 

and tested, more specifically Convolutional Neural Networks and transfer learning strategies, 

in digital photographs from social media platforms Flickr and Wikiloc at the “Peneda-Gerês” 

protected area (Northern Portugal). The spatial transferability of those algorithms is also tested 

using Flickr’s photos from the protected area of “Sierra Nevada” (Southern Spain). 
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Chapter 3 

 

Background 

 

3.1. Brief overview on cultural ecosystem services 

In the last decade, there has been a general acceptance that ecosystem services (ES) 

have become an important tool for decision-making on several ecological and social 

challenges. ES have the capacity to reflect the benefits that people can acquire from nature, 

as well as to increase public awareness on environmental protection and sustainability 

(Plieninger et al., 2015). Although the outcomes of ES evaluation can sustain practical 

applications and policy making (e.g. urban planning or landscape design), the low availability 

of data constitutes a significant obstacle to the assessment of ES. When it comes to the cultural 

ecosystem services (CES) domain - i.e. the non-material benefits people obtain from nature - 

this barrier becomes more evident, for both quantitative and qualitative data, since there isn’t 

a clear boundary between the different CES categories, which can often result in double-

counting problems (e.g., benefits for recreation can be frequently confused with aesthetic 

values, educational values, and spiritual and religious values) (Brown et al., 2016). 

Multiple methods have been developed to assist on CES valuation. These methods may 

have a monetary and non-monetary nature (Hirons et al., 2016), and account with revealed 

preference and stated preference approaches. For instance, the revealed preference in 

monetary methods consists in observing actual markets for CES valuation, while the stated 

preference consists in building and simulating a market and questioning respondents to 

declare their willingness to pay, receive or give up of some benefits which can emerge from 

CES. For non-monetary methods, in turn, the revealed preference is based in monitoring 

behaviour or analysing pre-existent information, such as written texts and advertisements, in 

order to determine, indirectly, people’s preferences for CES (e.g. through questionnaires). As 

CES values can be particularly challenging and not always be assessed through monetary 

methods, interviews and questionnaires represent the methods most frequently used for CES 

assessment (Cheng et al., 2019), which are often time consuming particularly when targeting 

large audiences. In this context, cost-effective alternatives to traditional methods, such as 

social media analytics, have been increasingly rising at the interface between ecology and 

computer sciences (see section 3.2). 

 



FCUP 
Deep learning to automate the assessment of cultural ecosystem services from social media data  

 

7 

 

3.2. Humans, ecosystems and social media 

The current information age, in which an increasing volume of data (big data) is 

progressively produced through user activities in virtual networks and platforms, has highly 

contributed to the emergence of new research avenues in various fields of science, with ES 

being no exception (Toivonen et al., 2019). With the arising of social media and digital 

resources, new communication opportunities have emerged, providing a rich source for 

studying people's activities in nature, and therefore offering new opportunities for people (via 

computers) to classify species in pictures, identify patches of forests in satellite images, 

evaluate the sentiments and emotions expressed by social media users, among others. The 

emergence of social media has also allowed people to express their opinions and thoughts, 

report on newsworthy events, debate conservation issues or simply discuss or search topics 

of interest, offering real-time insights into significant events, actions that were not possible with 

traditional media, since people actively contribute to data for research in a structured manner 

(Pathak et al., 2017; Toivonen et al., 2019).  

Social media platforms constitute the web-based services that enable individuals, groups, 

communities and organizations to interact, cooperate and connect, providing resources for 

people to create, share and engage on freely available and easily accessible content (McCay-

Peet & Quan-Haase, 2017). The information is characterized by large and variable volumes of 

data being stored, which makes filtering and cleaning very important tasks particularly when 

dealing with data that is inaccurately georeferenced or generated by bots (Di Minin et al., 

2018). It can be divided into five main elements: (1) user information (e.g., full name, 

username, number of followers, home location), (2) data content (e.g. text, image, video, 

sound), (3) timestamp (date and time of the post), (4) geotag (automatic or user-defined 

location for the post), (5) reactions of the remaining users (e.g. comments and likes), making 

social media data similar to other types of reliable geographic information (Toivonen et al., 

2019). In this context, the information withdrawn from social media has offered new 

approaches for studying visitation patterns in conservation areas, preferences and activities of 

protected area visitors, monitor public reactions to conservation-related events, as well as 

mapping CES, among others (Tenkanen et al., 2017; Gliozzo et al., 2016; Lunstrum, 2017).  

These data is largely shared thanks to the progressive and increasingly frequent use of 

smartphones, that provide the capacity to record people’s locations through the mobile network 

operator services and mobile applications such as social media platforms, constituting proxies 

for identifying changes in people’s distribution, as well as for understanding the movement 

patterns of the users (Frank et al., 2014). In fact, over the last years, we have been witnessing 

the emergence of new transdisciplinary areas of research, such as conservation culturomics, 

digital conservation or iEcology (Jarić et al., 2020). In these areas, researchers take advantage 
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of digital technology and publicly available data from large audiences to support the 

surveillance and management of nature’s contributions to people at several scales (Jarić et 

al., 2020; Toivonen et al., 2019; see section 3.3). 

 

 

3.3. The rise of iEcology and digital conservation 

Digital conservation has recently risen as a subarea of conservation science that is 

dedicated to the use of innovative data sources, such as social media data, satellite Earth 

observations and other (big) digital data sets, in order to analyse and mitigate biodiversity 

issues and environmental challenges (Arts et al., 2015). It constitutes a set of digital interactive 

services that enable the creation and/or distribution of information, opinions, and other types 

of communication/interactions, through virtual networks and groups. Since user-generated big 

data can give insights about human-nature interactions, such as people's interests on nature, 

conservation debates or online discussions (among others), social media data may offer novel 

cost-efficient methods for CES monitoring and assessment.  

The field of iEcology (Figure 3.1) and conservation culturomics represent an opportunity to 

understand human and nature interactions in the digital realm, being dedicated to the study of 

ecological informatics, using innovative data sources generated online by human society, 

being the target data not purposefully produced to address ecological and environmental 

challenges (Jarić et al., 2020; Ladle et al., 2016). Nowadays, the most common applications 

of these methods are closely related with the study of ecosystem and habitat dynamics, 

species occurrences, as well as their spatiotemporal trends (e.g. trait dynamics, evolutionary 

trends, biogeographic patterns, biotic and abiotic interactions, among others). The 

incorporation of methods and tools in the iEcology and conservation culturomics arenas could 

effectively be beneficial for studies in other ecology and environmental sciences fields. For 

that, technological advances, namely on artificial intelligence, offer numerous opportunities 

(see section 3.4). 
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Figure 3.1. Representation of the iEcology conceptual framework (source: Jarić et al. 2020) 

 

 

3.4. Artificial intelligence: computer vision and convolutional neural 

networks 

In the computer science arena, computer vision is closely related with artificial intelligence, 

having first arisen with the main goal of mimicking the human visual system for endowing 

robots with intelligent behaviour (Szeliski, 2010). Computer vision constitutes a wide-range 

and interdisciplinary field that is essentially based on the study of automatic processing and 

understanding of digital images and videos. Computer vision main tasks consist in acquiring, 

processing, analysing, understanding and extracting high-dimensional data from the real 

world, in order to produce numerical or symbolic information that can be useful for decision-

making (Klette, 2014). In other words, computer vision encompasses the process of 

transforming visual images (the input of the retina) into descriptions of the real world that can 

be used to manage a specific action (complete scene understanding). Deep learning has 

brought state-of-the-art methods and tools for solving challenging computer vision tasks, such 

as classifying the content of digital photographs, through the identification of objects and their 
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outlines, providing descriptions of the entire image or their parts and enabling the monitoring 

of species and ecosystems (Rawat & Wang, 2017; Lee et al., 2019). 

 

 

3.4.1. Supervised learning 

In the generality of machine learning and deep learning algorithms, the process of learning 

can be subdivided into three learning paradigms: supervised, unsupervised and reinforcement. 

Among the three, supervised learning is one of the most common approaches in the digital 

image processing field.  

In this learning approach, a model is trained from annotated data, based on example input-

output pairs, that can be used to solve either a classification or regression problem. It has the 

capacity of inferring a function from a set of labelled training examples, that can be further 

used for mapping new and unseen data. The main goal of supervised learning consists in 

approximating the mapping function 𝑓(𝑥) in a way that, in the presence of new input data 𝑥, it 

becomes possible to predict the output variables 𝑦 for that specific data (Eq. 2.1): 

 

 𝑦 = 𝑓(𝑥) Eq. (2.1) 

 

This process is achieved through the adjustment of the inter connection weight 

combinations with the aid of error signals (Sathya & Abraham, 2013). Compared to 

conventional methods, supervised learning, when applied to deep learning methods, is subject 

to scalability problems, demanding huge volumes of labelled data to generalize properly. Also, 

these techniques have low capacity of generalization to multiple domains and tasks (Chum et 

al., 2019). 

 

 

3.4.2. Artificial neural networks 

Most deep learning models used for visual understanding are based on artificial neural 

networks (ANNs). ANNs were initially proposed with the main goal of mimicking the 

performance of a biological brain. They are based on a set of connected units or nodes named 

artificial neurons: mathematical operations that have the capacity to transmit a signal, as well 

as to receive one or more inputs through connections (edges) with other artificial neurons 

(process that resembles the biological synapses). The neurons are normally organized into 

multiple layers, where the connections among the neurons only occur between the immediately 
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preceding and following layers. The transmission of the signal occurs in the first layer (input 

layer) and continues to the last layer (output layer), typically after navigating through the layers, 

multiple times. This signal corresponds to a real number that is computed by a selected non-

linear activation function (e.g., rectified linear unit (ReLU), sigmoid, softmax, among others). 

Also, each neuron and connection normally have an associated weight that undergoes 

adjustments throughout the learning process, depending on whether it increases or decreases 

the total strength of the signal, and consequently, improves the accuracy of the result. 

Whenever the weighted sum of inputs surpasses the threshold value of a certain neuron, it 

stays activated and sends the signal through a transfer function that is responsible for passing 

it to the neighbouring neurons (Zou et al., 2008). Similarly, biases are also added to the 

neurons as an additional input into the next layer. In these models, each level learns the 

process of transforming input data (extracting higher level features) into a slightly more 

abstract, composite and complex representation (output) (LeCun et al., 2015; Goodfellow et 

al., 2016). When working with image data, the raw input is a matrix of pixels, where the model 

automatically learns which features (e.g. edges, colour) should be considered in each level. 

 

 

3.4.3. Convolutional neural networks 

Within deep learning techniques, CNNs constitute one of the most used algorithms in the 

visual imagery scope. Similarly, CNNs constitute an electronic system that is capable of 

learning to identify similarities between patterns of information, in a manner that closely 

resembles a biological brain. However, they were specially developed for processing structural 

data that have a sequential (1D) or grid-like structure (2D, 3D), constituting a class of deep 

neural networks where linear operations (matrix multiplications) among nodes are substituted 

by mathematical operations named convolutions. CNNs, as being a type of feedforward neural 

networks (Figure 3.2), have connections between the nodes that do not form a cycle or loop, 

where information moves in only one direction (forward), from the input nodes, through the 

hidden nodes (if existing) and, finally, to the output nodes. These can be interpreted as 

regularized versions of multilayer perceptrons (MLPs), where each neuron in 𝑛𝑡ℎ layer is 

connected to all the neurons in the next (𝑛 + 1) 𝑡ℎ layer (fully connected networks). In order to 

compute the output, Rosenblatt (1958) presented the weights concept, which is responsible 

for representing the importance of the respective inputs to the output. This type of networks 

has as main objective to approximate some function 𝑓∗. For instance, for a common classifier, 

𝑦 = 𝑓∗(𝑥) maps an input 𝑥 to a category 𝑦. Feedforward networks, in its turn, describe a 
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mapping 𝑦 = 𝑓(𝑥; 𝜃), in order to learn the value of the parameter 𝜃 that leads to the best 

function approximation (Goodfellow et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Architecture of a feedforward neural network. 

 

Convolutional layers in CNNs imply sparse, local interactions between neurons and 

parameter sharing, which guarantee to provide equivariant representations of the input data 

(Goodfellow et al., 2016). The sparse interactions are accomplished by considering 

convolution kernels smaller than the input, which allow to learn local patterns using small but 

meaningful features, reduce the number of parameters to be stored and the memory 

requirements. Parameter sharing, in its turn, refers to the use of the same parameter for more 

than one function in a model (each component of the kernel is normally used at every location 

of the input) and equivariant representations implies that a transformation in the input will be 

also translated in a transformation in the output. Since a photograph can have a million pixels, 

all these features optimize and automate its classification, distinguishing these networks from 

other machine learning algorithms (such as support vector machines (SVMs) or k-nearest 

neighbours (k-NN)). 

Besides convolutional layers, CNNs also comprise three different types of layers: pooling, 

fully connected and output layers. Pooling layers are responsible for reducing the dimensions 

of the data, through the downsampling of the feature maps, individually. This is achieved by 

sliding a two-dimensional kernel over each channel of the feature map, reducing the features 

that lie inside that specific area. Also, pooling layers can be either global (over all of the 

neurons) or local (over small clusters), max (using the maximum value of the cluster) or 

average (using the average value of the cluster). Fully connected layers, in turn, have the main 

function of connecting the inputs from one layer to every activation unit of the next layer. Lastly, 

the most used type of output layer in CNNs is the one that uses the softmax as the activation 
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function. This function is used to normalize the output to a probability distribution over the 

predicted output labels. Currently, it constitutes the state-of-the-art for most CNNs models, due 

to its simplistic interpretation (Liu et al., 2016). 

The use of convolutions in the neural network architecture allows avoiding the necessity of 

manually extracting features from the images, as these are automatically learned by the portion 

of the network that contains convolutional layers (Nielsen et al., 2017). For this reason, CNNs 

only demand a minimum level of pre-processing, making the use of these techniques preferred 

over other image classification algorithms in several application scenarios. A discrete 

convolution of two one-dimensional signals 𝑥 and 𝑘 can be described as (Eq. 2.2): 

 

 (𝑥 ∗ 𝑘)(𝑖) =  ∑ 𝑥(𝑗) ×  𝑘(𝑖 − 𝑗)∞
𝑗= −∞   Eq. (2.2) 

 

Where * symbolizes the convolution operation, 𝑥 the input, 𝑘 the kernel, 𝑖 the location 

where the convolution is calculated and 𝑗, a value that is responsible for indicating which input 

and kernel elements will be multiplied. When considering CNNs, the convolution output is often 

mentioned as a feature map. In each convolutional layer, the convolution operation is applied 

between the input and the kernel to produce a feature map (Figure 3.3). More precisely, for 

every convolutional layer, multiple feature maps are generated by applying a convolution 

operation between the input and the kernel. The kernel slides along the input, stops at every 

possible position and, lastly, calculates the dot product between the input and the kernel. A 

convolution normally requires specifying a few parameters to be implemented, namely the 

kernel size, number of kernels to be applied, stride size (also referred to as increment, how 

much we slide at each step), among others.   

 

 
 

 

 

 

 

 

 

 

Figure 3.3. Linear convolution process with a mean filter mask. Figure extracted from Jeong et al. (2011) 
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3.4.4. Training 

CNNs are usually trained using iterative, gradient-based optimizers that drive the cost 

function to a very low value (non-convex loss functions). Thus, training with CNNs implies the 

presence of a loss/cost function that allows to compute the model error and, consequently, to 

optimize the training process. A loss/cost function is responsible for mapping the values of one 

or more variables into a real number that has some “cost” associated, contributing to the 

knowledge of the weights and biases during the training. In an optimization problem, the goal 

is to find the best values that minimize the selected loss/cost function. 

Categorical cross-entropy (CCE) and mean squared error (MSE) constitute the two most 

common loss/cost functions in the state-of-the-art, regarding to training with CNNs. MSE is 

preferred for regression analyses, while CCE is normally more appropriated for classification 

problems, where one example can be assigned to a specific category with probability 1 and to 

other categories with probability 0. CCE is defined as follows (Eq. 2.3): 

 

 
𝐶𝐶𝐸 =  − ∑ 𝑡𝑖 log(𝑠𝑖)

𝐶

𝑖

 

 

Eq. (2.3) 

 

where 𝑡𝑖  corresponds to the ground truth vector and 𝑠𝑖 to the predicted probability vector 

(softmax output). Also, normally softmax or sigmoid functions constitute the two most 

recommended activation functions to use in conjunction with the categorical cross-entropy 

cost/loss function, since both can provide the appropriate conditions for the CCE function to 

fulfill its main purpose of comparing two probability distributions (Kanai et al., 2018). 

However, gradient based learning can be very time consuming when training a significant 

number of inputs, since finding a global minimum (or a very low value) can be quite a difficult 

task, given that the loss function is not convex, in general. Accordingly, the iterative method of 

stochastic gradient descent (SGD) can be useful, since its performance consists in randomly 

picking up a small number of randomly chosen training inputs (a mini-batch gradient descent 

with a batch size of one). In other words, SGD operates by replacing the actual gradient 

(estimated from the entire dataset) by an estimate thereof (computed from a randomly selected 

subset of the data) (Goodfellow et al., 2016), in order to calculate the gradient of the loss 

function 𝐶𝐶𝐸 with respect to the parameters 𝜃 given a learning rate 𝜂 and each individual 

training example 𝑥𝑖  and corresponding label 𝑦𝑖 (Eq. 2.4): 

 

 𝜃𝑡+1 = 𝜃𝑡 − 𝜂. ∇𝜃𝐶𝐶𝐸(𝑥(𝑖); 𝑦(𝑖); 𝜃𝑡) Eq. (2.4) 
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The architecture of the SGD algorithm implies the definition of a few essential hyperparameters 

(constant parameters whose value is established before the learning process), being the batch 

size and the number of epochs two of the most relevant. The batch size corresponds to the 

number of training samples considered in one iteration. An iteration constitutes a single 

gradient update (i.e. model’s weights update) in the training, while the number of epochs, in 

turn, represent the number of times an entire dataset is passed forward and backward through 

the model. Lastly, the learning rate is classified as a tuning parameter that is responsible for 

determining the step size at each iteration, in order to adjust for errors and, consequently, 

converge towards a minimum of a loss function. 

The algorithm responsible for applying gradient descent to the training of the majority of 

convolutional neural networks is called backpropagation (Rumelhart et al., 1986). This 

algorithm can be divided into two phases: a first one, frequently known as forward propagation, 

where the input propagates over the network to generate an output �̂�, with the algorithm 

keeping a stack of function calls, as well as their computed parameters, and a second one, 

known as back-propagation, that enables the back propagation of the information from the cost 

through the network. This process is only possible due to the chain rule of calculus, a formula 

that is used to compute the derivatives of composite functions. Backpropagation begins with 

the loss value and runs backwards from the final layers to the initial layers, uses the chain rule 

in the computations of gradient values and, lastly, calculates the contribution each parameter 

had to the final loss value. In feedforward networks, backpropagation can either be manifested 

in terms of matrix multiplication or adjoint graphs (more common) (Nielsen, 2015; Goodfellow 

et al., 2016). 

 

 

3.4.5. Underfitting and Overfitting  

One of the main drawbacks associated with deep learning algorithms is the requirement of 

high volumes of training data for models to learn and generalize well when in the presence of 

unseen data, a condition that normally is not verified in conservation science datasets 

(Toivonen et al., 2019). This frequently leads to overfitting, a negative condition where the 

model learns and memorizes the detail and noise present in the training data to the extent that 

it fails to reliably fit new and unseen data, as the noise or random fluctuations may vary 

between different data (Jabbar & Khan, 2015). The resulting model is overfitted, and therefore 

comprises more parameters than the ones that can be explained by the training data. The 

inverse, underfitting, occurs when the model is unable to capture the underlying structure of 

the data, which often results in low generalization and unreliable predictions. Unlike the 

overfitted model, the underfitted one does not contain the parameters that should be present 
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in a properly specified model. Both irregularities in the model’s performance are negative and 

not desirable when training an accurate model. 

New techniques, such as transfer learning and data augmentation have been used to 

surpass and alleviate shortcomings in data volume, and consequently avoid overfitting and 

underfitting. Transfer learning constitutes the process of learning representations on larger 

datasets, through the reuse of a model that was initially developed for a similar task (e.g., 

classification) to the one pretended (Weiss et al., 2016). This can be achieved by training the 

classifier over a distinct dataset (possibly with different classes), being useful mainly due to 

the fact that the first layers of CNNs learn to recognize low-level features (e.g. edges, simple 

geometrical shapes) that, in turn, can constitute beneficial information for different tasks.  

Data augmentation, in turn, is the process of increasing the amount of training data. It was 

selected as a feasible solution to deal with the limitations associated with the size of the 

dataset, since deep learning algorithms normally require large amounts of training data to fit 

models able to generalize properly. Data augmentation is obtained via the introduction of 

transformations and slight distortions of the original training data that does not imply significant 

semantic changes in the information contained by the data, i.e., change of class. This 

procedure can therefore reduce overfitting when training the model (Sladojevic et al., 2016). 
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Chapter 4 

 

State of the art 

 

4.1. Assessing cultural ecosystem services  

Human interests constitute the main drivers of the rapid worldwide loss of biodiversity that 

has been occurring in the last years (Maxwell et al., 2017). Therefore, understanding human-

nature interactions becomes extremely relevant to address the biodiversity crisis, as well as to 

encourage prevention actions and develop new mitigation strategies. The quantitative 

analyses of social media data remain scarce in conservation-related sciences, with ecosystem 

services (ES) and, especially, cultural ecosystem services (CES), being no exception. 

Previous studies on CES have been based predominantly in questionnaires and interviews, 

which are time consuming and low cost-benefit.  

Examples of studies based in questionnaires/interviews include the one developed by 

Bryce et al. (2016), where it was evaluated the benefits of cultural ecosystem services in 151 

marine sites from the United Kingdom, through the presentation of an online questionnaire 

(containing 15 subjective well-being indicators) to a group of recreational drivers or anglers. 

Similarly, Fish et al. (2016b), also studied CES in the Northern Devon Nature Improvement 

Area (NDNIA) from south west England, through a combination of methods involving structured 

questionnaire surveys, qualitative mapping (based in the questionnaires), group discussion 

(based in the questionnaires and mapping) and participatory arts-based research process 

(based in the questionnaires, mapping and group discussion). Schmidt et al. (2016), in turn, 

explored the sociocultural CES value of Edinburg urban green areas and Pentland Hills, 

situated in Edinburg, Scotland. The assessment was based on two structured surveys: face-

to-face interviews and online surveys. Likewise, Dou et al. (2017) proposed a method for 

quantifying cultural ecosystem services through human perceptions, by making questionnaires 

and expert interviews, combined with monetary ecosystem services valuation, in six 

metropolitan areas of Beijing, China. 

Also, Hausmann et al. (2018) introduced a method for content analysis of georeferenced 

photos from social media platforms (e.g., Flickr and Instagram) to infer on visitors’ preferences 

in protected areas, through statistical methods. The results didn’t reveal significant differences 

between the analyses of surveys content and social media content, which launches social 

media data as a potential source of reliable information for assessing environment challenges. 
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Lastly, Moreno-Llorca et al. (2020a) found that social media data and social surveys can 

provide complementary information on CES assessments pertaining to tourism. 

In recent years, the emergence of the iEcology, Digital conservation and conservation 

culturomics fields brought a wide range of possibilities to address cultural ecosystem services, 

taking advantage of social media data (including text, video and image). However, most of the 

studies in this scope still rely on manual content analysis of photographs, which, similarly to 

the questionnaires/interviews, is time and resource consuming. Examples of studies using 

social media data include the one developed by Eid & Handal (2018), where illegal hunting in 

Jordan was studied using social media data, in order to assess its impacts on wildlife; the one 

proposed by Hausmann et al. (2018), based in the manual classification of pictures from 

Instagram and Flickr, with the purpose of understanding tourists’ preferences for nature-based 

experiences in protected areas; and finally the one from Moreno-Llorca et al. (2020b) which 

used the manual labelling of social media pictures to understand tourist profiles and visitation 

preferences. 

Nevertheless, some advances are being made in the automated image analysis that allow 

an automated CES assessment. Richards & Tunçer (2018), for example, developed a method 

for assessing ecosystem services, based on the automating content analysis of social media 

photographs from Flickr, using the machine learning algorithm provided by Google Cloud 

Vision. Also, Gosal et al. (2019) explored multiple recreational beneficiaries in social media 

photographs from Flickr, using the machine learning algorithm provided by Google Cloud 

Vision to classify its content. However, these efforts make use of existing platforms (e.g., 

Google cloud vision) that are not freely available to the scientific community, making them a 

low cost-benefit alternative.   

 

 

4.2. Machine and deep learning for cultural services 

Deep learning approaches have become popular methods due to their ability to capture 

nonlinear patterns and have been established as the state-of-the-art for several image 

classification tasks, achieving better results compared to other machine learning classifiers 

(such as support vector machine and k-nearest neighbours), therefore, being widely used in 

the most diverse areas (Fu & Rui, 2017). Deep learning has been used in other similar works, 

such as the one developed by Wang et al. (2016), where CNNs, more precisely, the AlexNet 

network architecture and the Caffe open-source software framework, were used to track 

natural events from social media data. These authors achieved good results that corroborate 

the ability of CNNs to address image classification tasks and also highlighted the potential of 

using social media data to tackle conservation events. Other analogous work is the one 
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proposed by Seresinhe et al. (2017), where it was adopted a transfer learning approach that 

uses convolutional neural networks, more precisely, AlexNet, VGG16, GoogleNet and 

ResNet152, trained over the Places (http://places2.csail.mit.edu/index.html) dataset to 

quantify the beauty of outdoor places, by analysing over 200 000 photographs of Great Britain 

that were retrieved from the online game Scenic-Or-Not. Overall, this work achieved results 

with great potential to quantify the scenicness of outdoor spaces, with the VGG16 network 

architecture constituting the setup with the best performance, followed by GoogleNet and 

ResNet152, and lastly, AlexNet. Similarly, Koylu et al. (2019), proposed a method in which 

CNNs with kernel density estimation, more precisely “You Only Look Once” (YOLO) real-time 

object detection, were implemented in order to identify bird images and infer birdwatching 

activity patterns from geo-tagged social media photos. This work achieved positive results that, 

once again, support the use of CNNs to address social media content classification tasks in 

the context of conservation events.  

Nowadays, the assessment of CES using social media data is fundamentally based on 

three main machine learning and/or deep learning methodologies: a first one (more common), 

that is essentially focused on spatial and spatio-temporal analysis combined with content 

evaluation of human-nature interactions, through social media locations and timestamps 

(Fisher et al., 2018); a second one, based on social media geotags, text, image and video 

content for monitoring biodiversity and natural/landscape features (Dylewski et al., 2017); a 

third one, focused on text analysis of  online discussions, perceptions and reactions to 

conservation-related events, news and management activities (Wu et al., 2018). One example 

is the work developed by Gosal & Ziv (2020), where the landscape aesthetics of the northern 

English Protected Area of the Yorkshire Dales National Park were studied through the use of 

social media photographs, analysed using the machine learning Google’s Cloud Vision 

application programming interface (API), in combination with paired-comparison surveys, 

probability modelling, machine learning based with text annotations, natural language 

processing and regression analysis.  

Other works have been developed through the last years in the areas of digital 

conservation, iEcology and conservation culturomics which offer many opportunities for CES 

evaluation. As an example, Hafemann et al. (2014) presented a method for forest species, that 

was implemented using CNNs to analyse two datasets (one with macroscopic images and 

other with microscopic images of Brazilian forest species). These CNNs were based on state-

of-the-art models for object classification, presenting a structure (an input layer, a set of 

convolutional layers and pooling layers, a locally connect layer and a fully connected output 

layer) that enhances this task. Hafemann et al. (2014) achieved great results, comparable to 

the state-of-the-art ones, emphasizing the potential of CNNs for object detection in the scope 

of forest species recognition. Also, Salman et al. (2016) proposed a deep learning approach 

http://places2.csail.mit.edu/index.html
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based on CNNs, more precisely, on a K-layered convolutional neural network, in conjunction 

with conventional machine learning algorithms: k-NNs and SVMs. The main goal consisted in 

the classification of images of fishes in unconstrained underwater environments, where the 

results revealed a superior classification performance for the CNNs coupled with k-NN and 

SVMs, when compared to classifying with only k-NN and SVMs. 

Similarly, Richards & Tunçer (2018) proposed an approach for automating the assessment 

of cultural ecosystem services from social media photographs, using the Google Cloud Vision 

software to analyse and group, through hierarchical clustering, over 20,000 photographs from 

Singapore. This automated classification method was then compared to a manual 

classification. These authors achieved accurate results, with great potential to quantify CES 

and to support urban planning, especially in large areas, where the manual classification is not 

cost-effective. Lee et al. (2019) proposed a method for analysing large amounts of social media 

photographs (from the Mulde river basin in Saxony, Germany) and for deriving indicators of 

socio-cultural usage of landscapes, through cluster detection with CNNs, using the computer 

vision and artificial intelligence enterprise platform Clarifai. This platform uses deep CNNs to 

identify and analyse image and video content. Lee et al. (2019) reached satisfactory and 

reliable results that provide a source of knowledge to the spatial explicit monitoring of CES 

activities, as well as for landscape management and planning, even in the presence of large 

volumes of data. 

Likewise, Gosal et al. (2019) studied multiple recreational beneficiaries across the 

Camargue region in Southern France, in order to predict and map beneficiaries’ types and 

choices through the combined analysis of machine learning techniques, natural language 

processing (latent semantic analysis (LSA)) and self-organizing maps (SOM) of 20,000 social 

media photographs retrieved from Flickr. These photographs were automatically annotated in 

descriptive terms using Google’s Cloud Vision API. The results revealed great potential for 

decision-making and urban planning, supporting the development of smarter strategies by park 

managers and constituting a more cost-effective method that can be used at the expense of 

surveys in the field. 

Willi et al. (2019) proposed an automatic method, based on the transfer learning strategy, 

for identifying animal species in camera trap images using deep learning, where CNNs, more 

precisely, the ResNet18 network architecture, were implemented using the TensorFlow 

platform, in order to distinguish between animal species, humans, vehicles and empty 

photographs. The results revealed a finest classification performance for the models trained 

with transfer learning, when compared to the models trained from scratch, which leverages the 

potential of this technique. Also, the results demonstrated to be a viable, and less time 

consuming, alternative to manual classification of images. Finally, Hausmann et al. (2020) 



FCUP 
Deep learning to automate the assessment of cultural ecosystem services from social media data  

 

21 

 

studied the visitor’s sentiment, using automated natural language processing to analyse 

Instagram posts geolocated inside four national parks in South Africa.  
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Chapter 5 

 

Implementation details 

 

5.1. Test areas 

The test area (Figure 5.1) is “Peneda-Gerês” and includes the National Park and protected 

areas under the Natura 2000 network (special protected areas, SPAs, and a site of community 

importance, SIC, in Northern Portugal). The area covers over 950 𝑘𝑚2, presenting a temperate 

Atlantic to sub-Mediterranean climate, with a mean annual temperature of 13-15 ºC, a total 

annual precipitation that, normally, surpasses the 2000 mm, an altitude that varies between 

100 and 1548 m a.s.l. and, predominantly, a granite bedrock. Apart from its rich biodiversity 

and mountain landscapes with native scrublands, grasslands and Quercus woodlands, 

“Peneda-Gerês” also contains a diverse archaeological and historical heritage (like megalithic 

monuments and signs of Roman occupation, traditional celebrations and land-use practices), 

which makes it a very popular area for recreation and other socio-cultural activities (Santarem 

et al., 2015). “Peneda-Gerês” was selected as the test area to develop an automated 

classification of social media photographs since it constitutes one of the main conservation 

areas in Portugal, presenting also a natural capital that underlie many CES, namely through 

recreational and touristic activities. 
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Figure 5.1. Representation of one of the study areas, “Peneda-Gerês” (on the left), and its location in southwestern Europe (on 

the right). The figure on the left also illustrates the position of the main roads (brown) and rivers (blue). Figure extracted from 

Vaz et al. (2019). 

 

In this study it was also considered an additional area (Figure 5.2), the UNESCO Biosphere 

Reserve “Sierra Nevada”, in order to test the reproducibility of the automated classification. 

“Sierra Nevada” spreads over 1,722 𝑘𝑚2, being a major mountainous region of Andalusia 

(Granada and Almería provinces), in southern Spain (elevation between 860 and 3,482 m 

a.s.l.). Hosting more than 80 endemic plant species and more than 2,300 taxa of vascular flora 

in total, “Sierra Nevada” is considered one of the most important biodiversity hotspots in the 

Mediterranean region. Besides containing several species listed in the European Union 

Habitats and Birds directives, its socio-economy is supported by several social-cultural 

activities, including rural tourism and sports (Ros-Candeira et al., 2020). Furthermore, this area 

holds several protection regimes (Natural and National Parks, Natura 2000 Special Protection 

Area and Special Area of Conservation, Biosphere Reserve) and is part of the European Long-

Term Ecosystem Research Infrastructure. 

 

Figure 5.2. Representation of one of the study areas, “Sierra Nevada” (at the bottom), and its location in the Iberian Peninsula 

(on the left) and at the Andalusia region (southern Spain). The figure on the bottom also illustrates the main land use and land 

cover (LULC) types. Figure extracted from Moreno-Llorca et al. (2020a). 
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5.2. Mining data from social media  

In this study, social media data was collected from the Flickr (https://www.flickr.com/) and 

Wikiloc (https://www.wikiloc.com/)  platforms. Flickr was selected because of its high temporal 

coverage and due to the fact that the users who benefit from this platform are usually more 

“nature-oriented”, being the photographs that users upload more related to their surrounding 

environment in the wild (which encompass the scope of this study). Wikiloc, in its turn, was 

selected because it contains photographs of nature trails that were uploaded or shared by 

people and that are directly related to touristic and recreational activities in the wild (e.g. hiking, 

cycling). Specifically, it was considered the geographically referenced social media 

photographs published by Flickr and Wikiloc users from 2003 to 2017 inside “Peneda-Gerês”. 

In respect to the General Data Protection Regulation 2016/679, social media data protected 

by users’ rights was not downloaded nor analysed. Public data that would potentially 

contain personal information from social media users was kept anonymous through the study.  

The photographic dataset was retrieved through the use of the freely available Flickr’s 

Application Programming Interface (API), indicating a time window and a bounding box with a 

pair of coordinates (in our case: minimum latitude: 41.653104; maximum lat.: 42.083595; min. 

longitude: -8.426270; max. lon.: -7.754076) around “Peneda-Gerês”. This information was 

then saved as an excel file with the following attributes: user-id, date taken, latitude, longitude, 

picture uniform resource locator (url).  

Then, a first classification was performed by dividing the photographs of the dataset into 

“Indoor” and “Outdoor” classes (Figure 5.3). 

 

 

 

 

 

 

 

Figure 5.3. Examples of images belonging to the Outdoor (a) and Indoor (b) classes. 

 

 

a) b) 

https://www.flickr.com/
https://www.wikiloc.com/
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Only the “Outdoor” pictures were included in this study, since CES are directly connected 

to nature and environment, which in turn are related to the outside/outdoor. The “Outdoor” 

images were further divided into two main classes, “Nature” and “Human”, depending on 

whether the image was dominated by natural or man-made elements (Figure 5.4). 

 

 

 

 

 

 

  

Figure 5.4. Examples of images belonging to the Nature (a) and Human (b) classes. 

 

Lastly, a finer classification for outdoor images was also provided, which encompasses the 

following six classes: “Species”, “Landscape”, “Nature”, “Human activities”, “Human structures” 

and “Posing” (Figure 5.5). “Species” pictures respectively pertained to close-up shots of 

animals or plants in the wild, translating CES pertaining to biodiversity appreciation (Goodness 

et al., 2016). “Landscape” pictures show wide-open shots of nature in the wild, often with a 

visible horizon most often representing people’s enjoyment of landscape aesthetics (Richards 

& Friess, 2015). “Human activities” include pictures where people engage in by recreational 

activities (Richards & Friess, 2015), for instance related to sports such as ski or cycling. 

“Human structures” include those pictures where man-made structures dominate in the wild, 

e.g. historical monuments and churches, capturing situations of cultural heritage and spiritual 

enrichment (Blicharska et al., 2017). “Posing” refers to pictures with people looking at the 

camera, with recognizable faces, testifying social enjoyment and sense of identity (Riechers 

et al., 2016). Finally, “Nature” pictures capture natural elements with no particular feature (such 

as species) but with an intermediate shot (differing from wide-open shots attributed to 

landscapes), expressing the appreciation of nature by people (Richards & Friess, 2015). 

 

 

 

 

a) b) 
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Figure 5.5. Examples of images belonging to the classes of: a) Species, b) Landscape, c) Nature, d) Human activities (the 

picture was edited in order to protect the identity of the persons posing in the picture), e) Human structures, f) Posing (the 

picture was edited in order to protect the identity of the person posing in the picture). 

 

The data collection and manual classification processes were performed previously as part 

of a previous study (see Vaz et al., 2019).  

For “Sierra Nevada”, we followed the exact same procedures mentioned above, but unlike 

the verified for “Peneda-Gerês” (2003 to 2017), the time frame selected for this area was from 

2004 to 2017. Data collection and manual classification processes were also done as part of 

a) b) 

c) d) 

e) f) 
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a previous study (Ros-Candeira et al., 2020). Similar to what was tailed for “Peneda-Gerês”, a 

first classification was performed by dividing the photos of the dataset into “Indoor” and 

“Outdoor” classes (Figure 5.6). Only the “Outdoor” pictures were included, for the same 

reasons mentioned for the “Peneda-Gerês” dataset. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Examples of images belonging to the Outdoor (a) and Indoor (b) classes. 

 

This was followed, again, by the division into two main classes, “Nature” and “Human” 

(Figure 5.7).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Examples of images belonging to the Nature (a) and Human (b) classes. 

 

Lastly, a finer classification for “Outdoor” images (Figure 5.8) was also provided (“Human 

activities”, “Human structures”, “Landscape”, “Nature”, “Posing” and “Species”), following the 

a) b) 

a) b) 
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exact same method of manual classification for both of the datasets (“Peneda-Gerês” and 

“Sierra Nevada”).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Examples of images belonging to the classes of: a) Species, b) Landscape, c) Nature, d) Human activities, e) 

Human structures, f) Posing (the picture was edited in order to protect the identity of the persons posing in the picture). 

 

The final dataset of “Peneda-Gerês” included a total of 1861 pictures, while the one of 

“Sierra Nevada” comprised a total of 881 photographs. The description of each class in both 

datasets is displayed in Table 5.1.  

 

a) b) 

c) d) 

e) f) 
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Table 5.1. Classes considered to classify each social media photograph according to its main focus. 

Category/class Description 

1nd classification level 

Nature The photo shows a dominance of natural features (e.g. forests, rivers) 

with no or very little human influence 

Human The photo shows a dominance of human/build features (e.g. houses, 

humans, cattle) 

2rd classification level 

Species Trees or parts of trees (e.g. flowers or leaves) as main subject 

Landscape Pictures showing wide views of an area, with visible horizon 

Nature The photo shows a dominance of natural features (e.g. forests, rivers) 

with no or very little human influence 

Human activities  People engaged in recreational activities (e.g. hiking and biking), 

including related objects (e.g. canoes and bicycles) 

Human 

structures  

Pictures showing human infrastructures (e.g. houses or monuments) 

Posing People looking at the camera, with recognizable faces 

 

 

5.3. Data pre-processing 

5.3.1. Peneda-Gerês dataset 

The data initially collected was pre-processed in order to suit the needs of this study. To 

achieve that, filtering and transformation steps, such as cleaning, selection and normalization, 

were applied to the data. The photographs belonging to the “Indoor” class were excluded from 

the study, as well as the photos without corresponding labels and the labels without matching 

photos. Initially, the “Peneda-Gerês” dataset comprised a total of 1861 photographs and labels. 

In the end, the datasets remained with only 1778 for “Peneda-Gerês”. The frequency of 

pictures in each class is displayed in Figure 5.9. 

Since the platforms selected for this study required some specific pre-processing steps, all 

the photographs were resized to the same resolution, that was computed taking into account 
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the mean resolution of the set. Later, the pictures were normalized and scaled, and the 

respective labels were converted into binary class matrices.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Distribution of the number of outdoor photographs for each class in the “Peneda-Gerês” dataset. 

 

 

5.3.2. Sierra Nevada dataset 

The data corresponding to the study area “Sierra Nevada” was pre-processed following the 

same steps implemented in the “Peneda-Gerês” dataset. Initially, the “Sierra Nevada” dataset 

was composed of 880 photos and 889 labels. After cleaning the data, only 745 photographs 

remained. The frequency of pictures in each class is displayed in Figure 5.10. 
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Figure 5.10. Distribution of the number of outdoor photographs for each class in the “Peneda-Gerês” dataset. 

 

5.4. Automated Image Classification Methodology 

First, we performed an initial classification of the content of social media photographs 

based on “Nature” and “Human” labels, followed by a second classification based on “Human 

activities”, “Human structures”, “Landscape”, “Nature”, “Posing” and “Species” labels. To 

achieve that, two different convolutional neural networks architectures were implemented in 

order to verify which one was indeed the most appropriate and suitable for our study. In this 

regard, it was used the Keras (https://keras.io/) platform with TensorFlow 

(https://www.tensorflow.org/) backend, which constitute two of the most used libraries for 

building and training deep learning models, especially CNNs (Figure 5.11). The algorithms 

were implemented using a freely available GPU in the Google colab environment 

(https://colab.research.google.com/), as well as the programming language Python 

(https://www.python.org/). 

The proposed image classification methods were evaluated over the dataset described in 

section 5.2 using the k-fold cross-validation, a method that corresponds to the random partition 

of the original dataset into k equal sized subsets. One of these subsets is then retained for 

testing the model, while the remaining k-1 subsets are used as the training set. This procedure 

is then repeated so that each subset is used only once for testing the model. In this project, a 

5-fold-cross validation method was adopted, since 5 is the number of partitions most used/cited 

in the literature, considering the computational resources and the running time. To achieve 

that, the original dataset was randomly partitioned into 5 equal sized subsets.  

Also, a random seed of 7 was established, a value is used to initialize a pseudorandom 

number generator and ensure reproducibility. The performance metrics were computed as the 

mean of the performance metrics obtained over the 5 different folds. Also, during the training, 

in each of the 5 folds, part of the training data, more specifically, 10%, was retained to perform 

model validation, in order to determine the best training parameters (validation accuracy and 

loss). The chosen training parameters were the ones that guaranteed the highest accuracy 

over the validation set. Since we are coping with a small dataset, two deep learning associated 

approaches were implemented to improve the generalization of the model and avoid 

overfitting: transfer learning and data augmentation. 

 

 

 

 

 

https://keras.io/
https://www.tensorflow.org/
https://colab.research.google.com/
https://www.python.org/
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Figure 5.11. Workflow of the image classification methodology. 

 

 

5.4.1. Convolutional neural networks architectures 

As mentioned above, two different convolutional neural networks architectures were 

implemented in this study: VGG16 and ResNet152. The VGG16 convolutional neural network, 

which describes very deep convolutional networks for large-scale image recognition, was 

initially proposed by Simonyan & Zisserman (2014) as an improvement of the AlexNet, that 

was achieved by replacing large kernel-sized filters (11 and 5 in the first and second 

convolutional layer, respectively) with multiple 3×3 kernel-sized filters one after another. This 

allows to simulate large filters without losing the advantages and benefits of a small filter. 

VGG16 was submitted to ImageNet Large Scale Visual Recognition Challenge 2014 

(ILSVRC2014), where it achieved 92.7% test accuracy, placing it among the top 5 best 

performances in ImageNet (Simonyan & Zisserman, 2014). Besides the convolutional layers, 

VGG16 (Figure 5.12) has 5 max-pooling layers, 3 fully connected layers and a softmax layer 
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(output layer). Initially proposed for large-scale image recognition, VGG16 also demonstrated 

to be very effective for image classification tasks.  

During training, each image is passed through a stack of convolutional layers, where two 

different types of filters are applied: 3x3, which allows to capture the notion of left/right, 

up/down, centre, and 1x1, which provides a linear transformation of the input channels. Then, 

max pooling is applied to the images through the use of 2x2 kernels, followed by three fully 

connected layers and a softmax layer, that provides a probability distribution for each class. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Configuration of the VGG16 model architecture. Retrieved from Nash et al., 2018. 

 

The ResNet152 (residual neural network), in turn, represents very deep convolutional 

networks, that incorporate the differential of introducing a structure called residual learning 

unit, capable of avoiding the degradation of deep neural networks (He et al., 2016). These 

units allow the network to jump over some layers, stopping these layers from changing the 

values of the gradient and, consequently, contributing to avoid the problem of vanishing 

gradients, since activations from a previous layer are reused until the next layer learns its 

weights. Normally, the ResNet architectures are implemented (Figure 5.13) considering double 

or triple layer jumps that comprise nonlinearities (ReLU) and batch normalization in between. 

In other words, each layer is connected to the next layer and to the layers about 2-3 hops away 

(He et al., 2016). ResNet came in first place at the ILSVRC 2015 in the areas of classification, 

detection and location of images, as well as in the Microsoft Common Objects in Context (MS 

COCO) 2015 detection, and segmentation. 

During the training, the model learns which layers are effectively contributing to improve its 

performance, as well as those that compromise its effectiveness. If the layers improve the 

performance, are maintained in the model, while the others become identity mappings.  
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Figure 5.13. Configuration of a residual network with 34 parameter layers (3.6 billion FLOPs). Retrieved from He et al., 2016. 

 

Both CNNs’ architectures are significantly slow to train, taking a lot of storage memory, that 

is associated with the high number of layers (more precisely, 16 and 152) presented in these 

networks. However, they were selected for this study due to its easy and simple 

implementation and high performance with great results in image classification tasks, which 

makes these types of networks the state-of-the-art for several computer vision analysis. 

VGG16, for example, has the pre-trained weights freely available online, while residual neural 

networks have the advantage of allowing the consideration of deeper architectures without 

incurring in vanishing gradient problems.  

 

 

5.4.2. Transfer learning 

Transfer learning is the selection of a dataset with similar features to those present in the 

dataset under study, as a way to extract pre-trained weights. For both of the networks 

architectures mentioned above three different weights were considered: one extracted from 

networks trained in the database “Places” (http://places2.csail.mit.edu/), more precisely, in the 

dataset “Places365” (https://github.com/CSAILVision/places365), one withdrawn from 

networks trained in the database “ImageNet” (http://www.image-net.org/) and one that 

represents the weights obtained by training only over our dataset.  

The database “Places” comprises around 10 million scene photographs, labelled with 434 

scene semantic categories, covering about 98 percent of the places a human can encounter 

in the world, including, in a way, photographs with similar elements to the ones under study 

(Zhou et al., 2017). The Places365 dataset, in turn, is the latest subset of the database Places, 

containing around 1.8 million scene photographs, labelled with 365 scene semantic categories. 

The ImageNet database constitutes a large-scale hierarchical image database, that has 

several applications in the broadest areas, comprising more than 14 million cleanly annotated 

images spread over around 21,000 categories and providing a significantly representative and 

http://places2.csail.mit.edu/
https://github.com/CSAILVision/places365
http://www.image-net.org/
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diverse coverage of the image world (Mettes et al., 2016). Both of these databases were also 

selected due to their freely available online resources (weights and models), that facilitated our 

work.  

Regarding the details of the transfer learning strategy implemented, all the convolutional 

layers were kept frozen when training over our dataset, while the remaining 3 (for VGG16) and 

1 (for ResNet152) fully connected layers were trained with our dataset. Moreover, an additional 

dense layer with 128 units and a rectifier linear unit activation function was also included before 

the output layer, which was modified in order to have 2 or 6 units.  

 

 

5.4.3. Training 

Regarding the chosen optimizers and training parameters, Adam was the selected 

optimizer, an algorithm for first-order gradient-based optimization of stochastic objective 

functions, since it is one of the most used optimizers in the scope of deep learning and was 

indeed the most suitable for the classification models under study (Kingma & Ba, 2014). For 

batch size, an hyperparameter of gradient descent responsible for controlling the number of 

training samples to be considered before the model’s internal parameters are updated 

(Brownlee, 2016), it was chosen a mini batch size of 10. This value was selected mainly 

because of the small size of our data and, especially, due to limitations on available memory 

usage. 

For the six approaches mentioned above - VGG16 with the weights from Places365, 

VGG16 with the weights from ImageNet, VGG16 with the weights trained only over our dataset, 

ResNet152 with the weights from Places365, ResNet152 with the weights from ImageNet and 

ResNet152 with the weights obtained by training only over our dataset -, the parameters were 

tuned over the validation set (in each fold of the proposed 5-fold cross-validation setup, 10% 

of the training data was reserved for validation), in order to improve the performance of the 

models. This tuning consisted essentially in the variation of the learning rate and number of 

epochs (hyperparameter of gradient descent responsible for controlling the number of 

complete passes through the training set). At an initial stage, for both of the architectures and 

for the three approaches, it was considered the keras default learning rate (0.001), as well as 

100 epochs. 

An early stop approach was also implemented, which is a method used to prevent 

overfitting when training with an interactive algorithm, such as gradient descent, being widely 

used in the most diverse fields of deep learning due to its simplicity of understanding and 

implementation (Nielsen et al., 2017). To achieve that, it was generated a validation set, setting 

aside 10% of the training data, in order to use the validation loss as the stopping criteria. In 
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other words, at the end of each epoch, the validation loss is computed on the validation data, 

terminating when it stops improving (i.e., when it stops decreasing). A patience value of 16 

was also established, adding a delay to the trigger in terms of the number of epochs (16) on 

which we expect to perceive no improvement. 

For the first binary classification (“Nature” and “Human”) and for both neural networks 

(VGG16 and ResNet152), it was verified that the keras default learning rate had a very poor 

performance when fitting the model. With that under consideration, the learning rate was tuned 

in order to find the value that was most suitable for our model. For VGG16, the best 

performance was verified when considering a learning rate of 0.000001 while, for ResNet152, 

0.0001 was the most accurate learning rate. Both network architectures (VGG16 and 

ResNet152) were implemented considering 100 epochs. The behaviour of both networks when 

training with the Places365 weights is displayed in Figure 5.14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Behaviour of ResNet152 (a) and VGG16 (b) with Places365 weights, in terms of accuracy, validation accuracy, 

loss and validation loss. 

For the second classification (multilabel classification), similarly to that verified for the 

“Nature” vs. “Human” classification task, for both of the neural networks (VGG16 and 

ResNet152) the Keras default learning rate (0.001) had a very poor performance when fitting 

a a) a b) 
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the model. With that under consideration, and analogously to the procedure followed for the 

first classification, the learning rate was tuned in order to find the value that was most suitable 

for our model. For VGG16, the best performance was verified when considering a learning rate 

of 0.000001 while, for ResNet152, it was 0.0001 the most accurate learning rate (same values 

obtained for the first classification task). The number of epochs considered for this 

classification task was also 100. The behavior of both networks after training with the ImageNet 

weights is displayed in Figure 5.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15. Behaviour of ResNet152 (a) and VGG16 (b) with ImageNet weights, in terms of accuracy, validation accuracy, loss 

and validation loss. 

 

 

 

 

 

 

 

 

a a) a b) 
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5.4.4. Data augmentation 

In order to implement data augmentation, 5 transformations (including horizontal flip, width 

shift, height shift and zoom) were implemented for each of the images belonging to the training 

set, which resulted in a total of 8532 or 8538 transformations, depending on the fold. The 

images in the validation set were not included in this process, in order to avoid biased results. 

The total number of transformations applied to each photograph (5 per image) was selected 

taking into account the overall running time of the algorithm, as well as the available 

computational memory. 

In the first implementation, it was observed that, for VGG16, the model accuracy and loss 

had fully converged after 50 epochs, having been decided, because of that, to use only 50 

epochs to build the VGG16 model after data augmentation. The number of epochs established 

for the ResNet152 model was also 50, due to computing resource management. 

 

 

5.4.5. Performance metrics 

The metrics selected to evaluate the model’s performance were classification accuracy 

(ACC), sensitivity (TPR, true positive rate or recall), specificity (TNR, true negative rate) and 

F1-score (F1, f-score or f-measure), since they constitute the three most frequently analyzed 

metrics when considering a classification problem (Tharwat, 2020). In order to compute these 

metrics, it was first calculated a confusion matrix, which is a specific table arrangement that 

allows visualizing the performance of an algorithm, normally a supervised learning one, by 

opposing instances in a predicted class with instances in an actual class (Powers, 2011). Also, 

this matrix allows to report the number of true positives, false positives, true negatives and 

false negatives. In the “Nature” vs. “Human” classification, the terms negative and positive 

refer to “Nature” and “Human” categories, respectively. The images that were correctly 

classified as “Nature” were assumed to be true negatives (A), while the ones that were correctly 

classified as “Human” were labeled as true positives (D). The photographs that were classified 

as “Nature” having “Human” as its real category are described as false negatives (C) and the 

ones classified as “Human” with “Nature” being its actual label are represented as false 

positives (B). 

Accuracy represents the proximity of the measurement results to the true value (Eq 4.1), 

while specificity indicates the proportion of labels that were correctly classified for the category 

that was previously selected as the negative (Eq 4.2). 
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𝐴𝐶𝐶 =  

𝐷 + 𝐴

𝐷 + 𝐴 + 𝐵 + 𝐶
 

 

Eq. (4.1) 

 

 
𝑇𝑁𝑅 =  

𝐴

𝐴 + 𝐵
 

 

Eq. (4.2) 

 

Finally, sensitivity corresponds to the proportion of labels that were correctly classified for 

the category that was previously selected as the positive (Eq 4.3) and F1-score computes 

the harmonic mean of the precision and recall, being a measure of a test’s accuracy (Eq 4.4): 

 

 
𝑇𝑃𝑅 =  

𝐷

𝐷 + 𝐶
 

 

Eq. (4.3) 

 

 
𝐹1 =  

2𝐷

2𝐷 + 𝐵 + 𝐶
 

 

Eq. (4.4) 

 

In the “Nature” vs. “Human” classification, these metrics were computed as the mean of 

the performance metrics obtained over the 5 different folds. For the multilabel classification 

these metrics were calculated taking into account the macro average, in which the value for 

each metric is first calculated independently for every label/class, being posteriorly used to 

compute the unweighted mean. Details on these metrics, including on their calculations and 

interpretation are shown in Table 5.2. 

 

Table 5.2. Example of a confusion matrix used to compare the manual and automatic classification of the social media 

photographs into the “Nature” and “Human” labels. 

 

  Predicted label  

  Nature (Negative)  Human (Positive) 

Actual label Nature (Negative) A B 

 Human (Positive) C D 

 

 

5.4.6. Transferability and generalization 

The generalization ability of the model when in contact with a new and unseen dataset was 

also evaluated in order to obtain results with reinforced statistical significance. Since the 

models trained with the ResNet152 architecture had an outstanding performance, with finest 

results for both of the classifications, especially for the second one, we opted to only test the 
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transferability and generalization of these models. To achieve that, it was considered the same 

parameters, transfer learning and data augmentation strategies as those used for the tests 

carried out within the “Peneda-Gerês” dataset. All of the photographs in the “Peneda-Gerês” 

dataset were used as the training set, while the ones in “Sierra Nevada” dataset were assigned 

as the test set. 
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Chapter 6 

 

Results 

 

6.1. Nature vs. Human classification 

In this section, we consider the results obtained by the different models in the classification 

of “Nature” vs. “Human” images. We first consider the case when data augmentation is not 

applied to the training dataset, followed by the case where data augmentation is applied.   

 

 

6.1.1. Performance without data augmentation 

When comparing the classification accuracy of the two transfer learning scenarios and of 

the weights obtained by training only over our dataset (Figure 6.1), ImageNet had, overall, a 

slightly finer performance for the two architectures under study (Accuracy: 83.58 for both of 

them), followed by Places365 and finally by weights trained only with our dataset.  An 

exception was found for Places365 in VGG16, that resulted in a higher accuracy value (83.75). 

Also, it was observed that VGG16 had a better performance, in general, when compared to 

ResNet152, showing higher accuracy values, except for ImageNet (where the two networks 

had the same accuracy value, 83.58). 

 

 

 

 

 

 

 

 

 



FCUP 
Deep learning to automate the assessment of cultural ecosystem services from social media data  

 

42 

 

Figure 6.1. Accuracy of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

With regards to sensitivity (Figure 6.2) and taking into account the two transfer learning 

scenarios as well as the weights obtained by training only over our dataset, it was verified that 

Places365 had, in general, finer sensitivity results for the two architectures under study (82.7 

and 75.69), with the exception of ImageNet for VGG16 (81.05), followed by ImageNet and 

weights trained only with our dataset. Also, it was observed that VGG16 had better sensitivity 

results when compared to ResNet152. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Sensitivity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

For specificity (Figure 6.3), when comparing the two transfer learning scenarios and the 

weights obtained by training only over our dataset, it was observed that ImageNet had better 

specificity results for the two architectures under study (86.49 and 89.42), followed by 

Places365 and by weights trained only with our dataset. Likewise, it was verified that 

ResNet152 had, overall, finer specificity results, when compared to VGG16, except for the 

ones considering the weights trained only with our dataset (66.54 for VGG16 and 51.47 for 

ResNet152).  
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Figure 6.3. Specificity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

With regard to F1-score (Figure 6.4) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 

ImageNet had, overall, finer F1-score results for the two architectures under study (83.52 and 

83.06), followed by Places365 and weights trained only with our dataset, with the exception of 

Places365 in VGG16, that resulted in a higher f1-score value (84.00). Similarly, it was 

observed that VGG16 had better F1-score results when compared to ResNet152. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. F1-score of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 
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6.1.2. Performance with data augmentation 

After the data augmentation process (Figure 6.5) it was observed that, similarly to the 

verified for the performance without data augmentation, ImageNet had, overall, a higher 

accuracy for the two architectures under study (86.11 vs 87.18), followed by Places365 and 

by weights trained only with our dataset, with the exception of Places365 in VGG16, that 

resulted in an equally high accuracy value (87.01). Also, it was verified that, for Places365, 

VGG16 had a better performance when compared to ResNet152 (87.01 vs 86.00), while for 

the remaining scenarios, the ResNet152 model was more accurate than the one for VGG16. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Accuracy of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

For sensitivity after augmentation (Figure 6.6), when comparing the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 

ImageNet had, overall, better sensitivity results for the two architectures under study (86.71 

and 86.78), followed by Places365 and weights trained only with our dataset, with the 

exception of Places365 in VGG16, that resulted in a higher sensitivity value (88.48). Likewise, 

it was observed that ResNet152 had slightly finer sensitivity results when compared to VGG16, 

except for Places365, where VGG16 showed the best result (88.48 vs 83.40). 
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Figure 6.6. Sensitivity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

With regard to specificity after augmentation (Figure 6.7) and taking into account the two 

transfer learning scenarios and the weights obtained by training only over our dataset, it was 

observed that Places365 had finer specificity results for the two architectures under study 

(85.54 and 88.46), followed by ImageNet and by weights trained only with our dataset. 

Similarly, it was verified that ResNet152 had better specificity results when compared to 

VGG16, for all the scenarios under study. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Specificity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

For F1-score after augmentation (Figure 6.8), when comparing the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 
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ImageNet had slightly better F1-score results for the two architectures under study (86.53 and 

87.44), followed by Places365 and weights trained only with our dataset. Also, it was observed 

that ResNet152 had finer F1-score results when compared to VGG16, except for Places365, 

where VGG16 showed the best result (87.53 vs 85.89). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. F1-score of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

 

6.2. Multilabel classification 

In this section, we consider the results obtained by the different models in the classification 

of images labelled as “Species”, “Landscape”, “Nature”, “Human activities”, “Human 

structures” and “Posing”. We first consider the case when data augmentation is not applied to 

the training dataset, followed by the case where data augmentation is applied.   

 

 

6.2.1. Performance without data augmentation 

When comparing the two transfer learning scenarios and the weights obtained by training 

only over our dataset (Figure 6.9), Places365 had, overall, a slightly finer performance for the 

two architectures under study (69.74 and 76.49), followed by ImageNet and weights trained 

only with our dataset. Also, it was observed that ResNet152 had a better performance, in 

general, when compared to VGG16, showing higher accuracy values, except for the weights 

trained only with our dataset (53.66 vs 48.76). 
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Figure 6.9. Accuracy of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

With regard to sensitivity (Figure 6.10) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 

Places365 had, in general, finer sensitivity results for the two architectures under study (55.60 

and 67.52), followed by ImageNet and by weights trained only with our dataset. Also, it was 

observed that ResNet152 had better sensitivity results when compared to VGG16, except for 

the weights trained only with our dataset, that resulted in a higher value (35.68 vs 32.55). 

 

 

 

 

 

 

 

 

 

 

Figure 6.10. Sensitivity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the 

weights obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

For specificity (Figure 6.11), when comparing the two transfer learning scenarios and the 

weights obtained by training only over our dataset, it was observed that Places365 had higher 
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specificity results for the two architectures under study (93.33 and 94.81), followed by 

ImageNet and weights trained only with our dataset. Likewise, it was verified that ResNet152 

had, overall, finer specificity results, when compared to VGG16, except for the ones 

considering the weights trained only with our dataset (89.50 for VGG16 and 88.32 for 

ResNet152). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. Specificity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the 

weights obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

With regard to F1-score (Figure 6.12) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 

Places365 had, overall, finer F1-score results for the two architectures under study (55.91 and 

68.44), followed by ImageNet and by weights trained only with our dataset. Similarly, it was 

observed that ResNet152 had better F1-score results when compared to VGG16, except for 

the weights trained only with our dataset (34.27 vs 30.98). 

 

 

 

 

 

 

 

 

 



FCUP 
Deep learning to automate the assessment of cultural ecosystem services from social media data  

 

49 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 6.12. F1-score of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

 

6.2.2. Performance with data augmentation 

After the data augmentation process (Figure 6.13) it was observed that, similarly to what 

was verified for the case without data augmentation, Places365 weights had, in general, a 

slightly better performance for the two architectures under study (74.07 and 76.89), followed 

by ImageNet and weights trained only with our dataset. Also, it was verified that ResNet152 

had a finer performance when compared to VGG16, for all the scenarios under study. 

 
 
 

 

 

 

 

 

 

 

 

Figure 6.13. Accuracy of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the 

weights obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 
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For sensitivity (Figure 6.14), when comparing the two transfer learning scenarios and the 

weights obtained by training only over our dataset, it was verified that Places365 and ImageNet 

had similar sensitivity results for the two architectures under study (64.35 and 67.92 for 

Places365; 63.85 and 68.09 for ImageNet), followed by weights trained only with our dataset. 

Similarly, it was observed that ResNet152 had better sensitivity results when compared to 

VGG16. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14. Sensitivity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the 

weights obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

With regard to specificity (Figure 6.15) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was observed that 

Places365 and ImageNet had similar specificity results for the two architectures under study 

(94.30 and 94.90 for Places365; 94.32 and 94.88 for ImageNet), followed by weights trained 

only with our dataset. Also, it was verified that ResNet152 had finer specificity results when 

compared to VGG16. 

 

 

 

 

 

 

 

 

 

 



FCUP 
Deep learning to automate the assessment of cultural ecosystem services from social media data  

 

51 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. Specificity of the VGG16 and ResNet152 model performance for the two transfer learning scenarios and the 

weights obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 

 

For F1-score (Figure 6.16), when comparing the two transfer learning scenarios and the 

weights obtained by training only over our dataset, it was verified that Places365 had, overall, 

slightly finer F1-score results for the two architectures under study (64.84 and 68.92), followed 

by ImageNet and weights trained only with our dataset. Similarly, it was observed that 

ResNet152 had better F1-score results when compared to VGG16, for all the scenarios under 

study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16. F1-score of the VGG16 and ResNet152 model performance for two transfer learning scenarios and the weights 

obtained by training only over our dataset. The bars reported in the plot represent standard deviations. 
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6.3. Analysis of the best performing architectures  

In this section, we consider the best performing architectures. We first consider the 

classification of “Nature” vs. “Human” images, followed by the classification of images labelled 

as “Species”, “Landscape”, “Nature”, “Human activities”, “Human structures” and “Posing”. 

 

6.3.1. Nature vs. Human classification 

Regarding the results previously presented (Table 6.1), it was verified that data 

augmentation actually improved the performance of the transfer learning models developed, 

since all the evaluation metrics had, overall, higher results after this procedure. Also, for the 

“Nature” vs. “Human” classification, it was observed that VGG16 and ResNet152 had similar 

performances for the two transfer learning scenarios and the weights obtained by training only 

over our dataset.  

 

Table 6.1 Performance metrics of the two transfer learning scenarios and the weights trained only with our dataset for the “Nature” 

vs. “Human” classification. ACC – Accuracy, TNR – True negative rate/Sensitivity, TPR – True Positive Rate/Specificity, F1 – f1-

score. 

 Without Augmentation With Augmentation 

 ACC TNR TPR F1 ACC TNR TPR F1 

VGG16, Places365 
83.75 82.7 84.86 84 87.01 88.48 85.54 87.53 

ResNet152, 

Places365 80.71 75.69 86.43 80.09 86.00 83.40 88.46 85.89 

VGG16, ImageNet 
83.58 81.05 86.49 83.52 86.11 86.71 85.46 86.53 

ResNet152, 

ImageNet 83.58 78.00 89.42 83.06 87.18 86.78 87.52 87.44 

VGG16, weights 

trained only with our 

dataset 

67.38 68.63 66.54 68.44 72.10 71.54 72.82 72.69 

ResNet152, weights 

trained only with our 

dataset 

60.74 68.26 51.47 63.35 76.43 76.55 76.39 77.23 
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These results were achieved by computing the mean of the values in the confusion 

matrices obtained for each of the 5 folds. When comparing the two transfer learning scenarios 

and the weights obtained by training only over our dataset, the best setup, with finest and 

highest results according to the selected evaluation metrics (accuracy, sensitivity, specificity 

and F1-score), for two (ImageNet and weights trained only with our dataset) out of the three 

approaches studied, was the ResNet152.  

In the following, we show in detail the classification performance achieved by these 

architectures via the corresponding confusion matrices (Table 6.2, Table 6.3 and Table 6.4). 

 

Table 6.2. Confusion matrix for ResNet152 with Places365 weights. 0 – Nature, Human – 1. 

Predicted Values 

 0 1 

0 152 20 

1 30 154 

  

Examples of photographs where the labels were swapped by the algorithm (ResNet152 

with Places365 weights) are illustrated in Figure 6.17. The presence of similar elements in the 

photographs belonging to each class (e.g., sky, vegetation), as well as some colours (e.g., 

grey, blue, green), could have been the reason for these mismatches in the classification. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17. Examples of photographs where the labels were swapped by ResNet152 with Places365 weights. 0 – Nature, 1 –

Human. 

 

 

 

 

Actual Values 
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Table 6.3. Confusion matrix for ResNet152 with ImageNet weights. 0 – Nature, Human – 1. 

Predicted Values 

 0 1 

0 150 21 

1 24 160 

 

Examples of photographs where the labels were swapped by the algorithm (ResNet152 

with ImageNet weights) are displayed in Figure 6.18. Again, as verified for the previous setup, 

the presence of similar elements in the photographs belonging to each class (e.g., sky, 

vegetation), as well as some colours (e.g., grey, blue, green), could have been the reason for 

these mismatches in the classification. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.18. Examples of photographs where the labels were swapped by ResNet152 with ImageNet weights. 0 – Nature, 1 –

Human. 

 

Table 6.4. Confusion matrix for ResNet152 with the weights trained only with our dataset. 0 – Nature, Human – 1. 

Predicted Values 

 0 1 

0 129 40 

1 44 143 

 

Examples of photographs where the labels were swapped by the algorithm (ResNet152 

with the weights trained only with our dataset) are illustrated in Figure 6.19. Once again, as 

verified for the previous setups, the presence of similar elements in the photographs belonging 

to each class (e.g., sky, vegetation), as well as some colours (e.g., grey, blue, green), could 

have been the reason for these mismatches in the classification. 

Actual Values 

Actual Values 
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Figure 6.19. Examples of photographs where the labels were swapped by ResNet152 with the weights obtained by training only 

over our dataset. 0 – Nature, 1 – Human. 

 

 

6.3.2. Multilabel classification 

Regarding the results previously presented (Table 6.5), ResNet152 proved to be the finest 

and more accurate network architecture for the dataset under study, as well as for the two 

transfer learning scenarios and the weights obtained by training only over our dataset. Also, 

for the ResNet152, data augmentation did not increase the performance as much as for the 

VGG16.  

 

Table 6.5. Performance metrics of the two transfer learning scenarios and the weights trained only with our dataset for the 

multilabel classification. ACC – Accuracy, TNR – True negative rate/Sensitivity, TPR – True Positive Rate/Specificity, F1 – f1-

score. 

 
Without Augmentation With Augmentation 

 
ACC TNR TPR F1 ACC TNR TPR F1 

VGG16, Places365 
69.74 55.60 93.33 55.91 74.07 64.35 94.30 64.84 

ResNet152, 

Places365 
76.49 67.52 94.81 68.44 76.89 67.92 94.90 68.92 

VGG16, ImageNet 
68.17 54.49 92.91 55.02 73.73 63.85 94.32 63.92 

ResNet152, 

ImageNet 
75.31 65.86 94.60 66.39 76.88 68.09 94.88 68.86 
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VGG16, weights 

trained only with our 

dataset 

53.66 35.68 89.50 34.27 57.03 42.11 90.59 41.30 

ResNet152, weights 

trained only with our 

dataset 

48.76 32.55 88.32 30.98 61.98 49.69 91.66 49.64 

 

For a multi class problem it is normal that specificity frequently results in a higher value, 

when compared to the remaining evaluation metrics, as it measures the proportion of factual 

negatives that are correctly identified as such. Dealing with multiple classes leads to a 

predominance of the negative class which normally results in the inflation of the specificity 

values.  

In Table 6.6 and Table 6.7, we report the confusion matrices associated with the 

classification results obtained with the models that performed best over the multilabel 

classification task, i.e., the ResNet152 architecture with transfer learning from the Places365 

and ImageNet dataset, and with data augmentation. Observing Table 6.6, it was verified that 

“Human activities” with “Landscape”, “Human structures” with “Landscape” and “Nature”, and 

“Nature” with “Species”, “Landscape” and “Human structures”, were the pairs or sets of classes 

more indistinguishable to the algorithm, often being confused and swapped by the model.  

 

Table 6.6. Confusion matrix for ResNet152 with Places365 weights. 0 – Species, 1 – Landscape, 2 – Nature, 3 – Human 

activities, 4 – Human structures, 5 – Posing. 

Predicted Values 

 0 1 2 3 4 5 

0 31 3 3 1 4 1 

1 3 105 6 1 10 2 

2 4 6 34 1 3 0 

3 1 6 1 5 2 2 

4 1 9 4 1 84 1 

5 1 2 0 2 2 16 

  

Examples of photographs with labels for which the algorithm (ResNet152 with Places365 

weights) most failed the classification according with the confusion matrix are displayed in 

Figure 6.20. The similarity between some classes (e.g., “Nature”, “Landscape”), that contain 

Actual Values 
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common elements (e.g., sky, vegetation) and colours (e.g., blue, green), could have been the 

reason for the mismatches obtained in the classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20. Examples of photographs with labels for which the algorithm most failed the classification in ResNet152 with 

Places365 weights. 0 – Species, 1 – Landscape, 2 – Nature, 3 – Human activities, 4 – Human structures, 5 – Posing.  

 

Analysing the Table 6.7, and similarly to the verified for Places365, it was observed that 

“Human activities” with “Landscape”, “Human structures” with “Landscape” and “Nature”, and 

“Nature” with “Species”, “Landscape” and “Human structures”, were the pairs or sets of classes 

more indistinguishable to the algorithm, being, because of that, frequently confused and 

swapped by the model.  

 

Table 6.7. Confusion matrix for ResNet152 with ImageNet weights. 0 – Species, 1 – Landscape, 2 – Nature, 3 – Human 

activities, 4 – Human structures, 5 – Posing. 

Predicted Values 

 0 1 2 3 4 5 

0 30 3 5 1 2 1 

1 2 107 6 1 7 1 

2 1 6 38 0 1 0 

3 1 5 2 4 1 3 

4 1 13 6 1 78 1 

Actual Values 
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5 1 3 1 2 2 16 

  

Examples of photographs with labels for which the algorithm (ResNet152 with ImageNet 

weights) most failed the classification according with the confusion matrix are illustrated in 

Figure 6.21. Once again, the similarity between some classes (e.g., “Nature”, “Landscape”), 

that share common elements (e.g., sky, vegetation) and colours (e.g., blue, green), could have 

been the cause for the mismatches obtained in the classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21. Examples of photographs with labels for which the algorithm most failed the classification in ResNet152 with 

ImageNet weights. 0 – Species, 1 – Landscape, 2 – Nature, 3 – Human activities, 4 – Human structures, 5 – Posing. 

 

 

6.4. Transferability and generalization 

This section reports the performance of the models, previously trained over the “Peneda-

Gerês” dataset, when applied to images from “Sierra Nevada”, in order to understand the 

generalization capacity of these models. Only the ResNet152 architecture was implemented 

in these analyses, as this was the one that revealed the best performance within the “Peneda-

Gerês” dataset for both classification tasks considered. We first consider the classification of 

“Nature” vs. “Human” images, followed by the classification of images labelled as “Species”, 

“Landscape”, “Nature”, “Human activities”, “Human structures” and “Posing”. 
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6.4.1.  Nature vs. Human classification 

When comparing the two transfer learning scenarios considered and weights obtained by 

training only over our dataset (Figure 6.22), it was observed that ImageNet had a finer 

performance for ResNet152 (Accuracy: 72.89), followed by Places365 and by the weights 

trained only with our dataset.   

 

 

 

 

 

 

 

Figure 6.22. Accuracy of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained by 

training only over our dataset. 

 

With regards to sensitivity (Figure 6.23) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 

ImageNet had a better sensitivity result (85.36) for ResNet152, followed by Places365 and the 

weights trained only with our dataset. 
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Figure 6.23. Sensitivity of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained 

by training only over our dataset. 

 

For specificity (Figure 6.24), when comparing the two transfer learning scenarios and the 

weights obtained by training only over our dataset, it was observed that ImageNet had a better 

specificity result for ResNet152 (65.38), followed by Places365 and by weights trained only 

with our dataset.  

 

 

 

 

 

 

 

 

 

 

Figure 6.24. Specificity of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained 

by training only over our dataset. 

 

With regard to F1-score (Figure 6.25) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 

ImageNet had a finer F1-score result for ResNet152 (70.29), followed by Places365 and the 

weights trained only with our dataset. 
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Figure 6.25. F1-score of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained by 

training only over our dataset. 

 

In this classification task, the performance of the models when applied to a new dataset, 

was lower than the obtained when working only with data from the “Peneda-Gerês” dataset. 

Also, when training with the weights trained only with our dataset, the results obtained for 

“Sierra Nevada” were worse (compared to transfer learning) than those obtained for the 

“Peneda-Gerês” dataset. Examples of photographs where the labels were swapped by the 

algorithms (ResNet152 with Places365, ImageNet and the weights trained only with our 

dataset) are displayed in Figure 6.26. The presence of similar elements in the photographs 

belonging to each class (e.g., sky, vegetation), as well as some colours (e.g., grey, blue, 

green), could have been the main reason for these mismatches in the classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

a) b) 

c) d) 

e) f) 
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Figure 6.26. Examples of photographs where the labels were swapped by the models. 0 – Nature, 1 – Human, a), b) – 

ResNet152 with Places365 weights, c), d) – ResNet152 with ImageNet weights, e), f) – ResNet152 with weights trained only 

with our dataset (the e) picture was edited in order to protect the identity of the persons posing in the picture). 

 

 

6.4.2.  Multilabel classification  

When comparing the two transfer learning scenarios and the weights obtained by training 

only over our dataset (Figure 6.27), Places365 had a slightly finer performance for ResNet152 

(Accuracy: 55.03), followed by ImageNet and by weights trained only with our dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.27. Accuracy of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained by 

training only over our dataset. 

 

With regard to sensitivity (Figure 6.28) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 

ImageNet had finer sensitivity results for ResNet152 (51.82), followed by Places365 and the 

weights trained only with our dataset. 
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Figure 6.28. Sensitivity of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained 

by training only over our dataset. 

 

For specificity (Figure 6.29), when comparing the two transfer learning scenarios and the 

weights obtained by training only over our dataset, it was observed that ImageNet and 

Places365 had similar specificity results for ResNet152 (90.7 for ImageNet and 90.52 for 

Places365), followed by weights trained only with our dataset. 

 

 

 

 

 

 

 

 

 

Figure 6.29. Specificity of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained 

by training only over our dataset. 

 

With regard to F1-score (Figure 6.30) and taking into account the two transfer learning 

scenarios and the weights obtained by training only over our dataset, it was verified that 
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ImageNet had finer F1-score results for ResNet152 (50.18), followed by Places365 and by 

weights trained only with our dataset. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.30. F1-score of the ResNet152 model performance for the two transfer learning scenarios and the weights obtained by 

training only over our dataset. 

 

In Table 6.8, we report the confusion matrix associated with the classification results 

obtained for the ResNet152 architecture with ImageNet weights, and with data augmentation, 

since it was the setup that achieved the best performance. 

Analysing the Table 6.8, it was observed that “Nature” with “Landscape”, “Human activities” 

with “Landscape”, “Human structures” with “Landscape” and “Posing” with “Human activities”, 

were the pairs of classes more indistinguishable to the algorithm, often being confused and 

swapped by the model. In the “Nature” with “Landscape” pair, the algorithm failed more (45) 

than it hit the correct label (20). 

 

Table 6.8. Confusion matrix for ResNet152 with ImageNet weights. 0 – Species, 1 – Landscape, 2 – Nature, 3 – Human 

activities, 4 – Human structures, 5 – Posing. 

Predicted Values 

 0 1 2 3 4 5 

0 39 8 9 7 8 3 

1 0 132 3 2 1 0 

2 4 45 20 6 1 1 

3 3 24 3 32 5 18 

4 15 100 8 18 137 9 

Actual Values 
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5 2 7 0 22 10 43 

 

Examples of photographs with labels for which the algorithm (ResNet152 with ImageNet 

weights) most failed the classification according with the confusion matrix are displayed in 

Figure 6.31. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.31. Examples of photographs with labels for which the algorithm most failed the classification in ResNet152 with 

ImageNet weights. 0 – Species, 1 – Landscape, 2 – Nature, 3 – Human activities, 4 – Human structures, 5 – Posing (the picture 

was edited in order to protect the identity of the person posing in the picture). 
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Chapter 7 

 

Discussion and Conclusions 

 

7.1. Nature vs. Human and multilabel classification 

The results obtained for both of the classifications were in fact, very satisfactory, with 

accurate performances for both of the VGG16 and ResNet152 architectures. However, the 

lack of better results could be assigned to overfitting, since the dataset under analysis is 

relatively small.  

When comparing the two transfer learning scenarios and the weights obtained by training 

only over our dataset for the “Nature” vs. “Human” classification, as well as for the multilabel 

classification task, it was expected that the model implemented with the Places365 weights 

would have a finer performance than the other two (with ImageNet weights and weights trained 

only with our dataset), since all the photographs contained in this dataset were exclusively 

related with landscapes and places in general, constituting the database that most resembles 

our dataset. Perhaps surprisingly, this was not the case for both VGG16 and ResNet152, as 

ImageNet was the database where the two transfer learning scenarios achieved better results. 

A possible explanation for this behaviour can reside in the observation that deep learning 

models achieve more accurate results when trained in the presence of large datasets. In fact, 

ImageNet, by containing a larger number of photographs (more than 14 million) than 

Places365 (around 1.8 million), has led to a better performance of the model. Similarly, it was 

already predictable that the two transfer learning scenarios would lead to more accurate results 

than the weights trained only with our dataset, for the same reason mentioned above: 

limitations in the size of the dataset.  

In the multilabel classification task, since we were working with multiple classes, it was 

already expected to obtain less accurate results than the ones obtained for the “Nature” vs. 

“Human” binary classification. The greater the number of output nodes, the higher the 

complexity of the model, and the lower the effectiveness and reliability of the results. Many 

factors can influence these results, however the similarity between certain classes (see section 

6.3.2) of the photographs (e.g., “Landscape” and “Nature”), that contain several elements in 

common (e.g., sky, sea, vegetation), constitutes one of the most significant.  

Also, as mentioned above, for both classification tasks, data augmentation did not increase 

the performance of the models as much for the VGG16 as it did for the ResNet152. This 
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suggests that the ResNet152 (through the transfer learning) was able to cope better with 

overfitting with respect to the VGG16, even without requiring data augmentation, which might 

be associated with the presence of residual connections in this architecture. 

 

 

7.2. Transferability and generalization 

Regarding the transferability and generalization capacity of the ResNet152 models, when 

in the presence of a completely new and unseen dataset, it was desirable to have similar 

results to those obtained for the “Peneda-Gerês” dataset. These results turned out to be less 

promising as initially expected, presenting lower performance rates, with accuracies values 

varying between 41% and 73%, depending on the classification task. A likely interpretation for 

this behaviour can be related to the features/elements of the photographs in both of the 

“Peneda-Gerês” and “Sierra Nevada” datasets, which are very distinct. For instance, in “Sierra 

Nevada”, cold and neutral colours, such as white, grey and blue, predominate, while in 

“Peneda-Gerês”, warm and cold colours, like green, blue and brown, are the most common. 

Also, as mentioned above, when considering the weights trained only with our dataset in 

the “Nature” vs. “Human” classification, the results were worse (compared to transfer learning) 

than those obtained for the “Peneda-Gerês” dataset. This means that the use of transfer 

learning allows for better generalization from one dataset to the other and that the overfitting 

incurred when training over only our dataset has an even more significant impact when trying 

to apply the model to new dataset, from a different region.  

 

 

7.3. Limitations and future work 

Interpreting and understanding the information contained in social media photographs can 

be quite challenging in the context of cultural ecosystem services (CES). Choosing whether to 

take/share or not a photo is subjective to the user’s interest, which makes the motive of taking 

the photograph unclear when unprovided of contextual information. People can take 

photographs in the environment to document positive and appealing features, as well as 

negative and unattractive ones. Moreover, people can take a photograph to just eternalize a 

moment or memory.  

All of these questions make the assessment of CES trough social media photographs very 

complex, especially when trying to assess a specific CES value (e.g., a picture can represent 

aesthetic or other value, without absolute certainty of the correct value) (Dorwart et al., 2009). 

Thus, additional information on the context of the photograph (e.g. user description, tags or 
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title of the photo) may be required to improve the results from image classification in the scope 

of CES (Moreno-Llorca et al. 2020a). This information can be collected, for instance, through 

natural language processing and sentiment analysis techniques (Gosal et al., 2019; Do, 2019).  

Also, the classes selected in this study to classify each picture may not be mutually 

exclusive, since the same picture can express multiple cultural benefits from nature. For 

example, in the “Posing” class, people can take pictures because they find beauty in a 

landscape or species, they want to do an artistic picture, or simply because they want to take 

photos of themselves for future memory. Similarly, social media photographs are not always 

representative data for assessing CES, since a fraction of the people who visit a given area 

may not take pictures of that area. 

Nevertheless, our approach and results are a first step to show that deep learning methods 

can offer significant contributions to assist in CES evaluation. Future work needs to encompass 

the use of more representative training dataset, with the possibility of generating synthetically 

new training images, as well as focus on the improvement of the robustness of these models 

against scarcely labelled data and overfitting. This could be achieved via the use of 

regularization methods and semi-supervised approaches by leveraging autoencoder 

architectures as well as generative adversarial networks (GANs). 
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All of the code used to develop the algorithms of this thesis is available at 

https://github.com/anasccardoso/Deep-learning-for-cultural-ecosystem-services.git. 
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Abstract 
Cultural ecosystem services (CES) result from the interactions between humans 

and nature, contributing to people’s physical and mental well-being.  Most social 
media content analyses considered in the context of CES are based on the manual 

classification of photos or texts shared by social media users. Inevitably, the 

manual classification of big photographic data is too time consuming and costly, 
particularly when it comes to large study areas and audiences. In this work we 

studied automated image classification techniques using deep learning approaches 

to address CES. 

1 Introduction 

Nowadays, computer science and related fields have been highly 
invested in the use and combination of methods that incorporate social 
media analytics [1]. Social media platforms represent a very significant 
fraction of all the available digital data, constituting an efficient method 
to collect big data that provide information on people’s interactions with 
each other and with their environment [2]. Fast improvements in 
computational power and data storage capacity during the last years have 
motivated the emergent fields of Digital Conservation, iEcology and 
conservation culturomics [3]. These disciplinary fields refer to the use of 
digital (big) data and technology to understand human-nature interactions 
and to provide evidence in favour of nature conservation and of the 
sustainable management of ecosystems [4]. Among these human-nature 
interactions are cultural ecosystem services (CES), which constitute the 
non-material benefits that people can experience from nature, such as 
recreation and ecotourism, as well as those pertaining to spiritual, 
religious, aesthetic or heritage values, among others [5].  

An approach that combines different data from social media with 
advanced analytics, besides spatial analysis, remains underexplored in the 
context of CES assessment. Thus, the investment in methods that can 
identify features of ecosystems and nature through the content analysis of 
shared photos (or text), can constitute an asset to support the evaluation 
of CES, particularly, related to aesthetics and recreation or ecotourism 
[6]. Lee et al., for example, proposed a method for analysing large 
amounts of social media photographs, as well as to derive indicators of 
socio-cultural usage of landscapes, through cluster detection with 
Convolutional Neural Networks (CNNs) [7]. This project aims to develop 
an automated classification of social media photographs that can be useful 
for CES evaluation and for providing innovative solutions to the scientific 
community. Specifically, this study aims to answer the following 
questions: (1) can deep learning algorithms be developed to support an 
automated classification of social media photographs in the context of 
CES? and (2) how can those algorithms and models be improved so as to 
promote statistically reliable image classifications? To achieve this, deep 
learning algorithms are developed and tested, more specifically CNNs 
and transfer learning strategies are applied to the classification of digital 
photographs of the “Peneda-Gerês” protected area (Northern Portugal) 
obtained from the social media platforms Flickr and Wikiloc.  

2 Methods 

2.1 Image classification methodology 

We performed a classification of the content of photographs from the 
protected area “Peneda-Gerês” (Northern Portugal), that were withdrawn 
from the Flickr and Wikiloc social media platforms, specifying a time 
window of 2003-2017 (1778 images in total). This classification was 
based on “Nature” and “Human” labels (Figure 1). To achieve that, two 
different CNNs architectures were implemented, the VGG16 and the 
ResNet152, in order to verify the most appropriate and suitable for our 
study. 

The proposed image classification methods were evaluated over the 
dataset using a 5-fold-cross validation method, following the literature 
and taking into account the computational resources and the running time. 

The considered performance metrics (accuracy, sensitivity, specificity, 
and F1-score) were computed as the mean of the performance metrics 
obtained over the 5 different folds. During training, in each of the 5 folds, 
10% of the training data was retained to perform model validation, in 
order to determine the training parameters that guaranteed the highest 
accuracy over the validation set. 

Since we are coping with a small dataset, in order to improve the 
generalization of the model and avoid the overfitting, transfer learning 
and data augmentation schemes were considered. 

 
 
 
 
 
 
 
 
 
 

 

Figure 1: Examples of images belonging to the Nature and Human labels. 

a) Nature, b) Human. 

2.2 CNN architectures and transfer learning 

The VGG16 and ResNet152 were the chosen CNNs architectures. For 
both CNN architectures, three different sets of weights were considered: 
(1) weights obtained by training over the dataset “Places365”, (2) weights 
obtained by training over the database “ImageNet” and (3) weights 
obtained by training the networks from scratch. 
The Places365 dataset is the latest subset of the database Places, 
comprising around 1.8 million scene photographs of different places, 
labelled with 365 scene semantic categories, including photographs with 
similar elements to the ones under study. The ImageNet database 
constitutes a large-scale hierarchical image database, that has several 
applications in the broadest areas, comprising more than 14 million 
cleanly annotated images spread over around 21,000 categories. Both 
databases were selected due to their freely available online resources 
(weights and models).  

Regarding the details of the transfer learning strategy implemented, 
all the convolutional layers were kept frozen when training over our 
dataset, while the remaining 3 (for VGG16) and 1 (for ResNet152) fully 
connected layers were trained with our dataset. Moreover, for both 
architectures, an additional dense layer with 128 units and a rectifier linear 
unit activation function was also included (to allow better fit of the 
model/network to the classification task) before the output layer, which 
was modified in order to have 2 units.  

Regarding the training details, both networks were trained using the 
Adam optimizer. For VGG16, the best performance was verified when 
considering a learning rate of 0.000001 while, for ResNet152, it was 
0.0001 the most accurate learning rate. Also, it was observed that, for 
VGG16, the model accuracy and loss had fully converged after 50 epochs, 
having been decided, because of that, to use only 50 epochs to build the 
VGG16 model, as well as the ResNet152 model, due to computing 
resource management. 

2.3 Data augmentation 

Regarding data augmentation, 5 transformations (including horizontal 
flip, width shift, height shift and zoom) were implemented individually 
for each of the images in the training set. The images in the validation set 
were not included in this process, in order to avoid biased results. The 
total number of transformations applied to each photograph (5 per image) 
was selected taking into account the overall running time of the algorithm, 
as well as the available computational memory.  
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3 Results 

3.1 Nature vs. Human classification 

When comparing the two transfer learning scenarios and the weights 
obtained by training only over our dataset (Figure 1), it was observed that, 
ImageNet had, overall, a higher accuracy for the two architectures under 
study (86.11 vs 87.18), followed by Places365 and weights trained only 
with our dataset, with the exception of Places365 in VGG16, that resulted 
in an equally high accuracy (87.01). Also, it was verified that, for 
Places365, VGG16 had a better performance when compared to 
ResNet152 (87.01 vs 86.00), while for the remaining scenarios, 
ResNet152 model was more accurate than the one for VGG16. 

 

Figure 1: Accuracy of the VGG16 and ResNet152 model performance for 

the two transfer learning scenarios and the weights from scratch. 

Considering sensitivity (Figure 2), it was verified that ImageNet had, 
overall, better results for the two architectures under study (86.71 and 
86.78), followed by Places365 and weights trained only with our dataset, 
with the exception of Places365 in VGG16, that resulted in a higher 
sensitivity value (88.48). Likewise, it was observed that ResNet152 had 
slightly finer sensitivity results when compared to VGG16, except for 
Places365, where VGG16 showed the best result (88.48 vs 83.40). 

 

Figure 2: Sensitivity of the VGG16 and ResNet152 model performance 

for the two transfer learning scenarios and the weights from scratch. 

For specificity (Figure 3), it was observed that Places365 had finer 
specificity results for the two architectures under study (85.54 and 88.46), 
followed by ImageNet and weights trained only with our dataset. 
Similarly, it was verified that ResNet152 had better specificity results 
when compared to VGG16, for all the scenarios under study. 

 

Figure 3: Specificity of the VGG16 and ResNet152 model performance 

for the two transfer learning scenarios and the weights from scratch. 

Considering the F1-score (Figure 4), it was verified that ImageNet 
had slightly better F1-score results for the two architectures under study 
(86.53 and 87.44), followed by Places365 and weights trained only with 
our dataset. Also, it was observed that ResNet152 had finer F1-score 

results when compared to VGG16, except for Places365, where VGG16 
showed the best result (87.53 vs 85.89). 

 

Figure 4: F1-score of the VGG16 and ResNet152 model performance for 

the two transfer learning scenarios and the weights from scratch. 

4 Discussion and Conclusions 

When comparing the two considered transfer learning scenarios and 
the weights obtained by training only over our dataset, it was expected 
that the model implemented with the Places365 weights would have a 
finer performance than the other two (with ImageNet weights and weights 
trained only with our dataset), since all the photographs contained in this 
dataset are exclusively related with landscapes and places in general, 
constituting the database that most resembles our dataset. Perhaps 
surprisingly, this was not the case for both VGG16 and ResNet152, as 
ImageNet was undoubtedly the database where the two transfer learning 
scenarios achieved better results. A possible explanation for this behavior 
can reside in the observation that deep learning models achieve more 
accurate results when trained in the presence of large datasets. In fact, 
ImageNet, by containing a larger number of photographs (more than 14 
million) than Places365 (around 1.8 million), has led to a better 
performance of the model. Also, ImageNet contains a greater diversity of 
images that seems to contribute to a better generalization of the model. 

The results showed that deep learning methods can offer significant 
contributions to assist in CES evaluation. Future work will focus on the 
improvement of the robustness of these models against scarcely labeled 
data via the use of semi-supervised approaches by leveraging autoencoder 
architectures and generative adversarial networks. 
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