
Artificial Neural

Networks Performance

Study
João Manuel Campelos Ferreira
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciências de Computadores

2020

Orientador
Inês de Castro Dutra, Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

5

Para uma das pessoas que mais impactou quem eu sou hoje, que ajudou a cuidar
de mim durante a minha infância e que me mostrou o significado de altruísmo e

dedicação com a sua maneira de ser para com a sua família.
Que pensou sempre nos outros em primeiro lugar e só depois em si, que merece

tudo deste mundo e que ficará sempre na minha memória como uma das melhores
pessoas que alguma vez conheci e irei conhecer.

Tive a maior sorte em te ter na minha vida e de partilhar muitos momentos
contigo que sempre guardarei comigo. Finalmente rumo para um futuro que

tantas vezes falamos e que sempre me desejaste.

Dedico não só o meu trabalho mas também quem eu sou hoje, a ti,

a melhor Avó que poderia pedir.

Contents

Contents 9

List of Tables 12

List of Figures 15

Acronyms 17

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.4 Organization . 3

2 Basic Concepts 5

2.1 Single neuron and deep learning . 5

2.2 Artificial Neural Network . 6

2.3 Supervised and unsupervised learning . 8

2.4 Classification . 8

2.5 Multi-layer Perceptron . 8

2.6 Convolutional Neural Network . 9

2.7 Recurrent Neural Network and LSTM networks 10

2.8 Support Vector Machine . 11

7

8 CONTENTS

2.9 Logistic Regression . 13

2.10 Random Forest . 14

2.11 Accuracy, Sensitivity, Specificity and other metrics 15

2.12 Other Basic Concepts . 16

3 Related Work 17

3.1 State-of-the-art . 17

3.1.1 Search’s methodology, queries and results 17

3.1.2 Articles review and explanation . 18

4 Practical methodology 31

4.1 Practical methodology description . 31

4.2 Datasets . 33

4.2.1 Image datasets . 33

4.2.2 Sound datasets . 34

4.2.3 Text datasets . 39

4.2.4 Categorical datasets . 43

4.3 Pre-processing . 43

4.3.1 Image datasets . 44

4.3.2 Sound datasets . 44

4.3.3 Text datasets . 45

4.3.4 Categorical datasets . 47

4.4 Model implementation . 48

4.4.1 ANNs . 49

4.4.2 SVMs . 57

4.4.3 Random Forests . 59

4.4.4 Logistic Regression . 60

4.5 Evaluation metrics . 61

CONTENTS 9

5 Results 65

5.1 Results presentation . 66

5.2 Results comparison . 95

5.3 Training accuracy, loss and final ROC curves . 104

6 Conclusions and Future Work 107

6.1 Research summary . 107

6.2 Main findings . 107

6.3 Improvement and future work . 108

A Result Appendix 111

A.1 Learning and loss curves, confusion matrix and ROC curves 111

Bibliography 117

List of Tables

3.1 State-of-the-art queries and returned number of results 18

4.1 ANN hyper-parametrization of each model in each dataset 56

4.2 SVM hyper-parametrization of each dataset for each sample size 59

4.3 Random forest hyper-parametrization of each dataset for each sample size 60

4.4 Logistic regression hyper-parametrization of each dataset for each sample size . . 61

5.1 Accuracy results for the maximum dataset size 66

5.2 Accuracy results for the minimum dataset size 66

5.3 Sensitivity results for the maximum dataset size 66

5.4 Sensitivity results for the minimum dataset size 67

5.5 Specificity results for the maximum dataset size 67

5.6 Specificity results for the minimum dataset size 67

5.7 AUC results for the maximum dataset size . 68

5.8 AUC results for the minimum dataset size . 68

5.9 Execution time in seconds for the maximum dataset size 68

5.10 Execution time in seconds for the minimum dataset size 69

5.11 Sensitivity values for all MNIST classes . 69

5.12 Specificity values for all MNIST classes . 70

5.13 Sensitivity values for all CIFAR10 classes . 70

5.14 Specificity values for all CIFAR10 classes . 71

5.15 Sensitivity, specificity values for all IMDb classes 71

11

12 LIST OF TABLES

5.16 Sensitivity, specificity values for all Sentiment140 classes 72

5.17 Sensitivity, specificity values for all Heartbeat sound classes 72

5.18 Sensitivity values for all ESC-50 classes . 73

5.19 Specificity values for all ESC-50 classes . 74

5.20 Sensitivity, specificity values for all UCMF classes 74

5.21 Sensitivity values for all Mammo classes . 75

5.22 Specificity values for all Mammo classes . 75

List of Figures

2.1 Single neuron. Source: [27] . 6

2.2 Multi-class classification using SVC with different kernels Source: https://scikit-
learn.org/stable/modules/svm.html . 12

4.1 MNIST dataset 58,000 instances class data distribution 34

4.2 MNIST dataset 28,000 instances class data distribution 34

4.3 MNIST dataset 2,000 instances class data distribution 35

4.4 CIFAR10 dataset 48,000 instances class data distribution 35

4.5 CIFAR10 dataset 28,000 instances class data distribution 36

4.6 CIFAR10 dataset 2,000 instances class data distribution 36

4.7 Heartbeat sound dataset 829 instances class data distribution 37

4.8 Heartbeat sound dataset 528 instances class data distribution 37

4.9 Heartbeat sound dataset 200 class data distribution 38

4.10 ESC-50 dataset class data distribution . 38

4.11 IMDb dataset 33,000 instances class data distribution 40

4.12 IMDb dataset 15,000 instances class data distribution 40

4.13 IMDb dataset 2,000 class data distribution . 41

4.14 Sentiment140 dataset 48,000 instances class data distribution 41

4.15 Sentiment140 dataset 28,000 instances class data distribution 42

4.16 Sentiment140 dataset 2,000 instances class data distribution 42

4.17 Relation between the variables c and gamma . 57

13

14 LIST OF FIGURES

5.1 Accuracy results for the MNIST (1) and CIFAR10 (2) datasets, for the three
dataset sizes . 76

5.2 Sensitivity results for the MNIST (1) and CIFAR10 (2) datasets, for the three
dataset sizes . 77

5.3 Specificity results for the MNIST (1) and CIFAR10 (2) datasets, for the three
dataset sizes . 78

5.4 AUC results for the MNIST (1) and CIFAR10 (2) datasets, for the three dataset
sizes . 79

5.5 Accuracy results for the IMDb (1) and Sentiment140 (2) datasets, for the three
dataset sizes . 80

5.6 Sensitivity and specificity results for the IMDb (1) and Sentiment140 (2) datasets,
for the three dataset sizes . 81

5.7 AUC results for the IMDb (1) and Sentiment140 (2) datasets, for the three dataset
sizes . 82

5.8 Accuracy results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the
three dataset sizes . 83

5.9 Sensitivity results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the
three dataset sizes . 84

5.10 Specificity results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the
three dataset sizes . 85

5.11 AUC results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the three
dataset sizes . 86

5.12 Accuracy results for the UCMF (1) and Mammo (2) datasets, for the three dataset
sizes . 87

5.13 Sensitivity results for the UCMF (1) and Mammo (2) datasets, for the three
dataset sizes . 88

5.14 Specificity results for the UCMF (1) and Mammo (2) datasets, for the three
dataset sizes . 89

5.15 AUC results for the UCMF (1) and Mammo (2) datasets, for the three dataset sizes 90

5.16 Accuracy for all three artificial neural network types applied to all dataset and
dataset sizes . 91

5.17 Sensitivity for all three artificial neural network types applied to all dataset and
dataset sizes . 92

LIST OF FIGURES 15

5.18 Specificity for all three artificial neural network types applied to all dataset and
dataset sizes . 93

5.19 AUC for all three artificial neural network types applied to all dataset and dataset
sizes . 94

A.1 CIFAR10 CNN model accuracy curve - Usual learning result 111

A.2 CIFAR10 CNN model loss curve - Usual learning result 111

A.3 CIFAR10 CNN model ROC curve - Usual learning result 112

A.4 CIFAR10 CNN model confusion matrix - Usual learning result 112

A.5 ESC-50 CNN model accuracy curve - Unusual learning result 112

A.6 ESC-50 CNN model loss curve - Unusual learning result 113

A.7 ESC-50 CNN model ROC curve - Unusual learning result 113

A.8 Heartbeat sound MLP model accuracy curve - Unusual learning result 113

A.9 Heartbeat sound MLP model loss curve - Unusual learning result 113

A.10 Heartbeat sound MLP model ROC curve - Unusual learning result 114

A.11 Heartbeat sound RNN model ROC curve - Unusual learning result 114

A.12 Mammo CNN model accuracy curve - Unusual learning result 114

A.13 Mammo CNN model loss curve - Unusual learning result 114

A.14 Mammo CNN model ROC curve - Unusual learning result 115

Acronyms

ANN Artificial Neural Network

SVM Support Vector Machine

LR Logistic Regression

RF Random Forest

CNN Convolutional Neural Network

RNN Recurrent Neural Network

MLP Multilayer Perceptron

AE Auto Encoder

RBF Radial Basis Function

ESN Echo State Networks

MFCC Mel Frequency Cepstral Coefficient

17

Chapter 1

Introduction

In our modern society, with the evolution of technology, our need for knowledge exceeds our
ability to reach it. Predictions of performance, patterns of consumer activity, clustering people
into groups based on their taste and classification of instances between several characteristics are
a few examples of tasks that would take large amounts of time and resources to accomplish.

That makes us turn to machine and deep learning by artificial intelligent systems with the
ability of extracting knowledge from extensive amounts of data in small periods of time, at least
smaller than what would take a manual approach. Deep learning is based on artificial neural
networks (ANNs) which are nothing more than the computational adaptation of a brain’s neural
network and are going to be the core subject of this thesis.

The main focus will be the performance of ANNs across several evaluation metrics, compared
to other algorithms in distinct situations, variable characteristics and multiple key points that
may affect the overall learning performance, so that some conclusion can be extracted.

Such conclusions cannot be dependent on only one evaluation metric since that could lead
to inconclusive or incorrect results, so evaluating such comparison also implies some range of
evaluative options in order to have a more wide spectrum of results and avoid false conclusions.

1.1 Context

Nowadays, ANNs are vastly used in fields such as agriculture, education, finance, security, art,
management, manufacturing, transportation, insurance, marketing, energy and banking. They
are particularly popular not just due to the mapping from an input to an output but also due to
its ability of self-learning, fault tolerance and non-linearity. ANNs’ popularity, paired with the
great results solving diverse problems, lead to an increase of the their use in different professional
areas and situations.[2]

Different data mining algorithms may have different sets of characteristics that can lead to
higher efficiency in finding a valid solution. The generalization of the use of a particular method

1

2 Chapter 1. Introduction

like ANNs, to solve different problems under different circumstances, may not be the best choice
in professional and research areas. Even though it may produce good results, the search for the
best answer must always be imposed in order to move towards scientific evolution and innovation.
That can be accomplished by guaranteeing the appropriate use of an algorithm, not neglecting
other valid options that could lead to better results.

So the main imposed question is “How better are artificial neural networks’ performance
compared to other methods, capable of solving the same problem under the same conditions and
under what conditions do they differ?”.

1.2 Motivation

Although the definition of dataset is somewhat ambiguous, there is consensus in the presence
of four characterizing features such as grouping and content of data, relatedness between data
information and a final purpose. This allowed the improvement of quality and performance in
technology, services, researches, operations, among others.[25]

With the advances in deep learning, the application of the algorithm in several distinct areas
increased drastically, combined with that, the fact that most performance based studies of the
algorithm are conducted in specialized environments like specific datasets, specific problems, not
extending that study to not so favorable conditions, is a massive contributor for the need of a
study like the one presented. The motivational need for this study also relies on the increasing
use of ANNs in the last decades and the wide range of fields that use this algorithm in so many
different applications.

So there is a need for an extensive understanding of the performance, specially comparing
with other methods in order to comprehend not just their great achievements but also their flaws,
advocating their use or promoting the use of more capable algorithms that may be overlooked.

1.3 Objectives

To answer the main question of this thesis, a complete study should be able to determine the
performance of ANNs under different situations, in order to have a complete and extensive
knowledge of its adaptability to new and distinct aspects of the implementation and overall final
performance, based on different evaluation metrics.

The different situations and characteristics must be impactful to a certain extent, like the
dataset used, that can vary in size, shape and data type. When it comes to ANNs, the type
of the network and the different types of layers, number of layers and neurons can also lead
to different results. Those situations and conditions are important because they are the line
between success or failure so they have to be impactful in general situations. The notion of
failure in this case does not mean obtaining bad results or not obtaining results at all, but not

1.4. Organization 3

obtaining better results than other methods.

Once such performance is determined, under the same previously described conditions, one
well suited competitive algorithm must be studied in order to conclude the improvement that
was made by using ANNs or in the other hand, the disadvantage of their use.

Even though it is not the main topic of this thesis, this also creates an opportunity to study
other methods under different conditions and create a hierarchical scale of the performance, not
only comparing the results between algorithms but also criticizing each algorithm within all the
distinctive factors.

In summary, the main objectives are to find some distinction between favorable and unfavorable
conditions that have some type of influence in the created model’s performance and to present
evidence of other possible solution that would reach better results, evaluating those results in
multiple angles to ensure maximum veracity.

1.4 Organization

There are four main groups of tasks to be implemented throughout the duration of the thesis.
There is a bibliographic research and organization, followed by the search and selection of the
main comparative aspects of the next task, the testing phase, ending with the writing of the
thesis.

The first task starts when the objective of the thesis is determined. Bibliographic references,
articles and the state-of-the-art study is conducted in order to support the foundation of the
thesis, from the motivation, passing through the need for this study and ending in the way it
should be implemented. In this phase, there is an intensive research for similar work in order to
know what can and should be improved and other ways to perform the study in order to have
better and more conclusive results. The second main task is the selection of all the substantial
material that is going to be used. Dataset types, the actual datasets, data mining algorithms
applicable to the chosen datasets, ANN architecture, comparative data mining method, validation
and metrics must be selected as well as the number of datasets and dataset sizes to be compared.
This is an important step because it can lead to overachieving and consequently not having the
time to implement all the tests. In order to prevent that, simpler tests must be implemented in
order to have a notion of the time that is going to be spent in each test phase.

After having all the selected elements of the study, there is the most time expensive phase.
Here all the comparative studies must be implemented and all the results and conclusions must
be extracted. Since ANNs and other algorithms may consume extensive periods of time due
to the training of the networks and the algorithm computation, this phase is the longest of
all tasks. The ANNs and the comparative chosen methods are implemented and compared in
several conditions and situations, the ones previously mentioned. In addition, the creation of the
networks and the parametrization tuning of layers, neurons, activation functions, optimizers and

4 Chapter 1. Introduction

number of epochs takes time since several number of neurons, layers, etc, have to be computed
in order to optimize the learning performance and classification capability of the models. That
factor lead to a an even greater amount of time spent.

Finally, the last task is the preparation of the document of this study. Since the previous task
consumes a large amount of time, the writing of the thesis starts around the end of the testing
phase. This way, a more vivid recollection of the events and conclusions can be documented,
lowering the chance of missing information.

The document is partitioned in 6 chapters. Apart from this introductory chapter, chapter 2
focus on basic and related concepts behind this study and their definition and relation. Chapter
3 discusses the related work and state-of-the-art with articles and studies that present similarities
with this work. Chapters 4 presents the description of every component of the study, like dataset
description, pre-processing operations, constructed models and evaluation, and chapter 5 is where
all results are presented, discussed and compared. The final chapter concludes the study with a
summary of the study, conclusions and future work.

Chapter 2

Basic Concepts

2.1 Single neuron and deep learning

Perceptron is a binary classification algorithm that represents mathematically the biological
neuron. That mathematical representation is accomplished with the application of an activation
function and related weights, on an input fed by an input layer that is connected to an output
node. The linear classification is able to determine distinct patterns by adjusting weights.[24]

The neuron is an adaptation of the rudimentary perceptron and allows a continuous value
between 0 and 1, instead of the binary output.[27] In figure 2.1 we can see the input and a weight
value, that are computed in a summation and where an activation function is applied, producing
an output. That represents the basic behaviour of the neuron.

The summation is represented by

ini =
∑
j

Wj,iaj = Wiai

where g is the activation function, a is the activation value of unit i, a is the vector of activation
values for the inputs to unit i, W is the weight on the link from unit j to unit i and W is the
vector of weights leading into unit i.

5

6 Chapter 2. Basic Concepts

Figure 2.1: Single neuron. Source: [27]

With the evolution of technology and resources, neurons can be put together in sequences
where the output of one neuron is the input of another. This allows the transition from a single
neuron to deep learning.

Deep learning is a branch of machine learning, mostly accomplished with the use of ANNs,
although not exclusively.

The combination of neurons in layers and the complexity of the number of components and
connections, allows the resolution of equally complex problems.[12]

Deep learning allows the extraction of high-level features that are extremely hard to
comprehend, by breaking the data representation into simpler parts and relating them with more
complex ones, but the term deep can also be attributed to the depth that can allow the learning
process.

2.2 Artificial Neural Network

ANNs are computational networks inspired by the animal’s brain. They receive inputs through
several parallel processors that make simultaneous computations and can be structured by layers,
each one a set of neurons. They are inherently parallel due to those simultaneous computations
that are made by different elements of the network.

The main components of ANNs are the neurons, each one receiving and sending it’s own
input and output, and the connections between them that allow the communication between
nodes.[13] Those connections are made by weights that allow the computation of data, usually
with a nonlinear relation between input and outputs, through learning and training.[8]

For the layer structured networks, there are three main types of layers, the input layer, hidden
layers and an output layer. The neurons in each layer are connected to other neurons in the same,
adjacent or in some cases non-adjacent layers, depending on the architecture of the network. That
connection has an associated weight that is adjusted throughout the learning process and that

2.2. Artificial Neural Network 7

determines the relevance or strength of the connection, representing the network’s parameters. If
a connection’s weight is lower than a predefined value also known as threshold, the signal may
not be sent because that connection is not sufficient for obtaining a good output.

The networks can be single−layered or multi−layered and feedforward or recurrent and a
single neuron can also receive an output produced by itself. Each neuron of the input layer
receives a variable of the dataset and passes that information to another neuron. That information
also known as activation is a numeric value limited by a certain range depending on the activation
function. That function is what is going to change the data throughout the layers ending in an
output result, presented by the output layer.

Each layer and neuron may perform different data transformations to the receiving inputs
since each neuron multiplies the activation value by the associated weight. It then adjusts the
resulting number by the neuron’s bias, which is a specific number that adjusts the value of the
neuron after all connections are processed. After that adjustment, it normalizes the output with
the final activation function.

Since each neuron from each layer passes the transformed data to the next layer as an output,
the model does not have to work with the raw input data each time, saving resources and
bettering the performance. One of the most interesting characteristics about ANNs is the ability
to modify themselves in the learning process, adapting to new data and altering the learning
process.

The learning process is usually accomplished with the use of backpropagation where after
one process flow takes place and the output is determined, the network compares those outputs
with pre-known answers. A cost function is used to modify initial outputs based on how they
differed from the known values. The function’s results are pushed back across the network to
adjust the weights and also the biases. This will not only allow the network to learn but also to
generalize the learned knowledge, avoiding overfitting.

ANNs also have different architectures or structures like the number of layers, nodes in each
layer and the connections between them, which can be total or partial depending on whether
connections are only made between layers or also between nodes in the same layer.

There are several types of ANN architectures like feedforward neural networks which, like the
name suggests, feeds the information from the input layer to the output layer and are usually
trained through backpropagation. In the feedforward neural network we have architectures like
auto encoders, radial basis function and CNN.

There are also some variations of feedforward neural networks like RNNs which are not
stateless. In RNNs, we have architectures like echo state network that have random connections
between neurons and a different training process from the others and long short-term memory
(LSTM) networks.

8 Chapter 2. Basic Concepts

2.3 Supervised and unsupervised learning

An algorithm uses supervised learning when the learning process uses a dataset with diverse
features and each learning example has an associated label.

With the training set of examples, another provided set of the same size contains the labeling
of each example, deriving the term supervised learning.[12]

In the other case, unsupervised learning represents the cases where there is no given labeling
of the training examples. The algorithm has to have a different understanding of the data without
the extra information that guides the learning process.

2.4 Classification

Classification is a core subject in machine learning. It revolves around grouping together instances
of data that have certain characteristics in common, saving their label and unique identifiable
characteristics. In supervised learning, the final groups or classes are already labeled and the
model learns from identified examples and applies what was learned to new data.

There are problems that do not feed labeled data, so instead of learning from an example
sample, the model groups together data in clusters with similar characteristics that are finally
labeled. This last case is considered unsupervised learning since no information is fed to the
model.

There are several everyday examples of classification cases, from classifying someone eligible
for a loan, separating spam from the rest of the emails and even in several medical fields.

The validation of classification problems can be accomplished with the split of data into
training and testing sets, each one a percentage of the total dataset, among other processes, like
cross-validation. This is used to have a set of data were the actual classification can be tested
and a result can be evaluated.

That evaluation is accomplished with evaluation metrics like accuracy. Apart from accuracy,
there are several other metrics like ROC curves and sensitivity, specificity, precision, that can be
determined from a confusion matrix.

2.5 Multi-layer Perceptron

Multilayer perceptron (MLP) is a type of neural network that defines networks with multiple
layers of perceptrons that are single neuron models that can lead to larger neural networks when
combined, although the term is also used to characterize any feedforward neural network.

It is a mathematical function, composed by simpler functions each one presenting the output

2.6. Convolutional Neural Network 9

in a new representation, that maps inputs to outputs.[12]

1The hidden nodes from the hidden layers transform the previous values from the previous
layer using a weighted linear summation. This is followed by non-linear activation functions
and the network then may use backpropagation, supervised learning, passing the outputs from
one layer as inputs to the following layer, until it reaches the output layer and produces a final
result. A network with three layers is usually called shallow or non-deep neural network, since
the connection between neurons in each layer is more rudimentary.

The learning process takes place in the adjust of weights after each data processing, by
comparing the output to the intended result, making the learning process supervised. MLPs
are capable to learn non-linear models using partial fit but are sensitive to feature scaling since
each neuron is connected to every other neuron and the number of total parameters can grow
increasingly high, causing some redundancy. They have a non-convex loss function when they
have hidden layers, consequently having multiple local minimums that can lead to different
validation accuracy when different weights are used.

2.6 Convolutional Neural Network

Convolutional neural network (CNN), also known as ConvNet, is an architecture of neural networks
mostly known for its applications on image and video recognition, analysis and classification,
language processing and recommender systems and are specialized for data processing with a
grid-like topology.

The architecture has shared-weights, translation invariance characteristics and implements
convolution, a mathematical linear operation instead of a matrix multiplication that consists
in the use of multiple filters in order to extract features from the data, preserving their spatial
information in the process. CNNs take advantage of smaller patterns and evolve them to
more complex patters, taking advantage of the hierarchical component of the data, having
lower connectivity and complexity between nodes, unlike MLP, that are usually fully connected
networks meaning that each node in one layer is fully connected to all the nodes in the next
layers, which can lead to overfitting and posterior regularization.[12]

A key advantage to this architecture is the little need for pre-processing of the data compared
to other architectures or even other algorithms, at least in simple cases like image related
problems, where the type of data is very linear. Component-wise, CNNs consist of a sequence of
convolutional layers with pooling, fully connected and normalization layers.

Each convolutional neuron only processes data for the corresponding receptive field, making a
difference between fully connected models that would take much time and resources to accomplish
similar results. Related to convolutional layers, there is also local or global pooling layers which
reduce data dimensions by combining outputs from clusters of nodes from one layer, into a single

1https://scikit-learn.org/stable/modules/neural_networks_supervised.html

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

10 Chapter 2. Basic Concepts

node in the next layer. The difference between local or global pooling is that the first usually
clusters nodes with shapes of 2x2 while the other acts on the entire convolutional layer.

In a convolutional layer, the neuron receives input from a subset of neurons, usually with a
squared shape of NxN of the previous layer, not being fully connected. This way, the receptive
field, or the input area, is not the entire previous layer but only a sub-part of it. The deeper
into the network, the larger the receptive area gets, since there is an overlap of convolution
applications.

There is discrete and continuous convolution, represented in the respective order by 2.1 and
2.2.

(f ∗ g)(k) = h(k) =
k∑
j=0

f(j) · g(k − j) (2.1)

(f ∗ g)(x) = h(x) =
∫ ∞
−∞

f(u) · g(x − u) du (2.2)

The distinction between them is that

The convolutional operation is applied on two functions and is defined as the integral of their
product and is usually presented with an asterisk, like in equation 2.4.

s(t) =
∫

x(a)w(t − a)da (2.3)

s(t) = (x ∗ w)(t) (2.4)

2.7 Recurrent Neural Network and LSTM networks

2Another class of ANNs is recurrent neural networks (RNN) commonly used and computationally
fitted for processing sequential data. In this type of network architecture the connections between
nodes form a directed graph, allowing the demonstration of a dynamic temporal sequence.

This network type is an adaptation of feedforward neural networks, since they can use internal
memory to compute and process data proprieties. Within RNNs there are networks with finite
or infinite impulse, the first being a directed acyclic graph, possibly transformed into a normal
feedforward network and the second being a directed cyclic graph where such transformation is
not possible. Usually in neural networks, inputs and outputs are independent but there are cases
where the the problem needs to keep track of the previous input in order to determine the next
output, so RNN came into use, solving that problem.

2https://www.sciencedirect.com/topics/engineering/recurrent-neural-network

2.8. Support Vector Machine 11

3Some of RNN’s proprieties are the processing capability of an input of any length and having
a model that does not increase with the size of said input and shares the determined weights
throughout time. The used RNN in this study was a long short-term memory network (LSTM)
which prevents errors from backpropagation like the vanishing gradient problem. This problem
derives from the number of layers and consequent activation functions, where the gradients of
the loss function move towards zero and make the training process more difficult. Since LSTM
has a memory component it can learn from specific related events that are separated by large
delays, learning from events that happened hundreds or millions of steps earlier and even flow
errors between virtual layers which are unfolded in space.

2.8 Support Vector Machine

Support vector machines, also known as SVMs are machine learning models useful in classification
and regression tasks. They can be supervised, where labeled data is used to train the algorithm or
unsupervised thanks to support vector clustering which is the closest application in unsupervised
learning.[23]

4Initially used in classification problems between two categories, the main objective of the
algorithm is to create a space representation of the data and a division or a clear space between
them, ranging from smaller to wider gaps. Such division is represented by the construction of a
hyperplane capable of creating an optimal distinction or separation between each class label and
allowing the fitting of new data into one of the classes.

5The separation created by the hyperplane is more efficient if the distance between instances
of each class if bigger, in other words, if the space between them is maximum, avoiding the risk of
misclassifying instances and having more confidence in the classification, since the hyperplane is
a boundary responsible for the decision. Data points closer to the hyperplane define the optimal
position and orientation since they are the closest instances belonging to different classes. These
points help maximize the length of the classifier margin.

Some advantages of the use of SVMs are the high dimensional space effectiveness efficiency since
it uses a subset of training points in the decision function. The loss function that helps maximize
the margin is hinge loss and SVM is basically optimizing hinge loss with L2 regularization.

For an actual class t labeled as -1 or 1 and a predictive class y, the hinge loss function for
binary classification of the prediction of y, follows the equation:

l(y) = max(0, 1 − t ∗ y)
3https://stanford.edu/ shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
4https://scikit-learn.org/stable/modules/svm.html
5https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-

934a444fca47

12 Chapter 2. Basic Concepts

The adaptation for multi-class classification also brought some adaptations to the hinge loss
function like the definition of Crammer and Singer, where t is the target label and

wt

and
wy

the model’s parameters:

l(y) = max(0, 1 + maxy 6=twy ∗ x − wt ∗ x)

As previously mentioned, SVMs were originally designed to distinguish between two classes in
classification problems. However, methods like SVC and NuSVC create the possibility of multi-
class classification. LinearSVC also allows multi-class classification and is a faster implementation
but only allows a linear kernel, not allowing any other kernel as an argument.6

The used method SVC takes in two arrays just like other algorithms, one for the training
samples and other for the corresponding labels. It implements the “one-versus-one” approach for
this type of classification having a total of #classes ∗ (#classes − 1)/2 constructed classifiers,
comparing two classes a the time. Figure 2.2 shows the classification of multiple classes using
SVC with distinct kernels.

Figure 2.2: Multi-class classification using SVC with different kernels Source: https://scikit-
learn.org/stable/modules/svm.html

6https://scikit-learn.org/stable/modules/svm.html

2.9. Logistic Regression 13

2.9 Logistic Regression

Logistic regression (LR) is a statistical based model that uses, as the name suggests, a logistic
function. It is used in cases where the labeling target or variable is categorical with two possible
values, like in classification problems where there are two target classes, meaning that in a binary
model, the target variable has two categories, so outputs with more than two classes are modeled
by multinomial LR.

7It is a predictive analysis algorithm, used not only to describe but also to explain the relation
between data and variables.

Apart from binary problems, there are also multinomial and ordinal cases where there are
multiple categories, where multinomial cases do not involve ordering of said classes, where ordinal
cases do, like the rating of a service from 0 to 10. Finally, there are also decision boundaries
where the model predicts to which class a certain data collection belongs to.

8The function behind this method is the logistic function, also known as sigmoid function.
The curve takes the shape of an S, and can map any real value into a value constricted between
0 and 1. The sigmoid function follows the equation:

hθ(x) = 1
1 + e−x

LR predicts an outcome by finding an equation for a binary labeling variable, from one or several
other variables. Those values can be categorical or continuous since it doesn’t require a specific
type.

In cases where there is a classification of data in two or more groups, it uses the log odds
ratio, rather than probabilities and an iterative maximum likelihood method rather than a least
squares to fit the final model. That ratio is represented by:

LogOdds = log[p/(1 − p)]

Since LR is used primarily to describe data and relation between variables, the implementation
of the algorithm in multi-classification problems came with some changes. One of those changes
was the substitution of the logistic function for the softmax function. This new function compacts
all values between 0 and 1 and their sum equals 1 and is represented by:

softmax(x)i = exi∑
j exj

7https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc/
8https://machinelearningmastery.com/logistic-regression-for-machine-learning/

14 Chapter 2. Basic Concepts

Along with cross entropy to measure how the probability distributions differ from each other,
the class score and training loss calculations, and the one-vs-all or one-vs-one methods, LR
multi-class classification is possible.

In the one-vs-all method, binary classifiers for each class are trained and tested on new data,
while in the one-vs-one method, two classes are tested at a time, like previously described in the
SVC algorithm.

2.10 Random Forest

9Random forest (RF), also known as random decision forests are a learning method used in
classification, regression, among other problems.

Decision trees are a technique for predictive models, that follow the structure of a tree,
branching out in different "if, then" scenarios, depending on the data’s variables. The last split
would represent the leafs of the tree, classes or final predictions of the model. Each branch
determines the best split, using metrics like gini impurity, information gain and variance reduction,
depending on the problem’s context.

RFs are the construct of several decision trees with the intent of reducing the variance, at
the cost of increasing bias and some loss they provide a final class or mean prediction.

This machine learning algorithm corrects the disadvantage of overfitting the training set,
commonly found in decision trees, although there are cases that can lead to this problem, like
the depth of the model, that can learn irregular patterns. Also, decision trees are not the most
robust and have some difficulty in generalizing data, so RF were created to solve these problems.

10Using bootstrap aggregation, the training portion is conducted on random subsets of the
data leading to a decrease of variance of the model, since bootstrapping indicates that individual
trees are paralleled trained on several different subsets of the original training data and different
features, making each tree unique. As long as the decision trees are not related, using this
aggregation will make the final model more robust and leave the bias unchanged.

At each split along the tree, only a portion of features is considered, reducing correlation and
the impact of strong predictor variables. Cross-validation is not needed in RF since each tree is
created using a distinct bootstrap sample of the whole data.

RFs also use proximity, where after a tree is fully created, if two cases are in the same leaf
node, they increase their proximity by one, latter normalizing the values by dividing by the total
number of trees, aggregating instances of data.

9https://www.sciencedirect.com/topics/engineering/random-forest
10https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

2.11. Accuracy, Sensitivity, Specificity and other metrics 15

2.11 Accuracy, Sensitivity, Specificity and other metrics

Accuracy is an evaluation metric that measures the proportion of true results, a combination
of true positives and true negatives. It is a common metric in several fields since it is the most
understandable interpretation of results. A high accuracy value may represent a good classifying
model, capable of distinguishing several classes, but it is not always the best evaluation metric
since those classes may not be classified with said accuracy, equally.

That is a potential problem when classes are not equally present and one may be extremely well
classified and others, less represented, have poor accuracy rate, leading to a miss-interpretation
of the value.

In a general case where there are a percentage of true positives, true negatives, false positives
and false negatives, also known as TP, TN, FP and FN respectively, the instances where the the
label is positive and the final output is also positive constitute the TP value. The FP represent
the positive labels that have been classified as negative. The same applies to the TN and FN
where the first represent the negative cases that have been classified as such and the second the
cases there the negative labels have been classified as positive. Each one of these measurements
has it’s own meaning and value but each situation may be more impacted by one of them. In
medicine for example, false positives can lead to improper treatment and false negatives can be
fatal. Accuracy is calculated, using the previous indicators, by:

Accuracy = (TN + TP)/(TN + TP + FN + FP)

In cases where accuracy is not a reliable measurement, because of unbalanced data or in
cases where that is not the intended information to be extracted, there are other metrics that
can evaluate algorithms and computational models.

Apart from accuracy, this study uses sensitivity, specificity and area under the ROC curve,
AUC. These metrics evaluate the ratio of hits and misses that the model or algorithm executes,
testing them in a testing set and verifying the results.

Sensitivity, also known as true positive rate, is used to evaluate a test’s ability regarding
positive cases and how accurate they are identified. It represents a model’s capability of detecting
a positive instance, for example of a medical condition while the patient is positive for said
condition. Higher sensitivity values mean that the model can accurately classify positive cases,
so when it is important to know with certainty, that it is in fact a positive instance, sensitivity is
the most important value to study. It is calculated by:

Sensitivity = TP/(TP + FN)

Specificity or true negative rate, on the other hand, is the measurement of correctly identified
negative cases and represents how well a model can identify normal or negative cases. It is
calculated by:

Specificity = TN/(TN + FP)

16 Chapter 2. Basic Concepts

Sensitivity and specificity are not equally related. A model can have high sensitivity and not
be so specific. The opposite situation is also possible, but both metrics are important in their
own way and may apply better in certain situations. The receiver operating characteristic curve
or ROC curve, is the graphic translation of the relation between sensitivity and specificity. In
fact, it related the true positive and false positive rates, TPR and FPR. The TPR is equal to
sensitivity and the FPR is equivalent to the inverse of specificity, meaning (1 - specificity).

The ROC curve is a product of all combinations of TPR and FPR and each point represents
the trade-off between sensitivity and specificity. The x=y axis represents the random guess and
a good result should present itself as a curve above that axis.[30]

2.12 Other Basic Concepts

Backpropagation is an ANN training algorithm used in feed forward neural networks that sends
information back to the network and trains the weights and biases of neurons and connections.

Activation is the numeric value that enters the neurons and is used in the calculation of the
output.

Activation function is the function responsible for obtaining the output of each neuron in the
network to be passed to the following neuron.

Overfitting is when a machine learning model does not generalize correct values from the
training data to unseen data. It can be manifested by lower validation or testing evaluation
results when compared to training.

Chapter 3

Related Work

3.1 State-of-the-art

The state-of-the-art research consisted of searching for similar studies in order to know what is
yet to be studied, what progress was already accomplished and what can be improved.

In this case, the state-of-the-art research is focused on ANNs comparative performance,
meaning the comparison of their performance in different situations or with other methods under
the same conditions, not the performance set on a unique dataset with unique features.

Most found studies do not really get into said comparison with the objective of segregating
the situations with good and bad outcomes. In the following subsections, different search queries
and several studies will be presented, demonstrating similarities and core differences with this
study.

The structure of this section starts with a specific query, related studies, articles that do not
have a relation to this thesis but present a reason behind why other studies were not chosen and
finally, a brief discussion on why there is a need for this study, comparing to the ones previously
presented.

3.1.1 Search’s methodology, queries and results

The state-of-the-art research was conducted with the search engines Google Scholar and Re-
searchGate. Distinct queries were ran in those platforms and the articles presented in the next
section were found.

The bibliographic references are organized by query in order to separate comparative
components. Within the researched query, the analyzed articles and studies were organized by
publishing date, from the oldest to the most recent study.

Although the studies are not related, this organization may create some sequence of used

17

18 Chapter 3. Related Work

tools, methods or software.

Table 5.4 presents the queries, the number of returned results and the found articles.

Query Number of results
"data mining method", "comparison", "artificial neural network" 1120

"artificial neural network applications" (since 2016) 528
"artificial neural network techniques", "comparison" 937

"artificial neural networks", "size", "performance" (since 2019) 23500

Table 3.1: State-of-the-art queries and returned number of results

3.1.2 Articles review and explanation

3.1.2.1 Searched query: data mining methods, comparison, artificial neural net-
work

Delen, Walker and Kadam’s article is a study based on the prediction of breast cancer survivability[7].
It applies ANNs, decision trees and logistic regression in order to develop prediction models.
These models were selected in this study due to their popularity around the publishing date of
the article.

They use a large available dataset named SEER Cancer Incidence Public-Use Database
between the years 1973 to 2000 with more than 400,000 cases. It consists of nine text files
containing cancer related data for specific anatomical sites. Each file contains 72 variables and
each one of the 433,262 records relates to a specific incident of cancer and a specific patient. The
survival variable of each record is represented in binary, typical of classification problems with
only two classes. For comparison purposes, they used 10-fold cross-validation methods in order
to measure the unbiased estimate of the different prediction models.

In ANNs it was used a MLP commonly used in classification problems, with back-propagation.
This study also proved the overall performance between MLP and RBF, RNNs and self-organizing
map (SOM) in classification problems like the one is the study. In the decision tree model, it
was chosen to use C5 algorithm, an improved version of C4.5 and ID3 algorithms. For measuring
the performance it was used accuracy, sensitivity and specificity and, as previously mentioned, in
order to minimize bias associated with the random sampling, it was used 10-Fold cross validation.

The results showed that decision tree (C5) is the best predictive model with an accuracy of
91.2%, followed by ANNs with 91.2% and finally Logistic Regression with 89.2%.

Soo Kim’s study compares two of the main components we want to study[14]. It compares
the performance of ANN, decision trees and linear regression based on the number and types of
independent variables and sample size. There were generated 60 simulated prediction problems,
with one, three or five independent variables and sample sizes of 100, 500, 1000 and 10000. Some

3.1. State-of-the-art 19

of the continuous variables were converted into categorical variables further down the study.

ANN, decision trees and logistical regression techniques were applied to the 60 examples in
order to determine their prediction accuracy, splitting the set into a training set of 70% and a
test set with the remaining 30% and it was only considered the root mean square error of the
test set.

The used ANN was a multilayer feed-forward network trained using a backpropagation
algorithm, with one or two hidden layers and with a variable number of hidden neurons, between
one and ten. The learning rate and momentum were set at 0.1 and 0.9 to differ between a
continuous descent on the error surface and a faster training process.

There were generated four decision trees where the splitting criteria varied, using minimum
number of observations in a leaf and observations required for a split search for pre-pruning.

Logistic regression showed to be superior to decision trees and ANNs when independent
variables are continuous for all number of variables. It also performs best when independent
variables are continuous and categorical and the number of categorical variables is small. On the
other hand, ANN is better when the number of categorical variables is superior to two. ANN
performance also improves as the number of classes of categorical variables increases. When it
comes to data sample, the logistic regression model performs better for small sets (100 and 500)
while ANN performs the best with larger samples (1000 and 10000).

The next study revolves around the performance comparison between ANN and logistic
regression models in predicting the mortality factor in elderly patients with fractured hips, within
a year of surgery.[15] The data is from the National Insurance Program of Taiwan from 1996 to
2000 with a larger incident of mortality rates in females than in males.

The prediction accuracy was determined by randomly selecting patients from the dataset,
previously to any exposition to the ANN and logistic models. Said accuracy is calculated with
true and false positives and negatives. Also, continuous variables were presented as mean standard
deviation, as for categorical variables they were presented as counts and percentages.

As a method to study the correlation of variables, the Chi-square test was used. Statistical
analyses were conducted with the use of PASW Statistics 17.0 and Clementine 12.0 softwares
with a significance level of 0.05. The comparison of ROC curves and ANN models in the testing
and training sets were made using MedCalc 9.38.

The division of the original dataset was 70% for training and the remaining 30% for testing,
having only the testing dataset to build models. Before modelling, the training sample had a
boost of cases in order to balance the number of survival and non-survival cases. From the 12
variables, one was a binary variable to distinguish death from survival and the remaining 11
variables were selected as input variables.

From the six total models (two logistic regression models and four ANN models) the logistic
regression models had a testing accuracy of 69.66% for only main effects and 71.91% for all

20 Chapter 3. Related Work

two-way interactions. The ANN models had 62.92% for 20 hidden neurons, 84.24% for 25 hidden
neurons, 84.27% for 30 hidden neurons and 95.51% for an automatic selection.

They were compared for specificity and sensitivity and the ANN model had the best accuracy.
The logistic regression models had lower areas under the ROC curves for both training and
testing sets with 0.938 (95% CI: 0.904, 0.972) and 0.784 (95% CI:0.669, 0.899) respectively. Both
values were lower than the ANN values of 0.998 (95% CI: 0.995,1.000) and 0.949 (95% CI: 0.857,
1.000).

The study from Maroco, Silva and Rodrigues focus on the prediction of dementia by comparing
data mining methods and their accuracy, sensitivity, specificity, area under the ROC curve and
Press’Q.[18] MLPs, RBF, SVMs, CART, CHAID and QUEST classification trees and random
forests were compared to linear discriminant analysis, quadratic discriminant analysis and logistic
regression.

The model predictors were ten neuropsychological tests, used in the diagnosis of the disease.
The data of the subjects refers to 921 elderly non-demented patients recruited due to the cognitive
complaints referred for neuropsychological evaluation at 3 different institutions, two in Lisbon
and one in Coimbra, from 1999 to 2007.

Using the Friedman’s nonparametric test, the statistical distributions of classification result
from a 5-fold cross-validation were compared. 5-cross validation was also used in order to prevent
overfitting and artificial accuracy improvement due to the use of the same dataset for the training
and testing sets. With the use of Press’Q, the study determined that all classifiers performed
better than chance (p < 0.05). The training sample was 80% of the original dataset and the
remaining instances were used for testing.

The multilayer perceptron was trained with 11 inputs, 1 hidden layer with 4-7 neurons,
iteratively adjusted and a hyperbolic tangent activation function. For the output layer, the
activation function was the softmax with a cross-entropy error function.

The RBF had 11 inputs, one hidden layer with 2-8 neurons and a softmax activation function.
The activation function for the output layer was the identity function with a sum of squares
error function.

SVM presented the highest values in specificity followed by multilayer perceptron, logistic
regression and RBF with significant differences, and with lower values, LDA, QDA, classification
trees and random forest. LDA, CART, QUEST and random forest had the highest sensitivity
values. Logistic regression, multilayer perceptron, RBF and CHAID had median sensitivity
values close to or lower than 0.5, and SVM had the lowest sensitivity but the highest AUC.

Random forests and linear discriminant analysis had high accuracy, sensitivity, specificity
and discriminant power. On the other hand, SVM, ANNs and classification trees presented low
sensitivity.

In the final results, SVM had a larger classification accuracy (Median (Me) = 0.76) an area

3.1. State-of-the-art 21

under the ROC (Me = 0.90). They also showed high specificity (Me = 1.0) but low sensitivity (Me
= 0.3). Random forest had the second best accuracy results (Me = 0.73) with high area under
the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear discriminant
analysis had a reasonable overall accuracy (Me = 0.66), with and area under the ROC (Me =
0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The other classifiers showed overall
accuracy above a median value of 0.63 but the sensitivity values were lower than the median
value of 0.5.

The next article studies the comparison of ANN and logistic regression analysis in pregnancy
prediction using the in vitro fertilization treatment.[19] The data is from 1995 patients of the
Shore Institute for Reproductive Medicine, USA, in the age range of 21 to 45 years old.

Univariate and multivariate logistic regression models were performed using Stata/IC 12.1
software in order to provide pregnancy status. The data was also analyzed using ANN with
application of the Statistica Data Miner + QC 10.0. ROC curves and area under the curve
(AUC) were analyzed in order to determine the quality of the final predictors.

In ANNs, to create the best network, the algorithm was run 30000 times and determined a
fit of three-layer perceptron with 40 neurons in the input layer, six in the hidden layer and two
in the output layer. The sensitivity and specificity were 69.0% and 60.3%, respectively.

The predictive results of the two models showed that the ANN model obtained better results.
The statistically significant differences between the predictive powers of both models were at the
p < 0.0001 level. Also, the curve for the ANNs is more convex than the other model. ANN’s
AUC, sensitivity and specificity values were higher (10%, 3.5% and 3.5%, respectively) than for
the multivariate logistic regression model.

In summary, ANN models were found to be better at obtaining a predictive model than
classical statistical analysis. On the other hand, they are not able to detect which variable
influences the most and how much, unlike logistic regression.

3.1.2.2 Query’s articles discussion

The presented studies for this query revolve around the comparison between ANNs’ performance
and other methods in order to find a better accuracy in classification, among other evaluation
metrics.

This is similar to what this thesis is trying to accomplish but it also wants to extend the
comparative factors further than just data mining algorithms. It also wants to have other
characteristics as factors so, keeping that in mind, although they are similar in that aspect, this
is an improvement and more broad study.

For example, the first study is the most similar study to the work this thesis wants to
accomplish by comparing ANNs with other methods under different networks types and data
mining algorithms. Still it used the same dataset with the same type of data and the same size.

22 Chapter 3. Related Work

The results show that ANNs are slightly worse than decision trees but would that change in
other dataset types or different dataset size?

3.1.2.3 Searched query: artificial neural network applications, since 2016

Abiodun, Jantan, Omolara, Dada, Mohamed and Arshad’s article is more contextual than the
other ones meaning that it is not specifically about the comparison between ANNs and other
models but more of a study about ANNs applications in the real world.[2] It provides a taxonomy
of ANNs and insight of the relation between those applications, data mining techniques and
types of ANNs.

It highlights, discusses and compares more than eighty research articles on ANNs model
applications based on author and year of publication, ANNs modeling, area of publication and
contribution. It also shows the interesting increase in ANNs applications in the last two decades,
having most research articles published after 2009.

The most relevant commentary is about the need of comparison between the researched
studies about ANN’s applications, and other methods in the same applications in order to prove
and substantiate their success.

On the relation between ANNs’ applications and data mining problems, the study concluded
that among the several ANNs applications, most of them were related either with classification
and pattern recognition. By analyzing more than eighty researches in real life applications,
this study supports the motivation and need for this thesis’ main question to be answered by
referencing the lack of comparison between models.

From this search, only this study fitted the criteria for state-of-the-art. It had the objective
of collecting data on the use of ANN during the last few years as well as any other information
focusing on ANN application and not the actual implementation of ANN models in specific cases.

Most other returned studies, like the next examples presented in this section, focus on the
application of ANN under a specific scenario and not the study of overall applications.

The study fromWilliam A. Borders is focused on characterization of spin−orbit torque−controlled
synapse device for artificial neural network applications.[5] It was motivated by the rapid increase
of AI research and the interest in fabricating machines and computing systems capable of
performing high level tasks. The study reports one approach to hardware-based ANN using
spintronic technology and explains the ANN-based associative memory operation procedure,
using spin-orbit torque controlled devices. The devices reliability and efficiency challenges that
were found are also described and clarified by new measurements of endurance properties. The
results surround the limitation of the maximum operation current and the consequences on
memory operations.

The next study example, from Fatehnia and Amirinia, is about review of genetic programming
and ANN applications in pile foundations.[10] Pile foundations are structural elements used

3.1. State-of-the-art 23

in the transportation of superstructure loads deep into the ground. The basis of the study is
the estimation of pile bearing capacity, keeping in mind that the interaction with soil is not
completely understood, limiting the study. That missing interaction knowledge led to the review
of genetic programming and ANN applications in order to solve the previous related problem.
The article focus is in explaining the methods, provide literature review on the application of
both methods and extract results from such application.

The final example of articles that did not fit in the state-of-the-art for this search is a 2019
study about ANN applications to pattern recognition.[1] It is motivated by the lack of answers
to problems like whimsical orientation, object classification, location, scaling, neurons behaviour
analysis in hidden layers, among others and gives an introduction to the more current trend in
ANN models that also address pattern recognition challenges. In measuring the performance of
ANN models, the study uses mean absolute percentage error, mean absolute error, root mean
squared error and variance of absolute percentage error and concludes that current ANN models
perform extremely well in pattern recognition tasks.

3.1.2.4 Query’s articles discussion

The first article was more of an extra source of motivation for this thesis, since it encourages the
need for it and is also a source of information about the professional fields of use of ANNs.

The rest of the studies presented in this subsection are more specific implementations of
ANNs and do not represent the kind of study we are trying to accomplish. They all present
unique applications with unique features and no comparative performance inclination, making
them an example of the returned articles from this query that do not align with this study.

3.1.2.5 Searched query: artificial neural network techniques, comparison

The article entitled “River flow forecasting and estimation using different artificial neural network
techniques” is a 2008 study about the application of ANNs’ techniques for the estimation of
monthly streamflows.[22] The studied ANNs’ techniques, feed forward neural networks (FFNN),
generalized regression neural networks (GRNN) and radial basis neural network were used in one-
month ahead streamflow forecasting and monthly flow data from Gerdelli and Isakoy stations in
Turkey and the used data was 39 years long dating from 1961 to 1999. Three program codes were
written in Matlab language for the three simulations and the models were written in a training
and a testing phase, being the first one around 75% (348 months) of the dataset and the second
25% (120 months). The FFNN was optimized with the Levenberg˘Marquardt (LM) optimization
technique for adjusting the weights. The used network had one hidden layer and a common trial
and error method to select the number of used hidden nodes. The activation function is the
sigmoid function and it was used in the hidden and output layers. After the training phase, the
weights are saved and used in the testing phase, validating the network performance on test data
also having the mean square errors (MSE) computed for that data. The study also involved the

24 Chapter 3. Related Work

periodicity of the model’s forecasting performance as well as the flow estimation using data from
nearby rivers. Here, another variable was added into the input combinations. It is visible that the
periodicity decreases the MSE for each model. The relevant results demonstrated that GRNN
had better performance in one month ahead streamflow forecasting. The RBF performed better
than FFNN in monthly flow forecasting and both the RBF and FFNN were better than the
GRNN in monthly river flow estimation using nearby river data. The periodicity component also
increases the performance for flow forecasting, but decreases in monthly river flow estimation.

Firat, Turan, and Yurdusev’s study is focused on comparing ANN architectures in the
prediction of water consumption, using GRNN, cascade correlation neural network (CCNN) and
FFNN for such comparison.[11] The used data was collected from one hundred and eight datasets
from Izmir, Turkey. For the prediction models, 108 monthly records of water consumption,
from 1997 to 2005 were collected. The data was divided into training and testing sets, 80%
and 20% respectively, and a trend component was removed using the regression line, in order
to create the prediction model. The testing data was not used during the training process,
providing a more reliable evaluation. In order to determine the best model, statistical criteria
such as average absolute relative error (AARE), normalized root mean square error (NRMSE)
and threshold statistic (TS) are calculated to perform the comparison and evaluation. The used
ANN models were constructed depending of the combination of antecedent values. In total,
six models were created, based on combinations of previous monthly water consumption. The
M5 models, combined five antecedent values of water consumption performed better than other
models, leading to higher NRMSE and AARE values. The results show that the performance of
the M5 CCNN model is better and the test statistics are also slightly better than other models.
The M5 CCNN model presents lower NRMSE and AARE values than GRNN and FFNN models.
M5 CCNN also presents higher values of the CORR than the other models, demonstrating that
CCNN was superior to FFNN and GRNN in the prediction of water consumption time series.

The study from Deme C. Abraham, compares ANN techniques for mobile networks field
strength prediction.[3] It compares and analyses field strength prediction, MLP, RBF and GRNN.
That analysis uses readings obtained at 1800MHz from Base Transceiver Stations, metropolis of
Jos, Nigeria. A cellular mobile network analyzer (SAGEM OT 209), capable of measuring signal
strength, received power measurements, used throughout the study. The data was separated
into three groups, 60% training, 10% validation and 30% testing, ensuring optimal training
performance in one approach. Then, in another approach, the GRNN was trained with a dataset
from one base station and tested with a different set from another base station. The root
mean squared error (RMSE) and the coefficient of determination (R2) were used as statistical
performance indices. The study had a MLP with three hidden layer neurons, an error goal of
0.001 and the Levenberg-Marquardt back propagation as a training algorithm, an RBF with a
spread of 0.8 and error goal of 0.1 and for the GRNN, it had a spread of 0.6. The comparison
concluded that GRNN had the most accurate predictions for both used base stations’ data, with
an RMSE of 5.13dB. It had the least prediction error of 4.83dB according to the geometric mean
and the best fit.

3.1. State-of-the-art 25

The article from Behbahani, Amiri, Imaninasab and Alizamir is about the comparison of four
different ANN techniques in forecasting urban road network accident frequency and determine
which of the techniques performs best.[4] The forecasting aims to determine how crashes in urban
road networks are affected by external factors. The four ANN techniques are extreme learning
machine (ELM), probabilistic neural network (PNN), RBF and MLP. These techniques were
chosen because they are able to solve road accident forecasting problems, especially with complex
variable interrelations. The dataset for the research is traffic and accident data from the city of
Mashhad, Iran, in the year of 2014. The dataset has a total of 2338 accidents on 194 roadway
segments and three sets of variables, crash, traffic and environmental characteristics. The data
was divided into two groups. The first, the training set is 80% of the total observations and is
used to calibrate the models and assess fitting. The other 20%, create the testing set and is
used to compare the prediction results of all the models and compute error values. The study
used measures like Nash-Sutcliffe (NS), mean absolute error (MAE) and root mean square error
(RMSE) in order to evaluate performance from each technique. MATLAB 2010 software was
used to perform the used techniques and the Relief algorithm used to find the significance of the
used variables. It determined that VKT was the most influential variable, followed by two traffic
flow characteristics, V/C and speed. In the modeling process, the used parameters were analyzed
based on importance and predicting impact. Also, the designing network was expected to identify
the most accurate structure using trial-and-error approach, since different network structures can
lead to different results. The results from all models show that ELM is the best model to forecast
accidents. The network had 15 neurons since it was the optimal number for the used data.
Unlike other models, ELM only requires setting the number of hidden neurons and the activation
function, avoiding the chance of a local minimum problem. It was the fastest approach in the
training process, the most accurate in estimation accident frequency in both processes, followed
by MLP, PNN and RBF. Next to ELM, MLP performed more accurately when faced with the
available data but MLP models are vulnerable to noise, leading to wrong predictions. PNN
outputs are easier to interpretation and PNN are faster than multilayer perceptron networks and
the predictive results were fairly accurate. RBF presented the weakest results in comparison to
the other techniques.

The previously presented articles in this section implement the comparison between three
or more ANN techniques. Most of the returned studies by the query were based on similar
characteristics but were more restricted when it comes to comparison and obtained results. For
example, the study from Zare and Pourghasemi studies the comparison between only MLP and
RBF in spatial prediction of landslide susceptibility mapping. [21] The dataset is composed of
136 landslide locations and nine conditioning factors. 70% of the data (95 landslide locations)
in the training set and 30% (41 landslide locations) in the test set. The results concluded that
MLP with Broyden˘Fletcher˘Goldfarb˘Shanno learning algorithm was more efficient than RBF.

Other than studies with less comparable techniques than the ones presented, other returned
studies did not address the subject the searched query intended like the study from Erbek and
Taberner that also focused the architecture comparison between only two techniques, MLP
and learning vector quantization. [9] Also like the previous study, it revolved around land use

26 Chapter 3. Related Work

activities, and maximum likelihood classification with supervised ANN and the MLP produced
the best results.

Sahoo and Jha’s study compares the performance of multiple linear regression and ANN
in groundwater-level prediction. [28] In this study, the used ANN is a multilayer feed-forward
network with a single hidden layer. No other ANN was used in the comparison, unlike the
previous presented articles, not addressing the comparison between ANN architectures.

Szuster, Chen and Borger’s study compares SVMs with maximum likelihood classification
and ANNs in land cover and land use analysis in tropical coastal zones.[29] The comparison is
not between ANN techniques like the searched query intended, which is why it was not included
in the retrieved studies.

3.1.2.6 Query’s articles discussion

In the query from this section, the same problem described in the first query section occurs. The
presented studies tackle the issue but are very restricted to that comparison and do not include
other factors. In this case, the focus was on comparing the performance of several network
types but they all used the same datasets, sizes and no different algorithms to compare overall
performance.

Again, this thesis works as a improvement and compilation of works, having independent
studies come together to find new results and conclusions.

3.1.2.7 Searched query: artificial neural networks, size, performance, since 2019

Due to the amount of results from the query, the search was limited from since 2019, providing
recent studies with the recent technologies. It intends to show ANN’s performance and how it is
affected by the dataset size, comparing to other methods or by comparing several sizes from the
same dataset. This will allow us to determine if and under what circumstances, size and data
volume impacts performance, both time and memory related.

The preferred studies are the ones that on top of studying the effect of data sample size, also
compare the ANN’s performance under different sizes with other models, reaching into what this
thesis is trying to accomplish.

The study from Chen and Folly focus wind power forecasting and the effect of input features
on the performance.[6] The study only addresses ANN, not comparing results with other methods,
but it analyzes the performance with some depth and detail. On top of studying the impact of
input features it also studies the optimal sample size and the best performance interval values.
Finally, it also addresses the trade-off between forecasting performance and computational cost.
The meteorological dataset used is from the Wind Atlas of South Africa (WASA) and consists of
wind related variables such as speed and direction, measured at different heights, with 10 minutes

3.1. State-of-the-art 27

resolution for the period between 31 December 2010, to 1 January 2017. In order to compare the
performance of each model, performance evaluation metrics like the normalized root mean square
error (NRMSE), normalized mean absolute error (NMAE), and the mean absolute percentage
error (MAPE) were used. The performance, based on sample size, was meant to find the ideal
size where the model could produce good forecasting results at the lowest computational cost.
All the variables stayed the same except for the size of the training set and it concluded that the
RMSE value stopped improving after a training sample of 20000, where it stagnated, although
the forecasting performance improved with the increasing number of training samples. As for
the computational time needed, it increased along with the training set size. It took 92 seconds
to train the 20000 set and 166 seconds to train a training set of 60000. The study opted to use a
training set of 20000 since the RMSE value for both sizes were basically equal. As for correlation
coefficients between the target and input features showed that speed, direction and temperature
had a positive correlation while temperature gradient, relative humidity and barometric pressure
had a negative correlation.

The 2020 article based on groundwater potential mapping in mountain bedrock aquifers,
studies the effect of sample size in different machine learning models.[?] It compares adaptive
neuro-fuzzy inference system (ANFIS), ANFIS-imperial competitive algorithm (ANFISICA),
alternating decision tree (ADT) and random forest to model groundwater potential. The ICA
optimization algorithm was used so the best parameters could be found, avoiding amalgamation
of the parameters. The dataset is a documented inventory of springs and was divided into four
data samples with size of 100%, 75%, 50% and 25% of the total set, varying from 177 to 714
instances. Each dataset was then divided into training and testing sets, 70% and 30% respectively,
with fifteen geo-environmental factors as independent variables. As metrics to evaluate the
performance of each model, the area under the operation receiver characteristic curve (AUROC)
and the true skill statistic (TSS) were implemented. The final results concluded that sample
size affects the performance of all the implemented algorithms, with random forest having lower
sensitivity to smaller sample sizes. ADT and ANFIS’s performance decreased with sample size
while the hybrid ANFIS-ICA and random forest had better performances for all dataset sizes.
Based on validation results, random forest had the best performance on all four datasets based
on the tested metrics, in both training and validation phases, followed by ANFIS-ICA, ADT and
finally ANFIS, proving that random forests should continue to be used.

The study from D’souza, Huang and Fang-Cheng relates the connection of dataset size with
network structures, both important factors in this study since they are comparative points in
performance analysis.[26] It studies the performance of ANNs in cases with small datasets and
whether the chosen network structure has an impact on the final performance and whether the
optimal network structure is determined by the size of the chosen dataset. All layer combinations
were listed and given an upper bound of the Vapnik−Chervonenki (VC) dimension in order
to study the variance of the performance caused by structural hyperparameters. A list of all
possible structures with fixed dimensionality of layers was created and given a constraint, based
on the network’s VC dimension. All networks were trained and tested with a held−out validation,
recording their accuracy. After said recording, five optimal performing networks were selected.

28 Chapter 3. Related Work

There were used three datasets, the MNIST handwritten digit recognition image dataset, which
contains 60000 training images and 10000 testing images. There was a random selection of 100,
500 and 1000 samples from the 60000. The 1000 samples were divided into 800 and 200, the
500 samples into 400 and 100 and finally, the 100 samples were divided into 60 and 40, each
one for training and validation respectably. Another dataset used was CIFAR−10, with 60000,
32x32 color images (RGB) in 10 classes, with 6,000 images per class. From the dataset, 5000
samples were used, from which 4000 were for training and the remaining for testing. The same
optimizer settings used in the MNIST dataset were used for this dataset. The final dataset is
from the Tumor Proliferation Assessment Challenge of 2016 and consists of 73 breast cancer
cases. The results showed that structural optimization led to an improvement in accuracy by
27.99%, 16.44%, and 13.11% over random selection for sample sizes of 100, 500, and 1,000 in
the MNIST dataset. Those values lead to the conclusion that the optimization of the network
is of the most importance when the dataset size becomes smaller. On another important note,
the optimal network structure was determined mostly due to data type (photo, calligraphic,
images) and less due to sample size, suggesting that the optimal structure is data-driven. After
the structure optimization, the CNN achieved 91.13% accuracy with 500 samples, 93.66% for
1000 samples and finally, 94.10% for 3300 samples.

The final reviewed article, from S. Markham and Rakes, titled “The effect of sample size and
variability of data on the comparative performance of artificial neural networks and regression”
is an older study from 1998, found in the same query but without the time restriction, about the
effect of dataset size and variability on ANNs and linear regression performances.[17] Too small
sample sizes lead to inadequate error measures in regression and large sample sizes incur higher
costs in data collection. The research explores the behaviour of simple linear regression and
ANNs, by varying the sample size and variance of the error term in a predictive problem. Such
comparison is made with the use of the principal of mean square error (MSE) and the use of root
mean square difference (RMS) to have the error and the observations in the same magnitude. As
for ANNs, it was used a three-layer (1 hidden layer) feedforward backpropagation network. It
had a supervised training and the NeuralWorks Professional II was the used implementation
software. Steps were taken in order to determine the best network. Several ANNs were studied,
each one with an input and output processing elements and one or two hidden layers. For each
combination, the sigmoid, sine and hyperbolic tangent transfer functions were considered. By
having the lowest average RMS, a three-layer backpropagation network with two processing
elements in the hidden layer, one processing element each in the input and output layers, and a
sigmoidal transfer function composed the selected network. The dataset was generated from the
Statistical Analysis System (SAS), so instead of using real world data, the generated data allows
the researchers to know the true values of the parameters. Arranged in a five by four factorial
design, since the study intends to compare variance and sample sizes as factors, samples sizes of
20, 50, 100, 200 and 500 were used as factor levels. From comprised populations of 10.000 pairs,
representing a variance level, nine datasets were generated for each of the sample sizes. For each
sample size and variance combination, five sets of data were taken as training sets and four other
distinct sets were taken from each population and used as recall sets. The results comparing both

3.1. State-of-the-art 29

methods were determined by subtracting ANN’s RMS value with the RMS value from regression
for each observation. If the result is negative it means that ANN’s RMS value is smaller and
therefore is better at predicting and the opposite indicates that regression is the better model.
The data analysis was conducted with the use of nonparametric statistical package developed
by Walter R. Pirie. The results showed that the regression based model had better results with
lower variance values while ANNs had better results for higher values. When it comes to sample
size, for medium variance values, it was concluded that regression had better performance in
smaller samples while ANNs improved results for higher dataset samples.

3.1.2.8 Query’s articles discussion

The same problems found in the previous articles were found in this research. There was a
comparison in order to find the best ANN architecture but that was not one of the main topics
of comparison and was not a present factor in the comparison of both variance and sample size.

Comparing this study with the objective of this thesis, this comparison is applied to the same
dataset type, same predictive problem and even thought the best architecture was determined, it
was a comparing factor.

What this thesis is trying to accomplish is what is missing in this other studies, the relation
between several factors that may influence the performance of the models, so in this case the
permutation of comparative factors is intended to be bigger, or in other words, include more
comparative factors.

Chapter 4

Practical methodology

4.1 Practical methodology description

As mentioned before in a previous section, the objective is to compare the performance based on
distinct evaluation metrics, in distinct comparative situations, so the changing factors had to be
decided before implementing any models or algorithms.

Data type can be an influence factor in the performance so different datasets with different
data types such as text, image, sound and categorical data were chosen. These are diverse types
of data that tackle several problems and applications in social activities. In total, eight datasets
were studied, two for each type, ensuring some data diversity not basing all results and leading
conclusions on only one dataset. Different types of data are represented in different ways, so
the interpretation of said data by an algorithm could be executed differently and could lead to
different results.

For ANNs, the architecture of the network may have an influence on the final performance
since some networks are known to favor some types of data. With that in mind, a convolutional
neural network (CNN), a recurrent neural network (RNN) and a multilayer perceptron (MLP)
were implemented for each dataset. Convolutional networks are known to obtain good result
with image recognition but this study is an opportunity to study architecture’s performance
in other data types and shapes. These types of network were chosen because they operate in
different basis and are known to have good performances in specific situations, for example, CNN
are known to be good with image related problems and RNN with sequence data and natural
language processing. Furthermore, the addition of more architectures would lead to an even
more extensive study and the amount of time would not be sufficient.

1Within RNN the classic LSTM network, being a specific RNN, was the chosen to be
implemented in all models, since it deals with the vanishing gradient problem, previously
described. It was designed to model temporal sequences so it is a great model to compare since

1https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

31

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

32 Chapter 4. Practical methodology

some of the problems present in our datasets have a temporal dependency.

The chosen datasets have to have an associated problem in need of a solution and since there
must be a neutral factor between every dataset, all datasets are classification related. Otherwise,
if we had two different problems and we studied the impact of the network type, resulting in
different results, we couldn’t conclude if the reason was the type of problem or the network.

The size of the dataset must be variable in order to study the performance under different
sample sizes, since that can lead to a different performance because some data types or the
implemented algorithms may be more adaptable to smaller or larger data samples. Most datasets
had three different data sample sizes. Around 2,000 instances were saved from the overall training
set for validation, so the maximum dataset size is usually 2,000 less instances of the total size.
The medium size is roughly half the size of the maximum dataset and the minimum data sample
size is 2,000 for all datasets, apart from the sound datasets that are the smaller datasets of the
whole group of data.

The larger and the smaller sizes are used to evaluate the impact of data size in the learning
process and posterior classification. The medium data sample size was implemented with the
intent of guaranteeing that the classes and overall data was correctly shuffled. This means that
the difference between the maximum and medium data sample sizes should not be considerably
different, since that would mean that the removed piece of data was more impactful to the
learning process that should actually be.

After having all those parameters and factors, a comparative algorithm also capable of solving
that problem and obtaining good results must be chosen. If different algorithms were chosen
to be compared in certain situations, no real conclusions could be made, so instead, support
vector machines (SVMs), logistic regression (LR) and random forest (RF) models were used,
also for each of the eight datasets. These algorithms were chosen because of their overall good
classification performance, so they are compared to the implemented ANNs.

Since the performance is the main focus of comparison, in order to evaluate the performance
and correctly interpret the results, different metrics were implemented, since all the datasets are
different. Some issues like balanced and unbalanced datasets could make evaluation metrics like
accuracy an unreliable source for conclusions, so the chosen metrics were based on the articles
from the state-of-the-art research and the metrics they used. Accuracy, sensitivity, specificity
and area under the receiver operating characteristic (ROC) curve (AUC) were implemented in
order to maintain a wide range of interpretation of the results.

4.2. Datasets 33

4.2 Datasets

4.2.1 Image datasets

The MNIST dataset is a collection of grey-scale handwritten digits, from 0 to 9, for classification
purposes. It is a pretty much balanced dataset with 60,000 training examples and 10,000 testing
examples. Of the 60,000 training examples, 58,000 were used for training and 2,000 were used as
validation.

It is a subset of the NIST special database 3 and special database 1, a larger database, but
since the models take time to train and extract the final results and there are smaller datasets to
be compared in the study, the MNIST dataset was a suitable choice. It is composed of 30,000
images from SD-3 and the remaining 30,000 from SD-1 with approximately 250 different writers.

All the images have been normalized when it comes to size and are centered in a fixed size
of 28x28 pixels. The class distribution of the MNIST dataset, for all computed sizes of 2,000,
28,000 and 58,000 instances, is presented from Figure 4.1 to Figure 4.3.

The CIFAR-10 (Canadian Institute For Advanced Research) is a subset of the 80 million tiny
images dataset, collected by Alex Krizhevsky, Geoffrey Hinton and Vinod Nair. It consists of
60,000 colour images, with dimensions of 32x32 pixels, labeled in 10 balanced classes, having
6,000 images per class. There are 50,000 images for training and 10,000 for testing. Of the 50,000
training images, 48000 were used for training and 2,000 for validation.

The ten classes are images of airplanes, automobiles, birds, dogs, cats, deer, frogs, horses,
ships and trucks. All the classes are mutually exclusive having automobiles include cars, SUVs,
etc, and trucks include only bigger vehicles.

The labels are encoded with numbers from 0 to 9, each number corresponding to an individual
class. The actual data is separated by the RGB colors, each one having 1024 (32x32) bytes.

The class distribution of the CIFAR10 dataset, for all computed sizes of 2,000, 28,000 and
48,000 instances, is presented from Figure 4.4 to Figure 4.6.

34 Chapter 4. Practical methodology

Figure 4.1: MNIST dataset 58,000 instances class data distribution

Figure 4.2: MNIST dataset 28,000 instances class data distribution

4.2.2 Sound datasets

The heartbeat sound dataset was originally meant for a classifying problem of determining the
type of heartbeat of a patient. The data was collected from the general public by the iStethoscope
Pro iPhone app and from clinical trials in hospitals using the digital stethoscope DigiScope.
There are three classes but two of them were joined into a single class, having a total of two
classes, normal or abnormal heartbeats.

With a total of 461 files, the data was stretched by dividing the audio files into smaller files,
resulting in a total of 1037 audio samples. The dataset is not particularly balanced since there
are around 300 instances of abnormal heartbeats an more than 500 normal heartbeats, a problem
solved with the use of RandomOverSampler.

The length of the audio files varies between 1 and 30 seconds and some of them are already
clipped in order to reduce excessive noise, providing a clearer fragment of the sound.

Nevertheless, the recordings may contain noise corresponding to the removal of the device,
breathing, brushing and general background noise, but a normal heartbeat sound has a clear
pattern of “lub dub, lub dub”, with the time between “lub” and “dub” being shorter than
the time between “dub” and the next “lub”. The abnormal heartbeats do not follow the same

4.2. Datasets 35

Figure 4.3: MNIST dataset 2,000 instances class data distribution

Figure 4.4: CIFAR10 dataset 48,000 instances class data distribution

pattern, having some other noise between the expected pattern. In this dataset, audios with a
substantial amount of background noise or distortion were used in order to have a perception of
the adaptability of the models to unfavorable data.

The class distribution of the heartbeat sound dataset, for all computed sizes of 250, 528 and
829 instances, obtained with the use of RandomOverSampler explained in the Pre-processing
section, is presented from Figure 4.7 to Figure 4.9.

The ESC-50 dataset or Environmental Sound Classification 50 is a sound event data collection
with 50 different and balanced classes. The dataset has a total of 2,000 five second recordings,
40 per each class, in .WAV files, sampled at 16KHz. It comes divided into 5 folds, 4 of which
make the training set and the remaining the testing set.

Since all the files have, approximately, the same length is expected to have more silence
within the audio file, since most types of noise are spontaneous, like barking of a dog, a sneeze or
raindrops. This way, is expected for the models to learn the patterns even with silence breaks
between noises, since each bark audio, for example, may have different silence duration between
the actual noise but the frequency and the tempo is similar.

In this thesis only half of the dataset was used, since the previous dataset only had two classes,

36 Chapter 4. Practical methodology

Figure 4.5: CIFAR10 dataset 28,000 instances class data distribution

Figure 4.6: CIFAR10 dataset 2,000 instances class data distribution

fifty was more than what was needed to have some variety of data. But since the heartbeat
sound dataset had a total of 1,037 audio samples, a similar size of data was needed, and half of
the dataset was enough for such similarity.

The class distribution of the ESC-50 dataset was only tested for one size sample since the
total size of the dataset was not sufficient to split the data. Each class was represented by
approximately 60 to 70 data instances, after the audio files partition, so reducing the data
collection would result in unrealistic results. The distribution is presented in Figure 4.10 where
the data distribution does not follow the 40 recordings per class because of the referenced split
of each audio in several sub-recordings, explained in the Pre-processing section.

4.2. Datasets 37

Figure 4.7: Heartbeat sound dataset 829 instances class data distribution

Figure 4.8: Heartbeat sound dataset 528 instances class data distribution

38 Chapter 4. Practical methodology

Figure 4.9: Heartbeat sound dataset 200 class data distribution

Figure 4.10: ESC-50 dataset class data distribution

4.2. Datasets 39

4.2.3 Text datasets

The IMDb movie reviews[16], is a binary classification dataset which contains more data than
previous benchmark datasets. With a total of 50,000 reviews for natural language processing
and text analysis, it is a tool for sentiment analysis. Of the 50,000 reviews, 30% constitute the
training set and of the remaining 35,000, 2,000 were used for validation.

It is a balanced dataset, with each class having 25,000 instances, with reviews ranging from 3
to 1,398 words, 17 to 9,080 characters, and approximately 100,000 different words overall.

The reviews are mostly well-structured, unlike the next dataset, which makes the learning
process easier. Nevertheless, the data has to be submitted to the usual pre-processing techniques
in order to achieve uniformed data and remove words that do not help the learning process.

The data distribution of the IMDb dataset is represented from Figure 4.11 to Figure 4.13,
representing each size of 33,000, 15,000 and 2,000 reviews, respectively.

The final data is the Sentiment140 dataset also used for sentiment analysis. It has 1,600,000
tweets extracted using the twitter api, and were assigned two labels, 0 and 4, corresponding
to negative and positive sentiment respectively. Apart from the target which represents the
polarity of the tweet, there is also the id of the tweet, the data of publication, a variable flag, the
publisher of the tweet and the final text that corresponds to the tweet itself.

The tweets range from 1 to 20 words, around 5 to 100 characters. Just like the IMDb dataset,
this is also a balanced dataset, each sentiment having 800,000 instances.

Of the total 1,600,000 tweets, 48,000 were used for training, since that was the average
maximum size of the remaining datasets of other types and approximately 2,000 instances were
used for validation. The testing set was composed of approximately 9,000 tweets.

The data, specially in text analysis, has to be pre-processed in order to eliminate noise and
unnecessary words that can lead to wrong results, specially in cases like the Sentiment140 dataset,
where the data is collected from everyday tweets that have grammatical errors.

The data distribution of the Sentiment140 dataset, for each class, is represented from Figure
4.14 to Figure 4.16. The sample sizes are of 48,000, 28,000 and 2,000, differing from the previous
dataset in order to be compared to other data types, since there was enough data to have larger
samples with this dataset and not with the previous.

40 Chapter 4. Practical methodology

Figure 4.11: IMDb dataset 33,000 instances class data distribution

Figure 4.12: IMDb dataset 15,000 instances class data distribution

4.2. Datasets 41

Figure 4.13: IMDb dataset 2,000 class data distribution

Figure 4.14: Sentiment140 dataset 48,000 instances class data distribution

42 Chapter 4. Practical methodology

Figure 4.15: Sentiment140 dataset 28,000 instances class data distribution

Figure 4.16: Sentiment140 dataset 2,000 instances class data distribution

4.3. Pre-processing 43

4.2.4 Categorical datasets

The first used dataset entitled UCMF is a collection of data from the Real Hospital Português,
Brazil. The data is anonymous and approved by both the hospital’s Ethics Committee and the
Ethics Committee of the University of Porto, Portugal.

The original dataset had 7,603 observations of 33 features and was already pre-processed
from data cleaning to normalization and the removal of variables that did not present value, even
though some pre-processing tasks were conducted after the ones described.

Children with age bellow 2 years old were removed from the dataset, since body mass index
was featured in the data and the value is not usually assessed for younger ages. That resulted in
a total of 7,203 instances from which 2,510 are pathological and 4,693 are healthy. Of the 7,203
instances, 5,762 were used for training and 1,441 for testing.

The final dataset was denominated as Mammo and is a collection of 55,214 instances with
25 features, from personal information as age to medical information as mass shape. 11,500
instances of the data were used for training, 988 instances for validation and 3,122 for testing.

The data was not pre-processed so several missing values, unnecessary variables and incorrect
values were found and had to be corrected.

Among the features, several problems could be tackled. Both features ASSESSMENT and
PN could be the classification target, the first representing the class or level of development of
the mass, ranging from 0 to 9, and the second regarding the status of the patient, positive or
negative. Since the ASSESSMENT variable still had around 15000 instances and the variable
had more possible classifiable classes, that was the choice for this dataset.

4.3 Pre-processing

In this section is presented all the data processing, previous to the models’ implementation. Each
dataset, corresponding to a different data type, needs a special pre-processing, since text and
sound for example, have different features and different problems when it comes to data noise
and other impurities. Each pre-processing was based in similar work, since problems surrounding
the data type follow the same type of operations with the objective of cleaning the data and
making it viable, so the model can obtain better results.

The pre-processing treatment was the same for both datasets of the same type in order to
maintain the fairness between them and retrieve results that may differ, only based on data
proprieties and not the treatment they got before any modeling took place.

44 Chapter 4. Practical methodology

4.3.1 Image datasets

Since the dataset was loaded from the tensorflow.keras.datasets, it is already split into a training
and testing sets, with a relation of approximately 85% and 15% of the entire data. In both
datasets a simple normalization was conducted. Both datasets had square shapes, MNIST of 28
by 28 and CIFAR10 of 32 by 32 pixels and each pixel was represented by a number between 0
and 255, corresponding to the shade of the pixel from black to white in MNIST, and the RGB
color since the CIFAR10 dataset had 3 arrays corresponding to each color.

In order to feed the models with numbers between 0 and 1, both x_train and x_test variables
were set as float type, so that following division of each pixel in the dataset, by the maximum
value of a pixel, as a float itself, 255.0, would result in a correct value for the network.

4.3.2 Sound datasets

Unlike the previous data type, both sound and text datasets required a more deep pre-processing.
In the sound datasets, since the available data was somewhat reduced, between 500 and 1,500
entries each, the data had to be extracted, processed and augmented in order to have a more
extensive data collection. Each folder had audio files corresponding to one of the identifying
labels, so for each extracted file, the label had to be equally extracted and saved with the file in
question.

2The pre-processing computation was extracted from the heartbeat sound dataset study by
Manan Agarwal, since both the data and the problem trying to be solved were the same. For
the heartbeat sound dataset, all audios with less than 3 seconds were discarded and for the
ESC-50 dataset, since all audios had 5 seconds, all were kept. Depending on the audio’s length,
an iterations value was calculated in order to split the file into that amount of sub-parts. The
iteration value for each file was calculated by setting a fixed slice size of 3, corresponding to the
minimum in the heartbeat sound dataset audio length and following the next equation:

iterations = (audio_length − slice_size)/(slice_size − 1)

iterations = iterations + 1

After having the number of iterations or partitions to be applied to each file, an initial offset
was calculated in order to remove possible initial silence in the file. That offset depends on the
audio’s duration and the iterations value previously calculated and follows the equation:

initial_offset = (audio_length − ((iterations ∗ (slice_size − 1)) + 1))/2

Then, for the number of calculated iterations, is added to a data collection, the file name,
the label corresponding to the class and an offset that is the result of the following expression:

offset = initial_offset + i ∗ (slice_size − 1)
2https://github.com/MananAgarwal/Heartbeat-Classifier/blob/master/Heartbeat%20Classifier.ipynb

4.3. Pre-processing 45

This will split the audio into several parts thanks to this offset latter used in the extraction
of the audio information, having a final dataset that may contain several rows with the same file
name and label, but with different offsets.

After collecting all the files, labels and corresponding offsets, there is a split into a train and
test sets, which are variables with all the information regarding not only data proprieties, but
also the labeling of each file. The split was 80% to the training set and 20% to the testing set,
having 829 and 208 instances respectively.

After the split, comes the extraction of the data features for both sets. Such extraction
is conducted by the use of mel frequency cepstral coefficient (MFCC), which is used in sound
related problems, including speech, to reduce varying channel effects occurring in the audio data.

In order to calculate the MFCC the audio’s digital time series and sampling rate is needed.
Those values can be achieved by the use of the function librosa.load of the librosa library. The
function takes the file path and offset and a duration, so for each file, the function returns the
time series (y) and sampling rate (sr), beginning in an offset and with a duration of 3 seconds,
the slice_size value. The loop that proceeds to call this function, makes so each audio is divided
in X iterations, previously calculated, each with 3 seconds.

After having those values, the MFCC is determined with the use of the function lib-
rosa.feature.mfcc, which takes the y and sr values, as well as the argument n_mfcc, that
represents the number of mfccs to return. That value was set to sr/40 since it had better results
than a fixed number, which is the standard approach.

After having all the sound properties that are going to be used in the distinct models and
algorithms, both x_train and x_test variables are transformed into arrays with the use of the
numpy library.

After having the x_train and x_test sets ready, is time to deal with the corresponding labeling
sets. In each labeling set, were appended the labels of each audio file and offset, from the train
and test sets previously created. The next step was applied only to the ESC-50 dataset were the
existing labels are encoded to integers with the use of LabelEncoder from sklearn.preprocessing,
since the models don’t work with string labeling.

The final step in the pre-processing operations also only applied to the ESC-50 dataset is the
extraction of class weights, since although the dataset is pretty much balanced, there are a few
classes with a bit less data representation, comparing to the classes with most data examples.
This argument did not improve much performance in some models, but was still implemented
with the class_weight function of the sklearn.utils library.

4.3.3 Text datasets

As for the text data pre-processing, a lot of work within the text and structure of the phrases
was needed. To begin, some reviews had unknown characters, like German accentuation, so they

46 Chapter 4. Practical methodology

had to be solely removed from the instance. After removing unknown characters, other HTML
codified characters had to be transformed to their ASCII form, by using the “unescape” function
of the “HTMLParser” library.

After dealing with unknown and unrecognizable characters, all the reviews were converted
to lower characters, and in the IMDb dataset, a lot of HTML code was embedded with the
actual reviews so those pieces of code had to be removed. As for the Sentiment140 dataset, since
the text was originated from Twitter, there are cases of mentions, using the “@” character and
cases where URLs are present, so those characters and words had to be removed as well. A final
operation revolved around the use of multiple spaces between words, which had to be removed,
otherwise would also count as a word and would pollute the models and algorithms with noise.

After the text pre-processing, some new words were created by the removal of certain
characters, like the apostrophe in “I’ll” which would become “I ll”. This way, the “ll” had to be
removed as well as some characters that remained like mathematical operators.

The next steps involved removing every instance of any character apart from [a-z] and
normalizing possible words to ASCII. Abbreviations were replaced with the extended version, like
for example “isn’t” became “is not” and stop words were removed with the use of the python’s
stop_words library. Finally, after the removal of all present noise, there had to be some insurance
that the instance did not become empty. Pieces of text without relevant information could
become pieces of text with only one random word or in worse cases, completely empty. Therefore,
after the pre-processing previously described, all instances with one or less words were discarded
since the entries with one word were very few.

After having all the dataset rows pre-processed, comes the preparation of the data structure,
so that all instanced are represented in the same shape and dimensions. When it comes to
representation, words have to be transformed to numbers that can identify them. With the use
of keras.preprocessing.text function Tokenizer, each word is transformed to a number, allowing
the models to learn and retrieve information. The function returns the presence or absence of a
word in an array, and for the IMDb dataset, the Tokenizer kept track of the 300 most used words
in each review, since the the average review has a length of 200 words, and for the sentiment140
dataset, for the 100 most used words, since that is the maximum limit of words in a tweet.

The Tokenizer transformation was used in the implementation of ANNs and for the rest of
the models, it was used CountVectorizer, since the compatibility with the models did not allow
the implementation of the same data representation. They are different ways of representing
the same data, the first transforming the words into an array of integers that label each word
and the second that transforms into a matrix of word counts, where the presence of a word is
represented by 1, instead of the count of the words that do not bring any additional information
and deviate from the representation in the ANNs. So instead of an array, it returns the same
data in a matrix format, being this the last operation for the comparative models.

Since each review or tweet has a personal length and they are not all the same, they have to
be normalized to a same length so that the ANN can compute the data. In the three networks,

4.3. Pre-processing 47

for each dataset was determined the maximum number of words in a single instance and an
extension of 0’s is added to any review with less than that maximum. So if the maximum length
of words is 100 and an instance has 80 words, that array will be completed with zeros until it
has a length of 100.

After having the actual text pre-processed, the words tokenized and the same shape of every
row, we can split the data into training and testing sets.

4.3.4 Categorical datasets

The pre-processing in the categorical datasets was in majority the same.
Both datasets started by having some features removed, in the UCMF dataset they were:

ID, DATA, DN, CONVENIO, IMC_CALCULADO_CORRETAMENTE,
MEDICO_ASSISTENTE, MEDIA_IMC_POR_IDADE, IN_IDADE_CALCULADA,
IN_PA_INFORMADA_CORRETAMENTE, IN_CONVENIO_INFORMADO and

IN_PULSOS_INFORMADO_CORRETAMENTE

And in the Mammo dataset were:

DeAbnormalityID, FoldNum, DeMRN, DeMammoID, ASSESSMENT and MAMMO_RAD_ID.

Since there were some instances in the UCMF dataset with missing classification values, those
were removed from the dataset and the variables with missing values were selected in order to be
filled with a standard value. In the UCMF dataset the columns:

PULSOS, B2, FC, HDA_1, HDA_2, MOTIVO_1 and MOTIVO_2,

had missing values and since none of them had 0 as a value option, all the missing entries were
filled with 0 instead. For the Mammo dataset the variables:

PreviousMammo, Composition, MASS_MARGINS, MASS_SHAPE, MASS_DENSITY,
CHANGES, CALCIFICATIONS, CALCIFICATION_DISTRIBUTION_MODIFIER,

ARCHITECTURAL_DISTORTION, CS Site-Specific Factor 6, SIZE,
ASSOCIATED_FINDINGS and SPECIAL_CASES

were the ones with missing values and they too were filled with 0, apart from MASS_DENSITY
that already had 0 values, so the value Z was introduced to represent missing values.

After that, all the categorical features were selected, in the UCMF dataset being:

PERCENTIL_IMC, FAIXA_ETARIA, PULSOS, SIT_PAS, SIT_PAD,
RESULTADO_PAS_PAD, NORMAL_X_ANORMAL, B2, SOPRO, HDA_1, HDA_2, SEXO,

MOTIVO_1, and MOTIVO_2

48 Chapter 4. Practical methodology

and in the Mammo dataset being:

ARCHITECTURAL_DISTORTION, REASON_FOR_THIS_MAMMOGRAM, FamilyHistory,
PersonalHistory, PreviousSurgery, PN, MASS_MARGINS, MASS_SHAPE, MASS_DENSITY,

CHANGES, CALCIFICATIONS, CALCIFICATION_DISTRIBUTION_MODIFIER,
ARCHITECTURAL_DISTORTION, ASSOCIATED_FINDINGS, CS Site-Specific Factor 6,

SIZE and SPECIAL_CASES.

They were all encoded using the LabelEncoder from the sklearn.preprocessing library. The encoder
fitted the data and then transformed it into integers. The data was then splitted into training
and testing sets, in a 80% to 20% ratio in both datasets.

The UCMF dataset did implement oversampling of the data since the present representation of
both classes was sufficient for the problem solution. The RandomOverSampler was implemented
and the found solutions did not improve, in fact, obtaining worse results by 2% in some methods.
Instead, so more data could be trained, the over sampling was implemented and used for
validation, since there was only a bit more than 5000 instances and the stipulated minimum
data sample size was 2,000, creating an even narrower difference if more data had to be used for
validation.

For the Mammo dataset, since there was a considerable discrepancy between classes, the
RandomOverSampler was implemented but the results did not improve that much. Without
the implementation, the most represented classes would have high sensitivity results and the
less represented classes would have worse results. With the use of RandomOverSampler, what
could be seen was the decrease of the sensitivity values of the most represented classes, and the
improvement of approximately 25% of the remaining classes. That improvement would even
reach 50% sensitivity in most cases, so, also as a way to evaluate the adaptability to unbalanced
data, RandomOverSampler was not implemented.

4.4 Model implementation

In this section, special attention is given to the structure and decisions made around the
building of the models. Aspects like hyper-parametrization of arguments in models, chosen layers,
reasoning behind the structure of architectures, tuning of compilation arguments and optimizers
are explained here.

The section, unlike the previous sections, is segmented by type of algorithm and within
artificial neural networks, the subsection is divided by type of data since same data type datasets
are more likely to share the same model’s architecture.

4.4. Model implementation 49

4.4.1 ANNs

For each dataset, three types of architectures were implemented. Convolutional, recurrent
and multilayer perceptron networks were chosen to be compared under different situations to
understand the differences between them and the conditions that may favor or undermine their
performance.

During the building process, the number and types of layers as well as the number of neurons
were tested with several parameterization options. If there was no improvement, new adjusts to
the current model would be made.

Different layers, in different sequences were tried to all models along with different number
of neurons in each layer, in order to find the best performance for each dataset. Some cases
the model was more simple while in other cases there was an opportunity to make the model
more robust by adding new layers. The attempted number of neurons in each layer was always
between 2 and 512 and mostly a exponential result of 2. When a specific value presented good
results, new tests around that value would be conducted.

The amount of epochs in each training phase was tested with values between 10 and 100 and
stipulated by the relation between training and validation results. Once the validation stagnated
or the discrepancy between training and validation results would increase, the maximum number
of epochs would be found.

Several optimizers were tested, like Adam, Adamax, Adadelta and SGD. These optimizers
were chosen because of their application use in similar classification problems. The learning rate
of some of the optimizers was altered and tested with several values, between 0.0001 and 0.01.

Along with the explanation of each model’s architecture, there will be a description of some
of the attempts that did present worse performance and a possible reasoning of why that may
have happened.

4.4.1.1 Image datasets

For the MNIST dataset, the first implemented network was the CNN. This network has two
consecutive sequences of a Conv2D layer with 64 filters, each with size equal to 9, calculated by
the dimension of the kernel size (3,3), since it is required a tuple shape. The layer has a relu
activation function and it’s followed by a MaxPooling2D layer (with a pool size of (3,3)) and a
final Dropout layer with a factor of 0.2.

After the two sequences of layers previously described, comes a Flatten layer, followed by
a final output Dense layer with 10 neurons, corresponding to the 10 possible classes, with a
softmax activation function.

The first layer, Conv2D, creates a convolutional kernel and produces an output as a tensor.
It is followed by a MaxPooling2D layer for 2D spatial data with the intent of down-sampling the

50 Chapter 4. Practical methodology

input representation by choosing the maximum value of the 3x3 matrix. The Dropout layers are
used to prevent overfitting, since the model presented slight principles of overfitting the data,
presenting a slight higher accuracy results for the training set, and lower when tested and in the
validation. The implementation of the Dropout layers helped in maintaining the validation above
the training results. The Dropout layer sets a percentage of input units, equal to the argument
value to 0 and the remaining input units are scaled up by 1/(1 − rate).

The used Flatten layer is used to flatten the input from 2D arrays into a single array and
reduce the multi-dimensionality of the data since the next layer is the final Dense layer with 10
units, which follows the standard type and use for output layers, with the standard activation
function as well.

This model began by being just the first two layers, usually used while creating convolutional
networks, followed by the Flatten which was needed to transform the data into a compatible
dimension with the following Dense layer, and output layers. Since that model obtained good
results, the convolutional layers were replicated once more. After that, one more replica was
tried and a change in the number of filters was also experimented, but the performance started
to decline, so the final model was obtained.

For the compilation of the CNN model, as for the RNN and MLP models, the chosen optimizer
was Adam with a default learning rate, the sparse categorical crossentropy as loss function since
the shape of the labeling set is non-categorical, having the targets as integers and finally, accuracy
as a metric. This metric was used only to guide the building of the network, not being the only
metric used to evaluate the model’s performance and that reasoning is presented in subsection
4.5 and 4.6.

The next model, RNN was implemented using a LSTM layer with 128 units, a relu activation
function, followed by a Dropout layer with factor 0.2, also to prevent overfitting of the data, a
Dense layer with also 128 units and a relu activation function. The output layer was the usual
Dense layer with 10 neurons and a softmax activation function.

The RNN using LSTM layers proved to be more effective with only one LSTM layer and one
dropout layer. The Dense layer was added to compute the output of the first layer a bit further
before feeding the output layer, which obtained better results in the way that the accuracy at
epoch X was higher with the addition of that layer.

Test were conducted with another Dropout layer of factor 0.2 but since the training and
validation results were similar, that layer was removed.

In the final model MLP, only two layers were used, being a shallow network. Both Dense
layers, the first having 128 neurons and a sigmoid function, while the output layer had 10 neurons
and a softmax activation function. This layer was computed with several values for the number
of neurons, relu activation function in the first layer, and the addition of more layers between the
input and output layers, but they all got similar results. Since the model’s performance did not
change significantly and since a simple model had the same results, in order to have a smaller

4.4. Model implementation 51

running time, this was the chosen architecture. Just like the other models, this was compiled
with the same compilation arguments.
As for the CIFAR10 dataset, the used CNN was the same as the one used for the MNIST dataset.
The only difference was in the number of times the first pattern of layers occurred. This model
had three sequences of Conv2D, MaxPooling2D and Dropout(0.2) instead of two. In this case, the
addition of a third sequence of those layers only improved the model, but it was the limit before
the performance deteriorated. As for the compilation, it also used the default Adam optimizer,
sparse categorical crossentropy as loss function and accuracy as metric.

The RNN model for this dataset also followed the same architecture as the one used in the
previous dataset, but again, the addition of layers improved the performance. The model had an
input LSTM layer with 128 neurons, a relu activation function and, since there was a second
LSTM layer, the return_sequences argument of the input layer was set to true. The next layer
was a Dropout layer with factor of 0.1.
The sequence of these two layers was repeated once again, but this time, the LSTM layer had 64
neurons and the return_sequences argument was set to false since it is followed by a Dense layer,
which expects a different shape than the one passed by the LSTM layer with that arguments set
to true.
The second Dropout layer had an initial factor of 0.1 but latter changed to 0.2 since it was the last
layer before the output layer and the model needed a bit more constrain to decrease overfitting.
The output layer was a Dense layer with 10 neurons and a softmax activation function.
This model was also tried with Dense layers before, in the middle and after the LSTM layers,
with different activation functions and different number of neurons, without much success.

As for the compilation of the model, the Adam optimizer was not used since it did not obtain
better results, even with lower learning rates. The SGD optimizer, with a learning rate of 0.001,
decay of 1e−5, momentum of 0.9 and the nesterov momentum argument set to true, was the
best tried optimizer. As for the loss and metric functions, the same as the previous models were
applied.

The final implemented model, MLP for the CIFAR10 dataset had and input Dense layer
with 256 neurons and a sigmoid activation function. Since the model overfitted the data, two
Dropout layers were used. The first with a factor of 0.1 and the second, placed after the second
Dense layer, with a factor of 0.4. That second Dense layer had 128 neurons and a relu activation
function.
The output layer was a Dense layer with the standard 10 neurons and a softmax activation
function.
This network obtained the same results for higher amounts of neurons in each layer, so in order
to preserve time of execution, 256 and 128 neurons seemed fitting.

As far as the optimizer, the SGD optimizer did also have better results as it did in the RNN
network. The alternative optimizer was the Adam optimizer with a learning rate of 0.001, a
beta_1 value of 0.9 and an epsilon of 1e−7, did not obtained better results.

52 Chapter 4. Practical methodology

4.4.1.2 Sound datasets

For the sound datasets, the same CNN was used, although in the ESC-50 dataset, another
CNN was implemented since it presented faster computation but overfitted after a certain epoch.
The network was created in the same 3study referenced in the pre-processing section and it is
composed of four sets of the same layers.
The first layer is a Conv2D layer with 16 neurons, a kernel with size 2 and a relu activation
function. This is the input layer which creates a convolutional kernel that will consequently
create a tensor of outputs. Since every input layer needs to be informed by the shape of the data,
the variable data_shape was set as the shape of the training set.

Following the Conv2D layer, comes a MaxPooling2D layer with a pool size of 2, like previously
mentioned, this layer will down-sample the input by excluding the maximum value defined
by pool_size for each dimension. The pool_size value sets the window size which informs the
previously mentioned maximum to take. Finally, to prevent overfitting of the data, a Dropout
layer with 0.2 factor is included. This will randomly set twenty percent of the input units to 0
during the training process, while the remaining are scaled up by 1.25 so that the sum of inputs
remains the same.

The model has four replicas of these three layers, although the last three sets do not
define the input shape, since that is not needed in hidden and output layers. In the sequence
previous to the output layer, the factor of the Dropout layer is set to 0.5 and has an additional
GlobalAveragePooling2D layer that will apply average pooling on spatial dimensions until each is
one, leaving other dimensions the same. After the four sets of these layers, comes a Dense layer
that functions as an output layer with 2 neuron in the heartbeat sound dataset and 24 neurons
in the ESC-50 dataset, representing the possible classes in each. In both datasets the activation
function is the softmax function, usually used in output layers.

For the heartbeat sound dataset, the RNN model had an LSTM input layer with 16 neurons
and like the previous network, the input shape of the data was declared. Still in the input layer,
two arguments were added. The recurrent_dropout was set to 0.5 and the return_sequences was
set to True. The first argument, unlike the Dropout layers that transform the input that they
receive, performs the transformation of the recurrent state. The return_sequences argument is
set to true because the next layer is also a LSTM layer and therefore needs a three-dimensional
sequence input, so this arguments indicates whether to return the last output in the sequence.
After the input layer comes a Dropout layer with 0.5 factor followed by a second LSTM layer.
This layer has 32 neurons, a recurrent_dropout of 0.5 and in this layer, since it is followed by a
Dense layer, the return_sequences is set to False since Dense layers do not carry three dimension
arguments. As usual, another Dropout layer is added with 0.5 factor followed by the first Dense
layer with 64 neurons and a relu activation function.
This network was tested without this layer and obtained worse results, so the addition of another
layer with increasing neurons was executed. Another Dense layer was added but the network

3https://github.com/MananAgarwal/Heartbeat-Classifier/blob/master/Heartbeat%20Classifier.ipynb

4.4. Model implementation 53

became slower and the results did not improve with that addition, so only one Dense layer was
added.
Finally, the output layer was a Dense layer with the two class representative neurons and a
sigmoid activation.

For the ESC-50 dataset, the input layer was an LSTM layer with 128 units, the re-
turn_sequences set to True, followed by a Dropout layer with a 0.2 rate. The next layer
was the same used as input layer without the input_shape argument.
Another Dropout layer with 0.2 rate was implemented before the final LSTM layer with 64 units
and the return_sequences argument set to False, since the output layer is a Dense layer and the
input shape is not compatible with the output from the LSTM layer. The output layer has 24
neurons, corresponding to the classification classes and a softmax activation function.

The final network for the heartbeat sound dataset was the MLP. Unlike the previous networks
this required an one-dimensional input shape that is the multiplication of the two dimensions into
only one. The first Dense input layer has the mentioned input shape along with a relu activation
and 256 neurons. This network only had one Dropout layer with a 0.5 argument that follows the
input layer. After that, two Dense layers with 128 and 64 neurons respectively are implemented.
Both with the relu activation function just like the input layer. As the output layer, another
Dense layer was used with the typical 2 neurons and a softmax activation function.

The MLP network for the ESC-50 dataset was different from the one used in the Heartbeat
sound dataset, since that network did not perform well for the multi-class dataset. The dataset
had a Dense input layer with 128 neurons and the sigmoid function, followed by a 0.5 rate
Dropout layer. After this layer, there are two Dense layers with 128 neurons each, with a Dropout
layer with 0.5 rate between them. Finally, the output layer is a Dense layer with 24 neurons and
a softmax activation function.

4.4.1.3 Text datasets

The CNN model was the same for both datasets. The model had an Embedding input layer with
the arguments 10000 and 32 as input and output dimensions, respectively, and an input length
of 300 words for the IMDb dataset and 100 for the Sentiment140 dataset. This layer is used in
all networks and it’s end is to learn word embedding for all words passed through the input.
The input dimension will be converted into a vector space (output dimension) with all words
embedded to that size. It is followed by a Dropout layer with 0.5 rate and a Conv1D layer with
32 filters, a kernel size of 3, relu activation function and the padding argument with the variable
same. This has the same function as the convolutional layers in the previous networks and the
padding argument set to same makes the output have the same dimension as the input.
Next comes another Dropout layer with 0.5 rate and a MaxPooling1D layer with a pool size of
2. This will downsample the representation of the input as explained in other networks that
used this layer. The next layer is a Flatten layer, followed by a Dropout layer with the 0.5 rate.
Before the output layer, comes a Dense layer with 250 neurons and a relu activation function.

54 Chapter 4. Practical methodology

The output layer is a Dense layer with 2 neurons and a sigmoid activation function.

The RNN using the LSTM layer is the same for both datasets apart from the number of
neurons in some layers.
The input layer is an Embedding layer with 10000 as input dimension, an output dimension of
100 and an input length of 300 for the IMDb dataset and 100 for the Sentiment140.

The next layer is an LSTM layer with 64 neurons for the IMDb dataset and 256 for the
Sentiment140, both with the return sequences argument set to True, so the data shape can
be interpreted by the following layers. To prevent overfitting, a Dropout layer with 0.5 rate is
implemented. After, comes a GlobalMaxPool1D layer followed by another Dropout layer of 0.5.

Before the output layer, comes a Dense layer with 32 neurons for the IMDb dataset and
128 for the Sentiment140, both with a relu activation function and a final Dropout layer of 0.5
dropout rate.
The output layer is a Dense layer with 2 neurons and a sigmoid activation function.

The final network is the MLP where both datasets had the same network apart from the
embedding size in the input layer, being the only difference between them.

The input layer is an Embedding layer with an input dimension of 10000 and output dimension
of 32 for the IMDb dataset and 64 for the Sentiment140. The input length for both datasets
is the same used in the previous described network. The next layer is a Dropout layer with a
0.5 rate, followed by a Flatten layer and a Dense layer with 256 neurons and a relu activation
function. Before the output Dense layer with 2 neurons and a sigmoid activation function, we
have another Dropout layer with a 0.5 factor.

4.4.1.4 Categorical datasets

The CNN model for the categorical datasets was basically the same with some adjustments.

For the UCMF dataset, the input layer is a Dense layer with 20 neurons and a relu activation
function.
The first convolutional layer is a Conv1D layers with16 filters, a kernel size of 2 and also a relu
activation function. This layer is followed by a MaxPooling1D layer with a pool size of 2 to
downsample the data. The next layer is a Dense layer with 16 neurons and a relu activation
function, followed by a Flatten layer and the output layer. This output layer is a Dense layer
with 2 neurons and a softmax activation function.

The CNN model for the Mammo dataset had an Dense input layer with 18 neurons and
a relu activation function. It is followed by a Conv1D layer with 32 filters, a relu activation
function and a kernel size of 2, and a MaxPooling1D layer with a pool size of 2. These two layers
are repeated but this time, the Conv1D layer has 64 filters.

After, comes a Dense layer with 32 neurons and a relu activation function, a Flatten layer

4.4. Model implementation 55

and finally, the output Dense layer with 2 neurons and a softmax activation function.

Both models presented better results with a Dense input layer instead of an immediate
convolutional layer. The network was tested with a kernel size of 3 but the results were similar.
The MaxPooling1D layer was used with the same intent as other models, and even though the
network presented good results without this layer, it was still a good addition for the end results.

Since there was a convolutional layer, the data shape was inconsistent with the one expected
by the output layer, so the Flatten layer was mandatory.

The Mammo dataset presented better results with the addition of another sequence of a
convolutional and downsampling layers, having more layers than the UCMF model. The RNN
model was basically the same with the exception of the number of neurons in each layer.

Unlike the CNN model, this network did not present better results with a Dense layer as
input layer. Therefore, a LSTM layer was used as input, with 20 units for the UCMF dataset
and 18 units for the Mammo dataset. Both layers in both datasets had the return sequences set
to true.

The following layer is also a LSTM layer with 64 units for the UCMF dataset and 32 for the
Mammo dataset. This layer has the return sequences argument set to false since the next layer is
a Dense layer, which does not support the output shape passed by the LSTM layer. This Dense
layer has 128 neurons for the UCMF dataset and 32 for the Mammo dataset.

The output layer is a Dense layer for both dataset, the UCMF having 2 neurons and the
Mammo having 8. Both had softmax activation functions.

In this network Dropout and pooling layers were tried but did not improve the performance.

The final network, MLP was the same for both datasets, the Mammo only having the addition
of Dropout layers to contain the learning process.

Both networks are shallow, having only one hidden layer. The input layer is a Dense layer
with 20 neurons for the UCMF dataset, 18 for the Mammo dataset and a relu activation function.

The Mammo dataset input layer was followed by a Dropout layer with a rate of 0.5, while
the UCMF dataset did not need that layer. The hidden layer was a Dense layer with 16 neurons
in both dataset networks.

The Mammo dataset had another Dropout layer with 0.5 rate before the output layer, which
was a Dense layer with 2 neurons for the UCMF dataset and 8 neurons for the Mammo dataset.
Both layers had a softmax activation function.

This network had better performance for lower number of neurons and lower number of layers.
When one of those factors or even both increased, the performance was worse and the learning
process deteriorated.

Table 4.1 presents the compilation tuning of the networks.

56 Chapter 4. Practical methodology

Dataset ANN type Optimizer Epochs
MNIST CNN Adam 15

RNN Adam 15
MLP Adam 15

CIFAR10 CNN Adam 50
RNN SGD 100
MLP SGD 100

IMDb CNN Adam 15
RNN Adam 15
MLP Adam 15

Sentiment140 CNN Adadelta 10
RNN Adadelta 9
MLP Adadelta 7

Heartbeat sound CNN Adam 140
RNN Adamax 100
MLP Adamax 140

ESC-50 CNN SGD 100
RNN Adamax 140
MLP Adamax 200

UCMF CNN Adamax 25
RNN Adamax 25
MLP Adamax 25

Mammo CNN Adamax 100
RNN Adam 150
MLP Adamax 100

Table 4.1: ANN hyper-parametrization of each model in each dataset

The SGD optimizer had a momentum of 0.9, learning rate of 0.01 for the ESC-50 CNN model,
and a decay of 1e−6 while the CIFAR10 RNN and MLP networks had a learning rate of 0.001
and decay of 1e−5 and 1e−4 respectively.

Again, the number of epochs was tested with values between 10 and 100 with a 10 interval
between them. Once the best results were found, new tests would be executed around that value.
Cases where there were more than 100 epochs were cases where the learning process was still
taking place and the learning and loss curves were still not stagnated. In those cases, tests from
100 to 200 under the same conditions as previously described would be implemented.

4.4. Model implementation 57

4.4.2 SVMs

The SVM models were build the same way for each dataset. Apart from the pre-processing
operations, the creation of the model was equal throughout the practical component of the study.

Within SVMs, several hyper-parameters were tuned in order to find the best fit for the testing
data. The tuned parameters were the type of kernel, the regularization variable c, the value of
gamma and the probability argument.

The regularization variable c is tuned in order to find the fit to avoid misclassification
by changing the margin of the hyperplane, finding the best relation between having a larger
range between classes or a smaller range. That leads to a potential increase in misclassification
depending on the spatial disposition of the data.

Since the values of c range from small to larger values, from 0.01 to 100, the value of gamma
is a deciding factor since it can over-learn the data and create a very constrictive model or be
more open to some divergent new data.
High values of gamma would lead to the first case, where there is not much flexibility for data
disparity, leading to lower values being the best fit for an overall common data. The tested
gamma values were 0.0001, 0.001, 0.01 and 1.

The following image shows the relation between the c and gamma values. Higher values
of both arguments lead to a more constraint classification while lower values lead to broader
intervals.

Figure 4.17: Relation between the variables c and gamma
Source:https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

58 Chapter 4. Practical methodology

The probability argument was set to True since it internally uses 5-fold cross-validation,
although it slows down the model, with SVM having the longest running times of all models.

Also, three kernel types, linear, polynomial and RBF were tested along with the previously
mentioned hyper-parameters, since each data shape and type could be better for a particular
kernel.

Finally, it was also tested a linear model with stochastic gradient descent learning, SGDClas-
sifier. The tuned hyper-parameters were the maximum iterations which function like epochs
in the fit function. This value was indifferent after a certain value, so it was kept bellow 150.
The number of jobs for the number of CPUs, since there are multi-classification problems and
finally, the loss function which was tested with hinge loss for a linear type SVM, squared hinge
for quadratic penalization and log for logistic regression.

Since SVMs can be time consuming, and there are some large data samples, smaller sizes
were tested and the behaviour of the model was studied. In fact, the SVM testing for the
larger CIFAR10 data sample was not able to be finished since it took several days of continuous
compilation, to which point it was decided to assume that the complexity of the data and the
overall size, made the algorithm too slow. That made the SVM CIFAR10 experiment to have
only two tested data samples, one of the usual 2,000 instances and the other of 28000. The
parametrization for each dataset is in the following Table 5.5

4.4. Model implementation 59

Size Kernel C Gamma
MNIST 58k RBF 10 0.01

28k RBF 10 0.01
2k RBF 10 0.01

CIFAR10 28k RBF 10 0.01
2k RBF 10 0.01

Sentiment140 48k RBF 10 0.01
28k RBF 10 0.01
2k RBF 10 0.01

IMDb 33k RBF 10 0.001
15k RBF 10 0.001
2k Linear 0.01 0.001

Heartbeat Sound 0.8k Poly 1 0.001
0.5k Linear 1 0.001
0.2k Poly 1 0.001

ESC-50 1.5k Linear 1 0.001
UCMF 5k Linear 10 0.001

2k Linear 0.1 0.001
Mammo 12k RBF 100 0.0001

6k RBF 100 0.0001
2k RBF 100 0.0001

Table 4.2: SVM hyper-parametrization of each dataset for each sample size

4.4.3 Random Forests

The RF models for each dataset were built the same way in all occasions. The Random-
ForestClassifier from the Sklearn.ensemble library was used to create the models, and several
hyperparameters were tuned to find the best results. Among those parameters, the number of
estimators was set to various values, between 10 and 100. It represents the number of trees in the
forest and should be limited in order to find the best number needed to find the optimal solution.
The maximum depth was set between 10 and 500, since if it was set to default the nodes would
expanded until all leaves are pure, what could lead to worse results. Results for models with
more than 500 levels of depth obtained similar results as the model with 500, determining our
maximum value for the parameter.

The warm start argument is a boolean variable that when true, reuses the solution of the
previous call. That leads to more estimators added, otherwise, it fits a new forest. Finally, the
class weight was adjusted in cases where the dataset was unbalanced, uniforming the classes so
that they are all represented equally.

The parametrization for each dataset is in the following Table 4.3

60 Chapter 4. Practical methodology

Size Maximum depth Number of estimators Warm start
MNIST 58k 500 100 True

28k 500 100 True
2k 100 100 False

CIFAR10 48k 100 100 False
28k 500 100 True
2k 100 100 False

Sentiment140 48k 500 100 False
28k 500 100 False
2k 500 100 True

IMDb 33k 500 100 False
15k 100 100 True
2k 100 100 True

Heartbeat Sound 0.8k 10 100 False
0.5k 10 100 True
0.2k 100 100 False

ESC-50 1.5k 100 100 True
UCMF 5k 10 100 True

2k 100 100 True
Mammo 12k 10 100 True

6k 10 100 True
2k 10 100 True

Table 4.3: Random forest hyper-parametrization of each dataset for each sample size

4.4.4 Logistic Regression

For the logistic regression models, all datasets, like the previous algorithms, went through the
same hyper-parameter tuning. The values of c were tested between 0 and 100, with most tests
ranging between 0 and 1, since that is where most significant changes happened. It is inverse
to the lambda regulator and so, for smaller values, increases the lambda power of regulation
(derived from the c value of SVMs). Smaller values have a more consistent effect, while large
values are more fluid and can lead to a more broad range of outcomes.

Some solvers like sag, saga and lbfgs were tested for all the predefined c values to be used
in the optimization problem. Sag and saga solvers are faster for larger datasets and alongside
lbfgs are a few of the only solvers capable of handling multi-class problems and multinomial loss.
They all handle L2 or no penalty and saga can also handle L1 penalty, describing the reasons
why they were the chosen solvers.

Other hyper-parameters were tested but found to be irrelevant to most cases, like fit_intercept,
that specifies a bias to the decision function, that would vary around 0.0001.

The max_iter argument also proved to be irrelevant in most cases, since values of 10 and

4.5. Evaluation metrics 61

1000 obtained the same results, varying in the same order as the fit_intercept variable. The
parametrization for each dataset is in the following Table 5.6

Size Solver C
MNIST 58k lbfgs 1

28k sag 10
2k saga 0.1

CIFAR10 48k lbfgs 0.01
28k lbfgs 0.01
2k lbfgs 0.01

Sentiment140 48k saga 1
28k saga 1
2k lbfgs 1

IMDb 33k lbfgs 0.1
15k lbfgs 0.1
2k lbfgs 0.1

Heartbeat Sound 0.8k lbfgs 1
0.5k saga 1
0.2k saga 1

ESC-50 1.5k sag 0.01
UCMF 5k lbfgs 100

2k lbfgs 0.1
Mammo 12k sag 0.1

6k sag 0.1
2k sag 0.1

Table 4.4: Logistic regression hyper-parametrization of each dataset for each sample size

4.5 Evaluation metrics

Since this is a study of different models, data types and structures among other factors, the
evaluation should also have different angles so the results could be interpreted in different ways.

The evaluation process starts with the creation of a confusion matrix that shows the relation
between the real classes and the classification of the model. Ideally, the matrix should have
higher results in the x = −y axis, representing correct classification of each instance of the test
set. At the same time, the accuracy of the model is determined and presented along with the
matrix.

After having the confusion matrix, the indicators of true positive and negatives, and false
positive and negatives are extracted from the matrix. There are direct ways to extract these
indicators, using embedded functions but these values were calculated by their original equations,

62 Chapter 4. Practical methodology

using the results present in the confusion matrix. The FP values were calculated by subtracting
the the correct classified values, present in the x = −y axis of the class, from the sum of all the
wrong classified values, present in the column of the current class. It follows the equation:

fp = cm.sum(axis = 1) − np.diag(cm)

The FN values were determined in the same way but instead of subtracting the correct
classified values from the sum of the entire column, the subtraction is from the sum of all the
values present in the row, meaning, for example in a case with 10 classes, all the times that the
class 0 was predicted when it should have been one of the remaining 9. It follows the equation:

fp = cm.sum(axis = 0) − np.diag(cm)

The TP values are the results present in the x = −y axis and it’s equation is:

tp = np.diag(cm)

Finally, the TN values are represented by the sum of the entire matrix except the FP and
FN values, meaning that for a class, it is represented by the sum of all the values, except the
row and column of said class. Since the FP and FN values are the sum of the column and row,
respectively, minus the diagonal values, those values present in the diagonal must be introduced
when calculating the TN results. That follows the equation:

tn = cm.sum() − (fp + fn + np.diag(cm))

Now that we have all the indicators regarding the confusion matrix, we can determine
the values of sensitivity and specificity of each class. As previously mentioned, sensitivity is
determined by dividing the TP value by the sum of TP and FN values, represented:

sens = np.true_divide(tp, (tp + fn))

As for the specificity, it is the result of the division of the TN value by the sum of TN and
FP values, represented by:

spec = np.true_divide(tn, (tn + fp))

After having the sensitivity and specificity values of all classes, a mean is calculated just to
have an overall understanding of the performance, although the real importance is in the values
of each class, since a model can be incredible at classifying a particular class.

As a final evaluation metric a ROC plot was created in order to determine the AUC value.
In order to do that, the model’s probabilities prediction is determined, for each class followed by
the computation of false positive and true positive rates. With the ROC curve for each class,
there is also the plot of the micro and macro-average ROC curves. The macro-average will
treat each class equally by computing the metric independently and take the average, while the
micro-average aggregates all classes’ contributions to compute the ROC curve. After plotting
the ROC curves, with the use of the roc_auc_score function, the AUC value is determined. So
overall, the confusion matrix, the TP, TF, FP, FN indicators, accuracy, sensitivity, specificity and

4.5. Evaluation metrics 63

AUC values are determined for each model or algorithm for future comparison and evaluation.

Chapter 5

Results

In this chapter, the presentation of the results and the discussion and comparison between them
are made separately so that there is a section for visualization of the data and other for the
critical thinking and comprehension of the results.

In the Results presentation section, the results may be presented in form of tables, separated
by data type, evaluation metric and dataset size. The ANN architectures are treated as individual
models and therefore presented along the comparative algorithms so that all implementations
can be compared at the same time. In the Results comparison section, a descriptive comparison
of the final conclusions and a thought process that may support those conclusions is described
and a summary of the main findings is presented in the next chapter.

65

66 Chapter 5. Results

5.1 Results presentation

CNN RNN MLP SVM RF LR
MNIST 99.22 98.84 99.70 98.34 96.87 92.03
CIFAR10 76.33 61.11 55.68 53.32 46.77 41.29

Sentiment140 76.00 74.84 74.03 76.71 74.77 76.40
IMDb 81.50 81.00 81.66 88.64 85.62 88.97

Heartbeat Sound 88.87 62.02 73.60 69.71 71.15 70.67
ESC-50 76.78 55.62 54.64 51.95 50.91 51.43
UCMF 93.72 93.50 93.64 93.75 93.96 93.89
Mammo 65.70 63.71 63.32 64.12 68.09 63.00

Table 5.1: Accuracy results for the maximum dataset size

CNN RNN MLP SVM RF LR
MNIST 96.20 91.19 89.62 93.09 91.11 88.52
CIFAR10 51.87 41.07 38.61 40.42 36.61 36.36

Sentiment140 65.09 66.74 62.40 67.73 66.58 67.83
IMDb 78.48 75.32 76.27 84.13 81.42 84.02

Heartbeat Sound 77.90 50.49 67.33 63.46 65.38 67.30
ESC-50 76.78 55.62 54.66 51.95 50.91 51.43
UCMF 92.66 93.11 90.82 93.64 93.82 93.75
Mammo 61.41 61.06 62.63 62.45 66.17 62.62

Table 5.2: Accuracy results for the minimum dataset size

CNN RNN MLP SVM RF LR
MNIST 99.15 98.93 97.70 98.32 96.87 91.91
CIFAR10 76.32 61.11 55.68 53.32 46.35 41.28

Sentiment140 76.02 74.84 74.03 76.66 74.72 76.37
IMDb 81.48 81.00 81.63 88.64 85.62 88.96

Heartbeat Sound 87.65 53.88 66.88 67.48 71.57 67.40
ESC-50 77.36 56.64 55.66 53.05 53.29 51.52
UCMF 92.00 91.71 91.78 92.05 92.30 92.16
Mammo 31.49 27.70 23.03 18.89 52.21 22.18

Table 5.3: Sensitivity results for the maximum dataset size

5.1. Results presentation 67

CNN RNN MLP SVM RF LR
MNIST 96.09 89.53 89.46 93.01 90.96 88.36
CIFAR10 51.88 41.01 38.63 40.42 36.23 36.36

Sentiment140 55.60 67.70 62.41 67.66 66.45 67.77
IMDb 78.44 75.32 76.28 84.12 81.61 84.02

Heartbeat Sound 75.87 49.54 63.35 61.44 63.45 64.19
ESC-50 77.36 56.64 55.66 53.05 53.29 51.52
UCMF 90.99 91.13 91.13 91.83 92.11 91.97
Mammo 28.28 24.01 24.34 22.37 43.73 24.17

Table 5.4: Sensitivity results for the minimum dataset size

CNN RNN MLP SVM RF LR
MNIST 99.90 99.88 99.74 99.81 99.65 99.11
CIFAR10 97.37 95.67 95.07 94.81 94.09 93.47

Sentiment140 76.02 74.84 74.03 76.66 74.72 76.37
IMDb 81.48 81.00 81.63 88.64 85.62 88.96

Heartbeat Sound 87.65 53.88 66.88 67.48 71.57 67.40
ESC-50 98.99 98.07 98.02 97.91 97.86 97.88
UCMF 92.00 91.71 91.78 92.05 92.30 92.16
Mammo 92.48 92.09 91.82 91.79 93.57 91.62

Table 5.5: Specificity results for the maximum dataset size

CNN RNN MLP SVM RF LR
MNIST 99.57 98.84 98.84 99.23 99.01 98.72
CIFAR10 94.65 93.44 93.18 93.38 92.97 92.92

Sentiment140 55.60 67.70 62.41 67.66 66.45 67.77
IMDb 78.44 75.32 76.28 84.12 81.61 84.02

Heartbeat Sound 75.87 49.54 63.35 61.44 63.45 64.19
ESC-50 98.99 98.07 98.02 97.91 97.86 97.88
UCMF 90.99 91.13 91.13 91.83 92.11 91.97
Mammo 92.01 91.86 91.50 91.41 93.13 91.53

Table 5.6: Specificity results for the minimum dataset size

68 Chapter 5. Results

CNN RNN MLP SVM RF LR
MNIST 99.99 99.98 99.96 99.98 99.91 98.98
CIFAR10 97.03 92.15 90.62 89.59 85.29 81.57

Sentiment140 83.24 83.18 81.90 84.03 82.55 83.81
IMDb 89.50 89.50 89.39 95.61 93.36 95.62

Heartbeat Sound 94.13 52.05 71.92 70.12 71.09 69.51
ESC-50 98.56 92.17 92.35 92.79 90.57 91.21
UCMF 94.35 94.07 94.96 92.41 94.89 94.09
Mammo 89.10 87.17 83.52 82.33 89.73 81.65

Table 5.7: AUC results for the maximum dataset size

CNN RNN MLP SVM RF LR
MNIST 98.87 99.10 99.10 99.68 99.28 98.53
CIFAR10 88.33 82.62 81.04 82.94 79.59 78.42

Sentiment140 70.72 73.42 68.11 73.93 73.72 74.10
IMDb 86.14 82.65 83.97 91.68 90.21 91.82

Heartbeat Sound 82.98 50.58 68.72 62.24 62.32 65.10
ESC-50 98.56 92.17 92.35 92.79 90.57 91.21
UCMF 94.25 93.74 93.74 93.98 94.18 93.68
Mammo 84.23 85.66 80.50 82.06 85.37 79.95

Table 5.8: AUC results for the minimum dataset size

CNN RNN MLP SVM RF LR
MNIST 885 675 60 2250 35 54
CIFAR10 3300 7600 1100 19652 238 157

Sentiment140 100 1215 195 2170 263 1.83
IMDb 1500 2250 855 4831 130 3.36

Heartbeat Sound 1120 420 200 111 5.92 2.34
ESC-50 1000 280 200 208 19 396
UCMF 13 75 13 95 0.42 0.1
Mammo 100 750 50 70 0.69 1.06

Table 5.9: Execution time in seconds for the maximum dataset size

5.1. Results presentation 69

CNN RNN MLP SVM RF LR
MNIST 30 30 7.5 18 1.11 11
CIFAR10 200 400 100 234 6.48 7.60

Sentiment140 10 54 7 2.44 5.58 0.23
IMDb 75 210 75 28 3.39 0.37

Heartbeat Sound 210 140 75 5.21 0.99 5.16
ESC-50 1000 280 200 208 19 396
UCMF 13 25 13 0.61 0.25 0.06
Mammo 50 100 50 1.51 0.26 0.15

Table 5.10: Execution time in seconds for the minimum dataset size

MNIST Se0 Se1 Se2 Se3 Se4 Se5 Se6 Se7 Se8 Se9
CNN-S3 99.59 99.47 99.41 99.20 99.79 99.32 98.85 99.22 99.17 97.52
RNN-S3 99.69 99.47 99.41 99.20 99.59 99.43 98.95 97.95 99.28 96.33
MLP-S3 98.87 98.85 96.99 98.21 97.45 97.08 97.80 97.17 97.12 97.42
SVM-S3 99.28 99.55 98.35 98.51 9.26 97.98 98.64 97.56 97.84 97.22
RF-S3 98.97 98.85 96.84 96.33 97.04 96.30 97.49 96.01 95.68 95.14
LR-S3 98.06 98.06 88.95 90.99 93.27 86.32 94.57 92.60 87.57 88.70
CNN-S2 99.79 99.38 99.22 99.60 99.08 98.76 98.22 98.63 99.07 99.00
RNN-S2 98.57 99.38 99.03 99.40 98.87 94.17 97.80 96.49 97.94 96.63
MLP-S2 98.67 98.85 96.22 97.62 96.53 94.95 97.39 96.88 97.12 95.24
SVM-S2 98.97 99.38 97.77 98.31 97.86 96.74 97.59 97.17 97.43 96.43
RF-S2 99.08 98.59 95.83 95.64 95.72 95.17 97.49 95.13 94.35 94.44
LR-S2 97.44 98.06 89.43 90.29 93.78 87.10 94.36 92.02 86.13 97.11
CNN-S1 99.85 99.03 96.89 92.77 97.75 95.51 97.39 94.84 91.37 97.52
RNN-S1 90.40 96.82 93.12 73.46 94.80 90.13 95.92 91.43 86.75 82.45
MLP-S1 97.14 98.32 89.63 83.76 90.83 85.76 91.54 90.17 78.23 89.19
SVM-S1 98.26 98.85 93.50 84.40 94.09 91.81 95.40 91.34 86.03 91.37
RF-S1 97.85 98.50 91.27 88.31 91.64 86.77 93.62 89.58 81.31 90.78
LR-S1 97.14 97.09 96.04 83.76 80.10 82.95 92.27 89.88 79.77 85.62

Table 5.11: Sensitivity values for all MNIST classes

70 Chapter 5. Results

MNIST Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9
CNN-S3 99.94 99.93 99.91 99.93 99.84 99.83 99.95 99.86 99.88 99.05
RNN-S3 99.90 99.93 99.83 99.93 99.58 99.90 99.93 99.95 99.87 99.95
MLP-S3 99.77 99.93 99.71 99.54 99.76 99.76 99.77 99.77 99.71 99.69
SVM-S3 99.83 99.88 99.75 99.78 99.81 99.85 99.91 99.77 99.82 99.71
RF-S3 99.68 99.87 99.54 99.55 99.63 99.75 99.75 99.68 99.52 99.53
LR-S3 99.42 99.50 99.29 98.76 99.05 99.00 99.33 99.20 98.59 98.56
CNN-S2 99.91 99.94 99.91 99.91 99.91 99.85 99.95 99.88 99.82 99.86
RNN-S2 99.91 99.93 99.57 99.34 99.73 99.95 99.90 99.75 99.73 99.81
MLP-S2 99.68 99.85 99.71 99.59 99.75 99.76 99.69 99.53 99.46 99.68
SVM-S2 99.76 99.81 99.68 99.71 99.77 99.78 99.80 99.68 99.78 99.73
RF-S2 99.62 99.81 99.42 99.45 99.61 99.77 99.60 99.63 99.53 99.32
LR-S2 99.40 99.50 99.14 98.88 99.01 98.83 99.32 99.05 98.65 98.95
CNN-S1 99.63 99.72 99.36 99.87 99.67 99.51 99.82 99.44 99.76 98.87
RNN-S1 99.63 99.81 97.87 99.28 97.87 99.20 98.33 99.09 98.33 98.88
MLP-S1 99.24 99.32 98.67 99.07 98.73 98.04 99.12 98.99 99.01 98.24
SVM-S1 99.43 99.59 99.04 99.23 99.04 98.86 99.50 99.28 99.53 98.78
RF-S1 99.15 99.46 99.07 99.28 99.70 99.03 99.15 99.01 99.47 97.74
LR-S1 99.19 99.10 98.84 98.88 98.51 98.44 98.92 98.70 98.54 98.08

Table 5.12: Specificity values for all MNIST classes

CIFAR10 Se0 Se1 Se2 Se3 Se4 Se5 Se6 Se7 Se8 Se9
CNN-S3 78.50 87.10 60.10 58.70 83.70 61.70 84.40 72.70 89.80 86.60
RNN-S3 73.40 77.30 40.80 42.80 48.90 50.60 76.40 59.70 77.50 63.70
MLP-S3 60.10 69.40 39.40 36.50 47.90 40.60 69.70 60.20 73.70 59.30
RF-S3 54.31 50.79 38.16 32.30 40.58 42.20 47.58 51.85 58.25 47.44
LR-S3 49.60 49.50 27.20 25.20 29.10 35.80 50.40 44.90 53.70 47.50
CNN-S2 65.70 82.40 62.70 53.40 75.20 58.60 86.90 68.40 87.80 79.40
RNN-S2 62.80 62.90 40.40 44.60 41.40 43.00 67.00 65.40 72.20 65.50
MLP-S2 56.10 66.50 38.00 32.80 53.10 39.10 62.70 57.70 70.10 56.10
SVM-S2 61.10 66.00 42.00 38.20 42.70 44.10 54.80 57.10 65.50 61.70
RF-S2 51.87 49.10 35.71 33.37 37.68 42.01 44.65 49.03 54.74 45.49
LR-S2 50.00 49.00 26.90 24.90 27.50 34.10 51.60 45.70 53.80 45.80
CNN-S1 47.10 58.70 33.20 24.60 50.40 51.40 70.60 60.80 57.50 64.50
RNN-S1 43.70 59.80 29.70 19.50 34.40 33.20 50.00 36.80 63.60 39.40
MLP-S1 50.00 46.40 31.20 27.80 23.80 18.30 50.70 47.50 47.90 42.70
SVM-S1 50.00 48.00 31.00 24.40 35.80 30.10 40.40 40.70 54.90 48.90
RF-S1 41.92 44.50 24.66 21.83 29.14 35.14 35.10 42.32 45.91 41.76
LR-S1 44.90 40.90 24.60 17.20 28.90 28.20 48.10 32.90 52.40 45.50

Table 5.13: Sensitivity values for all CIFAR10 classes

5.1. Results presentation 71

CIFAR10 Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8 Sp9
CNN-S3 97.54 99.14 97.63 95.86 94.15 97.32 97.40 99.03 97.53 98.06
RNN-S3 94.86 96.24 95.94 93.95 95.91 94.66 93.91 97.33 97.08 96.86
MLP-S3 96.00 95.95 95.11 93.38 94.12 95.75 93.20 96.34 94.77 96.10
RF-S3 95.09 94.85 92.84 92.05 93.35 93.20 95.13 93.95 95.68 94.78
LR-S3 93.34 93.57 94.01 93.34 94.56 92.74 91.84 94.43 93.70 93.20
CNN-S2 98.27 99.03 95.01 93.56 94.74 97.35 95.34 98.53 97.00 98.27
RNN-S2 95.88 97.56 94.33 91.43 96.18 94.63 94.54 95.31 96.71 95.07
MLP-S2 96.53 95.74 94.61 93.98 91.30 95.53 94.00 95.51 95.27 95.52
SVM-S2 95.54 95.22 93.38 92.27 95.03 94.08 95.63 95.90 96.08 94.95
RF-S2 94.85 94.62 92.53 92.05 93.11 93.22 94.75 93.78 95.38 94.43
LR-S2 93.44 93.43 93.62 93.52 94.86 93.17 91.87 93.84 93.63 93.21
CNN-S1 97.30 97.02 94.62 95.16 91.07 91.16 93.68 95.50 96.73 94.25
RNN-S1 95.51 93.63 91.72 93.24 92.27 93.63 91.95 96.17 91.14 95.15
MLP-S1 93.02 93.60 92.26 90.54 94.95 97.05 90.04 90.33 95.81 94.17
SVM-S1 93.56 92.36 92.25 91.83 92.51 93.58 93.96 95.04 95.22 93.44
RF-S1 94.23 93.52 91.72 90.71 92.87 92.32 93.43 92.54 94.61 93.75
LR-S1 93.15 94.31 91.67 94.27 93.00 93.22 90.50 94.85 92.31 91.97

Table 5.14: Specificity values for all CIFAR10 classes

IMDb Se0 Se1 Sp0 Sp1
CNN-S3 75.87 81.01 81.01 75.87
RNN-S3 79.04 82.96 82.96 79.04
MLP-S3 78.61 84.66 84.66 78.61
SVM-S3 87.82 89.44 89.44 87.82
RF-S3 84.90 86.33 86.33 84.90
LR-S3 88.27 89.65 89.65 88.27
CNN-S2 81.66 80.94 80.94 81.66
RNN-S2 84.32 75.01 75.01 84.32
MLP-S2 76.30 85.42 85.42 76.30
SVM-S2 87.18 88.70 88.70 87.18
RF-S2 84.60 85.67 85.67 84.60
LR-S2 87.31 88.74 88.74 87.31
CNN-S1 75.87 81.01 81.01 75.87
RNN-S1 77.25 73.40 73.40 77.25
MLP-S1 77.77 74.79 74.79 77.77
SVM-S1 83.64 84.60 84.60 83.64
RF-S1 78.81 84.41 84.41 78.81
LR-S1 84.30 83.75 83.75 84.30

Table 5.15: Sensitivity, specificity values for all IMDb classes

72 Chapter 5. Results

Sent.140 Se0 Se1 Sp0 Sp1
CNN-S3 75.67 76.36 76.36 75.67
RNN-S3 78.66 71.01 71.01 78.66
MLP-S3 70.95 77.10 77.10 70.95
SVM-S3 73.62 79.70 79.70 73.62
RF-S3 71.04 78.40 78.40 71.04
LR-S3 74.39 78.35 78.35 74.39
CNN-S2 75.70 73.58 73.58 75.70
RNN-S2 79.47 68.59 68.59 79.47
MLP-S2 66.98 76.85 76.85 66.98
SVM-S2 73.62 79.70 79.70 73.62
RF-S2 69.18 78.71 78.71 69.18
LR-S2 73.13 78.22 78.22 73.13
CNN-S1 22.13 89.06 89.06 22.13
RNN-S1 57.99 75.42 75.42 57.99
MLP-S1 54.43 70.38 70.38 54.43
SVM-S1 63.00 72.33 72.33 63.00
RF-S1 57.70 75.21 75.21 57.70
LR-S1 63.18 72.35 72.35 63.18

Table 5.16: Sensitivity, specificity values for all Sentiment140 classes

HBS Se0 Se1 Sp0 Sp1
CNN-S3 92.42 82.89 82.89 92.42
RNN-S3 84.09 23.68 23.68 84.09
MLP-S3 91.66 42.10 42.10 91.66
SVM-S3 75.75 59.21 59.21 75.75
RF-S3 70.95 72.22 72.22 70.95
LR-S3 79.54 55.26 55.26 79.54
CNN-S2 90.15 68.42 68.42 90.15
RNN-S2 74.24 34.21 34.21 74.24
MLP-S2 67.42 59.21 59.21 67.42
SVM-S2 67.42 47.36 47.36 67.24
RF-S2 71.09 61.11 61.11 71.09
LR-S2 71.21 55.26 55.26 71.21
CNN-S1 83.33 68.42 68.42 83.33
RNN-S1 53.03 46.05 46.05 53.03
MLP-S1 78.03 48.68 48.68 78.03
SVM-S1 68.93 53.94 53.94 68.93
RF-S1 65.78 61.11 61.11 65.78
LR-S1 75.75 52.63 52.63 75.75

Table 5.17: Sensitivity, specificity values for all Heartbeat sound classes

5.1. Results presentation 73

ESC-50 CNN RNN MLP SVM RF LR
Se0 68.42 5.26 10.52 21.05 5.26 15.78
Se1 70.58 35.29 29.41 35.29 23.52 23.52
Se2 77.77 38.88 61.11 61.11 44.44 27.77
Se3 100 76.92 76.92 69.23 61.53 53.84
Se4 63.15 36.84 52.63 57.89 36.84 57.89
Se5 93.33 93.33 86.66 46.66 86.66 73.33
Se6 100 46.15 69.23 69.23 69.23 23.07
Se7 50.00 40.00 50.00 60.00 60.00 40.00
Se8 82.35 35.29 23.52 47.05 58.82 47.05
Se9 83.33 44.44 27.77 44.44 38.88 55.55
Se10 75.00 68.75 81.25 68.75 87.50 75.00
Se11 85.71 64.28 50.00 50.00 50.00 57.14
Se12 93.75 56.25 62.50 56.25 37.50 50.00
Se13 82.35 47.05 41.17 17.64 23.52 23.52
Se14 94.11 41.17 35.29 41.17 47.05 41.17
Se15 93.33 80.00 80.00 86.66 86.66 60.00
Se16 64.28 21.42 28.57 28.57 64.28 78.57
Se17 83.33 100 100 83.33 75.00 75.00
Se18 63.63 59.09 50.00 45.45 22.72 68.18
Se19 83.33 83.33 41.66 58.33 75.00 33.33
Se20 57.14 64.28 78.57 64.28 78.57 85.71
Se21 82.35 76.47 64.70 64.70 58.82 58.82
Se22 44.44 50.00 44.44 11.11 22.22 22.22
Se23 65.00 95.00 90.00 85.00 65.00 90.00

Table 5.18: Sensitivity values for all ESC-50 classes

74 Chapter 5. Results

ESC-50 CNN RNN MLP SVM RF LR
Sp0 98.07 98.07 98.62 96.97 98.62 97.52
Sp1 99.18 97.26 95.08 97.81 98.90 99.18
Sp2 99.17 99.72 96.98 96.16 98.63 97.53
Sp3 99.72 97.83 99.18 97.02 97.56 97.02
Sp4 99.45 98.90 98.07 97.52 98.07 97.52
Sp5 99.18 98.09 99.45 97.82 95.38 96.73
Sp6 99.45 99.45 98.37 95.13 98.37 96.21
Sp7 100 98.39 98.65 98.92 99.19 98.92
Sp8 100 98.08 97.81 99.72 98.63 98.36
Sp9 99.17 98.90 98.90 99.72 98.90 98.63
Sp10 100 98.63 97.27 98.09 98.91 97.82
Sp11 99.45 96.74 95.66 99.18 97.28 98.37
Sp12 97.82 98.36 99.45 98.63 98.09 98.63
Sp13 98.90 98.36 99.18 98.36 99.18 98.36
Sp14 98.90 96.17 96.99 97.54 97.81 98.63
Sp15 95.65 97.28 96.73 97.01 97.01 97.55
Sp16 99.18 99.18 99.45 98.10 96.74 96.20
Sp17 98.92 98.92 99.19 97.30 96.22 98.38
Sp18 99.44 99.16 99.16 98.33 99.44 98.61
Sp19 95.14 92.18 94.33 97.30 94.87 96.76
Sp20 99.72 98.64 98.64 98.64 97.28 99.45
Sp21 100 99.18 99.72 98.90 99.18 99.18
Sp22 100 98.35 96.71 98.90 97.20 96.71
Sp23 99.17 97.79 98.89 96.69 97.24 96.96

Table 5.19: Specificity values for all ESC-50 classes

UCMF Se0 Se1 Sp0 Sp1
CNN-S3 85.96 98.09 98.09 85.96
RNN-S3 85.38 98.04 98.04 85.38
MLP-S3 85.19 98.37 98.37 85.19
SVM-S3 85.96 98.15 98.15 85.96
RF-S3 86.34 98.26 98.26 86.34
LR-S3 85.96 98.37 98.37 85.96
CNN-S1 84.80 97.17 97.17 84.80
RNN-S1 84.23 98.04 98.04 84.23
MLP-S1 84.23 98.09 98.09 84.23
SVM-S1 85.19 98.47 98.47 85.19
RF-S1 85.96 98.26 98.26 85.96
LR-S1 85.57 98.37 98.37 85.57

Table 5.20: Sensitivity, specificity values for all UCMF classes

5.1. Results presentation 75

Mammo Se0 Se1 Se2 Se3 Se4 Se5 Se6 Se7
CNN-S3 62.03 82.12 4.57 2.56 32.43 7.29 38.88 21.42
RNN-S3 60.45 79.64 5.22 2.56 48.64 17.82 3.70 3.57
MLP-S3 64.41 77.54 0.65 0.00 18.91 9.90 9.25 3.57
SVM-S3 62.65 81.55 0.00 0.00 0.00 6.93 0.00 0.00
RF-S3 69.46 68.82 62.50 0.00 75.00 28.78 41.66 71.42
LR-S3 59.92 80.53 13.01 0.00 29.27 5.94 0.00 0.00
CNN-S2 53.33 86.95 13.00 2.56 24.32 9.90 12.96 3.57
RNN-S2 61.86 79.45 1.30 0.00 37.83 14.85 20.37 10.71
MLP-S2 46.22 88.48 0.00 0.00 2.70 0.99 7.40 10.71
SVM-S2 58.26 82.95 0.00 0.00 0.00 6.93 0.00 0.00
RF-S2 69.62 67.71 55.00 0.00 50.00 23.22 20.00 42.85
LR-S2 56.23 82.31 1.30 0.00 29.72 4.95 1.85 0.00
CNN-S1 70.03 67.43 15.68 2.56 35.13 5.94 25.92 3.57
RNN-S1 78.73 62.08 11.11 0.00 16.21 3.96 9.25 10.71
MLP-S1 52.98 84.09 3.26 2.56 29.72 1.98 12.96 7.14
SVM-S1 58.26 80.47 0.00 0.00 32.43 0.00 0.00 7.14
RF-S1 68.21 66.99 42.42 33.33 50.00 21.42 23.07 44.44
LR-S1 58.08 80.78 1.96 0.00 24.32 4.95 1.85 21.42

Table 5.21: Sensitivity values for all Mammo classes

Mammo Sp0 Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7
CNN-S3 82.51 61.41 99.76 99.87 99.64 99.27 97.62 99.74
RNN-S3 81.50 60.25 98.98 99.90 99.05 97.91 99.51 99.64
MLP-S3 76.76 59.93 99.89 100 99.83 98.84 99.34 99.96
SVM-S3 80.19 55.22 100 100 100 98.94 99.96 100
RF-S3 81.36 78.95 95.39 98.75 99.09 97.31 98.42 99.26
LR-S3 79.68 55.22 99.79 100 99.54 99.04 99.70 100
CNN-S2 86.08 50.12 99.83 99.83 99.51 99.43 99.51 99.61
RNN-S2 80.34 60.25 99.62 99.96 99.05 98.47 99.11 99.87
MLP-S2 87.14 42.32 99.76 100 99.87 99.63 99.64 99.54
SVM-S2 80.59 82.83 99.96 100 100 98.97 100 100
RF-S2 80.04 79.58 95.42 98.75 99.06 97.12 98.32 99.19
LR-S2 80.59 52.64 99.76 100 99.67 99.53 99.57 99.80
CNN-S1 70.86 71.29 97.87 99.67 99.15 99.50 98.50 99.25
RNN-S1 63.91 74.38 97.94 100 99.51 99.93 99.57 99.64
MLP-S1 84.52 50.77 99.25 99.93 99.41 100 99.69 99.45
SVM-S1 77.41 54.51 100 100 99.48 100 99.96 99.93
RF-S1 79.73 77.36 95.50 98.74 99.09 96.92 98.44 99.22
LR-S1 80.29 54.06 99.49 100 99.77 99.60 99.77 99.25

Table 5.22: Specificity values for all Mammo classes

76 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

100

A
cc
ur
ac
y

S1 S2 S3

Figure 5.1: Accuracy results for the MNIST (1) and CIFAR10 (2) datasets, for the three dataset
sizes

5.1. Results presentation 77

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

100

Se
ns
iti
vi
ty

S1 S2 S3

Figure 5.2: Sensitivity results for the MNIST (1) and CIFAR10 (2) datasets, for the three dataset
sizes

78 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

100

Sp
ec
ifi
ci
ty

S1 S2 S3

Figure 5.3: Specificity results for the MNIST (1) and CIFAR10 (2) datasets, for the three dataset
sizes

5.1. Results presentation 79

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

100

A
U
C

S1 S2 S3

Figure 5.4: AUC results for the MNIST (1) and CIFAR10 (2) datasets, for the three dataset sizes

80 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

A
cc
ur
ac
y

S1 S2 S3

Figure 5.5: Accuracy results for the IMDb (1) and Sentiment140 (2) datasets, for the three
dataset sizes

5.1. Results presentation 81

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

Se
ns
/S

pe
c

S1 S2 S3

Figure 5.6: Sensitivity and specificity results for the IMDb (1) and Sentiment140 (2) datasets,
for the three dataset sizes

82 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

100

A
U
C

S1 S2 S3

Figure 5.7: AUC results for the IMDb (1) and Sentiment140 (2) datasets, for the three dataset
sizes

5.1. Results presentation 83

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

A
cc
ur
ac
y

S1 S2 S3

Figure 5.8: Accuracy results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the three
dataset sizes

84 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

Se
ns
iti
vi
ty

S1 S2 S3

Figure 5.9: Sensitivity results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the three
dataset sizes

5.1. Results presentation 85

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

100

Sp
ec
ifi
ci
ty

S1 S2 S3

Figure 5.10: Specificity results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the
three dataset sizes

86 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

100

A
U
C

S1 S2 S3

Figure 5.11: AUC results for the Heartbeat Sound (1) and ESC-50 (2) datasets, for the three
dataset sizes

5.1. Results presentation 87

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

A
cc
ur
ac
y

S1 S2 S3

Figure 5.12: Accuracy results for the UCMF (1) and Mammo (2) datasets, for the three dataset
sizes

88 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

Se
ns
iti
vi
ty

S1 S2 S3

Figure 5.13: Sensitivity results for the UCMF (1) and Mammo (2) datasets, for the three dataset
sizes

5.1. Results presentation 89

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

Sp
ec
ifi
ci
ty

S1 S2 S3

Figure 5.14: Specificity results for the UCMF (1) and Mammo (2) datasets, for the three dataset
sizes

90 Chapter 5. Results

LR2RF2SVM2MLP2RNN2CNN2LR1RF1SVM1MLP1RNN1CNN1

0

10

20

30

40

50

60

70

80

90

A
U
C

S1 S2 S3

Figure 5.15: AUC results for the UCMF (1) and Mammo (2) datasets, for the three dataset sizes

5.1. Results presentation 91

0 10 20 30 40 50 60 70 80 90 100

Mammo-MLP

Mammo-RNN

Mammo-CNN

UCMF-MLP

UCMF-RNN

UCMF-CNN

ESC50-MLP

ESC50-RNN

ESC50-CNN

HBS-MLP

HBS-RNN

HBS-CNN

Sent140-MLP

Sent140-RNN

Sent140-CNN

IMDb-MLP

IMDb-RNN

IMDb-CNN

CIFAR10-MLP

CIFAR10-RNN

CIFAR10-CNN

MNIST-MLP

MNIST-RNN

MNIST-CNN

Accuracy

S1
S2
S3

Figure 5.16: Accuracy for all three artificial neural network types applied to all dataset and
dataset sizes

92 Chapter 5. Results

0 10 20 30 40 50 60 70 80 90 100

Mammo-MLP

Mammo-RNN

Mammo-CNN

UCMF-MLP

UCMF-RNN

UCMF-CNN

ESC50-MLP

ESC50-RNN

ESC50-CNN

HBS-MLP

HBS-RNN

HBS-CNN

Sent140-MLP

Sent140-RNN

Sent140-CNN

IMDb-MLP

IMDb-RNN

IMDb-CNN

CIFAR10-MLP

CIFAR10-RNN

CIFAR10-CNN

MNIST-MLP

MNIST-RNN

MNIST-CNN

Sensitivity

S1
S2
S3

Figure 5.17: Sensitivity for all three artificial neural network types applied to all dataset and
dataset sizes

5.1. Results presentation 93

−10 0 10 20 30 40 50 60 70 80 90 100

Mammo-MLP

Mammo-RNN

Mammo-CNN

UCMF-MLP

UCMF-RNN

UCMF-CNN

ESC50-MLP

ESC50-RNN

ESC50-CNN

HBS-MLP

HBS-RNN

HBS-CNN

Sent140-MLP

Sent140-RNN

Sent140-CNN

IMDb-MLP

IMDb-RNN

IMDb-CNN

CIFAR10-MLP

CIFAR10-RNN

CIFAR10-CNN

MNIST-MLP

MNIST-RNN

MNIST-CNN

Specificity

S1
S2
S3

Figure 5.18: Specificity for all three artificial neural network types applied to all dataset and
dataset sizes

94 Chapter 5. Results

−10 0 10 20 30 40 50 60 70 80 90 100 110

Mammo-MLP

Mammo-RNN

Mammo-CNN

UCMF-MLP

UCMF-RNN

UCMF-CNN

ESC50-MLP

ESC50-RNN

ESC50-CNN

HBS-MLP

HBS-RNN

HBS-CNN

Sent140-MLP

Sent140-RNN

Sent140-CNN

IMDb-MLP

IMDb-RNN

IMDb-CNN

CIFAR10-MLP

CIFAR10-RNN

CIFAR10-CNN

MNIST-MLP

MNIST-RNN

MNIST-CNN

AUC

S1
S2
S3

Figure 5.19: AUC for all three artificial neural network types applied to all dataset and dataset
sizes

5.2. Results comparison 95

5.2 Results comparison

In this section the previous tables and plots are discussed, compared and analysed in order to
mold the possible conclusions and findings.

The results were joined based on the comparative factors initially established. So we have the
results joined by data type, neural network type, all studied evaluation metrics, accuracy, classes
sensitivity and specificity as well as a median of all values, AUC and execution time values, all
grouped by dataset size. Along the presented tables, some values are signaled to easier evaluation
and analysis and respectively explained along the section.

For some explanation, in the same table, several sizes can be represented. They are identified
by S1, S2 and S3, S1 being the smaller data sample size, and S3 being the largest. Tables
regarding sensitivity and specificity values for each class of the dataset, have such information
identified by SeX or SpX, where X is a specific class, Se is the sensitivity and Sp the specificity
value.

The bar plots have both dataset of a specific type represented in the same figure. The models
are represented by MODEL-X where MODEL can be CNN, RNN, MLP, SVM, RF or LR and X
can be 1 or 2, referencing a specific dataset, identified in the legend of the figure.

The first set of Tables 5.1 to 5.10, present the corresponding evaluation metric values for all
implemented models in all datasets, grouped by smaller and larger data samples. In this set of
tables, we want to point out the models or algorithms that obtained the best results for each
dataset classification.

The first two Tables, 5.1 and 5.2, present the accuracy values for all datasets. In the maximum
tried data sample, presented in Table 5.1, it can be observed that for the image datasets, both
datasets obtained better results in the ANN implementation. The MNIST dataset got the best
accuracy values in the MLP network (99.70%) while the CIFAR10 dataset got the best value
with the CNN (76.33%). On the other hand, it can be seen that for the same datasets, for the
smallest data sample in Table 5.2, both datasets got the best accuracy with the CNN model
(MNIST - 96.20%, CIFAR10 - 51.87%).

Compared to the other algorithms SVM, RF and LR in both tables, it can be seen that the
difference in percentage is around 2% to 7% for the MNIST dataset and around 15% to 35% for
the CIFAR10 dataset. This last dataset got higher difference between models, probably due to
the shape of the data. The images were of higher dimension (32x32) and even the MLP model
got slightly better results than the comparative models. Nevertheless, both datasets got better
results with ANN in both tested sizes.

For the text datasets, both sizes got better results with LR algorithm for the IMDb dataset
(88.97% and 84.02% respectively). The Sentiment140 dataset also performed better in the smaller
data sample with LR (67.83%) but in the larger data sample, SVM obtained better results by
0.31% (76.71%), being fair to say that overall, LR got the best performance for this data type.

96 Chapter 5. Results

When it comes to ANNs, the RNN model performed slightly better in the Sentiment140
dataset for both sizes (74.84% and 66.74% respectively), where the type of wording was sloppier
leading to a noisier data. The accuracy for the smaller data sample across all ANNs, showed that
the adaptability of the RNN model to smaller data sizes was better than the other two models.
In the IMDb dataset, all three architectures got around 81% accuracy in the larger data sample,
slightly worse compared to the best 88.97%.

In both sound datasets and both tested sample sizes, CNN got the best results by far (88.87%
and 77.90% respectively for the Heartbeat sound dataset and 76.78% for the ESC-50 dataset).
RNN models did worse than all other models (62.02% and 50.49% respectively) and MLP got
the second best performance of the remaining options (73.60% and 67.33% respectively for the
Heartbeat sound dataset and 54.64% and 54.66% respectively for the ESC-50 dataset). All the
comparative models had worse performance with results of approximately 70% and 65% for both
sizes of the Heartbeat sound dataset and around 50% for the ESC-50 dataset.

Finally, the categorical datasets performed better with RF in both tested sizes (93.96% and
93.82% respectively for the UCMF dataset and 68.09% and 66.17% for the Mammo dataset).
The results were not that different across the board, but in both sample sizes, RF performed
better. The UCMF dataset was more consistent when it comes to accuracy, all models getting
around 93% accuracy rates. The Mammo dataset was also consistent, where all models got
more than 60% accuracy, but since it was an unbalanced dataset, some classes were not equally
accurately classified.

The next two tables present the same results as the first two but regarding sensitivity results.
These values are a mean of sensitivity values, for each class of the dataset with the sole purpose
of evaluating if there is a discrepancy between accuracy and overall sensitivity. The sensitivity
values for each class of each dataset are presented ahead in order to understand if the mean is
equally distributed of if there is a discrepancy between classes.

When it comes to mean sensitivity, there is also a visible pattern between data types. Here,
both image dataset got better sensitivity results with CNN in both data samples (99.15% and
96.09% respectively for the MNIST dataset and 76.32 and 51.88% respectively for the CIFAR10
dataset), unlike the accuracy results for the larger data sample, where MLP presented higher
accuracy. All other models obtained worse sensitivity results, RNN being the closest ANN model
to CNN with 0.5% difference in the larger data sample and 6% in the smaller for the MNIST
dataset and 15% and 10% in the CIFAR10 dataset. Among the comparative models, SVM was
the closest algorithm to the CNN results in both sizes, with a difference of less than 1% and 3%
for the MNIST dataset and 23% and 11% for the CIFAR10 dataset.

For the text datasets, both SVM and LR shared the best values in the opposite sample sizes.
Just like the accuracy results, the Sentiment140 dataset got the best sensitivity values with SVM
(76.66%) while the IMDb dataset obtained the best results with LR (88.96%). In the smaller
sample size, the opposite occurred (67.77% with the LR model for the Sentiment140 dataset
and 84.12% with the SVM model for the IMDb dataset). Compared to the ANN models, for

5.2. Results comparison 97

the maximum data sample size, there is a difference of approximately 2% for the Sentiment140
dataset and 7% for the IMDb dataset. In the smaller data sample size, the difference between
the LR algorithm and the RNN model is less than 0.1% for the Sentiment140 dataset and 6% for
the IMDb dataset.

Both sound datasets also obtained the best sensitivity results with the CNN model (87.65%
and 75.87% respectively for the Heartbeat sound dataset and 77.36% for the ESC-50 dataset) and
the categorical datasets, just like the previous metric, got the best results with RF (92.30% and
92.11% respectively for the UCMF dataset and 52.21% and 43.73% for the Mammo dataset). For
the maximum data size, the Mammo dataset got around 63% accuracy for all implemented models,
but when it comes to sensitivity the values drop drastically, mostly due to the unrepresented
classes in the data. Still, RF got 20% to 25% higher results than all other models and algorithms.

The same patterns are equally visible in the specificity and AUC Table 5.5 to 5.8. In the AUC
tables there are a few modifications to what has been analysed thus far. For the higher sample
size, the UCMF dataset presented slightly higher AUC values for the MLP network (94.96%),
0.7% better than the previously presented RF model (94.89%) and in the smaller data sample,
both UCMF and Mammo datasets presented slightly higher AUC results in the CNN (94.25%)
and RNN (85.66%) models respectively.

The final two tables are useful to paint a generic perspective of the computation time that
takes for each data type and each method. The values are an approximation of the final time, so
similar times like 49.12 and 48.99 can be rounded to 49, since tens of a second are not impactful
to an experiment.

When it comes to ANN models, MLP presents faster computation across all implemented
datasets, mostly due to the simplicity of the models. The CNN models, the most robust when it
comes to layer composition, managed to be faster than RNN in most datasets, with the exception
of the MNIST and Heartbeat sound datasets. For the smaller data samples, the RNN model had
overall, worst results or similar to the CNN models.

The RF and LR algorithms performed significantly better than all other methods, but for
the larger data samples, LR had the fastest times. If we generalize the results to even larger
datasets, it is fair to say that ANNs are slower than these two algorithms.

98 Chapter 5. Results

Now we enter the section of tables where the sensitivity and specificity of each class, of each
dataset is presented. This is meant to see which models are able to better classify which class
and which model is able to better classify most classes. Only the maximum and minimum data
sample size values were signaled since they were the ones compared in previous tables and since
the medium sample size was, as previously mentioned, used to demonstrate the data is unbiased,
meaning that the performance in the maximum range of the dataset was not significantly different
when a subset of the total data was selected. The signaled values for the medium size represent
cases where that data sample obtained better results than the other two samples.

The binary datasets present both sensitivity and specificity results in the same table, since
there is a symmetry between values, where the sensitivity of one class represents the specificity
of the other and vice-versa.

Table 5.11 presents the sensitivity results for the MNIST classes. It can be immediately seen
that the CNN and RNN models are the ones that better classify most classes. The RNN model
has the best sensitivity results in 6 classes, two with the same results as the CNN model, which
obtained the best values in 5 classes. Compared to the other models, there is a slight percentage
difference between them, of around 2%.
For the smaller data sample, CNN obtained the best results across all classes, with a difference
between the other values ranging from approximately 1% to 9%.

As for specificity, presented in Table 5.12, the results follow the same pattern as the sensitivity
values. CNN and RNN present the best results, although the medium dataset presented slightly
better results for some classes.
When it comes to the smaller data sample, CNN presented the best specificity results for 7 of
the 10 classes and the RNN model in 3 classes.

Tables 5.13 and 5.14 present the sensitivity and specificity for the CIFAR10 dataset classes.
There is a clear distinction between the CNN model’s results from every other model and
algorithm. The CIFAR10 data complexity made it harder for some models to accurately classify
some classes, most of them presenting worse results than the CNN model, varying from 10% to
30% lower sensitivity values across all classes. Although for smaller data samples, models like
RNN and MLP obtained slightly better results of approximately 1% to 6%.

The specificity values follow the same result distribution, the CNN model obtaining better
results in most classes and in the smaller data sample, MLP and RNN models presenting better
specificity results in two classes (3% and 6% difference for the MLP model and 1% difference
for both classes with the RNN model).

Table 5.15 presents the sensitivity and specificity for the binary classification of the IMDb
dataset. Both SVM and LR models presented the best results in both evaluation metrics,
although for the maximum data sample size, the LR model obtained the best results across both
classes and both metrics (88.27% and 89.65% sensitivity for both classes, 89.65% and 88.27%
specificity for both classes), with less than 1% more.

5.2. Results comparison 99

That changed in the smaller data sample size, where the SVM model presented higher
sensitivity in class 1 and higher specificity for class 0 (84.60%). This goes hand-in-hand with the
accuracy results previously discussed.

For the Sentiment140 dataset, the results are not that consistent with the previous results.
This dataset presented higher accuracy, median sensitivity and specificity for the SVM and LR
models. But the class sensitivity and specificity did not stay consistent with those results.

For the maximum size data sample, the SVM algorithm got a better sensitivity for class 1
and specificity for class 0 (79.70%). The class 0 sensitivity and class 1 specificity got better
results with the RNN model (78.66%), 5% higher than the SVM model.

In the smaller data sample, SVM and LR shared similar results (0.18% difference) in the
class 0 sensitivity and class 1 specificity (63.18% with the LR algorithm), but the CNN model
got 17% higher values for the class 1 sensitivity and class 0 specificity (89.06%).

It can be observed that for smaller data samples, ANN’s sensitivity and specificity between
both classes become more disperse (approximately from 6% to 15% 18%) while the SVM and
LR algorithms stay more consistent (approximately from 6% to 9%). That can justify why the
CNN model presented high sensitivity and specificity for those classes, by focusing the learning
of specific cases and neglecting the other class.

Entering in the sound datasets Tables, 5.17 to 5.19, the Heartbeat sound dataset was consistent
with the results thus far. The CNN model got the best sensitivity and specificity results for both
classes in both tested sizes.

Apart from the CNN model, the most consistent comparison is the RF algorithm. Even
though the results may be worse for a particular class, the difference of results between classes is
minor for this algorithm. For example, the LR algorithm, for the maximum tested sample size,
presented 79.54% sensitivity for class 0 while the RF algorithm presented 70.95%. But while the
RF algorithm had 72.22% sensitivity for the other class, LR obtained 55.26% sensitivity.

For the ESC-50 dataset, the CNN model had the best sensitivity results for 70% of the classes,
followed by MLP which had 16%. The CNN model obtained a 100% sensitivity result in two
classes and more than 50% of the classes presented results above 80% sensitivity, being the best
model.
The remaining 30% of classes where the CNN model did not present the best results, differ from
10% to 25% lower sensitivity values.

The specificity results were also better in the CNN model, although the MLP model presented
best results in 25% of classes. The CNN model had five 100% specificity results for five distinct
classes and approximately 71% of classes with more than 99% specificity.

The final three Tables 5.20, 5.21 and 5.22, present the results for the categorical datasets.
It has been presented that for the UCMF dataset, the RF model obtained better results. Here
we can see that in fact, all models have similar sensitivity and specificity results. For the both

100 Chapter 5. Results

data sample sizes, the sensitivity and specificity values of class 0 are all around 85% and 98%
respectively and the opposite for the other class. So we can see that all models did a similar
job classifying the classes. But for the maximum data sample size, the MLP and LR obtained
the same results for sensitivity of class 1 and specificity of class 0 (98.37%). RF got the best
sensitivity for class 0 and specificity for class 1 (86.34%).

The minimum data sample size, was more consistent with what has been witnessed thus far,
with SVM obtaining the best result for class 1 sensitivity and class specificity (98.47%) and RF
for class 0 sensitivity and class 1 specificity (85.96%).

The Mammo dataset also maintained consistency, with the RF model presenting the best
sensitivity results in 75% of classes in the maximum data sample and 62.5% in the minimum.
Here it can be seen that with the same data, the models obtained very different results. While
other models like all the ANNs and especially the SVM model, focused learning on the two
most represented classes, the RF model generalized the exact same data and obtained sensitivity
results of more than 70% where the other methods reached 30% or even 3% in some cases.
In the minimum data sample size, the underrepresented classes got lower sensitivity results, the
decrease ranging from 20% to 30%.

The specificity results showed to be higher in the SVM model with some classes obtaining
100% evaluation in both tested sizes. Unlike the previous metric, here the results vary around
5% between models.

5.2. Results comparison 101

The final set of results are presented in the format of plot bars so the differences between the
tested sizes can be easier to understand and to have a more visual interpretation of the difference
between values.

The first 15 plots are divided by data type and evaluation metric. Each plot represents
an evaluation metric values for the two datasets of each data type. Each bar in each method,
represents one tested sample size.
The Figure 5.1 to 5.4 presents the accuracy, sensitivity, specificity and AUC values for the image
datasets, MNIST and CIFAR10.

It can be seen that all metrics decrease across all methods when the data sample size becomes
smaller. The discrepancy between accuracy, sensitivity and AUC results is wider for the CIFAR10
implemented ANNs. The RF and LR models presented similar results despite the size of the
sample.

The MNIST dataset presented similar accuracy, sensitivity, specificity and AUC results for
all methods and all sizes.
For the text datasets, both the IMDb and Sentiment140 datasets presented the same pattern for
all implemented models and sizes. All metrics results decrease results when the dataset becomes
smaller.

The IMDb dataset presented some stability where the result difference between the smaller and
larger data samples is pretty much the same, ranging from 3% to 6%. The Sentiment140 dataset
presents a broader range of results between sizes, specially the CNN model with approximately
15% accuracy, sensitivity and specificity difference, and 20% for AUC.

The difference in the sound datasets is not the same as in the previous cases. The ESC-50
dataset is represented by only one testing size so there can not be any direct conclusions regarding
the difference in data size.

The Heartbeat sound dataset presents some differences from what has been witnessed so far.
Some models present values for some metrics where the medium and the smaller sample size
achieve better results than other sizes. For accuracy, the RF model presented better results for
the medium data size, followed by the entire dataset and finally, the smaller sample.

The MLP, SVM and LR models all present better accuracy for the smaller data sample than
the medium data sample. The exact same patterns occur for sensitivity, specificity and AUC
except that the medium data sample also got better sensitivity results with the RNN model.
The ESC-50 dataset presents similar specificity and AUC results for all implemented models,
when the sensitivity and accuracy results separate CNN from all the other models.

Finally, the categorical datasets, represented in Figure 5.13 to 5.15 show the difference
between somewhat balanced data and unbalanced data. The UCMF dataset presents generally
similar results across all models and the two testes sizes. Although the LR model obtained better
results, all models had a similar performance in a data set that has one under represented class

102 Chapter 5. Results

but still sufficient to correctly classify both classes.

The Mammo dataset on the other hand shows clear inconsistencies among all metrics. The
accuracy results for the data set followed the usual scenario where the smaller the dataset, lower
accuracy values were found, ruling out the RNN that presented higher accuracy for the medium
data sample size, MLP and SVM that had slightly better results in the smaller set compared with
the medium set. Apart from that, all models present similar results with 2% to 5% discrepancy.

When the sensitivity results are analysed, a different scenario can be observed. All models
apart from the RF model present low sensitivity in general, leading to the conclusion that those
models correctly classified some classes and poorly classified others. An example can be made of
the SVM model that had 0.00% sensitivity on 5 out of 8 classes.

5.2. Results comparison 103

The final set of plot figures shows the comparison between all ANN types in the different
implemented sizes and different evaluation metrics. This comparison relates to the influence of
architectural type with the other conditions.
Generally, all three types have similar performance except in some particular situations, specially
regarding data size.

For the accuracy results presented in Figure 5.16, in the image datasets, all three models
obtained similar results, apart from the CIFAR10 dataset where the CNN model was able to
better deal with the more complex data. For the smaller data sample, the CNN model performed
significantly better than the other networks in both datasets.

For the IMDb and Sentiment140 datasets, the three models performed similarly although the
RNN and MLP networks outperformed the CNN model. For the Sentiment140 dataset specifically,
the RNN model dealt better with the noise in the data, since the dataset was predominantly
composed of everyday tweets, which contain every type of word and spelling.
The smaller data samples obtained different results. The IMDb dataset CNN implementation
had slightly better accuracy results for this sample size, while the Sentiment140 RNN model
outperformed both CNN and MLP with a 5% to 10% difference.

As clearly seen in the other tables, the CNN model performed far better than the other
network types in both sound datasets. Although it can be seen in the Heartbeat sound dataset
that the MLP model, for smaller samples, was better than the RNN model and approached the
CNN accuracy result from a difference of 15% to 10%.

Both categorical datasets had similar results across all three networks and sizes. Among the
three network types, the CNN model obtained slightly better accuracy in both datasets.
Figure 5.17 and Figure 5.18 present the same comparison between network types for the sensitivity
and specificity results.

The sensitivity results are almost the same analysed in the previous accuracy plot. It can
be seen that the sensitivity difference between the RNN and MLP models for the Sentiment140
dataset is wider than the accuracy results between them. It can also be seen that the sensitivity
for the Heartbeat sound RNN and MLP models decreased while the CNN model maintained
similar values with the accuracy results, equally classifying both classes.

We can also see for the Mammo dataset, that among three networks, the CNN network
had the best sensitivity result, even though the three networks showed low receptivity to the
unbalanced data.

The specificity plot showed mostly consistency between networks. The MNIST, IMDb, ESC-
50, UCMF and Mammo datasets presented similar results for the three implemented models. The
CIFAR10 and Heartbeat sound datasets showed that the CNN model obtained higher specificity
results and the Sentiment140 higher specificity result was with the RNN model.
The MNIST and both categorical datasets also show the proximity in specificity results from all
three models in all tested sizes.

104 Chapter 5. Results

Finally, for the AUC results, the MNIST, IMDb and UCMF datasets presented similar results
for the three ANN types, with all the MNIST and UCMF models obtaining similar AUC results
among the respectively tested sizes.

The CIFAR10, Heartbeat sound, ESC-50 and Mammo datasets obtained better results with
the CNN model in all tested sizes and the Sentiment140 dataset presented better AUC results
with the RNN model just like the previous described metrics.

5.3 Training accuracy, loss and final ROC curves

In this section, the learning process of the models and the ROC curves are presented and briefly
discussed, specially cases that differ from what was expected.

In the Appendix A, there are two examples of cases. One of what was mostly obtained and
the other of special and different scenarios and results. Figures A.1 to A.4 represent the results
of the CNN model applied to the CIFAR10 dataset. It represents the most usual results of all
implemented models in all presented datasets. The learning curve is ascending along the number
of epochs and heads towards a final result. The validation curve accompanies the training curve
staying within a proximal range. The same can be said about the descending loss curve.

The ROC curves for each class present the usual curve far away from the diagonal average
result and the confusion matrix presents more light colors in the diagonal

x = −y

, representing good classification results for each class. The darker the cell in the presented
diagonal, lower the classification accuracy.

But there were cases that did not follow the previous patterns. The ESC-50 CNN, RNN and
MLP models and the Mammo CNN model, presented a more spiked accuracy and loss curves
and the Heartbeat sound dataset MLP model presented an even more accentuated spiking within
epochs. The other models, CNN and RNN presented curves similar to the ESC-50 CNN curves,
present in Figure A.5 and A.6.

When it comes to ROC curves, the ESC-50 ANN models presented in Figure A.7, show a
more segmented curve rather than the curve presented in Figure A.3. The curves have a drastic
upward raise and then have linear moments to the right and upwards again.

The ROC curves for the Heartbeat sound MLP and RNN models, in Figure A.10 and A.11,
present a proximity to the plot diagonal, the RNN model being the most proximal to the average
diagonal.

The Mammo dataset ANN models, all present the same pattern, showed in Figure A.14. Both
curves, representing both classes, follow the same path that the macro-average ROC curve follows.
The micro-average curve on the other hand, show more concavity away from the average diagonal.

5.3. Training accuracy, loss and final ROC curves 105

While the macro-average curve computes the metric for each class independently and only then
takes the average, the micro-average curve aggregates all classes’ contributions and computes the
metric. This shows that the ROC curves for each classes follow the independent class computation.

Chapter 6

Conclusions and Future Work

6.1 Research summary

This study main objective was to compare ANNs classification performance under different
situations and conditions, comparing to other algorithms in order to understand the most
favorable applicability of ANN.

Three types of neural network, convolutional, recurrent and multilayer perceptron models,
were implemented on 8 different datasets and compared with three algorithms, logistic regression,
support vector machines and random forest. The datasets belonged to different data types,
image, sound, text and categorical data, two for each type. Those datasets were pre-processed
and partitioned into smaller sizes ranging from one to three partitions and those subsets were
created to study the performance of the models when fed different data sizes.

Finally, several evaluation metrics, accuracy, sensitivity, specificity and AUC values were
studied in order to have a more conclusive understanding of the results.

The conclusions this study wants to find is the circumstances where the performance of ANN
is more suited and where it is not. A specific dataset type or size, or a specific network.

6.2 Main findings

The main conclusions that can be extracted from the results, pass through each evaluation metric,
comparative parameter and implemented model.

By data type, it can be seen that image datasets obtained better results with ANNs. Both
studied datasets and all ANN models, CNN, RNN and MLP presented better accuracy, sensitivity
and specificity than the comparative algorithms.
Between ANNs it can be seen that CNN obtained overall better results than the other two
networks.

107

108 Chapter 6. Conclusions and Future Work

For the text datasets, ANNs had slightly worse performance than some of the comparative
models. SVM and LR presented better results across all metrics, with LR being generally better
for both sizes.

Sound datasets presented better results with the CNN model across all metrics and categorical
datasets presented slightly better results with RF than all ANN models.

With this, we can conclude that image and sound datasets showed to be better when applying
neural networks and sequential data like text data, which is known to have a good applicability
with RNN had better classification performance with other algorithms.

As far as dataset size, the Sentiment140 RNN model presented, for the smaller data sample
size, similar results as the best found models, LR and SVM,but worse for larger amounts of data.
For categorical data, RF presented much more learning capability to unbalanced data, far more
than any other model or algorithm.

Between ANN network types, the CNN model had the best performance in the CIFAR10
dataset for all sizes and in the MNIST dataset for the smaller data sample. The results for the
larger data sample were similar across all three networks.

In the text data type, for the maximum data sample size, all models had similar outcomes.
The CNN outperformed the other models in the IMDb smaller data sample, while the RNN
model had better performance in the Sentiment140 smaller data sample, a dataset that presents
more extensive vocabulary and a bigger generalization of words.

The CNN model presented better results for both sound datasets and in the categorical
datasets, all three models had similar results, although the CNN had better sensitivity results
for both datasets.

6.3 Improvement and future work

This work accomplished most of what it was established from the initial methodology. Although,
some aspects could be improved in order to also improve possible conclusions.

An interesting addition to the study would be the introduction of distinct data shapes
and how their possible transformation could impact the performance of a model. We used
multi-dimensional data with the images dataset but it could be an interesting feature to study
other n-dimension types of data.

Another improvement could be the study of extremely large or small datasets to study the
impact of big and small data. We tried to touch this subject by dividing the original datasets in
smaller and smaller sizes but the study with really small sets of data could be interesting. The
study of big data involves time and resources that were not an option for this study.

Other possible improvements that were not possible due to the time needed to execute them

6.3. Improvement and future work 109

could be a more focused and analytic pre-processing of the data, to ensure the maximum efficiency
of the models and a more exhaustive construction of the networks with the use of tools that
could help the efficiency and robustness of the networks.

Appendix A

Result Appendix

A.1 Learning and loss curves, confusion matrix and ROC curves

Figure A.1: CIFAR10 CNN model accuracy curve - Usual learning result

Figure A.2: CIFAR10 CNN model loss curve - Usual learning result

111

112 Appendix A. Result Appendix

Figure A.3: CIFAR10 CNN model ROC curve - Usual learning result

Figure A.4: CIFAR10 CNN model confusion matrix - Usual learning result

Figure A.5: ESC-50 CNN model accuracy curve - Unusual learning result

A.1. Learning and loss curves, confusion matrix and ROC curves 113

Figure A.6: ESC-50 CNN model loss curve - Unusual learning result

Figure A.7: ESC-50 CNN model ROC curve - Unusual learning result

Figure A.8: Heartbeat sound MLP model accuracy curve - Unusual learning result

Figure A.9: Heartbeat sound MLP model loss curve - Unusual learning result

114 Appendix A. Result Appendix

Figure A.10: Heartbeat sound MLP model ROC curve - Unusual learning result

Figure A.11: Heartbeat sound RNN model ROC curve - Unusual learning result

Figure A.12: Mammo CNN model accuracy curve - Unusual learning result

Figure A.13: Mammo CNN model loss curve - Unusual learning result

A.1. Learning and loss curves, confusion matrix and ROC curves 115

Figure A.14: Mammo CNN model ROC curve - Unusual learning result

Bibliography

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. Umar, O. U. Linus, H. Arshad,
A. A. Kazaure, U. Gana, and M. U. Kiru. Comprehensive review of artificial neural network
applications to pattern recognition. IEEE Access, 7:158820–158846, 2019.

[2] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada,
Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in artificial neural
network applications: A survey. Heliyon, 4(11):e00938, 2018. ISSN: 2405-8440.
doi:https://doi.org/10.1016/j.heliyon.2018.e00938.

[3] Deme C. Abraham. Development and comparison of artificial neural network techniques
for mobile network field strength prediction across the josplateau, nigeria. Journal of
Multidisciplinary Engineering Science and Technology (JMEST), 3(6), 2016. ISSN: 2458-
9403. doi:10.1002/for.2542.

[4] Hamid Behbahani, Amir Mohamadian Amiri, Reza Imaninasab, and Meysam Alizamir.
Forecasting accident frequency of an urban road network: A comparison of four artificial
neural network techniques. Journal of Forecasting, 37(7):767–780, 2018. doi:10.1002/for.2542.

[5] William A. Borders, Shunsuke Fukami, and Hideo Ohno. Characterization of spin–orbit
torque-controlled synapse device for artificial neural network applications. Japanese Journal
of Applied Physics, 57(10):1002B2, sep 2018. doi:10.7567/jjap.57.1002b2.

[6] Q. Chen and K. Folly. Effect of input features on the performance of the ann-based wind
power forecasting. pages 673–678, 2019.

[7] Dursun Delen, Glenn Walker, and Amit Kadam. Predicting breast cancer survivability: a
comparison of three data mining methods. Artificial Intelligence in Medicine, 34(2):113 –
127, 2005. ISSN: 0933-3657. doi:https://doi.org/10.1016/j.artmed.2004.07.002.

[8] Adel El-Shahat. Introductory chapter: Artificial neural networks. In Adel El-Shahat, editor,
Advanced Applications for Artificial Neural Networks, chapter 1. IntechOpen, Rijeka, 2018.
doi:10.5772/intechopen.73530.

[9] F. Sunar Erbek, C. Özkan, and M. Taberner. Comparison of maximum likeli-
hood classification method with supervised artificial neural network algorithms for

117

http://dx.doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
http://dx.doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
http://dx.doi.org/10.1002/for.2542
http://dx.doi.org/10.1002/for.2542
http://dx.doi.org/10.1002/for.2542
http://dx.doi.org/10.1002/for.2542
http://dx.doi.org/10.7567/jjap.57.1002b2
http://dx.doi.org/10.7567/jjap.57.1002b2
http://dx.doi.org/https://doi.org/10.1016/j.artmed.2004.07.002
http://dx.doi.org/https://doi.org/10.1016/j.artmed.2004.07.002
http://dx.doi.org/10.5772/intechopen.73530
http://dx.doi.org/10.1080/0143116031000150077
http://dx.doi.org/10.1080/0143116031000150077
http://dx.doi.org/10.1080/0143116031000150077
http://dx.doi.org/10.1080/0143116031000150077

118 Bibliography

land use activities. International Journal of Remote Sensing, 25(9):1733–1748, 2004.
doi:10.1080/0143116031000150077.

[10] Milad Fatehnia and Gholamreza Amirinia. A review of genetic programming and artificial
neural network applications in pile foundations. International Journal of Geo-Engineering,
9(2), 2018. doi:10.1186/s40703-017-0067-6.

[11] Mahmut Firat, Mustafa Erkan Turan, and Mehmet Ali Yurdusev. Comparative analysis of
neural network techniques for predicting water consumption time series. Journal of Hydrology,
384(1):46 – 51, 2010. ISSN: 0022-1694. doi:https://doi.org/10.1016/j.jhydrol.2010.01.005.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[13] Enzo Grossi and Massimo Buscema. Introduction to artificial neural networks. European
journal of gastroenterology hepatology, 19, 2008.

[14] Yong Soo Kim. Comparison of the decision tree, artificial neural network, and linear
regression methods based on the number and types of independent variables and sample
size. Expert Systems with Applications, 34(2):1227 – 1234, 2008. ISSN: 0957-4174.
doi:https://doi.org/10.1016/j.eswa.2006.12.017.

[15] Chen-Chiang Lin, Yang-Kun Ou, Shyh-Huei Chen, Yung-Ching Liu, and Jinn Lin.
Comparison of artificial neural network and logistic regression models for predicting mortality
in elderly patients with hip fracture. Injury, 41(8):869 – 873, 2010. ISSN: 0020-1383.
doi:https://doi.org/10.1016/j.injury.2010.04.023.

[16] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics.

[17] Ina S. Markham and Terry R. Rakes. The effect of sample size and variability of data on the
comparative performance of artificial neural networks and regression. Computers Operations
Research, 25(4):251 – 263, 1998. ISSN: 0305-0548. doi:https://doi.org/10.1016/S0305-
0548(97)00074-9.

[18] João Maroco, Dina Silva, Ana Pina Rodrigues, Manuela Guerreiro, Isabel Santana, and
Alexandre Mendonça. Data mining methods in the prediction of dementia: A real-data
comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic
regression, neural networks, support vector machines, classification trees and random forests.
BMC research notes, 4:299, 08 2011. doi:10.1186/1756-0500-4-299.

[19] Robert Milewski, Anna Justyna Milewska, Teresa Więsak, and Allen Morgan. Comparison
of artificial neural networks and logistic regression analysis in pregnancy prediction using

http://dx.doi.org/10.1080/0143116031000150077
http://dx.doi.org/10.1080/0143116031000150077
http://dx.doi.org/10.1080/0143116031000150077
http://dx.doi.org/10.1186/s40703-017-0067-6
http://dx.doi.org/10.1186/s40703-017-0067-6
http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2010.01.005
http://dx.doi.org/https://doi.org/10.1016/j.jhydrol.2010.01.005
http://www.deeplearningbook.org
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2006.12.017
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2006.12.017
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2006.12.017
http://dx.doi.org/https://doi.org/10.1016/j.injury.2010.04.023
http://dx.doi.org/https://doi.org/10.1016/j.injury.2010.04.023
http://www.aclweb.org/anthology/P11-1015
http://dx.doi.org/https://doi.org/10.1016/S0305-0548(97)00074-9
http://dx.doi.org/https://doi.org/10.1016/S0305-0548(97)00074-9
http://dx.doi.org/10.1186/1756-0500-4-299
http://dx.doi.org/10.1186/1756-0500-4-299
http://dx.doi.org/10.1186/1756-0500-4-299
https://content.sciendo.com/view/journals/slgr/35/1/article-p39.xml
https://content.sciendo.com/view/journals/slgr/35/1/article-p39.xml
https://content.sciendo.com/view/journals/slgr/35/1/article-p39.xml
https://content.sciendo.com/view/journals/slgr/35/1/article-p39.xml

Bibliography 119

the in vitro fertilization treatment. Studies in Logic, Grammar and Rhetoric, 35(1):39 – 48,
2013.

[20] MOGHADDAM2020104421 Davoud Davoudi Moghaddam, Omid Rahmati, Mahdi Panahi,
John Tiefenbacher, Hamid Darabi, Ali Haghizadeh, Ali Torabi Haghighi, Omid Asadi
Nalivan, and Dieu [Tien Bui]. The effect of sample size on different machine learning models
for groundwater potential mapping in mountain bedrock aquifers. CATENA, 187:104421,
2020. ISSN: 0341-8162. doi:https://doi.org/10.1016/j.catena.2019.104421.

[21] Mahdi Vafakhah Biswajeet Pradhan Mohammad Zare, Hamid Reza Pourghasemi. Landslide
susceptibility mapping at vaz watershed (iran) using an artificial neural network model: a
comparison between multilayer perceptron (mlp) and radial basic function (rbf) algorithms.
Arabian Journal of Geosciences, 6:2873–2888, 2013. ISSN: 1866-7538. doi:10.1007/s12517-
012-0610-x.

[22] Kisi Ozgur. River flow forecasting and estimation using different artificial neural
network techniques. Hydrology Research, 39(1):27–40, 02 2008. ISSN: 0029-1277.
doi:10.2166/nh.2008.026.

[23] John Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Advances in Kernel Methods-Support Vector Learning, 208, 07 1998.

[24] D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G. Yang. Deep
learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1):
4–21, 2017.

[25] Allen H. Renear, Simone Sacchi, and Karen M. Wickett. Definitions of dataset in the
scientific and technical literature. Proceedings of the American Society for Information
Science and Technology, 47(1):1–4, 2010. doi:10.1002/meet.14504701240.

[26] Yeh Fang-Cheng Rhett N. D’souza, Po-Yao Huang. Structural analysis and optimization of
convolutional neural networks with a small sample size. Scientific Reports, 10, 2020. ISSN:
2045-2322. doi:10.1038/s41598-020-57866-2.

[27] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 1995.

[28] Madan K. Jha Sasmita Sahoo. Groundwater-level prediction using multiple linear regression
and artificial neural network techniques: a comparative assessment. Hydrogeology Journal,
21, 2013. ISSN: 1435-0157. doi:10.1007/s10040-013-1029-5.

[29] Brian W. Szuster, Qi Chen, and Michael Borger. A comparison of classification techniques
to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31
(2):525 – 532, 2011. ISSN: 0143-6228. doi:https://doi.org/10.1016/j.apgeog.2010.11.007.

[30] Wen Zhu, Nancy Zeng, and Ning Wang. Sensitivity, specificity, accuracy, associated
confidence interval and roc analysis with practical sas implementations. Health Care and
Life Sciences, 2010.

https://content.sciendo.com/view/journals/slgr/35/1/article-p39.xml
https://content.sciendo.com/view/journals/slgr/35/1/article-p39.xml
https://content.sciendo.com/view/journals/slgr/35/1/article-p39.xml
http://dx.doi.org/https://doi.org/10.1016/j.catena.2019.104421
http://dx.doi.org/https://doi.org/10.1016/j.catena.2019.104421
http://dx.doi.org/10.1007/s12517-012-0610-x
http://dx.doi.org/10.1007/s12517-012-0610-x
http://dx.doi.org/10.1007/s12517-012-0610-x
http://dx.doi.org/10.2166/nh.2008.026
http://dx.doi.org/10.2166/nh.2008.026
http://dx.doi.org/10.1002/meet.14504701240
http://dx.doi.org/10.1002/meet.14504701240
http://dx.doi.org/10.1038/s41598-020-57866-2
http://dx.doi.org/10.1038/s41598-020-57866-2
http://dx.doi.org/10.1007/s10040-013-1029-5
http://dx.doi.org/10.1007/s10040-013-1029-5
http://dx.doi.org/https://doi.org/10.1016/j.apgeog.2010.11.007
http://dx.doi.org/https://doi.org/10.1016/j.apgeog.2010.11.007

	Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Organization

	2 Basic Concepts
	2.1 Single neuron and deep learning
	2.2 Artificial Neural Network
	2.3 Supervised and unsupervised learning
	2.4 Classification
	2.5 Multi-layer Perceptron
	2.6 Convolutional Neural Network
	2.7 Recurrent Neural Network and LSTM networks
	2.8 Support Vector Machine
	2.9 Logistic Regression
	2.10 Random Forest
	2.11 Accuracy, Sensitivity, Specificity and other metrics
	2.12 Other Basic Concepts

	3 Related Work
	3.1 State-of-the-art
	3.1.1 Search's methodology, queries and results
	3.1.2 Articles review and explanation

	4 Practical methodology
	4.1 Practical methodology description
	4.2 Datasets
	4.2.1 Image datasets
	4.2.2 Sound datasets
	4.2.3 Text datasets
	4.2.4 Categorical datasets

	4.3 Pre-processing
	4.3.1 Image datasets
	4.3.2 Sound datasets
	4.3.3 Text datasets
	4.3.4 Categorical datasets

	4.4 Model implementation
	4.4.1 ANNs
	4.4.2 SVMs
	4.4.3 Random Forests
	4.4.4 Logistic Regression

	4.5 Evaluation metrics

	5 Results
	5.1 Results presentation
	5.2 Results comparison
	5.3 Training accuracy, loss and final ROC curves

	6 Conclusions and Future Work
	6.1 Research summary
	6.2 Main findings
	6.3 Improvement and future work

	A Result Appendix
	A.1 Learning and loss curves, confusion matrix and ROC curves

	Bibliography

