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“I must not fear. Fear is the mind-killer. Fear is the
little-death that brings total obliteration. I will face my
fear. | will permit it to pass over me and through me.
And when it has gone past | will turn the inner eye to
see its path. Where the fear has gone there will be
nothing. Only I will remain.”

— Frank Herbert, Dune

“Nothing happens in contradiction to nature, only in
contradiction to what we know of it.”

— Dana Scully, The X-files
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Abstract

Widely employed in enzymology studies, the Michaelis-Menten equation applies to the initial
phases of enzymatic reactions under conditions of great excess of substrate over enzyme.
With the publication of the “Pinto et al. (PEA) model” in 2015, we attempted to address these
limitations by providing, for the first time, the unconstrainted closed-form solution for single
active-site enzyme reactions. The PEA model constitutes the starting point from which the
work presented in this doctoral thesis is developed.

Expanding on the accomplishments of Michaelis and Menten, unexplored elements of their
original work are addressed, such as the fundamental meaning of the characteristic time
constant and the equilibrium dissociation constant. Based on this study, a practical
methodology is proposed to completely characterize enzymatic systems in terms of Enzyme
Activity, Efficiency, and Affinity from single reaction curve experiments — the “(EA)? assay”.
The practical application of the newly-developed models is highly contingent on the reliability
of experimental data and absence of assay interferences. A new kinetic tool for the detection
of hidden assay artifacts is therefore presented and experimentally tested for model enzymes
procaspase-3, caspase-3 and a-thrombin. The so-called “linearization method” is based on the
representation of progress curves in modified reaction coordinates that are highly sensitive to
spurious readout variations. Applicable to single active-site single substrate enzyme kinetics,
this methodology can in addition be used to detect non-conforming kinetic mechanisms.
Further developments of the linearization method are in the basis of the creation of the publicly
and freely available webserver “interferENZY” for standardized enzymatic assay analysis. This
dynamic platform not only examines user-inputted datasets for the presence of spurious
phenomena, but also automatically determines bias-free kinetic parameters without the need
of erratic estimations of initial reaction rates.

As a corollary application of the new kinetic tools, enzyme modulation effects caused by
chaperones and small-molecule compounds are characterized using as model enzymes the
desulfurase-scaffold IscS-IscU system, and ataxin-3. More specifically, the effect of bacterial
frataxin “CyaY” on IscS-IscU-catalyzed Iron-Sulfur cluster formation is studied by combining
the classical General Modifier Mechanism with the 3-point version of the linearization method.
The “3-point kinetic assay” is also applied during the drug repurposing screening of ~1200
compounds for possible modulators of the deubiquinating activity of a pathogenic variant of
ataxin-3. The identified enzyme modulation effects are important for the pathophysiology of
the neurodegenerative diseases Friedreich’s ataxia (in the case of frataxin) and Machado-
Joseph Disease (in the case of ataxin-3). On the whole, these practical examples serve to
demonstrate that fundamental research is, in fact, a safe and pragmatic way to achieve

scientific breakthroughs with implications in human health and disease.
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Resumo

Usada generalizadamente em estudos de enzimologia, a equacdo de Michaelis-Menten é
aplicavel as fases iniciais de reac¢des enzimaticas em condicbes de grande excesso de
substrato em relacdo a enzima. Estas limitacbes foram avaliadas em 2015 com a publicacdo
do “modelo Pinto et al. (PEA)”, que providencia, pela primeira vez, a solucdo irrestrita em
forma fechada para reacGes enzimaticas com um Unico sitio ativo. O modelo PEA constitui o
ponto de partida a partir do qual o trabalho apresentado nesta tese doutoral é desenvolvido.
Partindo do trabalho original de Michaelis e Menten, aspetos néo totalmente explorados foram
abordados, tais como o significado fundamental da constante de tempo caracteristica e a
constante de equilibrio de dissociacdo. Com base neste estudo, foi proposta uma metodologia
pratica para caracterizar de forma completa sistemas enzimaticos em termos de Atividade,
Eficiéncia, e a Afinidade a partir de curvas de progresso de reacédo — o “ensaio (EA)?".

A aplicacéo préatica dos modelos recém-desenvolvidos estd dependente da seguranca dos
dados experimentais e auséncia de interferéncias nos ensaios correspondentes. Uma nova
ferramenta para a detecdo de interferéncias €, portanto, apresentada e testada
experimentalmente para as enzimas-modelo procaspase-3, caspase-3, e a-trombina. O
designado “método de linearizagdo” baseia-se na representacdo de curvas de progresso em
coordenadas reacionais modificadas que sdo altamente sensiveis a variagbes de sinal
anormais. Aplicavel a cinéticas enzimaticas respeitantes a um anico sitio ativo e um Unico
substrato, esta metodologia pode também ser usada para detetar mecanismos cinéticos nao-
conformes. Desenvolvimentos adicionais do método de lineariza¢do estdo na base da criagédo
do servidor web “interferENZY” para analise padronizada de ensaios enzimaticos. Esta
plataforma dindmica examina conjuntos de dados inseridos pelo utilizador ndo sé em relacéo
a presenca de fendmenos esporadicos, como também permite a determinacdo de parametros
cinéticos ndo-enviesados sem que para tal seja necessario a medicdo, muitas vezes erratica,
de velocidades iniciais da reacgéo.

Como aplicagéo resultante das novas ferramentas cinéticas, efeitos de modulacdo enzimética
causados por chaperones e moléculas pequenas sao caracterizados usando como enzimas
modelo o sistema de desulfurase-suporte IscS-IscU, e a proteina ataxina-3. Mais
especificamente, o efeito da frataxina bacteriana “CyaY” na formagao de centros de Ferro-
Enxofre catalisada por IscS-IscU é estudada mediante combinacdo do Mecanismo Geral de
Modificadores com a versdo do método de linearizagao usando 3 pontos da reagdo. O “ensaio
cinético de 3 pontos” &€ também aplicado durante o high-throughput screening de ~1200
compostos para o reposicionamento de farmacos na detecdo de possiveis moduladores da
atividade de deubiquitinacdo de uma variante patogénica da ataxina-3. Os efeitos de

modulacdo cinética identificados sdo importantes no contexto da patofisiologia de doencas
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neurodegenerativas como a ataxia de Friedreich (no caso da frataxina) e a doenca de
Machado-Joseph (no caso da ataxina-3). Em suma, estes exemplos praticos demonstram que
a investigacdo fundamental constitui uma forma segura e pragméatica de alcancar novas

descobertas cientificas com implicacbes nas areas da salude e doenca humanas.
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Thesis Guide

The present section has the goal of presenting the logical path that shaped this PhD thesis.
In 2013, the 100" anniversary of the Michaelis-Menten (MM) model was celebrated with a
number of special issues and commemorative contributions dedicated to this standard
methodology for enzyme kinetics analysis [1-4]. In their classic work 'Die Kinetik der
Invertinwirkung' published in 'Biochemische Zeitschrift' [5], Michaelis and Menten adopted a
“steady-state approximation” (SSA) whose validity was recently confirmed to be limited to the
initial phases of enzymatic reactions occurring in great excess of substrate over enzyme [4].
In 2015, a possible answer overcoming this and other limitations of the MM model was given
in a paper entitled “Enzyme kinetics: the whole picture reveals hidden meanings” first-authored
by the candidate and published in the FEBS Journal (the successor of 'Biochemische
Zeitschrift'). The Pinto et al. (PEA) model provided for the first time the unconstrained closed-
form solution of the (non-inhibited) single active-site enzymatic mechanism [6]. The
Introduction of this Thesis presents the basis of the PEA model in the context of previous
approaches and as a starting point for the innovative tools presented in Chapters 1, 2 and 3
for reproducible characterization of enzymatic systems, and in Chapters 4 and 5 for efficient
screenings of enzyme modulators. Chapters 1 to 3, and Chapter 5 follow the structure of
scientific papers first-authored by the candidate that are either published or submitted to
international journals in the field of Biophysics and Chemical Biology.

The first branch growing from the PEA model was the 2016 paper “In search of lost time
constants and of non-Michaelis-Menten parameters” co-authored by the candidate and
published in Perspectives in Science as part of the Proceedings of the 7" Beilstein
Experimental Standard Conditions of Enzyme Characterizations Symposium [7]. As the title of
the manuscript implies, unexplored elements of the original MM paper were focused, such as
the characteristic time constant and the equilibrium dissociation constant [5]. The definition
and application of these constants is explained in Chapter 1, together with a practical
methodology conceived to fully characterize enzymatic activity, efficiency, and affinity from
single reaction curve experiments. The biophysical meaning of classic MM parameters (K,
and V) is debated considering cell environment conditions and how they compare to in vitro
reaction settings. A renewed interpretation of previously documented kinetic data is also
proposed as an attempt to recover published kinetic parameters from any uncertainty
associated to their physical meaning.

The application of these eminently theoretical concepts requires experimental setups devoid
of any assay interferences or artifacts. Therefore, the detailed study of cell-like conditions and
non-MM parameters using the PEA model only becomes possible in the presence of robust

and properly characterized enzymatic assays producing reproducible kinetic behaviours. The
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second publication arising from this PhD project is entitled “A simple linearization method
unveils hidden enzymatic assay interferences” and seeks the development of a new kinetic
tool capable of evaluating the validity and robustness of enzymatic assays [8]. As described in
Chapter 2, this linearization method (LM) is based on the representation of progress curves in
modified reaction coordinates that are highly sensitive to output signal fluctuations. This allows
the detection of interferences such as enzyme inactivation, unaccounted enzyme inhibition,
and instrumental drifts. In the absence of significant assay interferences, the modified reaction
coordinates obtained at varying substrate concentrations should result in negative-sloped
superimposing linear curves. Deviations from this behaviour clearly indicate the presence of
assay interferences or the occurrence of more complex catalytic mechanisms. While the
employed linearization is very responsive to changes in the measured progress curves, valid
kinetic data can be strictly selected and subsequently utilized for accurate parameter
estimation. The model enzymes procaspase-3, caspase-3 and a-thrombin were used to
illustrate different scenarios of enzyme inactivation, temperature oscillation and presence of
enzyme-modulating compounds. Further guidelines are also provided in this chapter for the
routine implementation of the LM as a rigorous quality-control step requiring no additional
experiments. The application of LM is expected to increase the accuracy and reproducibility of
enzymology data even when the presence of interferences is not suspected beforehand.

An ensuing expansion of this work envisioned the systematization of the LM for automatic
validation of enzymatic assays and unbiased estimation of true/apparent MM parameters. This
was possible through the implementation of a webserver named “interferENZY”, running a
script written in the GNU Octave programming language, which dynamically parses input
datasets and applies an LM algorithm adapted to the effect (Chapter 3). Any user interested
in validating continuous and/or end-point assays can run the interferENZY webserver from a
publicly available platform and upload experimental datasets consisting of reaction time-course
curves measured at different substrate concentrations and fixed enzyme concentration.
Customized output reports and graphs are produced summarizing data treatment, fitted
parameters, confidence intervals and standard errors, and overall quality scores characterizing
the assay. The kinetic parameters thus determined have the significant advantage of relying
on automatically validated portions of the measured progress curves, as opposed to the
subjective “initial rate measurements” adopted during conventional MM analysis. Expectedly,
this webserver will be a useful tool for the standardized characterization of enzymes,
contributing to increase the reproducibility and accuracy of experimental data reporting.

The next step in this study was to explore enzyme kinetics in the presence of modulator
compounds so that new potential drugs acting on disease-associated enzymes can be more
effectively screened. Firstly, the model enzymatic system associated with the Iron-Sulfur (Fe-

S) cluster formation in Escherichia coli, comprising the desulfurase IscS, the scaffold protein
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IscU and the potential inhibitor CyaY, was studied as a standard case of enzymatic modulation.
This study is performed in Chapter 4 employing the classic General Modifier Mechanism
(GMM) [9] for the characterization of the inhibitory effect of CyaY on the IscS-IscU enzyme-
scaffold system.

As a corollary application example of this thesis, Chapter 5 illustrates how the new kinetic
tools can be used on high-throughput screenings of enzyme effectors. The chosen enzyme
was a pathogenic variant of ataxin-3, a weak deubiquinating enzyme implicated in the
pathophysiology of the neurodegenerative Machado-Joseph Disease. Since the aggregation
of ataxin-3 could be associated to a loss of enzymatic activity, the discovery of an enzyme
activator and/or protective agent is a possible therapeutic strategy to be followed in the future.
In this chapter, a library of ~1200 FDA-approved drugs is screened in the search for activators
of ataxin-3. Compatible with high-throughput setups, the hit detection procedure is an adapted
version of the LM algorithm refined to account for changes in kinetic activity caused by different
enzyme modifier mechanisms. The LM sensitivity to subtle kinetic changes and time-
dependent modulation effects assures higher hit detection rates while revealing more false
positive results through the application of basic enzymology principles. This methodology has
allowed the identification of promising hit results, whose practical interest will be the subject of
further investigation in the future.

Other plans for future work are suggested in the final Conclusions & Future Work section of
the thesis, which also includes the candidate’s perspective about what are the major

achievements and contributions arising from this PhD study.
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I. The Michaelis-Menten Equation

The year of 2013 marked the one hundredth anniversary of the publication of the classic
Michaelis-Menten (MM) paper 'Die Kinetik der Invertinwirkung' [1] in which the MM equation
was first proposed. This work depicted the study of invertase (beta-fructofuranosidade, EC
3.2.1.26), an enzyme that catalyzes the conversion of sucrose to fructose and glucose, which
induces an inversion of optical rotation from positive (for the substrate) to an overall negative
value (for the mixture of products) [2]. In its original portrayal, the MM equation expressed the
rate v of the reaction as a function of the concentration of substrate [S] (sucrose), with ¢ as
the total molar concentration of enzyme (invertase), k as the dissociation constant of the
enzyme-substrate complex (an equilibrium constant and not a rate constant, despite being

originally represented as a lower-case character), and C as a constant of proportionality.

[S]
[S1+ & (1)

v=CP

In modern formality, C® corresponds to V, the limiting rate for a given enzyme concentration,
C corresponds to the catalytic constant k.,; (also known as turnover number), which defines
the number of catalytic cycles that an enzyme can perform per unit time [3], and @ is the total
molar concentration of enzyme; k corresponds to K, the equilibrium dissociation constant of
the enzyme-substrate complex.

Built on the work of earlier authors such as Adrian Brown [4] and Victor Henri [5,6], the MM
methodology became the standard approach to steady-state enzyme kinetics. Michaelis and
Menten understood the significance of pH control in enzymatic experiments and acknowledged
that initial rates were easier to interpret than time courses because the latter are more affected

by the reverse reaction, product inhibition and enzyme inactivation [3].

I.I. Briggs-Haldane Reaction Scheme

Modern representations of the MM equation employ the reaction scheme described in 1925 by
Briggs and Haldane characterizing the reversible formation of an enzyme-substrate complex
followed by its irreversible transformation into product and release of free enzyme:

ko
E+S @ ES SE+P (1.2)
k_q

where k; and k_; are the rate constants associated with the reversible binding step, and k, is

the rate constant corresponding to the catalytic step [7]. The concentrations of the different




species change with time t as described by the following system of first-order differential

equations:

% = —Iy[E)[S] + k_y[ES] (1.3)
d[(fts] = ky [E][S) — (k_y + ka)[ES] (1.4)
% = —ky[E1[S] + k_y [ES] + ky[E] (15)

% = k,[ES] (1.6)

subject to the initial conditions ([S],[E], [ES], [P]) = (Sy, Ey,0,0) . Although the analytical
solution of Egs. I.3-1.6 is not known [8], this system of equations can be simplified by application
of the steady-state approximation (SSA). According to this approximation, the concentration of
the enzyme-substrate ([ES]) complex remains constant in the presence of a large excess of
substrate once the initial transient period has elapsed [7,9]. Considering the following mass

conservation laws,

E, = [E] + [ES] (1.7)

So = [S]+ [ES] + [P] (1.8)
and the abovementioned SSA approximation,

d[ES] _
— =0 (1.9)

it is possible to simplify the system of ordinary differential equations composed by Egs. 1.3-1.6
and obtain the expression of the reaction rate v = k,[ES] as a function of the substrate

concentration [7]:

kaEo[S]

Tk, +k
TR T

v =k,[ES] ®v (1.10)

Eqg. 1.10 can be written in a more general form describing the hyperbolic dependence of the

initial reaction rate on the substrate concentration [3]:
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(1.11)

In addition, if the duration of the transient initial period is short enough to assume invariant
[S] = S,, the Reactant Stationary Approximation (RSA) is applicable, and the final form of the

MM equation is obtained:

VS,

7 = K + 5o (1112)

where v, is the initial reaction rate, V the limiting rate and K,,, the Michaelis constant. In the
Briggs-Haldane notation, V = k,E,, while K,,, = (k_; + k,)/k,. In order to extend the use of
the rate constant k, to more complex reaction schemes, V is written as k.,.E,, Where the

turnover number k.4, can represent more than one elementary step.

Il. PEA Model

Although the MM equation (Eq. 1.12) presents a useful simplification of the system of equations
1.3-1.6, its validity is restricted to the initial phases of enzymatic reactions with great excess of
substrate over the enzyme [10-12]. A vast and important region of conditions is, therefore,
ignored when using the MM equation, especially when other timescales than the initial
moments of the enzymatic reaction are considered. The publication of the Pinto et al. (PEA)
model in 2015 [10] contributed to reveal the “whole picture” of single active-site enzyme
kinetics without inhibition [10]. More specifically, considering S, > E, the ‘white’ region for
which the MM equation is valid, the complementary ‘gray’ (S, ~ E,) and ‘dark’ (S, < Ej)

regions were uncovered for all timescales of enzyme catalysis [10].

I.I. Formulation

As mentioned above, the system of first-order differential equations describing the Briggs-
Haldane reaction scheme (Egs. I.3-1.6) does not have a known analytical solution [8]. However,
by selecting the accessible pivotal variable (S, — P)/v, in which (S, — P) is the concentration
of product still to be formed, a closed-form solution of this system can be derived [10]. The
pivotal variable represents how much time would be required for reaction completion if the

instantaneous rate of reaction was kept constant. Although an approximate solution, the PEA




model is valid for every combination of model parameters and variables, thereby surpassing
the restrictions imposed by the MM equation [10].

The system of first-order differential equations described by Egs. 1.3-1.6 constitutes the starting
point for the derivation of the PEA model. It is possible to eliminate the equation corresponding

to d[E]/dt from this system by employing the mass conservation law presented in Eq. 1.7:

O kB — [ESDIS] + ks [ES) (1.13)
T~ ke (B — [ESDIS) — ks + k) [ES) (.14)
@ = k,[ES] (1.15)

t

The concentration of the different species can be normalized by K,,, as s = [S]/K,,, ey =
[Eol/Km, ¢ = [ES]/Kpm, p = [P]/Ky, With K¢ = k_; /kq; Egs. 1.13-1.15 can also be expressed

as a function of the scaled time 0 = k,t:

(1 Ks)ds_ (KS N )
K Jag =5 c\g * (1.16)
(1 Ks)dc— (1+5)
Kn/do €oS — ¢ S (1.17)
dp
E =cC (|18)

The Supplementary Information provided by Pinto et al. (2015) [10] describes in detail the
different steps and the three approximations required to derive the PEA model from Egs.
1.16-1.18. The obtained analytical solution is represented as a function of s, ey, and the scaled
variables t = K,,,/V, 0 = t/(ept) and g = 1 — Ks/K,,.

A simplified form of the final solution is given by Eq. 1.19a, where the pivotal variable is defined
in terms of the Lambert function. This function constitutes the inverse of the function f(x) =
xe*, corresponding to the solution to the transcendental equation W (x)e" ™) = x, denoted as
W(x) [13]. This formulation departs from definitions valid for S, > E, (‘white’ region of
conditions) and incorporates a time-dependent correction factor @, (Eqg. 1.19b) that accounts

for the influence of regions of lower s,/e,.




So— P = 1[1 + a)(soexp(so — t/r))]q)C (1.19a)

1 tanh (E)
P (1.19b)

2 \ 1+ w(soexp(so — €o0)) /

[I.1l. Estimation of kinetic parameters with the PEA Model

The stationary state of an enzymatic reaction is reached after the initial transient period of ES
complex build-up has elapsed. The enzymatic reaction rate reaches its maximum value at the
stationary instant t* corresponding to the end of this build-up phase. The pivotal variable at
this instant ((S, — P*)/v*) is independent of K;, as demonstrated in the Supplementary
Information provided by Pinto et al. (2015) [10]. Hence, considering stationary-state conditions,
an algebraic simpler form of Eqg. 1.19a is obtained (Eq. 1.20). Its use allows for simple and
universal determination of MM parameters, namely K,, and V, through the application of
simple linear regressions and without major experimental limitations other than the

instrumental resolution necessary to observe stationary moments.

So > E
So=P* _ T _ So=P* _) v »T07 70
— =52 +sotey+lso—el) === g, 5, < E, (1.20)
V )

The stationary state version of the PEA model describes the linear influence of E;* over the
stationary pivotal variable for S, < E, and fixed S,, as well as the linear influence of S, over the
same variable for S, > E, and fixed E,. Under non-MM conditions the highest reaction rates
may not coincide with the initial reaction rates [10]. Therefore, Eq. I.20 eliminates the ambiguity
associated to the use of instantaneous reaction rate methods. For maximal values of the
dissociation constant (Ks,/K,,, = 1) and S, > E,, Eq. .20 is reduced to the MM equation, while
for S, < E, it reduces to the simplified Bajzer and Strehler equation [14] (Eqg. 1.21):

VS,
———, Sy>E
K +So 0o
Yo=19 s, (1.21)

. Sy <E
K, + E, 0="0
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