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Abstract

Cancer is a major cause of death worldwide, the Global Burden of Disease — a global report on
the causes of death — reported 9.56 million cancer deaths in 2017, making it the second-highest
mortality rate and causing one in six deaths that year. Primary lung cancer accounts for 13% of
new cancer cases annually, with the histologic subtypes lung adenocarcinoma and squamous cell
carcinoma composing approximately 60% of all types of lung cancer cases.

Cancer prediction relates to the process of differentiating cancerous from normal tissue, whereas
histologic subtype classification differentiates groups within the same type of cancer based on
specific characteristics of the cancer cells. Lung cancer represents a group of histologically and
molecularly heterogeneous diseases even within the same histological subtype. Moreover, accu-
rate histological subtype diagnosis influences the specific subtype’s target genes, and thus discov-
ering risk genes for each subtype will help define a personalised treatment plan that can target
those genes in therapy.

The American Joint Committee on Cancer staging system originated in the 1950s from the
need for an accurate, consistent, universal cancer outcome prediction system, and since then,
new prognostic factors have been identified and new methods for integrating prognostic factors
have been developed. Even though the analysis of clinical parameters such as cancer staging
and histopathological assessment can provide useful prognostic insights, they fail to capture the
complex associations needed for accurate prognosis. Understanding what underlying genomic
changes are affecting survivability will improve patients’ risk stratification and has the potential
to enhance the prognostic and treatment mechanism.

In this work, we tackle two different problems: 1) cancer prediction and subtype classification
using gene expression data; 2) predicting the survival outcome of patients using clinical and mul-
tiple genomic data. For problem one, we use two different approaches: a deep learning model,
which is the standard strategy in the state-of-art; and gradient boosted trees that we provide ex-
plainability on using Shapley additive explanations to retrieve valuable biological insight. For
the second problem, we use unsupervised learning techniques to extract representations of each
modality, in order to reduce dimensionality and avoid the data redundancy induced by combining
heterogeneous data types. Furthermore, we propose a method of late fusion to combine the latent
representations of each modality into a deep learning network with a Cox regression layer that
predicts the survival of lung cancer patients.

On cancer prediction, the best performing model achieved an area under the receiver operating
characteristic curve of 0.984, and 0.971 on subtype classification, leading to an improvement over
the previous state of the art’s results. Furthermore, due to our interpretable approach for cancer
classification, two sets of gene signatures were extracted: a set that differentiates normal from can-
cerous tissue and another that distinguishes adenocarcinoma from squamous cell samples. These
genes were analysed by performing hierarchical clustering to find commonly regulated genes,
which resulted in the identification of relevant subtype-specific gene signatures that might be po-
tential targets for personalised subtype therapy. For the survival outcome prediction problem,
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using a variational autoencoder on the unsupervised learning stage allowed us to reduce the high-
dimensional gene expression profiles without suffering from overfitting and vanishing gradients
due to the limited sample size. To validate the late fusion model’s effectiveness and analyse the
features generated by the unsupervised learning methods, we compared their effectiveness in the
risk stratification of cancer patients with interpretable features used by single-modality learners.
The results showed a significant performance gain of the late fusion model compared with single
modalities, with a concordance index of 0.701 for adenocarcinoma’s survival prediction and 0.622
for squamous cell carcinoma. The inclusion of extracted features from multiple modalities led to
the selection of prognostic factors fitter for survival prediction, which allows for better risk strat-
ification of lung cancer patients and can lead to an improvement of the treatment and prognostic
mechanism.

CCS Concepts: • Applied computing → Life and medical sciences → Genomics → Com-
putational genomics; • Computing methodologies → Machine learning → Machine learning
approaches→ Neural networks;

Additional keywords and phrases: Machine learning, Deep Learning, Cancer Prediction, Sub-
type Classification, Survival Prediction



Resumo

O cancro é uma das principais causas de morte no mundo, e de acordo com o Global Burden of
Disease — um relatório mundial sobre causas de morte — em 2017 foram reportadas 9,56 milhões
de mortes derivadas de cancro, sendo assim a segunda maior causa de mortalidade e resultando
em uma em cada seis mortes nesse ano. A neoplasia proveniente do pulmão é responsável por
13% de todos os tipos de cancro registados anualmente e reparte-se em vários subtipos histológi-
cos, entre os quais o adenocarcinoma pulmonar e o carcinoma de células escamosas compondo
aproximadamente 60% de todos os casos de cancro do pulmão.

A previsão ou classificação de cancro está relacionada com o processo de distinguir tecido
canceroso de tecido normal; por sua vez, a classificação de subtipo histológico diferencia grupos
dentro do mesmo tipo de cancro, com base no estudo histopatológico do tumor. O cancro do
pulmão é uma doença histologicamente e molecularmente heterogénea, apresentando diferenças
mesmo dentro do mesmo subtipo histológico. Para além disso, o subtipo histológico influencia os
genes de risco que estão ativos e, portanto, a descoberta dos mesmos possibilita o desenvolvimento
de novas terapias personalizadas para subtipos histológicos.

O sistema de estadiamento de cancro do American Joint Committee on Cancer foi iniciado
em meados de 1950 com o intuito de criar um sistema universal e consistente para o prognóstico
de pacientes com cancro, e desde então surgiram novas metodologias que integram vários fatores
de prognóstico. Ainda que a análise de parâmetros clínicos, como o estágio clínico ou o relatório
histopatológico ajudem no prognóstico de pacientes de cancro, não conseguem, porém, captar
as complexas correlações necessárias para oferecer um bom prognóstico. A compreensão dos
processos genómicos que estão a acontecer é fundamental para entender como estas mudanças
afetam a sobrevivência dos pacientes, o que pode aumentar o nível de estratificação dos pacientes
e tem o potencial para melhorar o mecanismo de prognóstico e de tratamento de doentes.

Neste trabalho abordamos duas temáticas: 1) a classificação de cancro e de subtipo histológico,
usando dados de expressão genética; 2) a previsão da sobrevivência de pacientes com cancro do
pulmão, usando dados clínicos e vários tipos de dados genómicos. Para o primeiro problema us-
amos duas estratégias: recorremos um modelo de deep learning, já que este é o padrão no atual
estado da arte; e usamos métodos de gradient boosted trees de uma forma interpretável com o intu-
ito de obter resultados relevantes do ponto de vista biológico. Para o segundo problema, utilizamos
métodos de aprendizagem não supervisionada, de formar a extrair representações significativas de
cada modalidade, com o intuito reduzir a alta dimensionalidade dos dados genómicos e evitar
qualquer tipo de redundância causada pela heterogeneidade dos dados. Para além disso, propo-
mos um método de late fusion de forma a combinar as representações latentes de cada modalidade
que são fundidas numa rede neuronal com uma Cox regression layer para efetuar a previsão da
sobrevivência dos pacientes com cancro.

O melhor modelo para previsão de cancro obteve uma performance area under the receiver
operating characteristic curve de 0.984, e de 0.971 para a classificação do subtipo, o que repre-
senta uma melhoria em relação ao estado da arte. Além disso, como resultado da nossa abordagem
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interpretável na classificação de cancro e subtipo, dois conjuntos de assinaturas genéticas foram
extraídas: um grupo que distingue tecido normal de cancerígeno e outro que distingue cancro
adenocarcinoma de escamoso. Estes genes foram analisados, usando clustering hierárquico, de
forma a identificar genes co regulados, o que permitiu a identificação de assinaturas sob e sobre
expressas em cada subtipo histológico que podem ser potenciais alvos de terapia personalizada.
Para o problema da previsão da sobrevivência, o uso de um variational autoencoder possibilitou
a redução da alta dimensionalidade dos dados de expressão genética sem haver perdas de eficiên-
cia devido à quantidade reduzida de dados disponíveis. Para validar a eficácia do modelo de late
fusion e as representações geradas pelos modelos de aprendizagem não supervisionada, compara-
mos a eficácia destes, na estratificação de pacientes com cancro com os parâmetros clínicos, que
são interpretáveis. Os resultados mostraram melhorias significativas no desempenho preditivo do
modelo de late fusion com um concordance index de 0.701 na previsão de sobrevivência da coorte
adenocarcinoma e de 0.622 para o escamoso. As features geradas pelos modelos de aprendiza-
gem não supervisionada e usadas pelo modelo de late fusion, mostraram melhor separabilidade
em relação aos melhores parâmetros prognósticos clínicos, o que contribui para uma melhor es-
tratificação de pacientes com cancro do pulmão e por sua vez da previsão da sobrevivência.

Conceitos ACM CCS: • Computação aplicada → Ciências médicas e sociais → Genética →
Computação genética; • Metodologias de computação→ Aprendizagem automática→ Estraté-
gias de aprendizagem automática→ Redes Neuronais;

Palavras chave: Aprendizagem automática, Redes Neuronais, Previsão de cancro, Classificação
de subtipo, Previsão de sobrevivência
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Chapter 1

Introduction

Cancer is a leading cause of death; in 2017, 9.56 million cancer deaths were reported worldwide,

making it the second-highest mortality rate and causing one in six deaths that year [134]. Demo-

graphically, cancer mortality is more significant in developed countries, mainly due to the lower

incidence of other diseases. Furthermore, the economical impact of cancer is significant and is

increasing, in 2010, it was estimated at approximately US$ 1.16 trillion [134], so there is an in-

creasing motivation to research it. Figure 1.1 presents the death toll of cancer distributed by type,

with lung cancer totalling 1,88 million deaths.

Figure 1.1: Number of deaths across all ages and both sexes, broken down by cancer type in 2017.
Adapted from [80].
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Around one-third of deaths from cancer are due to the five leading behavioural and dietary

risks: high body mass index, low fruit and vegetable intake, lack of physical activity, tobacco

usage, and alcohol abuse. Tobacco use is the most critical risk factor for cancer and is responsible

for approximately 22% of cancer deaths [100].

Lung cancer constitutes 13% of new cancer cases annually, Figure 1.2 shows an increase in

the mortality rates for lung cancer in the last 30 years, that is directly correlated with an increase

in incidence rate; however, the survival rate remains at 20% [134]. Studies show that between 30

to 50% of cancers can currently be prevented by avoiding risk factors and implementing existing

evidence-based prevention strategies [100], yet early diagnosis is essential and a critical factor for

chances of survival.

Figure 1.2: Progression of deaths broken down by type from 1990-2017. Adapted from [80].
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1.1 Motivation

The use of computational genomics can impact cancer research in many ways, but maybe the most

significant is understanding the underlying causes of cancer.

Cancer is a genetic disease caused by specific changes to genes (mutations) that control the

way cells function, especially how they grow and divide [68]. It represents a group of histolog-

ically and molecularly heterogeneous diseases even within the same histological subtype [116].

Moreover, accurate histological subtype diagnosis influences the specific subtype’s target genes,

which will help define the treatment plan to target those genes in therapy. Interpretable subtype

classification approaches allow us to identify gene expression signatures that better differentiate

lung adenocarcinoma (LUAD) from lung squamous cell carcinoma (LUSC) subtypes, potentially

discovering new targetable genes for personalised therapy.

Medical prognosis of cancer is done mainly through the analysis of clinical parameters to date.

Although cancer staging, histopathological assessment, and clinical variables can provide useful

prognostic insights [135], they fail to capture the complex associations needed for accurate prog-

nosis. Combining multimodal data can lead us towards a deeper understanding of what underlying

genomic changes affect survivability, which will improve the risk stratification of patients and has

the potential to enhance the prognostic and treatment mechanism.

1.2 Objective

In this work, we aim to implement Machine Learning (ML) solutions for cancer prediction and

subtype classification using gene expression data. Furthermore, we aim to develop Deep Learn-

ing (DL) solutions to perform a risk analysis assessment using multi-omics and clinical data to

determine the outcome of patients diagnosed with cancer.

For the cancer prediction and subtype classification problems, we aim to develop two different

ML models types: tree-based learning models that are interpretable and therefore provide biologi-

cal insight; we also develop a DL model to benchmark the results, which is the standard strategy in

the state-of-art. Our interpretable approach allows us to extract two sets of genes with biological

relevance: a set that differentiates normal tissue from cancerous tissue, and a set of genes that

distinguishes LUAD from LUSC samples.

For the outcome prediction problem, we use different types of genomic data and clinical vari-

ables to predict the survival of LUAD and LUSC patients. Our contribution focuses on the in-

clusion of heterogeneous data types needed for survival prediction that have shown contradictory

results in predictive performance on state of the art. We experiment with early and late fusion

techniques to effectively combine the different modalities and use a DL model to assess LUAD

and LUSC cohorts’ survivability.
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1.3 Contributions

• Distinguish cancerous from non-cancerous tissue - We implemented a deep feedforward

network (DFF) to benchmark the results, and a gradient boosted tree model (GBDT) to

differentiate between cancerous and non-cancerous gene expression samples. Our best per-

forming classifier, the DFF, obtained an Area Under the ROC Curve (AUC) of 0.984.

• Distinguish LUAD from LUSC tissue - A DFF and GBDT were also implemented to

differentiate between LUAD and LUSC histologic subtypes’ gene expression samples. The

best performing classifier, the GBDT model obtained an AUC of 0.971 conferring better

results than state of the art.

• Identify relevant cancer and subtype-specific gene signatures - We provided interpretabil-

ity on the tree-based learner in order to identify relevant gene signatures that differentiate

between cancerous and normal tissue, and LUAD and LUSC genomic profiles. This resulted

in a paper in the process of publication at the IEEE EMBC 2021 conference1.

• Predict LUAD and LUSC patients’ survival outcome - We implemented a Late Fusion

(LF) model to combine gene expression, mutation and clinical modalities for the survival

prediction of the LUAD and LUSC cohorts. Unsupervised learning is used to extract latent

representations of each modality, therefore reducing the high-dimensionality of the genomic

data. Our LF approach achieved a concordance index (C-Index) of 0.701 for LUAD and

0.622 for the LUSC cohort, presenting better results than single-modality approaches while

solving the problem of combining heterogeneous genomic data.

1.4 Document Structure

Our work is divided into six chapters, as follows. On chapter 2, we contextualise the problem,

giving a brief definition on cancer and how it develops, and a more detailed explanation on the

genomic aspect of cancer, more specifically lung cancer. On chapter 3, we perform a literature

review, where we approach the machine learning models we will be implementing as well as

an assessment of the literature using the same datasets. On chapter 4, we perform an exploratory

analysis on the datasets we use for data understanding. On chapter chapter 5 we detail our method-

ology for the for cancer prediction and subtype classification problems, and on chapter 6 for the

survival outcome prediction problem.

1Conference of the IEEE Engineering in Medicine and Biology Society (https://embc.embs.org/2021)

https://embc.embs.org/2021


Chapter 2

Problem Contextualization

In this chapter, we contextualize some of the main biology concepts required for an understanding

of the cancer genomics research. We start by defining cancer and give an overview of how cancer

develops, and then focus on lung cancer histologic groups and define its subtypes. Finally, we give

an overview of the underlying genetics in cancer and briefly explain the data types we use.

2.1 Cancer

2.1.1 Understanding the Cancer Mechanism

On Hanahan and Weinberg [57], the authors build a framework to understand the biological capa-

bilities acquired during the multistep development of human tumours. The model in Figure 2.1,

can be seen as a game, where cells need to acquire a set of capabilities without which they are

not fit as a cancer cell. In the first work, the authors describe six capabilities, which we explain

succinctly:

Resisting cell death: When cells stop behaving properly, they go through apoptosis (launch

their own "suicide mission"), so it is necessary to avoid apoptosis.

Sustaining proliferative signalling: Cells have to discover ways to proliferate, by generat-

ing growth signals.

Inducing angiogenesis: They need the energy to multiply, so they have to induce angiogen-

esis, which consists of sending signals to the body to transfer in more blood.

Evading growth suppressors: Antigrowth signals can block proliferation. It needs to stop

listening from signals from the rest of the body.

Activating invasion and metastasis: It has to figure out ways to invade tissues and to metas-

tasize so that it can escape the tumour mass and colonize new tissue.

Enabling replicative mortality: It needs to replicate infinitely.

Deregulating cellular energetics: The cell needs the energy to survive, so it has to destabi-

lize the energy-producing machinery.

Avoid immune destruction: The tumour is actively reprogramming immune cells in order

not to recognize and attack it.

5
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(a) Six acquired capabilities of cancer (b) Emerging hallmarks and traits

Figure 2.1: Images from Hallmarks of Cancer: Cell [57] and The Next Generation Cell [58].

Tumour-promoting inflammation: A characteristic associated with the process of angio-

genesis in which the influx of blood causes inflammation.

Genome instability and mutation: Gain of genetic instability, which causes cells to in-

crease the accumulation of mutations

2.1.2 Histology of Lung Cancer

Lung cancer is categorized into two main histological groups: small cell lung cancer (SCLC)

and non-small cell lung cancer (NSCLC). NSCLCs are generally subcategorized into adenocarci-

noma (LUAD), squamous cell carcinoma (LUSC), and large cell carcinoma (LCC). Accumulating

evidence suggests that lung cancer represents a group of histologically and molecularly hetero-

geneous diseases even within the same histological subtype [67]. On Figure 2.2, the histologic

groups and the most common subtypes of lung cancer are presented along with their frequencies.

The molecular heterogeneity of lung cancer makes it a difficult task to identify a set of well-defined

Figure 2.2: Frequency of lung cancer histologic types and subtypes, data from [31], [64].
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risk genes for each subtype. The identification of the risk genes will help to define the treatment

plan that can target them in therapy, so it is necessary to provide accurate diagnosis according to

the histologic subtype.

2.2 Cancer Genomics

2.2.1 Mutations

Cancer is a combination of germline mutations, somatic mutations, epigenomic changes, and

gene-regulatory alterations that give rise to complex phenotypes [69]. Mutations can be classi-

fied according to their origin as germline or somatic mutations. A germline mutation occurs in the

germline, a specialized tissue that is set aside in the course of development to form sex cells and

can be passed to offspring. Somatic mutations, however, can occur in any of the cells of the body

except the germ cells (sperm and egg), which means that only tissues derived from the mutated

cell are affected, and are generally triggered by environmental changes [37].

Somatic or acquired mutations are the most common cause of cancer, and are the ones repre-

sented in our data. Furthermore, we can classify cancer-causing mutations into two types: driver

mutations confer an advantage to the growth of the tumour; passenger mutations do not directly

contribute to the fitness of the tumour. Driver mutations are the ones we are interested in discover-

ing, and passenger mutations can be seen as outliers because even though they are abnormalities,

they do not have a direct impact on tumour growth. These driver genes responsible for inducing

tumorigenesis are represented in four distinct classes:

• Proto-oncogenes are genes that normally promote normal cell growth; however, when mu-

tated, they become oncogenes and stimulate overactive cell growth.

• Tumour suppressors usually function to slow cell division, and when mutated, they exhibit

loss of function and allow for uncontrolled cell growth.

• Mutator genes are genes which normally regulate genomic stability.

• Epi-mutator genes are genes whose mutation or dysregulation leads to drastic gene-regulatory

changes.

It is also important to mention the concept of a fusion gene, which is a gene resulting from the junc-

tion of two unrelated genes. Fusion genes may lead to the development of some types of cancer;

for example, the BCR-ABL fusion gene and protein are found in some types of leukaemia [69].

2.2.2 Gene-regulatory pathways

A biological pathway is a series of actions among molecules in a cell that lead to a particular

product or a change in the cell, gene-regulation pathways on its hand turn genes on and off [69].

These pathways are essential to cancer research as they provide a way to understand the interaction

between chain mutations of genes. In Hammerman et al. [39], a Rat Sarcoma Virus (RAS) pathway
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was identified which showed a potential therapeutic target in most tumours, offering new avenues

of investigation for the treatment of squamous cell lung cancers.

2.2.3 Genomic Sequencing and Data Types

Gene expression or messenger RNA (mRNA) data is a result of RNA-sequencing (RNA-seq),

which is a technique that can examine the quantity and sequences of ribonucleic acid (RNA) in a

sample using next-generation sequencing (NGS). It analyzes the transcriptome of gene expression

patterns encoded within our RNA [132]. RNA-seq can tell us which genes are turned on in a cell,

what their level of expression is, and at what times they are activated or shut off [107], which

enables towards a deeper understanding of molecular changes that might lead to disease.

Whole-genome sequencing (WGS), is a technique to sequence the entirety of the genome,

whole-exome sequencing (WES) instead focuses on just the protein-coding sequences, covering

just about 2% of the genome of an individual [96]. Both techniques collect information which

makes it possible to analyze the somatic mutations present in an individual, and although WGS is

most powerful, WES is more common due to its lower cost.



Chapter 3

Literature Review

In this chapter, we perform a broad literature review on machine learning applied to cancer

research. The research on this topic is pervasive and has reached many different fields, in-

cluding medical imaging, computer-assisted decision making, multimodal and transfer learning

paradigms. In this review, we centre only on literature specific to applied computing for cancer

genomics.

3.1 Machine Learning for Cancer Genomics

Although it is unattainable to do a full-coverage, we tried to diversify our research to capture the

paradigm of cancer genomics research. We focused on papers from the last five years and gave

more attention to papers following the same line as our work. On diagram 3.1 we try to portray

the possible research lines specific to this problem. Highlighted are the topics we will approach in

our research.

Figure 3.1: The paradigm of cancer genomics research. Topics highlighted in grey are the ones
approached in this work.
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To guide our research, we divide related research into three main topics:

• Modality/Data - It can be genomic only, but there is a noticeable trend in the integration

of multiple modalities (clinical and genomic, or multi-omics). Genomic data represents a

broad spectrum of data, which can be present in many forms. SNP arrays, for example,

are used for detecting genetic variations within a population. Gene expression relates to

the process the cell employs to produce the molecule it needs by reading the genetic code

written in the DNA [36]. Mutation data is acquired by mapping the somatic mutations of an

individual.

• Approach - We chose to divide into three separate categories: traditional machine learning

models; deep learning models; and ensemble strategies which combine the multiple learners

specified before.

• Prediction Scenario - Here, we look at three types of papers whose goal is to predict:

◦ Cancer Susceptibility - This includes work that tries to detect cancer (cancer predic-

tion), as well as those who try to predict cancer histologic subtypes (subtype classifi-

cation).

◦ Cancer Recurrence - Refers to predicting the re-incidence of cancer after treatment.

◦ Cancer Survival - Applies to work whose interest is predicting the outcome for cancer

patients.

On Tables 3.1, 3.2, 3.3 we summarize in tabular form the main concepts of the papers covered in

the state of the art discussion for an easier understanding of each individual paper. Each table is

divided as follows:

• Focus - A short summary, highlighting the main objective of the work.

• Approach - Details the specific strategies and models used to accomplish the objective.

• Cancer Type - Refers to the cancer type and histologic subtype (if applicable) that the

research is directed.

• Data - Indicates the data type(s) used, and the origin of the specific datasets.

• Metrics and Evaluation - The type of validation performed and the metrics used for eval-

uation of performance.

• Issues and Limitations - Brief comments on possible limitations of the work.

• Conclusions - Explains the results obtained as well as the final remarks.



3.1 Machine Learning for Cancer Genomics 11

3.1.1 Dimensionality Reduction

Dimensionality reduction is widespread in pre-processing of high dimensional data analysis, vi-

sualization and modelling. One of the simplest ways to reduce dimensionality is by Feature
Selection (FS), which refers to the process of selecting a smaller set of features from a wider

set [76], normally as a pre-processing step of the modelling phase of the data mining process.

Feature Extraction (FE) is a process that extracts a set of new features from the original features

through some functional mapping [98], it is a more general method in which one tries to develop

a transformation of the input space generally onto the low-dimensional subspace that preserves

most of the relevant information [22].

The advantage of FS is that no information about the importance of single features is lost,

as variables are not transformed. On the other hand, if a small set of features is required and

the original features are very diverse, information may be lost as some of the features must be

discarded. With FE techniques, the attribute space’s size can often be decreased strikingly without

losing much information about the original attribute space. An important disadvantage of FE is

the fact that the linear combinations of the original features are usually not interpretable and the

information about how much an original attribute contributes is often lost [74].

3.1.1.1 Feature Selection

Many FS methods applied to genomic data are based on a gene scoring function that assigns a

score for each gene based on individual contribution, and such gene scoring functions can be

the classification accuracy of individual genes. These methods generally return a number of top-

ranked genes, and their quality is measured by the classification accuracy of the classifier built

on them [14]. In Cai et al. [14], the authors propose clustered gene selection (CGS), a method

based on the above premise; however, they propose doing gene clustering before gene selection,

by applying an algorithm like K-Means. However, most genes might not contain informative

point mutations and often remain normal (i.e. zero values in the data) [125], which results in very

sparse data. In Yuan et al. [139], the authors apply index sparsity reduction to solve this problem,

by converting the zero values to indexes of its non-zero elements. Furthermore, they propose a

method for clustered gene filtering (CGF) that locates the discriminatory gene subset based on

mutation occurrence frequency, by using the mean and standard deviation of the distances from

each sample to the whole dataset [139], instead of to the class centre as in the CGS approach.

In Xiao et al. [136], the authors use differential expression analysis for sequence count data

(DESeq)[99]. This technique estimates variance-mean dependence in count data from high-throughput

sequencing assays and tests for differential expression based on a model using the negative bino-

mial distribution [99], which managed to bring the selected genes to 3% of the total gene pool,

and concluded that the selected feature set lead to better results. In Wang et al. [49]; the criteria

of Max-Dependency, Max-Relevance, and Min-Redundancy (mRMR) was used; which tries to

maximize the relevance between features and classification variables while minimizing relevance



12 Literature Review

between features [123]. The empirical analysis showed that mRMR criteria outperformed the sim-

pler Max-Relevance criteria in terms of selected genes. Finally, in Chen et al. the authors used

a more straightforward approach, a chi-square test to identify the top 10 rank survival correlated

gene signatures for each data set [18], although a pre-process step of converting the continuous

gene expression data to quintiles was necessary to reduce variability.

3.1.1.2 Feature Extraction

There are two broad categories for FE algorithms. Linear FE assumes that the data lies on a lower-

dimensional linear subspace, and it projects them on this subspace using matrix factorization. In

non-linear FE, a low-dimensional surface can be mapped on a high-dimensional space so that a

non-linear relationship among the features can be found [65].

In Adetiba et al. [1], the authors applied a pre-processing step to convert the DNA sequences

to binary indicator sequences mapping (Voss mapping) and extracted relevant features using His-

togram of Oriented Gradient descriptors (HOG) [27] and Local Binary Patterns (LBP) [126], both

are methods of extracting features from images. A similar strategy of embedding the gene expres-

sion values into a 2D image that considers the genes’ overall features and computed features was

used in De Guia et al. [29]. In Danaee et al. [28], a stacked denoising autoencoder (SDAE) was

used to extract functional features from high-dimensional gene expression profiles (RNA-seq). In

common among these approaches is the loss of interpretability of results compared with the feature

selection strategies.

3.1.1.3 Summary

The curse of dimensionality is an inherent problem to the genetic expression research, as the

datasets present a pattern of a large number of variables and a low samples count. This section

discussed different FS and FE techniques, which are strategies generally used for dimensionality

reduction to decrease the complexity of the modelling stage’s input features and avoid overfitting.

A fundamental difference between these strategies is that FE transforms the features generally

to a lower dimension space; therefore, we lose interpretability on the original features’ contribu-

tion. On the other hand, FS reduces the feature dimension by selecting a subset of the original

features, so part of the information must be discarded.

Method Advantages Disadvantages
Preserving data characteristics for interpretability Discriminative power

FS
Shorter training times Reducing overfitting

Higher discriminating power Loss of data interpretability
FE

Control overfitting when it is unsupervised Transformation maybe expensive
Table 3.4: A comparison between feature selection and feature extraction methods applied on gene
expression data. Adapted from [65].
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Interpretability is a significant concern from cancer biology’s perspective since identifying the

cancer driver genes in an individual provides essential information for treatment and prognosis.

There has been a recent trend in trying to explain these non-interpretable models; however, lack

of transparency and accountability of predictive models can have severe consequences when used

for high-stakes decision [113]. Therefore, and mainly on this domain interpretability should be

prioritized, so models that are already interpretable should be preferred.

3.1.2 Supervised and Unsupervised Learning

Machine learning methods can usefully be segregated into two primary categories: supervised or

unsupervised learning methods. Supervised methods are trained on labelled examples and then

used to make predictions about unlabelled examples, whereas unsupervised methods find struc-

ture in a data set without using labels [88]. The intermediate between supervised and unsupervised

learning is semi-supervised learning. The semi-supervised setting is a mixture of these two ap-

proaches: the algorithm receives a collection of data points, but only a subset of these data points

has associated labels [56].

3.1.2.1 Supervised and Semi-Supervised Learning

In Adetiba et al. [1], an artificial neural network (ANN) was used to classify various types of

genomic mutations. Although ANN’s are generally perceived as "weak" classifiers, the approach

of using a simple ANN coupled with HOG yielded good results, conferring an accuracy 95.90%.

The sample size was relatively small (6,406 mutations of EGFR, KRAS and TP53) which might

explain why the ANN performs so well.

In Yuan et al. [139], a supervised learning approach using a deep neural network (DNN) clas-

sifier based on somatic point mutations, was used to classify 12 different types of cancer. The total

dataset contained 484,463 mutations, CGF was used to filter relevantant mutations and a technique

of index-sparsity reduction (ISR) was applied to shrink the data length. Furthermore, a validation

was made to assess the results of the DNN model against other baseline models, as well as a val-

idation of the ISR technique using the baseline models. The DNN classifier generated the best

Accuracy 60.1% coupled with the CGF+ISR dataset, but all the baseline models also performed

better after CGF+ISR pre-processing.

In Sun et al. [124], Mutect2 a method that applies a Bayesian classifier [23], was utilized to

detect somatic mutations in 8,604 WES samples from 12 different types of cancer. The filtered

data was fed into a four hidden-layer DNN. Exponential decay method was employed to optimize

the learning rate [97], and L2 regularization to minimize overfitting [91]. It is proven in practice

that pre-training the parameters in a deep architecture leads to a better generalization on a specific

task of interest [129]. Greedy layer-wise pre-training is an unsupervised approach that helps the

model initialize the parameters near a good local minimum and convert the problem to a better

form of optimization [9]. Two types of models were created, a specific cancer type model and

one to classify the mixture of 12 types. The average Accuracy of the specific model was 94.70%,
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and the mixture model 70.08%. Some limitations of the work that might explain the results in the

mixture model are the unbalanced distribution in-between cancer types, as well as the inclusion of

only genomic data. Still, the specific models presented excellent predictive performance.

3.1.2.2 Unsupervised Learning

In Dannae et al., both supervised and unsupervised learning methods were used. In pre-training,

an SDAE was used to extract features from gene expression data [28]. Support vector machines

(SVM) and ANN’s models were used to assess the SDAE generated features in a supervised man-

ner. The dataset was very imbalanced, but synthetic minority over-sampling technique (SMOTE)

was used to even out the samples. Validation was performed to assess the feature sets and com-

pare them with feature sets from other unsupervised learning models like principal component

analysis (PCA), on the task of gene identification. The DSAE model generated the better feature

set when compared with other baseline models, performing best in Accuracy (98.26%), Sensi-

tivity (98.73%) and F-measure (0.983) against the second-place kernel PCA (kPCA), which had

excellent Specificity and Precision. Although the results are excellent, two pitfalls come from this

strategy: first, the loss of interpretability of results which is generally not desirable in this domain;

and also the requirement for a large dataset.

In Chaudhary et al. [15], a similar strategy was used for predicting survival in liver cancer using

multi-omics data. First, an autoencoder with three hidden layers was used to transform features

from 360 multi-omics samples. Then for each extracted feature, a Cox proportional hazards (Cox-

PH) model [89] was built to select the features. The final reduced feature set was used to cluster

the samples by K-Means. Finally, two experiments were conducted, one with multi-omics data

only, and one with multi-omics and clinical data. Concordance index (C-index) [121] was used to

validate these experiments, and the authors concluded that adding the clinical data did not improve

the performance of the DL multi-omics based model. The authors speculate that this is due to the

unique advantage of the DL neural network, which can capture the redundant contributions of

clinical features through their correlated genomic features [15].

However, in Wang et al. [49] comparative research, their results contradict those of [15]. Their

approach uses mRMR for feature selection and builds a similarity matrix of the multi-omics and

clinical data using similar network fusion (SNF) algorithm, followed by semi-supervised learning

with a graph convolutional network (GCN) classifier. The results were evaluated in two separate

sets, using only multi-omics and combining it with clinical data. The validation of the GCN model

was performed using baseline models: Naïve Bayes (NB), k-nearest neighbours (k-NN), decision

tree (DT), LR, SVM and DNN. The results show a definite improvement in the addition of clinical

data: 0.7805 against 0.9280 AUC improvement for BRCA and 0.7840 to 0.8050 in LUSC for the

GCN model. This improvement was also verifiable in all the baseline models, including the DNN,

the model used in [15]. This indicates that although the GCN model might be more adapted to

handle this data, the SNF method to fuse the genomic and clinical data might be a crucial step that

was overseen in previous research.
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3.1.2.3 Summary

On this section, we discuss various approaches for supervised and unsupervised learning and even

semi-supervised learning. Overall supervised learning is mostly used on the cancer susceptibility

and cancer recurrence scenarios; and unsupervised and semi-supervised learning on the survival

prediction scenario.

Regarding the cancer susceptibility scenario, in general, previous works show us that DL mod-

els are prime candidates for cancer classification and subtype prediction tasks. One problem raised

by the use of deep learning models is the lack of interpretability. Moreover, although efforts have

been made to provide interpretability on the DL learners [28] [2], we can pinpoint two downfalls of

previous approaches: first, the DNN’s performed better when performing feature selection a priori

using variance selection techniques, which might leave out essential genes that are not selected by

variance or other techniques; secondly, the algorithms used to extract weights from the network

are based on leave one out technique, that might fail to capture correlations between some features

post feature selection. Providing interpretability on cancer prediction and subtype classification

tasks allows us to provide biologic insight that can significantly impact cancer genomics research.

Unsupervised learning finds patterns in data without a specific goal which makes it prone for

cancer survival prediction, as a significant stage of it is the risk stratification of patients, making

clustering algorithms suitable for this task. In the survival analysis scenario, a critical gap found

in the literature is related to handling the heterogeneous data types needed for survival prediction.

In Chaudhary et al. [15] and Wang et al. [49], contradictory results appear regarding the use of

genomic and clinical data to predict cancer survival. To our understanding, the cause of worse

results on [15] comes from the methodology applied to join the heterogeneous data, which can

cause redundancy on the data. Effectively combining multimodal data can lead us towards a

deeper understanding of what underlying genomic changes affect survivability.
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Chapter 4

Dataset Analysis

This chapter introduces the two datasets we will be using and examines them by doing an ex-

ploratory statistical analysis for preliminary data understanding. A more in-depth analysis will be

done onward on the data preparation section 5.1.1 but here we are interested in visualising the big

picture. On this work, we use gene expression quantification and somatic mutation data from The

Cancer Genome Atlas (TCGA) project. Different techniques might lead to biases in the collected

data so we will focus on data coming from one data source using the same sequencing platform 1.

4.1 The Cancer Genome Atlas Project

The dataset we are using comes from the TCGA project, and it is accessible on the National Can-

cer Institute (NCI) Genomic Data Commons (GDC) data portal 2 upon open access. The dataset

contains a total of 517 LUAD and 501 LUSC patients, and the quantity of gene expression samples

outweighs the number of clinical records as the same patient can have both primary tissue sam-

ples (TP), and normal tissue samples (NT), which are non-cancerous samples taken from biopsy

outside of the tumour region. We divide the statistical analysis into separate sections for better

understanding of each histologic subtype:

• Clinical data for the patients: On Tables 4.1, 4.2, 4.3 it is presented a summary of the key

sociodemographic variables, the macro survival statistics and variables of patients subject

to therapy, respectively. (N) represents the total count for a variable and (mean ± s.d.) the

average value and standard deviation for a variable’s distribution.

• Gene Expression and Mutation: Figures 4.1, 4.6 present a gene expression subtype char-

acterization for LUAD and LUSC subtypes, respectively. Figures 4.2 and 4.3 present an

analysis of LUAD mutational data and Figures 4.7, 4.8, 4.9 for LUSC.

• Preliminary survival analysis: Figures 4.4, 4.5 present a preliminary survival analysis for

LUAD and Figures 4.10, 4.11 for the LUSC histologic subtype.
1Illumina HiSeq 2000 (https://www.illumina.com/documents/products/datasheets/

datasheet_hiseq2000.pdf)
2TCGA data portal (https://portal.gdc.cancer.gov/)
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4.1.1 Lung Adenocarcinoma

4.1.1.1 Clinical Dataset

The LUAD dataset presents a reliable clinical sample with a small number of missing values

for each parameter. A full list of the clinical parameters and its missing values is present in

the appendix Table A.1, and on Table 4.1 we present the socio-demographic data for the LUAD

patients.

The population presents a reasonably balanced gender distribution with a 54% female major-

ity. All the patients are American citizens, and the population is prominently white. The average

age of the LUAD patient’s is 67.2 years old, and the age mean when diagnosed with cancer is

65.6. Regarding the clinical variable Tumour Stage, it is defined according to The Surveillance,

Epidemiology, and End Results (SEER) and The American Joint Committee on Cancer (AJCC)

Tumour, Nodes and Metastasis (TMN) classification [71], as a staging system to prognosticate

cancer patients. The population follows a left-skewed Gaussian distribution peaking at pathologic

stage I and with a minimum at stage IV.

4.1.1.2 Gene Expression Dataset

Regarding the gene expression dataset, a total of 598 LUAD samples were retrieved, with expres-

sion values for 20,531 genes, out of which 59 refer to normal tissue samples.

On Figure 4.1, it is presented the results of work from The Cancer Genome Atlas Research

Network [35], [39], where the authors perform expression subtype detection to differentiate molec-

ular subtypes of lung adenocarcinoma on the TCGA cohort. Molecular subtyping refers to the use

of genomics data to find clusters of tumours within a histologic subtype of cancer, that have shared

characteristics [71]. The molecular subtype is not part of the pathology report and is not used to

guide treatment [68].

Results showed that the set of genes SFTPC, DMBT1, FOLR1, DUSP4, FGL1, TDG, PLAU,

GOS2 and CXCL10 allow for differentiation of the three LUAD molecular subtypes: Bronchioid,

Magnoid and Squamoid. The study assessed the mutation profiles, structural rearrangements, copy

number alterations, DNA methylation, mRNA, miRNA, and protein expression of 230 lung ade-

nocarcinomas. Cluster analysis was performed, enabling further refinement in sub-classification

of LUAD, for the improved personalisation of treatment of this highly molecularly heterogeneous

disease [35].
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Figure 4.1: Analysis of molecular subtypes of LUAD using gene expression. Adapted from [35].

4.1.1.3 Mutation Dataset

In this section, we examine the mutational data for LUAD. Figure 4.2a presents the fraction of

genome altered, which refers to the percentage of the genome affected by copy number gains or

losses. Figure 4.2b presents the mutation count, that refers to the total number of mutations found

in the tumour genome. On Figure 4.3 we use a Treemap diagram to show the frequency of muta-

tions, that are considered oncogene mutations 4.3a and not oncogene mutations 4.3b, according to

the OncoKB database [105].

The fraction of genome altered for LUAD patients represented in Figure 4.2a has a minimum

value of 0.1; a median value of 0.24, corresponding to 24% of the genome altered; and a maximum

value 80%. The total number of mutations found in the tumour genome is represented in Figure

4.2b, except for five patients with missing values; the minimum number of mutations is 2, the

maximum is 2083, and the median value of mutations is 191.
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(a) Frequency of tumour genome alteration (b) Total number of patient’s mutations

Figure 4.2: Fraction of genome altered and occurence of mutations by patient.

(a) Possibly oncogenes.

(b) Mutated but not oncogenes.

Figure 4.3: Frequency analysis of mutated genes for LUAD.
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Regarding the LUAD mutation data, there is a total of 208,181 mutation samples, containing

a pool of 17,288 distinct mutated genes. We use the OncoKB database [105] to filter the genes

according to their classification of oncogene negative or positive. This classification is based

on their inclusion in various sequencing panels, and more information about it can be found in

Vogelstein et al. [130]. It resulted in 1,004 genes to be considered oncogenes (5.81%) and 16,284

not. It is important to note that this oncogene classification does not necessarily tell us that the

specific mutated gene contributes to cancer (driver gene) or, that it is a specific gene mutation

associated with lung cancer.

Figure 4.3 presents two treemaps that show the average frequency of each mutated gene, for

the oncogene positive and negative pool, respectively, and in both maps, it is not displayed the

full gene count due to the extensive number of genes. On Figure 4.3a containing the classified

oncogenes, the gene count is capped at ARID3A gene (0.6% frequency), and on Figure 4.3b it is

capped at 4% frequency corresponding to the ABI3BP gene.

According to the National Comprehensive Cancer Network (NCCN) [101] and the Euro-

pean Society for Medical Oncology (ESMO) [46] clinical practice guidelines for the diagnosis

of NSCLC, for LUAD, it is suggested biomarker testing for genes EGFR, ALK, ROS1, BRAF

and CD274. These genes are all present in our mutation pool. EGFR shows at 12th position with

frequency 12.5%; BRAF at 36th with 7.2%; ALK in 52nd with 6.9%; ROS1 at 92nd with 4.9%

and CD274 in the 787th position with 0.7%. These frequencies are relative to the oncogene pool

only, and their overall frequencies in LUAD and LUSC patients in comparison with literature will

be reviewed on the mutation data preprocessing stage on chapter 6.

4.1.1.4 Survival Analysis

This section performs preliminary survival analysis to explore the survival expectancy of each

histologic subtype. The survival data on Table 4.2 shows that 187 subjects died in the study period

and 330 remain alive. The 330 alive patients represent the study’s right-censored subjects, as the

event of interest (time of death) is unknown. LUAD patients have an average survival time of 989

days with a standard deviation of 1,001 days, revealing a very disperse distribution of survival

time. Table 4.3 presents the previous clinical therapy records of patients. Patients who have been

subject to previous therapy are a minority, only 13.5% of patients have been subject to radiation

therapy, and less than 1% have had previous neoadjuvant therapy. Previous therapy is an important

predictive indicator of survival, and parameters such as the type of therapy received and medicine

administrated should be factored in for survival prediction.

On Figure 4.4, we use a Kaplan-Meier plot to estimate the LUAD survival curve with a 5%

confidence interval. The Kaplan-Meier (KM) curve, explained in detail in section 6.3, estimates

the survival function of a population within a given confidence interval. Figure 4.4 shows a rapid

decrease in survivability in the first three years, starting to slow down after 1,200 days. After

3,500 days (10 years approximately), the curve starts to flat down; this is due to the lack of ob-

served deaths, remaining only alive subjects at the study. The survival rate stabilises at 21.13% af-

ter 20 years, close to the theoretical survival rate of 20% for lung cancer. On Figure 4.5, we plot the
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Figure 4.4: Estimate of the LUAD survival function using the Kaplan-Meier curve.

Figure 4.5: Survival analysis of the different pathological stage groups, with the KM estimate and
the log-rank test with p-value of 0.0001.

impact of the covariate ajcc_pathologic_stage on survival groups, which represents the pathologi-

cal stage of the subject according to AJCC classification. On this type of analysis, we evaluate the

effect of a clinical variable on the subjects’ survival, to assess if it significantly impacts patient’s

stratification. In this specific case, we evaluate the different pathological stage groups’ survival.

For each group, identified by a colour, a Kaplan-Meier curve is created that approximates the

group’s survival probability. The crosses in each curve indicate a right-censored (alive) observa-

tion in the group at time t, and the colour contour represents a confidence interval associated with

the specific group survival. The test returns a p-value of the log-rank test that tells us that there is

a difference between the pre-defined groups if it is below the 0.05 threshold, and with a p-value

of 0.0001 we can conclude that the variable ajcc_pathologic_stage might be a fit candidate for the

survival prediction.
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4.1.2 Lung Squamous Cell Carcinoma

4.1.2.1 Clinical Dataset

The LUSC dataset presents a homogenous composition to the LUAD dataset, and there are only

a few clinical variables that are mutually exclusive in both datasets, they are marked as NA when

non-existent for a class in the appendix TABLE A.1, with the full clinical variables list. The gender

distribution is more unbalanced than LUAD and contains a male majority, with 371 male (75%)

to 127 female patients. The racial distribution is reasonably similar to LUAD, except there are no

American Indian subjects. The average age of LUSC patient’s is 65.3 years old, and the age mean

when diagnosed with cancer is 66.9. The distribution of the pathological stage groups follows a

similar distribution of the LUAD subtype, which indicates a presence of more subjects classified

in lower cancer stages.

4.1.2.2 Gene Expression Dataset

There are 502 primary tumour LUSC samples and 51 normal tissue samples, with expression val-

ues for 20,531 genes that are homogeneous with the LUAD dataset. Figure 4.6 presents the results

for a related work of Collison et al. [35], where the authors assess molecular differentiation of the

LUSC histologic subtype. A total of 16 genes were selected as potential candidates to differentiate

between the four molecular subtypes of LUSC: Classical, Primitive, Basal and Secretory.

Figure 4.6: Analysis of molecular subtypes of LUSC using gene expression. Adapted from [39].
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4.1.2.3 Mutation Dataset

For the fraction of genome altered on Figure 4.7a, there are no patients with missing values; the

median value is 39%, which is significantly higher than for LUAD; and the maximum value for

genome altered corresponds to 94%. On Figure 4.7b the minimum number of mutations is 1; the

maximum is 1,591; and the median value of mutations is 222 with four patients presenting missing

values, which highlights that the LUSC histologic subtype is more prone to high mutability when

compared to LUAD.

(a) Frequency of tumour genome alteration (b) Number of total patient’s mutations

Figure 4.7: Fraction of genome altered and occurrence of mutations by patient.

There are a total of 181,117 mutation samples for LUSC and a gene pool of 16,970 different

mutated genes. The group of oncogenes contains 1,010 (5.95%) genes and 15,960 not-oncogenes.

In Figure 4.8 containing the classified oncogenes, the gene count is capped at AURKB gene (0.2%

frequency), and on Figure 4.9 it is capped at 3.9% frequency corresponding to the AASS gene.

All of the biomarkers suggested for testing by the NCCN and ESMO guidelines are present in the

LUSC pool. ROS1 shows at 27th position with frequency 10%; ALK in 124th with 4.1%; BRAF

in 152nd with 3.1%; EGFR at 186th with 2.9% and CD274 at the 1008th position with 0.2%,

relative to the oncogene pool.

Figure 4.8: Frequency analysis of mutated oncogenes for LUSC.

Some of the main differences found between the LUAD and LUSC targeted biomarkers are:
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• LUAD frequency ordering is EGFR>BRAF>ALK>ROS1>CD274

and LUSC is ROS1>ALK>BRAF>EGFR>CD274

• The targeted genes are more frequent in LUAD than in LUSC

• The most commonly mutated gene is TP53 in both cases, but in LUSC,

the TP53 mutation is very prevalent 83.5% against 52.1% on LUAD.

This preliminary analysis gives us an idea of the difficulty of finding relevant biomarkers to iden-

tify lung cancer. Out of the pool of 17,288 mutated genes for LUAD; and 16,970 for LUSC, the

ones currently considered viable markers for diagnosing cancer seem very infrequent even when

considering only the pool of possible oncogenes, which means that most of the mutated genes,

even when considered oncogenes might not act as driver genes and therefore are outliers to the

problem.

4.1.2.4 Survival Analysis

For LUSC, there are 217 deceased subjects and 284 alive patients, and the outcome analysis for

LUSC shows a more pessimistic scenario than for LUAD. The patients have an average survival

time of 1,070 days with a standard deviation of 1,017 days, revealing a disperse distribution of

survival time and patients who have been subject to previous treatment also represent a minority.

Figure 4.10, the Kaplan-Meier plot seems to confirm the more pessimistic scenario compared

to LUAD. The curve is less steep in the first three years; however, the slope is more aggressive

after the three year-period and stabilises at 18.58% after 13 years, showing worse survival rate

than LUAD. These results seem to go in line with theoretical research, in Kawase et al. [41],

where the outcomes of LUSC and LUAD were compared, and it was concluded there were con-

siderable differences in overall survival were observed between the two histologic types. The

Figure 4.9: Frequency analysis of mutated but not oncogenes LUSC.
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pathological stage groups’ analysis on Figure 4.11 shows a similar pattern then the LUAD study,

and the log-rank test returns a p-value of 0.00023, which confirms a statistical difference between

the pathological stage groups’ survival. As per LUAD, there is no perfect correlation between

the higher pathologic stages and the lower survival; however, this is expected because the AJCC

pathological stage classification is not causal to patients’ survival time, it is only an estimate of

the degree of severability of the disease.

Figure 4.10: Estimate of LUSC survival function using the Kaplan-Meier curve.
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Figure 4.11: Survival analysis of the different pathological stage groups, with the KM estimate
and the log-rank test with p-value 0.00023.



Chapter 5

Lung Cancer Prediction and Subtype
Classification

The work developed in this chapter aims to find the best models to perform cancer prediction and

subtype classification while providing interpretability on results, allowing us to identify gene ex-

pression signatures that better differentiate cancerous from non-cancerous gene expression sam-

ples and LUAD from LUSC subtypes. Cancer prediction relates to the process of differentiat-

ing cancerous from normal tissue, whereas histologic subtype classification differentiates groups

within the same type of cancer, based on specific characteristics of the cancer cells.

On section 5.1, we start by giving an overview of the experimental design and describe the

data preparation stage. On sections 5.2 and 5.3, we present the materials used and validate our

choices for the proposed models. On section 5.4, we briefly cover the evaluation metrics used to

assess the models’ predictive performance. On section 5.5, we present the performance results

for the cancer prediction and subtype classification problems, as well as additional analysis of the

results. On section 5.6, we discuss our results comparing with state of the art and validate our

research methodology.

5.1 Experimental Design

Figure 5.1 gives an overview of the experimental design for the cancer prediction and subtype

classification problems. In the data preparation stage, we perform data cleaning and standardise

the data for the modelling stage. In the supervised learning stage, we employ two different types

of models for cancer and subtype classification: gradient boosted tree models that we provided

explainability on to provide biological insight; and DL models, which are the standard strategy

in state of the art. For the tree-based approach, two sets of genes were extracted: a set that

differentiates normal from cancerous tissue gene expression samples (Set 1), and a set of genes

that distinguishes LUAD from LUSC (Set 2).

31
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Figure 5.1: The workflow of the cancer prediction and subtype classification problems.

5.1.1 Data Preparation

Using R BioConductor framework with the TCGABiolinks package [34] [117] [43], we queried

for gene expression quantification data from the TCGA project. The data was retrieved from the

GDC legacy database and entailed tier 3 data of the GDC workflow, which is post-normalisation

and aggregation. We proceed to add clinical information for the patients, using TCGABiolinks

function GDCprepare, and removed duplicate patient records.

The nomenclature for gene identifiers in TCGABiolinks is the Human Genome Organisation

(HUGO) symbol by default. Some errors were detected, namely duplicated gene names corre-

sponding to different entries on distinct databases. Therefore, according to the gene metadata

instance on Figure 5.1, all identifiers were renamed as a combination of their HUGO symbol and

Entrez Gene, which is a unique identifier for genes across databases.

entry seqnames start end width strand hugo_symbol entrezgene ensembl_gene_id
11175 chr5 1.41E+08 1.41E+08 3274 + PCDHB10 56126 ENSG000120324

11176 chr5 1.41E+08 1.41E+08 3274 + PCDHB10 56127 ENSG000120324

Table 5.1: Example of duplicated gene_id entries from the TCGABiolinks generated gene’s meta-
data file. Entrez Gene 56126 conrresponds to gene PCDHB10 and 56127 to PCDHB9.

The TCGA barcode is the primary identifier of biospecimen data within the TCGA project.

It is composed of a collection of identifiers, and each identifies a TCGA data element explicitly.

Figure 5.2 presents an illustration of a TCGA barcode. A vial identifies the order of sample in a

sequence of samples; the portion refers to the order of portion in a sequence of 100-120 mg sample

portions; the plate is the order of plate in a sequence of 96-well plates [70].

Figure 5.2: Illustration of metadata identifiers that comprise a TCGA barcode. Adapted from [70].
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Upon analysis of the gene expression records, we identified two different kinds of "duplicate"

samples belonging to the same patient:

1. Samples with the same vial and portion but different plate - This represents duplicate sam-

ples tested on different plates for reproducibility. Therefore we averaged these samples’

expression values.

2. Samples with a different vial - Corresponds to samples from different regions of the tumour.

We maintained these samples as they show far-apart expression values and can be considered

different instances.

After the preprocessing steps described above, the final LUAD dataset has 575 samples out of

which 60 (10.43%) are normal tissue (NT) samples. The LUSC dataset has 502 primary tumour

samples (TP) and 52 (9.39%) NT samples. Table 5.2 presents an analysis of the expression values

distributions’ for LUAD and LUSC grouped by tissue type.

Subtype LUAD LUSC
Tissue Type TP NT TP NT
Min 0 0 0 0

Max 1,432,694.16 1,324,252.01 1,737,511.59 1,036,891.47

Average 969.57 1024.19 984.87 1049.01

S.d. 695.85 353.83 678.58 375.58

Table 5.2: Analysis of minimum, maximum, averange and standard deviation of LUAD and LUSC
gene expression values by tissue type.

The expression analysis on Table 5.2 highlights differences between histologic subtypes and

between tissue types as it would be expected. The minimum number of expression for both sub-

types and tissue types is 0, which translates to no measurable expression for that gene. An average

of 4,896 genes present expression values close to 0 for NT type, and an average of 7,052 genes

present close to null expression for LUAD and LUSC subtypes. The maximum expression value

belongs to the LUSC subtype, relating to the ADAM6 gene and on LUAD a value of 1,432,694.00

associated with the SFTPB gene. Both LUAD and LUSC primary tumour samples present higher

maximum values than their normal tissue counterparts. Regarding the aggregated expression val-

ues, normal tissue types show higher average expression values and lower standard deviations than

LUAD and LUSC primary tissue samples, which tells that the distributions of expression are more

disperse for the primary tumour types. The average expression value is relatively close between

histologic subtypes, showing disperse distributions with similar standard deviations.

Regarding the ratio of NT to TP samples, the cancer classification problem poses a different

challenge than the subtype classification problem, as there is a label skew with a 9:1 ratio class

imbalance of the positive class. Label skew happens when labels in a supervised learning problem

are present in different frequencies [88]. We use two different approaches to tackle this: adjusting

the weights of the labels in the learners, and using ADAptive SYNthetic (ADASYN) [55] sampling

approach to oversample the negative class.
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5.2 Deep Learning

Representation learning is a set of methods that allow a machine to be fed with raw data and

automatically discover the representations needed for detection or classification. DL methods

are representation-learning methods with multiple representation levels, obtained by composing

simple but non-linear modules that transform the representation at one level (starting with the

raw input) into a higher, slightly more abstract level, such that very complex functions can be

learned [81]. With the rapid advances in computational power, deep learning architectures have

shown to outperform traditional ML methods at various tasks in the bioinformatics domain such as

predicting the effects of somatic mutations in non-coding DNA [82], inferring the values of gene

expression [19], predicting survival based on omics data [66]. However, most cancer datasets still

pose the fundamental problem of small datasets with many variables, which can lead to overfitting,

particularly on deep learning architectures due to the curse of dimensionality. For smaller data

sets, unsupervised pre-training has shown to prevent overfitting, leading to significantly better

generalisation when the number of labelled examples is small [8].

According to the task, there are several DL architectures capable of achieving satisfactory per-

formance: DFF networks are widely used for the task of cancer prediction as shown in literature re-

view section 6.2.3; CNN’s are generally used in computer vision, and image recognition, but have

shown potential to embed 2D representations of mRNA data [29]; Stacked Autoencoders (SA),

Restricted Boltzman Machines (RBM) and Deep Belief Networks (DBN) have shown promising

results for feature extraction of gene expression data [28], [15], [127].

We established a deep feedforward network, whose general architecture is represented in Fig-

ure 5.3. As input, we feed the set of selected normalised genes, then a combination of dense layers

with dropouts are used to regularise the weights and avoid overfitting, and finally, the output layer

represented by the grey rectangle consists of a single neuron with sigmoid activation. Previous

works, highlight the use of rank-variance feature selection techniques to reduce the risk of over-

fitting when using DNN’s for the tasks of cancer prediction [2], [136]. With no feature selection,

Figure 5.3: General architecture of the DFF network with dropout layers for regularisation.
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there are 20,531 inputs for the neural network, to validate the effectiveness of feature selection

methods, we implemented three feature selections techniques described below:

Welch’s t-test - X1 indicates the target group and X2 the control group, σ denotes the group’s

standard variation and # the sample size. A significance level of α=0.05 was chosen, and all

features with t value higher then critical values of the t distribution were chosen as significantly

different [73].

t =
X̄1− X̄2√

[
σX1

2

#X1
]+ [

σX2
2

#X2
]

(5.1)

Pearson’s Correlation - The Pearson correlation calculates the degree to which two variables

are correlated. We calculated the Pearson coefficient of each gene and selected the N genes with

coefficients closer to 0.

r =
[X1− X̄ ][X2− X̄ ]√
(X1− X̄)2(X2− X̄)2

(5.2)

Fisher Correlation Coefficient - The fisher score algorithm selects each gene independently

based on their scores under the Fisher criterion [85], and the top N genes with lower coefficients

were selected.

r =
X̄1− X̄2

σX1 +σX2

(5.3)

We used a grid search to determine the number and size of the dense layers and their dropout rates,

which are essential to control overfitting and have shown to provide improvements in predictive

performance [2], [29], [15]. Furthermore, the network hyper-parameters such as the activation

functions, the momentum optimiser, batch size and the learning rate were also assessed using

5-fold cross-validation.
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5.3 Gradient Boosting Decision Trees

Tree-based learning algorithms represent a broad class of ML methods for regression and classifi-

cation first introduced from a statistical background on Breiman et al. [12]. Some characteristics

that make tree-based methods popular over other ML models like NN’s or SVM’s are presented

in Hastie et al. [60]: robustness to outliers in the input space; ability to deal with irrelevant inputs;

can handle missing values in the predictor variables; can handle both continuous and categorical

variables; are insensitive to monotone transformations of inputs and can provide interpretability.

Although tree-based learning algorithms have many desirable characteristics, one aspect that

prevents them from being ideal is the predictive performance when compared to NN’s [26]. Tree-

based ensembles, combine the predictions of many different trees to give an aggregated predic-

tion [30], and this type of strategy allows to combine predictions of multiple weak learners which

can give improved prediction accuracy over individual trees. Random Forests (RF) are a combi-

nation of tree predictors such that each tree depends on the values of a random vector sampled

independently and with the same distribution for all trees in the forest [11]. Boosted Trees (BT)

are a type of tree ensemble whose idea is to form an ensemble by fitting trees to weighted versions

of the data which are combined by weighted voting or averaging [60].

A Gradient Boosted Machine (GBM) is a generalisation of tree boosting where a general

gradient descent "boosting" paradigm is developed for additive expansions based on any fitting

criterion [50]. Gradient Boosting Decision Trees (GBDT) or GBM’s have various implementa-

tions such as Extreme Gradient Boosting Machine (XGBoost) [17], Parallel Boosted Regression

Trees (pGBRT) [6]. Although these are popular machine learning algorithms, the efficiency and

scalability are still unsatisfactory when the feature dimension is high, and data size is large [38].

The classifier used in this work is the light gradient boosting machine (LightGBM), which at-

tempts to fix this problem by implementing two innovative techniques: Gradient-based One-Side

Sampling (GOSS) which excludes a significant proportion of data instances with small gradients,

and Exclusive Feature Bundling (EFB) that bundles mutually exclusive features, therefore, reduc-

ing the number of features [38]. It is well known that a specific model’s predictive performance

is highly dependent on the characteristics of the input data. On Wang et al. [131], a comparative

study on the efficiency of XGboost and lightGBM models for miRNA classification on breast can-

cer patients is performed. Results showed that the lightGBM algorithm performed better overall,

showing higher accuracy and precision but higher losses then XGBoost. Although the authors do

not extrapolate on the possible causes of lightGBM performing better, we will describe our hy-

potheses to justify it outperforming other algorithms on this domain:

Optimum split points: GBM vs Pre-sorted/Histogram-based vs GOSS Algorithm
A crucial step of GBDT is finding the splits that maximise information gain. Most existing single

machine tree boosting implementations, such as R’s GBM [110], use the exact greedy split fiding

algorithm to enumerate all the possible splits for continuous features [17]; however, this is not

feasible for large-scale datasets.
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Histogram-based algorithms split all of the data points of a feature into discrete bins to find

the histogram’s best split value. XGBoost uses a sparsity-aware split finding algorithm on top of

the pre-sorted algorithm in order to reduce the training cost by ignoring the features with zero

values [17]; however, GBDT with the histogram-based algorithm does not have efficient sparse

optimisation solutions. GOSS addresses these limitations by excluding a significant proportion of

data instances with small gradients which allows for similar information gain with a much smaller

data size [38].

Reducing the number of features: Exclusive Feature Bundling
EFB provides a nearly lossless approach to reduce the number of effective features by bundling

mutual exclusive features into a single feature called exclusive feature bundle [38]. Cancer ge-

nomics datasets generally present sparse characteristics and can benefit from this. Furthermore, as

seen in chapter 3, the general approach in state of the art is to use various feature selection tech-

niques prior to DL learners to improve predictive performance. We argue that this might leave out

essential features not selected by feature selection techniques, and EFB allows the model to decide

what features are mutually exclusive eradicating the need for apriori feature selection, therefore,

addressing previous work limitations related to dimensionality reduction.

LightGBM uses the leaf-wise tree growth algorithm, while many other popular tools use depth-

wise tree growth. Compared with depth-wise growth, the leaf-wise algorithm can converge much

faster, however, the leaf-wise growth may be overfitting if not used with the appropriate parame-

ters [140]. LightGBM has a wide range of hyperparameters that require tuning, and it is essential

to find a combination of hyperparameters so that the model performs well while being able to

generalise.

5.3.1 Bayesian Optimisation

The Bayesian Optimisation in Algorithm 1, in which a learning algorithm’s generalization per-

formance is modelled as a sample from a Gaussian Process (GP), tries to find the minimum of a

function f (x) on some bounded set x. The difference from traditional methods such as random-

ized search is that it constructs a probabilistic model for f (x) and then exploits this model to make

decisions about where in xi to evaluate the function next [119], which decreases the cost of finding

the solutions when the black-box function f is complex, which is the case of more elaborate ML

models.

Algorithm 1: Bayesian Optimization

1 for i← 1, 2,... do
2 Find new step by optimizing acquisition function α over
3 GP: xi+1 = argminx α(x | Di);
4 Sample the objective function to obtain yi+1 = f (xi)+ εi;
5 Augment the training data Dn+1 = {Di, (xi+1, yi+1)};
6 end for
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A critical step of the optimiser is deciding on an acquisition function α that evaluates the utility

of candidate points for the next evaluation of function f . The acquisition function’s exploration-

exploitation trade-off, and their optima are located where the uncertainty in the surrogate model is

large (exploration) and/or where the model prediction is high (exploitation) [115].

α EI(x) =

(µ(x)− f (x+)−ξ )Φ(Z)+σ(x)φ(Z) if σ(x)> 0

0 if σ(x) = 0
(5.4)

Expected Improvement (EI) represented on Equation 5.4 was chosen, as it is better-behaved

than Probability of Improvement (PI), but unlike the method of GP Upper Confidence Bounds (GP-

UCB), it requires less parameter tuning [119]. The expected improvement has two components,

the first can be increased by reducing the mean function µ(x), and the second can be expanded

by increasing the variance σ(x). The meta-parameter ξ that defines the exploitation-exploration

trade-off under the EI acquisition function was optimised by trial and error over five steps in the

[1e−4, 1e−1] search space.

The hyper-parameters were tuned using 5-fold cross-validation, and when performing Data

Augmentation (DA), the oversampling was done for each fold to avoid data leakage. We optimised

by minimising the objective function binary cross-entropy (logloss) represented on Equation 5.5.

Lbce(y, ŷ) =−(y log(ŷ)+(1− y) log(1− ŷ)) (5.5)

Cross-entropy is defined as a measure of the difference between two probability distributions for a

given random variable or set of events [72]. Logloss is a calibration statistic and a measure of class

separability that takes the "certainty" of classification into account, and this is especially relevant

when designing a model to diagnose deadly disease, as we want to penalise uncertain decisions

and not necessarily only improve performance.

5.3.2 Shapley Additive Explanations

To provide model interpretability, we used the SHapley Additive exPlanations (SHAP) tech-

nique [94]. This method explains individual predictions by estimating each feature’s individual

contribution to the corresponding prediction and, consequently, assigning it a SHAP value. Fea-

tures with larger absolute SHAP values are more important for prediction and can positively or

negatively impact the prediction depending on its sign.

TreeSHAP is a variant of SHAP for tree-based machine learning models such as decision

trees, random forests and gradient boosted trees that solves the inconsistencies of previous feature

attribution methods for tree ensembles, which failed to capture the positive impact of feature’s

importance when based solely on the additive feature attribution method [93].
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5.4 Train, Test and Evaluation

Figure 5.4 represents the supervised learning pipeline followed for both problems, consisting of

two different stages: an optimisation stage where we to optimise the DL model using grid-search,

and Bayesian optimisation for LGBM using 5-fold cross-validation; and the classification stage,

where the train/test process is repeated 100 times for model validation. The train and test splits of

each problem are different due to the imbalanced nature of the cancer classification problem, so

we selected the train and test sets as follows:

Figure 5.4: Global supervised learning pipeline for the DL and LGBM models. The optimisation
is performed using 5-fold cross-validation, and the train test process is repeated 100 times for
model validation.

• Cancer Prediction: A split ratio of {70,15,15}% was used for train, validation and test sets,

respectively. Stratified sampling was used to maintain the 9:1 ratio of positive samples in

the validation and test sets when not performing data augmentation. When conducting DA,

standard shuffle split was employed, and the oversampling of the negative class was done

for each fold of the optimisation process.

• Subtype Classification: A split ratio of {80,10,10}% was used for this problem. As op-

posed to the first problem, this one has a balanced ratio of labels, so there is no need to

perform DA.

The larger size of the independent test size on the first problem is due to the labels’ imbalance;

therefore we need to guarantee a minimum amount of negative samples for support in the test and

validation sets; otherwise, the predictive performance of the model for the negative class would

incur in higher variance in between runs.

To estimate the models’ performance stability, the train and test splits were executed 100 times,

randomising the split seed to reduce variability and overcome skewness caused by the short sample

size and class imbalance. The evaluation metrics’ logloss and AUC were used to evaluate train-

ing performance and control overfitting by early stoppage. To evaluate the test set’s performance,

we used AUC, accuracy, precision, recall and f1-score metrics, to better assess our results against

similar research.
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Area Under the Curve: AUC is based on the area under the receiver operating characteristic

(ROC) curve that plots the False Positive Rate (FPR) against the True Positive Rate (TPR) known

as sensitivity or recall. AUC, much like logloss evaluates the model’s degree of separability; how-

ever, AUC is a rank statistic that varies between minimum value of 0 and a maximum 1. AUC has

desirable properties as a classification performance measure when compared to overall accuracy:

its increased sensitivity in the Analysis of Variance (ANOVA) tests, it is not dependent on a deci-

sion threshold chosen, and it is mildly sensible to class imbalance [10].

Accuracy: Accuracy is given by the ratio of correct observations by overall observations. As

opposed to AUC, this metric is biased when there is a label skew.

Accuracy =
T P+T N

T P+FP+T N +FN
, 0≤ Accuracy≤ 1 (5.6)

Precision: Precision evaluates the fraction of correctly classified instances among all positive

classified instances and can be seen as accuracy for the positive class. In the medical domain, its

reasonably common to have negative minority classes, when assessing precision for the negative

class it is called Negative Predictive Value (NPV) and allows us to understand how the model

performs on the minority class.

Precision =
T P

T P+FP
, 0≤ Precision≤ 1 (5.7)

Recall: Recall or sensitivity is defined as the ratio between true positives and the sum of true

positives and false negatives. The recall is typically used to measure the coverage of the minority

class [61], and when calculated for the negative class, it is called specificity.

Recall =
T P

T P+FN
, 0≤ Recall ≤ 1 (5.8)

F-measure: The F-measure or F1-score provides a single score to evaluate both precision and

recall.

F1 =
2 ·Precision ·Recall
Precision+Recall

, 0≤ F1≤ 1 (5.9)

Implementation: Our solution is implemented in Python 3.8 using the frameworks Keras [21],

Tensorflow [42], lightGBM [38], [140], [32] and bayesian-optimization [102]. All CPU intensive

tasks, namely preprocessing, were conducted on a 16x2GHz Intel Core Haswell CPU with 128Gib

RAM, and all GPU taks were ran on a 2xNvidia GeForce GTX 1080 Ti with 11,178 MiB GDDR3

with the Ubuntu 18.04 LTS operating system.
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5.5 Results

The work developed in this chapter aimed at finding the best models to perform cancer prediction

and subtype classification. On section 5.5.1, we discuss the optimal hyper-parameters for the DL

and LightGBM learners. On section 5.5.2, we present the best models’ predictive performance for

the cancer prediction problem, and on section 5.5.3 for the subtype classification. On section 5.5.4,

we analyse the most relevant gene signatures retrieved from the LGBM model using TreeSHAP.

Finally, on section 5.6 we discuss our results comparing them to the state-of-the-art and validate

our results by interpreting the selected gene signatures according to mentions in relevant papers.

5.5.1 Hyperparameter Optimisation

5.5.1.1 Deep Learning

Table 5.3 presents the optimal values for the hyperparameters of the deep-feedforward network

for that cancer prediction and subtype classification problems. For each problem, a 5-fold cross-

validated grid-search is used to optimise the hyper-parameters over a parameter grid. The search

space was defined as architectures with 1 to 6 dense layers with dropouts in the [0,0.5] range. The

batch sizes were capped at 50 due to processing power, and the learning rate was optimised in the

[1e−6, 1e−2] range.

Hyperparameters Cancer Prediction Subtype Classification
layers {100, 100} {500, 200, 100}

dropout {0.1, 0.4} {0.2, 0.1, 0.5}

learning_rate 0.000163 0.000347

batch_size 32 40
Table 5.3: Hyperparameters for the deep-feedforward network.

The systemic assessment found that 2 hidden layers worked better for cancer prediction and

3 dense layers for subtype prediction. Rectified Layer Unit (ReLU) provided higher average per-

formance’s and Adaptive Moment Estimation (ADAM) optimiser provided better results, and the

optimisation ends up going faster then using regular gradient descent and also avoids local op-

tima [77]. Dropouts appeared to boost average performance by reducing variance between folds

and the learning rate, and batch size was relatively close for both problems. Furthermore, for

the cancer classification problem weights were assigned to each class according to Equation 5.10,

where NC0 and NC1 represent the positive and negative class and dividing by 2 helps to keep the

loss to the same magnitude [42].

wC0 =
1

NC1

· (NC1 +NC2)

2
, wC1 =

1
NC0

· (NC1 +NC2)

2
(5.10)



42 Lung Cancer Prediction and Subtype Classification

5.5.1.2 LightGBM

For each problem, we ran approximately 10,000 steps of Bayesian Optimisation (BO) with 5-fold

cross-validation. The optimal value for the meta-parameter ξ was fixed at 1e−2, which prioritises

exploration over exploitation. Table 5.4 presents the optimal values for the hyper-parameters of

the LGBM classifiers. The Bayesian optimisation’s optimal step showed a cross-validation loss

of 0.0005 for cancer classification and 0.0340 for subtype classification. Higher depth values

showed better results for both problems, and the number of leaves was fixed at 2max_depth−1 in a

preliminary stage and fine-tuned a posteriori.

Hyperparameters Cancer Prediction Subtype Classification
n_estimators 256 154

max_depth 6 8

learning_rate 0.1048 0.9173

feature_fraction 0.2673 0.7457

bagging_fraction 0.1067 0.4718

min_split_gain 0.0002 0.0141

min_child_weight 0.0057 0.0053

min_child_samples 5 17

reg_alpha 0.0140 0.0103

reg_lambda 0.1100 0.1368

scale_pos_weight 4.9604 2.3732

subsample_for_bin 256900 461045
Table 5.4: Hyper-parameters for the LightGBM model.

L1 (reg_alpha) and L2 (reg_lambda) regularisation were added to force sparsity and to diminish

the value of the weights, respectively, which conferred a reduction in standard deviation across

runs. The minimal number of data in one leaf (min_child_samples), which also prevents overfitting

presented higher values in the subtype classification problem to compensate for higher depths, by

avoiding to grow leaf-wise.

The parameters bagging_fraction that randomly selects part of data without resampling, and

feature_fraction that selects a subset of features of each boosted tree, showed a tendency for higher

values with growing depths, which is also a mechanism to force generalisation and avoid overfit-

ting by not relying only on a small subset of variables. The scale_pos_weight parameter, that

defines the weights of the labels in the learner, was used when not performing DA and showed

higher values in the cancer classification problem considering the 9:1 ratio class imbalance of

positive samples.
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5.5.2 Cancer Prediction

5.5.2.1 Deep Learning

Table 5.5 presents the DL model’ results when performing no feature selection, using the total of

20,531 genes for prediction. Two approaches were followed to tackle the 9:1 class imbalance of

the positive class: each class’s weights were corrected according to the total number of positive and

negative samples at each iteration; using ADASYN to oversample the negative class. In Danaee

et al. [28], SMOTE was used in a similar context to oversample non-cancerous samples; however,

the results without DA are not provided for comparison. ADASYN was chosen over SMOTE as

it can bias the sample space and avoid the selection of more alike neighbours that might minimise

information gain [55]. When performing data augmentation, we oversampled each fold of the 5-

fold cross-validation individually to avoid data leakage, and the number of neighbours was fixed

at 15, which showed better optimisation results.

The DL model with weight correction seemed to perform better on every spectrum, with higher

AUC, accuracy and even higher negative precision (NPV), which should be where the DA strategy

should improve performance. We are not entirely sure why oversampling lead to worse results,

even when varying the number of neighbours; however, according to the literature it is not a

commonly used strategy.

AUC Accuracy Precision Recall F1-score
Positive 0.998 ± 0.004 0.989 ± 0.012 0.994 ± 0.006

DL
0.984 ±

0.025
0.986 ±

0.011 Negative 0.912 ± 0.097 0.977 ± 0.038 0.940 ± 0.047

Positive 0.997 ± 0.005 0.987 ± 0.018 0.992 ± 0.009
DL w/ DA

0.982 ±
0.023

0.986 ±
0.016 Negative 0.908 ± 0.103 0.976 ± 0.048 0.936 ± 0.062

Table 5.5: Mean and standard deviations results of the DL model for cancer classifcation using
the whole gene set over 100 iterations with and without data augmentation.

A general strategy as shown by state of the art is to perform feature selection to avoid over-

fitting and improve predictive performance [136], [2], [49]. Although dropout and early stoppage

were used to avoid overfitting the training set, we employed three different feature selection tech-

niques to evaluate the effect of dimensionality reduction on predictive performance. On Figures

5.5a, 5.5b, 5.6 we present the results for three different feature selection techniques: Welch’s t-test,

Pearson’s correlation and Fisher’s score, respectively, for the set sizes of 4000, 8000, 12000 and

16000 genes. The experiments were conducted over 100 iterations, using the model with no data

augmentation that performed best.

The Welch’s t-test feature selection on Figure 5.5a, provided an average AUC of 0.979±0.042,

an accuracy of 0.978±0.063 and NPV 0.892±0.131 across all gene set sizes. The best gene set

size was 12000 with an AUC of 0.983, which does not represent an improvement over the DL

model with no feature selection. Pearson’s correlation feature selection on Figure 5.5b, provided

an average AUC 0.979±0.035, an accuracy of 0.981±0.036 and NPV 0.892±0.131. The best set

size was the top 4000 genes with an AUC of 0.983, also not outperforming the no FS model.
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(a) AUC, Accuracy and NPV results for Welch’s t-test
top 4000, 8000, 12000 and 16000 genes.

(b) AUC, Accuracy and NPV results for Pearson’s
Correlation top 4000, 8000, 12000 and 16000 genes.

Figure 5.5: Performance of the DL model, varying the FS technique and the gene set sizes.

Fisher’s score on Figure 5.6, provided more stable results across all set sizes, with average

AUC of 0.980±0.032, accuracy 0.980±0.043 and NPV 0.888±0.126. The best gene set size was

8000 with AUC 0.984 equaling the no FS model’s performance, however presenting lower NPV

of 0.905. Overall feature selection seemed not to affect the DL learner’s predictive performance;

Fisher’s score with 8000 genes provided an equal AUC score, and the Welch’s t-test with 12000

features achieved a small boost in NPV to 0.914 while showing worse AUC. This might indicate

that our DL network was not complex enough to overfit the data and so could not benefit from

feature selection for cancer prediction, or that the addition of dropout regularisation avoids the

need for feature selection.

Figure 5.6: AUC, Accuracy and NPV results for Fisher’s score for different gene set sizes.
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5.5.2.2 LightGBM

This section discusses the gradient boosted tree learner predictive performance compared to the

DFF baseline score discussed in the previous section. A similar workflow was followed then for

the DFF network, the strategy with data augmentation was executed with the same number of

neighbours, and when not performing DA, the hyperparameter scale_pos_weight was used to bal-

ance the weights of the classes. A critical difference between using LGBM and the DL models

is that tree-based learners are more robust in handling correlated features. Furthermore, the spe-

cific implementation of lightGBM eradicates the need for a priori feature selection as the model

removes redundant features by performing exclusive feature bundling as discussed in section 5.3.

The average number of features used by the model for prediction was 19,935.3, which means that

EFB discarded an average of 596 features that added no information across the 100 iterations. Ta-

ble 5.6, presents the best DL model predictive performance, and the LGBM model results with and

without DA. The strategy of oversampling the minority class lead to worse overall performance,

similar to the DL model.

(mean ± standard deviation)

Metrics DL (baseline) LGBM LGBM w/ DA
AUC 0.984 ± 0.025 0.983 ± 0.017 0.970 ± 0.013

Accuracy 0.986 ± 0.011 0.995 ± 0.006 0.991 ± 0.007

Positive Negative Positive Negative Positive Negative

Precision 0.998 ± 0.004 0.912 ± 0.097 0.997 ± 0.005 0.976 ± 0.036 0.994 ± 0.007 0.969 ± 0.038

Recall 0.989 ± 0.012 0.977 ± 0.038 0.997 ± 0.004 0.969 ± 0.046 0.997 ± 0.005 0.943 ± 0.061

F1-score 0.994 ± 0.006 0.940 ± 0.047 0.997 ± 0.003 0.972 ± 0.030 0.995 ± 0.004 0.955 ± 0.031

Table 5.6: Performance of the LGBM and DL model for the cancer prediction problem across 100
iterations.

Compared with the baseline DFF, lightGBM outperformed in accuracy and false precision

(NPV), and the DFF showed better AUC. However, due to the problem’s imbalanced nature, it

is arguable that LGBM is the best classifier as it shows higher NPV which translates to a more

balanced model. The DL presented a higher AUC of 0.984; however, it is highly biased to the

positive majority class with an NPV of 0.912. The average number of independent test samples’

for support was 154.55 for the positive class and 17.67 for the negative, which makes NPV very

relevant because a learner biased to the positive class would also present excellent AUC and accu-

racy. Overall it is arguable whether the DL or the LGBM model had best predictive performance;

however, the LGBM model was able to reduce variance and showed to be a more balanced learner,

which is important in the context of the problem.
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5.5.3 Subtype Classification

5.5.3.1 Deep Learning

The cancer subtype classification problem presents a balanced dataset as opposed to cancer pre-

diction. The average test support for the positive class was 52 and 50 for the negative, resulting

in almost 1:1 ratio. Table 5.7 presents the DL model results without feature selection over 100

iterations. The DFF network showed an AUC and accuracy of 0.907 with a very high standard

deviation of 6.8%. It showed a higher precision of 0.948 for the negative class, which are LUSC

samples, but a bad trade-off with recall of 0.87, showing that its predictions’ are skewed to the

positive class. Figures 5.7a, 5.8, 5.7b present the results after feature selection following the same

methodology than in the cancer classification problem, however this time we analyse only AUC

and accuracy due to the balanced nature of the problem.

(mean ± s.d) AUC Accuracy Precision Recall F1-score
Positive 0.896 ± 0.089 0.942 ± 0.096 0.911 ± 0.068

DL 0.907 ± 0.068 0.907 ± 0.068
Negative 0.948 ± 0.068 0.871 ± 0.139 0.897 ± 0.092

Table 5.7: Performance of the DL model for cancer subtype classification using the 20,531 genes
over 100 iterations.

Welch’s FS on Figure 5.7a presents very balanced results overall, with an average AUC of

0.902±0.069 and accuracy of 0.903±0.069. The best set size by a small margin was the top 16000

genes presenting an AUC and accuracy of 0.905±0.069, and outperforming the DL model with no

FS. However, the set with 12000 genes presented very similar results with AUC and accuracy of

0.904 but showed less variance with a standard deviation of 0.057. For Fisher’s score selection in

Figure 5.7b, the results were less balanced across all sizes with an average AUC of 0.903±0.064

and accuracy 0.904±0.063. The best set size corresponds to the top 8000 genes showing AUC

(a) AUC and Accuracy results for Welch’s t-test top
4000, 8000, 12000 and 16000 genes.

(b) AUC, Accuracy and NPV results for Fisher’s score
top 4000, 8000, 12000 and 16000 genes.
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of 0.912 and accuracy of 0.913 but presenting a significantly lower standard deviation of 0.052

compared to the remaining sets.

The results for Pearson’s correlation FS in Figure 5.8, show a significant improvement in pre-

dictive performance for smaller sets. The average overall AUC and accuracy for the method were

0.916±0.052, and the 4000 and 8000 top genes significantly improved the predictive performance

compared with the DL model without feature selection. The top 4000 genes showed the best

performance with AUC of 0.935±0.033 and accuracy of 0.935±0.032.

Figure 5.8: AUC and Accuracy for Pearson’s Correlation top 4000, 8000, 12000 and 16000 genes.

Overall feature selection for the subtype classification problem significantly improved the pre-

dictive performance. Pearson’s correlation method performed better for the top 4000 genes and

reduced standard deviations considerably for the two smaller sets when compared to the DL learner

with no feature selection. This result is contrary to what was verified on cancer prediction, which

could result from the gene expression dataset containing more noise for the subtype classification

problem than for cancer prediction.
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5.5.3.2 LightGBM

Table 5.8 presents a comparison of the LGBM learner results for the subtype classification prob-

lem with the baseline DL model, using the whole gene set, and the best iteration of feature selec-

tion corresponding to Pearson’s correlation top 4000 genes. Across 100 iterations an average of

19710.3 features were used by the model and approximately 821 were removed through exclusive

feature bundling.

The LGBM outperformed all DL models with AUC and accuracy of 0.971 and lower standard

deviations incurring in less variance. The most significant difference in the indicators presented

seems to be accuracy in classifying the positive class (LUAD samples), showing precision of

0.969 against 0.919 from the best DL model. Precision was also better for the negative class, and

the precision-recall trade-off remains very balanced for both classes, showing a more fit and less

biased classifier than the DL learners.

(mean ± standard deviation)
Metrics DL (baseline) DL (Pearson’s top 4000) LGBM
AUC 0.907 ± 0.068 0.935 ± 0.033 0.971 ± 0.018
Accuracy 0.907 ± 0.068 0.935 ± 0.032 0.971 ± 0.018

Positive Negative Positive Negative Positive Negative

Precision 0.896 ± 0.089 0.948 ± 0.068 0.919 ± 0.052 0.960 ± 0.034 0.962 ± 0.020 0.980 ± 0.022

Recall 0.942 ± 0.096 0.871 ± 0.139 0.960 ± 0.038 0.909 ± 0.073 0.980 ± 0.022 0.961 ± 0.023

F1-score 0.911 ± 0.068 0.897 ± 0.092 0.938 ± 0.028 0.931 ± 0.040 0.971 ± 0.014 0.970 ± 0.015

Table 5.8: Performance of the LGBM model for cancer subtype classification problems over 100
iterations.

However, it is odd that although the LGBM learner for the subtype problem is more com-

plex than the cancer prediction one, presenting larger tree depths, the number of features re-

moved through EFB was bigger than for the cancer classification problem. The inclusion of

L1 and L2 regularisation assists to force sparsity and diminishing weights, and higher values of

min_split_gain avoid splitting with minimal gains, which contributes to avoiding overfitting the

training data and are partial reasons why LGBM achieves such stable results. Larger values of fea-

ture_fraction, which randomly selects a subset of features on each iteration, and min_data_in_leaf

which controls the minimum number of observations that must fall into a tree node for it to be

added, control the power of generalisation of the model.

On the other hand, as seen by the DL model results, shorter gene set sizes resulted in better

predictive performance, which might indicate the presence of more noise in the data for the task of

subtype classification. Overall, these results seem promising and show GBDT models’ capability

to handle high dimensional data, while eradicating the need for apriori feature selection.
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5.5.4 Most Relevant Gene Signatures

As explained in section 5.3 we used the SHAP technique to provide interpretability for the light-

GBM model. This section analyses the most important features selected by the lightGBM and

provides biological insight into the gene signatures that are affecting the decisions in each prob-

lem.

5.5.4.1 Feature Importance

Figures 5.9a, 5.9b present the SHAP summary plot for the cancer prediction and subtype classifi-

cation problems respectively, which combines feature importance with feature effects. The plot’s

y-axis identifies a gene, represented by its HUGO symbol and the x-axis the corresponding SHAP

values for each data instance. The genes are ordered on the y-axis by overall predictive impor-

tance, and the top 20 most important genes were selected for analysis. The colour gives us a visual

representation of features’ original expression value distributions, which are categorised into low

or high values of gene expression. This visualisation can give us a holistic view of the model’s

decision as it conjugates the importance of the features with the effect on prediction while showing

the value distribution of those features in the original data.

(a) Cancer Prediction (b) Subtype Classification

Figure 5.9: SHAP values over 100 iterations for the LGBM model. The y-axis identifies genes
and the x-axis the corresponding SHAP values for each data instance.
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For the cancer classification problem, a total of 1,183 genes were selected by the model for

prediction. Figure 5.9a shows the genes that more adequately distinguish between cancerous and

non-cancerous samples according to the model. The negative weights represent features with a

negative effect on prediction, which equates to features whose effect helps to predict NT samples,

and the positive weights bind the decision to predict cancerous tissue. Amongst these top 20 genes,

we can clearly see a pattern used for prediction: most of the selected genes when over-expressed

affect the prediction negatively; and when under-expressed affect the prediction positively. Ex-

ceptions to this are STX1A, EFNA3 and C16orf59 genes, which present mostly low expression in

both classes and some visible over-expression, which positively impacts the prediction. Generally,

the analysis of the 20 most important gene expression signatures for cancer prediction shows a

pattern of selecting signatures with a high expression that are important to predict normal tissue.

For the cancer subtype classification problem, 2,685 genes presented non-null weights and

therefore were used for prediction. Figure 5.9b shows that the expression value of genes is more

balanced across features with a positive and negative effect on model output. Negative weights

bias decision to predicting LUSC samples and positive weights bias the decision to predict LUAD

samples. We can infer two groups of genes that show identical patterns: MACC1, LOC728759,

DDAH1, BCL2L15, ELFN2, SLC44A4 and ERBB3 represent the first group that shows mostly

over-expression when binding the decision to predict LUAD, and under-expression when neg-

atively affecting the prediction; the second group containing the remaining 13 genes present a

symmetrical pattern with mostly over-expression when important for the model to predict LUSC

tissue. Overall, the feature importance analysis found two different sets of gene signatures that

can be considered specific subtype gene signatures, which can help differentiate LUAD and LUSC

subtypes, and a set of gene signatures that distinguishes cancerous from normal tissue at the molec-

ular level.

Although this type of analysis is very informative from the point of view of interpreting the

model decisions, it presents a limitation. It does not reflect the selected genes’ real expression

distributions, but the instances of those genes that were more relevant for prediction across the

100 iterations. On section 5.5.4.2 we provide a more in-depth analysis of the overall expression

distribution for these genes that can provide us with more biological insight on the real expression

of the genes across the populations.
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5.5.4.2 Differential Expressed Genes

On Figures 5.10, 5.11 we present a heatmap showing the expression of the top 20 genes for the

cancer prediction and subtype classification problem respectively. This type of analyses allows us

to identify statistically significant gene expression changes across the entire samples.

We used log2 normalised counts of the genes’ expression for differences in sequencing depth

and composition bias between the samples to generate the heatmaps. They are organised as fol-

lows: the data is displayed in a grid where each row represents a sample, and each column rep-

resents a gene signature. Each individual square has a colour and intensity used to represent

gene expression changes across samples, being the colour red over-expression and the colour blue

under-expression, while white represents no visible changes in expression. Furthermore, there are

two hierarchical clusters row-wise and column-wise that serve to group similar samples or genes

together, respectively. This type of clustering mechanism based on the similarity of gene expres-

sion patterns can be useful for identifying genes that are commonly regulated, or biological signa-

tures associated with a particular condition (e.g. a disease or an environmental condition) [53].

Cancer Prediction
Regarding the most important genes for cancer prediction, on Figure 5.10a it is presented the

analysis of a total of 110 normal tissue samples and on Figure 5.10b 1,016 cancerous samples.

On Figure 5.10b, it is possible to observe two well defined row-wise clusters, which refer to the

LUAD samples on top and the LUSC samples on the bottom-cluster. The normal tissue samples

present a more homogeneous structure with no visible row-wise clusters, which is expected as NT

samples are collected from regions outside of the tumour and therefore should present similar gene

expression regardless of being a LUAD or LUSC normal tissue sample.

The columns are sorted by cluster proximity, and on the NT samples it is possible to observe 4

distinct macro clusters from left to right: ECSCR to STX1A comprising mainly under-expression

genes; SFTPC up to TGFBR2 containing the highest expression values; C13orf15 up to FHL1

containing more moderate values of over-expression, and TNNC1 till S1PR1 containing less vis-

ible changes in gene expression. These clusters are further divided into sub-clusters according to

their inner cluster proximity: for example for the under-expression cluster, STX1A and EFNA3

are the bottom-most cluster and therefore are the closest in terms of expression levels, following

C16orf59 is the closest presenting the most visible under-expression and finally, ECSCR is the

furthest away presenting very moderate under-expression. Regarding the two sets of genes that

presented similar patterns in the feature importance analysis on Figure 5.9a: STX1A, EFNA3 and

C16orf59 were considered important for NT prediction when under-expressed, and this type of

analyses validates that presumption by showing that they do display the highest relative values of

under-expression of the 20 genes considered for analysis for NT.

The cancerous tissue samples provide a more heterogeneous composition with five macro clus-

ters and less defined subclusters. Furthermore, the distinction between specific subtype genes’ is

evident, e.g. SFTPC is more expressed in LUAD samples, and the STX1A, EFNA3 and C16orf59

are on the middle cluster that is more under-expressed in LUAD samples.



52 Lung Cancer Prediction and Subtype Classification

(a) Normal Tissue (NT) (b) Cancerous Tissue (TP)

Figure 5.10: Analysis of log2 mRNA expression values for the top 20 most important genes for the
LGBM cancer classifier. The rows represent samples and the columns genes, and each individual
square represents changes in gene expresion from under-expression (blue) to over (red).
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Subtype Prediction

For the subtype prediction problem, on Figure 5.11a there are a total of 515 LUAD samples repre-

sented, and on Figure 5.11b 501 LUSC samples. Both subtypes present three well-defined parent

clusters, ordered from left to right by under-expressed genes first, then the ones over-expressed,

and finally genes that present no visible over or under expression.

The genes in the central cluster that are more over-expressed in LUSC: KRT5, CALML3,

PVRL1, DSG3, DSC3 and TP63 represent genes that when over-expressed supported the decision

to predict LUSC in the feature importance analysis on Figure 5.9b. They show up in the under/av-

erage expressed clusters in LUAD except for the PVRL1 gene that also presents over-expression

in LUAD.

For LUAD, the most relatively expressed genes are MACC1, PVRL1, SIAH2, SLC44A4,

DDAH1 and ERBB3. All except PVRL1 and SIAH2 show up as genes that support the decision

to predict LUAD when over-expressed on the feature importance analysis. PVRL1 and SIAH2

are genes that present high relative expression in-between subtypes, and by repeating the same

analysis on the LUAD and LUSC populations together, we observed that the relative values of

these genes were higher amongst LUSC samples. This type of analysis presents validation on the

model’s selected features as we can see the same type of mutual exclusion between the high and

low-expressed features in the histologic subtypes.

Literature cross-reference

We reviewed the cancer research corpus for mentions of the selected genes to further validate the

results obtained. We highlight some gene signatures selected by the models that are already ex-

tensively documented in literature:

Cancer Prediction

• SFTPC encodes the pulmonary-associated Surfactant Protein C (SPC) and its deficiency is

associated with interstitial lung disease [45]. SFTPC downregulation might be involved in

the progression of lung cancer [83].

• C16orf59 or TEDC2 is prognostic, and high expression is unfavourable in lung cancer [47].

• PDLIM2 which is a putative tumour suppressor protein, and decreased expression of this

gene is associated with several malignancies including breast cancer and adult T-cell leukaemia [45]

Subtype Classification

• Alterations in genes with known roles in LUSC were found, including over-expression and

amplification of TP63 [39]

• Elevated MACC1 expression has been implicated in the progression of LUAD [86]

• ERBB3 or HER3 is an important paralog of gene ERBB2, whose aberrations have been

found to drive LUAD tumours [35]
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(a) LUAD Tissue (b) LUSC Tissue

Figure 5.11: Analysis of log2 mRNA expression values for the top 20 most important genes for the
LGBM subtype classifier. The rows represent samples and the columns genes, and each individual
square represents changes in gene expresion from under-expression (blue) to over (red).
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5.6 Discussion

This chapter aimed at finding the most suitable solutions for cancer prediction and subtype clas-

sification using gene expression data. Furthermore, the importance of providing interpretability

on the results was a key consideration taken into account as the identification of gene expression

signatures that better differentiate histologic subtypes can further impact the cancer research and

potentially help to discover new possible targetable genes for personalised therapy. In this section,

we compare our results with state of the art and summarise some pros and cons of our approach

against similar research.

5.6.1 Cancer Prediction

On Table 5.9, we present a comparison of the predictive performance of our main method LGBM

with previous works which try to predict lung cancer. The selection of comparable research was

made according to the following criteria:

1. The focus was given to research published after 2015, and using gene expression data only.

2. The selected works must use data from the same source TCGA1, which eliminates bias from

different methods and sequencing platforms.

3. The works must have at least one individual metric score for classification of cancer versus

non-cancerous tissue using TCGA-LUAD or TCGA-LUSC; ideally, they use both.

In Li et al. [84], a total of 10,663 TCGA samples were used out of which 856 (8%) were normal

tissue, including 515 LUAD and 501 LUSC samples. Two strategies were used for dimensionality

reduction: feature extraction via an autoencoder and using prior knowledge of Gene Ontology

(GO) enrichment analysis, following multiple DNNs were used for classification and a 5 layer

DNN performed better with features extracted from an autoencoder. Our LGBM classifier outper-

forms the DNN with an f1 score of 0.997 against 0.900. Furthermore, a considerable drop in train

performance from 0.940 to 0.900 in test might indicate that either the autoencoder or the DNN

was overfitting the training data.

In Xiao et al. (2018) [136], 162 TCGA LUAD samples were used, out of which 37 (23%)

corresponded to NT. The authors use a multi-model approach by employing a deep neural network

to ensemble multiple learners’ outputs, after feature selection by applying DESeq [99]. The best

individual learner was DTs with an accuracy of 0.968±0.023. Our LGBM approach outperformed

the ensemble results in every aspect, and no apriori feature selection was required. However, the

ensemble strategy provides the unique advantage of minimising the overall variance by combining

multiple learners’ decisions, and so the ensemble method shows lower standard deviations.

1TCGA data portal (https://portal.gdc.cancer.gov/)

https://portal.gdc.cancer.gov/
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Performance Metrics
(mean ± standard deviation)

Methods Accuracy Precision Recall F1 score
Li et al.

(2017)[84]
0.900 0.900 0.900

Xiao et al.

(2018)[136] *
0.988 ± 0.003 0.985 ± 0.002 0.974 ± 0.03 0.979 ± 0.003

Xiao et al.

(2019)[137] *
0.999 ± 0.002 0.998 ± 0.002 0.999 ± 0.002 0.998 ± 0.004

Ahn et al.

(2019)[2]
0.979

LGBM

w/ BO
0.995 ± 0.006 0.997 ± 0.005 0.997 ± 0.004 0.997 ± 0.003

Table 5.9: Comparison of LGBM predictive performance with previous works for cancer predic-
tion using TCGA LUAD and LUSC RNA-seq datasets. * Results only for TCGA-LUAD.

In Xiao et al. (2019) [137], the same 162 TCGA-LUAD samples were utilised. DESeq2 [92]

was used for feature selection, and 1,385 genes out of 20,531 were selected for the modelling

stage. A semi-supervised learning approach was used by extracting relevant features and using

a stacked sparse autoencoder (SSA) for classification. The SSA classifier provided an accuracy

0.9987±0.018, which outperforms our LGBM in terms of accuracy; nevertheless, accuracy is

not an optimal indicator for unbalanced problems and AUC score is not provided. However, the

difference in F1-score is minimal, and our approach showed less variance and more balanced

precision-recall trade-off. Furthermore, considering that these and the previous research only con-

sider a total of 162 LUAD samples out of the 598 available on TCGA, and the inclusion of LUSC

samples strenuous the task by increasing the heterogeneity of gene expression profiles across can-

cerous and non-cancerous tissue, it is arguable that our method is as good if not outperforming in

a similar context. However, we decided to include these papers as they present up to par validation

with our work, and provide excellent predictive performance even with the considered limitations.

A key difference between our strategy and SSA is the need for two pre-processing steps; first DE-

Seq2 was used to select differential expressed genes, then SSA was used to extract relevant gene

signatures out of the 1,385 pool for classification. Our results also show the DL model necessity

for prior feature selection, mostly on the subtype problem, while the LGBM model handles feature

selection internally, which presents as an advantage.

In Ahn et al. [2], a total of 8,839 TCGA samples were used out of which 645 (7.3%) were

NT samples, retrieved from 24 different cancer types, including all TCGA LUAD and LUSC sam-

ples. Five gene sets were created with the top 3,000 genes using various mean and rank-variance

feature selection techniques, following a DNN was employed for classification and compared to 5

baseline models. Our LGBM approach outperforms the described method, although the compar-

ative research presents the unique advantage of including samples from different cancer types. It

highlights an interesting opportunity for future work to extend our learner to other cancer types to

assess how well it generalises.
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5.6.2 Subtype Classification

Table 5.10 presents a comparative study of the predictive performance of our best performing

method LGBM for the task of lung cancer subtype classification. A similar selected papers’ cri-

terion was used then for cancer classification, except point 3) where papers must include both

LUAD and LUSC datasets for subtyping. Accuracy is used as the primary indicator of predictive

performance as subtype classification presents a problem of balanced nature.

In González et al. [109], a total of 230 TCGA samples were used, with a 2:1 ratio imbalance

of LUAD samples. Preliminary feature selection was done using the Mann-Whitney test and

selecting genes gene which present statistical different distributions (pvalue < 0.05), following the

second stage of feature selection was performed using pGBRT to minimise the difference between

genes, evaluated using MSE. Finally, wkNN, kNN, SVM and NB were used to distinguish LUAD

from LUSC samples using various gene set sizes. Our approach outperformed in every aspect;

however, the LGBM learner had a less balanced precision-recall trade-off which translates to less

precision in predicting LUAD samples. Nonetheless, the work analysed presents the possibility

of using more complex models for feature selection which could present an opportunity for future

work of using LGBM as a feature selection method and on top an unsupervised or supervised

strategy to separate the histologic subtypes.

Performance Metrics
(mean ± standard deviation)

Methods Accuracy Precision Recall F1 score
González et al.

(2017)[109]
0.965 0.924 0.983 0.953

De Guia et al.

(2019)[29]
0.955 0.957 0.954 0.955

Smolander et al.

(2019)[118]
0.960 ± 0.012 0.936 ± 0.012 0.984 ± 0.010 0.959 ± 0.011

Ye et al.

(2020)[138]
0.921 0.946 0.901 0.923

LGBM

w/ BO
0.971 ± 0.018 0.962 ± 0.020 0.980 ± 0.022 0.971 ± 0.014

Table 5.10: Comparison of LGBM predictive performance with previous works for cancer subtype
classification for TCGA LUAD and LUSC subtypes.

In De Guia et al. [29], 515 LUAD and 501 LUSC samples were used. A different strategy

of embedding the gene expression values into a 2D image, and using a CNN to find differential

expressed genes. Baseline methods SVM and RF were used to assess the CNN performance,

and SVM performed better with 0.931 F1-score. The CNN showed better precision in predicting

LUAD samples, which is not the case for our LGBM model, which although it outperforms the

CNN, it shows better accuracy in the classification of the LUSC class.
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Smolander et al. [118], a total of 976 samples was used with 1:1 ratio. The authors evalu-

ate the effect of coding and non-coding proteins in the classification of NSCLC by employing

a deep belief network for classification while comparing it to baselines SVM and RF. The im-

pact of feature selection was studied DBN outperformed the SVM with 500 features and FS that

showed an accuracy of 0.939±0.01. The DBN was also used as a feature selection method prior

to SVM classification, which resulted in a worse overall accuracy of using only the DBN. Accord-

ing to our revision of state of the art, Smolander et al. [118] provided the best results for subtype

classification of lung cancer using gene expression TCGA data with an accuracy of 0.960. Our ap-

proach outperforms the related work, which also presented worse precision for the positive class,

but nevertheless showing very low variance overall. The work conclusions follow the same line

with the results drawn from our work, which showed that feature selection was very important

for deep learning models mainly in the subtype classification problem, in which the use of simple

variance-based techniques provided significant predictive performance gains and reduced overall

variance.

In Ye et al. [138], a total of 1,013 samples were enrolled, out of which 512 corresponding

to LUAD samples. The authors followed a different strategy to minimise the number of selected

genes to find relevant signatures. Preliminary feature selection was performed using Edger [112]

which selected 5,469 differentially expressed genes. Following hierarchical clustering was used

to separate the genes in sub-groups further, each sub-group was evaluated individually, and the

top 20 genes from the best performing group were selected. SVM, kNN and DT were used to

predict solely using combinations of the top 20 genes, and kNN using top 17 genes yielded the

best accuracy of 0.922. The precision was also better for the LUSC class similar to our classifier

but considering that only 17 genes used for prediction the related work presents excellent results.
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5.7 Summary

This chapter presented our solutions for cancer and subtype classification using gene expression

data, which we tackled using two approaches: a DL model that is the standard strategy in state

of the art, and a tree-based learning model that we provided interpretability to retrieve biological

insight. Cancer prediction using gene expression data poses a different problem then subtype

classification, as the composition of medical datasets generally has a positive majority class, while

the subtype problem presented a balanced class problem.

To solve the class imbalance problem in the cancer classification problem, we explored data

augmentation using ADASYN to oversample the minority negative class. Although we found

one reference to oversampling using SMOTE in the covered literature [28], the research shows

no comparative results for DA. Our research showed no performance gains for both the DL and

the LGBM method when performing oversampling, and a strategy of adjusting the weights of

each learner as an optimisation step yielded better results. Hyperparameters optimisation ran

for both problems, using grid search for DL models and bayesian optimisation for the LGBM

model to determine the best architectures and find combinations of hyperparameters that minimise

overfitting and improve generalisation.

A systematic review of the literature highlighted the importance of feature selection to reduce

the high dimensionality of gene expression profiles, which is particularly relevant when using

deep learning methods as they are prone to perform poorly due to the curse of dimensionality. We

designed an experimental study to assess the impact of feature selection on DL models by using

different FS techniques with several gene set sizes. Our study’s empirical results showed a clear

performance gain in the subtype classification problem when performing FS but not a statistically

significant result in the cancer prediction one. Our hypothesis for this is the following:

1. The cancer classification DNN had a 3 hidden layer architecture versus 4 layers from the

subtype prediction, and the lower complexity of the network might not get the full benefits

from feature selection because it was not complex enough to overfit the data.

2. The task of predicting subtypes has the same dataset characteristics (number of genes) but

represents a subset of the cancer prediction problem (only TP samples corresponding to

LUAD and LUSC). The objective is also very different, and while the heterogeneity between

TP and NT samples is huge, the heterogeneity for LUAD and LUSC samples is not that

much; therefore there is more noise in the data when the task is cancer subtyping as the

difference is focused in a minimal set of genes.

The GBDT method proved to excel at handling high dimensional data while eradicating the need

for feature selection. A comparative study on the effectiveness of the LGBM versus the XGboost

implementation was performed on breast cancer mRNA data in Wang et al. [131], which showed

that lightGBM algorithm performed better overall. Although the authors do not conclude why we

deduce that the unique advantage of using the GOSS algorithm over the Pre-sorted/Histogram-

based algorithm gives the capability of LGBM to handle large, sparse datasets better as instances
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with small gradients vanish. Furthermore, EFB provides a means of the model of removing re-

dundant features by eliminating mutually exclusive features, which eradicates the need for feature

selection. Preliminary results show that our methods outperform previous work’s results using DL

methods for subtype classification, and show the potential for usage as main predictive models or

tools for identifying differentially expressed genes.

To validate our results, we used the Shapley technique to provide interpretability on the LGBM

model. We analysed the top 20 most relevant gene expression signatures for the cancer and sub-

type prediction problem. First, we analysed the importance of the features from the model point

of view, using a feature importance visualisation that correlates feature importance with feature

effect that gives us an idea of what features are more critical for the model when deciding. Fur-

thermore, we analysed the same set of 20 genes independently from the model to have a more

in-depth analysis of the overall expression distribution changes for the genes in the target popu-

lations of each problem. We performed hierarchical clustering of the genes to select sub-groups

of genes whose distribution was most similar in each population. This type of clustering mecha-

nism allows for identifying common-regulated genes, which can serve as a mechanism to identify

groups of gene signatures associated with specific diseases. As a result of this work, two sets of

gene signatures were extracted: a set that differentiates normal tissue from cancerous tissue (can-

cer prediction), and a set of that distinguishes LUAD from LUSC samples (subtype classification).

Furthermore, we cross-referenced some staple works such as those of The Cancer Genome Atlas

Network [35], [39] and found the same patters of over and under-regulation for genes specific to

each histologic subtype, e.g. over-regulation of TP63 in LUSC, which provides additional vali-

dation of our results and presents the prospects to have found new, un-covered gene signatures in

literature.



Chapter 6

Survival Analysis and Outcome
Prediction

In this chapter, we describe our solution for the survival outcome prediction problem. The TNM

staging system originated from the need for an accurate, consistent, universal cancer outcome

prediction system. Since the TNM staging system was introduced in the 1950s, new prognostic

factors have been identified, and new methods for integrating prognostic factors have been devel-

oped [13]. The work in this chapter aims to integrate multiple genomic and clinical data to capture

the complex associations needed for accurate outcome prediction.

On section 6.1, we give an overview of the experimental workflow and describe the data prepa-

ration stage. On section 6.2, we present the materials used and explain the different strategies to

handle multimodal data properly. On section 6.3, we briefly cover the evaluation metrics used to

assess the models’ predictive performance. On section 6.4, we present the predictive performance

results and the post-analysis. Finally, on section 6.5, we discuss our results comparing with state

of the art and validate our research methodology.

6.1 Experimental Design

Figure 6.1 presents an overview of the experimental design employed to predict cancer patients’

outcome. We integrate three modalities: gene expression, somatic mutation data and clinical

variables in order to maximize the information gain needed for accurate survival prediction.

To effectively handle the multimodal data, we use early and late fusion techniques to combine

the heterogeneous data types. Figure 6.1a presents the early fusion experiment design, where the

unprocessed modalities go through feature selection to select for relevant information and then are

fed into a DL network for survival prediction. Figure 6.1b presents the late fusion design, where

each modality is first processed in individual learners to extract relevant features, which then

merged into a DL network. LUAD and LUSC represent heterogeneous molecular disease even

within the NSCLC subtypes and are known to present different overall survival [41]; therefore,

the described methodology was followed for the LUAD and LUSC cohorts separately.

61
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(a) In early fusion the features of each modality are merged into a DL network after feature selection.

(b) In late fusion, each modality is handled separately in an unsupervised learning stage to extract represen-
tative features, that are merged into a DL network.

Figure 6.1: Methodology of early and late fusion techniques for survival outcome prediction of
the LUAD and LUSC cohorts.

6.1.1 Data Preparation

On this section, we explain the data preprocessing steps individually of each data type. The data

acquisition and preprocessing steps for RNA-seq have already been covered in section 5.1.1 and

are similar.

6.1.1.1 Mutation Data

Using R BioConductor framework with the TCGABiolinks package [34], [117], [43] we queried

for somatic mutation from the TCGA project. The somatic data is aligned according to the human

reference genome (GRCh38) using the MuTect2 [23] somatic mutation calling pipeline. We added

the clinical records for the patients using TCGABiolinks’ GDCPrepare, and a total of 208,181

mutation calls were retrieved for LUAD and 181,117 for LUSC.

We consider a mutation to be identified by a combination of its Entrez Gene and by the Human

Genome Variation Society (HGVS) protein sequence name. There are multiple "duplicate" muta-

tion entries for the same patients, we grouped these mutations by patients and filtered for clinically

relevant cancer biomarkers as targets for therapy, as shown in Villalobos et Al. [48]. In Table 6.1,

we show the mutation count, as well as their frequencies, for the considered target genes in the
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LUAD and LUSC datasets, and the mutation data analysis shows that the TCGA LUAD and LUSC

populations show mutational frequencies that are mostly within the ranges presented in [48].

LUAD LUSC
Gene Counts Frequency (%) [48] Frequency (%) Counts Frequency (%) [48] Frequency (%)
ALK 38 6.94 4-7 20 4.07 None
BRAF 41 7.23 1-3 15 3.05 0.3
DDR2 24 4.23 0.5 17 3.46 3-4
EGFR 71 12.52 10 14 2.85 3
ERBB2 21 3.70 1.6-4 14 2.85 None
FGFR1 15 2.65 3 11 2.24 5
FGFR2 13 2.29 3 16 3.25 5
FGFR3 4 0.71 3 13 2.64 5
FGFR4 21 3.70 3 8 1.63 5
KRAS 150 26.46 25-35 9 1.83 5
MET 24 4.23 8 8 1.63 4
NTRK1 21 3.70 3 23 4.67 None
PIK3CA 27 4.76 2 62 12.60 7
RET 24 4.23 1-2 25 5.08 None
ROS1 28 4.94 1-2 49 9.96 None

Table 6.1: Analysis of frequency of known biomarkers of LUAD and LUSC for the TCGA muta-
tion dataset. Comparison with the values in Villalobos et al. [48].

6.1.1.2 Clinical Data

As seen in the data analysis in chapter 4, the clinical datasets for LUAD and LUSC present miss-

ing values for some variables. Furthermore, there are mutually exclusive variables between the

datasets, marked with ’NA’ in the list of the clinical parameters and its missing values in appendix

Table A.1. The following steps of preprocessing described below were followed for each dataset:

• Transformations - For categorical types with no meaningful order, we convert the variables

to binary using one-hot encoding. Ordinal encoding is used to convert variables with a

natural rank-ordering, e.g. paper_Tumorstage. As a final step, we scaled the features into

the [0, 1] range using min-max normalisation.

• Handle missing data - For categorical variables with missing values, we create an extra

column representing missing values when doing one-hot encoding. For labels, more specifi-

cally the survival status, we drop these samples in the survival prediction problem. However,

we generally impute missing values according to the average value for numerical types when

applicable.
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6.2 Survival prediction

This section focuses on explaining the details of our solution for survival prediction. On section

6.2.1, we explain our late fusion model’s architecture, highlighting the differences to an early fu-

sion technique. Section 6.2.2 discusses the unsupervised learning stage of the problem, explaining

the methods used for feature extraction and section 6.2.3 explains the Cox Proportional-Hazards

model used for survival prediction.

6.2.1 Multimodal Data: Early and Late Fusion

Survival analysis of cancer patients represents a more difficult task, where the integration of multi-

ple data types can improve predictive performance by capturing complex multimodal associations

required for accurate outcome prediction. In this work, we use three different data types: somatic

mutation, which after preprocessing contains a binary composition representing the presence of

specific mutations; clinical data, which contains a mixture of binary and continuous variables that

are normalised into the [0, 1] range; and gene expression data that is continuous and scaled to fit

into the 0 to 1 range.

We propose a method of Late Fusion (LF) to join the clinical and genomic modalities. Re-

garding the data heterogeneity problem, we will refer to two research papers that use both clinical

with genomic data, which inspired our solution. In Chaudhary et al. [15], the authors combined

clinical features with genomic features in the same model, which did not lead to an improvement

in performance. However, in Wang et al. [49], clinical and genomic data was integrated by build-

ing a similarity matrix using the SNF algorithm [142], and a significant statistical improvement in

the results was observed. This leads us to believe that the contradictory results obtained in [15]

are related to the way the authors fed the original clinical and genomic features to the same model

(Early Fusion), which may have induced redundancy in the overall features.

Late fusion represented on Figure 6.2b, integrates the modalities by sending each of them

through an individual learner, joining their last layer’s results. The fusion of each model’s output

can work, for instance, like majority voting (or weighted averaging, in the case of regression) if

all models have a final classification step, or by feeding the intermediate layers containing latent

features into a new model, thus allowing more flexibility. It is easier to handle a missing modality

as the predictions are made separately; however, because LF operates on inferences and not the raw

inputs, it is not effective at modelling signal-level interactions between modalities. Early fusion

(EF) represented on Figure 6.2a, creates a joint representation of input features from multiple

modalities; it uses one single model to make predictions, which assumes that the model is well

suited for all the modalities [90].

We chose to use LF as there should not be signal-level interactions between the clinical and

genomic modalities, so a technique of EF, as applied in [15], might induce data redundancy. Figure

6.3 presents the general architecture used for the late fusion of different modalities. Each modality

is handled separately: we use a Variational Autoencoder (VAE) to extract a latent representation

of high dimensional gene expression profiles and a more simple AE to extract features from the
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(a) Early fusion of different modalities. (b) Late fusion of different modalities.

Figure 6.2: Architecture to combine two distinct modalities using early and late fusion techniques.

mutation and clinical datasets. The autoencoder’s outputs containing latent representations of the

features are merged into a cox-regression layer that performs the regression of survival groups. To

test our late fusion model’s predictive performance, we implement an early fusion method similar

to the one used in [15] to serve as a baseline. Furthermore, we compare the effectiveness of the

early and late fusion strategies with a single modality strategy, implementing Cox PH models that

rely solely on single modalities for prediction.

Figure 6.3: The architecture of the late fusion model used to combine the modalities for survival
analysis. The modalities are fused in a Cox PH model after going through individual learners.
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6.2.2 Dimensionality Reduction: Feature Extraction

Feature extraction provides some unique advantages over feature selection, as discussed in section

3.1.1, and has been widely used in the field of bioinformatics for dimensionality reduction. Due

to the complexity of genomic datasets and the high amount of noise in the gene expression data,

there is a need to analyse the raw data and exploit the important subsets of genes [28]. Linear FE

techniques such as PCA that have shown satisfactory results for dimensionality reduction of gene

expression data [75], however, this might fail to extract some non-linear relationships of the data.

Non-linear FE methods techniques can capture more complex relationships lying on the inter-

dimensional space, with the downside of the complexity and computational power required when

compared to linear FE techniques. Autoencoders are a type of unsupervised learning technique

that can be used to extract functional features from high dimensional gene expression profiles, and

in Danaee et al. [28] the use of a stacked denoising autoencoder to extract latent features from

gene expression has shown to outperform those extracted by PCA in the task of cancer prediction.

Autoencoders have been first introduced in [114] as a neural network that is trained to re-

construct its input. Their main purpose is to learn in an unsupervised manner, an informative

representation of the data that can be used for various implications such as dimensionality reduc-

tion or clustering [5]. The problem can be formally defined as the objective is to learn the functions

A : Rn→ Rp and B : Rp→ Rn so that the expectation E over the distribution of x in Equation 6.1

argminA,B E[∆(x, B ◦ A(x))] (6.1)

can be minimised, which is dependent on the distortion function ∆, as well as the presence of

additional constraints, such as regularization [4]. In the particular case of deep learning, A and B

are generally neural networks which leads to deep autoencoders.

6.2.2.1 Gene Expression Modality: Variational Autoencoder

In this work, we propose using a variational autoencoder to extract a latent representation of gene

expression profiles, to reduce the data’s dimensionality to be integrated into the survival prediction

learner. VAEs first introduced in Kingma et al. [77], are generative models that attempt to describe

data generation through a probabilistic distribution that can capture an underlying data manifold

from input data.

Figure 6.4 presents the general architecture of the implemented VAE. First, we start by trans-

forming the original gene expression sets by dividing them by their max so that expression is

capped in the [0, 1] range, which does not affect the original scales between genes as normal-

isation using min-max or standard scaling would do. Batch Normalisation (BNorm) is used to

transform the gene expression input dimension (x) so that the dense layers maintain a mean output

close to 0 and the output standard deviation close to 1 [42], which enables for more stable training

and faster convergence. VAEs are stochastic and learn the distribution of explanatory features over

samples by learning two distinct latent representations: a mean (µ) and standard deviation vec-
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Figure 6.4: The variational autoencoder’s architecture, X is the input RNA-seq profiles connected
to dense layers with BNorm, which are sampled in the lambda layer and reconstructed into X’.

tor encoding (σ ) [133]. A lambda layer is created where we define a custom activation function

to perform the probabilistic sampling (z) on Equation 6.2 with ε being drawn from a Gaussian

z = µ +σ � ε (6.2)

distribution with 0 mean [133]. We assume an approximate posterior distribution over the la-

tent variable (z) given a sample xi with some known distribution pθ (z‖x) that can be ascertained.

Symmetrically, a probabilistic decoder is assumed for each sample xi conditioned on an unob-

served random latent variable zi , where θ are the parameters governing the generative distribu-

tion. To calculate the loss associated with the reconstruction two factors need to be considered:

the loss associated with the reconstruction error, and the Kullback-Leibler (KL) that regularises

weights by constraining the latent vectors to match a Gaussian distribution [133]. The loss func-

tion represented in Equation 6.3 is known as variational lower bound, and through minimising

the loss, we are maximising the lower bound of the probability of generating new samples [5].

L(φ ,θ : x) = Ez∼qφ (z|x)(log(pθ (x | z))−Dkl(qφ (z | x)||pθ (z | x)) (6.3)

To calculate the reconstruction loss we use Mean Squared Error (MSE) in Equation 6.4, to average

the squares of the errors between the gene expression values and the decoded values, and created

a layer connecting the inputs with the decoded layer with a custom loss function, defined as the

mean of the KL loss and the reconstruction loss given my MSE.

MSE =
1
N

N

∑
i=1

(di− yi)
2 (6.4)

The ReLu activation with He uniform initialization [62] was used for dense layers, except the prob-

abilistic decoded layer which uses sigmoid for prediction. The hyper-parameters were optimised

using grid search: Nesterov-accelerated Adaptive moment estimation (NAdam) optimisation with

a learning rate of 1e−3 and batch size of 50 seemed to minimize the loss for latent dimension size’s

(Z) of 120.
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6.2.2.2 Clinical and Mutational Modalities: Stacked Sparse Autoencoder

The mutational and clinical modalities present a more simplistic dataset composition when com-

pared with the gene expression data. After preprocessing, the clinical dataset comprises two types

of continuous and binary variables, and the mutational dataset contains only binary variables rep-

resenting specific mutations. To extract features from these modalities, we used shallow autoen-

coders with an L1 penalty that was added to the encoder layers to encourage sparsity and avoid

bad representations by creating features with large weights [21]. Grid search was used to find the

optimal architecture and the hyper-parameters for each modality, by doing 5-fold cross-validation

with MSE as the reconstruction loss for the clinical modality and binary cross-entropy for muta-

tional data. Table 6.2 presents the results of grid-search optimisation: the activation ReLu with

He uniform initialisation [51] was selected, and NAdam optimisation seemed to reduce the loss

for both autoencoders. The optimal number of encoder and decoder layers was one for the clinical

SSA and a more deep architecture with two encoder, and three decoder layers seemed optimal for

the higher dimensional mutation dataset. L1 regularisation was also individually optimised for

each encoder layer to allow for more differentiation between layers’ ability to induce sparsity on

the features. The grid search space defined for the architecture was 1 to 4 layers for the encoder

and decoder, respectively, with a number of nodes between 10 and 500. The batch sizes were

capped at 50 due to processing power; the learning rate was optimised in the [1e−6, 1e−2] range,

and logarithmic scale was used to search for L1 values in the [1e−1, 1e−10] gamma.

Hyper-Parameters Clinical Mutation
Encoder 40 {120, 80, 90}

Decoder 60 {80, 50}

Bottleneck 25 50

L1 regularisation 5e−6 { 2e−7, 1e−4 , 8e−5 }

Learning Rate 0.00263 0.0000347

Batch Size 40 60
Table 6.2: Optimal hyper-parameters for the clinical and mutation SSAs, resulting from grid-
search optimisation.
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6.2.3 Cox Proportional-Hazards

Survival analysis is a term coined for the collection of statistical procedures for data analysis, for

which the outcome variable of interest is time until an event occurs [24]. In the survival analysis

of cancer patients, the event of interest is death, and the time variable is the survival time. In

section 6.2.3.1, we start by giving a background on some key survival analysis concepts that must

be understood before delving into the specifics of the Cox Proportional Hazards [25] model used

for survival analysis in section 6.2.3.2.

6.2.3.1 Background

Censoring: Censoring is a common problem in medical domain survival analysis, and it oc-

curs when we have partial information on the subject survival time, but we do not know the ex-

act survival time. Figure 6.5 presents the three different types of censoring existent: interval-

-censoring occurs when the event of interest is within a known time interval; left-censoring when

(a) Interval-Censoring (b) Left-Censoring (c) Right-Censoring

Figure 6.5: Type of censoring in survival analysis. Adapted from [78].

the real survival time is less than or equal to the observed survival time; right-censoring happens

when the real survival time is equal to or greater than observed survival time, e.g. if a patient

leaves the study or the study ends. In our specific case, only right-censoring is relevant as it is the

only type of censoring present in the data, which translates to patients with unknown survival time

or patients still alive.

Survivor and Hazard Functions: The survivor function h(t) gives the probability of subject

surviving over time. It is theoretically a continuous function starting at t = 0 with a probabil-

ity of survival h(0) = 1 that decreases over time, which empirically translates to a step func-

tion rather than a smooth curve. The hazard function h(t) in equation 6.5 equals the limit, as

h(t) = lim
∆t→0

P(t ≤ T < t +∆t | T ≥ t)
∆t

(6.5)

∆t approaches zero, of a probability statement about survival, divided by ∆t which denotes a small

interval of time [78]. This roughly translates to the instantaneous risk of the event occurring in an

expeditious time period ∆t .
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6.2.3.2 Cox Proportional Hazards Model

The Cox Proportional Hazards model (1972) [25] it is still the most widely used method for mul-

tivariate survival analysis due to its solid statistical background. The idea behind Cox’s PH model

is that the log-hazard of an individual is a linear function of their covariates and a population-level

baseline hazard that changes over time [33], as represented on Equation 6.6.

h(t|x) = b0(t) exp

(
n

∑
i=1

bi(xi− xi)

)
(6.6)

The formula translates to the hazard at time t for a predictor variable x is given by the baseline

hazard which is a time-dependent function giving the hazard for an individual at time zero (b0(t)),

multiplied by the partial hazard, or Hazard Ratio (HR), which is a time-invariant scalar factor that

only increases or decreases the baseline hazard of the covariates (xi) [33].

A fundamental assumption made by this model concerns the proportional hazards assumption,

in which the baseline hazard is a function of t, but does not involve the hazard of the covariates; in

contrast, the hazard ratio is given by the effect of the time-independent covariates. This method is

considered semi-parametric as it contains a parametric set of covariates (partial hazards) and a non-

parametric component (baseline hazard) [25]. On Equation 6.7, it is presented a fully-parametric

version of the Cox PH model, called the Cox time-varying proportional hazard model which as

opposed to the original model considers that the hazard of a covariate can change over time (xi(t)).

h(t|x) = b0(t) exp

(
n

∑
i=1

βi(xi(t)− xi)

)
(6.7)

Although the parametric version of the model is theoretically more powerful, in practice generally

the semi-parametric version of the model is more fit if the goal is to maximise the score of sur-

vival prediction [78]. This will be discussed more in-depth in section 6.2.3.3, and in Table 6.3 it

is presented a summary of the statistics describing the fit, the coefficients, and the error bounds

of a Cox-PH execution for 5 clinical covariates. The clinical covariates along the rows from top

to bottom represent the shortest and intermediate dimension of the patient’s tumour, the initial

weight when enrolled in the study and the AJCC metastasis and pathologic stage classifications.

Covariate C HR(C) σ(C) HR(C) HR(C) z p -log2(p)
short._dim -0.042 0.959 0.220 -0.474 0.390 -0.189 0.850 0.234
int._dim. 0.240 1.272 0.197 -0.146 0.627 1.218 0.223 2.164
init._weight 0.926 2.524 0.249 0.437 1.415 3.712 0.0005 12.249
ajcc_m 0.711 2.037 0.157 0.405 1.018 4.544 0.0001 17.467
ajcc_stage 1.028 2.794 0.252 0.533 1.522 4.075 0.0003 14.409

Table 6.3: Summary statistics describing the fit, the coefficients, and the error bounds of a Cox-PH
execution.
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Across the columns, C if the regression coefficient of a specific covariate, exp(C) gives the

Hazard Ratio of the variable, σ(C) is the standard error of the estimated regression coefficient,

and the fourth and fifth columns are the lower and upper bounds of the 95% confidence interval

for the hazard ratio of the covariate C. The z is the value of the Wald statistic which evaluates if

the coefficient of a given variable is statistically significantly different from 0 and p is the result of

the log-rank p-value that tests for the significance of each coefficient on the separation of survival

groups. The last variable is the log2 value of the Likelihood Ratio (LR) which can be used to

assess the impact of covariate without model interaction [78].

6.2.3.3 Evaluating Proportional Hazards Assumption

This section is related to the validation of the Cox Proportional Hazards assumption, and it eval-

uates the advantages and disadvantages of using the Cox PH semi-parametric or the Cox time-

varying PH model according to the literature.

When using the Cox PH semi-parametric version, it is required to verify the proportional

hazards assumption in order to validate the model statistically. As discussed in the previous sec-

tion, the Cox PH premise assumes that a covariate contribution for the partial hazards is constant

throughout time. If a covariate breaks the premise, it implies that the contribution to partial haz-

ards changes over time, making it a time-dependent covariate. The scaled Schoenfeld residuals

test, visually represented in Figure 6.6, is used to test whether a covariate violates the proportional

hazards premise by creating a time-varying coefficient in a (fictional) alternative model that allows

for time-varying coefficients [108]. A non-failed test would present a disperse distribution over

the x-axis with no clear trend. Variable icd_10_code.C34.9, which stands for a type of unspecified

(a) KM estimate of C34.9 subjects and control group. (b) Schoenfeld residuals test on covariate.

Figure 6.6: Assessment of the Cox PH premise on covariate icd_10_code.C34.9 using the scaled
Schoenfeld residuals test.
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lung neoplasm according to the World Health Organization (WHO) International Classification

of Diseases (ICD-10) classification [106], failed the non-proportional test with a global p-value

of 0.0001 and a rank-transformed time p-value of 0.0048 . However, failing the test does not

imply that the variable is time-dependent. In Figure 6.6a, we plot the difference in survival groups

between subjects classified as icd_10_code.C34.9 and the control group using the KM estimate,

and it is possible to see that the low cardinality induces the failed test, which is caused by some

arbitrary dependency of the covariates’ partial hazard when analysed in a time-varying model,

given that all uncensored subjects that have the covariate positive, die in a short period.

The Cox time-varying model is more fit for situations when hazard ratios change over time,

such in the case of follow-up trials, and even if the hazards were not proportional, altering the

model to fit a set of assumptions fundamentally changes the scientific question which leads to poor

results [33]. Given a large enough sample size, even minimal violations of proportional hazards

will show up [122], therefore when the objective is to maximise a score such as the survival

prediction score it is wiser to chose the best predicting model even if some violations occur.

6.2.3.4 Dimensionality Reduction: Feature Selection

The curse of dimensionality is severe when modelling high-dimensional discrete data: the num-

ber of possible combinations of the variables explodes exponentially [7]. Genomic datasets are

generally composed of sampled high-dimensional vectors with very sparse characteristics, which

increases the risk of overfitting and making it very difficult to identify patterns in the data without

having plenty of training data [54].

The Cox Proportional Hazards model by evaluating each covariate’s fitness for survival predic-

tion makes it possible to use the penalised likelihood of covariates, that induces sparsity in fitted

parameters, for better estimation of variables log-likelihood [78]. Therefore, it is possible to rank

the features in descending order of their log-likelihood or select them by their p-value, which is a

necessary step so that the Cox PH model can converge.
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6.3 Train, Test and Evaluation

On figure 6.7, we show the full pipeline followed for the unsupervised and supervised learning

parts of the problem. We use stratified sampling in order to maintain the same proportion of non-

censored and right-censored patients across the train and test sets, with a split of 60 to 40 per cent

so that there is covariate variability across the test set. Since the estimation of the coefficients in

the Cox proportional hazard model is done using the Newton-Raphson algorithm, there are some-

times problems with convergence [33], variables with low variability which completely separate

censored from non-censored subjects must be dropped so that the Cox PH model can perform

adequately. To handle low variability covariates, we perform two preprocessing steps:

1. We run the Variance Inflation Factor (VIF) algorithm to find multicollinearity in the predic-

tor variables [111], and drop all variables above the 8.0 VIF threshold

2. At each train/test split, we check for variables that completely separate censored from non-

censored subjects, for example, for all "death" events in the dataset, there exists a covariate

that is constant amongst all of them, we drop these variables so that the model converges.

Figure 6.7: Global pipeline for LUSC and LUAD survival prediction. The autoencoders and
the Cox PH model are optimised using 5-fold cross-validation, and the train and test process is
repeated 5 times for model validation.

Modality Learners: This comprises the unsupervised stage of the problem, where we run each

modality learner using a 80 to 20 per cent split for train and validation purposes, as explained in

the section 6.2.2, which is used to train the autoencoders for feature extraction.

Cox PH: This stage comprises two different stages: first feature selection is performed by perform-

ing a log-rank test to evaluate the fitness of each variable for survival prediction for each separate
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modality features; following, we feed all the features with a p-value below a pre-defined threshold

for the late fusion model as explain in the LF section 6.2.1. To optimise the Cox PH deep network,

we use 5-fold cross-validation in order to get the best selection of network hyper-parameters, us-

ing the Akaike Information Criterion (AIC) to compare the predictive performance of different

survival models. Finally, we used the best performing cox model to evaluate the performance on

the independent test set, and the full process was repeated five times by randomising the train

test seed to account for the variability induced by the small survival sets. The evaluations metrics

Concordance Index and the pvalue of the log-rank test were used to assess the model’ predictive

performance and the covariates’ fitness for survival analysis, in order to best compare our re-

sults against similar research, and the Kaplan-Meier estimate was used for the analysis of survival

curves.

Concordance Index: The C-Index or Harrell’s C on Equation 6.8, is defined as the proportion

of all usable patient pairs in which the predictions and outcomes are concordant. It estimates the

probability of concordance between predicted and observed responses [59].

C-Index =
∑i, j I(Ti > Tj)(η j > ηi)∆ j

∑i, j I(Ti > Tj)∆ j
(6.8)

Where i and j refer to pairs of observations, η refers to the prediction and T to the actual survival

time. The pair (i, j) is concordant if the survival prediction for observation j is greater (η j > ηi),

then the survival of j is longer (Ti < Tj). The overall C-index can be translated as the ratio of con-

cordant pairs by the total number of observations multiplied by the factor ∆ j that discards pairs of

observations that are not comparable when observation Tj is right-censored. Harrell’s C can also

be interpreted as a summary measure of the area(s) under the time-dependent ROC curves [63],

where a C-index of 0.5 determines no predictive discrimination, and 1.0 is a perfect separation

between patient’s outcomes.

Kaplan-Meier Estimate: Kaplan–Meier (KM) estimator plots the KM survival curve, which

is defined as the probability of surviving in a given length of time while considering the time in

many steps [3]. It involves computing of probabilities of occurrence of an event at a certain point

of time and multiplying these successive probabilities by any earlier computed probabilities to get

the final estimate [52].

Log-rank pvalue of Cox-PH regression: The log-rank test is a hypothesis to assess the differ-

ence between two survival curves, and assign it a confidence interval. It calculates the chi-square

(X2) on formula 6.9 for each event time, and for each group and sums the results. It is further
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possible to create strata of the population. On Equation 6.10, it is presented a variation

χ
2 =

(∑m
i=1 di−∑

m
i=1 ei)

2

∑
m
i=1 σ2

i
(6.9)

Oi−Ei = ∑
s

∑
j
(mi, j,s− ei, j,s) (6.10)

of the log-rank test when stratifying by a covariate, where instead of calculating (X2) for group

i, we calculate it for each stratum (s). The hypothesis returns a pvalue used to test if the survival

between two groups presents a statistically difference (pvalue < 0.05).

Akaike Information Criterion: AIC on Equation 6.11, provides an approach for comparing the

fit of models with different underlying distributions, making use of the -2 log2 likelihood statistic,

and the addition of 2 times p can be thought of as a penalty if non-predictive parameters are added

AIC(model) = -2 LR+2 k (6.11)

to the model. Where k is the number of parameters (degrees-of-freedom) of the model and LR

is the maximum log-likelihood. A smaller AIC statistic suggests a better fit since it is a trade-off

between maximising LR with the fewest parameters possible [78].

Implementation

Our solution is implemented in Python 3.8 programming language using the frameworks Keras [21],

Tensorflow [42], KerasTuner [104] and lifelines [33]. All CPU intensive tasks, namely preprocess-

ing, were conducted on a 16x2GHz cores Intel Core Haswell CPU with 128Gib RAM running on

the Ubuntu 16.4 operating system. All GPU taks were run on a 2xNvidia GeForce GTX 1080 Ti

with 11,178 MiB GDDR3 running on Ubuntu 18.04 LTS operating system.
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6.4 Results

On this section we compare the results of the early and late fusion techniques with single modality

learners, and perform explorative data analysis to assess the fitness of the different survival models’

features. The results are presented separately for LUAD and LUSC cohort as they show different

overall survival curves

Figure 6.8 presents a KM plot of the LUAD and LUSC cohorts survivability. The bottom left

corner’s risk counts show the total number of subjects enrolled in the study, 530 for LUAD and

496 for LUSC. For each time step (years) the number of deaths is updated, which corresponds to

the at-risk patients minus the total number of right-censored patients. The shadow surrounding

each curve corresponds to the 95% confidence interval associated with the KM estimate, and

the squares represent the presence of a right-censored observation at time t. The most evident

differences differences between the histologic subtypes survival curves are: LUSC survival is

more aggressive in the first three years, and shows a worse perspective of survival in the long

term, stabilising at 19% while LUAD stabilises at 21%, and LUAD survival seems to have higher

mortality between the 4 and 6 years period, after which it slows down. Although this type of

analysis can give a visual estimate of each group’s survival tendency, it should be complemented

with a long-rank test that evaluates if there is a statistically significant difference between the

groups’ survival. The log-rank test returns a p-value of 0.24 that rejects the null hypothesis under

alpha of 0.05, which means it is not conclusive that the LUAD and LUSC populations present

different hazard functions according to the hypothesis.

Figure 6.8: Kaplan-Meier estimate of the LUAD and LUSC survival curves with log-rank test
p-value of 0.24.
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6.4.1 Lung Adenocarcinoma

Table 6.4 presents the results of the different strategies for predicting LUADs cohort survival

across five iterations, where we randomised the train and test splits to get a more reliable estimate

of predictive performance and to account for variance induced by the shorter sample sizes.

Out of the single modality models, the clinical model performed better with a C-Index of 0.638

and a median AIC indicating less model stability across the five iterations, while also presenting

slightly higher deviations than the gene expression model. A total of 18 covariates showed p-

values below 0.05, and the fittest variable was prior_malignancy_yes, with a p-value of 0.00009,

and a full list of the variables with p-value’s below 0.05 can be found in the Appendix section B on

Tables B.1, B.3 for each modality respectively. The gene expression modality was the second-best,

with a C-Index of 0.616; however, it showed the best overall log-likelihood score, translating to a

higher average number of better-fitted covariates with 19 features presenting p-values below the

0.05 threshold. The mutational model showed more instability and worse predictive performance,

having four features below the p-value threshold.

Performance Metrics
(mean ± standard deviation)

Methods C-Index AIC -log2(p) ll-ratio
EF (Clinical + Genomic) 0.666± 0.015 1285.657 ± 9.271 8.366 ± 2.213

LF (Clinical + Genomic) 0.701 ± 0.009 1039.991 ± 10.624 8.397 ± 2.409

Clinical 0.638 ± 0.048 1497.859 ± 30.277 9.480 ± 3.920

Mutation 0.597 ± 0.052 2047.684 ± 2.028 9.978 ± 0.020

Gene Expression 0.616 ± 0.045 1169.246 ± 19.272 8.365 ± 3.268
Table 6.4: Results of different survival analysis strategies for the prediction of LUAD survival
over 5 iterations.

Both types of fusion methods showed gains in overall predictive performance; however, the

late fusion presented the best overall score, with a C-Index of 0.701 and the lowest AIC showing

the best trade-off between the log-likelihood and number of parameters. Furthermore, it showed a

reduction in variance when compared to the early fusion technique.

On Figure 6.9, we present two types of analysis used to interpret the effect of the variable

prior malignancy on survival, which indicates a malignancy identified prior to the diagnosis of the

specimen submitted for TCGA [70]. In the first analysis on Figure 6.9a it is represented the effect

of the covariate on the cox-ph model, which translates to varying the value of the covariate while

holding everything else equal. This analysis is useful to understand the impact of the covariate on

the model; however, it is only a conjecture on the covariate’s contribution to the partial hazards

regression and does not show the real impact of the variable on the subject’s survival. Figure 6.9b

presents the KM estimate of the LUAD subjects with prior malignancy and the control group, rep-

resenting all subjects with no known prior malignancy or missing values for the prior malignancy

variable. A total of 53 patients have had previous malignancies and show a more accelerated

failure in the first three years, after which only right-censored patients remain.
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(a) Effect of the covariate on the Cox PH model.

(b) KM estimate of the prior malignancy and control
groups.

Figure 6.9: Analysis of the subjects with prior malignancy in LUAD population and log-rank test
with p-value 0.00009

Although the predictive performance results were not satisfactory concerning the mutational

model, achieving the lowest C-Index, two interesting patterns were found on the data, upon analy-

sis of differentiable mutations. Figure 6.10 shows the analysis of two types of patterns found in the

mutational data, where we analyse mutations and fusions with opposing effects on overall survival.

Figures 6.10a, 6.10c show the effect of the AKT1 p.S473 mutation on the model and the KM esti-

mate of the mutated and non-mutated subjects with a log-rank test p-value of 0.47, and although it

fails the null-hypothesis test, it is possible to see a faster failure rate after three years. This type of

patterns where mutations lead to accelerated failure is key to identify pronto-oncogenes, which in

the case of AKT1 is a known oncogene present in 0.63% of NSCLC patients [45]. The second type

of pattern found in Figures 6.10b, 6.10d related to the EZR-ROS1 fusion, presenting a contrary

effect by showing an improvement in overall survival in subjects containing the fusion. However,

the KM estimate shows that although there is a big difference in survival of the groups, the at-risk
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(a) AKT1 mutation effect on Cox PH model. (b) EZR-ROS1 fusion effect on Cox PH model.

(c) KM estimate of AKT1 mutated and control
group.

(d) KM estimate of EZR-ROS1 fusion and control
group.

Figure 6.10: Analysis of AKT1 p.S473 mutation and EZR-ROS1 fusion on LUAD patients.

group presents a very low cardinality of only three subjects, being that 2 remain right-censored

till the end of the study, which results in a log-rank test p-value of 0.19. The log-rank test and the

Cox proportional hazards work account for the right-censored observations when calculating the

population hazards; however, this example highlights a critical problem in the mutational dataset:

it is full of low cardinality covariates which is partly the reason why its predictive performance is

very unstable.
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6.4.2 Lung Squamous Cell Carcinoma

Table 6.5 presents the results for the survival analysis of the LUSC cohort. The overall results show

worse predictive performance for the LUSC subtype than for LUAD, which might be connected

to the lower sample count of the LUSC cohort, as the same methodology was followed for both

histologic subtypes.

Out of the isolated modality models, the mutational presented the best predictive performance

with C-Index of 0.568, however, it was the more unstable model showing higher standard devi-

ations and a worse trade-off between log-likelihood and number of selected features, and with a

total of 5 features presenting p-values under 0.05 present on Appendix Tables B.4, Tables B.2 for

each modality. The clinical model performed second-best with better predictive performance and

a better trade-off than the mutational model, probably due to the latter’s larger dimension and spar-

sity. The gene expression model performed worst, however, it showed to be the most stable and

with the best overall score of AIC, indicating the best trade-off between the number of variables

and the log-likelihood.

Performance Metrics
(mean ± standard deviation)

Methods C-Index AIC -log2(p) ll-ratio
EF (Clinical + Genomic) 0.571 ± 0.032 1507.677 ± 60.278 8.479 ± 4.914
LF (Clinical + Genomic) 0.622 ± 0.010 1452.501 ± 60.868 8.489 ± 4.928
Clinical 0.564 ± 0.046 1640.654 ± 59.751 9.624 ± 4.901
Mutation 0.568 ± 0.071 2307.187 ± 4.313 10.11 ± 1.109
Gene Expression 0.552 ± 0.002 1314.199 ± 72.057 8.651 ± 5.171

Table 6.5: Results of different survival analysis strategies for the prediction of LUSC survival over
5 train/test iterations.

The late fusion method significantly improved predictive performance with a C-Index of 0.622

and fairly lower variances than the other models. Although the early fusion model presented

the best average log-likelihood, showing the higher average number of fitted variables, it did not

show a statistical improvement over the single modalities and incurred in higher variances, with

a maximum test score of 0.722 and a minimum of 0.525. We suspect that the reason early fusion

did not show a statistical improvement overall is related to the integration of the mutational data

that presents a very sparse structure for the LUSC dataset with a high number of low cardinality

variables that penalise overall performance, nevertheless, it still was able to achieve lower standard

variations than the single modalities. To our knowledge, the late fusion model was able to further

reduce the variance due to the extraction of features from the mutational data that was able to

eliminate redundant features as opposed to the early fusion model. The late fusion model had a

total of 28 variables with p-value under 0.05 which are going to be examined onward on section

6.4.3, where we analyse the non-interpretable features.

On Figure 6.11, we present the analysis of the most significant variables for LUSC: the clinical

variable tissue_or_organ_of_origin.middle lobe on Figures 6.11a, 6.11c that identifies subjects
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whose tumour developed on the middle lobe of the lung, showing very high separability and a p-

value of 0.000037, which leads to accelerated failure rate in the first two years; and the mutational

variable amplifications.CCDN1 on Figures 6.11b, 6.11d, signalling an increase in the number of

copies of the CCDN1 gene showing a p-value of 0.028 and leading to worse overall survival in the

first three years.

(a) Effect of tissue of origin tumour is middle lobe
on the Cox PH model.

(b) Effect of CCDN1 amplification on Cox PH
model.

(c) KM estimate of subjects with origin tumour on
middle lobe and control group.

(d) KM estimate of subjects with amplification on
CCND1 and control group.

Figure 6.11: Analysis of origin of tumour tissue is middle lobe and amplification of CCDN1 on
LUSC patients.
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6.4.3 Most Separable, Non-Interpretable Features of the Late Fusion Model

To validate the late fusion model’s effectiveness and analyse the features generated by the unsuper-

vised learning methods, on this section we compare the results of these non-interpretable features

with clinical features that were selected as statistically significant in the previous sections for both

histologic subtypes.

Staging for lung cancer based on the TNM classification is a system to stratify cancer patients

which serves as a guide to treatment and an indicator of prognosis [103]. For NSCLC according to

the last AJCC revision [71] there are four distinct stage groups: stage I to stage IV, with subgroups

A and B to further stratify between levels, being level B more severe than A, and stage IV the worst

prognostic stage. Figure 6.12 presents a comparative analysis between the AJCC pathological

stage and a non-interpretable feature from the late fusion model for the LUAD cohort. Figure 6.12a

shows the KM estimate of the LUAD patients stratified by the pathological stage and sub-level,

that was previously analysed in the data analysis chapter 4, and with a p-value of 0.0001 shows

(a) KM estimate of pathological stage from
group I to IV with p-value of 0.0001.

(b) KM estimate of binarized pathologic stage
with p-value of 0.000087.

(c) KM estimate of late fusion non-interpretable
feature with p-value of 0.000026.

(d) KM comparison of the binarized pathologic stage
and the late fusion feature groups.

Figure 6.12: Comparison of separability between AJCC pathologic stage and late fusion
feature (#78) for LUAD patients.
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a clear statistical separation between the different stage groups. On Figure 6.12b, we binarise

the subjects into two groups: low pathological stage comprising stage I to stage III, and high

pathological stages from stage IIIA to stage IV, resulting in further differentiation of the survival

curves with log-rank test p-value of 0.000087 and with an apparent higher failure rate in the first

five years for higher stages, which is strikingly visible in the first months of survival time.

Figure 6.12c presents the KM estimate of a continuous feature ranging from 0 to 1 prevenient

from the feature extraction stage used by the late fusion model for survival prediction (feature #78).

To analyse its impact, we binarised the variable using quantile-based discretisation to separate the

data into two bins according to its mean value, resulting in greater separability with a p-value of

0.000026. Due to the lack of feature interpretability, it is impossible to measure its quality for

survival prediction, however, to quantify its impact on survival, in Figure 6.12c we compared the

survival groups of the LF variable with the pathological stage strata. The analysis shows that

higher values of the LF variable seem to lead to worse survival failure than high pathological

stages, particularly between the 2 and 4 years-period, while low values of the feature lead to

somewhat worse survival than the low cancer stages. Furthermore, the confidence intervals, given

by the margin of error of the KM estimate, seem to overlap more on the pathological stages,

especially after two years, while for the LF feature they overlap more before the 2 years-period.

On Appendix section B, the Tables B.5, B.6 present the full list of late fusion covariates with

p-values under 0.05 for LUAD and LUSC, respectively.

On Figure 6.13 we present a visualisation based on the t-distributed Stochastic Neighbour

Embedding (t-SNE) algorithm [128] that depicts high-dimensional data by giving each datapoint

(a) 2D visualisation of the set of 195 features ex-
tracted in the unsupervised learning stage based on
t-SNE.

(b) 3D visualisation where X and Y are t-sne dimen-
sions and Z is the survival time in years. Crosses (x)
represent decesead subjects and circles (o) alive pa-
tients.

Figure 6.13: 2D visualisation of the set of 195 latent features, extracted in the unsupervised learn-
ing stage, based on t-sne for LUAD and LUSC cohorts.
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a location in a two or three-dimensional map. It is based on the Kullback-Leibler divergence, much

like the VAE used in this work that minimises the difference between two probability distributions.

To better understand the set of 195 features prevenient from the unsupervised learning stage, we

ran 2,000 optimisation iterations of the t-SNE algorithm with 50 nearest neighbours to visualise it

the two-dimensional (2D) t-SNE space.

Figure 6.13a presents the visualisation in the 2D space, where the red labels represent LUAD

features and the blue’s LUSC. The resulting visualisation shows an almost perfect separation be-

tween the LUAD and LUSC features, demonstrating the ability to distinguish between classes

within the extracted features. Figure 6.13b presents a three-dimensional (3D) representation with

an extra dimension given by the patients’ survival time. The X and Y dimensions are the same as

in 6.13a, describing the t-SNE representation of each sample, and the Z gives the overall survival

time recorded for the patient, with crosses being deceased subjects and circles alive patients. The

visualisation shows the same separation between the classes as in the 2D; however, we can see

an intersection between classes in later survival times, which may signify less differentiability be-

tween LUAD and LUSC features for longer survival times. Relating to the inner-class distinction

between alive and deceases subjects it is possible to see that features that represent alive patients

are more clustered in the middle, while features describing dead patients are generally in the outer

margins. Although not conclusive, this kind of visualisation allows us to better understand these

non-interpretable features and understand why they are able to stratify between patients in survival

prediction.

6.5 Discussion

Table 6.6 presents a comparative study of predictive performance among related work for lung

cancer survival prediction. The table presents the C-index score according to the histologic subtype

predicted and type of approach used, and in the single modality cells, the results for each data type

are ordered top to bottom according to the subtitle. To select comparable work, we used the

following criteria:

1. The selected works must use data from the same source1 and should perform survival anal-

ysis for the LUAD or LUSC cohort.

2. At least one type of genomic or clinical data should be used.

3. Concordance index must be used to assess predictive performance.

In Oberije et al. [44], a total of 548 NSCLC samples were used; however, no distinction between

LUAD and LUSC was made. The authors used only clinical parameters for prediction and used

stratified Cox regression for prediction, and the best performing model showed a C-Index of 0.620

and an AIC of 3945. There is no direct comparison with our work that can be done in terms of

predictive performance because the authors used a stratified approach and did not divide between

1TCGA data portal (https://portal.gdc.cancer.gov/)

https://portal.gdc.cancer.gov/
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C-Index
(mean ± standard deviation)

LUAD LUSC
Methods Single Multimodal Single Multimodal
Oberije et al.
(2015)[44] *

0.620 0.620

Zhu et al.
(2016)[141] **

0.613
0.660

0.691

Ching et al.
(2018)[20] *

0.630 0.549

Cheerla et al.
(2019) [16] ***

0.630
0.613

0.725 0.510
0.615

0.655

Our
Work *

0.638
0.616

0.701
0.564
0.568

0.622

Table 6.6: Comparison of predictive accuracy on NSCLC survival outcome using Harrell’s C.
* Clinical and Genomic, ** Imaging and Genomic, *** Imaging, Genomic and Clinical

subtypes. However, the model AIC is somewhat higher than our clinical LUAD and LUSC models

showing less fitness and a worse trade-off between log-likelihood and the number of parameters.

In Zhu et al. [141], a total of 112 LUAD records with image and RNA-seq samples were

used. The authors use a supervised conditional Gaussian graphical model (CGGM) strategy to

map pathological images and genetic data, feeding it to a Cox PH model. The imaging modal-

ity provided the best individual C-Index of 0.660 over the gene expression data with 0.613. The

CGGM integration of both modalities improved the predictive performance to 0.691. The imag-

ing modality performed better on the single modalities than our single models and the genomic

performed worse, and on the multimodality, our approach of late fusion outperformed the CGGM,

and although this work presents imaging data which deviates from our domain it still presents very

interesting results.

In Ching et al. [20], 324 LUAD and 277 LUSC samples were used, including clinical and

gene expression data. The authors perform an empirical study to assess different survival models’

predictive performance, including Cox-nnet, Cox PH, CoxBoost and Random Forests Survival

over ten different TCGA cancer types. Early fusion was used to join the modalities, and for LUAD

and LUSC, the best performing model was Cox-nnet with C-index of 0.630 and 0.549. Both of

our early fusion and late fusion models outperformed the related work, however, the results for

single modalities are not provided for comparison.

In Cheerla et al. [16], the authors use four different data types: 7512 clinical records, 10,914

Whole-Slide Images (WSI), 10,125 RNA-seq samples and 10,198 miRNA samples for 20 differ-

ent cancer types, and although the results are included individually for LUAD and LUSC there is

no mention of the sample sizes. Similarly to our approach, the authors use unsupervised learning

for dimensionality reduction and feature representation. Three different architecture were used:

a fully-connected network for the clinical data, a CNN for the images and deep highway net-

works [120] for the miRNA and RNA-seq data. A further pre-processing step was executed to
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represent and encode pathologist annotation of Regions of Interest (ROI) on the images. The fea-

ture vectors from each modality are aggregated into a single representation, and a final set of 512

features per modality was fed into a cox regression layer for prediction. The authors provide the

results for all combinations of modalities: clinical, miRNA, RNA-seq and WSI provided the best

performance with C-Index of 0.715 for LUAD and 0.655 for LUSC. However, when using only

genomic data and clinical data, the best score was 0.690 for LUAD and 0.620 for LUSC, which

our method outperforms. The inclusion of miRNA data seemed to provide a striking gain in per-

formance for the LUSC class, similarly to our work predictive performance is worse for the LUSC

class, but there was a significant improvement in accuracy for the LUSC class after the inclusion

of miRNA data.

6.6 Summary

This chapter aimed at finding appropriate solutions to integrate multimodal data for lung cancer

survival prediction. The task of joining different modalities poses the difficult task of handling

heterogeneous data types, which can induce data redundancy if proper techniques are not used.

To inspire our solution, we based our approach on some gaps found in the literature regarding

the use of early [15], [20], and late fusion [49], [16] techniques to combine different modalities

which showed contradictory results, that to our understanding result from the methodology used

to join modalities in [15], [20]. In this work, we propose a method of late fusion to join RNA-seq,

mutation and clinical modalities in order to validate the results of [49], [16] by using a distinct

approach.

Our approach consists of an unsupervised learning stage, where we use two types of network

architectures to extract latent representations from each type of data: for the RNA-seq data, we use

a variational autoencoder due to its capability of reducing small-sample-sized high-dimensional

datasets, without suffering from overfitting and high-variance vanishing gradients [95], due to its

optimisation mechanism to minimise the KL divergence; and for the clinical and mutational we

used an autoencoder with sparsity constraints and simpler architectures with smaller bottleneck

layer to not over over-represent these lower-dimensional modalities. On the supervised learning

stage, we merge the latent representations of the modality learners and use a Cox PH regression

layer to perform survival prediction. To assess our approach’s predictive performance, we de-

signed an empirical study to compare our method’s predictive performance with an early fusion

model and single-modality learners on survival prediction for the LUAD and LUSC cohorts.

The results showed a statistically significant improvement in predictive performance for the

late fusion strategy for LUAD and LUSC cohorts, being the fittest model overall. The early fusion

strategy showed substantial gains in performance for the LUAD class, however, there was not

a statistical improvement for the LUSC class. Overall predictive performance was best for the

LUAD class than for the LUSC class in strategies, which seems to be consistent with the state

of the arts’ results that use genomic data for survival prediction. The EF model is very similar

to the single modality learners as it combines subsets of features from the different modalities
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for prediction, which presents the advantage of combining some of the best features from each

modality, however, it also incurs the risk of inducing data redundancy as the model might not be apt

to capture multimodal relationships. The LF technique presents the unique advantage of reducing

each modality’s high dimensionality to capture only relevant information from each data type.

However, this presents a significant drawback, which is the loss of interpretability of the original

features. To validate the late fusion model’s effectiveness and analyse the features generated by

the unsupervised learning methods, we compare the results of these non-interpretable features

with clinical features that were selected as statistically significant in the previous sections for each

histologic subtype. We were able to validate the late fusion features’ effectiveness by showing that

its selected features showed log-rank test p-values smaller than the best single-modality features,

allowing for better risk stratification of LUAD LUSC patients, and consequently better overall

survival prediction performance.
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Chapter 7

Final Remarks and Future Work
Cancer is a genetic disease caused by specific changes to genes that control the way cells function,

especially how they grow and divide [68]. The use of computational genomics can impact cancer

research in many ways, but maybe the most significant is understanding the underlying causes

of cancer. Cancer prediction relates to the process of differentiating cancerous from normal tis-

sue, whereas histologic subtype classification differentiates groups within the same type of cancer,

based on specific characteristics of the cancer cells. Interpretable subtype classification approaches

allow us to identify gene expression signatures that better differentiate subtypes of cancer, lead-

ing to potentially discovering new targetable genes for personalised therapy. The AJCC staging

system originated from the need for an accurate, consistent, universal cancer outcome prediction

system. Although the analysis of clinical parameters can provide useful prognostic insights, they

fail to capture the complex associations needed for accurate prognosis. Combining multimodal

genomic data can lead us towards a deeper understanding of what underlying genomic changes

affect survivability, which will improve the risk stratification of patients and has the potential to

enhance the prognostic and treatment mechanism.

We proposed two main objectives in this work: lung cancer and subtype classification using

gene expression data, and predicting cancer patients’ survival using clinical and multi-omics data.

For the first problem, we used two different approaches: deep learning models that are the standard

in state of the art, and gradient boosted trees with the lightGBM implementation, that we provided

explainability on using SHAP to retrieve valuable biological insight. The high dimensionality

of the gene expression data coupled with the small sample sizes tends to induce overfitting in

DL strategies, so we implemented a deep feed-forward network with dropout regularisation, and

feature selection was used to remove redundant information. Gradient boosted trees methods

are more capable of handling correlated data, and through exclusive feature bundling lightGBM

removes redundant features, thereby eliminating the need for apriori feature selection and demon-

strating an excellent aptitude of handling the high dimensional data. The DL model obtained an

AUC of 0.984 on cancer prediction, and the LGBM model an AUC of 0.971 on subtype classi-

fication leading to an improvement over the previous state of the art’s results. Furthermore, our

interpretable approach allowed us to identify two sets of genes that distinguish cancerous from

normal samples and LUAD from LUSC samples. Additionally, we performed hierarchical clus-

tering to identify common-regulated genes and found some patterns of over and under-regulation

for genes specific to each histologic subtype which were validated according to relevant literature,
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e.g. over-regulation of TP63 in LUSC which is described in The Cancer Genome Atlas Network

research [39], and presents as a validation to our results.

For the survival prediction problem, we aimed to find the best solution to integrate gene expres-

sion, mutation, and clinical modalities in order to capture the complex data associations required

for accurate survival prediction. The task of joining different modalities poses the difficult effort

of handling heterogeneous data types, which can induce data redundancy if proper techniques are

not used. We proposed a late fusion method with an unsupervised stage, where we use two types

of network architectures to extract latent representations from each type of data: a variational au-

toencoder for the high dimensional gene expression profiles and stacked sparse autoencoders with

simpler architectures to extract clinical and mutation features. Following the supervised learning

stage, we combined the learned representations of each modality into a deep learning network with

a Cox PH regression layer used for survival prediction. To validate our approach, we compared

our late fusion model’s predictive performance with single-modality Cox PH models and signif-

icant gains in performance were observed for the LUAD and LUSC cohort’s survival prediction.

Our approach presents a drawback which is the loss of interpretability of the original features. To

validate the late fusion model’s effectiveness and analyse the features generated by the unsuper-

vised learning methods, we compare the results of these non-interpretable features with the fittest

single-modality features in the ability to stratify between cancer patients. The results showed a

significant performance gain of the late fusion model compared with single modalities, with a con-

cordance index of 0.701 for LUAD survival prediction and 0.622 for LUSC’s. The inclusion of

extracted features from multiple modalities led to the selection of prognostic factors fitter for sur-

vival prediction, which allows for better risk stratification of lung cancer patients and can improve

the treatment and prognostic mechanism.

According to our literature review, there are still interesting gaps left to explore in the state

of the art of cancer genomics. The LGBM classifier used in this work outperformed state of the

art results for subtype classification with an AUC of 0.971 over the previous best score of 0.960,

and in future work, we intend to further validate these results by extending it to other cancer types

and performing validation to datasets outside of the TCGA scope. Our unsupervised approach for

feature extraction of high-dimensional data also demonstrated excellent results for survival predic-

tion, and it could be adapted for cancer subtype classification as it showed the ability to separate

between histologic subtypes. Due to the unique architecture of variational autoencoders that are

generative models that attempt to describe data generation through probabilistic distributions that

can capture an underlying data manifold [77], they can be used as a generative method much like

Generative Adversarial Networks (GAN), and it would be interesting to see its effectiveness in

generating high-dimensional gene expression profiles.

Overall, this work’s efforts showed significant cancer classification results, and presents excit-

ing prospects to have found new, uncovered gene signatures in the literature that can be potential

targets for personalised subtype therapy. Our multimodal late fusion model showed great survival

prediction results and opened the possibility of extending it to more data types to further enhance

cancer patients’ risk stratification, which can improve the treatment and prognostic mechanism.
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Datasets

Clinical attribute LUAD TP
% missing

LUAD NT
% missing

LUSC TP
% missing

LUSC NT
% missing

days_to_collection 77.4 NA 77.9 NA

oct_embedded 77.4 NA 74.5 NA

shortest_dimension 23.2 0 25.7 0

sample_type_id 0 0 0 0

state 0 0 0 0

is_ffpe 0 0 0 0

tissue_type 0 0 0 0

intermediate_dimension 23.2 0 25.7 0

initial_weight 76.6 94.9 74.5 NA

longest_dimension 23.2 0 25.7 0

submitter_id 0 0 0 0

ajcc_pathologic_m 1.1 1.7 0.8 3.9

ajcc_pathologic_stage 1.5 1.7 0.8 0

age_at_diagnosis 5.8 11.9 2 0

progression_or_recurrence 0 0 0 0

synchronous_malignancy 0 0 0 0

days_to_last_follow_up 23.4 30.5 22.9 35.3

treatments 0 0 0 0

site_of_resection_or_biopsy 0 0 0 0

prior_treatment 0 0 0 0

year_of_diagnosis 1.9 0 3.4 0

ajcc_pathologic_t 0 0 0 0

diagnosis_id 0 0 0 0

days_to_diagnosis 3.5 0 5 0

morphology 0 0 0 0
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classification_of_tumor 0 0 0 0

last_known_disease_status 0 0 0 0

tissue_or_organ_of_origin 0 0 0 0

icd_10_code 0 0 0 0

tumor_stage 0 0 0 0

primary_diagnosis 0 0 0 0

ajcc_staging_system_edition 4.1 1.7 19.7 15.7

tumor_grade 0 0 0 0

ajcc_pathologic_n 0.2 0 0 0

prior_malignancy 42.4 30.5 25.7 15.4

alcohol_history 0 0 0 0

exposure_id 0 0 0 0

years_smoked 61.4 72.9 55.8 54.9

cigarettes_per_day 31.4 44.1 15.3 19.6

pack_years_smoked 31.4 44.1 15.3 19.6

demographic_id 0 0 0 0

year_of_death 77 62.7 69.7 52.9

race 0 0 0 0

ethnicity 0 0 0 0

year_of_birth 3.5 0 5 0

gender 0 0 0 0

vital_status 0 0 0 0

days_to_birth 5.8 11.9 2 0

age_at_index 3.5 0 1.8 0

days_to_death 64.9 55.9 57.8 37.3

bcr_patient_barcode 0 0 0 0

releasable 0 0 0 0

project_id 0 0 0 0

primary_site 0 0 0 0

disease_type 0 0 0 0

released 0 0 0 0

name 0 0 0 0

paper_patient 54 100 64.3 100

paper_Sex 54 100 64.3 100

paper_Age.at.diagnosis 54 100 65 100

paper_T.stage 54 100 64.3 100

paper_N.stage 54 100 64.3 100

paper_Tumor.stage 54 100 NA NA
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paper_Smoking.Status 54 100 65.5 100

paper_Survival 54.2 100 NA NA

paper_Transversion.High.Low 54 100 NA NA

paper_Nonsilent.Mutations 54 100 NA NA

paper_Nonsilent.Mutations.per.Mb 54 100 NA NA

paper_Oncogene.Negative.or.Positive.Groups 54 100 NA NA

paper_Fusions 98 100 NA NA

paper_expression_subtype 54 100 NA NA

paper_chromosome.affected.by.chromothripsis 99 100 NA NA

paper_iCluster.Group 54 100 NA NA

paper_CIMP.methylation.signature 65 100 NA NA

paper_MTOR.mechanism.of.mTOR.pathway 64 100 NA NA

paper_Ploidy.ABSOLUTE.calls 54 100 NA NA

paper_Purity.ABSOLUTE.calls 547 100 NA NA

paper_M.stage NA NA 65.1 100

paper_Pack.years NA NA 70.9 100

paper_Nonsilent.Mutatios NA NA 64.3 100

paper_Nonsilent.Mutatios.per.Mb NA NA 64.3 100

paper_Selected.Mutation.Summary NA NA 65.9 100

paper_High.Level.Amplifications NA NA 81.3 100

paper_Homozygous.Deletions NA NA 85.5 100 100

paper_Expression.Subtype NA NA 64.3 100

Table A.1: Missing values of raw data for LUAD and LUSC primary tumour (TP) and normal
tissue (NT) clinical datasets.
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Survival Analysis

covariate C HR(C) σ(C) up 95% low 95% z p
prior_malignancy.Yes 0.7009 2.0155 0.149 1.505 2.6992 4.7034 0

ajcc_pathologic_stage 0.3982 1.4891 0.1491 1.1116 1.9947 3.6696 0.0001

oct_embedded.True 0.0639 1.066 0.0161 1.0328 1.1003 3.9617 0.0001

tissue_or_organ_of_origin.nos 0.333 1.3951 0.1124 1.1192 1.7391 2.9615 0.0031

ajcc_pathologic_t 0.4091 1.5055 0.1393 1.1457 1.9782 2.9365 0.0033

paper_Oncogene.Group.Oncogene Negative 0.2026 1.2246 0.0744 1.0585 1.4169 2.7235 0.0065

days_to_birth -0.3992 0.6709 0.1502 0.4998 0.9005 -2.6582 0.0079

morphology.8260/3 -0.3362 0.7145 0.1306 0.5532 0.9229 -2.5748 0.0100

treatment_or_therapy0.yes 0.059 1.0608 0.023 1.0141 1.1098 2.5667 0.0103

paper_CIMP.methylation.signature.high 0.1833 1.2011 0.0745 1.038 1.3899 2.4602 0.0139

initial_weight 0.3184 1.375 0.1321 1.0613 1.7812 2.4106 0.0159

gender.male 0.0874 1.0913 0.0375 1.0141 1.1745 2.3329 0.0197

icd_10_code.C34.9 -0.3178 0.7278 0.1437 0.5492 0.9645 -2.2119 0.0270

is_ffpe.True -0.3347 0.7155 0.1567 0.5263 0.9728 -2.1358 0.0327

race.asian -0.4982 0.6076 0.2462 0.375 0.9844 -2.0238 0.0430

treatment_or_therapy1.yes 0.1129 1.1195 0.0558 1.0036 1.2488 2.0241 0.0430

morphology.8253/3 -0.4819 0.6176 0.2407 0.3854 0.9899 -2.0021 0.0453

morphology.8550/3 -0.2607 0.7705 0.1318 0.5951 0.9976 -1.9779 0.0479
Table B.1: Clinical variables with p-value<0.05 for the LUAD survival analysis.
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covariate C HR(C) σ(C) up 95% low 95% z p
tissue_origin.middle lobe -0.3675 0.6925 0.2004 0.4675 1.0257 -1.8334 0

ajcc_pathologic_m -0.8279 0.437 0.469 0.1743 1.0955 -1.7654 0.0002

tissue_origin.nos 0.4839 1.6224 0.2755 0.9455 2.7839 1.7564 0.0490

ajcc_pathologic_n -0.8279 0.437 0.469 0.1743 1.0955 -1.7654 0.0010

ajcc_pathologic_stage -0.8279 0.437 0.469 0.1743 1.0955 -1.7654 0.0330
Table B.2: Clinical variables with p-value<0.05 clinical variables for LUSC survival analysis.

covariate C HR(C) σ(C) up 95% low 95% z p
mut.PIK3CA 0.7164 2.047 0.2097 1.3572 3.0874 3.4165 0.0006

mTOR_pathway_PI3K_mut 0.059 1.0608 0.023 1.0141 1.1098 2.5667 0.0013

chromothripsis.chr19 0.0362 1.0369 0.0126 1.0117 1.0628 2.8818 0.0041

mTOR_pathway.unaligned 0.3982 1.4891 0.1491 1.1116 1.9947 2.6696 0.0076
Table B.3: Mutational variables with p-value<0.05 for LUAD survival analysis.

covariate C HR(C) σ(C) up 95% low 95% z p
mut.TP53 p.E271K 0.0599 1.0618 0.0293 1.0024 1.1246 2.0431 0.0310

mut.PIK3CA p.E545K 0.7105 2.0351 0.3482 1.0284 4.0271 2.0404 0.0413

amplifications.CCND1 -0.4982 0.6076 0.2462 0.375 0.9844 -2.0238 0.0280

mut.ASCL4 p.P14T -0.2607 0.7705 0.1318 0.5951 0.9976 -1.9779 0.0479
Table B.4: Mutational variables with p-value<0.05 clinical variables for LUSC survival analysis.
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covariate C HR(C) σ(C) up 95% low 95% p
78 0.0592 1.061 1.0333 1.0895 4.3886 0

32 -0.0379 0.9628 0.9435 0.9825 -3.6663 0

38 0.0287 1.0291 1.0125 1.046 3.4531 0.0006

69 0.0784 1.0816 1.0311 1.1346 3.2126 0.0013

3 0.0366 1.0372 1.0131 1.062 3.0437 0.0023

62 -0.0482 0.9529 0.923 0.9838 -2.9657 0.0030

75 -0.017 0.9831 0.972 0.9944 -2.9335 0.0034

96 -0.0618 0.9401 0.9012 0.9806 -2.8697 0.0041

74 0.0653 1.0675 1.02 1.1172 2.8111 0.0049

71 0.0379 1.0386 1.0097 1.0684 2.6282 0.0086

8 -0.0526 0.9488 0.9119 0.9871 -2.6038 0.0092

41 0.0411 1.0419 1.0096 1.0754 2.5502 0.0108

48 -0.0505 0.9507 0.9141 0.9888 -2.5242 0.0116

116 0.056 1.0576 1.0126 1.1046 2.5227 0.0116

30 -0.0242 0.976 0.9577 0.9947 -2.51 0.0121

117 -0.0541 0.9473 0.9079 0.9885 -2.493 0.0127

0 -0.0287 0.9717 0.9496 0.9944 -2.4339 0.0149

99 -0.059 0.9427 0.8985 0.989 -2.411 0.0159

118 -0.0755 0.9273 0.872 0.986 -2.4103 0.0159

36 -0.0445 0.9565 0.9225 0.9918 -2.4059 0.0161

51 -0.041 0.9598 0.9278 0.9928 -2.3762 0.0175

20 -0.0224 0.9778 0.9597 0.9963 -2.3427 0.0191

1 0.057 1.0586 1.0092 1.1106 2.3337 0.0196

81 0.0428 1.0437 1.006 1.0828 2.2769 0.0228

85 -0.0406 0.9602 0.927 0.9945 -2.2653 0.0235

95 0.0245 1.0249 1.003 1.0471 2.2361 0.0253

10 0.048 1.0492 1.004 1.0964 2.1385 0.0325

43 0.0602 1.0621 1.005 1.1224 2.1379 0.0325

40 0.0325 1.0331 1.0025 1.0646 2.1224 0.0338

106 0.0418 1.0427 1.0032 1.0837 2.1216 0.0339

119 -0.0376 0.9631 0.9294 0.998 -2.0722 0.0382

22 -0.0297 0.9707 0.9426 0.9997 -1.9831 0.0474

11 -0.0232 0.9771 0.9549 0.9998 -1.977 0.0480
Table B.5: Late fusion covariates with p-value<0.05 for LUAD histologic subtype.
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covariate C HR(C) σ(C) up 95% low 95% p
52 -0.1006 1.1043 0.0645 0.7969 1.0262 0

22 -0.0445 0.9565 0.0185 0.9225 0.9918 0

29 -0.041 0.9598 0.0173 0.9278 0.9928 0.0175

20 -0.0224 0.9778 0.0096 0.9597 0.9963 0.0191

36 0.057 1.0586 0.0244 1.0092 1.1106 0.0196

44 0.0428 1.0437 0.0188 1.006 1.0828 0.0228

33 -0.0406 0.9602 0.0179 0.927 0.9945 0.0235

95 0.0245 1.0249 0.011 1.003 1.0471 0.0253

10 0.048 1.0492 0.0225 1.004 1.0964 0.0285

43 0.0602 1.0621 0.0282 1.005 1.1224 0.0295

40 0.0325 1.0331 0.0153 1.0025 1.0646 0.0308

108 0.0418 1.0427 0.0197 1.0032 1.0837 0.0319

119 -0.0376 0.9631 0.0182 0.9294 0.998 0.0382

22 -0.0297 0.9707 0.015 0.9426 0.9997 0.0474

11 -0.0232 0.9771 0.0117 0.9549 0.9998 0.0480

117 -0.0541 0.9473 0.9079 0.9885 0.987 0.0482
Table B.6: Late fusion covariates with p-value<0.05 for LUSC histologic subtype.



References

[1] Emmanuel Adetiba and Oludayo O. Olugbara. Lung cancer prediction using neural network
ensemble with histogram of oriented gradient genomic features. Scientific World Journal,
2015, 2015.

[2] Taejin Ahn, Taewan Goo, Chan Hee Lee, Sungmin Kim, Kyullhee Han, Sangick Park, and
Taesung Park. Deep Learning-based Identification of Cancer or Normal Tissue using Gene
Expression Data. Proceedings - 2018 IEEE International Conference on Bioinformatics
and Biomedicine, BIBM 2018, pages 1748–1752, 2019.

[3] Douglas G Altman and Hall Crc. Medical research. Public Health, 51(C):199–200, 1937.

[4] Pierre Baldi. Autoencoders, unsupervised learning and deep architectures. In Proceedings
of the 2011 International Conference on Unsupervised and Transfer Learning Workshop -
Volume 27, UTLW’11, page 37–50. JMLR.org, 2011.

[5] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 03 Accessed: February 1,
2021.

[6] Yael Ben-Haim and Elad Tom-Tov. A streaming parallel decision tree algorithm. Journal
of Machine Learning Research, 11:849–872, 02 2010.

[7] Samy Bengio and Yoshua Bengio. Taking on the curse of dimensionality in joint distri-
butions using neural networks. IEEE Transactions on Neural Networks, 11(3):550–557,
2000.

[8] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives, 2014.

[9] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. Advances in Neural Information Processing Systems,
(January):153–160, 2007.

[10] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern Recogn., 30(7):1145–1159, July 1997.

[11] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[12] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification And
Regression Trees. 10 2017.

[13] Harry B. Burke, Philip H. Goodman, David B. Rosen, Donald E. Henson, John N. Wein-
stein, Frank E. Harrell Jr., Jeffrey R. Marks, David P. Winchester, and David G. Bostwick.
Artificial neural networks improve the accuracy of cancer survival prediction. Cancer,
79(4):857–862, 1997.

99



100 REFERENCES

[14] Zhipeng Cai, Lizhe Xu, Yi Shi, Mohammad R. Salavatipour, Randy Goebel, and Guohui
Lin. Using gene clustering to identify discriminatory genes with higher classification accu-
racy. Proceedings - Sixth IEEE Symposium on BioInformatics and BioEngineering, BIBE
2006, (January):235–242, 2006.

[15] Kumardeep Chaudhary, Olivier B. Poirion, Liangqun Lu, and Lana X. Garmire. Deep
learning–based multi-omics integration robustly predicts survival in liver cancer. Clinical
Cancer Research, 24(6):1248–1259, 2018.

[16] Anika Cheerla and Olivier Gevaert. Deep learning with multimodal representation for pan-
cancer prognosis prediction. Bioinformatics, 35(14):i446–i454, 07 2019.

[17] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, 2016.

[18] Yen Chen Chen, Wan Chi Ke, and Hung Wen Chiu. Risk classification of cancer survival
using ANN with gene expression data from multiple laboratories. Computers in Biology
and Medicine, 48(1):1–7, 2014.

[19] Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, and Xiaohui Xie. Gene expression
inference with deep learning. Bioinformatics, 32(12):1832–1839, 02 2016.

[20] Travers Ching, Xun Zhu, and Lana X. Garmire. Cox-nnet: An artificial neural network
method for prognosis prediction of high-throughput omics data. PLOS Computational Bi-
ology, 14(4):e1006076, apr 2018.

[21] François Chollet et al. Keras. keras.io, 2015.

[22] Nikolay Chumerin and Marc M. Van Hulle. Comparison of two feature extraction methods
based on maximization of mutual information. Proceedings of the 2006 16th IEEE Signal
Processing Society Workshop on Machine Learning for Signal Processing, MLSP 2006,
(May 2014):343–348, 2006.

[23] Kristian Cibulskis, Michael S Lawrence, Scott L Carter, Andrey Sivachenko, David Jaffe,
Carrie Sougnez, Stacey Gabriel, Matthew Meyerson, Eric S Lander, and Gad Getz. Sen-
sitive detection of somatic point mutations in impure and heterogeneous cancer samples.
Nature Biotechnology, 31(3):213–219, 2013.

[24] T G Clark, M J Bradburn, S B Love, and D G Altman. Survival Analysis Part I: Basic
concepts and first analyses. British Journal of Cancer, 89(2):232–238, 2003.

[25] D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society:
Series B (Methodological), 34(2):187–202, 1972.

[26] Adele Cutler, D Richard Cutler, and John R Stevens. High-Dimensional Data Analysis in
Cancer Research. High-Dimensional Data Analysis in Cancer Research, (May 2014), 2009.

[27] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2005, I:886–893, 2005.

[28] Padideh Danaee, Reza Ghaeini, and David A. Hendrix. A deep learning approach for
cancer detection and relevant gene identification. Pacific Symposium on Biocomputing,
0(212679):219–229, 2017.

keras.io


REFERENCES 101

[29] Joseph M. De Guia, Madhavi Devaraj, and Carson K. Leung. DeepGX: Deep learning using
gene expression for cancer classification. Proceedings of the 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, ASONAM 2019, pages
913–920, 2019.

[30] Thomas G Dietterich. An Experimental Comparison of Three Methods for Constructing
Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning,
40(2):139–157, 2000.

[31] Altekruse et al. SEER Cancer Statistics Review 1975-2007 National Cancer Institute SEER
Cancer Statistics Review 1975-2007 National Cancer Institute. Cancer, pages 1975–2007,
2010.

[32] Barbier et al. Mutual information for symmetric rank-one matrix estimation: A proof of the
replica formula. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29, pages 424–432. Curran
Associates, Inc., 2016.

[33] Cameron Davidson-Pilon et al. Lifelines @ lifelines.readthedocs.io, Accessed:
February 1, 2021.

[34] Colaprico et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of
TCGA data. Nucleic Acids Research, 44(8):e71–e71, 12 2015.

[35] Collisson et al. Comprehensive molecular profiling of lung adenocarcinoma: The cancer
genome atlas research network. Nature, 511(7511):543–550, 2014.

[36] Dunn et al. Next generation sequencing methods for diagnosis of epilepsy syndromes.
Frontiers in Genetics, 9:20, 2018.

[37] Griffiths AJF et al. An Introduction to Genetic Analysis. W.H.Freeman & Co Ltd, 7th
edition, Accessed: February 1, 2021.

[38] Guolin Ke et al. Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30, pages 3146–3154. Curran
Associates, Inc., 2017.

[39] Hammerman et Al. Comprehensive genomic characterization of squamous cell lung can-
cers. Nature, 489(7417):519–525, 2012.

[40] Kao et al. IGDB.NSCLC: integrated genomic database of non-small cell lung cancer. Nu-
cleic Acids Research, 40(D1):D972–D977, 12 2011.

[41] Kawase et al. Differences Between Squamous Cell Carcinoma and Adenocarcinoma of
the Lung: Are Adenocarcinoma and Squamous Cell Carcinoma Prognostically Equal?
Japanese Journal of Clinical Oncology, 42(3):189–195, 12 2011.

[42] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems.
tensorflow.org, 2015.

[43] Mounir et al. New functionalities in the tcgabiolinks package for the study and integration
of cancer data from gdc and gtex. PLOS Computational Biology, 15(3):1–18, 03 2019.

lifelines.readthedocs.io
tensorflow.org


102 REFERENCES

[44] Oberije et al. A validated prediction model for overall survival from stage III non-small
cell lung cancer: Toward survival prediction for individual patients. International Journal
of Radiation Oncology Biology Physics, 92(4):935–944, 2015.

[45] O’Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic
expansion, and functional annotation. Nucleic acids research, 44(D1):D733–45, jan 2016.

[46] Postmus et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO
Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology,
28(Supplement 4):iv1–iv21, 2017.

[47] Uhlén et al. Tissue-based map of the human proteome. Science, 347(6220), 2015.

[48] Villalobos et al. Lung Cancer Biomarkers. Hematology/oncology clinics of North America,
31(1):13–29, feb 2017.

[49] Wang et al. A Cancer Survival Prediction Method Based on Graph Convolutional Network.
IEEE Transactions on Nanobioscience, 19(1):117–126, Accessed: February 1, 2021.

[50] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Ann.
Statist., 29(5):1189–1232, 10 2001.

[51] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. Journal of Machine Learning Research, 9:249–256, 2010.

[52] Manish Kumar Goel, Pardeep Khanna, and Jugal Kishore. Understanding survival analysis:
Kaplan-meier estimate. International journal of Ayurveda research, 1(4):274–278, Oct
2010. 21455458[pmid].

[53] Gregory R Grant, Elisabetta Manduchi, and Christian J Stoeckert. Analysis and manage-
ment of microarray gene expression data. Current protocols in molecular biology, Chapter
19:Unit 19.6, January 2007.

[54] Aurlien Gron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., 1st edition, 2017.

[55] Haibo He, Yang Bai, E. A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pages 1322–1328, 2008.

[56] Zeyad Hailat, Artem Komarichev, and Xue Wen Chen. Deep Semi-Supervised Learning,
volume 2018-August. 2018.

[57] Douglas Hanahan and Robert A. Weinberg. The Hallmarks of Cancer Review Douglas.
Cell, 100(7):57–70, 2000.

[58] Douglas Hanahan and Robert A. Weinberg. Hallmarks of cancer: The next generation. Cell,
144(5):646–674, 2011.

[59] Frank E. Harrell, Kerry L. Lee, and Daniel B. Mark. Prognostic/Clinical Prediction Models:
Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions
and Adequacy, and Measuring and Reducing Errors. Tutorials in Biostatistics, Statistical
Methods in Clinical Studies, 1:223–249, 2005.



REFERENCES 103

[60] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learn-
ing. Aug, Springer, 1, 01 2001.

[61] Haibo He and Yunqian Ma. Imbalanced Learning: Foundations, Algorithms, and Applica-
tions. Wiley-IEEE Press, 1st edition, 2013.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification, 2015.

[63] Patrick J. Heagerty and Yingye Zheng. Survival model predictive accuracy and roc curves.
Biometrics, 61(1):92–105, 2005.

[64] Roy S. Herbst, John V. Heymach, and Scott M. Lippman. Lung cancer. New England
Journal of Medicine, 359(13):1367–1380, 2008. PMID: 18815398.

[65] Zena M. Hira and Duncan F. Gillies. A Review of Feature Selection and Feature Extrac-
tion Methods Applied on Microarray Data. Advances in Bioinformatics, 2015(1):1–13, jun
2015.

[66] Zhi Huang, Travis S Johnson, Zhi Han, Bryan Helm, Sha Cao, Chi Zhang, Paul Salama,
Maher Rizkalla, Christina Y Yu, Jun Cheng, Shunian Xiang, Xiaohui Zhan, Jie Zhang,
and Kun Huang. Deep learning-based cancer survival prognosis from RNA-seq data: ap-
proaches and evaluations. BMC Medical Genomics, 13(5):41, Accessed: February 1, 2021.

[67] Kentaro Inamura. Lung cancer: understanding its molecular pathology and the 2015 wHO
classification. Frontiers in Oncology, 7(AUG):1–7, 2017.

[68] National Cancer Institute. About cancer: Causes and prevention @ cancer.gov, Ac-
cessed: February 1, 2021.

[69] National Cancer Institute. Cancer topics: What is cancer @ cancer.gov, Accessed:
February 1, 2021.

[70] National Cancer Institute. Encyclopedia: TCGA barcode @ docs.gdc.cancer.gov,
Accessed: February 1, 2021.

[71] Ruhl J, Adamo M, and Dickie L. Section V: Stage of disease at diagnosis. Seer, (February),
2016.

[72] Shruti Jadon. A survey of loss functions for semantic segmentation. 2020 IEEE Conference
on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Oct
2020.

[73] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to
Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated,
2014.

[74] Andreas Janecek, Wilfried N Wn Gansterer, Michael Demel, and Gerhard Ecker. On the Re-
lationship Between Feature Selection and Classification Accuracy. Fsdm, 4(May 2014):90–
105, 2008.

[75] Prasoon Joshi, Seokho Jeong, and Taesung Park. Cancer Subtype Classification based on
Superlayered Neural Network. pages 1988–1992, Accessed: February 1, 2021.

cancer.gov
cancer.gov
docs.gdc.cancer.gov


104 REFERENCES

[76] Samina Khalid, Tehmina Khalil, and Shamila Nasreen. A survey of feature selection and
feature extraction techniques in machine learning. Proceedings of 2014 Science and Infor-
mation Conference, SAI 2014, pages 372–378, 2014.

[77] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[78] D.G. Kleinbaum. Survival analysis, a self-learning text. Biometrical Journal, 40(1):107–
108, 1998.

[79] Rasmus Krempel, Pranav Kulkarni, Annie Yim, Ulrich Lang, Bianca Habermann, and Pe-
ter Frommolt. Integrative analysis and machine learning on cancer genomics data using
the Cancer Systems Biology Database (CancerSysDB). BMC Bioinformatics, 19(1):1–10,
2018.

[80] The Lancet. The global burden of disease: cancer @ ourworldindata.org, Accessed:
February 1, 2021.

[81] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

[82] Michael K K Leung, Hui Yuan Xiong, Leo J Lee, and Brendan J Frey. Deep learning of the
tissue-regulated splicing code. Bioinformatics (Oxford, England), 30(12):i121–9, jun 2014.

[83] Bin Li, Yu-Qi Meng, Zheng Li, Ci Yin, Jun-Ping Lin, Duo-Jie Zhu, and Shao-Bo Zhang.
Mir-629-3p-induced downregulation of sftpc promotes cell proliferation and predicts poor
survival in lung adenocarcinoma. Artificial Cells, Nanomedicine, and Biotechnology,
47(1):3286–3296, 2019. PMID: 31379200.

[84] Chao Li and Meng Zhang. Deep Learning in Pan Cancer Early Detection Based on Gene
Expression, 2018.

[85] Chengzhang Li and Jiucheng Xu. Feature selection with the Fisher score followed by the
Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellu-
lar carcinoma. Scientific Reports, 9(1):17283, 2019.

[86] Zhuoshi Li, Tao Guo, Lei Fang, Nan Li, Xiaochao Wang, Peng Wang, Shilei Zhao,
Fengzhou Li, Yanwei Cui, Xin Shu, Lei Zhao, Jinxiu Li, and Chundong Gu. MACC1
overexpression in carcinoma-associated fibroblasts induces the invasion of lung adenocar-
cinoma cells via paracrine signaling. Int J Oncol, 54(4):1367–1375, 2019.

[87] Muxuan Liang, Zhizhong Li, Ting Chen, and Jianyang Zeng. Integrative Data Analysis
of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 12(4):928–937, 2015.

[88] Maxwell W. Libbrecht and William Stafford Noble. Machine learning applications in ge-
netics and genomics. Nature Reviews Genetics, 16(6):321–332, 2015.

[89] D. Y. Lin and L. J. Wei. The robust inference for the cox proportional hazards model.
Journal of the American Statistical Association, 84(408):1074–1078, 1989.

[90] Kuan Liu, Yanen Li, Ning Xu, and Prem Natarajan. Learn to Combine Modalities in Mul-
timodal Deep Learning. 2018.

ourworldindata.org


REFERENCES 105

[91] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 7th International
Conference on Learning Representations, ICLR 2019, 2019.

[92] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):550, 2014.

[93] Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. Consistent individualized feature
attribution for tree ensembles, 2019.

[94] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Sys-
tems, NIPS’17, page 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc.

[95] Mohammad Sultan Mahmud, Joshua Zhexue Huang, and Xianghua Fu. Variational
autoencoder-based dimensionality reduction for high-dimensional small-sample data
classification. International Journal of Computational Intelligence and Applications,
19(01):2050002, Accessed: February 1, 2021.

[96] Janine Meienberg, Rémy Bruggmann, Konrad Oexle, and Gabor Matyas. Clinical sequenc-
ing: is WGS the better WES? Human genetics, 135(3):359–362, mar 2016.

[97] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature Communications, 9(1):1–12, 2018.

[98] Hiroshi Motoda and Huan Liu. Feature selection, extraction and construction. Communi-
cation of IICM (Institute of Information and Computing Machinery, Taiwan), 5:67–72, 01
2002.

[99] Steven G. Nadler, Douglas Tritschler, Omar K. Haffar, James Blake, A. Gregory Bruce,
and Jeffrey S. Cleaveland. Differential expression and sequence-specific interaction of
karyopherin α with nuclear localization sequences. Journal of Biological Chemistry,
272(7):4310–4315, 1997.

[100] NCCN. Mestastic Lung Cancer 2019. European Journal of Cancer, 51, Supple:S610–S649,
2015.

[101] NCCN Guidelines for Patients. Lung Cancer: Early and Locally-Advanced Non-Small Cell
Lung Cancer. pages 1–56, 2019.

[102] Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization
tool for Python, 2014–.

[103] Morihito Okada, Noriaki Tsubota, Masahiro Yoshimura, Yoshifumi Miyamoto, and Reiko
Nakai. Evaluation of tmn classification for lung carcinoma with ipsilateral intrapulmonary
metastasis. The Annals of Thoracic Surgery, 68(2):326 – 330, 1999.

[104] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca Invernizzi,
et al. Keras Tuner. github.com/keras-team/keras-tuner, 2019.

[105] OncoKB. Oncogene list @ oncokb.org, Accessed: February 1, 2021.

[106] World Health Organization. The icd-10 classification of mental and behavioural disorders :
diagnostic criteria for research, 1993.

github.com/keras-team/keras-tuner
oncokb.org


106 REFERENCES

[107] Fatih Ozsolak et al. RNA sequencing: advances, challenges and opportunities. Nature
Reviews Genetics, 12(2):87–98, 2011.

[108] Sunhee Park and David J. Hendry. Reassessing schoenfeld residual tests of proportional
hazards in political science event history analyses. American Journal of Political Science,
59(4):1072–1087, 2015.

[109] Juan Ramos-González, Daniel López-Sánchez, Jose A. Castellanos-Garzón, Juan F. de Paz,
and Juan M. Corchado. A CBR framework with gradient boosting based feature selection
for lung cancer subtype classification. Computers in Biology and Medicine, 86:98–106,
2017.

[110] Greg Ridgeway. Generalized Boosted Models: A guide to the gbm package. Compute,
1(4):1–12, 2007.

[111] Cecil Robinson and Randall Schumacker. Interaction effects: centering, variance inflation
factor, and interpretation issues. Multiple Linear Regression Viewpoints, 35(1):6–11, 2009.

[112] Mark D. Robinson, Davis J. McCarthy, and Gordon K. Smyth. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data. Bioinformatics,
26(1):139–140, 11 2009.

[113] Cynthia Rudin. Stop explaining black box machine learning models for high stakes de-
cisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215,
2019.

[114] David E. Rumelhart, James L. McClelland, and CORPORATE PDP Research Group, edi-
tors. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.
1: Foundations. MIT Press, Cambridge, MA, USA, 1986.

[115] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Tak-
ing the human out of the loop: A review of Bayesian optimization. Proceedings of the
IEEE, 104(1):148–175, 2016.

[116] Kamla Kant Shukla, Praveen Sharma, and Sanjeev Misra. Molecular Diagnostics in Cancer
Patients. 01 2019.

[117] Tiago C Silva, Antonio Colaprico, Catharina Olsen, Fulvio D’Angelo, Gianluca Bontempi,
Michele Ceccarelli, and Houtan Noushmehr. TCGA Workflow: Analyze cancer genomics
and epigenomics data using Bioconductor packages. F1000Research, 5:1542, 2016.

[118] Johannes Smolander, Alexey Stupnikov, Galina Glazko, Matthias Dehmer, and Frank
Emmert-Streib. Comparing biological information contained in mRNA and non-coding
RNAs for classification of lung cancer patients. BMC Cancer, 19(1):1–15, 2019.

[119] Jasper Snoek et al. Practical bayesian optimization of machine learning algorithms. In Pro-
ceedings of the 25th International Conference on Neural Information Processing Systems -
Volume 2, page 2951–2959, 2012.

[120] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks, 2015.

[121] Harald Steck, Balaji Krishnapuram, Cary Dehing-oberije, Philippe Lambin, and Vikas C
Raykar. On ranking in survival analysis: Bounds on the concordance index. In J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing
Systems 20, pages 1209–1216. Curran Associates, Inc., 2008.



REFERENCES 107

[122] Mats J Stensrud and Miguel A Hernán. Why Test for Proportional Hazards? JAMA,
323(14):1401–1402, apr Accessed: February 1, 2021.

[123] Muhammad Aliyu Sulaiman and Jane Labadin. Feature selection based on mutual informa-
tion. 27(8):1–6, 2015.

[124] Yingshuai Sun, Sitao Zhu, Kailong Ma, Weiqing Liu, Yao Yue, Gang Hu, Huifang Lu, and
Wenbin Chen. Identification of 12 cancer types through genome deep learning. Scientific
Reports, 9(1):1–9, 2019.

[125] Ying Tao, Jianrong Li, Carol Friedman, and Yves A. Lussier. Information theory applied to
the sparse gene ontology annotation network to predict novel gene function. Bioinformatics,
23(13):i529–i538, 2010.

[126] et al. Timo Ojala. Performance Evaluation of Texture Measures with Classification Based
on Kullback Discrimination of Distributions . 4(January 1996):2002, 1994.

[127] Jakub M. Tomczak. Prediction of breast cancer recurrence using classification restricted
boltzmann machine with dropping, 2013.

[128] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008.

[129] Pascal Vincent and Hugo Larochelle. Extracting and Composing Robust Features with
Denoising.pdf. pages 1096–1103, 2008.

[130] Bert Vogelstein, Nickolas Papadopoulos, Victor E. Velculescu, Shibin Zhou, Luis A. Diaz,
and Kenneth W. Kinzler. Cancer genome landscapes. Science, 340(6127):1546–1558, 2013.

[131] Dehua Wang, Yang Zhang, and Yi Zhao. LightGBM: An effective miRNA classification
method in breast cancer patients. ACM International Conference Proceeding Series, pages
7–11, 2017.

[132] Zhong Wang et al. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews
Genetics, 10(1):57–63, 2009.

[133] Gregory P Way and Casey S Greene. Extracting a biologically relevant latent space from
cancer transcriptomes with variational autoencoders. Pacific Symposium on Biocomputing.
Pacific Symposium on Biocomputing, 23:80–91, 2018.

[134] WHO. Cancer Factsheets @ who.int/mediacentre, Accessed: February 1, 2021.

[135] Ellery Wulczyn, David F Steiner, Zhaoyang Xu, Apaar Sadhwani, Hongwu Wang, Is-
abelle Flament-Auvigne, Craig H Mermel, Po-Hsuan Cameron Chen, Yun Liu, and Mar-
tin C Stumpe. Deep learning-based survival prediction for multiple cancer types using
histopathology images. PloS one, 15(6):e0233678, Accessed: February 1, 2021.

[136] Yawen Xiao, Jun Wu, Zongli Lin, and Xiaodong Zhao. A deep learning-based multi-model
ensemble method for cancer prediction. Computer Methods and Programs in Biomedicine,
153:1–9, 2018.

[137] Yawen Xiao, Jun Wu, Zongli Lin, and Xiaodong Zhao. A semi-supervised deep learn-
ing method based on stacked sparse auto-encoder for cancer prediction using rna-seq data.
Computer Methods and Programs in Biomedicine, 166:99 – 105, 2018.

who.int/mediacentre


108 REFERENCES

[138] Xiucai Ye, Weihang Zhang, and Tetsuya Sakurai. Adaptive Unsupervised Feature Learning
for Gene Signature Identification in Non-Small-Cell Lung Cancer. IEEE Access, 8:154354–
154362, Accessed: February 1, 2021.

[139] Yuchen Yuan, Yi Shi, Changyang Li, Jinman Kim, Weidong Cai, Zeguang Han, and
David Dagan Feng. Deepgene: An advanced cancer type classifier based on deep learn-
ing and somatic point mutations. BMC Bioinformatics, 17(Suppl 17), 2016.

[140] Huan Zhang, Si Si, and Cho-Jui Hsieh. Gpu-acceleration for large-scale tree boosting,
2017.

[141] X. Zhu, J. Yao, G. Xiao, Y. Xie, J. Rodriguez-Canales, E. R. Parra, C. Behrens, I. I. Wistuba,
and Junzhou Huang. Imaging-genetic data mapping for clinical outcome prediction via
supervised conditional gaussian graphical model. In 2016 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 455–459, 2016.

[142] Andréanne N Zizzo, Lauren Erdman, Brian M Feldman, and Anna Goldenberg. Similarity
Network Fusion: A Novel Application to Making Clinical Diagnoses. Rheumatic diseases
clinics of North America, 44(2):285–293, may 2018.


	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Contributions
	1.4 Document Structure

	2 Problem Contextualization
	2.1 Cancer
	2.1.1 Understanding the Cancer Mechanism
	2.1.2 Histology of Lung Cancer

	2.2 Cancer Genomics
	2.2.1 Mutations
	2.2.2 Gene-regulatory pathways
	2.2.3 Genomic Sequencing and Data Types


	3 Literature Review
	3.1 Machine Learning for Cancer Genomics
	3.1.1 Dimensionality Reduction
	3.1.2 Supervised and Unsupervised Learning


	4 Dataset Analysis
	4.1 The Cancer Genome Atlas Project
	4.1.1 Lung Adenocarcinoma
	4.1.2 Lung Squamous Cell Carcinoma


	5 Lung Cancer Prediction and Subtype Classification
	5.1 Experimental Design
	5.1.1 Data Preparation

	5.2 Deep Learning
	5.3 Gradient Boosting Decision Trees
	5.3.1 Bayesian Optimisation
	5.3.2 Shapley Additive Explanations

	5.4 Train, Test and Evaluation
	5.5 Results
	5.5.1 Hyperparameter Optimisation
	5.5.2 Cancer Prediction
	5.5.3 Subtype Classification
	5.5.4 Most Relevant Gene Signatures

	5.6 Discussion
	5.6.1 Cancer Prediction
	5.6.2 Subtype Classification

	5.7 Summary

	6 Survival Analysis and Outcome Prediction
	6.1 Experimental Design
	6.1.1 Data Preparation

	6.2 Survival prediction
	6.2.1 Multimodal Data: Early and Late Fusion
	6.2.2 Dimensionality Reduction: Feature Extraction
	6.2.3 Cox Proportional-Hazards

	6.3 Train, Test and Evaluation
	6.4 Results
	6.4.1 Lung Adenocarcinoma
	6.4.2 Lung Squamous Cell Carcinoma
	6.4.3 Most Separable, Non-Interpretable Features of the Late Fusion Model

	6.5 Discussion
	6.6 Summary

	7 *-0.9emFinal Remarks and Future Work
	A Datasets
	B Survival Analysis
	References

