
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Hybrid Machine Learning/Simulation
Approaches for Logistics Systems

Optimization

Francisco Alexandre Lourenço Maia

FINAL VERSION

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Américo Lopes de Azevedo

Second Supervisor: João Pedro Tavares Vieira Basto

July 22, 2020

c© Francisco Alexandre Lourenço Maia, 2020

Resumo

Hoje em dia, tem-se testemunhado um abrupto crescimento e desenvolvimento da indústria, re-
fletido no elevado grau de complexidade e inteligência que os sistemas de produção correntes
apresentam, onde se destacam os sistemas logísticos. Esta incessante procura pela inovação e
melhoramento contínuo são muito recorrentes na época atual, traduzindo-se em constantes trans-
formações no conceito da qualidade de um produto.

Deste modo, emerge a necessidade em otimizar os layouts fabris conduzindo a um aumento da
flexibilidade face aos seus comportamentos dinâmicos. Neste seguimento surge a imprescindibili-
dade de aprimoramento do comportamento do veículo autónomo associado, com vista a finalidades
comuns como o aumento da produtividade e minimização de custos e lead times.

Neste âmbito, o objetivo desta dissertação é a combinação de técnicas de Reinforcement
Learning com abordagens de simulação para a otimização de um sistema logístico job-shop, no
que à produtividade diz respeito.

Para além da implementação do modelo de simulação do sistema logístico, esta dissertação
desenvolve também numa fase inicial comportamentos elementares a aplicar ao veículo, imple-
mentadas no próprio ambiente de simulação.

Posteriormente, dado que a área de Machine Learning tem obtido tanto sucesso noutras áreas
tecnológicas, surgiu o desafio da introdução do conceito de rede neuronal, através da criação de
uma nova entidade designada Agente e caraterizada pela técnica de aprendizagem baseada em
Reinforcement Learning.

Por fim, nesta dissertação, para além de se concluir que a abordagem baseada em Reinforce-
ment Learning proporcionou os melhores resultados de produtividade, retiraram-se ainda con-
clusões no que à robustez destes modelos diz respeito, a fim de avaliar a sua flexibilidade quando
sujeitos a diferentes contextos, simulando um ambiente real.

i

ii

Abstract

Nowadays, we have been witnessing an abrupt growth and development of the industry, reflected in
the high level of complexity and intelligence that the current production systems present, in which
the logistics systems stand out. This incessant search for innovation and continuous improvement
are very common today, reproducing into constant changes in the product quality concept.

In this sense, the need to optimize the factory layouts emerges, leading to an increase in flexi-
bility because of their dynamic behaviours. In this segment, there is an essential need to improve
the behaviour of the associated autonomous vehicle, to reach common objectives such as increas-
ing the productivity and minimizing costs and lead times.

In this context, the objective of this dissertation is the combination of Reinforcement Learn-
ing techniques with simulation approaches for the optimization of a job-shop logistics system,
regarding productivity.

Beyond the implementation of the simulation model of the logistics system, this dissertation
develops, in an initial phase, elementary behaviours to be applied to the vehicle, implemented in
the simulation environment itself.

Subsequently, given that the Machine Learning area has been so successful in other techno-
logical areas, the challenge of introducing the concept of the neural network appears, through the
creation of a new entity called Agent and characterized by the Reinforcement Learning technique.

Finally, in this dissertation, in addition to concluding that the Reinforcement Learning-based
approach provided the best productivity results, conclusions were also drawn regarding the ro-
bustness of these models, in order to assess their flexibility when subject to different contexts,
simulating a real environment.

iii

iv

Acknowledgements

My first words go to Engineer João Basto and Professor Américo Azevedo for all their availability,
comprehension and support during this master’s dissertation. Their help was fundamental in this
whole process and I am very grateful to them for that.

Secondly, I would also like to acknowledge the support of the Engineers Romão Santos and
Narciso Caldas for all the availability and incentive during the dissertation.

In this segment, I also have a word addressed to INESC-TEC, in particular to the Centre
of Enterprise Systems Engineering and all its elements for the facilities offered throughout the
dissertation and for the excellent environment provided.

I would like to thank the Faculty of Engineering of the University of Porto and its professors
for everything that has been transmitted to me over these 5 years, not only academically but also
personally.

I have to highlight all the friendly relationships I have created in these 5 years, namely Carlos
Carvalho, with whom I shared this experience in the INESC-TEC during this final semester, as
well as Fábio Queirós, Eduardo Caldas, Francisco Pires, André Oliveira, André Cipriano, Lídio
Ribeiro, Maria Pereira, Alexandra Santos and Artur Almeida, among many others that I take with
me for the rest of my life.

I also thank my family for all the support and motivation that helped me to go through this
journey, namely my parents Francisco Maia, Maria Isilda and sister Carolina Maia.

Finally, I address a word of appreciation to all my friends for all the encouragement and
stimulation during this period of my life, not only in the bad moments but also in the good ones.

Francisco Maia

v

vi

A moment of pain is worth a lifetime of glory.

Louis Zamperini

vii

viii

Contents

1 Introductory Analysis 1
1.1 Contextualization . 1
1.2 Motivation . 2
1.3 Objectives and Research Questions . 3
1.4 Methodological Approach . 4
1.5 Dissertation Organization . 5

2 State-of-the-Art 7
2.1 Industrial Production Systems . 7
2.2 Job-Shop Production System . 9
2.3 Logistics Systems . 12
2.4 Material Handling Systems . 13
2.5 Milk-Run . 14
2.6 Machine Learning . 16
2.7 Simulation . 18

3 Problem and Methodology 25
3.1 Problem Description . 25
3.2 Problem Characteristics . 26
3.3 Discrete-Event Simulation Model – Flexsim . 28
3.4 Implementation of a FIFO Transport System . 32
3.5 Implementation of an Optimized Milk-Run System 33
3.6 Implementation of the NearestWS Rule . 35

4 Implementation of a Dynamic Transport System, using Reinforcement Learning Al-
gorithms 41
4.1 Contextualization . 41
4.2 UML Sequence Diagrams . 42
4.3 Neural Network General Architecture – Single Layer Perceptron 45
4.4 Approach I – Initialization of Weights . 47
4.5 Approach II – Neural Network Pre-Training . 49
4.6 Makespan Model . 49
4.7 Base Model . 53
4.8 Robustness of the Simulation Models . 54

5 Results Analysis 57
5.1 FIFO Model . 57
5.2 Optimized Milk-Run Model . 58

ix

x CONTENTS

5.3 NearestWS Rule . 58
5.4 Makespan Model . 59
5.5 Base Model . 64
5.6 Comparison of the FIFO, Optimized Milk-Run, NearestWS Rule and Base Models 69
5.7 Robustness of the Simulation Models . 70

6 Conclusions and Future Work 73
6.1 Conclusions . 73
6.2 Future Work . 74

References 77

List of Figures

1.1 Dissertation approach method . 5

2.1 Lean Vision of Toyota’s Production System, adapted from [1] 9
2.2 Toyota’s Production System Model, adapted from [2] 9
2.3 Example of a functional layout of a manufacturing process, adapted from [3] . . 10
2.4 Point-to-Point Model . 12
2.5 Milk-Run Model . 12
2.6 Representation of in-bound, in-plant and out-bound milk-run systems 13
2.7 Representation of the categories of milk-run in-plant distribution problems, adapted

from [4] . 14
2.8 Comparison between the inventory levels of a Point-to-point and Milk-Run typol-

ogy, adapted from [5] . 15
2.9 Agent-Environment interaction diagram, adapted from [6] 18

3.1 Factory Plant Layout in study . 27
3.2 Properties of an entity - Flexsim . 29
3.3 Library – Flexsim . 29
3.4 Graphical representation of a WS – Flexsim . 30
3.5 Representation of the “Creation of Parts” Block 31
3.6 Representation of the “Processing of Parts” Block 32
3.7 Representation of the “Transport of Parts” Block – FIFO Model 33
3.8 AGV Trajectory – Milk-Run Model . 34
3.9 Representation of the “Transport of Parts” Block – Optimized Milk-Run Model . 35
3.10 Illustrative example of the NearestWS Rule . 36
3.11 Server-Flexsim relationships . 36
3.12 Client-Server TCP/IP communication diagram 37
3.13 UML class diagram – NearestWS Rule . 38
3.14 Representation of the “Transport of Parts” Block – NearestWS Rule 39

4.1 Agent-Server-Flexsim relationships . 41
4.2 UML sequence diagram – Init . 43
4.3 UML sequence diagram – Reset . 43
4.4 UML sequence diagram – Close . 44
4.5 UML sequence diagram – Step . 44
4.6 Neuron general structure, adapted from [7] . 46
4.7 SLP network architecture . 46
4.8 Neural Network – Example 1 . 47
4.9 Neural Network – Example 2 . 48
4.10 Representation of the “Transport of Parts” Block – Makespan Model 50

xi

xii LIST OF FIGURES

4.11 Triangular distribution function, referring to the processing times 55

5.1 Makespan related to Scenario 1, for a total of 250k time steps 59
5.2 Makespan related to Scenario 2, for a total of 250k time steps 60
5.3 Makespan related to Scenario 3, for a total of 250k time steps 60
5.4 Makespan related to Scenario 4, for a total of 250k time steps 61
5.5 Makespan related to Scenario 5, for a total of 250k time steps 62
5.6 Makespan related to Scenario 6, for a total of 250k time steps 62
5.7 Makespan related to Scenario 7, for a total of 250k time steps 63
5.8 Makespan related to Scenario 8, for a total of 250k time steps 63
5.9 Productivity referring to the Base Model without pre-training, to a total of 10M

time steps and a time horizon of 36h . 65
5.10 Productivity referring to the Base Model with pre-training, to a total of 10M time

steps and a time horizon of 36h . 66
5.11 Productivity referring to the Base Model without pre-training, to a total of 10M

time steps and a time horizon of 52h . 67
5.12 Productivity referring to the Base Model with pre-training, to a total of 10M time

steps and a time horizon of 52h . 68

List of Tables

3.1 Capacity and Coordinates (in metres) of each WS 26
3.2 Processing Times (in minutes) for each WS . 27
3.3 WS Sequence for each part type . 28
3.4 Production Plan excerpt . 28
3.5 Routings Table . 33
3.6 AGV Routing . 34
3.7 Interpretation of the observation sent by Flexsim 38

4.1 Action-Workstation relationships . 45
4.2 Observation segmentation [0-7] . 47
4.3 Observation segmentation [8-15] . 47
4.4 Scenarios of the Makespan Model . 51
4.5 Quantity of the different part types – Original Mix 54

5.1 Productivity related to the FIFO Model . 58
5.2 Productivity related to the optimized Milk-Run Model 58
5.3 Productivity related to the NearestWS Rule . 58
5.4 Numerical interpretation of makespan referring to Scenario 1 (in seconds) 59
5.5 Numerical interpretation of makespan referring to Scenario 2 (in seconds) 60
5.6 Numerical interpretation of makespan referring to Scenario 3 (in seconds) 61
5.7 Numerical interpretation of makespan referring to Scenario 4 (in seconds) 61
5.8 Numerical interpretation of makespan referring to Scenario 5 (in seconds) 62
5.9 Numerical interpretation of makespan referring to Scenario 6 (in seconds) 62
5.10 Numerical interpretation of makespan referring to Scenario 7 (in seconds) 63
5.11 Numerical interpretation of makespan referring to Scenario 8 (in seconds) 64
5.12 Numerical interpretations of the productivity (in parts) referring to the Base Model

without pre-training, to a total of 10M time steps and a time horizon of 36h . . . 65
5.13 Numerical interpretations of the productivity (in parts) referring to the Base Model

with pre-training, to a total of 10M time steps and a time horizon of 36h 66
5.14 Numerical interpretations of the productivity (in parts) referring to the Base Model

without pre-training, to a total of 10M time steps and a time horizon of 52h . . . 67
5.15 Numerical interpretations of the productivity (in parts) referring to the Base Model

with pre-training, to a total of 10M time steps and a time horizon of 52h 68
5.16 Productivity (in parts) referring to the Base Model, with penalties 69
5.17 Productivity (in parts) referring to the models in study 70
5.18 Productivity (in parts) analysis referring to different production mixes, for a time

horizon of 36 hours . 70

xiii

xiv LIST OF TABLES

5.19 Productivity (in parts) analysis referring to different production mixes, for a time
horizon of 52 hours . 71

5.20 Productivity (in parts) in stochastic environments, for a time horizon of 36 hours . 72
5.21 Productivity (in parts) in stochastic environments, for a time horizon of 52 hours . 72

Abbreviations and Symbols

AGV Automated Guided Vehicle
AI Artificial Intelligence
FIFO First In, First Out
IB Input Buffer
IBWSx Input Buffer of Workstation x
JIT Just-in-Time
MHS Material Handling System
OB Output Buffer
OBWSx Output Buffer of Workstation x
PPO Proximal Policy Optimization
RL Reinforcement Learning
VRP Vehicle Routing Problem
WIP Work-in-Progress
WS Workstation

xv

Chapter 1

Introductory Analysis

1.1 Contextualization

Lately, there has been an abrupt growth and development of the industry, in which the concept “In-

dustry 4.0” appeared, which allowed the exchange of information between a variety of equipments

in a factory. Namely regarding the optimization of internal processes, as well as a company’s prod-

ucts and even services, this paradigm is revolutionizing the industry worldwide. Consequently, the

current need and demand for innovation and improvement follow the model based on continuous

improvement. [A year without improving is a year won by competitors - J. M. Juran]. [8]

In this sense, the concept of Lean Thinking, founded by Taiichi Ohno and Eiji Toyoda, which

combines the elimination of waste (Just-in-time - "Any activity that the customer is not willing

to pay" - Taiichi Ohno) with the immediate reaction to any problem that could arise in during a

process (Jidoka - Japanese term), has emerged in this context. The main objective of this idea is

to increase customer satisfaction, creating significant changes in the manufacturing processes that

contribute to their better functioning (Kaizen), increasing productivity and efficiency. [9]

And what is the reason for this incessant search for innovation and optimization of industrial

processes? The answer is pretty simple, customers are the main reason. Their demands and needs

have also been increasing over the past few years, both in terms of variety and quality.

At the beginning of the study of these subjects, it was considered that quality would only be re-

lated to the product specifications ("Quality is conformance to the specifications" - Philip Crosby).

However, this concept has been constantly updated, considering that the primary factor is the sat-

isfaction of the customer’s needs ("Quality is fitness for use" - Joseph Juran). For this, it is firstly

necessary to infer the product specifications, followed by the identification of the probable errors

that may arise during the processes and their causes, before proceeding to their elimination. [10]

The need to increase quality, decrease costs and reduce delivery times, led to the creation of

several types of factory layouts, namely the functional (process-oriented, job-shop), line (linear

flows, flow-shop) and fixed (the product cannot be moved).

In this sense, the industries started to adopt different modes of production, namely the job-

shop, characterized by the existence of specialized areas by function, and flow-shop, defined by the

1

2 Introductory Analysis

production lines. Overall, the layouts are designed to minimize Material Handling costs, eliminate

bottlenecks, reduce cycle times, eliminate waste and increase process flexibility.

Currently, many industries make use of the job-shop production mode, because it is related to a

high diversity of products produced in low volume (production to order). It also allows the increase

of the flexibility of production processes, however, they present high WIP and queues. [11]

In order to optimize these logistics systems, Material Handling is in great focus at the present.

In order to obtain shorter cycle times and lower costs in transporting raw materials between work-

stations (WSs), there is a need to develop new optimization algorithms. For this, it is necessary

to take into account the time and space (of the warehouse, for example). In other words, it is

necessary to coordinate all the tasks of each workstation in order, for example, to satisfy all orders

with the shortest possible lead time. [12]

Directly associated with these material management systems are the AGVs (Automated Guided

Vehicle) that allow the materials to be transported between stations, and are generally unmanned.

Currently, vehicle routing problems are in the spotlight and their objective is to travel the shortest

distance possible, minimizing costs. This type of problem has some common characteristics to the

"Traveling Salesman" problem, in which it is supposed to visit a certain number of cities covering

the shortest possible distance. In the case of industries, each vehicle has a maximum capacity.

Most of these problems can be solved using the Milk-Run system, which is a delivery system

that allows us to reduce stocks, reduce waste and optimize routes. It is a delivery system in which

one product is deposited and another one is collected right after, in order to save time. It should

also be noted that the AGV’s route is fixed. The collection of products from suppliers is carried

out on a scheduled basis, in stipulated quantities, making cycle times more predictable. [13]

Besides heuristics such as Milk-Run, other approaches, based on metaheuristics, have been

also developed to solve this kind of problems. [14]

Allied to these approaches, the concept of Machine Learning emerges. Since it has been quite

successful in other areas of technology, why not make use of this tool and apply it to production

systems? It is precisely these issues that are currently being studied and developed.

1.2 Motivation

The growing evolution of the industry due to the continued increase in competitiveness has led

logistics management to be in vogue these days. In other words, its processes have undergone

significant changes, both financially and temporarily, in addition to the objective of making the

system more robust and secure.

The importance of reducing human-made failures has led to the use of AGVs, which, besides

the safety and precision issues, also contribute to the automatization of production systems, with

regard to the sequence of operations.

For this purpose, certain heuristics were created and developed that allowed, for example,

to minimize the cycle times of a production line as well as the costs associated with Material

1.3 Objectives and Research Questions 3

Handling. It should also be noted that a large part of the lead time is spent on transport, with only

a minority focusing on production processes.

One of the most important formulations that emerged, taking into account the need to accel-

erate the flow of materials between locations, was the concept of Milk-Run systems. These ones

allow that, in a delivery system, when a certain product is delivered to a stipulated location, another

one is also collected, saving time in transportation. In short, these types of systems contribute to

the integration between the logistics systems and supply chains. [15]

That said, the Milk-Run concept was later transported to a factory layout context, in which

each location corresponds to a workstation. As mentioned, these heuristics ensure the resolution

of problems such as Job-Shop Scheduling and Material Handling.

In order to solve these optimization problems, some tools like Machine Learning (learning

algorithms such as neural networks) can be combined to solve material movement problems. This

tool has a great prominence nowadays and allows to make predictions taking into account data

collected previously, even in highly complex environments. In this segment, one of the paradigms

of Machine Learning that emerges is Reinforcement Learning (RL). Based on the environment in

question and the decisions taken by the Agent, this learning method allows receiving feedback that

indicates the best decision made so far. [16]

In summary, the study of the influence that these methods have on solving dynamic vehicle

routing problems associated with the transport of materials between workstations in a factory is

very interesting and allows to create very effective and adaptable algorithms.

These algorithms based on Reinforcement Learning can be applied regardless of the complex-

ity of the system, and there is no need to change the factory layout. In addition to all of this, the

investment is low and the results achieved are satisfactory.

In conclusion, the constant need to optimize both production times and transport, improving

the routes, leads us to question the fact that, if Machine Learning has been so successful in other

areas, why not adapt it to the productive systems and combine it with simulation approaches for

the optimization of logistics systems. [17]

1.3 Objectives and Research Questions

The main objective of this dissertation is the combination of techniques based on Machine Learn-

ing with simulation approaches for logistics systems optimization.

Firstly, it is necessary to model the problem, understand the factory’s operation (layout), create

the simulation model (through the Flexsim software tool) and, finally, define simple decision rules

to command the AGV.

Subsequently, it is possible to integrate training algorithms based on Reinforcement Learning

techniques, which define a completely dynamic behaviour of the logistics system, to increase the

productivity and minimize the makespans (the total time to complete a sequence of tasks). These

algorithms, made available by OpenAI Baselines, are considered the state-of-the-art of Reinforce-

ment Learning, nowadays.

4 Introductory Analysis

Finally, it is essential to test whether the algorithm adapts to changes in the factory, with

respect to changes in the production mix or in the stochasticity of processing times.

In order to be able to accomplish these objectives, we need to answer the following research

questions (RQ):

• RQ 1: How can we model a factory’s operation in a simulation model with simple decision

rules to command the AGV?

• RQ 2: How can we integrate training algorithms based on RL techniques with a simulation

model to study the factory’s productivity and makespan?

• RQ 3: How can we evaluate the robustness of the proposed approaches?

1.4 Methodological Approach

This dissertation follows the study of a set of hybrid approaches of simulation and Machine Learn-

ing, whose consequent purpose is the optimization of a logistics system, leading to an increase in

its productivity and minimization of makespan.

The initial phase of the dissertation is allocated to the construction of the simulation model of

the job-shop layout, using the Flexsim software, in which an automated guided vehicle will also

be incorporated.

Posteriorly, there are two elementary decision rules that will be implemented, which provide

the indication of the workstation (WS) where a load of an entity will be performed. The first rule,

referring to the inaugural simulation model, is based on the First-in First-out (FIFO) algorithm,

while the second model is a Milk-Run optimized transport system.

Then, the concept of communication between the simulation environment and an external pro-

gram will be introduced, which will allow the creation of a distributed system, because the last two

rules addressed were implemented in the simulation model. This external program, called Server,

uses the Python language and it will communicate with the simulation environment, becoming re-

sponsible for AGV decision making. This new stage also requires that the communication between

the two entities has to be preliminarily established, using the TCP communication protocol.

At the beginning of the final stage, the concepts of Machine Learning will be introduced and

discussed, namely the introduction of a third entity called Agent, which implements a neural

network for decision making. This network will be responsible for defining the WS where the

AGV will load the respective entities. For that, the Agent receives from Flexsim, through the

models subsequently developed, a set of relevant information, namely observations of the current

state of the plant and the current location of the AGV. However, it should be noted that the Server

is still present, assuming the role of an intermediary between the Agent and Flexsim.

Consequently, through a Reinforcement Learning algorithm, called Proximal Policy Optimiza-

tion (PPO), the neural network will determine the respective WS where the AGV has to load an

entity. A pre-training process for the Agent will also be studied and applied, which will allow the

1.5 Dissertation Organization 5

improvement of its learning phase and, consequently, lead to a possible maximization of produc-

tivity ("Base Model") and minimization of makespan ("Makespan Model").

Finally, the production mixes will be changed and the concept of probability distribution will

be introduced. In this sense, the models previously discussed will be applied to a stochastic envi-

ronment, in order to verify if they present a high level of robustness so that they can be applied in

a real context, where the processing times are subject to constant changes.

All these phases are represented in Figure 1.1.

Figure 1.1: Dissertation approach method

1.5 Dissertation Organization

With regard to the organization and structure of this document, it is divided into six chapters.

The first chapter pretends to introduce the theme of the dissertation, including its contextual-

ization, motivation, objectives and research questions, as well as the schematic of the methodolog-

ical approach followed.

Chapter 2 presents the state-of-the-art of the subjects covered by the dissertation, like the in-

dustrial production systems, in particular the job-shop type, Material Handling Systems, Machine

Learning concepts and discrete-event simulation.

The description and characteristics of the problem, as well as the description of its method-

ology, are covered in chapter 3, even as the implementation of the first three transport systems

considered throughout the dissertation.

Chapter 4 reflects two additional transport systems, introducing Reinforcement Learning tech-

niques in combination with simulation approaches. The robustness of the systems is related to the

production mixes and processing times, which are also addressed.

6 Introductory Analysis

The results obtained are exposed and treated in chapter 5 with regard to the five transport

systems developed and their robustness.

Finally, chapter 6 presents the conclusions of the dissertation project and the suggestions for a

future work.

Chapter 2

State-of-the-Art

This chapter aims to present the results of a bibliographic search, in order to internalize, in a simple

way, the concepts that will be addressed throughout the dissertation.

Firstly, in section 2.1, the concepts of industrial production systems will be introduced in

general and, later, in section 2.2, the job-shop production systems will be addressed. Then, section

2.3 presents some interpretations of the logistics systems associated with Material Handling in

industrial environments.

In section 2.4 the question of Material Handling Systems (MHS) will be addressed, and in the

next section (2.5) the principles referring to Milk-Run systems will be introduced.

Section 2.6 introduces the subject of Machine Learning, with special reference to the Rein-

forcement Learning technique.

Finally, section 2.7 presents the main concepts associated with simulation approaches.

2.1 Industrial Production Systems

The constant evolution of the market means that, nowadays, society seeks for differentiated prod-

ucts, which follows a perspective of diversity rather than quantity. In this way, the specialized

industrial organizations have as main objective the increase of the effectiveness and efficiency of

their production processes.

About typologies, there are systems whose objective is to produce products on a large scale

with a low degree of variety and are also characterized by its high productivity, low qualification

of their operators, reduced complexity of factory management and reduced flexibility. This type

of system is called as product oriented.

On the other hand, there are systems that are oriented to the process and to the customer, in

which its main goal is to satisfy the customer’s needs, according to a pull perspective, and to

value the quality of the product. This type of system gives more importance to the product variety

instead of quantity, and it is considered more flexible and denoted by greater complexity of factory

management.

7

8 State-of-the-Art

Thus, production models are usually classified according to two distinct classes: make-to-order

or make-to-stock.

• Make-to-order production is characterized by the fact that it is triggered to respond to an

effective order;

• With regard to make-to-stock model, production is triggered taking into account a forecasted

demand. [11]

2.1.1 Production Models

Over the past few years, the concepts of production systems have been changing. An example

of this are the following three organizational forms of industrial production, applied during the

second Industrial Revolution, in which we can see that the main common challenge continues to

focus on cost optimization, however using different strategies.

Taylorism

According to Frederick Taylor, the way to increase the efficiency of the processes of a production

system was observing the work performed by the workers, in order to increase and maximize

the worker’s performance. This method allowed to equate time and movement, increasing the

efficiency of the processes. However, Taylor argued that only the administrative bodies were

responsible for this, and so this idea created discomfort among workers who considered it as

overexploitation. [18]

Fordism

It was created by Henry Ford who emphasizes the inclusion of the conveyor belt, which introduced

a more dynamic work rhythm, resulting in a high turnover of workers. It applies to mass production

systems, characterized as assembly lines. Like the previous model, it allowed both the reduction

of costs and increase of the productivity of production processes. [18]

Toyotism

Founded by Taiichi Ohno, through the well-known car brand Toyota. He argues that each worker

controls his own work, in which there is total trust between all levels of the company hierar-

chy, meaning that confidence leads to the elimination of errors in a short period of time. It also

highlights the fact that each worker has the capacity to perform multiple tasks in the production

process. [18]

In short, as shown in Figure 2.2, a Lean Thinking vision is highlighted, which defends the

approach of zero waste, or in other words, the elimination of everything that does not add value to

the customer. This paradigm allows reducing existing stocks and lead times (Just-in-time). Allied

to this concept of zero waste, appears the concept of immediate reaction to any problem that could

2.2 Job-Shop Production System 9

arise during the processes, eliminating it immediately (Jidoka-Japanese term), mirrored in Figure

2.1. [19]

According to Taiichi Ohno, considered the main responsible for the creation of the Toyota’s

production system:

“All we are doing is looking at the time line, from the moment the customer gives us

an order to the point when we collect the cash. And we are reducing the time line by

reducing the non-value adding wastes” - Taiichi Ohno [19]

Figure 2.1: Lean Vision of Toyota’s Produc-
tion System, adapted from [1]

Figure 2.2: Toyota’s Production System
Model, adapted from [2]

2.2 Job-Shop Production System

2.2.1 Formal Definition

A job-shop scheduling problem can be described as a set J of n tasks, J(i=1,...,n) = {J1, ...,Jn},
staggered on a finite set M of m machines, {M = M1, ...,Mm}. Each Ji task is fragmented into a

series of m oik operations, where i represents the task Ji and k represents the machine Mk, where the

oik operation will be performed. The sequence order of the machines for each task i is previously

defined. It should also be noted that each oik task is associated with a non-negative pik processing

time. [20]

This type of production system is characterized by its high diversity of products, produced

in low volume, normally associated with the concept make-to-order. The high flexibility of its

processes also allows a quick adjustment to different production mixes, in which an equipment can

be used to work with different types of products. In contrast, the high WIP’s (work-in-progress)

that lead to long queues require more complex production planning and control.

One of the most used solutions to solve this planning issue is, for example, to join the special-

ized areas/sectors with the highest traffic, to reduce the distances travelled between them. In short,

10 State-of-the-Art

these types of issues that are related to lead times and transportation costs between workstations

are analysed by these job-shop systems. [11]

In the following Figure 2.3 there is an example of a job-shop layout, oriented to the process.

Figure 2.3: Example of a functional layout of a manufacturing process, adapted from [3]

Detailing some additional issues of this kind of job-shop model:

• Each Ji task visits a Mk machine only once;

• The operations associated with each task must be performed sequentially, following a certain

pre-established order, without parallel processing;

• The setup times for machines and transports can be neglected;

• Each operation is performed only once on each associated machine;

• It is assumed that the machines are continuously available.

In this dissertation, the simulated factory has a similar production system to the classic job-

shop problem. The main difference is the existence of an AGV, responsible for the transport of

parts, which is carried out in a non-zero time.

2.2.2 Performance Evaluation Criteria

In this type of job-shop system, the scheduling of machines is directly associated with the evalu-

ation of costs and performance metrics. Because it is quite difficult to evaluate the performance

based only on costs, the main criterion is temporal.

Most of the criteria are based on task finish times and, in some cases, some data such as

weights are added, which will allow us to assign different importance to each task, as well as

delivery dates.

Some of the most frequent performance evaluation criteria in this type of systems are repre-

sented in the following list:

2.2 Job-Shop Production System 11

2.2.2.1 Makespan

This technique is one of the most used, referring to the period of time required to complete a set

of production orders.

It allows to take conclusions about the total time spent, and to obtain feedbacks, through that

information.

Cmax represents the makespan and Ci is the time necessary to complete the task Ji, so that the

objective is to minimize the makespan [20]:

Cmax = max
1≤i≤n

Ci −→ min (2.1)

2.2.2.2 Machine Utilization Rate

This metric shows the relationship between the machine availability and the required capacity.

The goal is to make the machine idle for as little time as possible, increasing its efficiency.

The average machine usage is represented by the following expression, MU (use of machines)

[20]:

MU =
∑

n
i=1 ∑

m
k=1 pik

m.Cmax
(2.2)

2.2.2.3 Flow Time

The flow time, Fi, is defined as the difference between the task completion time (ci) and the launch

time of each task (ri). The weight assigned to each task is represented by Wi.

The objective is to minimize the so-called WIP, represented by the following expressions [20]:

Fi = ci − ri (2.3)

min
n

∑
i=1

Wi ∗Fi (2.4)

2.2.2.4 Due Date

Taking into account the delivery date, di, and the task completion time, ci, the objective is to

minimize the maximum delay, Lmax = max(ci− di). Alternatively, sometimes the objective is,

taking into account Ti (maximum between 0 and ci − di assuming that the completion time is

always greater than the delivery date), to minimize the sum Wi ∗Ti . [20]

L
n

max
i=1

(Ci−di) (2.5)

Ti = max(0,ci−di) (2.6)

12 State-of-the-Art

n

∑
i=1

Wi.Ti −→ min (2.7)

2.3 Logistics Systems

There are several approaches to the transport of materials in industrial environments. According

to Meyer [21]:

Point-to-Point

Also known as direct transport, this model is characterized by the fact that the deliveries and

collections performed between the suppliers and the factory are carried out directly, as Figure 2.4

shows. This model is used when lots of high quantities are considered and it is recognized by its

lower flexibility, however, it is simpler to plan and control. It enables to reduce the transport costs

because its frequency is lower throughout the day.

Area Forwarding Services

This model allows a company to transmit the responsibility for defining routes and carrying out

the transport of materials to another company, which is specialized in logistics.

Milk-Run

As Figure 2.5 shows, the Milk-Run model is a mechanism for transporting small quantities of

materials of a wide variety, which allows the same transport vehicle to visit several suppliers

before supplying the factory.

The routes are pre-defined and this model enables to reduce the associated transport costs, as

well as the safety stocks.

It is also characterized by the higher frequency of transport, and its scheduling is much more

complex than the one of the point-to-point model.

Figure 2.4: Point-to-Point Model Figure 2.5: Milk-Run Model

2.4 Material Handling Systems 13

2.4 Material Handling Systems

Currently, the main objective of the industrial environments is the elimination of the activities that

do not add value to the processes.

Therefore, one of the most frequent and important problems is the Material Handling, which

constitutes one of the seven wastes of Lean manufacturing, and which is directly related to the

vehicle routing problems (VRP).

The Material Handling systems objectives are to [4]:

• Increase the efficiency of the material flow, supplying the materials where and when needed;

• Reduce routing costs;

• Increase productivity;

• Increase safety and working conditions.

The Lean logistics, as shown in Figure 2.6, can also be defined by three different groups:

in-bound (supplier-factory), in-plant (inside the factory) and out-bound (factory-customer) [4]. It

should also be noted that, in the context of this dissertation, just the Milk-Run in-plant system will

be addressed.

Figure 2.6: Representation of in-bound, in-plant and out-bound milk-run systems

The Lean paradigm defends that the principal goal is to minimize the transport and WIP costs.

However, it should be highlighted that the costs from WIP and transport are both complementary.

Therefore, the main problems of this transport system are how to determine routes and route

times.

In this segment, there are three categories represented in Figure 2.7 [4]:

• General assignment problem - unknown routes and times;

• Dedicated assignment problem - known routes and unknown times;

14 State-of-the-Art

• Determined time periods assignment problem - known routes and times.

Figure 2.7: Representation of the categories of milk-run in-plant distribution problems, adapted
from [4]

2.5 Milk-Run

A Milk-Run System is directly related to the concept of transportation in the industry. The need to

reduce stocks and costs in transport was the reason for the creation of this model. This idea of cost

reduction follows the JIT philosophy of Lean fundamentals. Briefly, this is a delivery system that

allows us to optimize routes and reduce wastes between workstations in a factory plant (in-plant).

With regard to the Milk-Run system, Baudin [22] states:

“This concept allows to move small quantities of a large number of different items

with predictable lead times and without multiplying transport costs" [22] - (Baudin,

2004 [13])”

All these aspects led Lean manufacturers to choose to organize their transport according to

fixed times and routes, in the form of a Milk-Run system. The design of these systems involves a

higher complexity, which according to Meyer [21] can be described in the following three factors:

• Transport of materials;

• Frequency of transports;

• Route scheduling.

2.5.1 Advantages of a Milk-Run System

Comparing to the traditional approach, shown in Figure 2.4, the Milk-Run system presents the

following advantages:

2.5 Milk-Run 15

Inventory Reduction

As Figure 2.8 shows, the Milk-Run typology, in cases X and Z, allowed the inventory level to be

reduced by 1/3, because the frequency of transport was increased by three units. In case Y, the

frequency of transport increased twice, resulting in a decrease in the stock of 2/3 of the level of

the point-to-point typology.

Figure 2.8: Comparison between the inventory levels of a Point-to-point and Milk-Run typology,
adapted from [5]

Replenishment with Predictable Lead Times

On a daily basis there are thousands of products with different transport frequencies. However,

through Figure 2.8, which presents only three different products (X, Y, Z), it is possible to gener-

alize for other cases. So, it can be concluded that their lead times are predictable.

Because we have access to data which indicates an increase or decrease in the frequency of

supply, it becomes predictable to estimate the stock variations that will occur in the future.

Better Inventory Visibility

In the case of the point-to-point deliveries, there may be a case where only the product X is

transported on a large scale, causing an almost total emptying of the respective shelves. However,

this situation does not represent any type of anomaly in the inventory.

In the case of the Milk-Run system, because the quantities transported are practically the

same for all products, any significant variation in the amount of any type of product present on

the corresponding shelf is an immediate sign of the presence of an anomaly. So, the Milk-Run

typology has a better visibility of the inventory, allowing to act quickly in case of abnormality.

16 State-of-the-Art

Improve Communication Skills with Suppliers

Using Milk-Run enables suppliers to be in regular contact with the customers, because of the fre-

quency of supply. Therefore, it is possible to obtain feedback from consumers about the quantities

and quality of the delivered products, which makes it possible to improve the delivery system and

the future quality of the products. [13]

2.6 Machine Learning

The Milk-Run systems need to adapt since the current reality of the factory layouts has led this

system to become dynamic so that it is necessary to develop decision algorithms. So, the con-

cept of Machine Learning was introduced in the scope of the transport of materials in a job-shop

environment, more specifically the Reinforcement Learning technique.

This concept argues that learning from interactions is a fundamental idea subjacent to almost

all theories of learning and intelligence. [23] Basically, Machine Learning aims to learn based on

previous data and make predictions or decisions for the future. [24]

According to Arthur Samuel, pioneer in artificial intelligence:

“Machine Learning is the field of study that gives computers the ability to learn

without being explicitly programmed" - Arthur Samuel, 1959 [23]

Enumerating some of its applications [23]:

• Analyse product images on a production line to automatically classify them;

• Detect tumours through brain scans;

• Summarize long documents automatically.

The Machine Learning systems can be classified into three categories, according to its learning

processes:

• Supervised Learning

A series of examples (inputs) with the correct answer (outputs) is provided by an external

supervisory Agent and, based on training, the implemented algorithm generalizes the correct

answer to another set of inputs, afterwards. [25]

• Unsupervised Learning

The developed algorithm tries to identify similarities between the inputs, categorizing them.

One of the best-known techniques is the clustering. [25]

• Reinforcement Learning

It is located between Supervised Learning and Unsupervised Learning. The algorithm is

informed about the quality of the response, but it is not informed about how to correct it.

2.6 Machine Learning 17

So, it is necessary to explore and experiment other different possibilities until the Agent

discovers how to obtain a higher quality response.

In this particular dissertation, it is pertinent, with regard to the transport of materials in a

job-shop environment, to analyse, essentially, the Reinforcement Learning field.

2.6.1 Reinforcement Learning

Learning how to control Agents directly from high-level sensory information, such as vision and

speech, is one of RL’s longstanding challenges. [26]

The Agent is not specifically told what actions to take, unlike what happens in other forms of

Machine Learning, like Supervised Learning. Therefore, the Agent will have to find out which

actions, deliberated so far, allowed him to obtain greater rewards, at the end of the learning phase.

Interestingly, the actions taken in the present will affect the respective reward, as well as the future

ones.

The concepts of "trial and error search" and "delayed reward" are the two most important

characteristics of RL.

Unlike Supervised Learning, which is a way of learning based on examples provided taking

into account the knowledge of an external supervisor, this is not appliable to an interactive learning.

This is because, in interactive problems, in most cases, it is impossible to obtain examples of the

desired behaviour that are correct and represent all the situations in which the Agent needs to act.

Hence, the RL allows the Agent to decide what action to take, taking into account his own

experience. The Agent will have to check the decisions he has made in the past and find out if, in

fact, he obtained a beneficial reward, so that he can then later carry out his action. In this sense, a

new paradigm appears, in which the Agent, in addition to exploring knowledge that he already has

from previous situations, also needs to explore new decisions never made before, to see if he gets

a higher reward. Neither of these paradigms is considered better than the other because in both

cases, the Agent will fail (obtain a lower reward) and the solution states in the critical capacity of

the Agent, so he has to perform several tests, in order to find the solution that provides him with a

final value corresponding to the biggest reward. [6]

2.6.2 Reinforcement Learning Characteristics

Agent

The Agent is the entity that it is responsible to make the decisions and it is called “learner” and

“decision maker”.

More specifically, the Agent and the environment interact with each other in the form of dis-

crete time intervals (t = 0,1,2, ...). As Figure 2.9 presents, for each t, the Agent receives a repre-

sentation of the state of the environment st , such that st ∈ S represents the set of all possible states.

Consequently, the Agent receives a response in the form of a reward rt+1 ∈ R and a new state of

the environment, st+1, which is a feedback for the next decision to make at+1. [6]

18 State-of-the-Art

Environment

The environment is responsible for informing the Agent of the current state and the reward ob-

tained for the action taken previously. It also tells the Agent a set of all possible states.

Action

The action is the result of the decision made by the Agent. The objective is to find the best

solution, which corresponds to choosing the action that allows him to obtain the highest reward

because each action originates different reward values.

Reward

The reward is a feedback in which the Agent evaluates the consequences of his action taken in

the previous state. It is important to refer again that the objective is to obtain the greatest possible

accumulation of rewards, keeping in mind that a large reward obtained in a given state does not

necessarily mean that the final accumulation of rewards will be the best. This is because, although

a specific reward in a given state is the largest one, it may lead to a non-ideal situation in the future

and influence negatively the following rewards. [27]

Policy π

It is a mapping strategy that allows the Agent to decide the next action to take, in order to obtain a

good accumulated reward in the long term.

The RL specifies how the Agent can change his policy, taking into account his experience.

The Agent can also be classified according to policy, value function and model. A policy, π ,

is a mapping of states s ∈ S and actions a ∈ A(s), for the probability π(s,a) of taking an action at

the time of a state s. The value of the state s under a policy π is still denoted by V π(s). [6]

Figure 2.9: Agent-Environment interaction diagram, adapted from [6]

2.7 Simulation

Modelling is a tool that allows us to solve real context problems. Most of the time we cannot

afford to experiment and test real objects, in order to obtain the best solution, since these objects

are, in general, expensive and even scarce. Thus, the simulation assumes a fundamental role in this

2.7 Simulation 19

context, in order to be able to solve problems in a practical way and without collateral damage,

confirmed by the following quote adapted from [28].

“Modeling consists of finding the path of the problem to its solution, in a risk-free

world where we can make mistakes, undo things, go back in time and start again.”

[28]

In addition to the purpose of modelling, there are more benefits of using this method, such as

[29]:

• Simulation models allow us to analyse systems and find solutions in which the analytical

models fail;

• It allows testing new policies, operating procedures, decision rules, information flows with-

out making changes to the real system;

• Discover the bottlenecks.

However, despite all these gains, the final results can sometimes be difficult to interpret. The

fact that the simulation requires a lot of training is one of the least favourable points.

2.7.1 Components of a System

In order to better understand the constitution of a simulation system, this section describes its main

elements. [29]

System

A set of entities that interact with each other in order to achieve the outlined objectives.

Model

An abstract representation of a system, which allows it to describe in terms of its state, entities,

processes, events, activities, and others.

System State

A necessary set of variables to describe the system.

Entity

An object of interest which requires an explicit representation.

Attribute

An entity property.

20 State-of-the-Art

Event

An instant occurrence that can change the state of the system.

Activity

The time duration that a task needs to be executed, known at the moment it starts.

Delay

The excess time interval, only known when it ends.

Clock

A variable that represents the simulated time.

A method is a structure used to map real systems in simulation models. With regard to the

simulation modelling methods, this can be organized into three categories: Agent-Based, System

Dynamics and Discrete-Event Modelling. The use of each one of these methods depends on the

system to be implemented and its objectives.

Agent-Based

It is part of the class of computational models for simulating actions and interactions between

autonomous Agents (individual or collective). Despite the lack of knowledge of the system’s

behaviour and inability to represent the process flow, the main objective is to verify and study the

effect of the Agents on the system as a whole. [28]

System Dynamics

John Sterman [28] states that this model is a perspective and a set of conceptual tools that enables

the understandment of the structure and dynamics of complex systems. This model is also a

rigorous modelling method that allows to build formal simulations of complex systems and use

them to design more effective policies and organizations.

Discrete-Event Modelling

It allows conceiving the modelling of a system as a discrete sequence of events in time. Each event

occurs at a particular time and causes a change in the state of the system. This system requires that

modelling has to be seen as a process so that it is a sequence of operations performed by Agents.

[28]

2.7 Simulation 21

2.7.2 Discrete-Event Simulation

Nowadays, this simulation method is widely used in the modelling and analysis of problems in

the area of logistics systems, as it allows the study of aspects such as processes, scheduling and

resource allocation. Health, business processes and military applications are also areas covered by

this modelling method. Consequently, all these advances have led to a software development. [30]

In the specific case of this dissertation, the simulation will be used to evaluate the internal

material flow of a manufacturing plant, in order to make conclusions regarding the factory’s pro-

ductivity and values of makespan, so we are able to identify possible bottlenecks.

Therefore, this tool is used as a method for analysing and solving the following problems,

associated with job-shop environments:

• Evaluate the effect of changing material transport routes between workstations;

• Analyse the phenomenon of resource allocation and bottleneck prevention;

• Assess the impact of changing the elements in the layout on performance.

Through published articles dedicated to the study of this area of simulation, it is possible to

draw examples of applications in distribution and transport systems.

Hugan (2001) elaborated a study that allowed him to evaluate the internal traffic of a General

Motors automobile plant, in the USA, which was based on the JIT model of Lean manufacture.

The simulation allowed to improve the internal routes for each type of product, as well as to

estimate the average time spent by a product in the factory, from its entry to its exit. Kuo, Chen,

Selikson and Lee (2001) used the simulation of discrete-events to study the flow of materials

also in a manufacturing plant, which allowed them to have a deeper knowledge of operations and

logistics processes. [30]

2.7.3 Construction Steps of a Simulation Model

Problem Formulation

The problem must be well formulated so that there is no doubt. There are still cases where it is

necessary to proceed with a total or partial reformulation of the problem. [29]

Establishment of Objectives and General Project Plan

The objectives will be the questions to be answered through the simulation. After deciding which

simulation method is the most suitable, it is necessary to list a series of alternatives to the simu-

lation and find ways to evaluate the effectiveness of these same solutions. Besides the objectives

defined for the end of each state, it is also important to mention in the plan the number of people

involved, as well as the associated costs and the estimated time for each phase of the project. [29]

22 State-of-the-Art

Model Conceptualization

According to Pritsker (1998), although it is not possible a priori to define the instructions that will

lead to a successful model, there are some points of view that must be followed for the model to

be successful. It is necessary to start by defining a simplistic model and, from there, make the

necessary changes step by step to obtain good results. [29]

Data Collection

Data collection is directly associated with the construction of the model, since the data collected

will serve as input to the model. As this collection fills large intervals of time and this is a very

important aspect in the elaboration of the model, it is essential to start the collection as soon as

possible. [29]

Model Translation

This phase consists of converting the model into a simulation language using specific software

programs. In the specific case of this dissertation, the software used is the Flexim program. [29]

Verification and Validation

This step enables to check if the program is prepared for the simulation model, carrying out ver-

ification and debugging tests. By comparing the model with the behaviour of the current system,

it is useful to use this feedback in order to improve the model. The process is repeated iteratively

until the result obtained is satisfactory. [29]

Experimental Design

The alternatives previously defined in the “Establishment of Objectives and General Project Plan”

phase that must be simulated, must be determined. [29]

Production and Analysis of Results

After several tests of the model, with different data, the resulted analyses are used to estimate the

performance of the system that was simulated. [29]

Documentation

After the simulation, it is necessary to report two types of data: program and progress. If the pro-

gram is used by others in the future, the program documentation indicates the modes of operation

and behaviour of the program, as well as other fundamental aspects. In relation to the progress

report, this is essential for the model to obtain credibility and certification. [29]

2.7 Simulation 23

Implementation

The success of the implementation will depend on each phase previously referred. [29]

24 State-of-the-Art

Chapter 3

Problem and Methodology

This chapter presents the general characteristics of the generic Material Handling problem in a job-

shop system, using an AGV. Following this purpose, there are addressed questions related to the

current layout of the manufacturing plant and the processing and sequencing of predefined tasks,

as well as the strategies adopted to solve this type of problem. In this context, the characteristics

of the simulation model of the system under analysis will also be introduced in this chapter, using

the Flexsim software tool.

3.1 Problem Description

With this dissertation it is intended, in a simple and quick way, to build a simulation model which

is capable to improve the functioning of industrial systems, through the creation of decision rules

to provide to an AGV, based on the Material Handling paradigm. In this sense, in an initial phase,

the objective is to develop the simulation model considered throughout the dissertation, which is

characterized by a functional layout in a manufacturing environment, in which the positions of the

workstations are already pre-defined and represented in Figure 3.1.

In this segment, an autonomous vehicle responsible for the transport of materials between the

workstations will be introduced. Initially, this AGV will follow elementary decision rules such as

First-in, First-out (FIFO) and, later, the Milk-Run concept.

Furthermore, a new decision rule will also be addressed (NearestWS Rule), which brings some

improvements that take into account the distances between the WS and which have impact in the

final productivity results.

Finally, comes up the challenge of using the Machine Learning area with the objective of

creating decision rules that will allow to decrease the makespans of the industrial systems and to

increase their productivity. For this purpose, an Artificial Intelligence program, called Agent, will

be used and will be run in parallel with the simulation environment. The intention is, in a previous

phase, to establish the communication between these two entities, through the creation of a Server,

so that the simulation environment can send data containing its current state. Then, the Agent can

take its own actions to perform in the respective simulation environment. In summary, this last

25

26 Problem and Methodology

problem discussed in the dissertation consists of implementing training algorithms based on RL

techniques, which define a completely dynamic behaviour of the logistics system, with a view to

increase the plant productivity and minimize the makespans.

3.2 Problem Characteristics

3.2.1 Layout

The manufacturing plant follows a job-shop layout, characterized by its high flexibility, in which

the workstations are arranged by specialized areas. As Figure 3.1 represents, there are seven WSs

and an AGV. Their positions are also identified in Table 3.7, in the form of X (abscissa) and Y

(ordinate) coordinates. Each station also has an associated input (IB) and output buffers (OB), in

which both are three distance units apart from the WS itself.

The raw material warehouse, where the parts enter the system, is represented by a Source, and

the point where the parts leave the system (finished products warehouse) is Sink’s responsibility.

It should also be noted that the capacity of the AGV is just of one part and the processing

capacity of each WS is also of one part, except for Source, Sink and buffers, which have unlimited

capacities.

Another important aspect is the fact that the respective factory layout was already previously

optimized, and this information was taken from a previously developed project. [31]

Table 3.1: Capacity and Coordinates (in metres) of each WS

Workstation Capacity X Y

WS1 1 30 -20
WS2 1 0 10
WS3 1 18.873 -56.619
WS4 1 18.873 16.619
WS5 1 30 0
WS6 1 0 -50
WS7 1 30 -40
Sink ∞ 0 -30

Source ∞ 0 -10

3.2 Problem Characteristics 27

Figure 3.1: Factory Plant Layout in study

3.2.2 Processing

Associated with each WS there is a processing time that also depends on the part type in question.

There are five different part types, and the following Table 3.2 shows the processing times, in

minutes, for each part type, depending on the WS where they are processed.

Table 3.2: Processing Times (in minutes) for each WS

Workstation Part 1 Part 2 Part 3 Part 4 Part 5

WS1 9 5 - - 9
WS2 2 9 6 7 2
WS3 - - 7 7 -
WS4 - 10 10 5 10
WS5 - 5 - - 6
WS6 8 - - - -
WS7 7 - 7 3 -

3.2.3 Sequencing

Regarding the sequence of stations that each part has to visit, including Sink and Source, these are

indicated in the subsequent Table 3.3.

28 Problem and Methodology

Table 3.3: WS Sequence for each part type

Part 1 Part 2 Part 3 Part 4 Part 5

Source Source Source Source Source
WS2 WS4 WS2 WS7 WS4
WS1 WS2 WS4 WS3 WS5
WS7 WS5 WS7 WS2 WS1
WS6 WS1 WS3 WS4 WS2
Sink Sink Sink Sink Sink

3.2.4 Production Plan

Each production order corresponds to just one part type and has a specific release time associated

with it. These production orders are stated in an Excel table previously provided, which contains

2080 orders. This table has columns referring to some characteristics such as the release time,

name, quantity, order ID and part type, in which the first three ones are considered mandatory for

the use of the Flexsim tool. In order to clarify what was mentioned, Table 3.4 presents the first

five orders of the production plan into consideration. All the orders are released from 90 to 90

seconds.

Table 3.4: Production Plan excerpt

Release Time (in minutes) Name Quantity OrderID Part Type

0 1 1 1 4
1.5 2 1 2 1
3 3 1 3 1

4.5 4 1 4 1
7.5 6 1 6 3

3.3 Discrete-Event Simulation Model – Flexsim

Following the mentioned steps in chapter 2.7.3 to build a simulation model, it is possible, through

the Flexsim software tool, to simulate the behaviour of the system under study, using the discrete-

event simulation category.

This software package allows the simulation of the factory’s behaviour with great precision

and reality. Thereby, it is possible to simulate the release times of a part, as well as the processing

of each WS, so that we can draw valid conclusions about the system’s behaviour.

3.3.1 Entities

These objects represent the parts that run through each one of the workstations, in which it is

possible to know the current state of each part type, like the current and next WS. By selecting an

object, it is possible, for example, to have access to its part type and the production order’s launch

number (orderID), as Figure 3.2 denotes.

3.3 Discrete-Event Simulation Model – Flexsim 29

Figure 3.2: Properties of an entity - Flexsim

3.3.2 Resources

The Flexsim Library offers a wide variety of resources, whose different categories are represented

in the following Figure 3.3. In particular, in this MHS problem, the resources will represent the

AGV itself and its workstations.

Figure 3.3: Library – Flexsim

3.3.3 Workstations

The workstations are reflected by Fixed Resources and it is important to mention that they will be

represented by native Processor resources. As mentioned, each WS contains an input queue (input

buffer - IB) and an output queue (output buffer - OB) which both distance 3 units apart from the

respective WS, illustrated in Figure 3.4. As chapter 3.3.7 presents, it is also possible to obtain

concrete information about the entry and exit rates of the parts in each of the WS.

30 Problem and Methodology

Figure 3.4: Graphical representation of a WS – Flexsim

3.3.4 Transport

As previously indicated, the transport of the entities is carried out by an AGV, which is created

from an object of the Task Executer class (Flexsim Library). Thereby, it is only necessary to

indicate which stations the AGV will collect (OB) and deliver (IB) parts. This information can

be found in detail in the previous chapters of Processing, 3.2.2, Sequencing, 3.2.3 and Production

Plan 3.2.4.

It is also worth noting that the AGV speed will be 1.50 m/s for all simulation models.

3.3.5 Load

All the parts come in into the system through the Source, however, in this particular case, this

resource has been replaced by a Queue, called "Source1", which admits the same behaviour. The

main reason for using a Queue object instead of a Source is that it is possible to observe the

accumulation of parts throughout the simulation. At last, the resources where the parts are loaded

are the Source and the output buffers.

3.3.6 Unload

The final unloading of the entities is carried out at Sink, and the intermediate unloads between

WSs take place in the respective input buffers (IBWS).

3.3.7 Processes

There are essentially two tools that allow the building of a simulation model: 3D model and

Process Flow. Regarding Process Flow, it always and in any circumstance overlaps the 3D model.

However, the cooperation between both is essential, although, in this particular situation, it is in

the Process Flow that the flow of entities and resources will be defined.

In general, all transport systems involve three large blocks: Creation of Parts (Figure 3.5),

Processing of Parts (Figure 3.6) and Transport of Parts. Both phases of creation and processing of

parts are common to all models covered in this dissertation.

3.3 Discrete-Event Simulation Model – Flexsim 31

3.3.7.1 Creation of Parts

The "Source" block defines the time when the production orders will be released, using an Excel

file that contains the information for this purpose. Subsequently, the “Create Object and Type”

block allows the creation of the entities and assigns them to the corresponding part type, taking

into account the Label referring to the part type of the Production Plan table (Table 3.4). Taking

into account the 5 different part types, there is a need to define colours for each part type, in

order to distinguish them during the performance of the simulation, accomplished by the “Change

Color” block:

• 1 - Aqua;

• 2 - Red;

• 3 - Blue;

• 4 - Yellow:

• 5 - Lime.

Considering the type of the current part, the block “Determine Line” allows to go through the

Routings Table (Table 3.5) and identify the line in question, in order to follow the WS sequence

of the part type in evidence.

Subsequently, after identifying the WS where the first unload will be performed, it is necessary

to acquire the AGV in order to allocate it, so that the initial load can be executed in the Source

and the unload in the IB of the following WS. At the end of the process, the resource is released

("Release").

Figure 3.5: Representation of the “Creation of Parts” Block

3.3.7.2 Processing of Parts

When an entity enters the IB of a WS, it is necessary to move it to the WS itself, then operate

it and, finally, move it one more time to the respective OB. However, it must be noted that the

entity will be just moved from the current IB to the corresponding WS if there are no parts in

32 Problem and Methodology

the respective WS, because its maximum capacity is unitary. These restrictions are defined by the

creation of zones, focused on each one of the existing WS. At the end of the processing, the block

“Exit Zone” will release the respective WS from the due entity already processed, and it will be

available to receive a new part. Then the line in the Routing Table (Table 3.5) is incremented by

one, in order to follow the pre-defined sequence of the part.

Figure 3.6: Representation of the “Processing of Parts” Block

3.4 Implementation of a FIFO Transport System

Amongst all the transport systems covered in the dissertation, this model is considered the simplest

one since the decision rule to apply to the AGV follows a First-in, First-out paradigm. This means

that the AGV will decide to take forward the transport of a part that was processed first, instead of

a part that has been processed more recently.

According to the Process Flow method, in addition to the two blocks discussed in subchapters

3.3.7.1 (Creation of Parts) and 3.3.7.2 (Processing of Parts), the block that mentions the transport

of parts is also essential (3.4.1).

3.4.1 Transport of Parts

Apart from the initial transport from Source to the IB of the first WS of each production order,

addressed in the "Creation of Parts" block (3.3.7.1), this block includes all the other transports. In

this segment, as soon as an entity reaches the OB of any of the 7 WSs, the AGV will be requested

and, as soon as available, it will transport the part from the current WS to the next one, respecting

the particular sequences. Finally, the AGV will be released, originating the creation of a new

transport process.

3.5 Implementation of an Optimized Milk-Run System 33

Figure 3.7: Representation of the “Transport of Parts” Block – FIFO Model

Table 3.5: Routings Table

Line Part Type Workstation Processing Time (in minutes)

1 1 WS2 2
2 1 WS1 9
3 1 WS7 7
4 1 WS6 8
5 1 Sink1 0
6 2 WS4 10
7 2 WS2 9
8 2 WS5 5
9 2 WS1 5

10 2 Sink1 0
11 3 WS2 6
12 3 WS4 10
13 3 WS7 7
14 3 WS3 7
15 3 Sink1 0
16 4 WS7 3
17 4 WS3 7
18 4 WS2 7
19 4 WS4 5
20 4 Sink1 0
21 5 WS4 10
22 5 WS5 6
23 5 WS1 9
24 5 WS2 2
25 5 Sink1 0

3.5 Implementation of an Optimized Milk-Run System

The main difference between this Milk-Run system and the one previously presented in the earlier

subsection is the decision rule to be applied to the AGV. While in the previous system there was no

priority regarding the transport of entities, following the FIFO paradigm, in this specific context

34 Problem and Methodology

the AGV has a predefined WS sequence, (identified in the following Table 3.6 and illustrated in

Figure 3.8), that it follows in order to load the entities. In other words, if the AGV is, for example,

in WS2, but that same station does not contain entities in its OB to perform the load, the AGV will

check if the next WS in the AGV Routing Table (WS4) includes parts in the respective OB, and

so on.

What distinguishes this optimized Milk-Run algorithm from the classic one is the fact that

the AGV performs the load directly on the nearest WS, in a clockwise direction, which must

necessarily have parts in its OB. On the other hand, what happens in the classic Milk-Run system

is that the AGV must visit the nearest WS, also clockwise, even if it does not contain parts in the

respective OB.

Figure 3.8: AGV Trajectory – Milk-Run Model

Table 3.6: AGV Routing

Workstation

Source
WS2
WS4
WS5
WS1
WS7
WS3
WS6

Consequently, using one more time the Process Flow method, three large blocks were also

established: Creation of Parts (3.3.7.1), Processing of Parts (3.3.7.2) and Transport of Parts (3.5.1).

3.6 Implementation of the NearestWS Rule 35

3.5.1 Transport of Parts

The type of the “Release token.WS” block is the “Schedule Source” and this block allows the

definition of the current WS and associates it with a token called token.WS. A token is considered

a class, visibly represented by a circle, with the ability to be updated throughout the execution of

the Process Flow. The “Next WS?” decision block identifies the next WS where the AGV has to

perform the load, more specifically its OB, as well as an indication of the correspondent IB where

the entity will be unloaded.

After identifying the subsequent WS, it is necessary to reserve the AGV and then identify the

oldest “entity” of the next WS. After that, it is essential to load and unload the current part and,

finally, update the current WS token. Finally, the resource is released.

It should also be noted that when the AGV Routing table is completely crossed and the current

line corresponds again to the current WS, it means that none of the WSs has parts in the respective

OBs to be loaded and, therefore, the AGV is redirected to a state where it will be waiting until a

part is processed ("Wait for Event").

Figure 3.9: Representation of the “Transport of Parts” Block – Optimized Milk-Run Model

3.6 Implementation of the NearestWS Rule

This section intends to demonstrate a new heuristic also developed in the dissertation, called Near-

estWS Rule, whose main objective is to minimize the distances covered by the AGV. In terms

of the decision principle, what distinguishes this heuristic from the Milk-Run algorithm (Chapter

3.5) is the fact that the AGV moves to the nearest WS with parts waiting to be transported, not

following any sort of route.

As Figure 3.11 displays, if the current station is the WS4 and there are only parts already

processed waiting for transport in the output buffers of WS2 and WS3, since the closest station to

WS4 is WS2, the AGV will load the part present in the WS2 OB.

36 Problem and Methodology

Figure 3.10: Illustrative example of the NearestWS Rule

One of the differentiating features of this new transport system is the fact that there is an

external program that controls the simulation environment, receiving information from it in the

form of observations, and sending actions that indicate the OB of the station where the load will

be carried out. This approach is completely different from those previously studied, like the FIFO

and optimized Milk-Run systems, since Flexsim will not be responsible for making the decisions,

but an external program, called Server. This entity is programmed using the Python language and

it is represented in Figure 3.11.

Figure 3.11: Server-Flexsim relationships

The communications between the Server and Flexsim environment, which will be a client,

have to be successful. In this sense, the Transmission Control Protocol (TCP) was chosen to

accomplish these communications requirements. For this, it is crucial to create Client-Server

sockets, that will be discussed in the next Section 3.6.1.

3.6.1 Client-Server TCP Sockets

Sockets are an important tool used to send messages over a network. This network can be logical,

local to the computer or even physically connected to an external network.

3.6 Implementation of the NearestWS Rule 37

The TCP protocol, in addition to being very reliable, allows that the data sent by the client can

be received and interpreted according to the order of sending by the Server. However, regarding

the UDP protocol (User Datagram Protocol), it does not guarantee that the data will be received

by the Server in the same sequence in which it was sent by the client. [32]

Within the scope of this dissertation, the communication between the Server and Flexsim

entities requires the creation of sockets to exchange messages, respecting the TCP communication

protocol. In this section, Figure 3.12 illustrates the global steps that constitute the creation and

development of a Client-Server communication. The Server is considered a passive Agent because

it waits for the connection request from the client. On the other hand, the client is characterized

for taking the initiative and making a communication request, so it is an active entity in this whole

process. [33]

Briefly, in a first instance, the Server is responsible for creating the respective socket, and then,

an address and a port are immediately associated with it. Subsequently, the Server waits for the

moment the client requests the connection. After the connection is successful, it is possible to

send and receive messages between both entities, and at the end of this whole process of sending

and receiving data, the connections are closed.

Figure 3.12: Client-Server TCP/IP communication diagram

3.6.2 Server – External Program

From an observation sent by the simulation environment that indicates the current state of each

WS in terms of the presence of parts in their respective OB, as well as the current station where

the AGV is placed, the Server will then send an action with the respective WS where the AGV

will realize the load.

To store the current data of the simulation model in the Server, the architecture represented in

the following UML diagram in Figure 3.13 was created, where three classes are defined:

38 Problem and Methodology

• System_Data - contains the dictionaries referring to the distances between WSs and the

own WSs and allows an association with the AGV class, in order to know the current station

where the AGV is located;

• Workstation - allows to know if a specific WS has parts in its OB;

• AGV - contains the AGV current location;

Figure 3.13: UML class diagram – NearestWS Rule

The observation sent by Flexsim is in the following form: 8 booleans + current WS, "10010000WS1",

in which the 8 booleans allow to identify if each of the 7 WSs and Source have parts in their respec-

tive OB. Finally, the string allows to identify the current WS. For the specific example mentioned

("10010000WS1"), the conclusions drawn are as follows:

Table 3.7: Interpretation of the observation sent by Flexsim

Workstation Does it have parts on OB? Current WS

WS1 Yes X
WS2 No -
WS3 No -
WS4 Yes -
WS5 No -
WS6 No -
WS7 No -

Source No -

It is important to note that the current station is updated whenever an unload is performed on

one of the WSs, including Sink and excluding Source. In this way, Source will never assume the

role of the current WS, as it is only used to perform loads. However, it is essential to know if there

are parts to transport in it.

Returning to the diagram of the classes that constitute the Server, after extracting the informa-

tion from the observation, it is necessary to fill all the attributes of the three classes, namely the

"boolean_has_part_OB" attribute of the "Workstation" objects, as well as the current WS value,

referring to the "AGV" object. Regarding the distance values, they have previously been read from

an Excel file and inserted in the distance dictionary of the "System_Data" class.

3.6 Implementation of the NearestWS Rule 39

After the treatment and organization of all this information, it is necessary to proceed with the

implementation of the decision rule already mentioned (Figure 3.11), which allows the AGV to

carry out the load in the nearest WS that contains parts in its OB.

Finally, this information that reflects the output buffer of the chosen station is sent back to the

simulation environment, in the form of "OBWS" (for example "OBWS2").

3.6.3 Flexsim – Simulation Environment

3.6.3.1 Transport of Parts

After sending the observation to the Server, Flexsim waits for the response with the action con-

taining the OBWS from the Server. However, if the Server detects that there are no parts in any

of the OBs, it sends a message that orders the simulation to go to a wait state ("Wait for parts on

OB"), as shown in Figure 3.14. If there are parts in at least one of the stations, the Server sends

the action with the OBWS and the Flexsim accesses the oldest object present in that OB. Then,

the next WS where the part will be unloaded is found.

Finally, in case that the number of parts that enter at Sink reaches the value 2080, which

corresponds to the total number of released orders, the simulation ends and its state is sent to the

"Sink" block.

Figure 3.14: Representation of the “Transport of Parts” Block – NearestWS Rule

40 Problem and Methodology

Chapter 4

Implementation of a Dynamic
Transport System, using Reinforcement
Learning Algorithms

4.1 Contextualization

The essential point that differentiates this dynamic transport system from the one previously pre-

sented in Section 3.6 is the inclusion of a third element (Agent), responsible for the decision mak-

ing. Through Reinforcement Learning algorithms, the Agent is trained to define, like the previous

system, the WS where the AGV will load the next entity.

In addition to this functionality, this Agent is also allowed to close and reset the Flexsim

simulation program.

In this way, the Server is just an intermediary between this third entity and the Flexsim simu-

lation environment, as shown in Figure 4.1. Like the simulation environment, previously defined

as a client, the Agent will also be a client and the Server is the “go-between”.

In other words, the Agent is the program that contains the code that acts on the training envi-

ronment (Flexsim), executing certain functionalities.

Figure 4.1: Agent-Server-Flexsim relationships

In this logic, there are 3 possible types of interaction that the Agent can have with the simula-

tion environment:

• Reset - its use allows the Agent to request the Flexsim reset;

41

42 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

• Close - enables the closure of the Flexsim;

• Step - grants the sending of an action, which represents the WS where the AGV will load the

entity. The action decision is modified and improved through the neural network training by

RL algorithms of the StableBaselines framework. This framework represents an improved

and more stable version of the OpenAI Baselines algorithms. [34]

The only difference between the available RL algorithms is the strategy followed to redefine

the policy used to define the action to be taken for a given state of the system. In the domain of this

dissertation, the Proximal Policy Optimization (PPO) algorithm is currently the state-of-the-art in

this area and, therefore, it was considered the most adequate to the current problem. Nevertheless,

it is possible to use other algorithms in the future, with just simple changes in the Agent code.

This Agent constitutes a neural network that has as input data the observation from the simu-

lation environment and presents as an output the representative action of the OB_Load. In the first

moment, the network architecture studied was the Multi Layer Perceptron (MLP), with 16 neurons

in the input layer corresponding to the observation, detailed in Tables 4.2 and 4.3, and 8 neurons

referring to the output layer (action).

However, as explained in the following Sections 4.3 and 4.4, it was decided to use a Single

Layer Perceptron (SLP) network, since the main objective is to make the network as simple as

possible and at least replicate the performance that is given by the NearestWS Rule. These input

and output network layers are also linked through connections defined as weights and which allow

giving more significance to one or more neurons of the input layer.

Section 4.5 highlights the influence of the pre-training algorithms and the following sections

4.6 and 4.7 present the problems regarding Reinforcement Learning treated in this dissertation.

To conclude, in relation to the initial question about the Agent-Server-Flexsim relationships,

it is necessary to establish communications between the 3 entities, using the TCP communication

protocol (Section 3.6.1), through the creation of Client-Server sockets. For this purpose, the UML

message diagrams represented in Figures 4.2, 4.3,4.4, 4.5 allow the identification of the set of com-

munications and message exchanges between the 3 applications for each one of the 4 mentioned

interactions.

4.2 UML Sequence Diagrams

4.2.1 Init

The Init function is only used in order to confirm the connection between the Server entity and

Flexsim. For this, when the simulation program starts, it sends the message “FLEXSIM; INIT”

and the Server returns a confirmation.

4.2 UML Sequence Diagrams 43

Figure 4.2: UML sequence diagram – Init

4.2.2 Reset

The request for the execution of the reset is sent by the Agent to the Server. As well as the other

functionalities, the first message identifier represents the sender (Agent) so that the Server can

identify it and continue with the processing of the message.

Then, after the Flexsim identifies the receipt of a reset, it will put the simulation model back

to the beginning of the simulation run and build a string that will contain the indications of which

WS contains entities in the respective OB and the current location of the vehicle. The constitution

of this string is detailed in the next Figure 4.3.

After performing the reset, this message is sent to the Server, which will forward it to the

Agent.

Figure 4.3: UML sequence diagram – Reset

44 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

4.2.3 Close

The first identifier of each message, in which the recipient is the Server, indicates which client is

sending the information (Agent or Flexsim).

In this specific case of the close function, the Agent sends a message to the Server with the

indication to end the Flexsim simulation program. After the Server receives and decodes this

message, it executes a command that allows the simulation environment to be closed immediately.

After executing that respective command, the Server sends a message back to the Agent, as a

way of confirming that the execution of the close command ("CLOSE_OK") was successful.

Figure 4.4: UML sequence diagram – Close

4.2.4 Step

Figure 4.5: UML sequence diagram – Step

4.3 Neural Network General Architecture – Single Layer Perceptron 45

As indicated in section 4.1, the step allows the Agent to send an action that will be transmitted to

the Server and later executed in Flexsim, taking into account the RL algorithm in question.

That said, the cycle starts with the sending of the step message from the Agent to the Server

that extracts the "OB_Load", based on the message content. The action includes values between 0

and 7, in which each digit corresponds to a specific WS, represented in Table 4.1:

Table 4.1: Action-Workstation relationships

Action Workstation OB_Load

0 WS1 OBWS1
1 WS2 OBWS2
2 WS3 OBWS3
3 WS4 OBWS4
4 WS5 OBWS5
5 WS6 OBWS6
6 WS7 OBWS7
7 Source Source

After identifying the WS or Source in question, the Server transforms this information into

the OB_Load ("OBWSx" or "Source"), which is also represented in Table 4.1, and sends it to the

Flexsim.

After that, the Flexsim will run the simulation model based on the action that has been pro-

vided, until an unload is done and a new action on the system is needed. At this point, the simula-

tion environment will build a new message to send back to the Server. However, this message will

also contain information that will allow the Server to identify if the result of the previous action

allowed an entity to enter at Sink ("reward") and if all entities were already finished ("done").

Finally, the Server forwards this message back to the Agent, which, taking into account the

feedback, will send a new step through its RL algorithm.

4.3 Neural Network General Architecture – Single Layer Perceptron

The neural networks are originated from the study of the human nervous system, characterized by

its high complexity and non-linearity. Its great capacity for adaptation comes from the fact that the

human brain is able to collect and organize its neurons in order to solve quite complex tasks.[7]

In this segment, as Figure 4.6 demonstrates, in addition to the input and output neurons, there

are also other important properties such as the weights applied to each neuron and the activation

function itself. The weights, normally between 0 and 1, allow one or more neuron(s) to get more

relevance over another, so that it has more impact at the output. The activation function allows in-

fluencing the output value, introducing a non-linearity component.[7] Associated with the weights

and activation function, there is also a parameter called "bias" that enables the adjust of the final

value of the output, if necessary.

46 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

Figure 4.6: Neuron general structure, adapted from [7]

The main idea of the PPO algorithm is to make sure that the new policy is not too far from the

previous one. The version used constitutes an implementation of Stable Baselines and in addition

to using vectorized environments, it also allows that the observation and the resulting action can be

of a discrete, box, mutidiscrete or multibinary type. In this specific scope, the observation assumes

the box type (16,) and the action admits the discrete type (0-7). The next Figure 4.7 represents the

network architecture of this dissertation.

Figure 4.7: SLP network architecture

Within the observation, the first 8 booleans [0-7] indicate the WSs that have or have not parts

in their respective OB (Table 4.2). The last 8 booleans [8-15] state the current AGV location,

corresponding to a "one-hot encoding" (Table 4.3). Accordingly to the NearestWS Rule (Section

3.6), the stations state is updated just after an unload was performed. But, whenever an action

corresponds to a WS that does not contain parts, the AGV goes there in the same way and the

current WS is also updated.

As an example, if the observation is: [1001000010000000], it means that only WS1 and WS4

have parts in their OB and the current WS is WS1.

4.4 Approach I – Initialization of Weights 47

Table 4.2: Observation segmentation [0-7]

Observation [0-7] Existence of parts

10000000 WS1
01000000 WS2
00100000 WS3
00010000 WS4
00001000 WS5
00000100 WS6
00000010 WS7
00000001 Source
00000000 There are no parts

Table 4.3: Observation segmentation [8-15]

Observation [8-15] Actual WS

10000000 WS1
01000000 WS2
00100000 WS3
00010000 WS4
00001000 WS5
00000100 WS6
00000010 WS7
00000001 Sink
00000000 Source

4.4 Approach I – Initialization of Weights

Firstly, it was decided to define a neural network architecture and a set of weights that would allow

the replication of the NearestWS Rule. This phase aimed to ensure that an SLP network, with the

right set of weights, would be sufficient to obtain a performance equivalent to the results of the

NearestWS Rule.

For demonstrative purposes, in Figure 4.8 it is possible to observe the behaviour of this prac-

tice, taking into account the observation content and the resulting action. Since it is just an ex-

ample, there were only considered 3 WSs, whose distances between them are also illustrated in

Figure 4.8.

In order to simplify the visualization, only the weights for the output neurons 1 and 2, corre-

sponding to OBWS1 and OBWS2, are identified in the respective figures.

As the Figure 4.8 and Equation 4.3 show, the output neuron that will be activated is the first

one, since it obtains the highest output value. As it makes sense, if there are parts in the WS1 and

WS3 output buffers, and the current station is the WS1, then the AGV will load the part on the OB

of the WS1.

Figure 4.8: Neural Network – Example 1

48 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

Dmax = 3 (4.1)

Bias =−Dmax−2 =−3−2 =−5 (4.2)

OB_WS1 = (1∗5+0∗0+1∗0)+(1∗3+0∗2+0∗1)+(1∗−5) = 3 (4.3)

OB_WS2 = (1∗0+0∗0+1∗0)+(1∗2+0∗3+0∗0)+(1∗−5) =−3 (4.4)

OB_WS3 = (1∗0+0∗0+1∗5)+(1∗1+0∗0+0∗3)+(1∗−5) = 1 (4.5)

Like the Figure 4.9 denotes, the only case in which this network would not have the same

behavior as the rule would be if the current WS was the Source, where it would be a draw between

all stations with a part on their OBs (in this case: WS1 and Source).

Figure 4.9: Neural Network – Example 2

Dmax = 3 (4.6)

Bias =−Dmax−2 =−3−2 =−5 (4.7)

OB_WS1 = (1∗5+0∗0+1∗0)+(0∗3+0∗2+0∗1)+(1∗−5) = 0 (4.8)

OB_WS2 = (1∗0+0∗0+1∗0)+(0∗2+0∗3+0∗0)+(1∗−5) =−5 (4.9)

4.5 Approach II – Neural Network Pre-Training 49

OB_Source = (1∗0+0∗0+1∗5)+(0∗1+0∗0+0∗3)+(1∗−5) = 0 (4.10)

The StableBaselines framework, which will be used for Reinforcement Learning algorithms,

does not allow the definition of initial network weights. Thus, it was not possible to create a policy

with the calculated weight values. Still, this was an important exercise to ensure that this network

architecture is capable of achieving performance at least equivalent to the previously defined rule.

An alternative to initializing the weights is using a pre-training phase of the network, which is

covered in section 4.5.

Thus, appears the necessity of studying the influence of the pre-training algorithms to observe

its interference in the current problem.

4.5 Approach II – Neural Network Pre-Training

This approach allows, through the implementation of an algorithm with results already visible, in

this particular case the NearestWS Rule, to have as starting point initial solutions that come from

that rule.

In this phase, the behaviour that the Agent must have to perform a step in order to replicate

the NearestWS Rule is defined. Then, several simulations are run using this Agent to obtain a

data set with observation-action pairs. Finally, these data are used to train the SLP neural network

according to Supervised Learning algorithms. This process ensures that the neural network starts

its learning process with a set of weights that replicate the functioning of the rule.

For this, in order to verify the influence of this pre-training in the final solution, two mod-

els with different objectives will be approached, namely the minimization of makespan and the

maximization of productivity, taking into account the PPO algorithm ("Makespan" and "Base"

Models).

4.6 Makespan Model

In order to verify the correct behaviour of the Reinforcement Learning algorithm, PPO, the initial

objective was to minimize the makespan. Thus, only one release order was defined for a random

entity, more specifically a part type of number 4.

The main purpose of this model is to verify the correct behaviour of this transport system,

observing the tendency of the final solutions to get the optimal solution. Associated with the

Agent’s learning process, the total number of time steps defined was 250.000 (steps), so that it is

believed to be more than enough to achieve the optimal solution.

As a comparable point to the solutions achieved in the optimization process, the optimal solu-

tion can be obtained through the NearestWS and optimized Milk-Run rules, because there is just

one part in the entire simulation process.

50 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

In this case, the pre-training of the network does not apply to this model since the subjacent

rule would lead to an ideal behaviour already during the initial phase of the learning process, which

is not intended. That said, since the objective is to analyse the behaviour of the optimization curve

of the RL algorithm, the idea is that the final makespan values for each simulation performed

approach the optimal solution. In this specific case, the ideal solution for a part type 4 is: 1486

seconds.

Figure 4.10 shows the Process Flow for the transport process implemented in the Flexsim

simulation environment. The “Decide” block defines the next WS where the AGV has to go,

taking into account the information sent by the Agent over the various steps it sends.

If there are no parts already processed waiting to be transported to the next WS, the AGV goes

to a state where it is waiting for the part in question to be processed (given that in this particular

model there will only be one part throughout the entire simulation).

In the case that the Agent sends a step referring to a WS that does not contain parts in his OB,

since the network is in the learning process, the AGV will also go there and the current WS will

be updated.

As soon as the part enters at Sink, the Flexsim will send the value corresponding to the

makespan as a reward to the Server, but with the negative signal (-makespan). This particular-

ity is justified by the fact that the purpose of the PPO algorithm is always to maximize something.

In this case, the goal is to maximize (-) makespan, in other words, minimize the makespan. Still

in this scenario, the third parameter, called "done", is also sent as a unit, since the part has already

been entered into the Sink and the simulation is finished.

Figure 4.10: Representation of the “Transport of Parts” Block – Makespan Model

After running several simulations, it was found that the model, under the current conditions in

which the makespan is only sent at the end of the simulation when the part enters at Sink, does

not allow reaching the optimal solution. It was concluded, therefore, that the fact that the rewards

always assume null values, with the exception of the response to the last step that includes the

makespan, is not enough for the network to be able to make an adequate learning and find the

ideal solution within the defined 250k time steps.

4.6 Makespan Model 51

Therefore, some criteria were introduced in order to check whether it is possible to achieve the

optimal solution, in particular:

• the sending of rewards between time steps with the value of a time interval initiated by a

load and ended with an unload (including the processing time), in detriment of sending the

total makespan only at the end of the simulation;

• the introduction of penalties, if the movements made do not involve the transportation of

parts;

• the insertion of normalizations, modifying the value of the rewards, converting them in the

interval [-1,0].

Later, in order to study the influence of these changes on learning performance, all of these

scenarios presented in Table 4.4 were implemented and simulated.

Table 4.4: Scenarios of the Makespan Model

Scenario Time steps Normalization Normalization Factor Type of Reward Penalty

1 250k No 0 makespan 0
2 250k No 0 makespan -FN/2
3 250k Yes 15k makespan 0
4 250k Yes 15k makespan -0.5
5 250k No 0 between time steps 0
6 250k No 0 between time steps -FN/2
7 250k Yes FN between time steps 0
8 250k Yes FN between time steps -0.5

FN = 4*Travel time between the two most distant stations + 2*Higher Processing Time (Part type
no 4).

For all the cases presented above in Table 4.4, the model converts the solutions obtained to

the optimal solution, except for the scenario in which the rewards are sent between time steps

without normalization or penalty. The question that immediately arises is related to the time that

is necessary to reach the optimal solution and, in this context, it was found that normalization is

the factor that allows the model to tend more quickly towards the optimal solution. These results

are presented and discussed with more detail in Chapter 5.

In the following subsections are presented the steps used in the normalization and penalty

methods for the types of rewards: between time steps and makespan.

4.6.1 Normalization

The main objective of normalization is to verify whether, by adjusting the values of the rewards

to values between [-1, 0], the algorithm will be able to converge better to a good solution and

increase its learning capacity.

52 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

For this, the normalization factor depends on the type of reward (between time steps or

makespan) and application of penalties, characterized by the following Equations 4.11 and 4.12:

4.6.1.1 Type of Reward: Makespan

Normalization f actor = 2∗7.5k = 15k (seconds) (4.11)

Reward ∈ [−0.5, 0], without penalty (4.12)

This value attributed to the normalization factor is justified by the fact that it was observed

during all the simulations previously carried out that the final value of the makespan, for a single

part of type 4, never exceeded the value of 7.5k seconds, with rare exceptions. Therefore, taking

into account the subsequent application of penalties (-0.5), the value considered for the normal-

ization factor was 15k seconds, as it is twice 7.5k. Therefore, without applying the penalty, the

reward assumes values between -0.5 and 0, since the purpose of optimization is to maximize (-)

makespan.

4.6.1.2 Type of Reward: Between Time steps

Normalization f actor = 4∗T 1+2∗T 2 (4.13)

in which T 1 = Travel time between the two most distant stations; T 2 = Higher Processing Time

(Part of type 4).

Reward ∈ [−0.5, 0], without penalty (4.14)

As in the previous case regarding makespan, the normalization factor applied allows rewards

to assume values between -0.5 and 0, without the application of penalties.

In the specific case of a part type 4:

• T1 = 48.827 seconds;

• T2 = 420 seconds.

Normalization f actor = 1035.308 (4.15)

4.6.2 Penalties

Penalties are applied when the AGV performs movements without a part. The objective is, there-

fore, through the application of this penalty with the value of -0.5, to make it clear to the Agent

that, in this specific case, it is not a good practice to make movements without a part, given that it

4.7 Base Model 53

is only one part in the simulation environment. That said, taking into account the type of reward,

their values will be included in the following range:

Reward ∈ [−1, 0] (4.16)

4.7 Base Model

After analysing the Agent’s behaviour towards the model whose objective was to minimize the

makespan, it was also decided to analyse the issue of maximizing productivity and create a new

model that allows studying the PPO algorithm.

With regard to the Process Flow of the simulation model, all the blocks are coincident with the

blocks of the previous model, referring to the makespan. The only relevant difference is the issue

of the rewards that are sent from Flexsim to the Agent, intermediated by the Server. In response

to a step from the Agent, the simulation environment constructs the observation that contains the

current status of each WS, in terms of the presence of parts, and the current position of the AGV.

However, the rewards assume a unit value whenever a part is entered at Sink. Otherwise, they are

assigned a null value. In relation to the parameter “done”, it will be unitary whenever the defined

time horizon is reached, ending the simulation.

Moreover, whenever a reward assumes a value of 1, there is an internal counter in the sim-

ulation environment that is increased, providing an updated indication of the number of parts

manufactured so far, to a later comparison of results with the previous productivity models.

In this context, unlike what happens with the makespan model, the use of pre-training becomes

important in order to verify whether it has had an effect or not. The rule implemented and asso-

ciated with the pre-training is based on one of the rules previously described in this dissertation,

better known as the NearestWS Rule, which allows AGV to perform a load on the nearest WS that

contains parts in the respective OB.

A not less important issue is to understand the effects of the introduction of penalties on pro-

ductivity. For this, given that the rewards are already normalized in the interval [0, 1], more

specifically assuming the values 0 or 1, the defined penalty was (-) 0.5, similar to the previous

Makespan Model. That said, whenever the AGV makes an empty movement, ordered by the

Agent, the reward returned will be -0.5.

Regarding the number of steps sent by the Agent, after several runs, it was concluded that the

value of 10M steps would be the most indicated value and more than enough to reach the final

solution. For further comparison of results, the time horizons chosen were 36 and 52 hours.

Finally, it should be noted that, whenever a "done" value is assigned to 1, the productivity

value related to the simulation in question is also written in a text file, for later analysis.

54 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

4.8 Robustness of the Simulation Models

This section was created with the intention of verifying whether the models covered in the previous

sections, namely the FIFO, optimized Milk-Run, NearestWS Rule and Base Model, referring to

productivity, have an appropriate behaviour against possible changes in the production mix or in

the processing times.

4.8.1 Production Mixes

With regard to changes in production mixes, the order in which the different part types are launched

will suffer some variations and it will be randomly generated, using the Microsoft Excel software

tool.

Just like what happens in the original mix, in which the probability of each part type being

released is nearly 20% (Table 4.5), the same restriction applies to the next 5 different mixes gen-

erated.

Briefly, the different production mixes are generated so that the part type associated with each

production order is determined randomly, but with the same final probability of being created

(20%).

Table 4.5: Quantity of the different part types – Original Mix

Part Type Quantity (units)

1 448
2 410
3 429
4 424
5 369

Therefore, as shown in Chapter 5, there are small differences in the final quantities of parts

produced for each one of the mixes, due to the way they were created.

4.8.2 Processing Times

The processing times corresponding to each part type and WS were introduced in a stochastic

environment, in order to follow, more concretely, a triangular probability distribution.

Assuming that Ti j represents the processing time of the part type i in the WS j, it was adapted

to respect the triangular distribution, shown in Figure 4.11. In this segment, a variability factor α

was also added to simulate possible variations that may occur in a real context.

4.8 Robustness of the Simulation Models 55

Figure 4.11: Triangular distribution function, referring to the processing times

In a rigorous way, the respective triangular distribution is defined by the following expressions:

f (x|a,b,c) =



2(x−a)
(b−a)(c−a) , se a≤ x < c

2
(b−a) , se x = c

2(b−x)
(b−a)(b−c) , se c < x≤ b

0, otherwise

(4.17)

Where a, b and c take the next values:∣∣∣∣∣∣∣
a = Ti j(1-α)

b = Ti j(1+α)

c = Ti j

∣∣∣∣∣∣∣ (4.18)

The results of this procedure, which is based on the introduction of the processing times in a

stochastic environment, are described in Chapter 5.

56 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms

Chapter 5

Results Analysis

In general, the purpose of this chapter is to analyse the results obtained from the implementation of

the past simulation approaches, with or without the combination of Machine Learning techniques.

Therefore, this division allows us to observe all the consequences and effects of the implemen-

tation of the algorithms previously covered in chapters 3 and 4, in terms of productivity, namely

with regard to the following models: FIFO, optimized Milk-Run, NearestWS Rule and imple-

mentations that involve the use of RL algorithms (Makespan and Base Models). In addition to

productivity, the makespan, described in Section 4.6, will also be evaluated, but only with regard

to the model referring to the PPO algorithm (Makespan Model).

Throughout all simulations, the AGV speed has always remained constant, assuming the value

of 1.5 m/s, although the values associated with the total execution time have been modified for

later analysis of the productivity.

In the final phase of the chapter, some pertinent questions are also presented that enable the

evaluation of the robustness of all the simulation models.

It should also be noted that the software development environments involved in the disserta-

tion, referring to computer programming and simulation, were, respectively, Pycharm (Python 3.7)

and Flexsim (Educational Version 2019). In this segment, all simulations were equally performed

on an HP Pavilion computer, with an Intel Core i7 processor, Quad-core up to 4 GHz and 16 GB

RAM.

5.1 FIFO Model

This model is considered the simplest one of the 5 models implemented and, therefore, it is also

the one that presents, without any surprise, the lowest values in terms of productivity.

Considering that the AGV speed remained constant at 1.5 m/s and the defined time horizons

are 36 and 52 hours, the obtained results are expressed in the following Table 5.1.

Regardless of the number of simulations carried out, the number of parts that enter at Sink

remains constant, since the decision rule applied to the AGV (FIFO) is not dynamic.

57

58 Results Analysis

Table 5.1: Productivity related to the FIFO Model

Time Horizon (hours) Productivity (parts)

36 177
52 262

5.2 Optimized Milk-Run Model

As can be seen in Table 5.2, the productivity values related to the optimized Milk-Run Model are

considerably higher than those of the FIFO Model, as would be expected, given that the decision

rule adopted by the autonomous vehicle is much more sophisticated.

Table 5.2: Productivity related to the optimized Milk-Run Model

Time Horizon (hours) Productivity (parts)

36 266
52 389

5.3 NearestWS Rule

In contrast to the two previous models, the model referring to the NearestWS Rule, implemented

through an external Server program, is characterized by a dynamic transport system, as explained

in Section 3.6.

Taking into account the values presented in Table 5.3, it is possible to conclude that, among

these three previous models, the optimized Milk-Run model is the one which presents the best

productivity values.

Table 5.3: Productivity related to the NearestWS Rule

Time Horizon (hours) Productivity (parts)

36 258
52 377

Apparently, although the NearestWS Rule may seem more efficient once the load is carried out

at the nearest WS, it does not necessarily imply that the productivity is higher at the end, namely,

when there are significant bottlenecks on the productive system.

In other words, if the load is done, for example, at the nearest WS, but that same WS contains

one part in its OB to be transported to a station whose IB is already full, it can be preferable to

perform the load in a WS more distant that has one part in its OB whose destination is a WS

without parts in the respective IB. In this case, it will be guaranteed a higher occupancy rate of the

machines, contributing in the long and short term to the increase of the number of parts that enter

at Sink.

5.4 Makespan Model 59

5.4 Makespan Model

As explained in Section 4.6, the study of makespan aimed to analyse the behaviour of the PPO

algorithm, similar to what happens with the productivity in the Base Model.

That said, in order to understand the influence of the criteria of normalization, penalty and

sending of rewards between time steps on the speed with which the model tends to the final so-

lution, the following results obtained are presented, with respect to each one of the scenarios

presented in Table 4.4, illustrated in Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and represented in

Tables 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11.

5.4.1 Scenario 1 – Type of reward: makespan, without penalties and without nor-
malization

As can be seen from Figure 5.1 and Table 5.4, the final results of this scenario do not allow the

achievement of a concrete and correct final value related to makespan. In this sense, this fact is the

main reason for studying the scenarios that involve the normalization, penalties and the sending of

rewards between time steps.

Figure 5.1: Makespan related to Scenario 1, for a total of 250k time steps

Table 5.4: Numerical interpretation of makespan referring to Scenario 1 (in seconds)

Minimum Value Maximum Value Final Value

1594 7389 3371

5.4.2 Scenario 2 – Type of reward: makespan, with penalties and without normal-
ization

Looking at Figure 5.2, it is concluded that the introduction of the penalty criterion was essential

for the model to move towards the optimal solution of 1486 seconds.

60 Results Analysis

Figure 5.2: Makespan related to Scenario 2, for a total of 250k time steps

In addition to this, Table 5.5 allows us to conclude that the minimum and maximum values,

referring to the learning process, are also lower when compared to the original scenario.

Table 5.5: Numerical interpretation of makespan referring to Scenario 2 (in seconds)

Minimum Value Maximum Value Final Value

1486 4000 1486

5.4.3 Scenario 3 – Type of reward: makespan, without penalties and with normal-
ization

As shown in Figure 5.3 and Table 5.6, when the normalization is applied in a singular way, the

model is able to converge within the 250k time steps range to the final solution, like what happens

in the second scenario. However, it is also possible to verify that the curve is flatter in this current

model, which allows us to conclude that the Agent’s learning phase reaches the final value earlier

than the second scenario, which is an advantage.

Therefore, the fourth scenario allows the study of these two parameters when applied in a

simultaneous way, in order to verify the consequences in the final result, which is expected to be

better than what happened in the previous scenarios individually.

Figure 5.3: Makespan related to Scenario 3, for a total of 250k time steps

5.4 Makespan Model 61

Table 5.6: Numerical interpretation of makespan referring to Scenario 3 (in seconds)

Minimum Value Maximum Value Final Value

1486 4534 1486

5.4.4 Scenario 4 – Type of reward: makespan, with penalties and with normaliza-
tion

As predicted and illustrated in Figure 5.4 and Table 5.7, combining the two previous scenarios (2

and 3), the results are even more satisfactory, given that the model converges to the final solution

earlier.

Hence, it is now time to analyse the influence of sending the rewards between time steps,

through the next scenarios.

Figure 5.4: Makespan related to Scenario 4, for a total of 250k time steps

Table 5.7: Numerical interpretation of makespan referring to Scenario 4 (in seconds)

Minimum Value Maximum Value Final Value

1486 3896 1486

5.4.5 Scenario 5 – Type of reward: between time steps, without penalties and with-
out normalization

Along the same lines of the results obtained in the first scenario, the isolated sending of rewards

between time steps also does not allow obtaining satisfactory results, as shown in Figure 5.5.

Though, the outcome for scenario 5 is even more unsatisfactory than the one of the first scenario

(Table 5.8).

62 Results Analysis

Figure 5.5: Makespan related to Scenario 5, for a total of 250k time steps

Table 5.8: Numerical interpretation of makespan referring to Scenario 5 (in seconds)

Minimum Value Maximum Value Final Value

1630 17202 6645

5.4.6 Scenario 6 – Type of reward: between time steps, with penalties and without
normalization

Analysing the scenarios 2 and 6, both using penalties, it appears that the two have similar be-

haviours, with a greater number of simulations carried out in the second scenario. These questions

can be observed in Tables 5.5 (scenario 2) and 5.9 (scenario 6).

Figure 5.6: Makespan related to Scenario 6, for a total of 250k time steps

Table 5.9: Numerical interpretation of makespan referring to Scenario 6 (in seconds)

Minimum Value Maximum Value Final Value

1486 3945 1486

5.4 Makespan Model 63

5.4.7 Scenario 7 – Type of reward: between time steps, without penalties and with
normalization

As in the previous scenario, the optimal value is also achieved (Figure 5.7). Nevertheless, as

evidenced in scenarios 2 and 3, the use of the normalization in a singular way allows obtaining the

best solution earlier when compared to the isolated application of penalties.

Figure 5.7: Makespan related to Scenario 7, for a total of 250k time steps

Table 5.10: Numerical interpretation of makespan referring to Scenario 7 (in seconds)

Minimum Value Maximum Value Final Value

1486 4096 1486

5.4.8 Scenario 8 – Type of reward: between time steps, with penalties and with
normalization

As well as the fourth scenario, and as expected, when the normalizations and penalties are applied

simultaneously, the optimal solution is obtained in advance in relation to the models in which the

penalties or normalization are applied separately.

Figure 5.8: Makespan related to Scenario 8, for a total of 250k time steps

64 Results Analysis

Table 5.11: Numerical interpretation of makespan referring to Scenario 8 (in seconds)

Minimum Value Maximum Value Final Value

1486 4116 1486

5.4.9 Synthesis

In short, regarding the models presented in Section 5.4 related to makespan, it is possible to state

that the Reinforcement Learning PPO algorithm was correctly implemented, given that the models

follow their characteristic curve, allowing to maximize (-) makespan.

The results also suggest that the normalization of rewards and the application of penalties

improve the learning capacity of the model.

5.5 Base Model

Returning to the question of the productivity and taking into account the PPO algorithm, the results

achieved for the time horizons of 36 and 52 hours were divided according to the existence or not

of a pre-training of the neural network and are represented and indicated, respectively, in Figures

5.9, 5.10, 5.11, 5.12 and Tables 5.12, 5.13, 5.14, 5.15. With respect to the Agent’s learning period,

as referred to in Section 4.7, the number of time steps was set to 10M. Regarding the pre-training,

it respects the NearestWS Rule, discussed in Section 3.6.

For a better understanding of the influence of the pre-training in the learning phase, some sets

of observation-action pairs resulting from this same stage will also be presented. For this purpose,

a probability function will be applied to the actions, after the learning phase is performed. The

objective of this step is to verify in which WS the AGV will carry out the respective load.

Subsequently, similarly to the previous Section (5.4) referring to the makespan, the results

derived from the application of a penalty factor (-0.5) are also presented.

5.5.1 Without pre-training, for a time horizon of 36 hours

Figure 5.9 allows us to infer that the model’s behaviour, with regard to productivity values, follows

the PPO optimization algorithm.

As can be seen, the model reaches the maximum productivity values in the first simulations.

This phenomenon is explained by the weights which are arbitrarily assigned in the initial learning

phase of the network. Subsequently, after a certain number of simulations, the model presents

lower productivity values, also due to the weights defined by the Agent and because at the begin-

ning of the information collection, the network has little knowledge yet. However, the productivity

characteristic curve allows verifying that the productivity values tend to a final maximum solution,

which approves that the learning phase was performed correctly.

The final value of productivity, which comes from the network’s learning process, is 343 parts

that enter at Sink.

5.5 Base Model 65

Figure 5.9: Productivity referring to the Base Model without pre-training, to a total of 10M time
steps and a time horizon of 36h

Table 5.12: Numerical interpretations of the productivity (in parts) referring to the Base Model
without pre-training, to a total of 10M time steps and a time horizon of 36h

Minimum Value Maximum Value Final Value

250 347 343

The set of observation-action pairs resulting from the learning phase, without the pre-training,

are exemplified below:

• Observation-Action pair no 1: Parts in WS1 | Current WS: 4

Observation: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [8.3619851e-01, 1.9839258e-04, 7.7551082e-02, 2.0058152e-04, 1.7890350e-04,

6.3502125e-02, 1.9391190e-02, 2.7792549e-03]

In this particular situation, the behaviour of the network is as expected, given that the highest

probability is associated with the WS1.

• Observation-Action pair no 2: Parts in WS3, WS4 | Current WS: 4

Observation: [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [1.4122830e-03, 1.3475084e-05, 9.6138531e-01, 2.4895007e-03, 7.2637980e-05,

2.9261060e-02, 3.8612273e-03, 1.5044548e-03]

With regard to this observation-action pair, the network’s behaviour does not correspond to

what would be done by the NearestWS Rule, given that, in this situation, the AGV would

load a part in the WS3 and not in the WS4, as the high probability suggests.

5.5.2 With pre-training, for a time horizon of 36 hours

Like the model without pre-training, this one also respects the curve referring to the PPO opti-

mization algorithm, reproduced in Figure 5.10.

66 Results Analysis

However, in comparison with the model without pre-training, it appears that the results of this

model before the learning stage are lower, in terms of productivity. Despite that, similarly to what

happened in the optimized Milk-Run and NearestWS Rules, this episode can be explained by the

fact that, sometimes, the empty travels or the transport of parts for distant WSs, more common in

the model without pre-training, can bring advantages in terms of the final result of productivity,

reducing possible bottlenecks and balancing the machine occupancy rates.

Figure 5.10: Productivity referring to the Base Model with pre-training, to a total of 10M time
steps and a time horizon of 36h

Table 5.13: Numerical interpretations of the productivity (in parts) referring to the Base Model
with pre-training, to a total of 10M time steps and a time horizon of 36h

Minimum Value Maximum Value Final Value

257 277 274

One more time, the examples of the observation-action pairs, resulting from the learning pro-

cess, evidence the previous accomplishment of the learning phase:

• Observation-Action pair no 1: Parts in WS1 | Current WS: 4

Observation: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [9.9999833e-01, 6.0297623e-07, 9.3485424e-22, 1.0542382e-06, 3.6167533e-10,

4.3565872e-16, 4.4415426e-18, 2.8845209e-15]

The behaviour of the network is the one expected, since the WS1 has the highest probability.

• Observation-Action pair no 2: Parts in WS3, WS4 | Current WS: 4

Observation: [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [9.00684897e-25, 1.09724185e-16, 1.59646764e-13, 1.00000000e+00, 1.18856031e-

19, 6.28844218e-25, 2.55962060e-27, 2.96594020e-27]

In contrast with what happened in the previous scenario in which the pre-training did not

occur, the higher probability is now consistent with the expected (WS4), according to the

NearestWS Rule.

5.5 Base Model 67

5.5.3 Without pre-training, for a time horizon of 52 hours

According to the graph in Figure 5.11, the behaviour of the learning phase, like the Model without

pre-training for the 36-hour time horizon, follows the PPO algorithm, despite the initial drop of

the productivity values.

Regarding the final value of productivity, this is logically higher than the productivity referring

to the period of 36 hours.

Figure 5.11: Productivity referring to the Base Model without pre-training, to a total of 10M time
steps and a time horizon of 52h

Table 5.14: Numerical interpretations of the productivity (in parts) referring to the Base Model
without pre-training, to a total of 10M time steps and a time horizon of 52h

Minimum Value Maximum Value Final Value

398 507 501

For the same observation-action pairs, the solutions are the following ones:

• Observation-Action pair no 1: Parts in WS1 | Current WS: 4

observation: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [8.6369443e-01, 2.2193830e-04, 4.7343463e-02, 6.8649366e-05, 1.9357287e-04,

7.4317701e-02, 1.2128289e-02, 2.0318190e-03]

For this case, the behaviour of the network is the one expected (WS1).

• Observation-Action pair no 2: Parts in na WS3, WS4 | Current WS: 4

observation: [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [2.6672529e-03, 7.9401660e-05, 9.7478318e-01, 2.3247360e-03, 1.2263234e-04,

1.7269300e-02, 2.2482565e-03, 5.0515484e-04]

In accordance with the results of the last model (36h), without pre-training, it is concluded

that the learning of the network leads the AGV to do the load in the further station (WS3)

instead of the nearest one (WS4).

68 Results Analysis

5.5.4 With pre-training, for a time horizon of 52 hours

In this last scenario, Figure 5.12 proves the expected behaviour of the model. As Table 5.15

indicates, the final value of productivity is lower than the value obtained in the scenario in which

the pre-training did not occur. The most admissible reasons are presented in Section 5.6 that

compares the results of all models.

Figure 5.12: Productivity referring to the Base Model with pre-training, to a total of 10M time
steps and a time horizon of 52h

Table 5.15: Numerical interpretations of the productivity (in parts) referring to the Base Model
with pre-training, to a total of 10M time steps and a time horizon of 52h

Minimum Value Maximum Value Final Value

375 409 404

The following observation-action pairs follow the conjunctures performed previously, simi-

larly with the results obtained in the model with pre-training, referring to the time horizon of 36

hours:

• Observation-Action pair no 1: Parts in WS1 | Current WS: 4

Observation: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [9.9983370e-01, 1.7993931e-06, 4.0928912e-19, 1.6300578e-04, 1.4105979e-06,

4.8301262e-15, 1.4212710e-17, 2.4972540e-14]

• Observation-Action pair no 2: Parts in WS3, WS4 | Current WS: 4

Observation: [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

Action: [8.7494940e-28, 5.5310151e-18, 3.6004825e-13, 1.0000000e+00, 3.2771040e-19,

4.0131407e-26, 4.2842155e-29, 7.9547190e-29]

5.6 Comparison of the FIFO, Optimized Milk-Run, NearestWS Rule and Base Models 69

5.5.5 Application of Penalties

After the penalties of -0.5 were applied whenever an empty movement is carried out, it was con-

cluded that the four models follow the expected behaviour in relation to the PPO algorithm, as its

curve presents. However, as Table 5.16 expresses, the results are inferior.

Since performing empty movements is not necessarily a bad practice, this is one of the reasons

for which the productivity values are lower using penalties.

Table 5.16: Productivity (in parts) referring to the Base Model, with penalties

Base Model Productivity (36h) Productivity (52h)

Without pre-training 343 501
With pre-training 274 404

Without pre-training, with penalties 304 454
With pre-training, with penalties 271 403

5.6 Comparison of the FIFO, Optimized Milk-Run, NearestWS Rule
and Base Models

Initially, comparing all the models previously studied in Sections 5.1, 5.2, 5.3 and 5.5, with regard

to productivity, the Base Model was the one that presented the best results. That said, the use

of Machine Learning techniques combined with simulation approaches has enabled us to achieve

good solutions.

Regarding the Base Model, the difference between the usage or not of pre-training has to do

with the fact that, at the beginning of the learning process, the resulting solutions are already

or not close to a local optimum. If pre-training occurs, the solutions derived from the learning

process will be in close to a local optimum, unlike what happens in the situation where there is no

pre-training.

Since the solutions start near a local optimum, the Agent has difficulties to explore and find

new better solutions than the ones settled outside this region of the solution space.

In this sense, it was found that the final productivity results obtained were higher in the case

where the pre-training was not carried out (Table 5.17). This is explained by the fact that, in the

absence of pre-training, the occurrence of transports to distant stations to the detriment of closer

stations allows the reduction of bottlenecks and the balancing of the machine occupancy rates.

The fact that there is no pre-training also allows the Agent not to be so easily stagnated in a local

optimum given by the pre-training, so there is more freedom to explore new solutions, which will

allow the Agent to achieve better solutions, contrarily to what happens in the model where there

is pre-training.

70 Results Analysis

Table 5.17: Productivity (in parts) referring to the models in study

Model Productivity (36h) Productivity (52h)

FIFO 177 262
Optimized Milk-Run 266 389

NearestWS Rule 258 377
Base, with pre-training 274 404

Base, without pre-training 343 501

5.7 Robustness of the Simulation Models

After analysing the models when applied to deterministic environments, it is pertinent to verify

their behaviour when applied to other situations. In particular, it is important to study the influence

of different production mixes and processing times, in order to examine the adaptability of the

models, but only regarding productivity, which therefore excludes the model related to the study

of makespan.

It is also important to mention that, according to the Base Model, there was no customized

re-learning for these scenarios, because the weights obtained in the base scenario (original mix)

were used.

5.7.1 Production Mixes

Five different mixes were defined, randomly generated, so that, as described in Section 4.8.1, the

number of orders for each part type is balanced (' 20%).

The time horizons under study are 36 and 52 hours for comparison principles, and the AGV

speed also remains constant at 1.5 m/s, since speed does not constitute a factor under consideration.

Tables 5.18 and 5.19 enable us to conclude that, for both temporal perspectives, the Agent

when applied to different production mixes ensures that the productivity results remain, on av-

erage, close to each other. So, it is possible to validate the Base Model and its adaptability in

different production contexts, just like the other models.

It should also be noted that the Base Model, without pre-training, remains the one that obtains

the best results.

Table 5.18: Productivity (in parts) analysis referring to different production mixes, for a time
horizon of 36 hours

Model Initial Mix Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

FIFO 177 196 179 171 178 174
Optimized Milk-Run 266 261 251 257 261 242

NearestWS Rule 258 252 239 250 252 235
Base, with pre-training 274 273 259 266 278 252

Base, without pre-training 343 341 328 314 325 329

5.7 Robustness of the Simulation Models 71

Table 5.19: Productivity (in parts) analysis referring to different production mixes, for a time
horizon of 52 hours

Model Initial Mix Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

FIFO 262 271 254 256 268 253
Optimized Milk-Run 389 385 359 379 386 370

NearestWS Rule 377 366 344 362 371 355
Base, with pre-training 404 409 376 388 394 382

Base, without pre-training 501 473 471 473 477 478

5.7.2 Processing Times

The second criterion to evaluate the adaptability of these models related to productivity includes

the introduction of them in a stochastic environment in which, according to Section 4.8.2, the

definition of processing times follows a triangular distribution.

The variability factor, α , applied to the processing times of each part was 0.4. It is also

important for comparison purposes to maintain the time horizons in 36 and 52 hours and the AGV

speed in 1.5 m/s.

The following Tables 5.20 and 5.21 provides the results of the 10 simulations generated and

individually applied to each one of the implemented models. These results are important to analyse

the average and standard deviations of the resulting productivity values.

The low standard deviation as well as the similarity between the average values of productivity

obtained for each one of the models and the values associated with the original mix, also indicate

that all the values are in agreement with each other. So, similarly to what happened with the

production mixes, we can conclude that all models present good adaptability when subject to

stochastic environments.

To conclude, the Base Model, without pre-training, is the one that allows the achievement of

the higher productivity values.

72 Results Analysis

Table 5.20: Productivity (in parts) in stochastic environments, for a time horizon of 36 hours

Index Models
FIFO Optimized NearestWS Base Base

Milk-Run Rule with pre-training without pre-training

Original Mix 177 266 258 274 343
1 174 266 257 273 340
2 176 273 259 273 343
3 176 269 261 273 341
4 172 270 257 276 346
5 180 271 259 276 341
6 179 266 252 270 338
7 174 269 256 270 340
8 177 267 260 269 340
9 178 269 256 277 345

10 177 269 260 273 341
Average (10 tests) 176.3 268.9 257.7 273.0 341.5
Standard deviation 2.452 2.183 2.669 2.749 2.461
Coef. of variation 1.391% 0.812% 1.036% 1.007% 0.721%

Table 5.21: Productivity (in parts) in stochastic environments, for a time horizon of 52 hours

Index Models
FIFO Optimized NearestWS Base Base

Milk-Run Rule with pre-training without pre-training

Original Mix 262 389 377 404 501
1 262 384 375 395 496
2 264 390 372 399 498
3 263 386 373 394 504
4 261 387 373 393 495
5 265 384 381 400 497
6 264 386 369 399 503
7 264 388 374 392 499
8 264 383 372 397 499
9 263 386 378 398 503

10 261 386 378 403 498
Average (10 tests) 263.1 386.0 374.5 397.0 499.2
Standard deviation 1.370 2.055 2.567 3.464 3.120
Coef. of variation 0.521% 0.532% 0.952% 0.873% 0.625%

Chapter 6

Conclusions and Future Work

This chapter presents the conclusions resulting from the dissertation project at issue and makes it

possible to verify whether all the objectives initially proposed were fully accomplished. Finally,

some future contributions of this project are also suggested.

6.1 Conclusions

The main purpose of the project was the application of hybrid simulation approaches with Ma-

chine Learning techniques in order to maximize the productivity of a factory characterized by a

functional layout. To this end, it was considered as pre-determined aspects that the AGV speed

would be 1.5 m/s and the time horizons in study would be 36 and 52 hours.

At the beginning, the construction of the factory layout was carried out in the simulation

environment, using the Flexsim software, and, in order to study the productivity for a set of 2080

production orders, initial elementary decision rules to be applied to an AGV were implemented,

in particular the FIFO and Milk-Run heuristics.

Subsequently, a new simulation model was implemented, characterized by an alternative de-

cision rule, called NearestWS Rule, that allows minimizing the distances covered by the AGV.

However, in this specific case, an external programming environment was used in order to define

the workstations where the load would be carried out. Instead of what happened in the previous

two models, this decision rule was not implemented in the simulation environment itself, which

implied the implementation of a TCP communication protocol between the external program and

the simulation environment. That said, we can prove that the RQ 1 was accomplished.

In a more advanced phase of the project, Machine Learning techniques were introduced in

order to verify that the inclusion of a third entity, called Agent and equivalent to a neural network,

provides benefits in the increase of the productivity values. For this, the PPO algorithm from

OpenAI Baselines was used as the network learning model. For this purpose, in addition to the

productivity analysis, the study of makespan was also carried out, corresponding to a part type

number 4, in order to verify if the PPO algorithm was correctly implemented.

73

74 Conclusions and Future Work

Relatively to this third entity, with regard to productivity, the Agent receives an observation,

with the current status of each WS, and a reward, indicating whether a particular entity has entered

at Sink or not. Subsequently, it sends the action that it considers to be the most appropriate and

that contains the place where the AGV will carry out the load. It should also be noted that the

neural network considered has 1 input layer and 1 output layer, composed, respectively, by 16 and

8 neurons. Finally, the Base model was the one which presented higher productivity values, in

comparison to the FIFO, optimized Milk-Run and NearestWS Rule Models. This means that the

introduction of this Agent has significantly increased the values of productivity, derived from the

learning phase of the network.

Regarding the Makespan Model, it was proved that the normalization of the rewards is a funda-

mental factor to obtain better results since, without the normalization, the network learning would

not have been so efficient.

Still referring to the Base Model, the influence of pre-training on final productivity results was

studied and it was found that when pre-training is not carried out, the results are even higher, given

that it is possible to better explore the space of solutions and reach a better solution than the one

obtained with pre-training. Herewith, we are able to claim that the RQ 2 was answered.

Therefore, in order to verify and prove the adaptability and robustness of the models related

to productivity, the original production mix was changed and, at a later stage, all the models were

introduced in a stochastic environment, in relation to the processing times. In both situations, the

Base Model, without pre-training, was always the one that showed the best results in terms of

productivity and, answering the RQ 3, it is possible to state that both models studied have a certain

level of robustness that allows them to be applied in a real context.

Finally, as a conclusion, it should be noted that all the initial objectives proposed were fully

respected and fulfilled, and all the results and conclusions resulting from the project may constitute

an analysis and study tool for further future work, within the scope of transport systems in job-shop

environments.

6.2 Future Work

In order to achieve better and innovative solutions within the scope of logistics systems, it is

important to study and understand the influence that diverse parameters would have on productivity

performance.

That said, it would be interesting to analyse the impact that the change in the AGV speed value

would have on the system in general, in terms of the final achieved productivity values.

Another pertinent aspect would be to apply both decision rules developed in a different man-

ufacturing context, with regard to the workstations layout, in order to verify their flexibility of

adaptation. Regarding the model that uses the PPO algorithm, it would be curious to see the

behaviour of the Agent when applied to different circumstances.

Finally, a third and no less important aspect, regarding the models that use the RL techniques,

would be the analysis of how the addition of more information to the observations coming from

6.2 Future Work 75

the simulation environment (such as number of parts in each input buffer) would affect the network

learning process in terms of its effectiveness and efficiency. In other words, it would be interesting

to verify if the final solution would tend to even higher values of productivity.

76 Conclusions and Future Work

References

[1] C. d. E. e. E. Da, C. Mendes, C. R. Da Silva, D. d. F. C. Costa, J. S. Sousa, M. L. S. Monteiro,
and N. R. B. De Azevedo, “Jidoka: Pilar de sustentação do sistema toyota de produção nas
organizações,” 2013.

[2] J. K. Liker, O modelo Toyota: 14 princípios de gestão do maior fabricante do mundo. Book-
man Editora, 2016.

[3] L. A. Risso et al., “Procedimentos sistemáticos para projeto de" layout" para ambientes" job
shop"= systematic procedures for layout design for job shop environments,” 2016.

[4] D. M. B. . B. M. Kilic, H. S., “Classification and modeling for in-plant milk-run distribution
systems,” 2012.

[5] T. da Silva Santos, “Otimização e simulação de sistemas de logística interna-caso real de
definição de rotas milk run numa empresa de semicondutores,” 2018.

[6] A. M. Andrew, “Reinforcement learning: An introduction by richard s. sutton and andrew
g. barto, adaptive computation and machine learning series, mit press (bradford book), cam-
bridge, mass., 1998, xviii 322 pp, isbn 0-262-19398-1.,” Robotica, vol. 17, no. 2, p. 229–235,
1999.

[7] P. Cortez and J. Neves, “Redes neuronais artificiais,” 2000.

[8] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Business &
information systems engineering, vol. 6, no. 4, pp. 239–242, 2014.

[9] J. Faria, “Continuous improvement-kaizen.” Faria, José, Continuous Improvement-Kaizen,
2019. 80 slides. Support material for the SQFI course of MIEEC of FEUP. Accessed in
2019-11-19.

[10] J. Faria, “Costumer focus.” Faria, José, Costumer Focus, 2019. 86 slides. Support material
for the SQFI course of MIEEC of FEUP. Accessed in 2019-11-19.

[11] A. Azevedo, “Organização dos sistemas de transformação.” Azevedo, Américo, Organização
dos Sistemas de Transformação, 2018. 18 slides. Support material for the GOPE course of
MIEEC of FEUP. Accessed in 2019-11-19.

[12] M. Bonneton and D. Janvier, “Automated selfpowered materal handling truck,” 1986.

[13] M. Baudin, “Lean logistics: The nuts and bolts of delivering materials and goods,” Produc-
tivity Press, 2005.

77

78 REFERENCES

[14] R. Drießel and L. Mönch, “An integrated scheduling and material-handling approach for
complex job shops: a computational study,” International Journal of Production Research,
vol. 50, no. 20, pp. 5966–5985, 2012.

[15] R. M. Logística, “Milk run: Conceitos, vantagens e ganhos para a operação
logística.” https://revistamundologistica.com.br/blog/achiles/
milk-run-conceitos-vantagens-e-ganhos-para-a-operacao-logistica.
Accessed in 2019-11-23.

[16] R. F. D. Santos, “Estratégias híbridas de machine learning e simulação para a resolução de
problemas de escalonamento,” 2018.

[17] S. Huang, “Optimization of job shop scheduling with material handling by automated guided
vehicle,” 2018.

[18] A. de Freitas Ribeiro, “Taylorismo, fordismo e toyotismo,” Lutas Sociais, vol. 19, no. 35,
pp. 65–79, 2015.

[19] A. Azevedo, “Lean thinking: princípios, fundamentos, principais ferramentas.” Azevedo,
Américo, Lean thinking: princípios, fundamentos, principais ferramentas. Sistema de Pro-
dução Toyota Parte I, 2013. 28 slides. Support material for the GOPE course of MIEEC of
FEUP. Accessed in 2020-01-23.

[20] G. Zäpfel, R. Braune, and M. Bögl, Metaheuristic Search Concepts: A Tutorial with Appli-
cations to Production and Logistics. Springer Berlin Heidelberg, 2010.

[21] A. Meyer, “Milk run design (definitions, concepts and solution approaches). dissertation,
karlsruher institut für technologie (kit) fakultät für maschinenbau, kit scientific publishing,
karlsruher (2015),” 2015.

[22] . S. G. Brar, G. S., “Milk run logistics: Literature review and directions, london, england,”
2011.

[23] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, 2019.

[24] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.

[25] S. Marsland, Machine learning: an algorithmic perspective. Chapman and Hall/CRC, 2014.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602,
2013.

[27] V. H. de Sousa Carneiro, “Abordagens híbridas de" machine learning"/simulação para sis-
temas logísticos dinâmicos,” 2019.

[28] I. Grigoryev, Anylogic in three days. Fifth Edit.C, 2018.

[29] J. Banks, J. S. Carson II, L. Barry, et al., “Discrete-event system simulationfourth edition,”
2005.

[30] A. K. d. Silva, Método para avaliação e seleção de softwares de simulação de eventos dis-
cretos aplicados à análise de sistemas logísticos. PhD thesis, Universidade de São Paulo,
2006.

https://revistamundologistica.com.br/blog/achiles/milk-run-conceitos-vantagens-e-ganhos-para-a-operacao-logistica
https://revistamundologistica.com.br/blog/achiles/milk-run-conceitos-vantagens-e-ganhos-para-a-operacao-logistica

REFERENCES 79

[31] V. H. S. Carneiro, Hybrid Machine Learning/Simulation Approaches for Decentralized Pro-
duction Scheduling. 2018.

[32] “Socket programming in python (guide) by nathan jennings.” Accessed in 2020-03-02.

[33] M. Almeida, Luís; Santos Pedro; Sousa, “Support information for lab assignment 1a tcp
sockets in c.” Support information for lab assignment 1a TCP sockets in C, Luís Almeida,
Pedro Santos, Mario Sousa, 18 slides. Support material for the ACI course of MIEEC of
FEUP. Accessed in 2020-04-15.

[34] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, “Stable
baselines.” https://github.com/hill-a/stable-baselines, 2018.

https://github.com/hill-a/stable-baselines

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introductory Analysis
	1.1 Contextualization
	1.2 Motivation
	1.3 Objectives and Research Questions
	1.4 Methodological Approach
	1.5 Dissertation Organization

	2 State-of-the-Art
	2.1 Industrial Production Systems
	2.2 Job-Shop Production System
	2.3 Logistics Systems
	2.4 Material Handling Systems
	2.5 Milk-Run
	2.6 Machine Learning
	2.7 Simulation

	3 Problem and Methodology
	3.1 Problem Description
	3.2 Problem Characteristics
	3.3 Discrete-Event Simulation Model – Flexsim
	3.4 Implementation of a FIFO Transport System
	3.5 Implementation of an Optimized Milk-Run System
	3.6 Implementation of the NearestWS Rule

	4 Implementation of a Dynamic Transport System, using Reinforcement Learning Algorithms
	4.1 Contextualization
	4.2 UML Sequence Diagrams
	4.3 Neural Network General Architecture – Single Layer Perceptron
	4.4 Approach I – Initialization of Weights
	4.5 Approach II – Neural Network Pre-Training
	4.6 Makespan Model
	4.7 Base Model
	4.8 Robustness of the Simulation Models

	5 Results Analysis
	5.1 FIFO Model
	5.2 Optimized Milk-Run Model
	5.3 NearestWS Rule
	5.4 Makespan Model
	5.5 Base Model
	5.6 Comparison of the FIFO, Optimized Milk-Run, NearestWS Rule and Base Models
	5.7 Robustness of the Simulation Models

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References

