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Understanding the processes that affect streaming ice flow and the mass balance of glaciers and ice 
sheets requires sound knowledge of their subglacial environments. Previous studies have shown that an 
extensive deformable subglacial sediment layer favors fast ice-stream flow. However, areas of high basal 
drag, termed sticky spots, are of particular interest because they inhibit the fast flow of the overriding 
ice. The stick-slip behavior of Whillans Ice Stream (WIS) is perhaps the most conspicuous manifestation 
of a subglacial sticky spot. We present new ice-thickness and seismic-reflection measurements collected 
over the main sticky spot in the ice plain of WIS, allowing us to elucidate its role in the behavior of 
the ice stream. Ice-thickness and surface-elevation data show that the sticky spot occupies a subglacial 
topographic high. Water flow in response to the hydrological potential gradient will be routed around the 
sticky spot if effective pressures are similar on the sticky spot and elsewhere. The seismic experiment 
imaged a laterally continuous basal layer approximately 6 m thick, having compressional wave velocities 
of greater than 1800 m s−1 and density greater than 1800 kg m−3, indicative of a till layer that is stiffer 
than corresponding till beneath well-lubricated parts of the ice stream. This layer likely continues to 
deform under the higher shear stress of the sticky spot, and some water may be pumped up onto the 
sticky spot during motion events.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The West Antarctic Ice Sheet (WAIS) has been losing mass at an 
increasing rate, contributing to sea-level rise (Joughin and Alley, 
2011; Joughin et al., 2014). Ice draining into the Amundsen Sea 
has accelerated in response to loss of ice-shelf buttressing caused 
by warmer waters intruding beneath ice shelves and melting them 
from below (Jacobs et al., 2011). Additional mass loss is likely 
(Rignot et al., 2014; Joughin et al., 2014), with the potential for 
marine regions to raise sea level more than 3 m (Bamber et al., 
2009).

In contrast, some of the ice streams of the Ross Sea drainage 
basin have thickened over the last century, offsetting part of the 
mass loss in the Amundsen Sea drainage that dominates the 
modern West Antarctic mass balance signal. Kamb Ice Stream 
slowed about 150 yrs ago (Engelhardt and Kamb, 2013), and 
Whillans Ice Stream is now slowing (Joughin et al., 2005; Beem 
et al., 2014; Winberry et al., 2014). These changes do not ap-
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pear to have been forced from the Ross Ice Shelf; rather, hy-
potheses for the slowdown generally invoke changes in basal con-
ditions in response to internal instabilities or long-term climate 
forcing (Anandakrishnan and Alley, 1997; Tulaczyk et al., 2000;
Winberry et al., 2014).

The Ross Ice Streams flow rapidly under very low driving 
stress, with strong lubrication from subglacial till containing high-
pressure water, which provides a smooth and deformable bed 
(Blankenship et al., 1986; Alley et al., 1986, 1987; Kamb, 2001). 
Even small changes in water pressure or till porosity can have large 
influence on this lubrication (Clarke, 1987; Tulaczyk et al., 2000). 
The record of flow in the Ross Ice Shelf shows strong, persistent 
but non-uniform variability of flow speeds of the Siple Coast ice 
streams (Hulbe and Fahnestock, 2007), likely because of changing 
basal lubrication of the ice streams.

Where large areas of the Siple Coast ice stream beds are well-
lubricated, resistance comes primarily from side drag (Raymond 
et al., 2001) and from “sticky spots” (MacAyeal, 1989). These re-
stricted regions of anomalously high drag are analogous to asper-
ities on tectonic faults, and may have many origins, including till 
discontinuity or till dewatering (Alley, 1993).

http://dx.doi.org/10.1016/j.epsl.2016.01.035
0012-821X/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. a) Location of Whillans Ice Stream seismic profile. b) Ice-flow velocity of 
WIS (Rignot et al., 2011), together with box showing location of panels c–e. c) Bed 
elevation (contour interval 10 m; highest contour −620 m), hydrologic potential 
flowlines (black arrows), and, the seismic profile (red line), which is oriented paral-
lel to ice-stream flow. d) As in panel c, but showing hydrologic potential. Contour 
interval 100 kPa; highest contour 600 kPa. e) Flight lines for Bedmap2 (blue) and 
new CReSIS data (green). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Interest in sticky spots has been heightened by the discov-
ery of their role in the stick-slip motion of the Whillans “ice 
plain”, the downglacier-most ∼150 km of the ice stream before 
it enters the Ross Ice Shelf (Bindschadler et al., 2003) GPS po-
sition data showed that the ice stream completed almost all of 
its displacement in two rapid-motion events per day, one just 
after high tide in the Ross Sea, and one just before low tide 
(Bindschadler et al., 2003; Winberry et al., 2009, 2011, 2013, 
2014). Each slip event produces far-field seismic energy (Wiens et 
al., 2008) linked to breakage of sticky spots (Pratt et al., 2014). 
Three sticky spots near the grounding line (Pratt et al., 2014;
Winberry et al., 2014), possibly caused by till compaction arising 
from tidal flexure of the ice shelf (Walker et al., 2013), contribute 
to the generation of seismic energy, but a central sticky spot ap-
pears to be more important in restraining ice motion and trigger-
ing motion events (Winberry et al., 2014) (Fig. 1 site map).

Based on limited surveying, Winberry et al. (2014) estimated 
that the sticky spot extends ∼25 km and is likely elongated in 
the direction of flow, spanning approximately 500 km2 in area. 
In light of the significance of the central sticky spot in this com-
plex and evolving system, we initiated geophysical investigations 

to characterize it more thoroughly. First, using an aggregation of 
ice-thickness observations, we show that the sticky spot is asso-
ciated with a broad subglacial high that likely directs subglacial 
water flow around rather than over the sticky spot. Results of our 
seismic reflection survey confirm that the resulting water diversion 
has created relatively strong subglacial sediment that contributes 
to the unique stick-slip behavior of the WIS.

2. Improved observations of bed topography and subglacial 
hydrologic potential

Previous work (Winberry et al., 2011, 2014) suggested that the 
present geometry of the ice stream and bed diverts water around 
the central sticky spot. The implication is that the sticky spot arises 
from relatively inefficient lubrication. However, previous inferences 
on subglacial water flow were hampered by relatively poor spatial 
coverage as well as large navigational uncertainties. To help alle-
viate these issues, we used new airborne radar observations from 
the Center for the Remote Sensing of Ice Sheets (CReSIS) to pro-
duce new maps of basal topography and hydraulic potential.

CReSIS flight lines over the study area have a nominal spac-
ing of 1 km (Fig. 1e). Using these new observations, together with 
the relevant geophysical measurements that underlie Bedmap2 
(Fretwell et al., 2013), we produced an updated regional-scale map 
of bed topography for the study area with greatly reduced abso-
lute and relative uncertainties in the bed topography. Bedmap2 
estimated basal topography by interpolating to a 5 km grid, then 
resampling at 1 km for publication. The data coverage here allows 
for a higher resolution gridding process. We interpolated the data 
at 1 km, smoothed the results with a 3 km mean filter, and vali-
dated the final grid using the original point data. With agreement 
between the grid and point observations, relative uncertainty in 
bed elevation near the CReSIS flight lines is simply the range reso-
lution of the system (0.5 m; Wang et al., 2014). Additional absolute 
uncertainty is introduced by our choice of ice permittivity (3.15), 
but this has little effect on the computed hydropotential gradients. 
Through the gridding process, we ensure that no small-scale fea-
tures that would affect our hydropotential analysis are smoothed 
away. For additional information, see Appendix A.

This new map shows that the sticky spot is associated with a 
broad topographic high (Fig. 1). As expected from the physics of 
ice flow (Whillans and Johnsen, 1983), the downglacier slope of 
the ice–air surface is relatively steep over the crest of the basal 
topographic high, providing the enhanced driving stress necessary 
to balance the additional basal resistance at the sticky spot.

Fast glacier motion is most often associated with the availabil-
ity of subglacial water to promote basal sliding and till deforma-
tion. The routing of water from upstream likely plays a significant 
role in the ability of an ice stream to maintain rapid motion (e.g., 
Anandakrishnan and Alley, 1997; Parizek et al., 2002). To ascertain 
the significance of the newly discovered basal high in the delivery 
of subglacial water, we calculated the hydrostatic hydraulic poten-
tial ϕ beneath the WIS, assuming near-zero effective pressure:

� = ρi gzs + (ρw − ρi)gzb (1)

where ρi and ρw are the densities of ice and water respectively, 
g is acceleration due to gravity, and zs and zb are the ice sheet 
surface and bed elevations respectively (Shreve, 1972). The magni-
tude of � is plotted in Fig. 1d, with water flow paths down the 
potential gradient overlaid.

The results show that subglacial water is diverted around the 
sticky spot, with little or no upglacier supply reaching the center 
and downstream side of the sticky spot, if effective pressure on 
the sticky spot is similar to values elsewhere. (As discussed below, 
some water may reach the sticky spot at a higher effective pressure 
during slip events.)
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3. Seismic reflection methods

Seismic data provide further insights on the basal conditions 
of the sticky spot. In Section 3.1, we explain the methodology we 
used to acquire, process, and interpret seismic reflection data. We 
focused on measuring the extent and thickness of the till across 
the sticky spot, and estimating its elastic properties. We first per-
formed an analysis of the reflections from the base of the ice 
and the till in order to estimate the compressional-wave velocity 
(p-wave) and the thickness of the till. Then, we used the angu-
lar variation of reflection strength from the ice-bed interface (Aki 
and Richards, 1980) to estimate the velocity and density of the 
till.

3.1. Seismic data collection

During the 2011–2012 field season, a 10-km-long reflec-
tion seismic line was collected on the sticky spot, extending 
downglacier along the centerline of the sticky spot from near 
the high point of the basal topography. The receiver array con-
sisted of 60 geophones spaced at 10 m. This array was moved 
along the line, and at each deployment (“spread location”) two 
sources were initiated at 310 m and 460 m from the nearest 
geophone, and along the main line. In addition, two more “far-
offset” shots were initiated at 1210 m and 1810 m distances, 
resulting in data with four images of each point along the line 
(so-called 4-fold data) for the whole profile. Additional near-offset 
shots were collected at 10 m and 160 m offset, but proved to 
have little utility because of high surface-wave energy (“ground-
roll noise”). As discussed further below, this samples the bed 
at angles ranging from ∼15–60◦ . Explosive charges of 400 g of 
PETN (pentaerythritol tetranitrate) explosive were detonated in 
holes drilled to 20 m using a hot water drill, in order to keep 
the source amplitude consistent across the survey. The geophones 
were planted under approximately one meter of snow to reduce 
surface noise.

Seismic data were processed using standard techniques (Yilmaz, 
2001). Frequency-wavenumber (FK) filtering was used to attenuate 
the direct-wave and ground-roll energy, which otherwise interfere 
with the bed reflection. Predictive and spiking deconvolution were 
applied to remove energy from short-path multiples and improve 
the coherence of the seismic record. Our seismic data have their 
primary energy at frequencies of ∼20–200 Hz, giving vertical res-
olution of approximately 5 m in ice.

3.2. Till thickness measurements

Next, we estimated the thickness and seismic velocity of the 
till from analysis of the shot gather data. We picked the arrival 
time of the ice and till-bottom reflectors (Fig. 2a). Using the normal 
moveout equation relating travel time to source–receiver offset, we 
estimated the reflection travel time at zero offset and the normal 
moveout velocity of those reflectors (Yilmaz, 2001). The seismic 
velocity of the till can then be calculated from the Dix (1955)
equation:

V int =
√

V 2
tbT tb − V 2

ibT ib

T tb − T ib
(2)

Here V tb and T tb are the normal-moveout velocity and time at 
zero offset, respectively, for the till bottom, and V ib and T ib are 
the velocity and time at zero offset for the ice bottom.

Seismic velocities and thicknesses were estimated from shots 
with high signal-to-noise ratio and a strong till bottom reflector. 
Strong reflectors were evident from the basal interfaces of both ice 
and till along the entire line. The till averages approximately 6 m 

thick with only small variations; velocities in the till range from 
∼1950 to 2350 m s−1 with uncertainties of ∼200 m s−1 (Fig. 2b). 
Our uncertainties are relatively small in part because we have high 
signal-to-noise ratio (picking to within one sample or 0.5 ms), our 
cable had molded takeouts so that when dragged taut the off-
sets were accurate to better than 0.5 m, our sampling over middle 
to far offsets allows more-accurate estimates (Sheriff and Geldart, 
1995), the bed is relatively flat and the ice homogeneous, and we 
averaged 40 measurements of travel time for each normal moveout 
velocity determination.

3.3. Till properties: Amplitude-Variation-with Offset

We apply the seismic Amplitude-Variation-with-Offset (AVO) 
technique to the ice-bottom reflection to learn basal properties 
along our seismic profile. AVO uses the angular dependence of 
amplitude and phase of the reflected wave to accurately charac-
terize the contrast in material properties across an interface (Aki 
and Richards, 1980). Because ice has well-known seismic velocity 
and density, the AVO measurement of the contrast across the ice-
till interface yields the till properties accurately.

The observed displacement amplitude (A) recorded at a surface 
geophone from a reflected seismic wave is given by Peters (2009):

A(θi) = A0 R(θi)γ (θi)e−ar(θi) (3)

where r(θi) is the raypath distance from source to receiver for a 
particular incidence angle θi , R is the reflection coefficient of the 
interface, γ accounts for geometric spreading, a is the attenuation 
(0.2 km−1, Bentley and Kohenen, 1976), and A0 is the source am-
plitude.

The reflection coefficient, R , can be calculated from observed 
amplitudes using equation (3). R depends on the contrast in seis-
mic velocity (compressional wave velocity (V p), shear wave veloc-
ity (V s)) and density (ρ) across an interface, with a dependence 
on angle θi as represented in the Zoeppritz equations (Aki and 
Richards, 1980). Substrates likely to be in contact with ice (e.g., 
dilated till, lodged till, sedimentary rock) yield quite different pat-
terns of reflection polarity and amplitude as a function of inci-
dence angle (Peters et al., 2007).

AVO analysis uncertainties decrease as the range of mea-
sured angles increases. Logistical and time constraints limited 
our experiment to angles ranging from approximately 15 to 60◦
(310–2400 m offsets). During processing of the data we noted 
that the bed is relatively homogeneous at scales of 500 m to 
1 km. We thus combined multiple reflecting points into a single 
“super-gather” that has a larger range of angles of incidence than 
would be possible at any single reflection point to obtain a com-
plete snapshot of angles from 15 to 60◦ . Of these, the angles with 
low SNR were omitted in the final AVO analysis. The loss of hor-
izontal resolution is acceptable because of the relatively uniform 
bed.

Amplitudes of the bed reflection are used to compute reflec-
tion coefficients. The signal to noise ratio (SNR) was estimated 
by comparing the peak of the reflection from the bed to the en-
ergy in a 5 ms window before the bed reflection arrival (assumed 
to be a measure of background noise). Receivers with low SNR 
were excluded from the AVO analysis. In general, receivers close 
to the source (up to 500 m offset) were most affected by source-
generated noise. In Figs. 3 and 4, the gaps in data coverage arise 
partly from our SNR thresholding. Because of the logistical con-
straints, our data have a gap in coverage from angles of 35 to 40◦
(corresponding to offsets of 1050–1200 m).

Next, the amplitudes were corrected for variations in strength 
and coupling of the source and in receiver coupling. The chemi-
cal sources have natural variability in their yield; in addition, the 
shotholes at approximately 20 m depth likely were in snow of 
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Fig. 2. a) Travel-time seismic profile. The yellow boxes mark the sections of the bed where AVO analysis was carried out. The inset (top) shows a NMO corrected shot gather 
from near the downstream end of the line, with the ice and till bottoms labeled. b) The profile of 2a, plotted with depth rather than travel time, shows ice bottom, till 
bottom with uncertainty (1-sigma), and numerical values of interval velocities. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

varying density, affecting their coupling. Geophones were planted 
by hand and allowed to sinter for varying amounts of time, which 
affected their sensitivity to seismic waves. We accounted for these 
effects by measuring the direct wave amplitude, which is unaf-
fected by bed properties and is most sensitive to source size and 
source coupling. These measurements were used to correct the 
bed reflection (Peters, 2009). Finally, a standard estimate for ge-
ometrical spreading loss based on the raypath length was used to 
normalize the amplitudes. These corrections allowed us to com-
pare the observed reflectivities along the line as calculated using 
Equation (3).

As noted above, the angular dependence of reflection phase and 
amplitude depends on the contrast in density and seismic veloci-
ties across the interface, as given in the Zoeppritz equations. We 
used a four-layer firn velocity model to determine the seismic ve-
locity of ice, and our results are fully consistent with expectations 
from prior work (V p = 3840 m s−1, V s = 1860 m s−1 and density 
= 920 kg m−3 (Christensen, 1989; Peters et al., 2007)). We used a 
least-squares minimization technique to search for the till proper-
ties that best match the observations. The best fit, together with 
results for bracketing till properties, are shown in Figs. 3 and 4 for 
the two 400-m sections of the bed.
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Fig. 3. Basal reflection coefficient and uncertainty (1-sigma) against incidence angle, for section from 3600 to 4000 m. The blue line shows the least squares fit for the 
observed reflection coefficients (V p = 1840 m s−1, V s = 310 m s−1, density = 1835 kg m−3). To illustrate sensitivity of the inversion to the parameters, lines 1 and 2 are 
forward model curves based on the Zoeppritz equations: 1. V p = 1730 m s−1, V s = 250 m s−1, density = 1730 kg m−3; 2. V p = 2050 m s−1, V s = 500 m s−1, density =
2050 kg m−3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. As in Fig. 3, basal reflection coefficient and uncertainty (1-sigma) against incidence angle, for section from 6000 to 6400 m. The blue line shows the least squares fit for 
the observed reflection coefficients (V p = 1860 m s−1, V s = 370 m s−1, density = 1870 kg m−3). Lines 1 and 2 are forward model curves based on the Zoeppritz equations: 
1. V p = 1730 m s−1, V s = 250 m s−1, density = 1730 kg m−3; 2. V p = 2050 m s−1, V s = 500 m s−1, density = 2050 kg m−3. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

4. Seismic results and interpretation

4.1. Seismic reflection

The seismic image of Whillans Ice Stream is shown in Fig. 2a, 
with important features labeled. The “ghost” arises from energy 
propagating upward from the approximately 20-m-deep shots to 
the surface, reflecting, and then following the energy initially prop-
agating downward from the shot. The bed of the ice stream is rela-
tively flat, and produces a strong reflection along the entire profile. 

High ground-roll noise from near-offset shots (10 and 160 m away 
from source) reduced data quality in the upstream 1 km of the 
line; subsequently, the shooting spread was switched to 310 and 
460 m from the source, and data quality improved notably.

The seismic image shows several hundred meters of sedimen-
tary layers beneath the ice. Reflections from within deeper sedi-
ments are evident, and suggest an interesting structural and de-
positional history, which we plan to explore in greater detail in a 
separate contribution. Slight post-depositional folding appears to 
have occurred, perhaps over a subsurface fault not imaged here, 
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Table 1
Seismic properties of the till inferred from AVO analysis with uncertainty (1-sigma).

Section 
(m)

3600–4000 6000–6400

V p (m s−1) 1840 ± 180 1860 ± 160
V s (m s−1) 310 ± 34 370 ± 80
Density (kg m−3) 1835 ± 180 1870 ± 190
Porosity 0.37 ± 0.1 0.36 ± 0.1

with the sticky spot on the upthrown side, and the downthrown 
side in the downglacier direction, suggesting that the sticky spot is 
structurally controlled. A sedimentary wedge appears to have been 
deposited in the lee of the sticky spot.

In this contribution, we focus on the existence and character-
istics of the few-meter-thick layer at the top of the sedimentary 
sequence in contact with the ice. By analogy to the seismic results 
from Blankenship et al. (1986) and subsequent work, the borehole 
observations of Engelhardt and Kamb (1998) and Tulaczyk et al.
(2000), and additional information, we identify this as a till layer 
unconformably overlying the older sediments. As discussed below, 
our evidence suggests that this till is deforming, much like be-
havior elsewhere beneath the fast-moving Siple Coast ice streams, 
despite the better drained character of the sticky spot.

4.2. Till thickness and seismic interval velocity

The till thickness is mapped along our seismic line in Fig. 2b. 
We find an average of 6 ± 0.5 m, comparable to the 6.5 ± 0.5 m
found by Rooney et al. (1987) farther upstream on WIS. The till is 
thinned slightly near 2500 m on the profile, over a local high spot 
in the bed (inset of Fig. 1).

Interval velocities for p-waves in till, V p, are given in Fig. 2b. 
We note that our seismic configuration did not produce sufficient 
shear-wave energy to allow confident picking of arrivals, unlike the 
work of Blankenship et al. (1986, 1987).

The average of the seven estimates is V p = 2120 m s−1; with 
the uncertainties (1-sigma) of about 200 m s−1 on individual de-
terminations, there are no significant differences in seismic veloc-
ity along the seismic line. However, the velocities are significantly 
higher than found in prior work on well-lubricated parts of Siple 
Coast ice streams. Blankenship et al. (1986), for example, found 
V p = 1600 ± 150 m s−1.

The strong positive polarity of the ice bottom reflection along 
the entire line is consistent with the relatively high seismic veloc-
ity of the till, together with a relatively high till density. Note that 
we sampled the bed at 15–60◦ incidence angles, not at vertical 
incidence; our estimated till properties would yield a weak re-
flection at vertical incidence. In well-lubricated ice-stream regions, 
the reflection coefficient is small, and both positive and negative 
phases are observed (Atre and Bentley, 1993); our higher acous-
tic impedance (velocity multiplied by density) yields the positive-
phase reflection. This is explored further in the next section.

4.3. AVO analysis

As noted above, the angular dependence of the phase and am-
plitude of seismic reflections from an interface depends on the 
contrast in p-wave velocity, s-wave velocity and density across the 
interface. We performed the AVO analysis on two separate 400 m 
long sections of the ice stream bed, at the locations indicated in 
Fig. 2a. The best-fit inversion results are shown in Figs. 3 and 4, 
and the numerical values are listed in Table 1. There are no statis-
tically significant differences in seismic wave velocities or densities 
between the two regions.

The best-fit V p values from AVO are lower than those found 
in the interval velocity. The uncertainties overlap, so strong con-
clusions cannot be drawn, but this difference is as expected if 
the till is actively interacting with the moving ice. AVO is sensi-
tive primarily to conditions in the top ∼1/4 wavelength (Peters 
et al., 2007), which for 100 Hz and 450 m s−1 shear wave veloc-
ity is ∼1.5 m. The deforming till beneath well-lubricated parts of 
the Siple Coast ice streams is generally softer and more dilated 
toward the top than toward the bottom (Kamb, 2001), so the in-
terval velocities averaging over the whole till thickness is expected 
to sample a somewhat more-consolidated material and thus to be 
higher than the AVO velocities sampling the upper part if the up-
per part is deforming. The offset between the central estimates for 
the interval and AVO velocities in our data appears to be larger 
than expected from the small downward increase in effective pres-
sure caused by the difference between hydrostatic and lithostatic 
stresses (Blankenship et al., 1987).

4.4. Estimate for porosity and effective pressure

Various efforts have been made to estimate glaciologically im-
portant parameters such as effective pressure (overburden pressure 
minus water pressure) and till porosity from seismic or bore-
hole observations (Blankenship et al., 1986, 1987; Kamb, 2001;
Tulaczyk et al., 2001a). Those based primarily on seismic data suf-
fer from uncertainty linked to differences between calibration sam-
ples and the in situ materials. Regardless of the technique, though, 
our data are indicative of significantly higher effective pressure, 
lower porosity, and overall stiffer till than in the well-lubricated, 
fast-moving parts of the ice stream (Blankenship et al., 1986, 1987; 
Kamb, 2001; Tulaczyk et al., 2001a). We provide one estimate of 
the difference in Appendix B, based on the technique of Dvorkin 
et al. (1999), and yielding an effective pressure from our AVO re-
sults 10–40 kPa higher than for Blankenship et al. (1986, 1987), 
despite our data sampling a shallower part of the till, biasing our 
measurement toward lower effective pressure.

5. Discussion

Our data show that the main sticky spot on the ice plain of WIS 
has a few-meters-thick, continuous till layer overlying older sedi-
ments. Comparison of the AVO results (which sample the upper 
part of the till) to the interval velocities (which average through 
the till) suggests that the upper part of the till is softer (higher 
porosity, lower effective pressure) than the deeper part. Compari-
son to prior seismic (Blankenship et al., 1986, 1987) and borehole 
(Kamb, 2001; Tulaczyk et al., 2001a) data shows that the till be-
neath well-lubricated parts of the ice stream is softer than the 
till in our study. In other ways, though, our data suggest that the 
sticky spot is similar to adjacent, better-lubricated parts of WIS 
and adjacent ice streams in having active deformation of a few-
meters-thick, continuous till layer unconformably overlying older 
sedimentary rocks.

We note that direct borehole confirmation of our results would 
be valuable, as would additional geophysical observations. How-
ever, strong constraints on likely conditions are provided by our 
new observations together with the prior seismic and borehole ob-
servations.

In light of the large unsteadiness on the Siple Coast (Hulbe and 
Fahnestock, 2007), one possibility is that the till on the sticky spot 
was emplaced sometime before the sticky spot formed, and ceased 
deforming as the sticky spot developed. Because the ice flowlines 
continue across the sticky spot, till continuity together with the 
indications of till deformation beneath well-lubricated parts of the 
ice stream (e.g., Kamb, 2001) would then indicate that the sub-
glacial till flux is accumulating near the upglacier end of the sticky 
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spot, likely with erosion at the downglacier end; our seismic line 
is not long enough to observe the probable locations of any such 
changes.

Our data are more consistent with ongoing deformation of the 
till across the sticky spot, however. Recall that the till appears to be 
softer at the top. It is likely that any deformation is localized there, 
rather than having jumped downward to a shear plane in stiffer 
till beneath. Localized motion near the top of the till would allow 
the ice-till interface to provide a pathway for water drainage, as 
is usual beneath glaciers and ice sheets with thawed beds and as 
was observed elsewhere beneath WIS (e.g., Kamb, 2001). Following 
Tulaczyk et al. (2000), if deformation of the till ceased, dewater-
ing to the ice-till interface would cause compaction to propagate 
downward, but we see softer rather than more-compacted till at 
the top. We cannot entirely exclude the possibility that compaction 
of the uppermost till has started so recently that it has not pro-
duced a seismically detectable layer, but it seems more likely that 
the upper part of the till remains notably softer than the deeper 
part because deformation is concentrated in the upper part.

Our data show that the till layer is continuous, and thus must 
support the shear stress of the ice. Because the sticky spot sup-
ports a higher shear stress than surrounding regions during the 
“stick” part of the stick-slip motion of WIS (Winberry et al., 2009), 
the till on the sticky spot must be stiffer than elsewhere, as ob-
served. Deformation during slip events to maintain the vertical 
contrast in the till could involve relatively deep ploughing (Brown 
et al., 1987; Tulaczyk et al., 2001b), localized sliding on discrete 
planes that move during or between events, or more pervasive de-
formation; the seismic technique cannot easily distinguish between 
such possibilities.

The hydrological potential gradient calculated assuming spa-
tially uniform effective pressure directs water away from the sticky 
spot. Thus, one might expect that the till would become progres-
sively dewatered along flow, but we do not observe any significant 
trends in till properties that would arise from such dewatering 
along our seismic line. One possibility is that water generation 
from the heat of sliding on the sticky spot provides a new sup-
ply; freeze-on generally occurs on the well-lubricated parts of the 
Siple Coast ice streams (Kamb, 2001), but the higher shear stress 
yet similar velocity on the sticky spot would favor basal melting.

Water also might be diverted onto the sticky spot due to higher 
effective pressure (relatively lower water pressure) at the ice-till 
interface there, as is suggested by the seismic results showing 
stiffer till on the sticky spot. Weertman (1972) (also see Alley, 
1993) suggested that the water pressure in a distributed system 
is lowered below the overburden pressure by an amount that is 
proportional to the basal shear stress, with a constant of pro-
portionality of order 1, because higher shear stress causes larger 
variations in normal stress on the bed, and water preferentially 
flows in the lower pressure regions. Probably more importantly, 
much larger water-pressure drops may be generated transiently in 
lee-side cavities during seismic motion events, if notable displace-
ment occurs between the ice and the substrate (Zoet et al., 2013), 
pumping water into the fault zone from surroundings. This suction 
pump action at dilational fault jogs is known from tectonic faults 
(Sibson, 1985).

We recognize that other interpretations of our data are possible, 
if the full range of uncertainties is considered, and we encourage 
borehole or additional geophysical and model testing of our hy-
potheses. Pending this, our data provide a consistent picture of 
the most-likely behavior. The stiffer till in the sticky spot fails un-
der the higher shear stresses that accumulate there before motion 
events. Motion may be localized between ice and till but extends 
into the till, decreasing with increasing depth. A quasi-steady state 
exists in which till and some water are transported subglacially 
across the sticky spot, with water transferred from surrounding re-

gions onto the sticky spot in response to pressure drop in lee-side 
cavities (dilational fault jogs) during motion events.

6. Conclusions

Radar, seismic and GPS observations show that the main sticky 
spot of the ice plain of Whillans Ice Stream, West Antarctica, is a 
local surface high controlled by a higher-amplitude bedrock high 
composed of sedimentary rocks with possible structural control. 
The bedrock high is mantled by a seismically distinct layer, which 
we assume to be till based on nearby observations and physical 
understanding (Kamb, 2001), that has a relatively uniform thick-
ness of approximately 6 m. AVO seismic data, primarily sampling 
the upper part of the till, and interval velocities averaged over the 
whole thickness, show that the entire seismically detectable pack-
age is more consolidated (higher density, lower porosity, higher 
p-wave and s-wave velocities, higher effective pressure) than the 
corresponding till beneath well-lubricated parts of the ice stream; 
consolidation likely increases downward in the till similar to be-
havior in well-lubricated regions. The vertical consolidation profile 
suggests that the till continues to deform with the ice, perhaps 
aided by water pumping into lee-side cavities during seismic mo-
tion events. Analogy of the sticky spot, till, and seismic motion 
events of WIS to asperities and fault gouge of tectonic earthquake 
faults suggests that additional studies targeting this feature could 
be of both glaciological and broader interest.
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