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Abstract
The complex genetic architecture of Autism Spectrum Disorder (ASD) and its heterogeneous phenotype makes
molecular diagnosis and patient prognosis challenging tasks. To establish more precise genotype–phenotype
correlations in ASD, we developed a novel machine-learning integrative approach, which seeks to delineate
associations between patients’ clinical profiles and disrupted biological processes, inferred from their copy number
variants (CNVs) that span brain genes. Clustering analysis of the relevant clinical measures from 2446 ASD cases in the
Autism Genome Project identified two distinct phenotypic subgroups. Patients in these clusters differed significantly in
ADOS-defined severity, adaptive behavior profiles, intellectual ability, and verbal status, the latter contributing the most
for cluster stability and cohesion. Functional enrichment analysis of brain genes disrupted by CNVs in these ASD cases
identified 15 statistically significant biological processes, including cell adhesion, neural development, cognition, and
polyubiquitination, in line with previous ASD findings. A Naive Bayes classifier, generated to predict the ASD
phenotypic clusters from disrupted biological processes, achieved predictions with a high precision (0.82) but low
recall (0.39), for a subset of patients with higher biological Information Content scores. This study shows that milder
and more severe clinical presentations can have distinct underlying biological mechanisms. It further highlights how
machine-learning approaches can reduce clinical heterogeneity by using multidimensional clinical measures, and
establishes genotype–phenotype correlations in ASD. However, predictions are strongly dependent on patient’s
information content. Findings are therefore a first step toward the translation of genetic information into clinically
useful applications, and emphasize the need for larger datasets with very complete clinical and biological information.

Introduction
Autism Spectrum Disorder (ASD) is a neurodevelop-

mental disorder that manifests with persistent deficits in
social communication and interaction, and unusual or
repetitive behavior and/or restricted interests1. ASD pre-
sents a highly heterogeneous clinical phenotype and fre-
quently co-occurs with other comorbidities, such as

intellectual disability (ID), epilepsy, and attention-deficit
hyperactivity disorder (ADHD)2–6. The origin of this clinical
variability is unclear, consistent with the absence of reliable
diagnostic or prognostic biomarkers. ASD is diagnosed
through neurodevelopmental and behavioral assessment,
with diagnostic criteria maximizing clinical consensus but
of insufficient prognostic value to provide a precise direc-
tion for effective intervention for each patient. Improving
early diagnosis and prognosis, by using biological markers
with a robust predictive power, would provide an advantage
to young patients, who benefit the most from an early start
of specific intervention7. The identification of biomarkers
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would also contribute to a biological explanation for the
clinical heterogeneity of ASD.
Heritability estimates indicate a strong genetic influ-

ence on ASD etiology8–10. To this day, a large number of
genes have been implicated in this disorder, presenting
many individually rare variants that overall explain a
large proportion of its genetic variance. Structural or
sequence genetic alterations can be identified in 20 to
25% of ASD cases11, and screening for copy number
variants (CNVs) or single-nucleotide variants (SNVs) is
nowadays broadly used for etiological diagnosis. The
wide genetic heterogeneity that characterizes ASD likely
contributes to phenotypic variability in patients12, but is
still poorly understood. Integrative pathway and net-
work analysis of large-scale ASD genomic studies has
advanced significantly the identification of disrupted
biological processes in this disorder13–18. However, solid
models that match these underlying biological processes
with clinical phenotypes are still not available, and our
understanding of the biological meaning of the large
number of putative pathogenic genetic variants, their
phenotypic manifestations, and the reliable interpreta-
tion of many genetic findings for clinical application is
lagging.
Given the clinical and genetic heterogeneity of ASD, it is

predictable that a high-impact biomarker will only be
relevant for a subgroup of individuals and not the whole
patient population. Multiple approaches have been pro-
posed to identify ASD subgroups with similar phenotypic
characteristics. Namely, unsupervised machine learning-
based stratified models have been employed to stratify
patients into subgroups and define ASD subphenotypes.
Stratified models use clustering methods, such as hier-
archical clustering, to extract data-driven patterns from
phenotypic observations that can group individuals with
similar characteristics. Since they are independent from
prior knowledge and assumptions, unsupervised learning
methods have become an important tool for patient
stratification, and are used to understand autism hetero-
geneity. For instance, hierarchical clustering has been
applied to a variety of phenotypic measurements,
including clinical reports with multiple variables19,20,
main diagnostic instruments like the Autism Diagnostic
Interview-revised, (ADI-R)21,22, specific autism-related
ability tests like the Reading the Mind in the Eyes Test
(RMET)23, or neuroimaging data24. Overall, these studies
defined multiple phenotypic subgroups, which vary with
the clinical and behavior parameters analyzed, the study
design, the sample sizes, and other factors. Importantly,
these studies reinforce the notion that the heterogeneity of
autism can be addressed by using machine-learning
methods to define meaningful phenotypic subgroups
in ASD.

Multidimensional phenotypic subgroups will be funda-
mentally important for prognosis and treatment of ASD:
while it is clear that the current intervention approaches do
not benefit equally all patients, it is currently very difficult to
predict the course of disease, and what may work better for
each individual. To improve this prediction, the patterns
that can be identified from a multidimensional phenotypic
assessment using machine learning can be associated with
disease trajectories and treatment outcomes, highlighting
factors mediating treatment response. On the other hand,
understanding the biology underlying specific phenotypic
clusters will help to identify prognostic biomarkers and
define drug targets that work for particular subgroups of
patients, and thus improve precision medicine clinical trials.
Mapping phenotypic clusters to biological processes dis-

rupted by genetic variants, to understand the biological
meaning of the large number of pathogenic variants iden-
tified in ASD and their phenotypic manifestations, has so far
been seldom addressed. This would, however, significantly
advance the reliable interpretation of many genetic findings
for clinical application, improving our understanding of the
physiopathology underlying specific phenotypic subgroups
of patients. To further our ability to infer clinical meaning
from rare CNVs in ASD, for eventual application as biolo-
gical markers, we developed a machine learning-based
approach involving the integration of gene functional
annotations and clinical phenotypes. Our approach was
developed in four steps, namely (1) definition of phenoty-
pically distinct subgroups in ASD cases; (2) discovery of
functionally enriched biological processes defined by rare
CNVs disrupting brain-expressed genes in the same ASD
cases; (3) assessment of the contribution of disrupted bio-
logical processes for classification of ASD phenotypes; (4)
design and characterization of predictive effectiveness of a
machine-learning classifier for clinical outcome in ASD
patients.

Methods
Figure 1 shows the graphical representation of the

overall methodology, described in detail below.

Participants
The ASD dataset used in this study was obtained from

the Autism Genome Project (AGP)25 database, and
comprises CNV data and clinical information from 2446
ASD patients. The AGP was an international colla-
borative effort from over 50 different institutions to
identify risk genes for ASD. The group of individuals
with phenotypic information from clustering and rare
CNV data, used in final analysis, included 1213 males
(83.4%) and 144 females (10.6%). Approval was obtained
from the ethical committees of all the institutions par-
ticipating in the AGP consortium, and informed consent
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was granted by all subjects or their parents/legal
guardians.

ASD diagnosis, clinical assessment instruments, and
clinical features
Individuals meeting criteria defined by the Diagnostic

and Statistical Manual of Mental Disorders IV (DSM-
IV)26 and the thresholds for autism or ASD from the
Autism Diagnostic Interview-Revised (ADI-R)27 and the
Autism Diagnostic Observation Schedule (ADOS), were
classified as ASD cases28. The AGP defined a phenotypic
classification system based on the combined ADI-R and
ADOS diagnosis, categorizing subjects into Strict (meet-
ing thresholds for autism by the ADI-R and ADOS),
Broad (meeting thresholds for autism from one instru-
ment and ASD from the other), and Spectrum (meeting
thresholds for autism from at least one instrument or
ASD from both). Individuals with an ASD diagnosis from
only one instrument and no information from the other,
or not meeting thresholds for autism or ASD from one of
the instruments, regardless from the classification from
the other, were not included in the study. Clinical mea-
sures used in this study were retrieved from the AGP

database, including the ADI-R verbal status, ADOS
severity score, Vineland Adaptive Behaviour Scales
(VABS)29 subscales, and an Intelligence Quotient (IQ).
The ADI-R verbal status is a dichotomized measure

indicating the verbal status of the individual at evaluation.
The ADOS severity metric ranges from 1 to 10, and is
calculated from ADOS modules 1–3 raw scores30. As there
is no algorithm available to calculate ADOS severity score
for ADOS module 4 reports, which is applied only to ado-
lescents and adults, subjects with the ADOS module 4 (N=
149) were dropped from further processing. The severity
score distribution is collapsed into three categories, namely
Autism (severity scores ranging from 6 to 10), ASD (severity
scores ranging from 4 to 5), and Non-Spectrum (severity
scores from 1 to 3), which reflect the mapping of the severity
metric onto raw ADOS scores. The ADOS Non-spectrum
category includes individuals with a mild phenotype, and in
this study 125 individuals with a Non-spectrum ADOS
severity score fell within the Spectrum phenotypic class
from the AGP, meaning that they met thresholds for autism
from the ADI-R, and were thus included.
The VABS is used to assess adaptive functioning of

individuals, and consists of three subscales, namely,

Fig. 1 Integrative systems medicine approach to identify complex genotype–phenotype associations. Clinical and genetic data from the
Autism Genome Project (AGP) were used in this study. a Clinical data analysis processing: clinical data comprise reports of ASD diagnosis and
neurodevelopmental assessment instruments. Agglomerative hierarchical clustering (AHC) was used to identify clinically similar subgroups of
individuals in stable, validated clusters, defined by multiple clinical measures. b CNV data processing: rare high-confidence CNVs previously identified
by the AGP, targeting brain-expressed genes, were retained for analysis. CNV data were merged with clinical data from clustered ASD subjects for a
final list of CNVs targeting brain genes. c Functional annotation analysis: biological processes defined by brain-expressed genes targeted by CNVs
were obtained by using g:Profiler. d Classifier design: a Naive Bayes machine-learning classifier was trained and tested on patient’s data, to predict the
phenotypic clustering of patients from biological processes disrupted by rare CNVs targeting brain-expressed genes.
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socialization, communication, and daily living skills
scores, and also computes a composite score. Subjects
with VABS scores ≤ 70 were classified in a dysfunctional
adaptive behavior category, for all subscales. IQ scores of
ASD cases were also retrieved from the AGP database,
and categorized with the following thresholds: IQ > 70
normal, 50 < IQ < 70 mild intellectual disability, and IQ <
50 severe intellectual disability.
Clinical reports from the ASD patients were examined

for missing values, and clinical features with more than
70% information were retained for the analysis. To
minimize missing value imputation bias, individuals with
missing values above this threshold for more than two
clinical features were also excluded. Completeness of each
clinical feature is reported in Table S1 (Supplementary
File 1). Missing values were imputed using the mis-
sForest31 R package that implements the Random Forest32

algorithm, a decision tree-based supervised machine-
learning method. Imputation error was assessed using the
normalized global Proportion of Falsely Classification
(PFC), and the missing value imputation error was 0.12.

Clustering analysis of ASD clinical data
To focus on core domains of ASD symptoms, verbal

skills, disease severity, adaptive behavior, and intellectual
levels, which strongly condition prognosis, were selected
for further analysis. Verbal status was obtained from the
ADI-R, ASD severity scored from the ADOS, adaptive
functioning from the VABS, using its three subdomains,
and a performance IQ category from the IQ assessment
contributed by participating sites to the AGP database.
Other IQ domains had too many missing values to be
used. The Agglomerative Hierarchical Clustering (AHC)33

method was used to identify independent phenotypic
subgroups from the selected clinical features. Correlations
between clinical features were assessed using the Pearson
method, and features with a correlation value of >0.75
were considered correlated. The Gower34 metric was used
to calculate the distance matrix from the patient’s clinical
data. To normalize the effect of highly correlated variables
on clustering, the weight for correlated variables (VABS
subscales of socialisation, communication, and daily living
skills) was reduced to half during distance matrix calcula-
tion. To identify phenotypic subgroups, the AHC method
using Ward235 criteria was applied to the distance matrix.
To assess the contributions of each clinical feature in

defining the clusters, we excluded one feature at a time,
re-performed the clustering, and observed the changes in
Silhouette values of both clusters. For this purpose, we
selected Silhouette value as an evaluation metric because
it was also used to define outliers in clinical data. A
decrease in the Silhouette value of a cluster after removing
one feature indicates its importance in defining this
cluster and vice versa.

Goodness of clustering assessment
A Silhouette method36 was employed to estimate the

goodness of the clustering results. The Silhouette value
for each individual shows how well the individual is
clustered, and ranges from −1 to 1, with individuals
scoring below 0 considered as wrongly clustered. In
addition, the Silhouette value for each cluster was derived,
and clusters with Silhouette value of >0.25 were con-
sidered as true clusters. Bootstrapping with 1000 itera-
tions was used to measure the stability of clusters, where a
boot mean value above 0.85 corresponds to stable clus-
ters. All clustering analysis was performed in R environ-
ment, using Cluster37 and FPC packages.

Functional enrichment analysis
Genotyping and CNV calling methods for the AGP ASD

subjects (N= 2446) were previously described25. CNVs
called by any two algorithms (high-confidence CNVs) and
above 30 kb in size were retained for further analysis. To
screen for rare CNVs (<1% in control population), CNV
frequencies in control populations were estimated using the
genotypes from the studies by Sheikh et al.38

(N= 1320) and Cooper et al.39 (N= 8329), identified using
the same genotyping platform25. Control genotypes were
obtained from the Database of Genomic Variants (DGV)40.
To focus CNV selection on variants spanning brain-

expressed genes, avoiding a priori hypotheses from ASD
candidate gene assumptions, an extensive list comprising
15585 brain-expressed genes was obtained from Parikshak
et al.41. The brain-expressed gene list was prepared from
brain RNA-seq data, collected at 13 different develop-
mental stages, including genes expressed during the early
brain developmental phase. The full criteria and para-
meters used to define the brain-expressed gene list were
previously described41.
The g:Profiler42 tool was employed to identify biological

processes enriched for brain-expressed genes spanned by
rare CNVs in ASD individuals. g:Profiler implements a
hypergeometric test to estimate the statistical significance
of enriched biological processes, followed by multiple
corrections for the tested hypotheses using the
Benjamini–Hochberg procedure. g:Profiler uses Gene
Ontology (GO) data to find the biological annotations for
input genes.
The GO tool contains a Directed Acyclic Graph (DAG)

structure with a clear hierarchical parent-to-child rela-
tionship between GO terms. Because of this DAG struc-
ture, functional enrichment analysis can result in
redundant GO terms, which may lead to high correlations
between GO terms. To minimize the correlations between
GO terms, the Revigo43 tool was employed to redundant
GO results. Revigo uses the methods of semantic simi-
larity to measure similarities between GO terms. The
SimRel44 method was used to calculate similarities
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between GO terms, and terms with a similarity score of
>0.7 were grouped.

Feature importance assessment
The mean decrease in the accuracy of the Random Forest

algorithm was used to compute the importance score of
each disrupted biological process for categorizing ASD
subjects into defined phenotypic clusters. A stratified ten-
fold cross-validation quantifies the importance of all fea-
tures. The importance score of all disrupted biological
processes was recorded at each fold. A final importance
score for each biological process was calculated by aver-
aging their importance score values across all the ten folds.
Random Forest was implemented using randomdForst R
package45.

Classifier training and cross-validation
A machine-learning binary classification method was

employed to predict ASD phenotypic groups, previously
defined by the clustering analysis, from biological pro-
cesses disrupted by rare CNVs. The specific method used
was the Naive Bayes classifier46 (Table S4, Supplementary
File 1). The method was implemented in the klaR R
package, with default parameters. Precision, recall, speci-
ficity, and F score were used as evaluation measures. To
train and test the classifier, a stratified fivefold cross-
validation approach was applied, in which data were first
split into five equal subsets with equal class probabilities;
the classifier was trained on any four subsets, and the
remaining subset was used as the test set. This process
was repeated five times, and each time a different subset
was used as the test set. For each repetition, the model
performance was estimated, and the mean values for
precision, recall, specificity, and F score were reported.
The classifier was trained on patient’s data by using the
“more severe” cluster as the positive class and the “less
severe” cluster as the negative class.
The information content (IC) from each individual

represents the level of specificity of biological process
disruption, and was derived by summing the IC values of
all the biological processes disrupted in each individual.
IC is a numerical value that describes the specificity of a
GO term by using its position in the GO DAG structure.

Results
Identification of ASD clusters defined by clinical
phenotype
A total of 1817 ASD subjects from the AGP were

retained for analysis after assessment of missing values in
clinical features. Agglomerative hierarchical clustering
analysis of clinical observations from these patients initi-
ally identified two phenotypically independent clusters.
To minimize the phenotypic complexity and define the
most stable and cohesive clusters, weakly clustered

individuals with a Silhouette value <0.300 (representing a
balance between the number of individuals lost and
goodness of clustering) were excluded from the clustering
analysis. After removal of weakly or wrongly clustered
individuals, cluster 1 contained 903 ASD cases, while
cluster 2 comprised 494 patients (Table 1). Elimination of
the loosely clustered individuals resulted in more stable
and cohesive clusters, with high values for cluster stability,
and reduced the average distance between the two indi-
viduals in a cluster (Table 1). Overall, the cluster valida-
tion through the Silhouette method and bootstrapping
showed that both clusters were true and consistent.

Clinical interpretations of the clusters
All clinical measures differed significantly between the

two clusters, as shown in Table 2. Cluster 1 (Supple-
mentary File 1: black circles in Fig. S1) includes a higher
number of individuals, who generally exhibited a milder
clinical phenotype, while Cluster 2 (Supplementary File 1:
red triangles in Fig. S1) included a higher percentage of
subjects with severe dysfunction. All individuals in Cluster
1 were verbal according to the ADI-R, while Cluster 2
included only nonverbal cases. The mean age of ADI-R
assessment was 7.7 years, an age when verbal status is
generally well established. Furthermore, the mean age of
individuals in Cluster 1 (mean age 8.02) and Cluster 2
(mean age 7.01) did not significantly differ.
For all VABS subdomains, roughly half of the subjects in

Cluster 1 were in the normal range; conversely, over 97% of
individuals belonging to Cluster 2 showed dysfunctional
adaptive behavior. Consistent with the other clinical mea-
sures, over 96% of cases from Cluster 1, but less than one-
third in Cluster 2, scored at the normal level in perfor-
mance IQ, while a much higher percentage of ASD cases
from Cluster 2 than from Cluster 1 presented with a per-
formance IQ in the range of severe intellectual disability.
Regarding the ADOS severity score, ~14% of the indi-

viduals in Cluster 1 were assigned to the milder category
of the ADOS severity score (“Non-spectrum” for ADOS,
but scoring positive for “Autism” in the ADI-R, and
therefore classified in the AGP “Spectrum” phenotypic

Table 1 Clustering validation, after removal of weakly
clustered individuals.

Cluster validation measures Cluster 1 Cluster 2

Cluster size (N) 903 494

Average distance between two patients 0.235 0.231

Silhouette value 0.567 0.579

Average Silhouette of both clusters 0.571

Cluster stability 0.998 0.996
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class, see “Methods”). Conversely, none of the individuals
in Cluster 2 scored in this category. On the other hand, a
significantly higher percentage of cases in Cluster 2
(20.65%) than individuals in Cluster 1 (7.09%) scored in
the intermediate ASD severity category. It is noteworthy
that both clusters show a similarly high percentage of
individuals scoring in the “Autism” ADOS severity cate-
gory. This is not surprising since this broad category
(scores ranging from 6 to 10) comprises all subjects
classified in the Strict AGP phenotype class, but also a
large proportion of individuals in the AGP Broad phe-
notype class. The “Autism” ADOS severity score therefore
targets a subset of the study population that can be quite
heterogeneous in phenotypic presentation. Corroborating
this, we found that the “Autism” category of the ADOS
severity score is not significantly associated with the
clusters (χ2= 0.15, p= 0.901, df= 2), even though overall
there is a significant association of the overall ADOS
severity scores (Table 2). Both clusters were strongly
dominated by the male gender, partly because of the high
percentage of males in the dataset after the elimination of
weakly or wrongly clustered individuals. However, the
percentage of males was higher in cluster 1, representing
the milder phenotype, consistent with general observa-
tions that male-to-female ratios are higher in datasets that
comprise more high-function ASD individuals.

Analysis of the contribution of each clinical feature in
defining clusters showed that the main contributor was the
ADI-R verbal status variable (Supplementary File 1: Table
S2). The VABS subscales had a strong effect on Cluster 1,
but a modest role in defining Cluster 2. Performance IQ
also contributed more to Cluster 1, whereas for Cluster 2 it
had the least effect. The ADOS severity score did not have
a major role in defining either cluster, as indicated by the
similar high percentage of subjects scoring within the
range of “Autism” in the ADOS severity scale in both
clusters. Similarly, gender was not an important con-
tributor to the definition of either cluster.

Disrupted biological processes from brain-expressed
genes targeted by rare CNVs
CNVs (N= 129,754) identified in 2446 subjects with

ASD were filtered to select rare, high-confidence CNVs,
over 30 kb in size and that contained complete or partial
brain-expressed gene sequences. The selected high-con-
fidence, rare CNVs (N= 12,683) disrupted 4025 brain-
expressed genes in 2414 subjects with ASD (86.8% males
and 13.2% females).
Phenotypic cluster and rare CNV data were complete

for 1357 individuals with ASD, and available for integra-
tion. Functional enrichment analysis of rare CNVs tar-
geting brain-expressed genes (N= 2738) in 1357 patients

Table 2 Clusters 1 and 2 statistics for each clinical measure.

Clinical measure Clinically defined categories Cluster 1

N (%)

Cluster 2

N (%)

p value

ADI-R verbal status ADI-R-nonverbal 0 (0) 494 (100) <0.00001a

ADI-R-verbal 903 (100) 0 (0)

ADOS severity score ADOS severity score Autism (score 6–10) 714 (79.07) 392 (79.35) <0.00001b

ADOS severity score ASD (score 4–5) 64 (7.09) 102 (20.65)

ADOS severity score Non-spectrum (score 1–3) 125 (13.84) 0 (0)

VABS communication Dysfunctional VABS communication (score ≤ 70) 307 (34) 493 (99.8) <0.00001a

Normal VABS communication (score > 70) 596 (66) 1 (0.2)

VABS daily living skills Dysfunctional VABS daily living skills (score ≤ 70) 478 (52.94) 484 (97.98) <0.00001b

Normal VABS daily living skills (score > 70) 425 (47.07) 10 (2.02)

VABS socialization Dysfunctional VABS socialization (score ≤ 70) 497 (55.04) 490 (99.19) <0.00001a

Normal VABS socialization (score > 70) 406 (44.96) 4 (0.81)

Performance IQ Scale Severe disability (score < 50) 2 (0.22) 218 (44.13) <0.00001b

Moderate disability (score ≥ 50 and ≤ 70) 31 (3.43) 125 (25.3)

Normal ability (score > 70) 870 (96.35) 151 (30.57)

Gender Male 830 (91.92) 417 (84.41) 0.000015b

Female 73 (8.08) 77 (15.59)

aFisher’s exact test.
bChi-square test.
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identified 17 statistically significant biological processes
(Supplementary File 1: Table S3). g:Profiler did not
recognize 187 genes from the input list.
The redundancy of GO terms in functional enrichment

analysis, caused by overlapping annotations in ancestor
and descendent terms in the DAG structure of GO, was
reduced by grouping the terms that had a semantic
similarity score greater than 0.7 (Supplementary File 1:
Table S3). The Revigo tool used to reduce redundancy did
not recognize one biological process (Plasma membrane-
bounded cell projection organization). After redundancy
reduction, 16 biological processes remained (Table 3),
with the Calcium-dependent cell–cell adhesion via plasma
membrane cell adhesion molecules biological process
merged with Homophilic cell adhesion via plasma mem-
brane adhesion molecules (similarity score= 0.76). The
most significant biological process identified in this
dataset was Homophilic cell adhesion via plasma mem-
brane adhesion molecules, which includes 53 brain-

expressed genes disrupted by the selected CNVs. The
ten most significant biological processes were related to
cell adhesion and cellular organization, and also
included nervous system development and protein
polyubiquitination (Table 3). Moreover, two significant
biological processes were related to behavior and
cognition.

Biological process importance for prediction of ASD
clinical phenotype
The enriched biological processes and phenotypic

cluster information for ASD cases were combined in a
matrix to assess the predictive value of the biological
processes for categorization in one of the two phenotypic
clusters, broadly characterized by a milder and a more
severe phenotypic presentation. The 57 individuals, con-
taining both rare CNV and cluster information that did
not present any enriched biological process, were exclu-
ded, so further analysis comprised 1300 ASD patients.
Table 4 shows the ranking in importance of disrupted

biological processes for categorization of subjects into
ASD phenotypic clusters, computed using the Random
Forest importance score function. The importance of each
biological process was calculated using the mean decrease
in accuracy, computed by permuting each biological
process. The feature importance analysis using Random
Forest, which was trained and tested using a stratified
tenfold cross-validation over the integrated dataset,
revealed positive values for all features, indicating that all
of the biological processes are positively contributing for
classification. The most important biological process for
the classification was Regulation of cellular component
organization, with a mean decrease in accuracy of 0.052.
The most significantly enriched biological process in the
overall ASD dataset, Homophilic cell adhesion via plasma
membrane adhesion molecules, was ranked at position 14,
indicating that it is not a top contributor to phenotypic
categorization of ASD subjects into the phenotypic clus-
ters, in this population.

Predicting clinical phenotype from the biological
processes disrupted by rare CNVs in ASD patients
The machine-learning classifier was trained and tested

using phenotypic clustering information and the 15 bio-
logical processes inferred from rare CNVs targeting brain-
expressed genes in ASD patients. The classifier was
trained with the assumption that ASD subjects with a
more dysfunctional clinical phenotype, subgrouped in
Cluster 2, would present a different pattern of disrupted
biological processes from the individuals, with a milder
expression of ASD phenotype in Cluster 1.
The classifier trained on data from 1300 patients did not

perform well in predicting the more dysfunctional clinical
phenotype from disrupted biological processes (Table 5),

Table 3 Statistically significant enriched biological
processes for CNVs spanning brain-expressed genes
(N= 2738).

Biological processes Enriched

genes (N)

FDR p value

Homophilic cell adhesion via plasma-

membrane adhesion molecules

53 6.30E–09

Cell–cell adhesion via plasma-

membrane adhesion molecules

66 1.70E–07

Cellular component organization or

biogenesis

944 5.70E–05

Cellular component organization 915 7.00E–05

Cellular component biogenesis 475 0.00066

Cellular component assembly 434 0.00177

Nervous system development 363 0.00215

Organelle organization 562 0.00475

Protein polyubiquitination 64 0.00592

Cell projection organization 231 0.00836

Cellular localization 418 0.0091

Single-organism behavior 83 0.0196

Regulation of cellular component

organization

364 0.0257

Plasma-membrane-bounded cell

projection organization

223 0.0282

Cognition 56 0.0364

Single-organism organelle

organization

263 0.044

FDR false discovery rate.
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with scores indicating a low accuracy of the predictive
model.
To further dissect the information available, the biolo-

gical process IC for each individual was calculated, by
summing the IC values for all the biological processes
disrupted in that individual. ASD subjects in the first IC
quantile (N= 325) had the highest IC scores, while ASD
cases belonging to the fourth quantile (N= 326) con-
tained the lowest IC scores. The performance of the Naive
Bayes classifier improved when only ASD subjects with

higher IC were selected for analysis. Analysis of the group
of individuals with the highest IC (first quantile) resulted
in a higher predictability of ASD clinical outcome (Table
5). The classifier trained and tested on individuals from
the first two (first and second) and first three (first, sec-
ond, and third) quantiles also performed better than the
classifier designed by using the whole dataset of clusters
and biological processes (Table 5). The Naive Bayes
classifier was thus able to make reasonably good predic-
tions of ASD severity, but only for a subset of ASD
individuals with higher IC. This indicates that improved
GO information, as well as larger datasets with more GO
information available, are needed to usefully integrate
clinical and biological data.

Discussion
In spite of the enormous volume of genetic information

generated by genomic approaches in the past decade, the
diagnosis of ASD patients is still solely based on neuro-
developmental assessment. The results of many genomic
tests, including CNV arrays and clinical exomes, still leave
about 80% of the cases without any explanation regarding
the biological pathways underlying their disease and their
personal clinical presentation, with strong implications
for adequate therapy.
In this study, we developed a novel integrative approach

to predict ASD phenotypes from biological processes
defined by genetic alterations. Overall, our approach
sought to exploit multidimensional clinical measures to
define subgroups of ASD patients presenting similar
clinical profiles, and then to identify the biological pro-
cesses disrupted by CNVs that might predict these more
homogeneous clinical patterns. For the sake of eventual
clinical utility, we chose clinical measures with well-
established relevance and frequently used in clinical set-
tings, but established no other restrictions. Further, we
did not set any a priori hypothesis for gene selection,
besides being expressed in the brain.
The clustering of clinical data from ASD cases resulted

in two subgroups that were clearly distinguishable in
terms of severity of phenotype, defined by multiple
clinically relevant measures including verbal status, ASD
severity, adaptive function, and cognitive ability. The
identification of only two clusters for the clinical

Table 4 Importance of each biological process from
random forest in classifying ASD subjects into defined
phenotypic clusters.

Random

Forest rank

Biological process Mean decrease

in accuracy

1 Regulation of cellular component

organization

0.052

2 Cell projection organization 0.025

3 Cellular component assembly 0.025

4 Single-organism behavior 0.020

5 Organelle organization 0.018

6 Single-organism organelle

organization

0.017

7 Cellular component biogenesis 0.014

8 Cognition 0.013

9 Nervous system development 0.010

10 Cellular localization 0.009

11 Cellular component organization 0.006

12 Protein polyubiquitination 0.005

13 Homophilic cell adhesion via

plasma-membrane adhesion

molecules

0.005

14 Cell adhesion via plasma-

membrane adhesion molecules

0.005

15 Cellular component organization

or biogenesis

0.003

Table 5 Naive Bayes performance in predicting the severe phenotype of ASD.

Data used for classification N Precision Recall Specificity F score

All ASD cases 1300 0.221 0.379 0.655 0.279

ASD cases from the first quantile with the highest IC 325 0.816 0.389 0.699 0.526

ASD cases from the first and second quantiles of IC 649 0.23 0.384 0.65 0.284

ASD cases from the first three quantiles of IC 974 0.29 0.389 0.672 0.329
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phenotype, with an important proportion of individuals in
the AGP dataset that could not be adequately clustered,
was expected, as it reflects the high clinical heterogeneity
of ASD. The identification of these two subgroups was in
line with previous results by Veatch et al.19, who also
identified two clusters differing in severity using two
independent population samples, including the Autism
Genetic Resource Exchange (AGRE) and also the AGP
dataset, and several phenotypic measures in common with
our study. While clinical variables were not fully coin-
cidental between the two studies, we confirmed that the
verbal status, ADOS-based severity, VABS-based com-
munication, socialization, and daily living skills, as well as
gender, were all significantly different between clusters.
We further noted an unequal contribution of each clinical
measure to the definition of the clusters, with verbal
status the main contributor and the ADOS severity score
a low contributor for both clusters, while Performance IQ
was mainly important for Cluster 1.
The larger Cluster 1 was characterized by a generally

milder phenotype, with all individuals being verbal, a large
proportion in the normal IQ range, and significantly
higher numbers of subjects scoring better in adaptive
behavior subscales. Cluster 1 also showed a higher male-
to-female ratio, as expected given the general observation
that higher-functioning ASD subgroups have a larger
proportion of males. The smaller Cluster 2 included only
nonverbal subjects, and had a higher percentage of sub-
jects with a more dysfunctional phenotype in terms of
adaptive behavior, as well as lower IQ scores. Because
cognitive ability is such an important variable for prog-
nosis, we included performance IQ as a clinical variable,
in spite of the limitations related to the heterogeneity of
IQ measurement tools used for patient assessment by
AGP-contributing sites. For the AGP dataset, an effort
was previously made to rationalize the multiple tests used,
and cognitive level was established using a categorical
classification provided by AGP sites in three categories,
namely severe intellectual disability, mild intellectual
disability, and normal IQ, for verbal, performance, and
full-scale IQ scores. Limitations were also introduced by
the high proportion of missing data; given the adopted
control of the validity of imputation procedures, only
performance IQ met the criteria for reliable imputation,
so only this measure was used.
Because our main goal was to improve the power for

phenotypic subgroup prediction by genetically defined
biological processes, we focused on obtaining compact
and stable clusters by using strict criteria for cluster sta-
bility to assess the goodness of clustering, at the expense
of population sample dimension. As expected, the weakly
clustered individuals tended to have more divergent
scores across clinical measures (data not shown), and
therefore were more difficult to cluster with high

confidence. It is intriguing that a higher proportion of
females than males was removed, suggesting that this
divergence of scores is more frequent in girls. This
observation generally supports recent debates on the
lower adequateness of assessment criteria to the female
autism phenotype47.
Previous clustering studies have been able to identify

multiple phenotypic clusters in populations of individuals
with autism19–22, using different datasets and various
study designs with specific goals. Besides the above-
mentioned study by Veatch et al.19, conducted in the
AGRE and AGP populations, Hu and Steinberg22 also
analyzed nearly 2000 individuals from the AGRE dataset,
selecting 123 ADI-R items for clustering analysis, and
defining four different subgroups for association analysis
of gene expression profiles. Other studies explored dif-
ferent phenotypes, like developmental trajectories at an
early stage19, or used different study designs to analyze
severity gradients within subgroups20. The variability in
the number of clusters reported in these previous studies
is likely explained by the phenotypes used, for instance the
analysis of one primary instrument as opposed to multi-
dimensional phenotypic measures; by the study design,
e.g., the inclusion criteria for the study set, which might be
broader, or else focus on subjects fulfilling strict criteria or
high IQ, and by sample size. Given the heterogeneity of
the ASD phenotype, the sample size of a study is likely
crucial, as in small samples overenrichment of a specific
group or strata may be more likely, and inflated effect
sizes will restrict replication in other datasets48. Lom-
bardo et al.49 previously described a simulation analysis to
illustrate the issues related to small sample size effect and
effect size inflation, which indicated that sample sizes
above 1000 subjects could provide a correct estimation of
true effect sizes. In this study, clustering analysis of a
larger sample (N= 1397) yielded two phenotypically dis-
tinct subgroups, reinforcing the previous definition of two
clusters by Veatch et al.19 in two large datasets (AGRE and
the AGP), and using overlapping phenotypic measures,
and the need of larger sample sizes for meaningful
outcomes.
Other types of phenotypic measures have also been used

for parsing heterogeneous datasets into clinically and/or
biologically meaningful subgroups, and contribute to
better designed and more personalized interventions. For
instance, Lombardo et al.23 analyzed two independent
datasets with and without ASD for the ability to read
emotions and mental states in the eye region of the face
using the RMET. The authors identified five and four
distinct profile subgroups in patients and typically devel-
oping (TD) controls, respectively, and showed that within
ASD, three subgroups were clearly impaired, while two
showed results comparable to TD controls, supporting
the notion of a continuum of impairments with typical
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behavior. Another interesting study carried out agglom-
erative hierarchical clustering to partition neuroanato-
mical data from ASD subjects into three subgroups,
relating to functional networks involved in processes
compromised in ASD, like social cognition and interac-
tions and communication24. Structural mapping to sub-
groups was associated with clinical variables (IQ, ADOS
severity), showing differential ADOS severity with pre-
dictive value. Finally, another data-driven approach, the
Similarity Network Fusion (SNF) method, was employed
to integrate neuroimaging, social cognitive, neurocogni-
tive, and demographic data across several neuropsychia-
tric disorders and unaffected subjects, identifying four
subgroups with distinct neurocognitive and social circuit
profiles50. These studies go beyond accepted nosology
definitions to identify altered neurobiological circuits that
can be targeted for specific treatment according to brain
dysfunction.
To test the hypothesis that phenotypic subgroups have

specific underlying pathological mechanisms, we sought
to identify the biological processes enriched in the gene
sets disrupted by rare CNVs detected in the AGP dataset.
The functional enrichment analysis conducted in this
study was independent of any prior assumptions or
weighting criteria of genes relative to ASD risk. To make
functional enrichment analysis hypothesis-free and to let
the data speak, we screened for CNVs disrupting any
brain-expressed genes. The objective was to obtain a
complete picture of the convergence of rare CNVs, tar-
geting any brain-expressed genes, into biological pro-
cesses relevant for brain function.
The biological processes identified in the functional

enrichment analysis showed an overlap with putative core
biological mechanisms of ASD defined by previous stu-
dies. For example, 363 brain genes spanned by rare CNVs
were enriched in neurodevelopment biological process,
and 56 genes were associated with cognition process.
Enrichment of nervous system development and cogni-
tion processes in ASD has been previously reported by
studies using different approaches, including tran-
scriptome analysis and co-expression networks15, and is
supported by the function of genes most consistently
implicated in ASD, like PTEN, RELN, SYNGAP1, ANK2,
SCN2A, and SHANK351. Noh et al. analysis of de novo
CNVs spanning ASD genes also implicated cognitive
processes, and showed a convergence in cellular compo-
nent organization or biogenesis, cellular component
assembly, and organelle organization biological pro-
cesses16. Other studies implicated cell adhesion processes
in ASD as important components of synapse formation
and function52,53. Dysregulation of polyubiquitination was
also in line with previous studies reporting an excess of
variants in genes involved in ubiquitination processes,
which regulate neurogenesis, neuronal migration, and

synapse formation, and are thus essential for brain
development54–57.
This biological heterogeneity parallels the extensive

phenotypic heterogeneity that characterizes ASD. For this
reason, we sought to identify the biological processes
underlying the more homogeneous phenotypic subgroups
defined by the clusters. The Random Forest algorithm was
used to assess the importance of each enriched biological
process in discriminating the two ASD phenotype sub-
groups. Feature importance analysis showed that all the
biological processes contributed positively to the classifi-
cation of ASD severity. However, the feature importance
ranking was different from the significance ranking of
enriched biological processes. Despite their relevance for
ASD, the top three statistically significant biological pro-
cesses identified by functional enrichment analysis were
least important for the classification of subjects into the
phenotypic milder and more dysfunctional subgroups.
These findings support the concept that the integration of
datasets with multidisciplinary information, including
genomic and clinical data, is necessary to discover the
biological mechanisms that lead to specific clusters of
symptoms.
The Naive Bayes classifier was able to make useful

predictions of ASD phenotypic subgroups from disrupted
biological processes, but only for a subset of individuals
for whom annotations had higher information content for
the biological processes defined by their CNVs. Currently,
GO contains more than 40,000 biological concepts, which
are rapidly evolving with the increasing knowledge of
biological phenomena, and with our ability to structure
this knowledge. Therefore, it is expected that the perfor-
mance of the proposed classifier will improve with the
progress in GO annotations.
Given the high clinical heterogeneity of ASD, clustering

of individuals according to a multidimensional phenotype
will result in subgroups with more homogeneous clinical
patterns, and for whom the causes of this disease are more
likely to have the same underlying biological mechanism.
The clustering of individuals according to multi-
dimensional clinical symptoms per se is likely to have
implications for prognosis and outcomes, as concurrent
symptoms may have a synergistic effect on disease pro-
gression, and may thus also help guide clinical practice
and intervention. However, thus far this perspective has
been insufficiently explored, and not enough datasets are
yet available with detailed clinical information that can be
merged for large-scale analysis. The alterations in diag-
nostic criteria over time, and the changes in versions of
instruments like the ADI-R and the ADOS, create
important challenges for data merging across population
samples, which are needed so that sufficient statistical
power is achieved for definite conclusions. This study is
clear in this limitation, as the number of subjects with
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important missing data in multiple clinical features was
high in the AGP dataset, reducing analytical power. The
next research step will necessarily have to involve over-
coming limited clinical information and merging chal-
lenges between available datasets, like AGRE and the
Simons Foundation Autism Research Initiative (SFARI),
so that models established for biological predictions can
be useful in clinical settings. On the other hand, while
genomic information gets easier and cheaper to collect,
improvements are also necessary regarding GO annota-
tions, as a large number of subjects with phenotypic
subgroup data did not have sufficient GO information
content to be useful for classifier predictions.

Conclusion
Overall, the present approach is proof of concept that

genotype–phenotype correlations can be established in
ASD, and that biological processes can predict multi-
dimensional clinical phenotypes. Importantly, it highlights
the usefulness of machine learning approaches that take
advantage of multidimensional measures for the con-
struction of more homogeneous clinical profiles. It further
stresses the need to overcome the limitations of analyzing
individual gene variants in favor of considering biological
processes disrupted by a heterogeneous set of gene var-
iants. The results stress two major requisites for transla-
tion of genomic information into useful clinical
applications: that study datasets include detailed and
complete clinical information, and that databases con-
taining biological process information are rigorously and
extensively curated. Overall, the methodology can be
generalized to other datasets, including the clustering and
classifier steps, provided that the necessary adaptations to
data characteristics are considered. Identification of bio-
logical processes for specific clinical subgroups will be
important to discover physiological targets for pharma-
cological therapy that can be efficient for subgroups of
patients. This strategy can equally become very useful in
clinical settings, for predicting outcomes and planning
interventions for subgroups of patients whose specific
patterns of clinical presentation are defined by the genes
disrupted by specific genetic variants.
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