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PREFACE 

 

 
This thesis is divided into six chapters, including this one: 

Chapter 1 

This is an introductory chapter that addresses the background, rationale and relevance of the study 

as well as the proposed aim and objectives. The general outline and structure of the thesis 

concludes this chapter.  

Chapter 2 

This chapter comprises of a comprehensive review on prostate cancer, its epidemiology, symptoms 

and treatment. It also covers details on the Androgen Receptor, its structure and function, 

castration-resistant prostate cancer (CRPC) and its mechanism. Recent studies into CBP/P300 as 

a potential drug target are also discussed in the later part. 

                                                                                                                                   

 Chapter 3 

This chapter conceptualizes computer-aided drug design by discussing a various molecular 

modeling and molecular dynamic techniques and applications. The computational tools needed to 

investigate comparative enzymatic structural/conformational characteristics as well as methods 

used to analyze binding affinity are elucidated upon.  
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Chapter 4 

(Published work- this chapter is presented in the required format of the journal and is the 

final version of the accepted manuscript) 

This chapter entitled, “exploring the role of Asp1116 in selective Drug targeting of CREB-cAMP- 

responsive element-binding protein Implicated in Prostate Cancer” presents Asp 1116 as the 

culprit behind the selective targeting of Y08197 at the bromodomain active site using molecular 

dynamic simulation. MM/PBSA further revealed a similar inhibitory effect between Y08197 and 

an FDA-drug, CPI-637. Findings also showed the selective affinity of Y08197 to CBP while being 

compared to another bromodomain, BRPF1. This article has been published in Combinatorial 

Chemistry and High Throughput Screening 

Chapter 5 

(Submitted manuscript- this chapter is presented in the required format of the journal and 

is a final version as the submitted manuscript)  

This chapter is titled “Update and Potential Opportunities in CBP [cyclic adenosine 

monophosphate (cAMP) response element-binding protein (CREB)-binding protein] Research 

using Computational Techniques”, a review manuscript expounding the functions and interactions 

of the CREB-binding protein in diseases especially cancer. Various computational researches 

further prove its potency as a therapeutic target as stated in this review. This project un-doubtfully 

emphasizes and encourages the spotlight on CREB-binding protein for continuous drug target. 

Chapter 6 

This is the final chapter that proposes future work and concluding remarks. 
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ABSTRACT 
 

 
Prostate cancer has evolved over the years despite various treatment and therapy. One recent threat of the 

prostate cancer is the Castration- Resistant Prostate Cancer (CRPC). The CRPC is an advanced form of 

prostate cancer. Despite therapies involving chemical, surgical or hormonal treatment, the cancer cells in 

CRPC have been discovered to continue growth and development at an alarming rate. This forms the basis 

for this research. One novel drug (Y08197) aimed towards CBRB-binding protein was reported to have 

anti- cancer properties and therapeutic effect on CRPC. Their research based on in vivo and in vitro 

experiments, revealed CREB-binding protein as a therapeutic target. This study majored in a search for 

the culprit behind this miracle. We used molecular dynamics simulation to gain insights into the 

mechanistic and selective targeting of the novel drug as well as its similar inhibitory effect to an FDA 

drug (CPI-637). Also, since little is known about the structural and inhibitory properties of CREB-binding 

protein, we also commenced a review study to look into its inhibitory history. The use of computational 

techniques such as molecular modeling, molecular docking, virtual screening protocols and molecular 

dynamics allows the evaluation and assessment of potential leads compounds. These in-silico techniques 

as stated above are cost-effective and efficient in research and pivot to fast track drug discovery process. 

Herein, we used molecular dynamics simulation to gain insights into the mechanistic and selective 

targeting of Y08197 at the bromodomain active site. Molecular Mechanics/ Poisson-Boltzmann Surface 

Area (MM/PBSA) analysis revealed a similar inhibitory effect between Y08197 and CPI-637. 

Furthermore, in exploring the selective affinity of Y08197 towards CBP in combination with 

Bromodomain and PHD finger-containing protein 1(BRPF1), our result highlighted Asp1116 as the 

‘culprit’ residue responsible for this selective targeting. Conclusively, the implementation of the 

information extracted in this study, can be replicated in future structure based CBP inhibitors and 

pharmacological research implicated in carcinogenesis. 
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CHAPTER ONE 

1.1 BACKGROUND AND RATIONALE TO STUDY 

The incidence of prostate cancer has been at its peak in the past few decades, with millions 

being diagnosed yearly with it. It is a significant health concern accompanied by excellent 

research in the search for treatments. Although Prostate cancer is extensively prevalent in older 

adults above 70years of age, it is the second most recurring and fifth lethal cancer in the world 

today [1, 2]. Most American men are at higher risk; hence the American cancer society predicts 

about 174 650 new cases and 31 620 deaths in 2019. Despite great success from current 

research, a five-year survival rate has been established with patients treated from prostate 

cancer [3, 4]. 

The primary cause of prostate cancer has not been identified yet; however, just like every other 

cancer cell, its onset begins with abnormal cell growth and division in the prostate gland [3]. 

Since the 1990s, the anatomy of the prostate gland, which is a sized walnut organ in males only 

responsible majorly to produce semen in sperm, has been studied. Typically, the prostate 

functions with the biosynthesis of androgens produced within the testicles. Many inhibitors 

such as cyproterone acetate, flutamide, nilutamide, bicalutulamide and enzalutamide, 

developed towards the treatment of prostate cancer aimed at the blockage of the androgens to 

its receptors, Androgen Receptor (AR). In other cases, castration of the testes is adopted to 

inhibit androgen biosynthesis. However, it is discovered that after the intake of these drugs, the 

cancer cells seem to develop a "backdoor pathway" for the continuation of androgen supply 

via intratumoral synthesis. In this case, the tumor developed is referred to as "castration-

resistant prostate cancer (CRPC). Therefore, drugs that can target the intra-tumoral androgen 

biosynthesis offer the most promise. 
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Studies by Penning 2014, clearly reports the redundancy of the intra-tumoral androgen 

biosynthesis pathway, further expatiating that blocking or targeting one enzyme might result 

in a by-cut of that pathway to another, hence making the drug ineffective [5]. Although scientist 

has thought to combine drugs targeting multiple pathways and an anti-androgen to increase 

effectiveness, drug resistance continues to develop.  

Critical insight into the molecular function of c-AMP response element- binding protein (CREB)- 

binding protein (CBP) bromodomain protein in the transcriptional activity of the prostate cancer 

cell, launch a new therapeutic strategy for developing drug targets. It turns out that CBP/P300 

has been implicated in the activation of androgens and plays an oncogenic role in prostate 

cancer [6–11]. To further juxtapose this point, a small novel inhibitor (GNE-049), was 

developed to target CBP/P300 bromodomain in vitro and in vivo and the following results were 

obtained [12]: 

• CBP/P300 is necessary for AR target gene expression 

• CBP/P300 is involved in androgen response 

• When CBP/P300 is targeted, the co-activation of the AR function is impaired. 

• CBP/P300 shows antitumor activities in vivo. 

It is on these bases that many novel inhibitors are developed to target CBP/P300 in the 

treatment of CRPC [13]. 

One promising inhibitor is Y08197, a novel and selective CBP/P300 bromodomain inhibitor 

recently report to exhibit high selectivity for CBP/P300 over other bromodomains and 

effectively inhibit AR-regulation genes as well as induce a G0/G1 phase arrest and apoptosis 

in 22Rv1 prostate cancer cells [14]. Although the paper covers the alpha screen assay, thermal 

stability shift assay (TSA), and statistical analysis, yet no in-silico experiment was revealed, 

moreover the reason for this selectivity was not discussed. 
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The effectiveness of the drug discovery process can be attributed to the breakthrough in 

computer-aided drug design. Its methods and software resources enable the fast track of drug 

discovery and mechanics [15, 16]. Its therefore not surprising that its effective use of these 

computational techniques would shed more light on intriguing questions from the novel 

CBP/P300 inhibitor, Y08197. These computational techniques include molecular modeling 

and docking [17, 18] virtual screening [19] identification of pharmacophoric hot spots, and 

molecular dynamic simulations [20] allows millions of compounds to be screened hence 

obtaining a lead target with the best binding pose. Moreover, the dynamics of interaction 

between the protein and ligand are observed, and data plots are obtained [21] [22]. With this in 

view, the concept of "shooting in the dark" is eliminated and thereby reducing the drug 

discovery timeline. 

 

1.2 AIMS AND OBJECTIVES FOR THIS STUDY 

This thesis's primary purpose is to burrow deep to view the specificity of inhibition of Y08197 

against CBP while observing the ligand specificity of the compounds test against CBP and 

BRPF1, another bromodomain but of lowest affinity to Y08197 with the aid of computational 

studies. 

In achieving this, outlined are the following objectives: 

1. To create a concise route map to investigate the binding affinity of Y08197 against CBP 

compared to BRPF1 by: 

1.1. Obtaining the crystalized structure of CBP and BRPF1 from the protein data bank 

1.2. Modifying missing residues and deleting co-crystallized molecules with the aid of 
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a modeler. 

1.3. Drawing out the 2-D structure of the ligand (Y08197) and (CPI-627) with the aid 

of Marvin Sketch suite. 

1.4. Optimizing the ligands for further molecular docking with the aid of Avogadro 

software 

1.5. Docking the ligands into the binding pockets of the protein target to observe 

binding pose energies (Autodock Vina). 

2. To investigate the proposed binding pose of interaction between Y08197 and the 

bromodomains (CBP and BRPF1) as well as CPI-627 against CBP. This is achieved 

by: 

2.1. Performing about 200ns molecular simulation on the following systems: apo-CBP, 

apo-BRPF1, CBP-Y08197, BRPF1-Y08197, and CBP- CPI-637 (AMBER). 

2.2. Performing post molecular dynamic analysis utilizing a set of proposed parameters 

specific to the binding site to evaluate its simulations. 

2.3. Implementing per-residue energy decomposition analysis on all systems based on 

the Molecular Mechanics/ GB Area Surface Method (MM/GBSA) approach to identify 

the amino acid residues which form the highest contributions to the overall binding free 

energy. 
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1.3 NOVELTY AND SIGNIFICANCE TO THIS STUDY 

The progression of prostate cancer to its advanced level, castration-resistant prostate cancer 

(CRPC), raises demand in research for treatment [23]. It has been reported that one in four men 

diagnosed with prostate cancer eventually dies of the diseases [24]. Despite much drug therapy, 

the puzzle remains "what pathway in the androgen backdoor synthesis to target that would 

once-off inhibit the growth of prostate cancer cells in CRPC patient?" Hence, the search for 

novel compounds that could effectively target proteins and enzymes. 

The treatment of Castration-resistant prostate cancer (CRPC) continues to be an evolving 

aspect for research, especially with the aid of computer-aided drug design. However, before 

this, the breakthrough in the treatment of CRPC has been from in vitro studies. Recent studies 

have shown that targeting the CBP bromodomain of the AR transcriptional activity pathway 

could propose a positive therapeutically outcome that could inhibit the growth of the cancer 

cells [6–11]In a recent publication by lee Ji [25], it was reported that the novel compound 

Y08197 effectively targets CBP/P300, a co-activator of the AR transcriptional pathway, and 

inhibits the growth of cancer cells. In this study, we used in silico techniques to verify its 

selective inhibitory properties and decipher the main reason for this inhibition. This will aid in 

understanding in depth the mechanism of action of this potential drug against its binding target, 

thereby enhancing treatment. This is significant to current research because it could totally 

eradicate the cancer cells in the patients and save lives globally. 

To this end, the work presented in this thesis remains fundamental for the advancement of 

research toward targeted drug design/delivery against castration-resistant prostate cancer. 
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CHAPTER TWO 

2.1 BACKGROUND ON PROSTATE CANCER 

2.1.1 INTRODUCTION 

Living things are made up of billions of cells that grow, divide, and die under-regulated cellular 

conditions. Cells of every part of the human body have various functions and are well organized 

into tissues, tissues into organs and organs into the system. This emphasizes the significance 

of the cell in that every disease can be traced to a cellular problem. In the case of cancer, the 

cells begin to grow and divide out of control. This cellular madness could begin from one cell 

dividing into two, two into four, four into eight, to mention a few. Not long is a tumour formed. 

Tumours can be either benign or malignant, depending on how dangerous it becomes. A 

malignant tumour can migrate via blood vessels to other parts of the body, a process called 

metastasis. When cancer cells begin to multiply, they impair cellular function and hence cause 

death [1–3].  

According to WHO, cancer is a cardinal cause of death globally, with statistics of 7.4million 

deaths in 2004. The American cancer society recently predicted 1.7million new cases 

expected to be diagnosed in 2019. From ancient Egypt to date, the disease "cancer and its 

treatment" has been studied. From 1991 to 2016, there has been a considerable decline in 

cancer deaths due to research progression, especially on the four most common cancer types; 

lung, colorectal, breast, and prostate [4]. Figure 2.1 shows an estimated cancer rate report 

from 1930 till 2010. 
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Figure 2.1: An estimated cancer rate report [5] 

 

Of all the cancers, prostate cancer is most frequent in males and second death leading cancer 

in the world today [6, 7]. Abnormal proliferation that occurs in the prostate gland is an onset 

for prostate cancer. The prostate gland is a vital organ in males, culpable for semen production, 

which lies in the prostate fluid [8]. The male anatomy diagram as seen in figure 2.2, shows the 

various organ associated with the male reproductive system. The prostate fluid contains an 

enzyme that functions to keep the semen liquid and serves as a measuring stick to diagnose 

diseases associated with the prostate gland. The enzyme is called a prostate-specific antigen. 

The prostate is found anterior to the rectum, below the bladder [9].  

 



 11 

 

Figure 2.2 The male anatomy of the prostate gland [7] 

 

Prostate cancer begins with a tumour in the prostate gland. Treatment usually depends on the 

extent of tumour growth. Various therapies have been adopted over the years that include 

radiotherapy, chemotherapy, immunotherapy, hormonal therapy, cryotherapy, and surgery. 

 

2.1.2 EPIDEMIOLOGY 

Prostate cancer, most notably as found only in males, is the second most recurring and fifth 

lethal cancer in the world today. For some reason not yet apparent, 74% of prostate cancer 

cases are most prevalent in blacks than in whites. The American cancer society estimated that 

164 690 new cases would be diagnosed in 2018, 174 650 new cases newly diagnosed as well 

as 31 620 deaths in 2019 will occur. Of course, prostate cancer is when the prostate gland in 

males begins to divide rapidly out of control [6].  
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2.1.3 SYMPTOMS 

The symptoms of prostate cancer could be like other male associated diseases. However, 

prostate cancer is confirmed via biopsy. Increased levels of PSA indicate the presence of 

prostate cancer. Prostate cancer symptoms m diagnosed as well as 31 620 deaths in 2019 will 

occur. Of course, prostate cancer is when the prostate gland in males begins to divide rapidly 

out of ay include the following [10]: 

• Frequent urination or frequent urge to urinate 

• Blood in urine 

• Pain during urination 

• Pain during sex/ejaculation 

• Edema 

• Back pain 

• Weight loss 

• Unstable bowel 

  

2.1.4 TREATMENT 

Treatment varies in administration depending on the stage of cancer progression. Most of the 

treatment therapies aim at the AR pathway. Androgen-deprivation remains the mechanism of 

treatment against prostate cancer. These treatments include: 

• Radiotherapy:  

• Immunotherapy: 

• Chemotherapy: 

• Cryotherapy: 
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• Surgery: 

• Hormonal therapy: 

 

2.2 THE ANDROGEN RECEPTOR 

The androgen receptor is primarily responsible for mediating the function of the prostate gland, 

and hence it is a biomarker to the onset of prostate cancer. The androgen receptor belongs to 

the steroid hormone receptor family that intracellular transduces signals from steroids such as 

testosterone and dihydrotestosterone activating series of cascade reactions. Androgens are 

produced in the testis, ovaries, and adrenal glands; however, the significant androgens in males 

are testosterone, dihydrotestosterone, and androstenedione [11–13]. 

Research shows that the prostate cancer cells require androgen throughout its stages for 

development, but especially at its early stage; hence AR continues to be a major bull's eye for 

therapy. Testosterone produced by the brain's pituitary gland, supervised by luteinizing 

hormone (LH), is concerted to dihydrotestosterone (DHT) by 5α-reductase. The 

dihydrotestosterone equally enters the cell. However, DHT fastens directly to AR with affinity 

twice that of testosterone and dissociates five times faster. Androgen response element 

(ARE)s in the nucleus is stimulated as receptor dimers are initiated. Transcription of genes 

follows which promotes prostate-specific antigen (PSA), growth, and survival ultimately [14–

17]. The figure 2.3 explains the reaction followed by the entering of testoterone in the cell. 

Testoterone is reduced to DHT by a cytochrome P450 called 5α-reductase. DHT binds to 

AR and results in a conformational change. AR enters the nucleus and activates AREs in 

the gene promoter region which sponsors transcription and gene expression such as the 

FADS1 gene. 
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Figure 2.3 Androgen signalling pathway [8] 

 

2.2.1 STRUCTURE 

The AR structure consists of four (4) distinctive and functional domains, which are the N-

terminal domain (NTD), a highly safeguarded deoxyribonucleic acid binding domain (DBD) 

and the ligand-binding domain (LBD). These domains are well defined in the AR. However, 

the hinge region holds part of a bipartite ligand-dependent nuclear localization signal (NLS) 

for the transport of AR in the nucleus. The hinge region is found in between the LBD and the 

DBD [18, 19]: 
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• The N-terminal domain: this domain is predominantly active. Research shows that it is 

capable of activating transcription with or without androgen binding. Activation 

function (AF-1), a transcription activation function, is found in the NTD that is 

maximally needed for AR activity. 

 

• The deoxyribonucleic acid domain (DBD): the DBD is the most conserved in the AR. 

There are two zinc-fingers in it that enhances the binding of DNA sequences to the 

enhancer and promoter region of the AR-regulated genes. When this happens, the NTD 

and the LBD is activated to read the signal. Next, the transcription genes are either 

repressed or stimulated. 

 

• The ligand-binding domain (LBD): as the name implies, the LBD promotes the binding 

of testosterone and DHT, defining the AR signalling pathway. Like the NTD, the LBD 

houses the Activation function (AF-2), which is vital for defining the co-regulator 

binding site. It also mediates straightforward interactions between the LBD and NTD.  

 

 

• The hinge region: the hinge region contains a short sequence of amino acid that links 

the DBD and the LBD. Majorly the hinge region contains bipartite ligand-dependent 

nuclear localization signal required for AR signal transport from the cytoplasm to the 

nucleus. 
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2.2.2 FUNCTION 

The function of the AR cuts across male maturity from puberty to old age. Majorly, the AR 

mediates the actions of androgens (testosterone and DHT) and initiating a cascade of reactions 

in the nucleus that involves growth and survival. However, other functions include [20, 21]: 

1. AR is actively involved in the development and differentiation of urogenital structures 

2. The initiation and maintenance of sperms are carried out by the AR 

3. AR drives the differentiation and regulation of prostate function such as prostate-

specific antigen 

4. AR mediates the production and regulation of genes that are vital for cell cycle 

5. AR is associated with healthy prostate development as well as in prostate cancer 

progression. 

 

2.3 Castration-Resistant Prostate Cancer (CRPC) 

 CRPC, Castration-resistant prostate cancer, is referred to as a recently discovered stage of 

prostate cancer developed when AR remains active despite the blockage of androgen 

production by castration. In other words, these prostate cancer tumors continue to express AR-

related genes hence fostering the growth of the cancer cells. It is also called hormone-refractory 

or androgen-independent prostate cancer. Several research types indicate that this could be a 

result of mutations in the AR, increased production of androgens via alternative pathways, or 

de novo synthesis of androgens by the cancer cells themselves. However, the molecular 

mechanism of this reactivation of the AR is still not clear [18] [22]. The below figure 2.4 further 

explains the effect of the presence and absence of AR in both normal prostate and in prostate 

cancer cells. Clearly, the absence of AR mediates methylation, translation of genes such as the 
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EGF, IL-6, IGF-1 which results in hormone refractory prostate cancer (HRPC). 

 

Figure 2.4 Mechanism of AR signalling both in healthy prostate and CRPC [23] 

 

 2.3.1 MECHANISM  

Research progresses on the mechanism of CRPC. Some have thought stimulation begins from 

a shoot up of AR expression despite castration, mutations in the AR or AR-related genes or 

activation of signal transduction pathways due to the binding of weak androgens produced 

either from the adrenals or intracellular prostate cancer cells itself (intratumoral androgen 

production) [24]. The prostate cancer cells utilize various mechanisms of the AR signalling 

pathway for its growth as seen in Figure 2.5 which continues to be possible drug target for 

research. 

In 1998, Christopher Gregory et al. published a paper stating clearly that the cause of CRPC is 
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an increase in the expression of androgen-related genes. The result of his experiment on 

castrated mice showed the expression of genes such as prostate-specific antigen (PSA) and 

human kallikrein-2 after 12 days despite the absence of testicular androgen [25]. It is also 

essential to note that although androgen continues in circulation at a superficial level of less 

than 50 ng/dL26 yet in CPRC, it reported activating AR amplification and expression [26]. 

Androgen deprivation has been the traditional treatment of prostate cancer; however, the advent 

of CRPC has kick-started various other treatment therapies to ensure its management.  

 

 

Figure 2.5 Possible mechanisms of AR transcriptional activity in CRPC [27] 
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2.4 CREB-BINDING PROTEIN (CBP) AS A POTENTIAL DRUG 

TARGET 

The CREB (cAMP response element-binding protein) binding protein (CBP) is a lysine 

acetyltransferase protein capable of functioning as transcriptional coactivators in human cells 

[28]. Studies indicate that the interaction of CBP/p300 and the NTD of the androgen receptor 

could ensure the stability of the AR-AREs complex as well as the N/C interactions [29]. 

Likewise, CBP/p300 is highly expressed in advanced PCa, hence the deprivation of androgens 

results in the regulation of the proteins upstream [30]. Since CBP/p300 are active coactivators 

of AR activity, by aiming at this interaction and therefore targeting the BRD of CBP, AR 

signalling, and progression could be blocked. In vivo and in vitro studies have juxtaposed the 

fact that small molecule inhibitor of CBP/p300 shows the ability to suppress PCa growth and 

development [31, 32]. This formed the basis of this research in our study. More details about 

the CBP and its inhibition are explained in chapter four.  
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CHAPTER THREE 

3.1 INTRODUCTION  

Computational chemistry mixes up theoretical chemistry with computer science. It is branch-

off chemistry that involves the use of computational programs and tools to solve chemical 

problems. It is also called molecular modelling. Mostly, chemical and biological systems are 

modelled to understand simulation at the atomic level. Computational chemistry has been 

adopted in pharmaceutical chemistry, and it enhances better design and discovery of drugs 

targeting various diseases. Many a time, novel compounds are searched, optimized, and docked 

into target pockets of protein to obtain binding pose as well as observe their interactions via 

MD simulations [1, 2]. These computational methods include databases, quantitative structure-

activity relationships (QSAR), virtual screening, and homology modelling, and molecular 

dynamics simulation [3] effectively increase drug design process [4]. These tools offer a 

promising future in drug discovery research [5].  

 

There are two molecular modelling principles (Figure 3.1) that can be used to establish the 

energetics and conformational changes to the drug-target system:  

 

• Quantum Mechanics 

• Molecular Mechanics 
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Figure 3.1. Application of quantum and molecular mechanics (prepared by the author) 

Hence, this chapter begins with the description of quantum and molecular mechanics 

principles, where the Schrödinger's equation, born – Oppenheimer, Potential energy surface 

(PES) and force fields, will be discussed—followed by details on molecular dynamic 

simulations, the post-analysis parameters as well as the binding energies calculations. Other 

molecular modelling tools used in this study are also explained. 

 

3.2 Principles of Quantum Mechanics 

The principle of quantum mechanics is based on the theory of atoms and the subatomic, the 

structure and properties of elementary particles. It is an aspect of physics on which most of the 

physics theories are based on, from newton's theory of matter to Einstein's theory of gravity. 
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The discovery of quantum mechanics cannot be attributed to one man; as matters of fact, 

scientists believe the theory was not derived but postulated. A. Einstein, M. Planck, L. Broglie, 

N. Bohr, and W. Heisenberg, E. Schrodinger, M. Born, P. Dirac, and others all contributed to 

the postulation of the quantum theory. 

The principle tends to explain the behaviour of particles such as an electron, proton, neutron, 

molecules as well as photons. Quantum mechanics cuts across the field of physics, chemistry, 

and biology, as seen in Figure.3.1, creating a better understanding of life and its complexity 

[6].  

 

3.2.1  Schrödinger Equation 

In mathematical physics, the Schrödinger equation can be represented as:  

𝑯𝑷 = 𝑻 + 𝑷𝑬                         Eq. 1 

Where: 

 Hamiltonian operator (HP), equals the summation of KE, kinetic energy 

 potential energy is PE 

The operator is T 

Also, HP could mean the below equation:  

𝑯 = [ − 
𝒉𝟐

𝟖𝝅𝟐
∑

𝟏

𝒎𝒋𝒊 (
𝝏𝟐

𝝏𝒙𝟐 +  
𝝏𝟐

𝝏𝒚𝟐 +  
𝝏𝟐

𝝏𝒛𝟐 )] + ∑ ∑ (
𝒆𝒊𝒆𝒊

𝒓𝒊𝒋
)<𝒋𝒊     Eq. 2 

From the above equation, it can be understood that Schrödinger's equation plays by Hamilton's 
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law of motion. In general, by using the Schrödinger's equation, particles expressed in wave 

function are calculated in quantum mechanics [7]. The Schrodinger equation can be time-

dependent or time- independent [8] however, in the time-dependent equation is mostly adopted 

in computational chemistry. Totalling the kinetic energy plus the potential energy equals the 

Hamiltonian operator, as seen in the above two equations.  

 

3.2.2 Born-Oppenheimer approximation  

The born-Oppenheimer approximation elucidates that nuclear motion of a molecule and how 

it interferes with its electronic motion. This implies that the molecular energy is dependent on 

the nuclear coordinates and electron coordinates, which defines the molecular geometry. Born-

Oppenheimer approximation believes that the nuclei are 1800 times heavier than the electron, 

and hence depending on the position of the nuclei, the electron can experience a Hamiltonian 

[9]. Schrodinger's equation is simplified, and the total internal energy of a molecule can be 

calculated using his equation. 

𝑻𝒆𝒍𝒆𝒄 =  [ − 
𝒉𝟐

𝟖𝝅𝟐𝒎
 ∑ (

𝝏𝟐

𝝏𝒙𝟐 +  
𝝏𝟐

𝝏𝒚𝟐 +  
𝝏𝟐

𝝏𝒛𝟐)]𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏𝒔
𝒊     Eq. 3 

Here, for fixed nuclei electrons, the Schrödinger's equation is:  

𝑯𝒆𝒍𝒆𝒄𝝋𝒆𝒍𝒆𝒄(𝒓, 𝑹) =  𝑬𝒆𝒇𝒇 (𝑹)𝝋𝒆𝒍𝒆𝒄(𝒓, 𝑹)     Eq. 4 
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3.2.3 Potential energy surface 

The Potential energy surface (PES) is produced when the born- Oppenheimer's approximation 

operates by calculating the mathematical problem for a fixed position. Figure 3.2 shows a 

typical two-dimensional model of potential energy surface showing all stationary points and 

their resultant gradient. This is a deeper aspect of Born-Oppenheimer approximation. A PES is 

simply a plot that shows the interaction between the molecular energy and the molecular 

geometry [10]. On the PES, the most vital points are stationary points. It is on these points that 

the internal coordinates that produce the gradient are zero [11].  

 

 

Figure 3.2. A two-dimensional potential energy surface model [12] 
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3.3 Principles of Molecular Mechanics 

Molecular mechanics functions based on models used to mimic molecular structures such as 

DNA, RNA, and Proteins to predict molecular energy depending on the conformation taken up 

by the molecule. These make use of force field methods to conduct conformational analysis, 

such as the relative energies of the transitional state equilibrium between conformers [2]. The 

atoms in a molecular system interact via covalent bonds, creating rotations and angles. These 

atomic rotation and interaction aid molecular mechanics to be understood concerning 

identifying cellular structure, response, and function. Also, in disease prognosis and treatment, 

MM calculation aids research [13].  

 

 

Figure 3.3 Methods of molecular mechanics (prepared by author). Where; A = Electrostatic 

attraction, B = Van der Waals, C = Angle bending, D = Dihedral rotation, E = Bond stretching 
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Molecular mechanics rests on three main principles; the principle of thermodynamic 

hypothesis, additively, and transferability. Since the native state of the protein is usually stable, 

the principle of the thermodynamic hypothesis states that the minimum potential energy 

corresponds to the native state of the protein. Additively sums up the individual function such 

as electrostatic, van-der-Waals, bond stretching, bond angle fluctuations, and rotations to give 

the total potential function, Ep as seen in Figure 3.3 showing the interactions among all 

functions. 

𝑬𝒑
𝒍𝒐𝒄𝒂𝒍  =  ∑ 𝑽𝑩𝑳 +  ∑ 𝑽𝑩𝑨 +  ∑ 𝑽𝑫𝑨𝒅𝒊𝒉𝒆𝒅𝒓𝒂𝒍𝒂𝒏𝒈𝒍𝒆𝒔𝒃𝒐𝒏𝒅𝒔    Eq. 5 

Where VBL, VBA, VDA are bond-length, bond-angle, and dihedral potentials, respectively. 

The transferability hypothesis implies that there is not a difference in the properties of the atoms 

in large molecules as they are in their small test form i.e., the energies derived when the bond 

length and angles are studied as small molecules can be transferred to their more extensive and 

complex molecules without modification. With this in view, complex molecules can be studied 

by studying them in their small atomic states [14].  

Despite the enormous advantages embedded in MM, some setbacks have been identified. 

Firstly, MM is unable to give information about bond formation and bond breaking. Secondly, 

MM only tells us about the equilibrium geometries and equilibrium conformation and nothing 

more. Lastly, its inability to predict chemical reaction poses a major setback [6] [15,16]. 
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3.4 The Force Field 

The force field defines the molecular conformation energy of a protein in a mathematical 

function. Although there are several force fields developed, the widely used ones such as 

AMBER [17], GROMAS [18], CHARMM [19], and OPLS [20] are applied to biomolecule 

simulations. These force fields can also be used to support protein modelling when 

incorporated with carbohydrates, lipids, nucleic acids, and small molecules. With these force 

fields, molecular mechanics and dynamic calculations are achieved. There are different 

parameters in the force fields; thus, they must be adjusted to give results of the forces acting 

within a molecule [21, 22]. In our study, we used Generalized AMBER Force Field (GAFF) to 

express the ligands in terms of its parameters. A detailed discussion about the AMBER force 

field is provided in chapter 4.  

 

3.5 Molecular Dynamics Simulations 

The atoms of the protein or complex (i.e., the protein-ligand complex) consistently produce 

motions that generate a trajectory of all the particles as a function of time. This explains the 

molecular dynamic simulation of a system [23]. Although there are other simulation methods 

such as Monte Carlo and Brownian dynamics, Molecular dynamics is the most broadly used 

and specific type of simulation methods. While the former depends on generating large 

numbers of configurations through probabilities moving from one state to the other in a specific 

statistical manner and simulation of large macromolecules respectively, the latter can calculate 

individual molecules in a system. Furthermore, different dynamic quantities that cannot be 

calculated by Monte Carlo is done by MD [23, 24]. With the use of MD simulations, the test 

for experimental observations of molecules such as proteins is carried out to check whether its 
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prediction matches theoretical models. Newton's equation is used in molecular dynamics 

calculations, which stands based on MM principles [25]. The end-result is represented as a 

trajectory which explains the particle position and velocity varies with time [26]. Hence, this 

is obtained by the force determinant (𝐹𝑖) for every particle as a function of time. Conclusively, 

Ft equals the negative gradient of PE.  

𝑭𝑰  =  − 
𝑼

𝒓𝒊
                     Eq. 6 

Where, The potential function (U),  The position of the particle (r),  

According to the Laws of Motion by Newton,  

 The acceleration of a particle (a) is calculated as follows:  

𝒂𝒊  =  − 
𝑭𝒊

𝒎𝒊
          Eq. 7  

The integral of acceleration due to change in time together with the change in position gives 

the integral of velocity due to change in time. This is called the velocity change, and it is 

denoted as:  

𝒅𝒗 =  ∫ 𝒂𝒅𝒕,         Eq. 8 

𝒅𝒓 =  ∫ 𝒗𝒅𝒕,         Eq. 9 

 

Conclusively, the velocity (v) and momenta (p) of the given atom defines the kinetic energy of 

the particle, which is:  

𝑲(𝒗)  =  
𝟏

𝟐
∑ 𝒎𝒊𝒗𝒊

𝑵
𝒊=𝟏         Eq. 10 
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𝑲(𝒑)  =  
𝟏

𝟐
∑

𝑷𝒊
𝟐

𝒎𝒊

𝒏
𝒊=𝟏          Eq. 11 

 

Where,  The given Cartesian coordinates are q, The atoms momenta are p, The potential energy 

function is U (q) vi (t) i.e., velocity is the first derivatives of the positions over a change in 

time:  

𝑽𝒊(𝒕)  =  
𝒅

𝒅𝒕
𝒒𝒊(𝒕)         Eq. 12 

 

Here 𝑞𝑖 (𝑡) is the positions of the atom at a specific time, t. These atoms move to new positions 

based on the first atom coordinates of a specific system, contemporary velocity, and position 

of the particle at a given time t. Hence, the conformations newly obtained and the system's 

temperature changes concerning the kinetic energy in direct proportionality. 

 

3.6 System Stability of Simulated Systems 

        3.6.1 System Convergence  

System convergence is a word used to explain the dynamics of proteins that occur during the 

unfolding of the protein structure based on bond types and bond angle vibrations. This process 

is necessary for an MD trajectory to be accurate and reproducible; hence the simulated system 

must show a state of equilibrium indicating a state of final energetics and conformational 

plateau [27]. The protein-ligand system, therefore, depicts an energetically stable conformation 

at this plateau.  
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        3.6.2 Root Mean Square Deviation (RMSD)  

RMSD may be calculated by the spatial differentiation between two static structures of the 

same trajectory. The RMSD of a trajectory is denoted as:  

𝑹𝑴𝑺𝑫 =  (
∑ (𝑹𝒊− 𝑹𝟏

𝟎)
𝟐

𝑵

𝑵
)

𝟏

𝟐

        Eq. 14 

Where: N depicts the total of atoms in a system, Ri represents the position of the vector of the 

Cα atom of particle i is the conformational reference which is obtained by calculating after 

aligning the structure to an initial conformation (O). The least-square fitting protocol is used 

for this calculation.  

The average RMSD of a complex may be defined by taking the average structural deviation 

over the number of frames in each trajectory and can be calculated for the receptor, ligand, and 

complex within a simulated system [28]. 

 

3.6.3 Radius of Gyration (RoG)  

The radius of the system's gyration explains the root mean square distance of the atoms from 

their common centroid/center of gravity. The RoG allows for the estimation of compactness of 

a protein complex along a trajectory. The RoG of a complex may be based on the following 

reaction:  

𝒓𝟐𝒈𝒚𝒓 =  
(∑ 𝒘𝒊(𝒓𝒊−𝒓−)𝟐𝒏

𝒊=𝟏 )

∑ 𝒘𝒊
𝒏
𝒊−𝟏

       Eq. 15 
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Where: The position of the ith atom is ri.Center weight of atom I is r 

The average RoG is obtained by dividing the average with the number of frames in a trajectory 

[29]. 

 

3.7 Conformational Features of System 

        3.7.1 Root Mean Fluctuation (RMSF)  

The root mean fluctuation (RMSF) of a protein measures residue's Cα atom fluctuation based 

on the average protein structure along the system's trajectory. This extends to postulate the 

flexibility of regions of a protein based on the computed RMSF [30]. To calculate the 

standardized RMSF, the following equation is applied:  

𝒔𝑹𝑴𝑺𝑭 =  
(𝑹𝑴𝑺𝑭𝒊− 𝑹𝑴𝑺𝑭̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝝈(𝑹𝑴𝑺𝑭)
       Eq. 16 

Where: the subtraction of the average RMSF from the RMSF of the ith residue gives the 

RMSFi. When the result is divided by the RMSF's standard deviation, the resultant 

standardized RMSF is obtained.  

The above method differs from RMSD and RoG as it is computed as the total residue 

fluctuation along the trajectory and is not analysed at every frame in the trajectory.  

 

3.7.2 The Principal Component Analysis  

The principal component analysis (PCA) is a covariance-matrix-based mathematical method 

which simplifies the magnitude of the data generated from an MD simulation to comprehend 
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the correlated motions. Usually the PCA technique is measured when the displacement of the 

atom and the protein loop dynamics of a biomolecular system is to be calculated.  

The application of PCA in a MD simulation is known as "essential dynamics" as only 

fundamental motions of a data set are isolated from the millions of conformational snapshots. 

The conformational motions are then filtered from largest to smallest fluctuations and 

graphically depicted using a covariance matrix [31]. The new set of defined coordinates are 

defined as the principal components of the data set and ordered such that the first 3-4 principal 

components have similar fluctuations as observed in the trajectory [32]. 

 

3.8 Thermodynamic Calculations 

         3.8.1 The binding free-energy calculations  

The binding free energy calculation is a vital endpoint approach, which provides essential 

information regarding the binding mechanism between the enzyme and the ligand, integrating 

both enthalpy and entropic contributions. Estimation of the binding free energy leads to the 

development of various algorithms and approaches, including free energy perturbation, 

thermodynamic integration, linear interaction energy, and molecular docking calculations, to 

mention a few [33, 34]. In recent computational studies, free energy calculations have aided 

substantially. These have provided detailed knowledge about protein structure determination 

and protein-protein complexes as well as drug design [35, 36]. Molecular Mechanics/ Poisson-

Boltzmann Surface Area (MMPB-SA) and the Molecular Mechanics/Generalized Born 

Surface Area (MM/GB-SA) approaches approach are conventional methods commonly which 

is utilized for calculating the free binding energy of compounds ranging from small compounds 

called ligands to biological complex macromolecules [37, 38].  
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Both MM/GB-SA and MM/PB-SA depends on the simulations of molecular complex, i.e. 

complex of ligand and protein to calculate within a force field, the austere statistical-

mechanical binding free energy [40]. Both methods reveal approving use, which could 

represent their lack of calculations and modular nature that originates from training sets 

copulating unchanging solvation models that combines with MM calculations despite the 

abrupt changes [39]. Avid accuracy and computational effort are displayed by each of the 

approaches between the experimental scores and rigorous alchemical approximated methods. 

These could then be set side by side to replicate and justify the experimental data [40]. Both 

methods are also used to modify the free energy decomposition (FED). The FED thoroughly 

range into different groups, based on the atom groups or types of interactions generated by the 

collisions [41].  

The MM-PBSA, unlike the MM/GB-SA, employs a harder algorithm and, at the same time, 

replaces the MM/GB-SA model of electrostatics in water [42,43]. Nevertheless, the 

calculations involving protein-drug interaction such as carbohydrates [44] and nucleic acids 

[45], is more favourable with MM-GBSA than MM-PBSA [46]. Binding free- energy 

calculations is also be used to intensify virtual screening results and the docking outcome of 

therapeutics drugs [47]. Highlighting the MM/GB-SA, the binding free energy between the 

ligand and receptor is calculated as follows [48]: 

𝑮𝒃𝒊𝒏𝒅 =  𝑮𝒄𝒐𝒎𝒑𝒍𝒆𝒙 −  𝑮𝒓𝒆𝒄𝒆𝒑𝒕𝒐𝒓 −  𝑮𝒍𝒊𝒈𝒂𝒏𝒅     Eq. 17 

∆𝑮𝒃𝒊𝒏𝒅 =  ∆𝑬𝒎𝒎 +  ∆𝑮𝒈𝒃𝒔𝒂 − 𝑻𝒆𝒏𝒕𝒓𝒐𝒑𝒚     Eq. 18 

∆𝑬𝒎𝒎 =  ∆𝑬𝒊𝒏𝒕 +  ∆𝑬𝒗𝒅𝒘 +  ∆𝑬𝒆𝒆𝒍      Eq. 19 

∆𝑮𝒈𝒃𝒔𝒂 =  ∆𝑮𝒆𝒃𝒈 +  ∆𝑮𝒆𝒔𝒖𝒓𝒇       Eq. 20 



 38 

 

Where, The energy of the MM of a system in an empty space is ΔEmm, The free energy of the 

solvent is ΔGgbsa, T, entropy is TΔS, The total fused internal energy (ΔEInt) is ΔEmm, 

The polar contributions that sum up the generalized born model (ΔGegb) together with the non- 

polar contributions (ΔGesurf), is made up of the non-bonded van der Waals (ΔEvdw) and 

electrostatic (ΔEeel) also ΔGgbsa [37] [49] [ 50]. 

One advantage of the dynamic analysis of binding affinity is that it determines the inhibitory 

activity of each inhibitor approximately [51,52]. While using the Molecular 

Mechanics/Generalized Born Surface Area binding energy calculation, the actual ligand 

binding conformation can be found before the approximate value of the binding energy [53]. 

In this research, we used MM/GB-SA approach to predict the ligand-protein binding free 

energies. 

 

 

3.9 Molecular Modelling Tools used in this study 

        3.9.1 Marvin Sketch Suite 

Marvin Sketch is advanced software used primarily to draw chemical structures. These 

structures can be edited into file types such as MOL, MOL2, SDF, RXN, RDN, In Chi, CML, 

PDB, etc. other editing functions include 3D editing, 2D cleaning, and conformer generation, 

Copy and paste between different editors, Fog effect in 3D viewing mode, Creating and editing 

molecule sets (without a database), Structure annotation to mention a few. Moreover, with 

Marvin sketch, structure-based calculations can be called using the calculation plugin section 
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[54]. In this study, Marvin's sketch was used to draw out the ligand compounds and prepared 

before molecular docking. More details are discussed in chapter 4.  

 

        3.9.2 Molecular Docking 

Molecular docking regularly operates to pinpoint precise ligands-protein conformations and to 

approximately calculate the vigour of the protein-ligand interaction in structure-based drug 

design. Drug candidates or inhibitors could be recognized in the macromolecules' active site 

using docking. Examples are receptor, nucleic acid, or enzyme with identified known 

conformations [55]. The resultant binding energy complex formed by the ligand and the 

receptor is:  

𝑬𝒃𝒊𝒏𝒅𝒊𝒏𝒈 =  𝑬𝒕𝒂𝒓𝒈𝒆𝒕 +  𝑬𝒍𝒊𝒈𝒂𝒏𝒅 −  𝑬𝒕𝒂𝒓𝒈𝒆𝒕−𝒍𝒊𝒈𝒂𝒏𝒅    Eq. 21 

In recent times, many molecular docking programs have been developed for academic and 

commercial purposes [56], such as Dock [57], AutoDock [58], GOLD [59], FlexX [60], GLIDE 

[61], ICM [19], PhDOCK [62], Surflex [63], and so on. These programs could be sectioned 

into four categories based on its fragment, evolution, stochastic Monte Carlo, and the shape-

complementary methods [64]. Of each of the classifications, there is a requirement for separate 

details, for example, there are four computational steps they all share in common: (1) rigid and 

simplified body search (2) determination of the portion(s) of interest; (3) docked-structures 

modification and (4) superlative models selection, respectively [56]. Every method is ideal for 

docking problems, yet when these computational methods are combined, the reliability and 

accuracy of results are improved[65]. Docking features in two types: (1) flexible docking, (2) 

rigid docking. These complex molecules, as well as ligands, are kept unmovable and fixed in 

rigid docking; however, flexible docking is the hallmark of the complexes (macromolecule or 



 40 

ligands or both). 

Herein this study, the methods adopted for docking is the advanced version of Auto Dock, Auto 

Dock Vina [66]. The application of Molecular docking varies in different areas such as virtual 

screening which involves hit identification, drug discovery which involves lead optimization, 

biological activity predictions, binding- site identification (blind docking), structure-function 

studies, protein-protein interaction, de-orphaning of a receptor, enzymatic reaction 

mechanisms and protein engine. 
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4.0  Abstract 

The selective targeting of CREB-cAMP-responsive element-binding protein (CBP) has 

recently evolved as a vital therapeutic approach for curtailing its aberrant upregulation 

associated with the development of prostate cancer. Inhibition of CBP has therefore been 

discovered to be an important therapeutic option in androgen receptor signalling pathway 

mediated prostate cancer. Y08197, a novel selective inhibitor of CBP has shown promising 

therapeutic outcome in prostate carcinogenesis over non-selective analogues, CPI-637. Herein, 

we used molecular dynamics simulation to gain insights into the mechanistic and selective 

targeting of Y08197 at the bromodomain active site. Molecular Mechanics/ Poisson-

Boltzmann Surface Area (MM/PBSA) analysis revealed similar inhibitory effect between 

Y08197 and CPI-637. Furthermore, in exploring the selective affinity of Y08197 towards CBP 

in relative to Bromodomain and PHD finger-containing protein 1(BRPF1), our findings 

highlighted Asp1116 as the ‘culprit’ residue responsible for this selective targeting.  Upon 

binding, Asp1116 assumed a conformation that altered the architecture of the bromodomain 

active site, thereby orienting the helices around the active site in a more compacted position.  

Interestingly, in addition to some specific structural perturbations mediated by Asp1116 on the 

dynamics of CBP, our study revealed that the strong hydrogen bond interaction (N-H⋯O) 

elicited in CBP-Y08197 sequestered Y08197 tightly into the CBP bromodomain active site. 

Conclusively, the inhibition and selective pattern of Y08197 can be replicated in future 

structure-based CBP inhibitors and other bromodomain implicated in carcinogenesis. 

Keywords: CBP; BRPF1; Prostate Cancer, Y08197, Molecular Dynamic Simulation 
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4.1 Introduction 

Prostate cancer is regarded as the second most frequent and the fifth death leading cause of 

cancer in males worldwide today 1. In 2018, the International Agency for Research on Cancer 

estimated that almost 1.3million new cases of prostate cancer and 359 000 associated deaths 

will occur worldwide 1. Researches into the carcinogenesis of prostate cancer have implicated 

aberration in some proteins such as androgen receptor (AR) 2. Androgen-deprivation therapy 

has been has shown high therapeutic outcome, however, clinical progression after 2 to 3 years 

suggested an unregulated signalling of mutations or an alternatively sliced AR that is no longer 

dependent on androgen binding to effect its activation 3. This is called Castration Resistant 

Prostate Cancer (CRPC) or Androgen Independent Prostate Cancer (AIPC) or Hormone 

Refractory Prostate Cancer (HRPC) 4. Therefore, recent research is aimed towards the 

development of drug therapies that target CRPC. Due to the role AR play in the prostate 

carcinogenesis, different drugs have been developed as target against the AR 5, such as 

abiraterone 6 and the second-generation antagonists, enzalutamide 3, bicalutamide 7  and 

apalutamide 8 . Despite the successes recorded by these drugs, drug resistance still emanates, 

this necessitated continuous research into developing and design of inhibitors that can 

circumvent this (Rachel A Davey and Mathis Grossmann, 2016). Strategies designed in 

combating prostate cancer involved targeting several pathways such as androgen synthesis, 

androgen receptor splice variants, androgen receptor coactivators, PI3K-AKT pathway, WNT 

pathway, DNA repair and so on (Wank K. et al). One of such proteins that have gained attention 

in the last few years and has been regarded as a promising target is the CREB (cAMP-response 

element binding protein)- binding protein (CBP).  
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Figure 4.1: 3D crystallography structure of CBP in complex with a B-DNA (A) and Y08197 

(B). Y08197 occupying the active site of CBP (prepared by author) 

 

 

CREB-BCBP) is a bromodomain-containing protein and serves as co-activator in transcription 

during androgen signalling pathway. In 2004, Barbara Comuzzi, reported from an experiment 

conducted that not only was CBP up regulated despite the withdrawal of androgen but clearly 

stated it should be further investigated for therapeutic drug target for CRPC patients 7. Hence, 

Ling-jiao Zou recently published that targeting the bromodomain of CBP, with a selective 

inhibitor, Y08197, a novel 1-(indolizin-3-yl) ethanone derivative, inhibited the CBP 

bromodomain with an IC50 value at 100.67 ± 3.30 nM 9. Although, the experiment was carried 

out on different bromodomain, Y08197 seem to selectively inhibit CBP amidst others 9. As 

such, in this in silico studies, we aim to burrow deep to view the simulation of this reaction as 

well as observe the ligand specificity of the compounds test against CBP and BRPF1, another 

bromodomain but of lowest affinity to Y08197. 
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Figure 4.2: 2D chemical structures of Y08197 and CPI-637 

 

 

 

4.2 Materials and Methods 

4.2.1 Starting structures preparation and MD Simulation 

The starting structure of CBP and BRPF1 was obtained from Protein Data Bank. CBP with 

PDB ID (6FR0) 10 and BRPF1 with PDB ID (5MWH) 11 were retrieved. Molecules that were 

co-crystallized with the protein were deleted and missing residues were added with the aid of 

modeller 12. B3LYP/6-311++G(d,p) 13 level of Gaussian16 14 was employed to carry out ligand 

optimization. Afterwards, molecular docking was done using the optimised structures with the 

aid of UCSF Chimera 15. FF14SB module 16 17 of the AMBER forcefield was employed in 

carrying out MD simulation. The Generalized amber Force Field (GAFF) and Restrained 

Electrostatic Potential (RESP) were used in describing the atomic charges of the ligands. Leap 

variant present in Amber 14 was used for system neutralization and hydrogen atoms addition 

17. The system was kept solvated with an orthorhombic box of TIP3P water molecules 

surrounding all protein atoms at a distance of 9Å 13. System minimization was carried out firstly 

with a 2000 steps minimization using a restraint potential of 500kcal/mol. Secondly, we used 

a 1000 steps full minimization process without restrain, afterwards, the system was gradually 
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heated at a temperature of 0k to 300k at 50ps for simulation time. The system solutes are kept 

at a potential harmonic restraint of 10 kcal mol- 1Å −2 and collision frequency of 1.0 ps-1. 

Equilibration succeeded heating at an estimate of 500 ps of each system. Temperature at 300k, 

number of atoms and pressure at 1bar (isobaric-isothermal ensemble, NPT using Berendsen 

barostat) were all kept constant. The simulation time was set at 200 ns with each SHAKE 

algorithm to narrow the hydrogen atom bonds. Each step of the simulation was run for 2fs and 

an SPFP precision model was adopted. The simulations were kept at constant temperature and 

pressure (NPT), and Langevin thermostat at collision frequency of 1.ops-2. PTRAJ variant of 

Amber14 was adopted for further analysis which included root-mean-square deviation 

(RMSD), root-mean-square fluctuation (RMSF) and Radius of Gyration 18. The data plots were 

then made with ORIGIN analytical tool and visualization done using UCSF Chimera 19.  

 

4.2.2 Binding free energy estimation 

The Molecular Mechanics/ Poisson-Boltzmann Surface Area (MM/PBSA) was employed in 

the estimation of differential binding of CPI and Y08197 20. MM/PBSA is an end-point energy 

estimation used in the prediction of binding affinities of ligands and their corresponding protein 

target. MM/PBSA is mathematically described as:  

∆Gbind = Gcomplex - (Greceptor + Ginhibitor)     (1) 

∆Gbind = ∆Ggas + ∆Gsol - T∆S                    (2) 

∆Ggas = ∆Eint + ∆Eele + ∆EvdW                             (3) 

∆Gsol = ∆Gele,sol(GB) - ∆Gnp,sol                                (4) 

∆Gnp,sol = γSASA + β                                 (5) 

∆Ggas represents the total gas phase energy calculated by intermolecular energy (∆Eint), 

electrostatic energy (∆Eelel) and van der Waals energy (∆EvdW). ∆Gsol represent the solvation 

energy, T∆S represent entropy change. ∆Gele,sol(PB) describes polar desolvation energy while 

∆Gnp,sol describes the non-polar desolvation energy. γ is the surface tension proportionality 

constant and is set to 0.0072 kcal/(mol-1. Å-2), β is a constant equal to 0 and SASA is the 

solvent accessible surface area (Å2). 
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4.2.3 Energy Decomposition 

To explore the energy contribution of each residue in the active site to the with apalutamide, 

binding free energy decomposition was done. MM/PBSA methodology was explored in the 

per-residue free energy decomposition.  

 

 

4.3 Results and Discussion 

4.3.1. CBP and BRPFI perturbatory effect upon CPI-637 and Y08197 binding 

To understand the structural perturbation of CBP and BRPF1 upon CPI and Y08197 binding, 

we used Root mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and 

Radius of Gyration (RoG) to characterize the structural events in the proteins in the course of 

the simulation. In the course of the 200 ns simulation run, RMSD values of Cα atoms of CPI-

CBP, Y08197-CBP and Y08197-BRPF1 were estimated in relative to the starting structure. As 

illustrated in Fig. 3A, all the systems, attained structural stability after 20 ns. The three systems 

had similar motional movements with an average RMSD value of 0.90Å, 1.15Å and 1.05Å 

respectively. Furthermore, we also explore the conformation of the active site, this is to have 

an insight into the effect of the ligands in relative to the RMSD of the whole system. From Fig 

3B, the active site is observed to be well stable, this provided a suitable environment for the 

ligand to interact with the residues making up the active site. Furthermore, we investigated the 

stability of the ligand, although both ligands had similar motional movement and stability, CPI 

was observed to have higher stability when compared to Y08197.  
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Figure 4.3: Conformational analysis plot showing stability and atomistic motions among CBP 

(black), BRPF1 (cornflower), CPI-CBP (red), Y08197-CBP (green) and Y08197-

BRPF1(red) systems [A]. C-α RMSD plot showing the active site stability and atomistic 

motions of Y08197-CBP (black) and Y08197-BRPF1(red) [B]. Stability and atomistic motion 

plot of the ligands CPI (black) and Y08197 (red) [C]. Snapshot of the superimposed ligands 

at 50ns, 100ns, 150ns and 200ns [D]. 
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Table 4.1: The finally equilibrated values of RMSD (FE-RMSD) for each system. 

  Average RMSD (Å) 

Regions  CBP BRPF1 CPI-CBP Y08197-CBP Y08197-BRPF1  

Protein  0.87 0.86 0.90 1.15 1.05  

Active site  0.84 0.80 0.62 0.57 0.99  

 

 

4.3.2. Hydrogen Bond Analysis 

The strength of protein-ligand binding is greatly influenced by hydrogen bonds contributed by 

residues, especially those found in the active site 21. We therefore, estimated the hydrogen 

bonds of the equilibrated trajectories of the systems and computed direct hydrogen bonds 

between CPI, Y08197 and the proteins. At the final simulation step (200ns) it was observed 

that O-H⋯O in the CPI-CBP system contributed by ASN87 had occupancy of 34. The CBP-

Y08197 had two hydrogen bond interactions contributed by ASN87 and ASP35. The N-H⋯O 

of ASN87 had a higher occupancy when compared to N-H⋯O of ASP35. Furthermore, 

BRPF1-Y08197 had an extra H-bond provided by ASN81; this bond had the highest occupancy 

among the H-bond interactions found among the systems. This extra H-bond could provide an 

insight into the selective binding of Y08197 to CBP.   
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Table 4.2: Direct Hydrogen bond between CBP-CPI, CBP-Y08197 and BRPF1-Y08197 

  direct hydrogen bonds 

Complexes 
 

Donor  acceptor  
distance 

(Å) 
 

Occupancy 

(%) 

CBP-CPI 
 CPI HE NE  ARG92 N5  2.91  12.80 

 CPI HE NE  ARG92 N5  2.91  12.80 

  CPI H3 N2  ASN87 OD1  2.88  34.00 

  ASN87 HD21 ND2  CPI O1  2.90  12.30 

  CPI H20 O1  ASN87 OD1  2.78  13.00 

            
CBP-

Y08197 

 
ASN87 HD21 ND2  Y08197 O2  2.89  30.79 

  ASP35 H N  Y08197 O1  2.89  10.9 

            
BRPF1-

Y08197 

 
Y08197 H2 O2  ASN24 OD1  2.76  10.03 

  ASN81 HD21 ND2  Y08197 O4  2.85  63.00 

 

 

4.3.3. Analysis of Binding Free Energy 

MM/PBSA has found useful application in the drug design space used in the estimation of binding 

affinity between ligands and biomolecules. MM/PBSA was therefore used in the estimation of the 

total binding free energy (ΔGbind) and other energy components between Y08197/CPI and 

CBP/BRPF1. The estimated ΔGbind increases from Y08197-BRPF1 > Y08197-CBP > CPI-CBP. 

The same increasing trend was observed when the binding affinity after MD simulation was 

compared to the docking score. However, of note is that, there is no much difference in the binding 

affinity between CPI-CBP (-32.06Kcal/mol) and Y08197-CBP (-32.00Kcal/mol). This result 

agrees with the work of Zou et al., which suggested that the inhibitory effect CPI and Y08197 is 

similar. From the computed result, it was observed that van der Waals and electrostatic 

interactions promoted ligand-protein interactions, binding was disfavoured by polar solvation 

(∆Gele,sol(GB)). The nonpolar solvation (∆Gnp,sol) was also seen  

to favour the binding.   
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Table 4.3: Calculated binding Free-Energy (in kcal/mol) of the Studied Complexes. 

 

 

In order to explore the contribution of each residue present at the active site to the protein-

ligand interactions, the energy decomposition of the residues was computed as depicted in fig 

4. Leu1109, Pro1110, Leu1120, Arg1173 and Val1174 were found to be the interacting 

residues between CBP and CPI. Leu1109, Phe1110, Leu1120, Ile1122, Asn1168, Val1174 

were found to be the interacting residues between CBP and Y08197.  

 

 

 Energy  

Complexes  ∆EvdW ∆Eele ∆Ggas ∆Gele,sol(G

B) 

∆Gnonpol,so

l 
∆Gsol ∆Gbind 

Y08197-

BRPF1 
 

-36.40  

(±0.06) 

-18.04 

(±0.11) 

-54.44 

(±0.14) 

26.84 

(±0.08) 

-4.28 

(±0.01) 

26.84 

(±0.08) 

-27.60 

(±0.07) 

Y08197-

CBP 
 

-41.92 

(±0.05) 

-4.50 

(±0.09) 

-46.42 

(±0.10) 
19.70 

(±0.080) 

-5.30 

(±0.01) 

14.43 

(±0.08) 

-32.00 

(±0.05) 

CPI-637-

CBP 
 

-39.53 

(±0.06) 

-13.23 

(±0.11) 

-52.77 

(±0.12) 

25.87  

(±0.09) 

-5.16 

(±0.01) 

20.71 

(±0.09) 

-32.06 

(±0.05) 

         



 60 

Figure 4.4: Individual energy contributions of crucial site residues of CBP and BRPF1. Per-

residue decomposition plot showing energy contributions of interactive active site residues of 

CPI-CBP (A), Y08197-CBP (B) and Y08197-BRPF1 (C). 

Though ASP1116 did not contribute high van der Waals and electrostatic interaction to the 

binding between CBP and Y08197, however, as discussed above, it has a high hydrogen bond 

contribution to this binding. While, Val657, Pro658, Val662, Phe714 were the interacting 

residues with energy contribution more than -1Kcal/mol responsible for the binding between 

BRPF1 and Y08197. Zou et al., have found out that Y08197 selectively target CBP as against 

other bromodomain containing proteins 9 In order to have insight into the mechanism of this 

selective targeting, we selective targeting of Y08197 on CBP, we explore the ligand interaction 

between Y08197 and the proteins (CBP and BRPF1). Although the active sites of CBP and 

BRPF1 have some common residues. However, the extra electrostatic and van der Waals 

energy contributions provided by Val115, Asn1168, Pro1110 added to this selectivity. Most 

importantly Asp1116; as discussed in the hydrogen bond analysis, the hydrogen bond between 

N-H⋯O in Asp1116 is peculiar only to CBP (Fig 5). 
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Figure 4.5: 3D structure of the ligand interaction between CPI and CBP (A) and YO1897-CBP 

(B) highlighting the molecular interactions of key residues and reactive moieties. 

 

 

Conclusion 

The mortality rate of prostate cancer has become a major concern globally. Different 

therapeutic strategies have been targeted towards some proteins that are implicated in cancer. 

One of such proteins is the CREB-cAMP- responsive element-binding protein (CBP), which 

have gained attention in the drug design space. Y08197, a novel inhibitor that has recently been 

reported to selectively target CBP.  We explored this selective targeting and discovered that 

the Asp1116 is an important residue that facilitates this targeting. This is evidenced by the array 

of results that pointed to Asp1116 as the “chief culprit”. Asp1116, can therefore be explored in 

designing CBP inhibitors that possess more potency and perhaps less toxicity. 
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5.0 ABSTRACT 

CBP [cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-

binding protein] is one of the most researched proteins for its therapeutic function. Several 

studies have identified its vast functions and interactions with other transcription factors to 

initiate cellular signals of survival. In cancer and other diseases such as Alzheimer's, 

Rubinstein-taybi syndrome, and inflammatory diseases, CBP has been implicated and hence 

an attractive target in drug design and development.  In this review, we explore the various 

computational techniques that have been used in CBP research, furthermore we identified 

computational gaps that could be explored to facilitate the development of highly therapeutic 

CBP inhibitors. 
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5.1 INTRODUCTION 

The CREB (cyclic adenosine monophosphate (cAMP) response element-binding protein) 

Binding Protein (CBP), is a protein encoded by the CREBBP gene.  CBP is a bromodomain-

containing protein which emphasises its functionality in identifying acetylated lysine in histone 

proteins while also acting as effectors in signal associated with acetylation [1]. This class of 

protein has been reported to play a significant role in many biological and physiological 

processes, including transcription, differentiation, and apoptosis, whose activity is regulated by 

phosphorylation [1]. It’s unique structure is made up of domains that catalyses transcription 

process initiated in cell growth, gene expression and differentiation as shown in figure 1.  

 

 

 

 

Figure 5.1: CBP and its interacting domains 
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The histone acetyltransferase (HATs) domain, also part of the CREB binding protein is 

necessary for protein-protein interactions, histone and non-histone alike such as NCOA3 and 

FOXO1. In 1993, p300, a Switch/Sucrose Non-Fermentable (SWI/SNF) complexes binding 

protein family was identified, sharing similarity with CBP, with its bromodomain, HATs 

domain and the cysteine-histidine region [2]. Although, CBP are coactivators of transcription, 

they do not interact with the promoter element. Instead, they are mobilized to promoters by 

protein-protein interaction [1] [3] [4]. The CREB binding protein has a binding domain called 

the KIX (kinase inducible domain) or the CREB binding domain [3]. This CREB (cAMP-

response element-binding protein) unit within  CBP controls the rate of transcription when 

phosphorylated at Ser-133 residues through protein kinase A which triggers the transcription 

activity of CBP [5]. The transactivation domain of CREB is bipartite, which consist of a 

glutamine-rich constructive activated site called Q2 and kinase-inducible domain (KID), and 

are directly in response to gene expression [6]. Despite the phosphorylation interaction between 

cAMP-dependent PKA and CREB, it is still unknown whether phosphorylation on the amino 

acid Ser-133 elicit CREB-CBP complexation. The mechanism of interaction is still not precise, 

either direct or allosteric [5]. 

 

5.2 BROMODOMAIN: WHAT ABOUT IT? 

Wetlaufer defined protein domains as stable units of protein structure, possessing structural 

and evolutionary functions that fold autonomously [1]. Bromodomains (BRDs) are parts of a 

given protein sequence (approximately 110 amino acids) that recognizes lysine acetylation of 

N- terminal histones during gene transcription [1]. They are responsible for histone acetylation, 

chromatin remoulding, and transcription activation [7]. John Wetlaufer Tamkun first proposed 

the discovery of bromodomain-proteins while studying the drosophila gene Brahma [8]. PCAF, 
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histone acetyltransferase (HATs) KAT2B was the first 3-dimensional structure of BRD to be 

solved using NMR spectroscopy in 1999 [7]. Bromodomains are also called histone code 

readers [9] [10]. Of all the proteins in the human proteome, there are 61 BRDs, and based on 

their structure-function relationship, they are grouped into eight subfamilies [1]. These BRDs 

all have four α- helices linked by loops of different lengths (a, b, c and z) with which it interacts 

with acetylated lysine residues. These helices are coiled up in a left-handed α- helical fold. 

Between helix b and c and helix z and a, there are two loops forming a hydrophobic pocket 

[11]. The differences shown in the binding of bromodomains are due to the differences in 

sequence beyond the residues bound directly with acetyl-lysine binding [11–13] Although each 

protein is specific with its structure yet 48 of the more than 61 BRDs contain the asparagine 

residue at the acetyl-lysine binding site (KAc recognition position) while the remaining 13 have 

a tyrosine, threonine or an aspartate in the same position. The latter is called atypical BRDs 

[14]. There are eight subgroups of the BRDs classified in accordance to their amino acid 

sequence similarities as seen in figure 2 below (Classification of the different classes of BET 

Proteins).  
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Figure 5.2: Classification of the different classes of BET Proteins (prepared by the author) 

 

They are the BET family, histone acetyltransferases HATs (GCN5, PCAF), methyltransferases 

(MLL, ASH1L), ATP-dependent chromatin-remodelling complexes (BAZ1B), helicases 

(MARCA), nuclear-scaffolding proteins (PB1) and transcriptional coactivators (TRIM/TIF1, 

TAFs) transcriptional mediators (TAF1) [12]. Specific sub-groups have gained more attention 

compared to others; this is partly due to the development of inhibitors targeting BRDs. Of all 

the BRDs, the BET (bromodomain and extra-terminal family) BRDs (BRD2, BRD3, BRD4, 

and BRDT) are most researched and has over 206 PBD structures available today [12].  
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5.3 CREB- BINDING PROTEIN (CBP) 

CBP is a nuclear protein of Mr 265K that bounds to phosphorylated cAMP-regulated 

transcription factor CREB, this fusion allows CBP to function as protein kinase A-regulated 

transcriptional activator [15] [16]. Both CBP and p300, its analogous, shares a few functional 

domains in common which constitute their similarities: (1) they are BRDs which are commonly 

found in human HATs; (2) they both have domains of the three cysteine-histidine namely CH1, 

CH2, and CH3; (3) they both have the KIX domain; and (4) an ADA2-homology domain [17]. 

On a quick database check on STRING, CBP is shown to interact with the following proteins 

as shown in the figure 3.  

 

 

Fig 5.3: A database report from STRING showing the functional interactions of CREBBP with 

other proteins. 

 

Such proteins include NCOA3, TP53, NCOA1, RELA, CITED2, HIIF1A, PPARG, SUMO1 

and STAT1. Meanwhile, Intact database reports a more detailed interactions of 790 binary 



 72 

proteins. Despite the broad structural similarities, Ho Man Chan and Nicholas Thangue attest 

to the unique characteristics of CBP and p300 [18]. Also, both CBP and p300 are 

phosphorylated at the different amino acid sites; CBP is phosphorylated at serine 436, an amino 

acid absent in p300 [19] which is absent in the latter In 1996, p300 and CBP were reported to 

function as histone acetyltransferases (HATs). CBP especially was discovered to possess 

intrinsic histone acetyltransferase activity even though it lacked conserved motifs found in 

regular acetyltransferases. With this property in view, it is only direct to suggest that it 

modulates cell cycle progression. It is demonstrated to acetylate nucleosomes associated with 

PCAF [20] [21]. CBP has been shown to play a vital role in gene expression. A study reported 

CBP as a HAT capable of acetylating nuclear factor-4 (HNF-4) of liver cells at lysine residues 

inside the nuclear localization sequence [22]. CBP continues to be of great interest in the 

development and design of drugs CBP plays an extensively role at the molecular level, such 

as, cellular growth, histone acetylation, and transcription of some factors amidst other unique 

functions. For example, CBP/p300 brings about the assembly of multi-protein complexes, 

which serves as molecular scaffolds [18]. CBP, along with other transcription factors, are 

known to regulate the overall process involved in the cell, including gene transcription [23]. It 

is essential to the point that in transforming viral proteins such as E1A from adenovirus, CBP 

is a prerequisite target [24]. Also, another review suggests that CBP/p300 proteins are targets 

for adenovirus E1A oncoprotein indicating its vital role in cell cycle regulation [4]. 

Observations by Ait-Si-Ali et al. reported that HAT is involved in the cell cycle by the 

phosphorylation of CBP by cyclin-E-CDK2 in the C- terminal region of the protein hence 

stimulating HAT activity [25]. Moreover, the results indicated that E1A activates the CBP HAT 

enzyme on the binding, which then results in a conformational change in its domain, leading 

to an increased catalytic activity. CBP interacts with viral oncoproteins such as p53 to cause 

loss of cell growth or growth suppression. p53 interacts with a carboxyl-terminal region of CBP 
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and activate genes involved in DNA damage and block cellular differentiation such as p21, 

murine double minute (MDM-2), BAX and cyclin G [26] [27].  

 

5.4 CREB-BINDING PROTEIN (CBP) AND THE ONSET OF DISEASES 

CBP's function in cancer was first identified in the translocation of chromosome t(12;22) 

q(13;12) . Studies have shown that CREB is involved in all stages of tumour development, in 

addition to its being a proto-oncogene. A statistic of patients with prostate cancer, lung cancer, 

acute leukaemia, and breast cancer showed overexpression and over activation of CBP [28]. 

Also, the inhibition of cell proliferation and induction of apoptosis was observed in the 

downregulation of CBP, which suggests that it as a prospective target for cancer therapy [29]. 

Although the involvement of CBP in cancer development is not explicit yet, CBP directly 

controls genes critical to cell progression, growth, and metastasis. CBP has also been identified 

in the development of embryos and cancer [20]. In Alzheimer's disease, CBP activator 

(CREB1), together with CBP, enhances memory formation and learning [30]. However, in 

certain circumstances, increase in CREB function can also alter cognitive performance. A 

publication by Wei Tang et al., aimed to search the function of CREB1 in the onset of 

Alzheimer’s diseases (AD) [30]. The result implicated CREB1 and CBP as the culprit in the 

pathophysiology of  Alzheimer’s disease (AD), yet further research could be done on a much 

larger population to confirm these observations [30]. A research was conducted to analyse the 

function of CBP in inflammatory diseases. It turned out that few studies have been reported in 

line with rheumatoid arthritis (RA) synovial fibroblasts (SF). Results showed that the inhibition 

of CBP has an anti-inflammatory effect, while p300 showed both pro and anti-inflammatory 

functions [31].  
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5.5 VARIOUS ATTEMPT TO TARGET CBP 

Recently, Hammitzsch et al., developed a CBP inhibitor (CBP 30) to block Th17 responses in 

human autoimmune diseases. Th17 has been proven to be very vital to various human 

autoimmune diseases. In the above research, the inhibitor blocked the bromodomain of the 

coactivator CBP, showing remarkable results [32]. Although the inhibitor was tested with about 

43 bromodomain binding protein, excellent result that far exceeds even the known JQ1 (a BET 

inhibitor) was observed. In castration-resistant prostate cancer (CRPC), an advanced prostate 

cancer, CBP, and its homolog p300 are highly expressed. Given this, various therapy is aimed 

towards blocking the activity of CBP. In a recent study, YO8197, a selective inhibitor of CBP 

bromodomain was explored in terms of its antitumor activity against prostate cancer cell lines 

in vitro [33] of which further in silico studies by akinsiku et al., proved the mechanistic and 

selective targeting of Y08197 at the bromodomain site. Asp 116 was identified as the culprit 

responsible for the selective targeting [34]. Another CBP inhibitor, C646 has been investigated 

against neuroepithelial cell proliferation [35]. This study by Bai et al., further justified the 

abnormality in NE-4C cells of CBP in high glucose. With the administration of C646 to the 

diabetic induced mouse, the results indicated that the levels of acetylation were reduced. 

Conclusively, it was evident that C646 could effectively impede the increase of histone H4 

acetylation and neuro-epithelial cell proliferation [35][36]. Statistics reports that 1% of 

pregnant women are affected by diabetes and might have congenital heart disorder and neural 

tube defects (NTDs) in the child born [37]. Figure 4 shows 2D- structure of CREB-BP 

inhibitors as discussed.  
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Figure 5.4: 2D Structures of CREB inhibitors (as prepared by the author) 

 

Recent research proved that NASTRp is effective in inhibiting cancer cells via cell arrest [38]. 

Since mutant KRAS drives the activation of CAMP responsive element-binding (CREB), it is 

only appropriate to devise an inhibitor that can effectively do such through RAF/MEK/ERK 

signalling pathway inducing  apoptosis in cancer cells [39]. Compound DC_CP20, a new CBP 

BRD inhibitor, discovered through a time-resolved fluorescence energy transfer (TR-FRET)- 

based high throughput screening of about 20 000 libraries of compounds [40]. An IC50 of 

744.3nM was demonstrated when bound with the acetylated lysine of CBP BRD. Moreover, 

with the aid of molecular docking, the binding affinity was further juxtaposed, being bound 

tightly in the inner Kac-binding pocket competitively. The compound proves an inhibitory 
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property to human leukaemia MV4-11 cells at cellular levels. These promising results pose a 

further study in the development of drug therapies for CBP- related cancers [41]. Studies have 

shown the frequent occurrence of SPOP (speckle-type POZ protein), a mutated gene in primary 

prostate cancer (Pca) in about 10 to 15% range [38]. A study by Yuqian Yan et al., identified 

an unknown mutation called Q165P at the cliff of the SPOP math domain [42]. The effect of 

this mutation is that it halts the dimerization of SPOP, and consequently substrate degradation. 

Furthermore, unlike F133V, the former is highly sensitive to the known BET inhibitor, JQ1. In 

vivo and in vitro experiments carried out revealed a novel BET and CBP inhibitor, NEO2734, 

is effective against the JQ1-resistant SPOP hotspot mutant, which could proceed further to 

clinical trials for effective anti-cancer therapy against SPOP-mutated PCa patients [42].  

 

 

5.6 COMPUTER-AIDED TECHNIQUES IN STUDIES OF CREB-BINDING PROTEIN 

Over the years, traditional strategies used in drug development and design pipeline have been 

complemented with computational software and methods. These tools include; pharmacophore 

modelling, molecular docking, virtual screening, molecular dynamics (MD) simulation, 

Quantitative Structure-Activity Relationship (QSAR), and homology modelling. Computer-

aided drug design techniques have been effective over the years in finding new drugs from 

genomic and proteomic initiatives. These new techniques have effectively reduced cost and 

increased drug discovery. Molecular docking have been adopted over the years and involve 

ligand-receptor orientation to find the best conformation of fitness that would trigger a 

biological response. Some popular docking programs are FlexX [43], GOLD [44], AutoDock 

[45], GLIDE [46], DOCK [47] [48], HEX SERVER [49], Surflex [50], Patchdock [51] among 

others. 
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The importance of molecular dynamics (MD) simulation cannot be overemphasized, especially 

with its coherent contribution to the interplay between computational and experimental 

techniques. These step-by-step techniques effectively reveal the dynamic behaviour of the 

proteins at timescales intervals, the stability of the protein structure, and the ligand's binding 

interactions. Other properties such as conductivity, dipolar moment, density, thermodynamic 

parameters, entropies, amidst others. are observed [52–55]. MD simulation programs include 

CHARMM [56], NAMD [57], GROMACS [58], AMBER [59], among others. We searched 

some published papers with an emphasis on the computational methods that have been adopted 

in CREB research. A paper by Woo Lee published in 2015 reports the anti-cancer properties 

of Naphthol AS-TR phosphate (NASTRp), a novel CREB-CBP Complex inhibitor with many 

functions. Among all compounds, NASTRp showed the best effect, especially in biological 

assays. In this research, computational tools were employed in conducting a database search of 

compounds with possible chemical properties. Using the DBslnfilter, compounds were 

screened under properties such as no 3D coordinates, mixtures, isotopes, Molecular Weight 

<100, or Molecular Weight >500, metals. In this structural database are approximately 600,000 

compounds that also contain about 50 chemical databases [60]. These compounds are usually 

downloaded in the SDF file format [61], followed by a database search command investigation 

on each compound to identify any two-dimensional similarity. Compounds were screened 

using PubChem, after which a four-processor MIPS R16000 Silicon Graphics Tezro was used 

to conduct modelling calculations. The results were then combined into 3-D SLNs. All 

Compounds not containing carboxylates, phosphates, and sulfonamides were eliminated using 

the hit list manager. The PDB ID: IKDX represents the KIX domain coordinates. This result 

from taking the average of the NMR structures with  the phoenix Elbow [62] the resultant 

produces the KIX and NASTRp coordinates. The docking calculations were obtained using 

HEX 6.3 [63]. The result indicated that out of the calculations of the top ten docking scores, 
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NASTRp was shown to have the best binding score. Although molecular simulation wasn't 

carried out to accompany the experiment yet, the results indicate NASTRp as a potential anti-

cancer drug. Researchers over the years have shown great interest in investigating CBP as a 

potential drug target, as shown in some few works demonstrated in advanced MD simulations.  

 

 

Table 5.1: A table showing the various drugs experimentally designed to target CBP for 

different diseases with necessary details. 

S/N DRUGS EXPERIMENTS DISESAES 

TARGETED 

RESULTS REF 

01 CBP 30 In vitro Human autoimmune 

diseases  

Inhibited IL-17A 

secretion via Th cells 

from healthy donors 

[32] 

02 Y08197 In vitro Castration 

Resistance Prostrate 

Cancer 

Affected the 

downstream signalling 

transduction, 

inhibiting expression 

of AR-related genes 

[33] 

03 C646 In vitro 

In vivo 

Neuroepithelial 

Cell Proliferation 

Rescued increased 

H4k5/k8/k12/k16 

acetylation levels 

[35] 

04 NASTRp 

(Naphthol 

AS-TR 

phosphate) 

In vitro Lung 

adenocarcinoma 

Inhibited oncogenic 

cells via cell cycle 

arrest and also 

initiated 

downregulations of 

Atg5-12 and Atg7  

[39] 

05 Compound 

DC_ CP20 

In silico Human Leukaemia Inhibited the 

proliferation of human 

leukaemia MV4-11 

cells and 

downregulated the 

[40] 
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Md simulation was conducted to decipher the mechanism of the selective inhibitor CBP30 

against its target CBP/p300 bromodomain. It was discovered that the specific residue for CBP, 

Arg1173/1137, was accountable for the selective binding to CBP30 through hydrogen bond 

interactions and cation–π. In order to prove the result, four (4) system was set up; the apo-CBP, 

CBP-CBP30 complex, apo- p300, p300-CBP30 complex. Observing the interactions, CBP30 

ring B formed a contact collision with the Arg1173 side-chain of Apo-CBP, meanwhile 

forming a favourable cation–π between the holo-CBP. For as long as 93% simulation time, the 

cation–π interaction was preserved. CBP, both contact and cation–π interaction reflected in 

apo-p300 and CBP 30, yet another H-bond is seen between CBP30 O3 and Arg1137 NH1 

atoms of holo-p300. With these results, a greater understanding is known of the mechanism of 

CBP30 against BET and non-BET bromodomains [64]. Vincek et al., 2018, identified a CBP 

inhibitor, NiCur, and further proved its ability to block the activity of CBP HAT as well as the 

regulation of p53 activation upon genotoxic stress downstream via computational studies [65]. 

NiCur was docked using Autodock-4 [45] into the active site of the CBP HAT and poses 

expression of c-Myc 

in the cells 

06 NEO2734 In vitro 

In vivo 

Prostate Cancer Inhibition of cell 

growth with a 

significant effect 

compared to a 

combination of JQ1 

and CPI-637 

[42] 

07 Nicur In silico Gastrointestinal 

Epithelial cells 

Blocked CBP HAT 

activity and down 

regulates p53 

activation upon 

cellular responses 

[65] 
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generated showed its binding affinity. A group of researchers reviewed the result of docking 

fragment-based high throughput ligands in rigid binding targets of the N-terminal BRD of 

BRD4 and CREBBP bromodomain [64]. In silico screening was aided with the newly 

developed procedure based on fragment for high throughput docking of large libraries of 

compounds. These compounds are called anchor-based library tailoring (ALTA) [45]. Of over 

2 million compounds decomposed using the DAIM program [66], approximately 97 fragments 

with either hydrogen bond donor or acceptor and a ring were parameterized using MATCH 

[67]. These compounds, with the use of SEED [68] [69], were docked into two structures of 

CBP. Only 4000 fragments survived the double filtering stage, of which the best compounds 

continued the docking process in the ALTA procedure using AutoDock Vina [45]. Poses were 

minimized with CHARMM . Remarkably, only 20 compounds emerged the best in terms of 

their interaction with the asparagine residue in the binding target. Since the aim of the 

experiment involved its definition of the stability of the interaction, 100ns molecular simulation 

was carried out with each docked pose. It was reported that the ethylbenzene derivatives 

showed greater efficiency and binding selectivity compared to other CBP bromodomain 

inhibitors (SGC-CBP30) [70] and I-CBP112 [71] reported by others.  

 

 

CONCLUSION 

This study proves the progression of CREB-BP from concept to computational research. Its 

unique properties have been evaluated through times and have been a significant target, 

especially in cancer drug development. Various inhibitors have been identified, and the 

investigation continues to emerge in its progression to being drugs for diseases. Having looked 

into examples of studies in which MD simulation and docking were adopted, it is quite evident 

that more progress is likely to be seen in this continuous study.  
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CHAPTER 6 

6.1 CONCLUSION 

Trends in cancer studies have revealed prostate cancer as the second most recurring and fifth 

lethal cancer in men in the world today. Despite androgen deprivation therapy (either chemical 

or surgical castration), it has been reported that some men show progression in androgen 

signalling giving rise to the present headache of prostate cancer called castration resistance 

prostate cancer (CRPC). Although the mechanism of this onset has not been clearly identified, 

research continues possible drug inhibition. 

 

Zou et al., [1] bases the research studies included in this thesis on a recent study where a novel 

drug Y08197, a selective inhibitor of CBP/P300 BRD, was identified via in vitro studies with 

antitumor properties. In his study, the inhibitor identified with CRPC as a new therapeutic drug 

for the treatment of castration-resistant prostate cancer and higher selectivity over other BRDs. 

Hence this study aimed to burrow deep to view the specificity of inhibition of Y08197 against 

CBP as well as observe the ligand specificity of the compounds tested against CBP and BRPF1, 

another bromodomain but of lowest affinity to Y08197 with the aid of computational studies. 

To attain our aim, there were two particular arms to this study, which were: (a) to comprehend 

the mechanistic and selectiveness  of Y08197 at the bromodomain active site (b) to analyse 

similar inhibitory effect connecting Y08197 and CPI-637.  

 

Using various computational tools such as Chimera, Avogadro, Marvin sketch, origin to 

mention but a few, this research has accomplished the aim of the studies. The inhibitory out-

turn between YO8197 and CPI-637 was disclosed using Molecular Mechanics/ Poisson-

Boltzmann Surface Area (MM/PBSA) analysis. Besides, our findings highlighted Asp1116 as 

the ‘culprit’ residue responsible for the selective targeting and affinity of Y08197 towards CBP 
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in relative to Bromodomain and PHD finger-containing protein 1(BRPF1). The mechanism 

adopted upon binding, reveals that Asp1116 assumed a conformation that changes the strural 

design of the bromodomain active site, attuning the helices around the active site in a more 

closely-packed position. Interestingly, besides some specific structural perturbations mediated 

by Asp1116 on the dynamics of CBP, our study disclosed that the strong hydrogen bond 

interaction (N-HO) obtained in CBP-Y08197 sequestered Y08197 tightly into the CBP 

bromodomain active site. 

 

Overall, this research study has provided indispensable acumen into the mechanism of Y08197, 

a selective CBP inhibitor via molecular modelling and CADD. 

 

 

6.2 RECOMMENDATIONS AND FUTURE PERSPECTIVES 

The study entails computational approaches used to provide methodically and cost reductive 

software gadget for drug design and discovery. Gadget such as Molecular dynamics (MD) 

simulation, Virtual screening, binding free energy assessment with the use of MM/GBSA 

technique executed in AMBER 14, and post-dynamic analyses. Software tools such as these 

were employed to regulate the binding modes of the drug and check for how stable the enzyme- 

binding site is. Others include how to determine ligands-active sites residues interactions and 

docking results verification.  

 

6.2.1 Future Perspectives 

The potential inhibitor of the study has presented promising therapeutic for the treatment of 

castration resistance prostate cancer. However, prospective biological testing of this compound 

is still required to verify this in silico studies. Also, further studies may include more 
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combinational therapies comparison of Y08197 and anti-androgens such as enzulamatide. It 

also of closer interest to uncover the great mystery of the mechanism of CRPC that is still 

unclear as of today 
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 Abstract: Background: The selective targeting of CREB-cAMP-responsive element-binding 
protein (CBP) has recently evolved as a vital therapeutic approach for curtailing its aberrant 
upregulation associated with the development of prostate cancer. Inhibition of CBP has been 
discovered to be an important therapeutic option in androgen receptor signalling pathway mediated 
prostate cancer. Y08197, a novel selective inhibitor of CBP, has shown promising therapeutic 
outcome in prostate carcinogenesis over non-selective analogues such as CPI-637.  

Methods/Results: Herein, we used molecular dynamics simulation to gain insights into the 
mechanistic and selective targeting of Y08197 at the bromodomain active site. Molecular 
Mechanics/ Poisson-Boltzmann Surface Area (MM/PBSA) analysis revealed a similar inhibitory 
effect between Y08197 and CPI-637. Furthermore, in exploring the selective affinity of Y08197 
towards CBP in combination with Bromodomain and PHD finger-containing protein 1(BRPF1), 
our findings highlighted Asp1116 as the ‘culprit’ residue responsible for this selective targeting. 
Upon binding, Asp1116 assumed a conformation that altered the architecture of the bromodomain 
active site, thereby orienting the helices around the active site in a more compacted position. In 
addition to some specific structural perturbations mediated by Asp1116 on the dynamics of CBP, 
our study revealed that the strong hydrogen bond interaction (N-H⋯O) elicited in CBP-Y08197 
sequestered Y08197 tightly into the CBP bromodomain active site.  

Conclusion: Conclusively, the inhibition and selective pattern of Y08197 can be replicated in 
future structure-based CBP inhibitors and other bromodomain implicated in carcinogenesis. 
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1. INTRODUCTION 

 Prostate cancer is regarded as the second most frequent 
and the fifth leading cause of cancer-related mortality in 
males worldwide [1]. In 2018, the International Agency for 
Research on Cancer estimated that almost 1.3million new 
cases of prostate cancer and 359,000 associated deaths will 
occur worldwide [1]. Prostate cancer has been linked to 
aberration in some proteins such as androgen receptor (AR) 
[2]. Androgen-deprivation therapy has shown high 
therapeutic outcome, yet, recurrence of pathological symptoms 
after 2 to 3 years suggests upregulation of signalling pathways 
or an alternatively spliced AR that is no longer dependent on 
androgen binding to affect its activation [3]. This is called 
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Castration-Resistant Prostate Cancer (CRPC) or Androgen 
Independent Prostate Cancer (AIPC) or Hormone Refractory 
Prostate Cancer (HRPC) [4]. Therefore, recent research 
studies are aimed at the development of drug therapies that 
target CRPC. Due to the role that AR plays in prostate 
carcinogenesis, different drugs have been developed as a 
target against AR [5], such as abiraterone [6] and second-
generation antagonists such as enzalutamide [3], 
bicalutamide [7] and apalutamide [8]. Despite the success 
recorded by these drugs, drug resistance still emanates, this 
necessitated continuous research into developing and design 
of inhibitors that can circumvent this [4]. Strategies designed 
in combating prostate cancer involve targeting several 
pathways such as androgen synthesis, androgen receptor 
splice variants, androgen receptor coactivators, PI3K-AKT 
pathway, WNT pathway, DNA repair, etc [7]. One such 
protein that gained attention in the last few years and has 
been regarded as a promising target is CREB (cAMP-
response element-binding protein)- binding protein (CBP) 
(Fig. 1). 
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 CBP is a bromodomain-containing protein and serves as 
a co-activator in transcription during androgen signalling 
pathway. In 2004, Barbara Comuzzi showed that CBP was 
upregulated upon the withdrawal of androgen, suggesting a 
further investigation of CBP as a future therapeutic target for  
CRPC patients [7]. Hence, Ling-jiao Zou recently published 
that targeting the bromodomain of CBP, with a selective 
inhibitor, Y08197, a novel 1-(indolizin-3-yl) ethanone 
derivative, inhibited the CBP bromodomain with an IC50 
value at 100.67 ± 3.30 nM [9]. Although the experiment was 
carried out on different bromodomain, Y08197  appeared to 
selectively inhibit CBP amidst others [9]. As such, in this in 
silico study, we aim to extensively investigate   the 
molecular mechanism of this reaction as well as observe the 
ligand specificity of the compounds against CBP and 
BRPF1, containing bromodomain but of lowest affinity to 
Y08197 (Fig. 2). 

2. MATERIALS AND METHODS 

2.1. Starting Structures Preparation and MD Simulation 

 The initial structures of CBP and BRPF1 were obtained 
from Protein Data Bank with PDB ID 6FR0 [10] and 5MWH 
[11], respectively. Molecules that were co-crystallized with 
the proteins were deleted and missing residues were added 
with the aid of modeller [12]. B3LYP/6-311++G(d,p) [13] 
level of Gaussian16 [14] was employed to carry out ligand 
optimization. Afterwards, molecular docking of the 
optimised structures was carried out using UCSF Chimera 
[15]. FF14SB module [16, 17] of the AMBER forcefield was 
employed in carrying out MD simulation. The General 
Amber Force Field (GAFF) and Restrained Electrostatic 
Potential (RESP) were used in describing the atomic charges 
of the ligands. Leap variant present in Amber 14 was used 

 
Fig. (1). 3D crystallography structure of CBP in complex with a B-DNA (A) and Y08197 (B). Y08197 occupying the active site of CBP. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
Fig. (2). 2D chemical structures of Y08197 and CPI-637. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article).  
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for system neutralization and hydrogen atoms addition [17]. 
The system was kept solvated with an orthorhombic box of 
TIP3P water molecules surrounding all protein atoms at a 
distance of 9Å [13]. System minimization was carried out 
firstly with a 2000 steps minimization using a restraint 
potential of 500kcal/mol. Secondly, we used a 1000 steps 
full minimization process without restrain, afterwards, the 
system was gradually heated at a temperature of 0k to 300k 
at 50ps. The system solutes are kept at a potential harmonic 
restraint of 10 kcal mol- 1Å −2 and collision frequency of 
1.0 ps-1. Afterward, the equilibration of 500 ps was carried 
out. The temperature and pressure were kept constant at 
300k and 1bar (isobaric-isothermal ensemble, NPT using 
Berendsen barostat) respectively. Each step of the simulation 
was run for 2fs and an SPFP precision model was adopted. 
The simulations were kept at constant temperature and 
pressure (NPT), and Langevin thermostat at collision 
frequency of 1.ops-2. PTRAJ variant of Amber14 was 
adopted for further analysis which included Root-Mean-
Square Deviation (RMSD), Root-Mean-Square Fluctuation 
(RMSF) and Radius of Gyration [18]. The data plots were 
then made with ORIGIN analytical tool and visualization 
was done using UCSF Chimera [19].  

2.2. Binding Free Energy Estimation 

 The Molecular Mechanics/ Poisson-Boltzmann Surface 
Area (MM/PBSA) was employed in the estimation of 
differential binding of CPI and Y08197 [20]. MM/PBSA is 
an end-point energy estimation used in the prediction of 
binding affinities of ligands and their corresponding protein 
target. MM/PBSA is mathematically described as:  

∆Gbind = Gcomplex - (Greceptor + Ginhibitor)     (1) 

∆Gbind = ∆Ggas + ∆Gsol - T∆S                    (2) 

∆Ggas = ∆Eint + ∆Eele + ∆EvdW                             (3) 

∆Gsol = ∆Gele,sol(GB) - ∆Gnp,sol                                (4) 

∆Gnp,sol = γSASA + β                                 (5) 

 ∆Ggas represents the total gas phase energy calculated by 
intermolecular energy (∆Eint), electrostatic energy (∆Eelel) 
and van der Waals energy (∆EvdW). ∆Gsol represents the 
solvation energy, T∆S represents entropy change. ∆Gele,sol(PB) 
represents polar desolvation energy while ∆Gnp,sol represents  
the non-polar desolvation energy. γ is the surface tension 
proportionality constant and is set to 0.0072 kcal/(mol-1. Å-
2), β is a constant equal to 0 and SASA is the solvent-
accessible surface area (Å2). 

2.3. Energy Decomposition 

 To explore the energy contribution of each residue in the 
active site with CPI-637 and Y08197, binding free energy 
decomposition was done. MM/PBSA methodology was 
explored in the per-residue free energy decomposition.  

3. RESULTS AND DISCUSSION 

3.1. CBP and BRPFI Perturbative Effect Upon CPI-637 
and Y08197 Binding 

 To understand the structural perturbation of CBP and 
BRPF1 upon CPI and Y08197 binding, we used Root Mean 
Square Deviation (RMSD), Root Mean Square Fluctuation 
(RMSF) and Radius of Gyration (RoG) to characterize the 
structural events in the proteins in the course of the 
simulation. Root Mean Square Deviation is a commonly 
used quantitative parameter used to estimate the similarity 
between two superimposed structures. RMSD can be 
computed for different parts of an atom, most of the time in 
MD simulation, the RMSD is often calculated for the Cα of 
the entire protein structure, for example, those found in the 
loop, active site and perhaps transmembrane helices [21, 22]. 
Many research studies have used RMSD as a measure of 
protein stability and equilibration [21]. Root Mean Square 
Fluctuation is defined as the measure of the atomic 
displacement of a single or a group of atoms relative to the 
starting or reference structures, averaged over the number of 
atoms [23]. Radius of Gyration (RoG) is a function used to 
define the distribution of atoms of a protein around its axis. 
The most significant parameter used in the prediction of the 
structural activity of a protein is RoG and distance [24]. In 
the course of the 200 ns simulation run, RMSD values of Cα 
atoms of CPI-CBP, Y08197-CBP, and Y08197-BRPF1 were 
estimated relative to the starting structure. As illustrated in 
Fig. (3A), all the systems attained structural stability after 20 
ns. The three systems had similar motional movements with 
an average RMSD value of 0.90 Å, 1.15Å and 1.05Å 
respectively (Table 1). Furthermore, we also explored the 
conformation of the active site to have an insight into the 
effect of the ligands relative to the RMSD of the whole 
system. From Fig (3B), the active site is observed to be well 
stable, this provided a suitable environment for the ligand to 
interact with the residues making up the active site. 
Furthermore, we investigated the stability of the ligand, 
although both ligands had similar motional movement and 
stability, CPI was observed to have higher stability when 
compared to Y08197.  

Table 1: The finally equilibrated values of RMSD (FE-RMSD) for each system. 

 Average RMSD (Å) 

Regions CBP BRPF1 CPI-CBP Y08197-CBP Y08197-BRPF1 

Protein 0.87 0.86 0.90 1.15 1.05 

Active site 0.84 0.80 0.62 0.57 0.99 
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Fig. (3). Conformational analysis plot showing stability and atomistic motions among CBP (black), BRPF1 (cornflower), CPI-CBP (red), 
Y08197-CBP (green) and Y08197-BRPF1(red) systems [A]. C-α RMSD plot showing the active site stability and atomistic motions of 
Y08197-CBP (black) and Y08197-BRPF1(red) [B]. Stability and atomistic motion plot of the ligands CPI (black) and Y08197 (red) [C]. 
Snapshot of the superimposed ligands at 50ns, 100ns, 150ns and 200ns [D]. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 

3.2. Hydrogen Bond Analysis 

 The strength of protein-ligand binding is greatly 
influenced by hydrogen bonds contributed by residues, 
especially those found in the active site [25, 26]. Hydrogen 
bonds serve as a platform for most of the bond interactions 
involved in molecular recognition and protein folding. The 
main structural architecture of a protein is made up of alpha-
helix and beta-sheet [26]. 
 We estimated the hydrogen bonds of the equilibrated 
trajectories of the systems and computed direct hydrogen 
bonds between CPI, Y08197 and the proteins. At the final 
simulation step (200 ns), it was observed that O-H⋯O in the 
CPI-CBP system contributed by ASN87 had an occupancy 
of 34. The CBP-Y08197 had two hydrogen bond interactions 
contributed by ASN87 and ASP35. The N-H⋯O of ASN87 
had a higher occupancy when compared to N-H⋯O of 
ASP35 (Table 2). Furthermore, BRPF1-Y08197 had an extra 
H-bond provided by ASN81, this bond had the highest 
occupancy among the H-bond interactions found among the 
systems. This extra H-bond could provide an insight into the 
selective binding of Y08197 to CBP.   

3.3. Analysis of Binding Free Energy 

 MM/PBSA has found useful application in the drug 
design space used in the estimation of binding affinity 
between ligands and biomolecules [22, 27]. MM/PBSA was 
therefore used in the estimation of the total binding free 
energy (ΔGbind) and other energy components between 
Y08197/CPI and CBP/BRPF1. The estimated ΔGbind 
increases from Y08197-BRPF1 > Y08197-CBP > CPI-CBP. 
The same increasing trend was observed when the binding 
affinity after MD simulation was compared to the docking 
score. However, of note is that there is no much difference in 
the binding affinity between CPI-CBP (-32.06Kcal/mol) and 
Y08197-CBP (-32.00Kcal/mol) (Table 3). This result agrees 
with the work of Zou et al., which suggested that the 
inhibitory effect CPI and Y08197 are similar. From the 
computed result, it was observed that van der Waals and 
electrostatic interactions promoted ligand-protein 
interactions, and binding was disfavoured by polar solvation 
(∆Gele,sol(GB)). The nonpolar solvation (∆Gnp,sol) was also seen 
to favour the binding.   



Multiple-line Chemotherapy and Tyrosine Kinase Inhibitor Combinatorial Chemistry & High Throughput Screening, 2020, Vol. 23, No. 1    5 

 To explore the contribution of all residues present on the 
active site in the protein-ligand interactions, the energy 
decomposition of the residues was computed as depicted in 
Fig. (4). Leu1109, Pro1110, Leu1120, Arg1173, and 
Val1174 were found to be the interacting residues between 
CBP and CPI. Leu1109, Phe1110, Leu1120, Ile1122, 
Asn1168, Val1174 were found to be the interacting residues 
between CBP and Y08197.  
 Though ASP1116 did not contribute high van der Waals 
and electrostatic interaction to the binding between CBP and 
Y08197, however, as discussed above, it has a high 
hydrogen bond contribution to this binding. While, Val657, 
Pro658, Val662, Phe714 were the interacting residues with 

energy contribution more than -1Kcal/mol responsible for 
the binding between BRPF1 and Y08197. Zou et al., have 
found out that Y08197 selectively target CBP as against 
other bromodomain-containing proteins [9]. To have insight 
into the mechanism of this selective targeting, we performed 
selective targeting of Y08197 on CBP, and explored the 
ligand interaction between Y08197 and the proteins (CBP 
and BRPF1). Although the active sites of CBP and BRPF1 
have some common residues. However, the extra 
electrostatic and van der Waals energy contributions 
provided by Val115, Asn1168, Pro1110 added to this 
selectivity. Most importantly Asp1116; as discussed in the 
hydrogen bond analysis, the hydrogen bond between N-
H⋯O in Asp1116 is peculiar only to CBP (Fig. 5). 

 
Fig. (4). Individual energy contributions of crucial site residues of CBP and BRPF1. Per-residue decomposition plot showing energy 
contributions of interactive active site residues of CPI-CBP (A), Y08197-CBP (B) and Y08197-BRPF1 (C). (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 

 
Fig. (5). 3D structure of the ligand interaction between CPI and CBP (A) and YO1897-CBP (B) highlighting the molecular interactions of 
key residues and reactive moieties. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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CONCLUSION 

 The mortality rate of prostate cancer has become a major 
concern globally. Different therapeutic strategies have been 
targeted towards some proteins that are implicated in cancer. 
One such protein is the CREB-cAMP- responsive element-
binding protein (CBP) which has gained attention in the drug 
design space. Y08197 is a novel inhibitor that has recently 
been reported to selectively target CBP. We explored this 
selective targeting and discovered that the Asp1116 is an 
important residue that facilitates this targeting. This is 
evidenced by the array of results that pointed to Asp1116 as 
the “chief culprit”. Asp1116 can, therefore, be explored in 
designing CBP inhibitors that possess more potency and 
perhaps less toxicity. 
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Abstract
CBP [cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-binding protein] is one of the most 
researched proteins for its therapeutic function. Several studies have identified its vast functions and interactions with other 
transcription factors to initiate cellular signals of survival. In cancer and other diseases such as Alzheimer’s, Rubinstein-taybi 
syndrome, and inflammatory diseases, CBP has been implicated and hence an attractive target in drug design and develop-
ment. In this review, we explore the various computational techniques that have been used in CBP research, furthermore 
we identified computational gaps that could be explored to facilitate the development of highly therapeutic CBP inhibitors.

Keywords  CREB · Molecular dynamic simulation · CREB inhibitors · Bromodomains

1  Introduction

The CREB (cyclic adenosine monophosphate (cAMP) 
response element-binding protein) Binding Protein (CBP), is 
a protein encoded by the CREBBP gene. CBP is a bromodo-
main-containing protein which emphasises its functionality 
in identifying acetylated lysine in histone proteins while also 
acting as effectors in signal associated with acetylation [1]. 
This class of protein has been reported to play a significant 
role in many biological and physiological processes, includ-
ing transcription, differentiation, and apoptosis, whose activ-
ity is regulated by phosphorylation [1]. It’s unique structure 
is made up of domains that catalyses transcription process 
initiated in cell growth, gene expression and differentiation 
as shown in Fig. 1. The histone acetyltransferase (HATs) 
domain, also part of the CREB binding protein is necessary 
for protein–protein interactions, histone and non-histone 
alike such as NCOA3 and FOXO1. In 1993, p300, a Switch/
Sucrose Non-Fermentable (SWI/SNF) complexes binding 
protein family was identified. It was discovered to share 

similarity with CBP in terms of its bromodomain, HATs 
domain and the cysteine-histidine region [2]. Despite this 
similarities, they both cannot be used interchangeably. Ryan 
et al., researched for their differences and identified that their 
selectivity for lysine within the histones is the major reason 
for their differences [3]. Although, CBP are coactivators of 
transcription, they do not interact with the promoter element. 
Instead, they are mobilized to promoters by protein–protein 
interaction [1, 4, 5]. The CREB binding protein has a bind-
ing domain called the KIX (kinase inducible domain) or 
the CREB binding domain [4]. This CREB (cAMP-response 
element-binding protein) unit within CBP controls the rate 
of transcription when phosphorylated at Ser-133 residues 
through protein kinase A which triggers the transcription 
activity of CBP [6]. The transactivation domain of CREB 
is bipartite, which consist of a glutamine-rich constructive 
activated site called Q2 and kinase-inducible domain (KID), 
and are directly in response to gene expression [7]. Despite 
the phosphorylation interaction between cAMP-dependent 
PKA and CREB, it is still unknown whether phosphoryla-
tion on the amino acid Ser-133 elicit CREB-CBP complexa-
tion. The mechanism of interaction is still not precise, either 
direct or allosteric [6]. *	 Mahmoud E. S. Soliman 
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1.1 � Bromodomain: What About It?

Wetlaufer defined protein domains as stable units of pro-
tein structure, possessing structural and evolutionary func-
tions that fold autonomously [1]. Bromodomains (BRDs) 
are parts of a given protein sequence (approximately 110 
amino acids) that recognizes lysine acetylation of N-ter-
minal histones during gene transcription [1]. They are 
responsible for histone acetylation, chromatin remoulding, 
and transcription activation [8]. John Wetlaufer Tamkun 

first proposed the discovery of bromodomain-proteins 
while studying the drosophila gene Brahma [9]. PCAF, 
histone acetyltransferase (HATs) KAT2B was the first 
3-dimensional structure of BRD to be solved using NMR 
spectroscopy in 1999 [8]. Bromodomains are also called 
histone code readers [10, 11]. Of all the proteins in the 
human proteome, there are 61 BRDs, and based on their 
structure–function relationship, they are grouped into eight 
subfamilies [1]. These BRDs all have four α-helices linked 
by loops of different lengths (a, b, c and z) with which it 
interacts with acetylated lysine residues. These helices are 

Fig. 1   CBP and its interacting domains

Fig. 2   Classification of the dif-
ferent classes of BET Proteins 
(prepared by the author)
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coiled up in a left-handed α-helical fold. Between helix 
b and c and helix z and a, there are two loops forming a 
hydrophobic pocket [12]. The differences shown in the 
binding of bromodomains are due to the differences in 
sequence beyond the residues bound directly with acetyl-
lysine binding [12–14] Although each protein is specific 
with its structure yet 48 of the more than 61 BRDs con-
tain the asparagine residue at the acetyl-lysine binding site 
(KAc recognition position) while the remaining 13 have 
a tyrosine, threonine or an aspartate in the same position. 
The latter is called atypical BRDs [15]. There are eight 
subgroups of the BRDs classified in accordance to their 
amino acid sequence similarities as seen in Fig. 2 above 
(Classification of the different classes of BET Proteins). 
They are the BET family, histone acetyltransferases HATs 
(GCN5, PCAF), methyltransferases (MLL, ASH1L), ATP-
dependent chromatin-remodelling complexes (BAZ1B), 
helicases (MARCA), nuclear-scaffolding proteins (PB1) 
and transcriptional coactivators (TRIM/TIF1, TAFs) 
transcriptional mediators (TAF1) [13]. Specific sub-
groups have gained more attention compared to others; 
this is partly due to the development of inhibitors target-
ing BRDs. Of all the BRDs, the BET (bromodomain and 
extra-terminal family) BRDs (BRD2, BRD3, BRD4, and 
BRDT) are most researched and has over 206 PBD struc-
tures available today [13].

2 � CREB‑Binding Protein (CBP)

CBP is a nuclear protein of Mr 265 K that bounds to 
phosphorylated cAMP-regulated transcription factor 
CREB, this fusion allows CBP to function as protein 
kinase A-regulated transcriptional activator [16, 17]. 
Both CBP and p300, its analogous, shares a few func-
tional domains in common which constitute their simi-
larities: (1) they are BRDs which are commonly found 
in human HATs; (2) they both have domains of the three 
cysteine-histidine namely CH1, CH2, and CH3; (3) they 
both have the KIX domain; and (4) an ADA2-homology 
domain [18]. Despite the broad structural similarities, 
Ho Man Chan and Nicholas Thangue attest to the unique 
characteristics of CBP and p300 [19]. Also, both CBP 
and p300 are phosphorylated at the different amino acid 
sites; CBP is phosphorylated at serine 436, an amino acid 
absent in p300 [20] which is absent in the latter. On a 
quick database check on STRING, CBP is shown to inter-
act with the following proteins as shown in the Fig. 3. 
Such proteins include NCOA3, TP53, NCOA1, RELA, 
CITED2, HIIF1A, PPARG, SUMO1 and STAT1. Mean-
while, Intact database reports a more detailed interac-
tions of 790 binary proteins. In 1996, p300 and CBP were 
reported to function as histone acetyltransferases (HATs). 

CBP especially was discovered to possess intrinsic his-
tone acetyltransferase activity even though it lacked con-
served motifs found in regular acetyltransferases. With 
this property in view, it is only direct to suggest that it 
modulates cell cycle progression. It is demonstrated to 
acetylate nucleosomes associated with PCAF [21, 22]. 
CBP has been shown to play a vital role in gene expres-
sion. A study reported CBP as a HAT capable of acety-
lating nuclear factor-4 (HNF-4) of liver cells at lysine 
residues inside the nuclear localization sequence [23]. 
CBP continues to be of great interest in the development 
and design of drugs CBP plays an extensively role at the 
molecular level, such as, cellular growth, histone acet-
ylation, and transcription of some factors amidst other 
unique functions. For example, CBP brings about the 
assembly of multi-protein complexes, which serves as 
molecular scaffolds [19]. CBP, along with other transcrip-
tion factors, are known to regulate the overall process 
involved in the cell, including gene transcription [24]. It 
is essential to the point that in transforming viral proteins 
such as E1A from adenovirus, CBP is a prerequisite target 
[25]. Also, another review suggests that CBP proteins are 
targets for adenovirus E1A oncoprotein indicating its vital 
role in cell cycle regulation [5]. Observations by Ait-Si-
Ali et al., reported that HAT is involved in the cell cycle 
by the phosphorylation of CBP by cyclin-E-CDK2 in the 
C-terminal region of the protein hence stimulating HAT 

Fig. 3   A database report from STRING showing the functional inter-
actions of CREBBP with other proteins
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activity [26]. Moreover, the results indicated that E1A 
activates the CBP HAT enzyme on the binding, which 
then results in a conformational change in its domain, 
leading to an increased catalytic activity. CBP interacts 
with viral oncoproteins such as p53 to cause loss of cell 
growth or growth suppression. p53 interacts with a car-
boxyl-terminal region of CBP and activate genes involved 
in DNA damage and block cellular differentiation such as 
p21, murine double minute (MDM-2), BAX and cyclin 
G [27, 28].

3 � CREB‑Binding Protein (CBP) and the Onset 
of Diseases

CBP’s function in cancer was first identified in the trans-
location of chromosome t(12;22) q(13;12). Studies have 
shown that CBP is involved in all stages of tumour devel-
opment, in addition to its being a proto-oncogene. A sta-
tistic of patients with prostate cancer, lung cancer, acute 
leukaemia, and breast cancer showed overexpression and 
over activation of CBP [29]. Also, the inhibition of cell 
proliferation and induction of apoptosis was observed in 
the downregulation of CBP, which suggests that it as a 
prospective target for cancer therapy [30]. Although the 
involvement of CBP in cancer development is not explicit 
yet, CBP directly controls genes critical to cell progres-
sion, growth, and metastasis. CBP has also been identified 
in the development of embryos and cancer [21]. In Alzhei-
mer’s disease, CBP activator (CREB1), together with CBP, 
enhances memory formation and learning [31]. However, 
in certain circumstances, increase in CREB1 function can 
also alter cognitive performance. A publication by Tang 
et al., aimed to search the function of CREB1 in the onset 
of Alzheimer’s diseases (AD) [31]. The result implicated 
CREB1 and CBP as the culprit in the pathophysiology of 
Alzheimer’s disease (AD), yet further research could be 
done on a much larger population to confirm these obser-
vations [31]. A research was conducted to analyse the 
function of CBP in inflammatory diseases. It turned out 
that few studies have been reported in line with rheumatoid 
arthritis (RA) synovial fibroblasts (SF). Results showed 
that the inhibition of CBP has an anti-inflammatory effect, 
while p300 showed both pro and anti-inflammatory func-
tions [32].

3.1 � Various Attempt to Target CBP

Recently, Hammitzsch et al., developed a CBP inhibitor 
(CBP 30) to block Th17 responses in human autoimmune 
diseases. Th17 has been proven to be very vital to vari-
ous human autoimmune diseases. In the above research, 

the inhibitor blocked the bromodomain of the coactiva-
tor CBP, showing remarkable results [33]. Although the 
inhibitor was tested with about 43 bromodomain binding 
protein, excellent result that far exceeds even the known 
JQ1 (a BET inhibitor) was observed. In castration-resist-
ant prostate cancer (CRPC), an advanced prostate cancer, 
CBP, and its homolog p300 are highly expressed. Given 
this, various therapy is aimed towards blocking the activity 
of CBP. In a recent study, YO8197, a selective inhibitor of 
CBP bromodomain was explored in terms of its antitumor 
activity against prostate cancer cell lines in vitro [34] of 
which further in silico studies by akinsiku et al., proved 
the mechanistic and selective targeting of Y08197 at the 
bromodomain site. Asp 116 was identified as the culprit 
responsible for the selective targeting [35]. Another CBP 
inhibitor, C646 has been investigated against neuroepithe-
lial cell proliferation [36]. This study by Bai et al., further 
justified the abnormality in NE-4C cells of CBP in high 
glucose. With the administration of C646 to the diabetic 
induced mouse, the results indicated that the levels of acet-
ylation were reduced. Conclusively, it was evident that 
C646 could effectively impede the increase of histone H4 
acetylation and neuro-epithelial cell proliferation [36, 37]. 
Statistics reports that 1% of pregnant women are affected 
by diabetes and might have congenital heart disorder and 
neural tube defects (NTDs) in the child born [38]. Figure 4 
shows 2D-structure of CREB-BP inhibitors and Table 1 
explains in detail the drugs experimentally designed to 
target CBP as discussed.

Recent research proved that NASTRp is effective in inhib-
iting cancer cells via cell arrest [39]. Since mutant KRAS 
drives the activation of CAMP responsive element-binding 
(CREB), it is only appropriate to devise an inhibitor that 
can effectively do such through RAF/MEK/ERK signalling 
pathway inducing apoptosis in cancer cells [40]. Compound 
DC_CP20, a new CBP BRD inhibitor, discovered through 
a time-resolved fluorescence energy transfer (TR-FRET)-
based high throughput screening of about 20 000 libraries 
of compounds [41]. An IC50 of 744.3 nM was demonstrated 
when bound with the acetylated lysine of CBP BRD. Moreo-
ver, with the aid of molecular docking, the binding affin-
ity was further juxtaposed, being bound tightly in the inner 
Kac-binding pocket competitively. The compound proves 
an inhibitory property to human leukaemia MV4-11 cells at 
cellular levels. These promising results pose a further study 
in the development of drug therapies for CBP-related can-
cers [42]. Studies have shown the frequent occurrence of 
SPOP (speckle-type POZ protein), a mutated gene in pri-
mary prostate cancer (Pca) in about 10 to 15% range [39]. A 
study by Yuqian Yan et al., identified an unknown mutation 
called Q165P at the cliff of the SPOP math domain [43]. 
The effect of this mutation is that it halts the dimerization of 
SPOP, and consequently substrate degradation. Furthermore, 
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unlike F133V, the former is highly sensitive to the known 
BET inhibitor, JQ1. In vivo and in vitro experiments carried 
out revealed a novel BET and CBP inhibitor, NEO2734, 
is effective against the JQ1-resistant SPOP hotspot mutant, 
which could proceed further to clinical trials for effective 
anti-cancer therapy against SPOP-mutated PCa patients [43].

3.2 � Computer‑Aided Techniques in Studies 
of CREB‑Binding Protein

Over the years, traditional strategies used in drug develop-
ment and design pipeline have been complemented with 
computational software and methods. These tools include; 
pharmacophore modelling, molecular docking, virtual 

Fig. 4   2D Structures of CREB 
inhibitors (as prepared by the 
author)

Table 1   A table showing the various drugs experimentally designed to target CBP for different diseases with necessary details

S/N Drugs Experiments Diseases targeted Results Ref

01 CBP 30 In vitro Human autoimmune diseases Inhibited IL-17A secretion via Th cells from 
healthy donors

[33]

02 Y08197 In vitro Castration resistance prostrate cancer Affected the downstream signalling transduc-
tion, inhibiting expression of AR-related 
genes

[34]

03 C646 In vitro
In vivo

Neuroepithelial
Cell proliferation

Rescued increased H4k5/k8/k12/k16 acetylation 
levels

[36]

04 NASTRp
(Naphthol AS-TR phosphate)

In vitro Lung adenocarcinoma Inhibited oncogenic cells via cell cycle arrest 
and also initiated downregulations of Atg5-12 
and Atg7

[40]

05 Compound DC_ CP20 In silico Human leukaemia Inhibited the proliferation of human leukaemia 
MV4-11 cells and downregulated the expres-
sion of c-Myc in the cells

[41]

06 NEO2734 In vitro
In vivo

Prostate cancer Inhibition of cell growth with a significant 
effect compared to a combination of JQ1 and 
CPI-637

[43]

07 Nicur In silico Gastrointestinal epithelial cells Blocked CBP HAT activity and down regulates 
p53 activation upon cellular responses

[66]
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screening, molecular dynamics (MD) simulation, Quantita-
tive Structure–Activity Relationship (QSAR), and homol-
ogy modelling. Computer-aided drug design techniques 
have been effective over the years in finding new drugs from 
genomic and proteomic initiatives. These new techniques 
have effectively reduced cost and increased drug discovery. 
Molecular docking have been adopted over the years and 
involve ligand-receptor orientation to find the best confor-
mation of fitness that would trigger a biological response. 
Some popular docking programs are FlexX [44], GOLD 
[45], AutoDock [46], GLIDE [47], DOCK [48, 49], HEX 
SERVER [50], Surflex [51], Patchdock [52] among others.

The importance of molecular dynamics (MD) simulation 
cannot be overemphasized, especially with its coherent contri-
bution to the interplay between computational and experimen-
tal techniques. These step-by-step techniques effectively reveal 
the dynamic behaviour of the proteins at timescales intervals, 
the stability of the protein structure, and the ligand’s bind-
ing interactions. Other properties such as conductivity, dipo-
lar moment, density, thermodynamic parameters, entropies, 
amidst others. are observed [53–56]. MD simulation programs 
include CHARMM [57], NAMD [58], GROMACS [59], 
AMBER [60], among others. We searched some published 
papers with an emphasis on the computational methods that 
have been adopted in CREB research. A paper by Woo Lee 
published in 2015 reports the anti-cancer properties of Naph-
thol AS-TR phosphate (NASTRp), a novel CREB-CBP Com-
plex inhibitor with many functions. Among all compounds, 
NASTRp showed the best effect, especially in biological 
assays. In this research, computational tools were employed 
in conducting a database search of compounds with possible 
chemical properties. Using the DBslnfilter, compounds were 
screened under properties such as no 3D coordinates, mixtures, 
isotopes, Molecular Weight < 100, or Molecular Weight > 500, 
metals. In this structural database are approximately 600,000 
compounds that also contain about 50 chemical databases [61]. 
These compounds are usually downloaded in the SDF file 
format [62], followed by a database search command inves-
tigation on each compound to identify any two-dimensional 
similarity. Compounds were screened using PubChem, after 
which a four-processor MIPS R16000 Silicon Graphics Tezro 
was used to conduct modelling calculations. The results were 
then combined into 3-D SLNs. All Compounds not containing 
carboxylates, phosphates, and sulfonamides were eliminated 
using the hit list manager. The PDB ID: IKDX represents the 
KIX domain coordinates. This result from taking the average 
of the NMR structures with the phoenix Elbow [63] the result-
ant produces the KIX and NASTRp coordinates. The docking 
calculations were obtained using HEX 6.3 [64]. The result 
indicated that out of the calculations of the top ten docking 
scores, NASTRp was shown to have the best binding score. 

Although molecular simulation wasn’t carried out to accom-
pany the experiment yet, the results indicate NASTRp as a 
potential anti-cancer drug. Researchers over the years have 
shown great interest in investigating CBP as a potential drug 
target, as shown in some few works demonstrated in advanced 
MD simulations. Md simulation was conducted to decipher 
the mechanism of the selective inhibitor CBP30 against its 
target CBP/p300 bromodomain. It was discovered that the spe-
cific residue for CBP, Arg1173/1137, was accountable for the 
selective binding to CBP30 through hydrogen bond interac-
tions and cation–π. In order to prove the result, four (4) system 
was set up; the apo-CBP, CBP-CBP30 complex, apo-p300, 
p300-CBP30 complex. Observing the interactions, CBP30 
ring B formed a contact collision with the Arg1173 side-
chain of Apo-CBP, meanwhile forming a favourable cation–π 
between the holo-CBP. For as long as 93% simulation time, 
the cation–π interaction was preserved. CBP, both contact 
and cation–π interaction reflected in apo-p300 and CBP 30, 
yet another H-bond is seen between CBP30 O3 and Arg1137 
NH1 atoms of holo-p300. With these results, a greater under-
standing is known of the mechanism of CBP30 against BET 
and non-BET bromodomains [65]. Vincek et al., 2018, identi-
fied a CBP inhibitor, NiCur, and further proved its ability to 
block the activity of CBP HAT as well as the regulation of 
p53 activation upon genotoxic stress downstream via com-
putational studies [66]. NiCur was docked using Autodock-4 
[46] into the active site of the CBP HAT and poses generated 
showed its binding affinity. A group of researchers reviewed 
the result of docking fragment-based high throughput ligands 
in rigid binding targets of the N-terminal BRD of BRD4 and 
CREBBP bromodomain [65]. In silico screening was aided 
with the newly developed procedure based on fragment for 
high throughput docking of large libraries of compounds. 
These compounds are called anchor-based library tailoring 
(ALTA) [46]. Of over 2 million compounds decomposed 
using the DAIM program [67], approximately 97 fragments 
with either hydrogen bond donor or acceptor and a ring were 
parameterized using MATCH [68]. These compounds, with 
the use of SEED [69, 70], were docked into two structures 
of CBP. Only 4000 fragments survived the double filtering 
stage, of which the best compounds continued the docking 
process in the ALTA procedure using AutoDock Vina [46]. 
Poses were minimized with CHARMM. Remarkably, only 20 
compounds emerged the best in terms of their interaction with 
the asparagine residue in the binding target. Since the aim of 
the experiment involved its definition of the stability of the 
interaction, 100 ns molecular simulation was carried out with 
each docked pose. It was reported that the ethylbenzene deriva-
tives showed greater efficiency and binding selectivity com-
pared to other CBP bromodomain inhibitors (SGC-CBP30) 
[71] and I-CBP112 [72] reported by others.
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4 � Conclusion

This study proves the progression of CREB-BP from con-
cept to computational research. Its unique properties have 
been evaluated through times and have been a significant tar-
get, especially in cancer drug development. Various inhibi-
tors have been identified, and the investigation continues to 
emerge in its progression to being drugs for diseases. Having 
looked into examples of studies in which MD simulation and 
docking were adopted, it is quite evident that more progress 
is likely to be seen in this continuous study.
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